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Abstract

Bayesian networks (BNs) are useful for coding conditional inde-
pendence statements between a given set of measurement variables.
On the other hand, event trees (ETs) are convenient for represent-
ing asymmetric structure and how situations unfold. In this paper
we report the development of a new graphical framework for discrete
probability models called the Chain Event Graph (CEG). The class of
CEG models contains finite BNs as a special case. Unlike the BN, the
CEG is equally appropriate for representing conditional independen-
cies in asymmetric systems and does not need dependent variables to
be specified in advance. As with the BN, it also provides a framework
for learning relevant conditional probabilities and propagation. Fur-
thermore, being a function of an ET, the CEG is a more flexible way of
representing various causal hypotheses than the BN. This new frame-
work is illustrated throughout by a biological regulatory network: the
tryptophan metabolic pathway in the bacterium E. coli .

∗Author to whom correspondence should be addressed: j.q.smith@warwick.ac.uk
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1 Introduction

Chain Event Graphs (CEGs) offer a way of combining the advantages of
event trees (ETs) and Bayesian networks (BNs). Like an event tree, the
CEG can represent all possible events in asymmetric and symmetric sys-
tems and describe how situations unfold. This is particularly pertinent for
biological regulatory systems, where sequential processes such as activation
and repression need to be handled. However, unlike ETs, CEGs have the
additional benefit that conditional independencies can be read off the graph
directly from its mixture of directed and undirected edges. The CEG has the
same number of directed paths as the equivalent ET, but far fewer vertices.

It has long been recognised (see e.g. [6]) that BNs are very expressive
of certain types of conditional independence statements where qualitative
implications of a model can be interrogated before the elaboration of a full
probability model takes place. This is where theorems like d-separation play
a role.

However, they are not so good for models with symmetries that are not
just sets of conditional independence statements, sparse probability tables or
a sample space structure which is not a product space. This has encouraged
other researchers to develop more expressive dependencies classes, see for
example [1, 10, 13]. Unfortunately these new, richer classes are typically not
graphical. Hence, the original appeal of the elicited BN — a graph whose
consequences could be read by the client and whose consequences could be
examined through d-separation — has largely been lost.

In contrast, the CEG (like the BN) represents models by a single graph
from which the qualitative implications of a client’s qualitative assertions
can be formally deduced. These can be fed back to the client for verifica-
tion before the distributional elaboration of the model takes place. We will
demonstrate below that the CEG explicitly represents unusual symmetries
and asymmetries in the qualitative model structure and so can allow strong
deductions to be made when none would be possible in the BN. Furthermore,
it can be shown that if an elicited CEG is formulated that happens to respect
a BN, then that BN can be fully retrieved from the topology of the CEG.
Thus, the class of finite discrete BNs is a particular subclass of the CEG.

The CEG is particularly attractive when an elicited model is expressed
in terms of the different ways in which situations might unfold: a common
way for scientists to explain how things happen. In such circumstances it is
often by no means clear which functions of a random vector of observations

2

CRiSM Working Paper No. 06-08, www.warwick.ac.uk/go/crism



might be expected to exhibit interesting conditional independence structure.
The topology of the CEG informs us how to construct such functions and is
illustrated in section 3.2. In BNs of course, it is assumed that such random
variables are given, so this issue is never addressed.

Because the CEG encodes conditional independence structure, making
certain collections of its vertices exchangeable, it is straightforward to es-
timate, see section 4. In particular, using an analogue of local and global
independence and complete random sampling (so that the likelihoods sepa-
rate), conditional probabilities in the graph can be estimated in a conjugate
way.

Shafer [17] has argued that causal hypotheses are much better framed
in ETs than BNs; contra e.g. [12, 21]. This is especially true when the
underlying model structure is intrinsically asymmetric. CEGs can provide
a half-way house between the ET and the BN, allowing causal conjectures
about equivalence classes of situations to be expressed succinctly. Further-
more, as demonstrated below, results such as the backdoor theorem [12],
which deduces the identifiability of a cause in a partially observed system
through examination of the topology of a BN, also have their analogues in
CEGs: see section 5.

In the next section, we shall describe a biological system — the regulation
of an important amino acid, tryptophan, in bacteria — and use it to illustrate
the definition and construction of an ET and then a CEG. Later, we consider
the elicitation of conditional independence statements, estimation from real
data and explore manipulation and causation within this model.

2 The ET for Tryptophan Regulation

The CEG is useful for expressing models that are most naturally described in
terms of processes rather than cross-sectional interdependencies. Biological
regulatory mechanisms are one domain where this feature may be exploited.
We shall now detail a running example of such a process.

In humans, tryptophan is one of the nine essential amino acids that are
required for normal growth and development, but it cannot be produced en-
dogenously. The bacterium Escherichia coli, commonly found in the human
colon, also needs a supply of tryptophan to survive, but has the ability to
synthesise its own if starved. Further, if tryptophan becomes plentiful in
the local environment, then its production can be switched off. As with
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many biological systems, the underlying mechanisms are complicated, act
at different time-scales and depend on several contingencies. However, with
some simplifying assumptions, we can describe this system in terms of the
probabilities of certain events occurring. (See [7] for one of the original de-
scriptions of tryptophan regulation in the biological literature and [19] for
a recent review.) For simplicity, we have focused on two regulatory mecha-
nisms: feedback enzyme inhibition and gene repression.

When a bacterium receives an increased level of tryptophan, the first pro-
cess that acts is chemical: feedback enzyme inhibition, FEI. Essentially, there
are a series of enzymes that catalyse successive steps in a metabolic path-
way culminating in the production of tryptophan. However tryptophan, the
end-product of this pathway, inhibits the first enzyme. Thus if tryptophan is
plentiful, there is a greater chance that the first enzyme is inhibited, cutting
the chain of enzyme catalysis and resulting in a decrease in the production
of tryptophan. Similarly, if the level of tryptophan is reduced, then there is
a smaller chance that the first enzyme is inhibited, so tryptophan produc-
tion can increase. FEI takes place immediately in response to a change in
exogenous tryptophan levels.

The second control process, gene repression, GR, works over longer time-
scales. In the presence of tryptophan, expression of the genes encoding tryp-
tophan synthetic enzymes — trp genes — is unnecessary and wasteful. To
counteract this, the trp genes are repressed by the tryptophan dependent
repressor protein, TrpR, which is produced by the bacterium at a constant
rate. These proteins then bind to the DNA and stop transcription of the
trp genes. When the bacterium is starved of tryptophan, less tryptophan
is available to bind to and activate TrpR, relieving repression and allowing
expression of the trp genes, and hence increasing tryptophan production.

The ET of this simplified version of the tryptophan regulation model
is shown in figure 1 and constructed below. Recall that an event tree, T ,
consists of a set of vertices V (T ) and a set of edges E(T ) with one root
vertex, w0. The members of the set of non-leaf vertices (i.e. those vertices
that do not terminate a branch), S(T ) ⊂ V (T ), are called situations. Every
situation is a precursor of future developments, so each situation v ∈ S(T )
has an associated random variable X(v) whose event space labels the edges
(v, v′) emanating from v.

In building the ET, both verbal descriptions [4] and mathematical mod-
els [15] guided us before consultation with a microbiology expert. Imagine
a population of E. coli grown in a minimal medium in a chemostat. That
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Figure 1: Full event tree for tryptophan regulation in E. coli . Vertices shaded
in the same direction belong to the same stage and position. The two filled
vertices are in the same stage, but different positions. Edge labels are ex-
plained in the text.
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is, they are supplied with the bare essentials needed to survive. Our model
describes the events that affect a bacterium. Different bacteria may follow
different root-to-leaf paths. The chemostat can be kept at two temperatures:
high and low. The potential subsequent events will not be affected by this
condition, but the probabilities that certain molecules bind and stay bound
will differ, as will the growth rate and tryptophan requirements of the bac-
terium. Therefore the branches from these two situations will look the same,
although the probabilities on the edges will vary.

An experimenter can use the chemostat to manipulate the level of envi-
ronmental tryptophan up, represented by the event Tenv ↑, or down, Tenv ↓.
After this change, we want to see how the bacterium responds. Under the first
response, FEI either takes place, FEI

√
, resulting in a drop in the amount of

tryptophan produced, or not, FEI×, leading to a rise. Over a longer period,
GR will either occur, GR

√
, meaning less tryptophan is manufactured, or

not, GR×, so that more is made. Depending on the events that have already
taken place, the growth state will be different. We permit four possibilities:

• SG: synthesised tryptophan is the main contributor to growth.

• EG: environmental tryptophan is the main contributor to growth.

• BG: synthesised and environmental tryptophan contribute equally to
growth.

• G: the bacterium does not grow.

Contingent on previous events, these states can be seen as efficient (for ex-
ample, SG if there is little tryptophan in the environment) or inefficient (SG

if tryptophan is abundant). Of course, in reality there would be a spectrum
of intermediate events at all levels of the ET. These could be included by
adding more edges. As our example is intended to be illustrative rather than
comprehensive, for visual clarity we have limited the number of possibilities.

The unfolding of these processes can be read from the tree. For example,
when starving the E. coli of tryptophan, no external supply is available, so we
can simply exclude the edges for EG and BG in this case. When tryptophan
is plentiful, the bacterium will always grow, so G cannot occur. If there is
tryptophan starvation and FEI takes place, then there is so little tryptophan
that it is very likely that the bacterium will not grow, leading straight to the
choice of final states.
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The point to notice here is that a BN could never fully express the qual-
itative structure of the events graphically, and the more complicated the
regulatory model, the more that is lost. On the other hand, we demonstrate
below that the CEG — a function of the ET along with collections of ex-
changeability statements — can often represent all the elicited qualitative
structure; sometimes fully. Therefore, within these contexts, the CEG pro-
vides a much more expressive framework than the BN for interrogating the
model’s implicit conditional independencies, and embellishing an unmanip-
ulated model with causal structure. It captures conditional independence
statements through making the assertion that certain random variables at
particular collections of situations X(v) are identically distributed.

Note that since its edges represent dependency, events with zero probabil-
ity cannot be represented in a BN. However, being derived from an ET, these
can be incorporated in the CEG by simply not including the relevant edge.
As illustrated by our example, in many problem descriptions elicited using
a tree, the length of root-to-leaf paths associated with various sequences of
situations are often different. Whilst this is handled naturally in the CEG,
this type of structure can only be represented in a BN by artificially adding
more deterministic relationships to the system.

3 The Chain Event Graph

3.1 Definitions

Once drawn, an ET like the one illustrated above can be used as a framework
for further elicited qualitative information associated with the exchangeabil-
ity of some of its situations. Let Ev denote the set of edges emanating from
the situation v ∈ S(T ). Then for each pair of situations v, v ′ ∈ S(T ) we
can ask whether, having reached situation v, the distribution of the random
variable X(v) whose probabilities lie on the edges Ev is identical (under an
appropriate mapping of edges ϕ : Ev → Ev′) to X(v′). If this is so we say
that v and v′ are in the same stage, u.

The set of stages L(T ) clearly forms a partition of S(T ). When v, v ′ ∈ u,

we allocate a particular colour to the edges e ∈ Ev and e′ = ϕ(e) ∈ Ev′

and call the coloured tree so formed a staged tree. Note that a staged tree
contains only qualitative statements. When a model is a BN then its stages
are an alternative representation of its embedded conditional independence
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statements. Thus it is easy to check that situations are in the same stage
if and only if they arise from the same sub-sequence of random variables
{X1, X2, . . . , Xr} and their parent configurations agree. Note that, for each
u ∈ L(T ), we can let X(u) denote a random variable whose distribution
is shared by {X(v) : v ∈ u}. We use this observation in the discussion of
learning algorithms given in section 4.

In figure 1, each situation is in a different stage except for the vertices
shaded in the same direction and the two solid vertices. In these cases we
expect biologically that the probability of the next event is represented by
the same random variable, hence they are in the same stage.

Another partition {w : w ∈ K(T )} of S(T ) — a refinement of {u : u ∈
L(T )} — is useful. The elements w of this partition are called positions and
can be read directly from the staged tree. Two situations v and v ′ are in
the same position w if the subtrees T (v) and T (v′) of the staged tree T are
colour isomorphic. This will mean that, with the appropriate labelling of
the edges, the distribution of the future unfolding starting from situation v

is believed to be identical to the one starting at v′. Therefore two units at
v and v′ that lie in the same position w will have exchangeable futures. We
note that, unlike our simple running example, typically the partitions are
quite coarse (see the examples in [18]).

In our example, the shaded vertices are in the same position since the
leaves v, v′ are terminal situations: T (v) and T (v′) contain no other situa-
tions other than v and v′. The solid situations are not in the same position
however, since whilst the topology of their associated subtrees is the same,
their corresponding situations are not in the same stage.

We can now define the chain event graph (CEG), C(T ), of a staged tree T .
This is a mixed coloured graph, whose set of vertices V (C) = K(T ) ∪ {w∞}
has a single root vertex w0 = {v0} — the root vertex of T — and a sink
vertex w∞ corresponding to the set of terminal vertices of the tree. Two
vertices in V (C) are connected by an undirected edge if and only if they are
distinct and in the same stage. Directed edges of C(T ) are constructed as
follows. For each position w ∈ K(T ) identify a single representative situation
v(w) ∈ w. Then, for each edge e = (v(w), v′) in Ev(w) draw a directed edge
from w to w′ where w′ = w∞ if v is a terminal vertex in T and a directed
edge from v(w) to the position w′(v′) in which v′ lies otherwise. Colours are
inherited from the staged tree in the obvious way. For simplicity, for the rest
of this paper the only results we will present will use information from the
topology of the CEG and not its edge colouring.

8

CRiSM Working Paper No. 06-08, www.warwick.ac.uk/go/crism



w0

1

2

4

16

99

17

5

10

18

19

High temp

Tenv ↑

Tenv ↓

w∞

BG

EG

SG

BG

EG

SG

3

6

20

99

21

7

14

22

23

Low temp

Tenv ↑

Tenv ↓
SG

G
SG

G

Figure 2: Chain event graph skeleton for tryptophan regulation in E. coli .
Edge labels are explained in the text and the nodes are numbered consistently
with figure 3. w0 is the root node, w∞ the leaf vertex. Only some terminal
edges are labelled for clarity. Note the undirected edge joining the high and
low temperature nodes. The dots denote subsequent events not shown here.
Figure 3 shows part of this CEG in detail, from the high temperature node
onwards, with all edges labelled.
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√
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Figure 3: Part of the chain event graph for tryptophan regulation in E.
coli associated with high temperature. The topology is repeated for low
temperature. Edge labels are explained in the text. See figure 2 for the
overall structure.
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The CEG so defined contains all the information expressed in the ET
since its root-to-sink paths are in a one-to-one correspondence with the root-
to-sink paths of its ET. On the other hand, all the stages and positions can
be read from its topology. This gives a graphical depiction of conditional
independence implicit from the model description akin to the BN. In [18] it
is proved that, unlike probability graphs [2, 3, 11] and probability decision
graphs [8], in the special case when a qualitative model can be fully described
by a finite discrete BN, it can also be fully described by a CEG. Thus for
discrete problems, the CEG is a genuine generalisation of the BN. It also
generalises the discrete MDAG [22].

With the CEG defined, we can now draw the CEG for our example. So
that all the features can be seen, figure 2 gives a skeleton outlining the start
and end of the CEG, whilst figure 3 shows a part of the CEG in close-up.
Firstly, we join all the leaves of the tree to one sink vertex, w∞. Having
elicited the stages from the expert, we next identify the positions: in our
example, the penultimate situations that are in the same stage. Finally, we
connect all the positions in the same stage by an undirected edge. Here these
are the situations associated with high and low temperatures.

3.2 Conditional Independence in a CEG

As for the BN, various conditional independence statements implied from
an elicited CEG can be read directly from the topology of its graph. In this
paper we restrict ourselves to the discussion of one result linking the topology
of the graph to conditional independence statements: many others are given
in [18]. First, we need two concepts. We call a collection of positions, Ω,
a fine cut if all paths from w0 to w∞ have to pass through exactly one
member of Ω. For the tryptophan regulation example, the set of vertices
Ωeg = {3, 10, 11, 16, 17} shown in figures 2 and 3 constitute a particular fine
cut. A separator Q(Ω) is a random variable taking different values qi for each
of the paths in the path event space that pass through a different element ωi

of the cut Ω.
Let Z(Ω) denote a random variable whose atoms have an event space

that corresponds to the paths of C that start at the root vertex and end at
a position ω ∈ Ω. Informally, Z(Ω) documents events that happen upstream
of Ω. Let X(Ω) denote a random variable whose atoms have an event space
that corresponds to the paths of C starting at an element ω ∈ Ω and ending
at ω∞. Thus X(Ω) describes events that happen downstream of Ω. It is easy
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to prove [18] that

X(Ω)
∐

Z(Ω)|Q(Ω) (1)

The meanings of all the variables can be deduced from the topology of C and,
unlike for the BN, do not necessarily just concern disjoint subsets of a given
set of random variables, but can be functions of these.

To illustrate equation (1), consider again the cut Ωeg defined above. As-
sume you learn the values of a function Q(Ωeg). The value of the vari-
able Z(Ωeg) gives additional information about whether a sequence passed
through situation 8 or 9. Note that this is not learned from Q(Ωeg). The
random variable X(Ωeg) reveals the unfolding of events after observing a low
temperature, and also whether or not GR occurred after observing a high
temperature, Tenv ↓ and FEI×. Equation (1) tells us that whether an obser-
vation passes through 8 or 9 is irrelevant to predictions about X(Ωeg) once
we learn the value of Q(Ωeg).

Note that this conditional independence statement does not simply con-
cern the original variables Tenv, etc, but functions of them. It is not always
possible to read this type of implication from a BN on the original vari-
ables. As with the BN, suitably interpreted subsets of these implications,
read directly from the graph, can be fed back to the expert for validation.

4 Estimation of CEGs From Data

We now move to the problem of estimating probabilities on a CEG, C, from
data. Note that the probabilities needed to fully specify C are the densities
p(πu) of the primitive probabilities {πu ∈ Πu : u ∈ L(C)}. These correspond
to the random variables {X(v) : v ∈ K(C)} at the different positions of C.
For BNs, under ancestral sampling, it is well known that if all the condi-
tional probability simplices specifying the process are a priori independent
of one another — that is, there is local and global independence — then this
property is also true posterior to sampling. Furthermore, if each of the sim-
plices of probabilities has a Dirichlet distribution a priori then the posterior
distribution of each of the independent simplices will be Dirichlet (see, for
example, [20]) after complete sampling. Consequently, it is straightforward
to build fast algorithms to learn which of a class of BNs best explains a given
data set.

The CEG shares an analogous property and hence inherits these capabil-
ities. To appreciate this, it is useful to visualise a network of simulators on
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an event tree which represent the data generating process: one for each posi-
tion. Imagine a computer experiment in which random, independent draws
are made from simulators lying along a path in C starting at the root vertex,
w0. As with BNs, nothing is lost if we assume that the CEG is generated in
this way [14].

Now assume that the vectors of primitive probabilities {p(πu) : πu ∈ Πu}
are all independent of each other. When we have a complete sample of n

observations, we sample n root to sink paths {λi : 1 ≤ i ≤ n}: each λi being
an instantiation of the underlying event space X of C. In the simulator world,
observing a root-to-sink path λ of length N(λ) just corresponds to a sequence
of independent realisations of the N(λ) random variables X(v) lying along
that path. So, given {πu ∈ Πu : u ∈ L(C)}, the probability of λ occurring
is simply the product of the probabilities πu on this path: a monomial in
{πu ∈ Πu : u ∈ L(C)}. Since we observe n such paths independently, it is
therefore easy to check that the likelihood of this sample can be written

L(π|λ1, . . . , λn) =
∏

u∈L(T )




n(u)∏

i=1

πi(u)ri(u)




where ri(u) is the number of times the ith edge from a position v ∈ u is tra-
versed in the observed paths {λ1, . . . , λn}. The vector π has as components
all the primitive probabilities and n(u) is the size of the state space of X(u).

The product form of this likelihood means that if {p(πu) : πu ∈ Πu} are all
a priori independent — so that their densities also respect the same product
form — then Bayes’ theorem ensures that the product form is respected a
posteriori. That is, the vectors of primitives are a posteriori independent.
Further, suppose that for each u ∈ L(C), p(πu) is a priori independently
Dirichlet distributed α = (α1, α2, .., αn(u)), D(α(u)), so that its density is
given by

p(πu) =
Γ(

∑n(u)
i=1 αi(u))

n(u)∏
i=1

Γ(αi(u))

n(u)∏

i=1

πi(u)αi(u)−1

Then Bayes’ theorem also allows us to show that each of these densities is
Dirichlet a posteriori.

To illustrate this, suppose we observe two paths (λ1, λ2) associated with
independent replicates of the process where: λ1 = {High temp, Tenv ↑, FEI

√
,
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GR
√

, EG} and λ2 = {High temp, Tenv ↑, FEI×, GR
√

, EG}. It follows
that the likelihood is given by π2

1:2π
2
2:4π4:8π4:9π8:16π9:16π

2
16:EG

, where πa:b is the
probability that the next situation is vertex b given that the current situation
is a. So, for example, the posterior distribution of the situation 2 is given by
D(α∗(2)) where α∗

1(2) = α1(2) + 2 and α∗
2(2) = α2(2), whilst for situation

16 we have α∗
1(16) = α1(16), α∗

2(16) = α2(16) + 2 and α∗
3(16) = α3(16).

Thus, prior to posterior conjugacy is not unique to discrete BNs. It is also
a property under ancestral sampling of the more general class of CEGs, see
[14] for more details.

In applications like the tryptophan pathway, we have two complications.
First, the sample counts ri(u) may not be available without measurement
error and may be dependent. Second, observations of many of the situations
may be hidden. For example, microarray analysis and polymerase chain reac-
tion (PCR) experiments may be able to tell us the rate of gene transcription
(and thus we may be able to infer whether gene repression has occurred),
and other techniques can measure enzyme activity. However, this data may
not always be available or accurate. Such problems mean that conjugacy
(and sometimes identifiability) is lost. We then need to resort to approxi-
mate methods (e.g. [5]) that retain the algebraic product form or use more
time consuming numerical algorithms. But exactly the same issues are faced
when modelling with BNs. Hence, these issues are intrinsic to missing data
problems in general: they are not an artifact of the CEG.

5 Causal Structures and CEGs

5.1 The Causal CEG

Shafer argue cogently in [17] that definitions associated with causality are
much more generally expressed in terms of an ET than a BN. Lying between
the ET and the BN, the CEG retains many of the expressive advantages of
the ET. However, the richness of its topology permits the development of
strictly graphical criteria to resolve issues such as whether or not an effect of
a manipulation is identifiable in the light of a partially observed system —
assuming the CEG is causal. Here we outline how to construct causal CEGs
and state an analogue of Pearl’s backdoor criterion applicable to such causal
CEGs.

First we need to define what we mean for a CEG to be causal. To define
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a causal BN, [12] implicitly assumes that a model is fully described by a
network of simulators. A simulator takes the value of its parents as input.
Thus its output is conditional on the particular configuration of its parents.
The effect of a manipulation X → x̂ of a variable X is then to simply turn
off the simulator associated with X and set it to x̂ with probability one, and
to rewire all simulators in the system that take x as an input and set this
input to the value x̂, before running the network. This appears the obvious
definition for the causal effect of manipulating the value of X to x̂.

This analogy extends to the CEG in a very natural way. Recall that each
position w has a simulator, or random variable, X(w) associated with it. A
positioned manipulation of the position w simply replaces any random vari-
able X(w), labelled by its position w, by its manipulated value x̂(w) with
probability one. x̂(w) is then used as an input for a subsequent simulator.
Non-atomic positioned manipulation {X(w) = x̂(w) : w ∈ W} of a set of po-
sitions simply performs this substitution for all w ∈ W. For example, we may
decide to concentrate on how the bacterium responds at high temperatures
only. In this case, we set X(w0) = High temp. The result of this (causal)
manipulation on the distribution of a second random variable Y can now be
calculated by making the appropriate substitution into the factorisation of
the elementary path events.

Shafer rightly points out in [17] that not all causal hypotheses need to
be thought of in terms of manipulations and not all causal manipulations
are necessarily positioned. However, in many situations we meet in practice,
we want to consider positioned manipulations and certainly many authors
[12, 21] restrict their attention to subsets of these types of manipulations. For
example, in the study of treatment response, positioned manipulations are
those where patients with identical prognoses will be treated exchangeably.
Note that manipulations of this type (gene, cell, environmental) are common
in experiments on regulatory networks [16]. A full discussion of such issues
is given in [14].

It is easily checked that the atomic manipulation of a BN corresponds to
the special case of setting to x̂, say, all the values of the variables X(w) along
special classes of fine cut W . Note that this cut will define an event space
for which the manipulated random variable X is measurable.
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5.2 The Backdoor Theorem

We end the paper by illustrating how the topology of a CEG can be used
to answer questions about the identifiability of a cause. The topology of the
BN has of course been used for such purposes, see [12], albeit for a much
more restricted class of possible manipulations.

If M is a random vector, whose sample space is a subspace of X, then
for each value m of M , let Λ(m) denote the set of paths λ(m) ∈ X that are
consistent with the event {M = m}.

Our result concerns three fine cuts in a CEG C

Ωa = {w : w = wj(a,λ) for some λ ∈ X}
Ωb = {w : w = wj(b,λ) for some λ ∈ X}
Ωc = {w : w = wj(c,λ) for some λ ∈ X}

where j(a, λ) denotes the (integer) distance from w0 to a position in Ωa on a
root-to-sink path λ. For each λ of X, we now specify that

j(a, λ) < j(b, λ) ≤ j(c, λ)

In this sense it can be asserted that the fine cut Ωa lies before Ωb which in
turn lies before Ωc. Let the fine cut

Ωb(−) = {w : w = wj(b(−),λ) for some λ ∈ X}

be the set of all positions that are a parent of a position Ωb in C. Clearly,

j(a, λ) ≤ j(b(−), λ) < j(b, λ) ≤ j(c, λ)

To find a CEG analogue of Pearl’s backdoor theorem (BDT) we need
to find a graphical property of a CEG that ensures that a random variable
M = (Z, X, Y ) identifies the total cause (redefined for the extended envi-
ronments defined by the CEG). The random variables X and Y are given
and an appropriate random variable Z can be constructed from the topology
of C using the BDT. Suppose Z is measurable with respect to Ωa and X is
measurable with respect to Ωb. For the BDT, attention is restricted to the
case where Z happens before X and Y .

For a CEG, this means that Z can be expressed as a coarsening Ωz (whose
intersecting paths are {Λ(z) : z ∈ Ωz}) of a fine cut Ωa “before” the fine
cut Ωb, in the sense defined above. A cut Ωc, as used in the theorem below,
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separates the events {Y = y} from {Z = z, X = x} in the sense that all paths
consistent with {Z = z, X = x, Y = y} pass through a position c(z, x) ∈ Ωc.
That is, c depends on z and x but not y. Finally, let B(−, z, x) be the set of
all positions b ∈ Ωb(−) consistent with the event {Z = x, X = x}.

It is now possible to search for appropriate fine cuts Ωa and Ωc with
reference to a given fine cut Ωb, with a topological property given in the
theorem below. In this way, we can find an appropriate random variable Z

such that (Z, X, Y ) identifies a given total cause.
Theorem If for any given value z ∈ Ωz of Z either:

1. all root-to-sink paths in C in Λ(z, x) pass through a single position
c(z, x), or

2. all root-to-sink paths in C in Λ(z, x) are such that all positions b(−, z, x) ∈
B(−, z, x) lie in the same stage

then the total cause, p(y||x), on y ∈ Ωy for a given x ∈ Ωx is identified from
(x, Y, Z) and is given by the equation

p(y||x) =
∑

z∈Ωz

p(z)p(y|z, x)

where

p(z) =
∑

λ∈Λ(z)

π(λ)

p(y|z, x) =
∑

λb∈Λ(z,x,y)

π(λb)

and p(y||x) denotes the probability that y occurs given that X has been
manipulated to x, [9].

See [14] for the proof of a generalisation of this result. Note that unlike
the BDT for the BN, the conditioning random variable (vector) Z need not
be a subset of the measured vector of variables but can be any function of
preceding measurements. Also, condition one or two of the theorem may be
invoked depending on the value of z ∈ Ωz.
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6 Discussion

The Chain Event Graph (CEG) is a powerful graphical construction for asym-
metric and symmetric models that can be used to answer inferential questions
in analogous ways to the Bayesian network. In this paper, we have not dis-
cussed propagation algorithms based on CEGs. Initial results on this are
encouraging: for a recent report see [23].

The CEG appears especially promising as a framework for propagation in
dynamic structures that are not Markov. Unlike dynamic forms of BNs, as
well as elaborating over time, the CEG sequentially simplifies as observations
are collected. Thus any paths in the CEG that are inconsistent with the
current set of observations can be sequentially pruned away, offsetting the
necessary elaboration of the model into future time steps. We have also
proved various Markov equivalences of subclasses of CEGs (although this
classification is currently incomplete) and have recently found a d-separation
property that allows us to answer any conditional independence query from
the graph. These results will be reported in future papers. So whilst the
elicitation and subsequent elaboration of Bayesian probabilistic models using
the framework of the CEG is in its infancy, we are confident that the structure
will form a useful addition to the toolbox of Bayesian model representations.
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