
 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap 
 
This paper is made available online in accordance with 
publisher policies. Please scroll down to view the document 
itself. Please refer to the repository record for this item and our 
policy information available from the repository home page for 
further information.  
To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription. 

Author(s):  JE Griffin and PJ Brown 
Article Title: Alternative Prior Distributions for Variable Selection with 
very many more Variables than Observations 
Year of publication: 2005 
Link to published article:  
http://www2.warwick.ac.uk/fac/sci/statistics/crism/research/2005/paper
05-10 
Publisher statement:  None 

 

http://go.warwick.ac.uk/wrap


Alternative prior distributions for variable selection

with very many more variables than observations

J.E. Griffin∗

Department of Statistics, University of Warwick, Coventry, CV4 7AL, U.K.

P.J. Brown

Institute of Mathematics, Statistics and Actuarial Science, University of Kent,

Canterbury, CT2 7NF, U.K.

15th May 2005

Abstract

The problem of variable selection in regression and the generalised linear model is ad-

dressed. We adopt a Bayesian approach with priors for the regression coefficients that are

scale mixtures of normal distributions and embody a high prior probability of proximity to

zero. By seeking modal estimates we generalise the lasso. Properties of the priors and their

resultant posteriors are explored in the context of the linear and generalised linear model es-

pecially when there are more variables than observations. We develop EM algorithms that

embrace the need to explore the multiple modes of the non log-concave posterior distribu-

tions. Finally we apply the technique to microarray data using a probit model to find the

genetic predictors of osteo- versus rheumatoid arthritis.
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1 Introduction

It is common nowadays to be able to investigate very many variables simultaneously with

data collected on relatively few samples. For example in functional genomics microarray

chips typically have as many as ten thousand genes spotted ontheir surface and their be-

haviour may be investigated over perhaps one hundred or so samples. Curve fitting in pro-

teomics and other application areas may involve an arbitrarily large number of variables,

being limited only by the resolution of the instrument. In such circumstances often it is de-

sirable to be able to restrict attention to the few most important variables by some form of

adaptive variable selection.

Classical subset selection procedures are usually computationally too time consuming

and perhaps more importantly suffer from inherent instability (Breiman, 1996). Bayesian

stochastic search variable selection (SSVS) methods have become increasingly popular of-

ten adopting the ‘spike and slab’ prior formulation of Mitchell and Beauchamp (1988), see

also George and McCulloch (1997), Wolfeet al (2004), Brownet al (1998) for multivariate

extensions and more recently in the more- variables- than- observations case by(k >> n),

by Brownet al (2002), West (2003). In these approaches Bayesian averaging helps to induce

stability. Despite careful use of algorithms to speed up computations these approaches are

still too slow to deal with the vast numbers of variables (of order 10,000) of some applications

and some form of pre-filtering is necessary.

One form of Bayesian approach which does offer the potentialfor much faster compu-

tation takes a continuous form of prior and looks merely for modes of the posterior distri-

bution rather than relying on MCMC to fully investigate the posterior distribution. Such

formulations lead to penalised log likelihood approaches where the additive penalisation of

the log likelihood is the log of the prior distribution. Tibshirani’s (1996) lasso is equiv-

alent to a double exponential prior distribution, proposedin Bayesian wavelet analysis by

Vidakovic (1998). A more extreme form of penalty is the normal-Jeffreys prior (Figueiredo

and Jain 2001, Figueiredo 2003), adopted in an extended generalised linear model setting by

Kiiveri (2003). From a different viewpoint Fan and Li (2001)have modified the lasso’sL1

penalty so as to offer less shrinkage for large effects, see also Fan and Peng (2004).

Early examples of parallel approaches in the machine learning literature are Automatic

Relevance Determination of Mackay (1994) and the RelevanceVector Machine of Tipping

and Faul (2003).

In this paper we concentrate on priors for the effects which are scale mixtures of nor-

mal distributions in a broad sense. These bridge the full range from the lasso to the extreme

Jeffreys-based prior. We explore thresholding propertiesand multimodality. In the context

of multiple regression and later probit regression, we develop estimation procedures and fast

EM style algorithms for estimation utilising the inherent dimensionality{min(n, k)} of in-
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formation. In the probit case, our method of hyperparameterchoice is geared to prediction

characteristics of some canonical models and although datadependent helps to avoid over-

shrinkage. We finish by analysing microarray data on two forms of arthritis earlier analysed

by Shaet al (2003).We embrace the multimodality through plots of genesincluded in modes

as ranked either by posterior or log-likelihood value. We are able to reveal subsets of highly

discriminating genes.

2 Generalising lasso estimation

There are at least two ways of generalising the lasso in a Bayesian setting. One is to use

an exponential power prior forβ, see Box and Tiao (1973, p157); the other is to use a scale

mixture of normals, see West (1987). Non Bayesian analoguesand adaptations of the former

are to be found in Knight and Fu (2000), Fan and Li (2001). We will rather devote our

attention to scale mixtures of normals as these are easier todeal with analytically and are

richer in form.

2.1 Scale mixture of normal prior distributions

If we wish to construct distributions that bridge the gap between the normal-Jeffreys prior

and the double exponential distribution, a natural class ofprior distributions to consider for

each regression coefficient,βi, would be scale mixtures of normal distributions where

π(βi) =

∫

N(βi|0, ψi)G(dψi) (1)

where N(Y |µ, σ2) denotes the probability density function of a random variable Y having a

normal distribution with meanµ and varianceσ2. HereG is the mixing distribution and its

density, if it is defined, will be referred to asg(·). The prior variance of the regression coef-

ficients, if it exists, can be simply expressed in terms of themean of the mixing distribution

since

V(βi) = Eψi(V(βi|ψi)) + Vψi(E(βi|ψi))
= Eψi(V(βi|ψi))
= Eψi(ψi).

If we assume that domain knowledge will not be included in theprior, the mixing distribution

seems a natural place to include the belief that only a few regressors will be important to give

a good fit to the data. Most Bayesian approaches to variable selection make use of the form

G(·) to aid inference. A traditional approach to variable selection, (Mitchell and Beauchamp,
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1988, George and McCulloch, 1997), expresses the prior distribution for βi as a mixture

distribution

i .e. π(βi) = θN(βi|0, σ2
β) + (1 − θ) δβi=0 (2)

whereδx=a is the Dirac measure which places measure 1 on{x = a}. The parameter

0 < θ < 1 can be interpreted as the probability that a variable is included in the model and

σ2
β is the prior variance of the regression coefficients included in the model. If we make

use of the obvious extension of the normal distribution by defining N(x|µ, 0) = δxi=µ, the

mixing distribution can be expressed as

g(ψi) = θ δψi=σ2
β

+ (1 − θ) δψi=0. (3)

Other particular mixture distributions of interest can also be represented in this scale mixture

form.

1. The mean-zero double exponential distribution, DE(0, 1/γ) with probability density

function
1

2γ
exp{−|β|/γ}, −∞ < β <∞, 0 < γ <∞

is defined by an exponential mixing distribution, Ex
(

1
2γ2

)

, with probability density

function

g(ψi) =
1

2γ2
exp

{

−ψi/[2γ2]
}

. (4)

2. The normal-Jeffreys (NJ) prior distribution arise from the improper hyperprior

g(ψi) ∝
1

ψi
, (5)

which in turn induces an improper prior forβi of the formπ(βi) ∝ 1
|βi| .

3. A well-known result shows that the Studentt distribution onλ > 0 degrees of freedom,

scale parameterγ > 0, can be expressed using an inverse-gamma mixing distribution

g(ψi) = IG

(

λ

2
,
γ2λ

2

)

, (6)

where IG(a, b) is the inverse of a gamma with shapea and natural parameterb.

4. One possible extension to the exponential mixing distribution is the gamma distribution

g(ψi) = Ga

(

ψi

∣

∣

∣

∣

λ,
1

2γ2

)

, 0 < λ, γ <∞. (7)

The double exponential distribution is regained ifλ = 1 and asλ becomes smaller

the mixing distribution can put more mass close to zero. The corresponding marginal
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distribution ofβ is often called a normal-gamma (NG) or variance-gamma distribu-

tion which has proved a popular choice for modelling fat tails in finance (e.g. Bibby

and Sorensen, 2003) and is a member of the generalized hyperbolic family (seee.g.

Barndorff-Nielsen and Blaesild 1981). The marginal distribution ofβi has the density

π(βi) =
1√

π2λ−1/2γλ+1/2Γ(λ)
|βi|λ−1/2Kλ−1/2(|βi|/γ) (8)

whereK is the modified Bessel function of the third kind. The variance ofβi is 2λγ2

and the excess kurtosis is3λ .

5. Another extension arises from placing a further mixing distribution on the scale pa-

rameter of the exponential mixing distribution. A gamma mixing distribution with

parametersλ, γ2 on the natural parameter of the exponential leads to a subclass of

the gamma-gamma distribution (Bernardo and Smith, 1994, p120). The density of the

mixing distribution onψi has the form

g(ψi) =
λ

γ2
(1 + ψi/γ

2)−(λ+1) 0 < λ, γ <∞. (9)

The density of the marginal distribution ofβi can be expressed as

π(βi) =
λ√
π

2λ

γ
Γ(λ+ 1/2) exp

{

1

4

β2

γ2

}

D−2(λ+1/2)

( |β|
γ

)

(10)

whereDν(z) is the parabolic cylinder function. Computation of this functions is de-

scribed in Zhang and Jin (1996, section 13.5.1, p439), codedversions are available

from http://jin.ece.uiuc.edu/routines/routines.html for Fortran

77 andhttp://ceta.mit.edu/comp_spec_func/ for Matlab. If λ is small,

the computation ofexp{z}Dν(z) is much more stable than computation ofDν(z).

This involves a simple modification of the method described in Zhang and Jin (1996).

The parameterγ andλ control the scale and the heaviness of the tails respectively.

From Abramowitz and Stegun (1964, p689 eqn 19.8.1) we see that for large |βi|
γ

π(βi) ≈ c

( |βi|
γ

)−(2λ+1)

.

Also if λ > 1, the expectation ofψi and the variance ofβi exist and have the form
γ2

(λ−1) . The excess kurtosis is3 λ
λ−2 if λ > 2. This class of distributions, unlike the

normal-gamma class, can define distributions for which the variance is undefined and

thus has a rather different tail-to-spike balance. The distribution function ofψi is also

available in closed form as

G(ψi) = 1 −
(

1 +
ψi
γ2

)−λ
.
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We will refer to the marginal distribution ofβi with density (10) as the normal-exponential-

gamma (NEG) distribution and the marginal distribution ofψi as the exponential-

gamma (EG) distribution.

We would expect all of these methods to improve upon a normal prior distribution with fixed

variance, which would have the mixing distribution

g(ψi) = δψi=σ2
β
,

since moving some mass in the mixing distribution either to zero in the case of (3) or close to

zero in (4), (5), (6), (7) and (9) is consistent with our priorbelief that many of the regression

coefficient are close to zero and hence their values will be drawn from distributions with

small variances. A natural starting point would be to re-consider equation (4) and question

whether it accurately reflects our prior beliefs. If not, a wider class of prior distribution can

be generated by elaborating the exponential mixing distribution, leading to the Studentt, NG

or NEG above. The relative merits of these are discussed in what follows.

2.2 Shapes and Limits

Some of the mixing distributions described above and their corresponding densities forβ are

displayed in Figure 1. Generally the expectation of the normal varianceψ is fixed at unity by

appropriate setting of the hyperparameters, except when this does not exist as in the last pair

of figures when for the NEGλ = 0.1, for which the expectation of1/ψ is fixed at unity.

Aside from incorporating the density of the ‘lasso’ as a special case many of the scale

mixture of normals will have the normal-Jeffreys as a limiting density form. For example

the normal-gamma (NG) given by (8) goes to this improper limit whenλ ↓ 0 andγ ↑ ∞.

This degenerate limiting form has infinite mass, an infinite spike at zero and flatness for large

values of|β|, and as a consequence does not penalise such large values. Thespike at zero

has strong consequences for the modal behaviour of the posterior, not all of them welcome

as we shall see. Whereas the normal-gamma does have an infinite spike at zero forλ ≤ 1/2,

the normal-exponential-gamma distribution has the advantage of a finite limit at zero for all

parameters values in its range and incorporates as limitingcases the double exponential prior

(asλ, γ ↑ ∞) and the normal-Jeffreys case (asλ, γ ↓ 0).

In the distribution ofβ, we now compare the relative weights centrally versus in the tails

of NG, NEG, DE, NJ and Studentt. For all choices of prior (except the normal-Jeffreys),

at least one scale parameter must be chosen. For comparison we simply specify one scale

parameter by fixing probability mass on the central region(−ε, ε) to beη. Figure 2 illus-

trates the effect of fixingη = 0.9 on the region(−0.01, 0.01) for the four comparisons with

the lasso, (a) DE v NEG, (b) DE v NG, (c) DE v t and (d) DE v NJ. The normal-gamma
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Figure 1:Various forms considered for the prior distribution forβ with their associated mixing distribu-

tion

choice (panel (b)) is markedly different in tail behavior tothe other three choices. The NEG

distribution is able to maintain flat tails with a much largervalue of the density of zero than

the t-distribution and captures the main features of the normal-Jeffreys prior. In summary

the DE and NJ are at opposite extremes with the NEG preservinggood features of the NJ
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Figure 2:Log prior densities setting the central region (-0.01,0.01) to have probabilityη = 0.9 for: (a)

double exponential distribution (solid line), NEG (λ = 1) (dashed line) and NEG(λ = 0.1) (dotted line),

(b) double exponential distribution (solid line) and NG (λ = 0.1) (dashed line), (c) double exponential

(solid line), t-distribution (λ = 2) (dashed line) andt-distribution (λ = 0.2), and (d) double exponential

(solid line) and improper normal-Jeffreys (dashed line)

without the drawback of the extreme spike at zero.

2.3 Thresholding for variable selection

The five distributions can express our belief that a small number of regressors can fit the data

well but also allow a wide-range of other properties. It is important to choose appropriate

forms that lead to a useful variable selection procedure.

A standard interpretation of Bayes theorem, is that the log posterior distribution is addi-

tive in data and prior information as given by

log π(β|y) = log f(y|β) + log π(β), (11)

where log probability is a measure of utility (Bernardo and Smith, 1994). It is natural to

regard the negative prior utility as a penalty function given asp(β), where

p(β) = − log π(β).

8

CRiSM Paper No. 05-10, www.warwick.ac.uk/go/crism



It is the relative contribution of the two components on the right hand side of (11) that de-

termines the posterior. Turning points of the posterior arethen obtained by setting to zero

the derivative of (11) and hence depend on the sum of the classical efficient score function,

−∂log f(y|β)/∂β and the derivative of the penalty function. In the case of a single pa-

rameter, we will generally assume that turning-point (TP) thresholding, that is setting the

penalized estimator̃β = 0 , will occur iff there is no turning point. In which case with the

class of penalty functions considered, the posterior is monotone decreasing in|β| that is the

only mode is atβ = 0. Strictly if there is a turning point and the posterior function is non

monotone then there may also be a mode at zero. A preference for a turning point follows

the approach of Fan and Li (2001) and could be more formally computed by consideration

of probability mass in the neighbourhood of zero, even when there is a spike at zero. An

alternative choice, more simply computed with many regressors, is the true posterior mode

which will be called the Bayesian threshold, that is the modewith the highest posterior mass.

If there is one regressor, the lasso case, where the prior distribution is double exponential, is

the only one of our chosen distributions where these thresholds are identical (see Appendix

1). Various penalty functions together with their derivatives are listed in Table 1.

p(β) p′(|β|)
double exponential(0, 1

γ ) |β|
γ

1
γ

normal-Jeffreys log |β| 1
|β|

IG
(

λ
2
λγ2

2

)

λ+1
2 log(1 + β2/λγ2) λ+1

λγ2+β2 |β|

normal-gamma
(

1
2 − λ

)

log |β| − logKλ−1/2

(

|β|
γ

)

1
γ

Kλ−3/2

�
|β|
γ �

Kλ−1/2

�
|β|
γ �

NEG − β2

4γ2 − logD−2(λ+ 1
2
)

(

|β|
γ

)

(λ+1/2)
γ

D−2(λ+1)

�
|β|
γ �

D
−2(λ+1

2 )

�
|β|
γ �

Table 1:Penalty functions and their derivatives induced by variouschoice for the hyperprior

Our approach will be applied to the generic problem of multiple regression, with the

generalised linear model as a possible extension. It is assumed that we observe an(n × k)-

dimensional data matrix,X, and an(n × 1)-dimensional response,y. The relationship

between the responses and the data is modelled by a linear regression

π(y|β, σ2,X) = N(y|Xβ, σ2I)

where N(x|µ,Σ) denotes a multivariate normal distribution with meanµ and varianceΣ.

The problem of finding a maximuma posteriori(MAP) estimate ofβ can be expressed as a

penalised likelihood problem whereβ is chosen to find a minimum of the function

L =
1

2σ2
(y −Xβ)T (y −Xβ) +

k
∑

i=1

p(|βi|) (12)

9
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Figure 3:TP thresholding rule for̂β as a function of the standard error under different prior choices with

η = 0.9 and ε = 0.01: (a) double exponential distribution (solid line) and normal-gamma (λ = 0.1)

(dotted line), and (b) normal-exponential-gamma distributions withλ = 10 (solid line),λ = 1 (dashed

line) andλ = 0.1 (dotted line)

wherep(x) = − log π(x) is the penalty function. In generalised linear models the negative

log-likelihood or deviance replaces the first term of (12). Aparticular case is probit regression

as applied in section 4 where the information content of the likelihood is somewhat less than

in the normal linear model.

Fan and Li (2001) consider the link between the choice of penalty function (or prior dis-

tribution in our case) and the TP thresholding value. The MAPestimate will be zero only

if the maximum likelihood estimate (MLE) is smaller than this threshold value. In a uni-

variate regression problem, for the maximum likelihood estimator β̂, the parameter is set to

zero if |β̂| < minθ 6=0{|θ|+ σ2

XTX
p′(|θ|)} wherep′(·) is the derivative of the penalty function

and σ√
XTX

is the standard error of̂β. A comparison with some of the prior distributions

described above is illuminating. For the double exponential prior distribution, thresholding

occurs if |β̂| < 1
γ

σ2

XTX
which depends on the square of the standard error. In contrast, the

normal-Jeffreys prior thresholds according to the rule|β̂| < 2 σ√
XTX

and the thresholding

depends linearly on the standard error. Figure 3 compares the thresholding rules for the

normal-gamma penalty and the normal-exponential-gamma penalty. The latter has linear be-

haviour where the slope depends onλ, generalising the normal-Jeffreys rule and is thus more

appealing. The normal-gamma case has substantially different behaviour and defines a much

more conservative criterion. Much larger values ofγ would induce a linear thresholding rule

but this contradicts our imposed prior property of a large mass close to zero.

The Bayesian threshold for the normal-Jeffreys and normal-gamma choices withλ <

0.5 are undefined because the prior density value at 0 is infinite and the posterior mode is

consequently zero for any set of observations. However, theNEG prior distribution always

has a finite mode at zero. Figure 4 compares the TP and Bayesianthresholding rules. The
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Figure 4: Bayesian threshold (solid line) and TP threshold (dashed line) for the NEG prior distribution

with η = 0.9 andε = 0.01

Bayesian threshold is more conservative and almost doublesthe thresholding value.

The discussion so far has centred around thresholding but the choice of penalty function

will also have implications for the shrinkage of non-zero estimates. For example, Johnstone

and Silverman (2005) suggest that overshrinkage of non-zero estimates can lead to better

predictive performance in wavelet regression. Differentiating (12), the relationship between

the penalised MLẼβ and the MLEβ̂

β̂ − β̃

σ2/
∑n

i=1 x
2
i

= sign(β̃)p′(|β̃|)

shows that the amount of shrinkage is directly controlled bythe derivative of the penalty

function. Figure 5 illustrates various choice of penalty function with a chosen value of the

probability massη on the interval(−ε, ε). The flat tails of the normal-Jeffreys and normal-

exponential-gamma distributions lead to small derivativefor large values of̂β and β̃ ≈ β̂,

which implies the so-called oracle property of Fan and Li (2001). The normal-gamma choice

maintains a substantial derivative in the tails (which is approximately1γ ).

2.4 Modal estimates with multiple parameters

The following section extends the univariate results to problems with two regressors. First,

for k parameters, returning to the penalised likelihood function, L, the derivative can be

expressed as

dL

dβ
= XTXβ −XT y + sign(β)p′(|β|)

(XTX)−1 dL

dβ
= β − β̂ + (XTX)−1sign(β)p′(|β|) (13)

11

CRiSM Paper No. 05-10, www.warwick.ac.uk/go/crism



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

450

500

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

450

500

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

450

500

(a) (b) (c)

Figure 5:Penalty functions ifη = 0.9 andε = 0.01 for: (a) double exponential distribution (solid line),

NEG (λ = 1) and NEG(λ = 0.1), (b) double exponential distribution (solid line) and NG (λ = 0.1)

(dashed line), and (c) double exponential (solid line) and normal-Jeffreys (dashed line)

where

sign(β) =









sign(β1) 0
. . .

0 sign(β2)









, |β| =









|β1|
...

|β2|









Turning points away from zero can only occur if there exists avalue ofβ for which some

elements ofdLdβ are zero. The mode with the largest number of non-zero parameter estimates

will be preferred. In the bivariate case, we assume that

XTX =

(

c −ρ
√
cd

−ρ
√
cd d

)

wherec andd are the sum of squares for the first and second variable respectively andρ is the

correlation between the maximum likelihood estimatorsβ̂1 and β̂2, which has the opposite

sign to the correlation between the two independent variables

2.4.1 Lasso Regions

The relationship between thresholding and the values ofβ̂1 andβ̂2 can be studied analytically

for the lasso penalty. There are five regions into whichβ̂1 andβ̂2 can fall which are shown in

figure 6 (only positive correlation is considered; the relationship between̂β1 and−β̂2 shows

the effect of negative correlation) and derived in the Appendix 2. Four of these regions

arise when there is a single posterior mode. Each region is defined by a combination of

thresholding or not thresholding either estimate. However, a bimodal posterior distribution

is also possible and figure 6 shows the values ofβ̂1 andβ̂2 which lead to it as the lighest of

the three grey shades. The five regions are colour coded, moving from white to black, as:

no thresholding; bimodal;β2 only; β1 only; or both variables thresholded. In the following
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Figure 6:The regions where different types of thresholding occur either moving through shades of grey

from black to white: only mode at 0 (black);β1 set to zero only;β2 set to zero only; two local modes;

internal mode (white) forc = 1, b = 1

section, we will discuss resolving the bimodality by using the global posterior mode as the

estimate. Each graph is symmetric in the linesβ̂1 = β̂2 and β̂1 = −β̂2. The values of
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β̂1 and β̂2 where no thresholding occurs clearly define four disjoint squares. This property

is independent of correlation but the region where both regressors are thresholded forms a

rhomboid whose shape changes with the value ofρ. This agrees with the observation that if

there is high correlation between the regressors there is a tendency for the MLEs to produce

spurious relationships. In those situations,β̂1 and β̂2 have similar absolute values and the

predicted values will be near constant. The volume of the region will be determined by the

ratios 1
γ
√
c

and 1
γ
√
d
.

2.4.2 General Regions

In contrast with the lasso regions, the shapes of non-thresholded regions (white in figure)

depend on the correlation for the normal-gamma and normal-Jeffreys penalty functions (Fig-

ure 6). These relationships are less amenable to analyticalwork and the regions are drawn

by finding the type of thresholding on a grid of values. Both penalty functions lead to similar

regions which are substantially different to those defined by the lasso penalty. Two striking

differences are the shape of the region where both variablesare thresholded and the shape of

the region with a bimodal posterior. If both ML estimators have the same sign the no thresh-

olding region becomes larger whereas if the signs are different the no thresholding region

becomes smaller. The gap is filled by an expansion of the region with a bimodal posterior.

These regions are intermediate between full thresholding (black) and no thresholding (white).

This region is small and close to all axes with the double exponential prior but the shape de-

pends on the correlation in the NEG case. In fact, the largestvalue of the correlation leads

to this region filling almost all of the two quadrants whereβ̂1 and β̂2 have opposing signs.

In other words, the thresholding depends on the difference of β̂1 andβ̂2 and for correlations

close to−1, the thresholding depends on the sum ofβ̂1 andβ̂2.

The lasso and NEG penalties also define Bayesian thresholding regions (Figure 7). Un-

like the one-dimensional case, the Bayesian and TP thresholding regions differ with a lasso

penalty. The bi-modal region is divided into regions where one variable is thresholded. In

contrast, the NEG penalty defines a substantially larger region where both estimates are

shrunk to zero. Otherwise one of the regressors is set to zeroand the lineβ̂1 = −β̂2 acts as a

dividing line between these two cases. The difference in thresholding between the lasso and

NEG penalty suggest that the latter will shrink more variables from the model.

It is hard to make any general comments about thresholding inhigher dimensions, suffice

that there aremin(n, k) non-zero estimates. In the case of infinite spikes at zero (NJ, NG for

λ ≤ 1/2) then this infinite spike will persist for all subsets of at most min(n, k) genes.
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Figure 7: The Bayesian thresholding region with a NEG distribution. The parameters are chosen such

thatπ(β ∈ [−0.01, 0.01]) = 0.25 for various values ofλ.

2.5 Relationship to model choice

Heuristically, we can think of the posterior mode as a variable selection method since setting

a regression coefficient to zero removes a variable from the model. It is useful to define an

indicator variablesi that takes the value 0 if thei-th regressor is excluded from the model

(whenβ̂i = 0) and 0 otherwise (when̂βi 6= 0). For fixeds = (s1, . . . , sk), local posterior

modes obey the condition

0 = β? − β̂? + (X?TX?)−1sign(β?)p′(|β?|)

whereX? is the submatrix ofX constructed using the columns for whichsi = 1 andβ? =

{βi|si = 1}. If such a posterior modẽβ? exists then

β̂? = β̃? + (X?TX?)−1sign(β̃?)p′(|β̃?|)

whereβ̂? is the ML estimate ofβ?. The value ofs that minimises

L =
1

2σ2
(y −X?β̃?)T (y −X?β̃?) +

∑

i|si=1

p(|β̃?i |) +
∑

i|si=0

p(0).
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corresponds to the global posterior mode ofβ. The normal-Jeffreys and NEG with smallλ

define a penalty that is almost constant for a range of suitably large values of̃β?i . This penalty

is represented byp1 andL simplifies to

L =
1

2σ2
(y −X?β̃?)T (y −X?β̃?) + rp1 + (k − r)p2

=
1

2σ2
(y −X?β̃?)T (y −X?β̃?) + k p2 + r(p1 − p2)

wherep2 = p(0) andr is the number of non-zero estimates. The termk p2 is constant across

all s and can be dropped which leaves the criterion

1

σ2
(y −X?β̃?)T (y −X?β̃?) + 2r(p1 − p2),

where the first term is more generally the deviance.

The indicator variables that correspond to the posterior mode defines a model selection

criterion that is a trade-off between goodness-of-fit and a penalty for each included parameter.

This form has been a recurring idea in the model selection literature. Standard choices for

the penalty are Akaike’s information criteria (AIC) (Akaike, 1974) wherep1 − p2 = −1 and

a Bayesian variant (BIC) (Schwarz, 1978)p1 − p2 = −1
2 log n. A typical choice for NEG

of λ = 0.1, η = 0.9 andε = 0.01 would lead to values ofp1 − p2 around -15, which is

substantial larger than the penalties under the AIC and BIC for values ofn which are of the

order of hundreds of observations. The penalty is much closer to the Risk Inflation Criterion

(RIC) (Foster and George 1994) who choosep1 − p2 = − log k for largek.

A further decomposition shows the relationship between theresidual sum of squares

calculated using the least squares estimates,

1

σ2
(y −X?β̂?)T (y −X?β̂?) +

1

σ2
(p′(|β̃?|))T (X?TX?)−1p′(|β̃?|) + 2r(p1 − p2).

3 Inference for regression and probit regression

This section discusses posterior inference, in particularmethods for finding local posterior

modes, for probit regression models using the classes of prior distributions already described.

Initially we concentrate on estimation for a normal prior distribution which will be an impor-

tant component of our analysis.

3.1 Estimation with normal prior distributions

The prior distribution forβ, (k × 1) is assumed to have the form

π(β) = N(β|0,Ψ)
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whereΨ is a (k × k)-matrix. Typically this matrix will be a diagonal matrix although the

derivations in this section do not assume this special form.The standard MLE estimator will

not be defined ifk is larger thann. Consequently, the problem is re-expressed in terms of an

n-dimensional parameter,γ, for which the MLE exists. As in West (2003), the singular value

decomposition ofX can be written asX = F TDAT whereA is (k × n)-dimension matrix

such thatATA = In,D is an(n×n)-dimension diagonal matrix andF is (n×n)-dimension

matrix for whichF TF = In andFF T = In. Clearly, we can write

Xβ = (F TD)γ

whereγ = ATβ and the MLE,̂γ, of γ is well-defined and has the form

γ̂ = D−1Fy.

The sampling distribution̂γ and the prior distribution of then-dimensional parameterγ

which is estimated bŷγ can be represented as

π(γ̂|γ,Ψ,X) = N(γ̂|γ, σ2D−2 = Λ?),

π(γ|Ψ,X) = N(0, ATΨA = Ψ0)

and the posterior distribution ofγ is

π(γ|γ̂,Ψ,X) = N(γ|Ψ0(Ψ0 + Λ?)−1γ̂, (Λ?−1 + Ψ−1
0 )−1). (14)

In order to calculate the posterior distribution of the regression parameters,β, we consider

the full singular value decomposition which representsX asF TD∗KT where the first n

columns ofK, (k × k) areA, (k × n), the last(n− k) columns asC given asK = (A ,C),

andD∗, (n × k) with

D? =
(

D 0
)

.

In this case,KTK = Ik andKKT = Ik andK is invertible withK−1 = KT . If γ? = KTβ,

the firstn elements ofγ? areγ and we define the last(k − n) elements to beτ . In this

parametrizationτ are exactly those dimensions that are independent of the data. Using this re-

parametrization, the posterior distribution ofβ is simply related to the posterior distribution

for γ? which can be expressed as

π(γ?|γ̂,Ψ,X) = π(τ |γ,Ψ)π(γ|γ̂,Ψ,X)

where

π(τ |γ,Ψ,X) = N(τ |CTΨA(ATΨA)−1γ,CTΨC −CTΨA(ATΨA)−1ATΨC).
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E(γ|γ̂,Ψ) = Ψ0(Ψ0 + Λ?)−1γ̂

and

E(τ |γ̂,Ψ) = CTΨA(ATΨA)−1E(γ|γ̂).

The normality of bothπ(τ |γ,Ψ) andπ(γ|γ̂,Ψ,X) combined with the linear mean ofτ in γ

implies thatγ? has a normal posterior distribution. The transformation fromβ is well-defined

and has the formβ = Kγ? implying thatβ will also be normally distributiona posteriori.

This distribution can be characterised by its posterior mean and variance. Computationally,

we want to calculate these quantities whilst avoiding inversions of(k × k)-dimensional ma-

trices. After some simplification we can express the posterior mean and covariance in a form

where only matrix that needs inverting is ann× n-dimension matrix

E(β|Ψ, γ̂) = ΨA(ATΨA)−1E(γ|γ̂,Ψ)

= ΨA(ATΨA)−1(Ψ−1
0 + Λ?−1)−1Λ?−1γ̂

= ΨA(Ψ0 + Λ?)−1γ̂ (15)

and

V(β|Ψ, γ̂) = Ψ − ΨA(ATΨA)−1ATΨ + ΨA(ATΨA)−1Vγ|γ̂,Ψ(γ)(ATΨA)−1ATΨ

= Ψ − ΨA(ATΨA)−1ATΨ + ΨA(ATΨA)−1(Ψ−1
0 + Λ?−1)−1(ATΨA)−1ATΨ

= Ψ − ΨA(Ψ0 + Λ?)−1ATΨ. (16)

Finally, we note that the marginal distribution ofγ̂ givenΨ can also be derived and has the

form

π(γ̂|Ψ) = N(0, ATΨA+ σ2D−2). (17)

3.2 Bayesian binary regression

The analysis of binary data arising from microarray experiments can exploit the normal the-

ory developed thus far by introducing latent variables. There is also appeal in working di-

rectly with the log-likelihood as discussed earlier, see Kiiveri (2003). However here we focus

on the method proposed by Albert and Chib (1993) which exploits a latent variable charac-

terisation to reduce probit regression analysis to that of regression albeit at the expense of

creatingn latent variables. We assume that the response for thei-th individual is zi and

introduces latent parametersyi such that

yi|zi, β ∼ N(Xiβ, 1)
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andyi > 0 ⇐⇒ zi = 1. The model forzi is a traditional probit regression analysis

π(zi = 1|β) = Φ(Xiβ).

whereΦ is the cumulative distribution function of a standard normal distribution. Impor-

tantly, if β has a normal prior distribution, the posterior distribution of β|y1, . . . , yn is also

normal.

Much of the work using normal-Jeffreys penalty functions, Kiiveri (2003), Figueiredo (2003))

attempts to find a single mode. Bae and Mallick (2004) and Mallick et al (2005) on the other

hand go for full posterior simulation using MCMC, but in favouring the NJ overlooks the

fact that the likelihood times prior for this remains improper as the likelihood forβ at zero

is bounded away from zero and hence the behaviour in the region of zero is still proportional

to 1/β and integrates to log(β), which blows up atzero. See Gelfand and Sahu (1999) for

more detailed analysis of such improprieties. This precludes full Bayesian posterior anal-

ysis using the NJ prior but does formally allow it to act as a device for generating modes

from the ‘likelihood times prior’ in the spirit of penalisedlikelihood. It is yet another reason

for our preference for the NEG which retains some of the attractions of NJ but without the

dominating spike at zero.

3.3 Choosing hyperparameters

The standard subjectivist interpretation of the prior distribution is an expression of our beliefs

about the likely values ofβ and, in this case, the number of non-zero regression coefficients

needed to explain the variation in the responses. However, this approach can be problematic

when combined with the MAP estimation procedure. Consider aprobit regression model

with a relatively diffuse prior distribution forβ0 (in the sense that its effect can be ignored

when comparing local modes). The penalized likelihood function is

L =

n
∑

i=1

zi log Φ(β0 +Xiβ) +

n
∑

i=1

(1 − zi) log(1 − Φ(β0 +Xiβ)) −
k
∑

i=1

p(|βi|).

If only the j-th regressor takes a non-zero value,β̃j , and the intercept is̃β(j)
0 then

L =
n
∑

i=1

zi log Φ(β̃
(j)
0 +Xij β̃j)+

n
∑

i=1

(1−zi) log(1−Φ(β̃
(j)
0 +Xij β̃j))−p(|β̃j |)−(k−1)p(0).

Comparing this value to the penalized log likelihood for a “null model” for which all regres-

sion coefficients, except the intercept, are set to zero shows that the “null model” will be

superior unless there is at least one regressor for which

n
∑

i=1

zi log
Φ(β̃

(j)
0 +Xij β̃j)

Φ(β̃0)
+

n
∑

i=1

(1 − zi) log
1 − Φ(β

(j)
0 +Xij β̃j)

1 − Φ(β̃0)
> p(|β̃j |) − p(0)
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whereβ̃0 is the estimated intercept in the null model. The improvement in the log likelihood,

on the left-hand side of the equation, is bounded since a perfectly fitting model has log like-

lihood zero. If the difference between the penalty for a zeroestimate and a typical non-zero

estimate is large, we will define a penalty functions for which the “null model” is superior to

all other model. However, we believe that a small number of genes will explain the differ-

ences between the classes. To avoid a problem of “over-penalisation”, we first defineLmin,

the penalized log-likelihood for the null model,

Lmin = log θ̂
n
∑

i=1

zi + log(1 − θ̂)
n
∑

i=1

(1 − zi) − kp(0)

= n[θ̂ log θ̂ + (1 − θ̂) log(1 − θ̂)] − kp(0)

whereθ̂ = �n
i=1 zi
n . The log likelihood at any posterior mode lie must betweenLmin and 0.

If we could findβ?, a subset ofβ with k′ elements which could perfectly fit the data, it would

have penalized log likelihood

0 −
∑

x∈β?
p(x) − (k − k′)p(0).

The null model will not be the global mode if there is a subsetβ? whose log posterior is

greater thanLmin or

∑

x∈β?
[p(|x|) − p(0)] < n[θ̂ log θ̂ + (1 − θ̂) log(1 − θ̂)].

The quantity on the left-hand side controls the level of thresholding and suggests a simple

method for controlling its value relative to the log likelihood of the null model on the left-

hand side. Decide on a value fork′ and expected value for the estimate of a non-zeroβ, say

ϕ, then

p(ϕ) − p(0) =
n

k′
[θ̂ log θ̂ + (1 − θ̂) log(1 − θ̂)].

whereθ̂ is estimated from the data. Now we have a prior which enables us to fix the scale

parameterγ, and being data dependent will tend to avoid overshrinkage and a mode at the ori-

gin. Although data dependent, the prior only depends on the data through design parameters,

sample size,n, and proportion of observations in the disease group,θ̂.

3.4 An EM algorithm to find a mode of β

Local posterior modes can be found using the EM algorithm (Dempsteret al 1977, Meng

and van Dyk 1997) which has been suggested by both Kiiveri (2003) and Figueiredo (2003)

as a means for fitting models using scale mixture of normal priors. The heavy tails of our
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g(ψ) E
[

1
ψj

∣

∣

∣
βj

]

Ga(ν, 1
2γ2 ) 1

γ|βj |
K
ν− 3

2

�
|βj |

γ �
K
ν− 1

2

�
|βj |

γ �
Jeffreys 1

β2
j

IG(λ, γ2/2) 1+2λ
β2
j+γ

2

EG (λ+1/2)
γ|βj |

D−2(λ+1)

�
|βj |

γ �
D

−2(λ+1
2 )

�
|βj |

γ �
Table 2:The forms of E[ 1

ψj
|βj ] for some mixing distributions

prior distribution can lead to slow convergence. In general, we use the EM algorithm to find

a promising and small subset of variables with non-zero regression coefficients. Once this

subset has been found a standard optimization technique, such as conjugate gradient, can

be used to find the posterior mode using the variables in the subset. In our case, the prior

variances of the regression coefficientsψ1, . . . , ψk and the unobserved valuesy1, . . . , yn are

treated as missing data. Kiiveri (2003) suggests applying the EM algorithm directly to the

‘likelihood times prior’ in the generalised linear model setting. The M-step is approximated

by a Newton-Raphson line search for the MLE ofβ and the algorithm is started from a ridge

regression estimate.

The standard EM algorithm outputs a sequence of estimatesβ(1), β(2), . . . that under reg-

ularity conditions converge to a local maximum ofβ|z. The sequence is defined by iterating

between an E step and an M step

1. E-step: LetΛ(i)
jj = 1

E[ 1
ψj

|β(i−1)]
for j = 1, . . . , k and

y
(i)
j = E

[

y
∣

∣

∣
β(i−1)

]

=







ζj − 1
Φ(−ζj)

1√
2π

exp
{

−1
2ζ

2
j

}

if zi = 0

ζj + 1
1−Φ(−ζj)

1√
2π

exp
{

−1
2ζ

2
j

}

if zi = 1

whereζ = Xβ(i−1). The forms of E
[

1
ψj

∣

∣β(i−1)
]

for various choices of penalty func-

tion are shown in table 2, with that for the Exponential Gammaprior derived in Ap-

pendix 3.

2. M-step: Setβ(i) equal to the mode ofπ(β|Λ(i−1), y(i−1)), which will follow a normal

distribution. The new valueβ(i) will be equal to the expectation of this distribution and

a computationally efficient form is shown in equation (15).

The naive use of this EM algorithm can often lead to a sequenceconverging to the empty

model whereβj = 0 for all j. Several strategies lead to improved convergence of this EM
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algorithm. A poorly chosen initial valueβ(0) can cause convergence problems. Before find-

ing the posterior mode using these prior distributions, a posterior mode with a normal prior

distribution with fixed varianceΨ = I is found. A second problem we face is the lack of in-

formation from our data. If there are a large number of competing variables with similar, but

useful, predictive properties, the algorithm will blindlyremove all the variables because for

any variable there are many other similar choices. A poweredversion of the likelihood is use-

ful for counter-acting this problem. The idea is called Determinstic Annealing EM (DAEM)

and was introduced by Udea and Nakano (1995) (see also McLachlan and Peel (2000), pp

58-60). They suggest multiplying the log-likelihood by a constantφ(i) in the i-th iteration

of the EM algorithm. The sequence should be chosen to converge to 1. We will assume that

each observation occursq(i) times in the dataset (q(i) andφ(i) will have the same effect on

the algorithm). The standard EM algorithm is run using this powered likelihood with a se-

quence of values for the power (a typical starting value would be 32) converging to 1. If both

the likelihood and prior distribution were powered then this would be an annealing approach

which should give better discrimination between competingposterior modes. Only powering

the likelihood defines a pseudo-posterior distribution which gives more weight to the data

than in the posterior distribution. We anticipate that thisextra data information will guide

the EM algorithm towards interesting areas of the parameterspace. A powered likelihood

will also lead to decreased standard errors for estimated parameters which should lead to

less thresholding of variables. We expect that by smoothly changing the power, the thresh-

olding also changes smoothly. Therefore, we hope to initially identify a promising subset

of the variables associated with a large value of the power and shrink this set as the power

decreases.

The second idea attempts to alleviate a practical problem that the algorithm can be over-

whelmed by the large number of variables. In other words, thevariables tend to be shrunk

from the model at a uniform rate and with a large number of variables the data can often be

fitted using relative small values of all regression coefficients. This will often lead to conver-

gence to a mode at the origin. Updating subsets of the variables in the maximisation step of

the EM algorithm allows us to vary the rates at which regression coefficients are shrunk to

zero. In particular, only thek∗ lowest|βi| are updated wherek∗ is uniformly distributed over

the range[0.5k, 0.8k]. This step is initially alternated with a full update. Afteran initial pe-

riod of alternating updates, only full updates are used. This will guarantee convergence of the

algorithm. We would want to maximise the conditional distribution of the some parameter

conditional on the other parameters. However, this exact updating is computationally expen-

sive and we updateβ by maximising the marginal distribution ofβ and checking that this

change leads to an increase in the posterior density value ofβ. A rather different promising

strategy for improving convergence of the EM algorithm, nottried here, is that of parameter
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expansion, see Liuet al (1998), or in the context of MCMC for the probit model Liu (2001,

section 8.5).

4 Application to Arthritis Diagnosis

Bayesian thresholding using a NEG prior distribution is applied to a problem in immunology.

The study measured gene expression level for 755 genes of known function for two groups

of patients. A rheumatoid arthritis (RA) group with 24 subjects and a osteoarthritis (OA)

group with 7 subjects. Three expression level measurementswere taken for each sample and

averaged to reduce noise-levels. The data was previously analysed in Shaet al (2003) and the

interested reader is referred to this paper for a more detailed description of the experiments.

The value of theλ parameter set to be 0.1 of the NEG distribution were chosen with the

“typical” value of a non-zero regression coefficient) set to2 andk′ set to be 5 and 2.5. Here

we will not attempt an exploration of sensitivity to hyperparameter choicesλ andk′ nor the

model’s application to other datasets.

Figure 8 shows the form of the penalty function and its derivative (which controls the

amount of shrinkage) for the two choices of hyperparameter,k′ = 5 solid line andk′ = 2.5

dotted.

Penalty Derivative
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Figure 8: The penalty functionp(|β|), and its derivative for the two choices of hyperparameter,

k′ = 5 (solid),k′ = 2.5 dotted

For both hyperparameter settings, the EM algorithm was started at 100 randomly chosen

initial values of the regression coefficients. 89 and 60 distinct modes were found fork′ = 5

and k′ = 2.5 respectively. The posterior distribution ofβ is highly multi-modal with

seemingly no overall dominating mode in both cases. Figure 9shows the empirical cdf of

log[π(y|β̂)π(β̂)] whenk′ = 5, 2.5 for all the local posterior modes found and also the log

likelihood values as a function of number of genes selected.For comparison the lowest value
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k = 5 k′ = 2.5
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Figure 9: The top row shows plots of ranked values oflog[π(y|β̂)π(β̂)] for the distinct values of the

modes found and the bottom row show the values of the log likelihood for each mode (unsorted) as a

function number of selected genes

is associated with the model using no genes which has a log likelihood of−16.5589. Clearly

many of the modes found have roughly similar posterior density values. Although, we would

still like to express a preference for models including smaller numbers of regressors. Figures

10,11 show the actual genes chosen fork′ = 2.5, 5. Figure 12 shows the regressors whose

estimated coefficients are non-zero in the top ten modes ranked by their posterior density

values with labels of selected genes on the x-axis. This posterior density includes the value

of the penalty function and penalises less parsimonious models. Reducing the value ofk′ to

2.5 leads, unsurprisingly, to sparser models. Several of the genes appeared in both figures and

in particular, the genes 290 appears in the top 3 modes. The data for the included variables

with the dividing hyperplane (the locus of points for which the probability of membership to

the two groups is equal withk′ = 2.5) are shown in figure 13. This suggests that 290 has

substantial power to distinguish between the two disease categories.

The effect of each gene on group membership can be gauged fromfigure 14 which plots

the non-zero regression coefficient estimate for a selection of the genes. It shows that high

expression levels of the genes 290 (Immunoglobulin Kappa heavy chain) and 754 (ZAP 70)

are associated with a larger chance of belonging to the rheumatoid arthritis group than the

osteoarthritis group, as does 729. In contrast, high expression levels of gene 170 are asso-
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Figure 10: The log likelihood for the top modes withk′ = 2.5 which include: (a) 1 variable, (b)

2 variables and (c) 3 variables
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Figure 11: The log likelihood for the top modes withk′ = 5 which include: (a) 2 variable, (b) 3

variables, (c) 4 variables and (d) 5 variables

25

CRiSM Paper No. 05-10, www.warwick.ac.uk/go/crism



k′ = 5 k′ = 2.5
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Figure 12: A summary of the ten modes with the highest posterior density values found by the

algorithm
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Figure 13: Plot of the gene expression levels for two genes for the rheumatoid arthritis group

(dots) and the osteoarthritis group (crosses) with the fitted dividing hyperplane

ciated with a higher chance of membership of the osteoarthritis group. Gene 290 is coding

for a B lymphocyte-specific gene and clearly is very stronglyassociated with disease class in

this very small data set. It also came to the fore in the MCMC approach of Shaet al (2003).
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Figure 14: Modal regression parameter estimates for each gene

These results show important genes which should be includedin a predictive model both
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singly and in combination.

5 Discussion

In this paper we have proposed a class of prior distributionssuggestive of a population of

coefficients many of which are zero or near zero. By focusing on the modes of the posterior

through an EM algorithm we are able to develop a method that does not search subsets but

can produce coefficients that are exactly zero, much in the spirit of the original lasso. Our

preferred prior is a member of the class of scale mixtures of normals, the normal-exponential-

gamma (NEG), which allows a spike at zero which is not infiniteand is proper over its full

range. It retains some of the strong thresholding properties of the normal-Jeffreys with weak

shrinkage for large coefficients without its evident overpowering drawback of impropriety of

both prior and posterior.

We have compared the thresholding properties of several differing choices of prior in

the scale mixture of normal class, illustrating the shape ofregions in two dimensions. In

higher dimensions these are harder to characterise although formulae are provided. In cases

of more variables,k, than observations,n, as in the microarray example, then only min(n, k)

coefficients can be non-zero.

We have developed an EM algorithm strategy to find modal estimates. Convergence is an

issue with the latent variable probit model where information in the likelihood is weaker than

in the linear regression model. One arm of our strategy powers up the likelihood whilst the

other updates selectively within EM. Direct maximisation of the posterior utilising Newton-

Raphson with EM as in Kiiveri (2003) would be an alternative worth exploring in the con-

text of generalised linear modelling. Our algorithm uses the singular value decomposition

to reduce the dimensions of coefficient space whilst retaining full information content and

thresholding on the original coefficients rather than thosederived.

The modal analysis quantifies the posterior probabilities of coefficients being outside of

a near-zero region and uses these to select interesting variables. We are also able to look at

variables in combination.
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Appendix 1

For the lasso and simple regression, equation (13) has a turning point if |β̂| > 1
γ

σ2

�n
i=1 x

2
i

at the point

β̃ = β̂ − sign(β̂)
1

γ

σ2

∑n
i=1 x

2
i

(18)

which is also the Bayesian threshold since

log π(β̃|y) − log π(0|y) = − 1

2σ2

[

β̃2
n
∑

i=1

x2
i − 2β̃

n
∑

i=1

xiyi

]

− 1

γ
|β̃|

= −
∑n

i=1 x
2
i

2σ2

[

β̃2 − 2β̃β̂ + 2
σ2

∑n
i=1 x

2
i

1

γ
|β̃|
]
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and substituting in equation (18) and noting that sign
(

β̃
)

= sign
(

β̂
)

gives

log π(β̃|y) − log π(0|y) = −
∑n

i=1 x
2
i

2σ2

[

β̃2 − 2β̃2 − 2
1

γ

σ2

∑n
i=1 x

2
i

β̃sign(β̃) + 2
σ2

∑n
i=1 x

2
i

1

γ
|β̃|
]

=

∑n
i=1 x

2
i

2σ2
β̃2 > 0.

Appendix 2

The region of different types of thresholding with a lasso penalty and two variables can

be derived in the following way. The assumed form ofXTX implies that

(XTX)−1 =





1
c(1−ρ2)

ρ

(1−ρ2)
√
cd

ρ

(1−ρ2)
√
cd

1
d(1−ρ2)





and equation (13) can be re-arranged to give

1

c

∂L

∂β1
= β1 − β̂1 +

1

c
sign(β1)

1

γ
+

√

d

c
ρ(β̂2 − β2)

and
1

d

∂L

∂β2
= β2 − β̂2 +

1

d
sign(β2)

1

γ
+

√

c

d
ρ(β̂1 − β1).

If a mode exists with both parameters non-zero, the following conditions must hold

0 = sign(β1)|β1| − β̂1 +
1

c
sign(β1)

1

γ
+

√

d

c
ρ(β̂2 − β2)

and

0 = sign(β2)|β2| − β̂2 +
1

d
sign(β2)

1

γ
+

√

c

d
ρ(β̂1 − β1).

Some algebra gives the expression.

|β1| = sign(β1)β̂1 −
1

γ
√
c

1

1 − ρ2

[

1√
c

+
ρ√
d

sign(β1)sign(β2)

]

and

|β2| = sign(β2)β̂2 −
1

γ
√
d

1

1 − ρ2

[

1√
d

+
ρ√
c
sign(β1)sign(β2)

]

Since the right-hand side of both expression is greater thanzero,

sign(β1)β̂1 >
1

γ
√
c

1

1 − ρ2

[

1√
c

+
ρ√
d

sign(β1)sign(β2)

]

and

sign(β2)β̂2 >
1

γ
√
d

1

1 − ρ2

[

1√
d

+
ρ√
c
sign(β1)sign(β2)

]
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So, the regions where neither parameter is thresholded takethe form of four squares. The

regions where one parameter is thresholded are bounded by the four disjoint squares and the

lines

β̂2 =
1√
d

[

ρ√
c
cβ̂1 +

sign(β2)√
d

1

γ

]

for the region whereβ1 is thresholded and

β̂1 =
1√
c

[

ρ√
d
dβ̂2 +

sign(β1)√
c

1

γ

]

for the region whereβ2 is thresholded. These lines cross at the corners of the region where

both variable are thresholded. Ifc andd are equal, the graph is symmetric in the linesy = x

andy = −x. The region where both regressor is thresholded forms a rhomboid whose shape

changes with the value ofρ. The volume of the region will be determined by the ratios1
γ
√
c

and 1
γ
√
d
.

If the sum of squares for the two variables (c andd) are not equal, the shape of the region

where both regressors are thresholded can be less regular. The shape is a closed figure except

if
1

γ
√
c

1

1 − ρ2

[

1√
c

+
ρ√
d

sign(β1)sign(β2)

]

< 0

or
1

γ
√
d

1

1 − ρ2

[

1√
d

+
ρ√
c
sign(β1)sign(β2)

]

< 0

ρsign(β1)sign(β2) < −
√

d

c
, ρsign(β1)sign(β2) < −

√

c

d

This condition reduces to

ρsign(β1)sign(β2) < −
√

min{c, d}
max{c, d}

Appendix 3

Here we derive results for normal exponential gamma distribution for (i) the marginal

distribution ofβ (ii) the derivative of its form as a penalty function and (iii) the form of the

E-step for it. ¿From Gradshtein Ryzik (1980, p319)
∫ ∞

0
xν−1(x+ β?)−ν+1/2 exp{−µx} dx = 2ν−1/2Γ(ν)µ−1/2 exp{β?µ/2}D1−2ν(

√

2β?µ)

(19)
∫ ∞

0
xν−1(x+ β?)−ν−1/2 exp{−µx}dx = 2νΓ(ν)β?−1/2 exp{β?µ/2}D−2ν(

√

2β?µ)

(20)
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(i) Marginal distribution ofβ

π(β) =

∫ ∞

0

1√
2πΨ

exp

{

−1

2

β2

Ψ

}

λ

γ2
(1 + Ψ/γ2)−(λ+1) dΨ

=

∫ ∞

0

1√
2π
φ−3/2 exp
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−1

2
φβ2

}

λ

γ2

(

φ+ 1
γ2

φ

)−(λ+1)

dφ

=

∫ ∞

0

1√
2π
φλ−1/2 exp

{

−1

2
φβ2

}

λ

γ2

(

φ+
1

γ2

)−(λ+1)

dφ

Let ν = λ+ 1/2, µ = 1
2β

2 andβ? = 1
γ2 and substitute into equation (20)

π(β) =
λ√
π

2λ

γ
Γ(λ+ 1/2) exp

{

1

4

β2

γ2

}

D−2(λ+1/2)

( |β|
γ

)

(ii) The derivative of the penalty function

− d

dβ
log π(β) = β

∫∞
0

1√
2π
φλ+1/2 exp

{

−1
2φβ

2
}

λ
γ2

(

φ+ 1
γ2

)−(λ+1)
dφ

∫∞
0

1√
2π
φλ−1/2 exp

{

−1
2φβ

2
}

λ
γ2

(

φ+ 1
γ2

)−(λ+1)
dφ

Using the substitutionν = λ+ 3/2, µ = 1
2β

2 andβ? = 1
γ2 and substitute into equation

(19)

∫ ∞

0

1√
2π
φλ+1/2 exp

{

−1

2
φβ2

}

λ

γ2

(

φ+
1

γ2

)−(λ+1)

dφ

=
1√
π

λ

γ2
2λ+1Γ(λ+ 3/2)

1

|β| exp

{

1

4

β2

γ2

}

D1−2ν

( |β|
γ

)

− d

dβ
log π(β) = (λ+ 1/2)

1

γ

β

|β|
D−(2λ+2)

(

|β|
γ

)

D−(2λ+1)

(

|β|
γ

)

(ii) The E-step of the E-M algorithm.

E

(

1

Ψ
|β
)

=
1

π(β)

∫ ∞

0

1√
2πΨ3/2

exp

{

−1

2

β2

Ψ

}

λ

γ2
(1 + Ψ/γ2)−(λ+1) dΨ

=
1

π(β)

∫ ∞

0

1√
2π
φ−1/2 exp

{

−1

2
φβ2

}

λ

γ2

(

φ+ 1
γ2

φ

)−(λ+1)

dφ

=
1

π(β)

∫ ∞

0

1√
2π
φλ+1/2 exp

{

−1

2
φβ2

}

λ

γ2

(

φ+
1

γ2

)−(λ+1)

dφ.
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For the integral letν = λ + 3/2, µ = 1
2β

2 andβ? = 1
γ2 and substitute into equation (19),

then usingπ(β) derived above the E-step formula

=
(λ+ 1/2)

γ|β|
D−(2λ+2)

(

|β|
γ

)

D−(2λ+1)

(

|β|
γ

) .
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