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Abstract

The problem of variable selection in regression and the rgdieed linear model is ad-

dressed. We adopt a Bayesian approach with priors for thessign coefficients that are
scale mixtures of normal distributions and embody a higbrgsrobability of proximity to
zero. By seeking modal estimates we generalise the lasspelies of the priors and their
resultant posteriors are explored in the context of thealirmad generalised linear model es-
pecially when there are more variables than observatiors.d&Velop EM algorithms that
embrace the need to explore the multiple modes of the noldogave posterior distribu-
tions. Finally we apply the technique to microarray datangis probit model to find the
genetic predictors of osteo- versus rheumatoid arthritis.
Keywords: Bayesian modal analysis, Variable selection in regresstmale mixtures of
normals, Improper Jeffreys prior, lasso, Penalised lield, EM algorithm, Multiple modes,
More variables than observations, Singular value decoitipos Latent variables, Probit
regression.
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1 Introduction

It is common nowadays to be able to investigate very manyalbes simultaneously with
data collected on relatively few samples. For example irctional genomics microarray
chips typically have as many as ten thousand genes spottéteorsurface and their be-
haviour may be investigated over perhaps one hundred omsplas. Curve fitting in pro-
teomics and other application areas may involve an arlytriarge number of variables,
being limited only by the resolution of the instrument. Itswcircumstances often it is de-
sirable to be able to restrict attention to the few most irtgparvariables by some form of
adaptive variable selection.

Classical subset selection procedures are usually cotignally too time consuming
and perhaps more importantly suffer from inherent insitgb{Breiman, 1996). Bayesian
stochastic search variable selection (SSVS) methods hes@nte increasingly popular of-
ten adopting the ‘spike and slab’ prior formulation of Migthand Beauchamp (1988), see
also George and McCulloch (1997), Wokeal (2004), Brownet al (1998) for multivariate
extensions and more recently in the more- variables- thbsemations case by >> n),
by Brownet al (2002), West (2003). In these approaches Bayesian avegragips to induce
stability. Despite careful use of algorithms to speed up matations these approaches are
still too slow to deal with the vast numbers of variables (afey 10,000) of some applications
and some form of pre-filtering is necessary.

One form of Bayesian approach which does offer the potefdrainuch faster compu-
tation takes a continuous form of prior and looks merely fades of the posterior distri-
bution rather than relying on MCMC to fully investigate thesgerior distribution. Such
formulations lead to penalised log likelihood approachéene the additive penalisation of
the log likelihood is the log of the prior distribution. Titgani’'s (1996) lasso is equiv-
alent to a double exponential prior distribution, propogedayesian wavelet analysis by
Vidakovic (1998). A more extreme form of penalty is the nokldeffreys prior (Figueiredo
and Jain 2001, Figueiredo 2003), adopted in an extendedaliseel linear model setting by
Kiiveri (2003). From a different viewpoint Fan and Li (200idve modified the lassok;
penalty so as to offer less shrinkage for large effects, lseeFmn and Peng (2004).

Early examples of parallel approaches in the machine legriterature are Automatic
Relevance Determination of Mackay (1994) and the Relevaector Machine of Tipping
and Faul (2003).

In this paper we concentrate on priors for the effects whighsaale mixtures of nor-
mal distributions in a broad sense. These bridge the fufje@drom the lasso to the extreme
Jeffreys-based prior. We explore thresholding propedis$ multimodality. In the context
of multiple regression and later probit regression, we lbgvestimation procedures and fast
EM style algorithms for estimation utilising the inheremménsionality{min(n, )} of in-
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formation. In the probit case, our method of hyperparamehteice is geared to prediction
characteristics of some canonical models and althoughdigdandent helps to avoid over-
shrinkage. We finish by analysing microarray data on two &afarthritis earlier analysed
by Shaet al (2003).We embrace the multimodality through plots of génelsided in modes
as ranked either by posterior or log-likelihood value. We a@ble to reveal subsets of highly
discriminating genes.

2 Generalising lasso estimation

There are at least two ways of generalising the lasso in adayesetting. One is to use
an exponential power prior fg#, see Box and Tiao (1973, p157); the other is to use a scale
mixture of normals, see West (1987). Non Bayesian analogonédsdaptations of the former
are to be found in Knight and Fu (2000), Fan and Li (2001). Wk nather devote our
attention to scale mixtures of normals as these are easaaowith analytically and are
richer in form.

2.1 Scale mixture of normal prior distributions

If we wish to construct distributions that bridge the gapamtn the normal-Jeffreys prior
and the double exponential distribution, a natural clagsriof distributions to consider for
each regression coefficiert;, would be scale mixtures of normal distributions where

7(8) = / N(B:10, 1) Gdi) 1)

where NY |1, %) denotes the probability density function of a random vdeiab having a
normal distribution with meap and variancer?. HereG is the mixing distribution and its
density, if it is defined, will be referred to @$-). The prior variance of the regression coef-
ficients, if it exists, can be simply expressed in terms ofrtiean of the mixing distribution
since

= By, (V(Bil¢))
If we assume that domain knowledge will not be included indtier, the mixing distribution
seems a natural place to include the belief that only a fevessgrs will be important to give

a good fit to the data. Most Bayesian approaches to varialdetmm make use of the form
G(-) to aid inference. A traditional approach to variable séect(Mitchell and Beauchamp,
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1988, George and McCulloch, 1997), expresses the priontdigon for §; as a mixture
distribution

ie.  m(Bi) = ON(B0,03) + (1 - 6) 350 @

whered,—, is the Dirac measure which places measure {on= a}. The parameter
0 < 6 < 1 can be interpreted as the probability that a variable isighed in the model and
cr% is the prior variance of the regression coefficients inatldethe model. If we make
use of the obvious extension of the normal distribution biniley N(x|x,0) = 04,—,, the
mixing distribution can be expressed as

9(i) = 06y, =03 + (1 = 0) dy,=0- 3)

Other particular mixture distributions of interest carodie represented in this scale mixture
form.

1. The mean-zero double exponential distribution,(@E/~) with probability density

function .
%exp{—m\/v}, —0< <o, 0<y< oo
is defined by an exponential mixing distribution, @(%) with probability density
function .
9(wi) = 5zexp{—vi/[27’]} @)
2. The normal-Jeffreys (NJ) prior distribution arise frame improper hyperprior
(W) ox - )
i) X —,
g i

which in turn induces an improper prior fof of the formz(3;) ﬁ

3. Awell-known result shows that the Studewistribution on\ > 0 degrees of freedom,
scale parametey > 0, can be expressed using an inverse-gamma mixing distributio

B A A
g(i) =1G (5, T) ; (6)

where 1Ga, b) is the inverse of a gamma with shapand natural parametér

4. One possible extension to the exponential mixing distidn is the gamma distribution

9() = Ga(%

1
A ), 0< A< oo )
22

The double exponential distribution is regained\if= 1 and as\ becomes smaller
the mixing distribution can put more mass close to zero. Tdreesponding marginal
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distribution of 5 is often called a normal-gamma (NG) or variance-gammailblistr
tion which has proved a popular choice for modelling fatst#il finance €.g. Bibby
and Sorensen, 2003) and is a member of the generalized Injipeidmily (seee.g.
Barndorff-Nielsen and Blaesild 1981). The marginal dimttion of 5; has the density

1

m(8) = =gy A Eon12(1Ai /) (®)

whereK is the modified Bessel function of the third kind. The variat 3; is 2\v?
and the excess kurtosis 4s

. Another extension arises from placing a further mixingtribution on the scale pa-
rameter of the exponential mixing distribution. A gamma imgxdistribution with
parameters\, y2 on the natural parameter of the exponential leads to a ssadf
the gamma-gamma distribution (Bernardo and Smith, 19920pIThe density of the
mixing distribution ony; has the form

g(y) = %(1 + 1/%/’}/2)7()‘“) 0< )\ < oo. 9)

The density of the marginal distribution 6f can be expressed as

A 2
w00 = 220y (351000 (B) a0
where D, (z) is the parabolic cylinder function. Computation of this étions is de-
scribed in Zhang and Jin (1996, section 13.5.1, p439), cedesions are available
fromhttp://jin.ece.uiuc.edu/routines/routines.htm for Fortran
77 andhttp://ceta. mt.edu/ conp_spec_func/ for Matlab. If X is small,
the computation otxp{z}D,(z) is much more stable than computation of (z).

This involves a simple modification of the method describedhang and Jin (1996).

The parametety and A control the scale and the heaviness of the tails respegtivel
From Abramowitz and Stegun (1964, p689 egn 19.8.1) we sdedaoﬁhl&nrgem

2
o |ﬁi|>_(%+1)
(8) ~ (—,y .

Also if A > 1, the expectation of); and the variance af; exist and have the form
%. The excess kurtosis % if A > 2. This class of distributions, unlike the
normal-gamma class, can define distributions for which tireance is undefined and
thus has a rather different tail-to-spike balance. Theiligion function ofy; is also

available in closed form as
N —A
G(¢i):1—<l+%> .
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We will refer to the marginal distribution gf; with density (10) as the normal-exponential-
gamma (NEG) distribution and the marginal distributiongf as the exponential-
gamma (EG) distribution.

We would expect all of these methods to improve upon a normiad gistribution with fixed
variance, which would have the mixing distribution

9(1/%) = 51[)1-::7

)

5
since moving some mass in the mixing distribution eitheri@n the case of (3) or close to
zero in (4), (5), (6), (7) and (9) is consistent with our piti@lief that many of the regression
coefficient are close to zero and hence their values will lasvdrfrom distributions with
small variances. A natural starting point would be to resigder equation (4) and question
whether it accurately reflects our prior beliefs. If not, aeri class of prior distribution can
be generated by elaborating the exponential mixing digioh, leading to the StudentNG

or NEG above. The relative merits of these are discussed &t fohows.

2.2 Shapes and Limits

Some of the mixing distributions described above and theiresponding densities fgrare
displayed in Figure 1. Generally the expectation of the raywariancey is fixed at unity by
appropriate setting of the hyperparameters, except wheldies not exist as in the last pair
of figures when for the NEG = 0.1, for which the expectation df/+ is fixed at unity.

Aside from incorporating the density of the ‘lasso’ as a sglexase many of the scale
mixture of normals will have the normal-Jeffreys as a lingtidensity form. For example
the normal-gamma (NG) given by (8) goes to this impropertliwhen | 0 andy T cc.
This degenerate limiting form has infinite mass, an infinti&e at zero and flatness for large
values of|3|, and as a consequence does not penalise such large valuespiféat zero
has strong consequences for the modal behaviour of therjposteot all of them welcome
as we shall see. Whereas the normal-gamma does have areigfiikie at zero foh < 1/2,
the normal-exponential-gamma distribution has the adgnof a finite limit at zero for all
parameters values in its range and incorporates as limitisgs the double exponential prior
(asA,y T oo0) and the normal-Jeffreys case (asy | 0).

In the distribution ofg, we now compare the relative weights centrally versus indiie t
of NG, NEG, DE, NJ and Student For all choices of prior (except the normal-Jeffreys),
at least one scale parameter must be chosen. For comparéseimply specify one scale
parameter by fixing probability mass on the central rediem, ¢) to ber. Figure 2 illus-
trates the effect of fixingy = 0.9 on the region—0.01, 0.01) for the four comparisons with
the lasso, (a) DE v NEG, (b) DE v NG, (c) DE v t and (d) DE v NJ. Tleenmal-gamma
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Figure 1:Various forms considered for the prior distribution fémith their associated mixing distribu-
tion

choice (panel (b)) is markedly different in tail behaviorthe other three choices. The NEG
distribution is able to maintain flat tails with a much largetue of the density of zero than
the t-distribution and captures the main features of the note#iteys prior. In summary
the DE and NJ are at opposite extremes with the NEG presegond features of the NJ
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Figure 2:Log prior densities setting the central region (-0.01,p1@1have probability; = 0.9 for: (a)
double exponential distribution (solid line), NEG & 1) (dashed line) and NEG(= 0.1) (dotted line),
(b) double exponential distribution (solid line) and N& £ 0.1) (dashed line), (c) double exponential
(solid line), t-distribution ¢ = 2) (dashed line) and-distribution = 0.2), and (d) double exponential
(solid line) and improper normal-Jeffreys (dashed line)

without the drawback of the extreme spike at zero.

2.3 Thresholding for variable selection

The five distributions can express our belief that a smalllmemof regressors can fit the data
well but also allow a wide-range of other properties. It igortant to choose appropriate
forms that lead to a useful variable selection procedure.

A standard interpretation of Bayes theorem, is that the twgigior distribution is addi-
tive in data and prior information as given by

log w(Bly) = log f(y|3) + log7(3), (11)

where log probability is a measure of utility (Bernardo andith, 1994). It is natural to
regard the negative prior utility as a penalty function giasp(3), where

p(B) = —log m(f).

8
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It is the relative contribution of the two components on tightr hand side of (11) that de-
termines the posterior. Turning points of the posteriorthen obtained by setting to zero
the derivative of (11) and hence depend on the sum of theicdssficient score functign
—0dlog f(y|B3)/08 and the derivative of the penalty function. In the case ofralsi pa-
rameter, we will generally assume that turning-point (Tiesholding, that is setting the
penalized estimatags = 0 , will occur iff there is no turning point. In which case withet
class of penalty functions considered, the posterior isatwre decreasing ifB| that is the
only mode is a3 = 0. Strictly if there is a turning point and the posterior fuootis non
monotone then there may also be a mode at zero. A prefereneetdioning point follows
the approach of Fan and Li (2001) and could be more formaligprded by consideration
of probability mass in the neighbourhood of zero, even wihenet is a spike at zero. An
alternative choice, more simply computed with many regnesds the true posterior mode
which will be called the Bayesian threshold, that is the mwik the highest posterior mass.
If there is one regressor, the lasso case, where the prinibdison is double exponential, is
the only one of our chosen distributions where these thtdshare identical (see Appendix
1). Various penalty functions together with their derivas are listed in Table 1.

p(p) p'(16])
double exponentig, =) @ 1
normal-Jeffreys log | 3| ﬁ
2
6(3%) Al log(1 + 3%/ xy?) 2L
Ky . \ﬂ\)
normal-gamma LN log|8] —log Ky_y 5 (12 L o)
g (3 ) log |63| g L) 1/2(7) N 1/2(%)(
D 181
NEG _ 2 _loeD 18 (+1/2) P20+ (5
w7 T 08 P20y ( gl ) gl D,Q(AJr%)(‘f_‘)

Table 1:Penalty functions and their derivatives induced by varichuice for the hyperprior

Our approach will be applied to the generic problem of midtigegression, with the
generalised linear model as a possible extension. It isradthat we observe dn x k)-
dimensional data matrixX, and an(n x 1)-dimensional response;,. The relationship
between the responses and the data is modelled by a lineassem

m(y|B,0%, X) = N(y| X B,0°1)

where Nz|u, ) denotes a multivariate normal distribution with mearand variance:.
The problem of finding a maximum posteriori(MAP) estimate ofs can be expressed as a
penalised likelihood problem whergis chosen to find a minimum of the function

k
L= ol — X0ty — X5) + > pllfi) 12)
=1

9
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Figure 3:TP thresholding rule foB as a function of the standard error under different prioic®with
n = 0.9 ande = 0.01: (a) double exponential distribution (solid line) and nalrgamma k = 0.1)

(dotted line), and (b) normal-exponential-gamma distidns with A\ = 10 (solid line), A\ = 1 (dashed
line) and\ = 0.1 (dotted line)

wherep(z) = —log 7(z) is the penalty function. In generalised linear models trgatiee
log-likelihood or deviance replaces the first term of (12)pakticular case is probit regression
as applied in section 4 where the information content ofittedihood is somewhat less than
in the normal linear model.

Fan and Li (2001) consider the link between the choice of pefinction (or prior dis-
tribution in our case) and the TP thresholding value. The M&Bmate will be zero only
if the maximum likelihood estimate (MLE) is smaller thanstthreshold value. In a uni-
variate regression problem, for the maximum likelihoodneator 3, the parameter is set to
zero if | 3| < ming_{|6] + X”TQXp’(|9|)} wherep/(-) is the derivative of the penalty function
and ﬁ is the standard error of. A comparison with some of the prior distributions
described above is illuminating. For the double exponéptiar distribution, thresholding
occurs if|3] < % 2”_ which depends on the square of the standard error. In conthas

XTX
normal-Jeffreys prior thresholds according to the fule < 2\/;T—X and the thresholding

depends linearly on the standard error. Figure 3 compaeeshtiesholding rules for the
normal-gamma penalty and the normal-exponential-gammaliye The latter has linear be-
haviour where the slope depends.)grgeneralising the normal-Jeffreys rule and is thus more
appealing. The normal-gamma case has substantially efiffé&ehaviour and defines a much
more conservative criterion. Much larger valuesyafould induce a linear thresholding rule
but this contradicts our imposed prior property of a largs$naose to zero.

The Bayesian threshold for the normal-Jeffreys and nogaatma choices withh <
0.5 are undefined because the prior density value at 0 is infinidetlae posterior mode is
consequently zero for any set of observations. HoweverlNt&& prior distribution always
has a finite mode at zero. Figure 4 compares the TP and Baytbsesholding rules. The

10
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A=0.1 A=1
Figure 4:Bayesian threshold (solid line) and TP threshold (dashes) fior the NEG prior distribution
with n = 0.9 ande = 0.01

Bayesian threshold is more conservative and almost dottethresholding value.

The discussion so far has centred around thresholding ewtbice of penalty function
will also have implications for the shrinkage of non-zertireates. For example, Johnstone
and Silverman (2005) suggest that overshrinkage of nom-@stimates can lead to better
predictive performance in wavelet regression. Differatimi (12), the relationship between
the penalised MLES and the MLES

itz = S ()
shows that the amount of shrinkage is directly controlledth®y derivative of the penalty
function. Figure 5 illustrates various choice of penaltypdtion with a chosen value of the
probability mass; on the interval(—e¢, €). The flat tails of the normal-Jeffreys and normal-
exponential-gamma distributions lead to small derivatorelarge values ofs and 3 ~ 33,
which implies the so-called oracle property of Fan and LD{®0 The normal-gamma choice
maintains a substantial derivative in the tails (which iprawimately};).

2.4 Modal estimates with multiple parameters

The following section extends the univariate results tdfms with two regressors. First,
for k parameters, returning to the penalised likelihood fumgtib, the derivative can be
expressed as

j—g — XTXB— X"y +sign ) (I8))
<XTX>—1% = B A+ (XTX) sign(B)p(16) (13)
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Figure 5:Penalty functions ify = 0.9 ande = 0.01 for: (a) double exponential distribution (solid line),
NEG (A = 1) and NEGQ = 0.1), (b) double exponential distribution (solid line) and N& £ 0.1)
(dashed line), and (c) double exponential (solid line) amchral-Jeffreys (dashed line)

where
sign(3;) 0 |3
sign(p) = ABl=1
0 sign(s2) 3|
Turning points away from zero can only occur if there existse of 5 for which some
elements o@% are zero. The mode with the largest number of non-zero pdesrastimates
will be preferred. In the bivariate case, we assume that

Ty _ ¢ —pVed
e ()

wherec andd are the sum of squares for the first and second variable tasgga@ndp is the
correlation between the maximum likelihood estimatgrsand 3», which has the opposite
sign to the correlation between the two independent vasabl

2.4.1 Lasso Regions

The relationship between thresholding and the valugs ahd3, can be studied analytically
for the lasso penalty. There are five regions into whigland 3, can fall which are shown in
figure 6 (only positive correlation is considered; the rielahip betweem; and— /3, shows
the effect of negative correlation) and derived in the Amler2. Four of these regions
arise when there is a single posterior mode. Each regionfisedeby a combination of
thresholding or not thresholding either estimate. Howexdrsimodal posterior distribution
is also possible and figure 6 shows the valueg;oéind 3, which lead to it as the lighest of
the three grey shades. The five regions are colour coded ngndnom white to black, as:
no thresholding; bimodaly, only; 5; only; or both variables thresholded. In the following

12

CRiSM Paper No. 05-10, www.warwick.ac.uk/go/crism



lasso

normal-gamma
A=04

normal-Jeffreys

NEG
A=0.1

Figure 6: The regions where different types of thresholding occuregitnoving through shades of grey
from black to white: only mode at O (black}, set to zero only;3, set to zero only; two local modes;
internal mode (white) for =1,b=1

section, we will discuss resolving the bimodality by usihg global posterior mode as the
estimate. Each graph is symmetric in the lings= /3, and 3 = —f3,. The values of
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31 and 3, where no thresholding occurs clearly define four disjointasgs. This property
is independent of correlation but the region where bothesgprs are thresholded forms a
rhomboid whose shape changes with the valuge. dfhis agrees with the observation that if
there is high correlation between the regressors theresisdehcy for the MLESs to produce
spurious relationships. In those situatioﬁs,andﬁg have similar absolute values and the
predicted values will be near constant. The volume of therewill be determined by the

1

ratlosm and i

2.4.2 General Regions

In contrast with the lasso regions, the shapes of non-tblésti regions (white in figure)
depend on the correlation for the normal-gamma and norafakys penalty functions (Fig-
ure 6). These relationships are less amenable to analytm# and the regions are drawn
by finding the type of thresholding on a grid of values. Bothadty functions lead to similar
regions which are substantially different to those defingthie lasso penalty. Two striking
differences are the shape of the region where both varialéethresholded and the shape of
the region with a bimodal posterior. If both ML estimatorséshe same sign the no thresh-
olding region becomes larger whereas if the signs are diitethe no thresholding region
becomes smaller. The gap is filled by an expansion of the megith a bimodal posterior.
These regions are intermediate between full thresholdilagk) and no thresholding (white).
This region is small and close to all axes with the double agptial prior but the shape de-
pends on the correlation in the NEG case. In fact, the langdae of the correlation leads
to this region filling almost all of the two quadrants wheteand 3, have opposing signs.
In other words, the thresholding depends on the differefi¢g and3, and for correlations
close to—1, the thresholding depends on the sumBpfind 3.

The lasso and NEG penalties also define Bayesian thresbalegions (Figure 7). Un-
like the one-dimensional case, the Bayesian and TP thidigigotegions differ with a lasso
penalty. The bi-modal region is divided into regions whene @ariable is thresholded. In
contrast, the NEG penalty defines a substantially largeiomegshere both estimates are
shrunk to zero. Otherwise one of the regressors is set toaretthe Iine@l = —Bg actsas a
dividing line between these two cases. The difference iestholding between the lasso and
NEG penalty suggest that the latter will shrink more vagatdtom the model.

Itis hard to make any general comments about thresholdihgyiver dimensions, suffice
that there arenin(n, k) non-zero estimates. In the case of infinite spikes at zerpNJfor
A < 1/2) then this infinite spike will persist for all subsets of at mosn(n, k) genes.

14
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A=0.1
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Figure 7: The Bayesian thresholding region with a NEG distributiorhe parameters are chosen such
that7 (5 € [—0.01,0.01]) = 0.25 for various values oA.

2.5 Relationship to model choice

Heuristically, we can think of the posterior mode as a vadgiagklection method since setting
a regression coefficient to zero removes a variable from theéem It is useful to define an
indicator variables; that takes the value 0 if theth regressor is excluded from the model
(wheng; = 0) and 0 otherwise (whef; # 0). For fixeds = (s1,...,s), local posterior
modes obey the condition

0= 6" — 6+ (X*TX*) " Lsign(6*)p'(16*))

where X* is the submatrix ofX constructed using the columns for whigh= 1 andg* =
{Bi]s; = 1}. If such a posterior modg* exists then

B = B + (X*TX*) " sign(5+)p (|64))
whereé* is the ML estimate ofs*. The value ofs that minimises

I %(y — Xy - X80+ 3 e+ S p(0).

Z"Siil Z“Si:()
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corresponds to the global posterior modesofThe normal-Jeffreys and NEG with small
define a penalty that is almost constant for a range of syitalije values oti’;*. This penalty
is represented by, and L simplifies to

1 - -
L=5-5- X8 (y — X*B*) + rpr + (k — 7)p2

1 ~ -
= 53— X"B)(y = X*3) + kps+7(p1 — p2)

wherepy, = p(0) andr is the number of non-zero estimates. The térpa is constant across
all s and can be dropped which leaves the criterion

1 ~ -
;(?/ — X*B) T (y — X*B*) + 2r(p1 — pa),

where the first term is more generally the deviance.

The indicator variables that correspond to the posterioderdefines a model selection
criterion that is a trade-off between goodness-of-fit andrafty for each included parameter.
This form has been a recurring idea in the model selectienalitre. Standard choices for
the penalty are Akaike’s information criteria (AIC) (Ak&k1974) where, — p, = —1 and
a Bayesian variant (BIC) (Schwarz, 1978) — p; = —% logn. A typical choice for NEG
of A\ = 0.1, » = 0.9 ande = 0.01 would lead to values gb; — po around -15, which is
substantial larger than the penalties under the AIC and Bi@dlues ofn which are of the
order of hundreds of observations. The penalty is much closthe Risk Inflation Criterion
(RIC) (Foster and George 1994) who chopse- po = — log & for largek.

A further decomposition shows the relationship betweenrésidual sum of squares
calculated using the least squares estimates,

2l = XA (= X0 + W (T X () + 201 — pa).

3 Inference for regression and probit regression

This section discusses posterior inference, in partiaulethods for finding local posterior
modes, for probit regression models using the classesafdistributions already described.
Initially we concentrate on estimation for a normal pricstdbution which will be an impor-
tant component of our analysis.

3.1 Estimation with normal prior distributions

The prior distribution for3, (k x 1) is assumed to have the form
m(B) = N(B|0, W)
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whereV is a(k x k)-matrix. Typically this matrix will be a diagonal matrix httugh the
derivations in this section do not assume this special fdine standard MLE estimator will
not be defined ik is larger tham. Consequently, the problem is re-expressed in terms of an
n-dimensional parametey, for which the MLE exists. As in West (2003), the singularuel
decomposition of can be written as¥ = 7 DAT whereA is (k x n)-dimension matrix
suchthatA” A = I,,, D is an(n x n)-dimension diagonal matrix anfd is (n x n)-dimension
matrix for whichFTF = I,, and FFT = I,,. Clearly, we can write

Xp = (F'D)y
wherey = AT 3 and the MLE 3, of v is well-defined and has the form
4 =D"'Fy.

The sampling distributiory and the prior distribution of the-dimensional parametey
which is estimated by can be represented as

W(&h@ ‘IlaX) = N(;yh/v 02D72 = A*))
7(y|¥, X) = N(0, ATUA = Ty)
and the posterior distribution efis
(74, ¥, X) = N(7|Wo (o + A*) 14, (A1 4 05171, (14)

In order to calculate the posterior distribution of the esgion parameterg, we consider
the full singular value decomposition which represehitsas ' D* K™ where the first n
columns ofK, (k x k) are A, (k x n), the last(n — k) columns ag” given ask’ = (A4 ,C),
andD*, (n x k) with

pr=(D o).
Inthis case KT K = I, andK K* = I,, andK is invertible withik —! = KT If v* = K73,
the firstn elements ofy* arey and we define the lagc — n) elements to be. In this
parametrization are exactly those dimensions that are independent of the daing this re-
parametrization, the posterior distribution ®fs simply related to the posterior distribution
for v* which can be expressed as

T(vV5, ¥, X) = 7n(1|y, V) w(v]7, ¥, X)
where

7(7ly, ¥, X) = N(7|CTTAAT W A) 1y, CTOC — CTWA(ATTA) AT W),
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E(v[4, W) = Uo(¥o + A*) 14
and
E(r[3, ) = CTUA(ATWA) E(y]5).

The normality of bothr (7|, ¥') andw (|9, ¥, X) combined with the linear mean ofin ~
implies thaty* has a normal posterior distribution. The transformation is well-defined
and has the forn$ = K~* implying thats will also be normally distributiora posteriori
This distribution can be characterised by its posteriornregad variance. Computationally,
we want to calculate these quantities whilst avoiding isiers of(k x k)-dimensional ma-
trices. After some simplification we can express the pastenean and covariance in a form
where only matrix that needs inverting is arnx n-dimension matrix

E(B|¥,5) = WA(ATWA)'E(v[4, )
— \IJA(AT‘I/A)_I(‘I/(;I + A*_l)_lA*_l’S/
= WAV, + A% 714 (15)

and

V(BI¥,4) =¥ — WA(ATWA) AT + WAATWA) 'V, o (1) (AT TA) AT
=0 - VAATWA) T ATT + AATOA) (O, + A (AT A) 1 AT
=T — VAT +A*) AT (16)

Finally, we note that the marginal distribution §fgiven ¥ can also be derived and has the
form
(4| ®) = N(0,ATWA + 02D7?). (17)

3.2 Bayesian binary regression

The analysis of binary data arising from microarray experita can exploit the normal the-
ory developed thus far by introducing latent variables. réhs also appeal in working di-
rectly with the log-likelihood as discussed earlier, seigéti (2003). However here we focus
on the method proposed by Albert and Chib (1993) which eigpmiatent variable charac-
terisation to reduce probit regression analysis to thakgfession albeit at the expense of
creatingn latent variables. We assume that the response foi-thandividual is z; and
introduces latent parameteyssuch that

vilzi, B ~ N(X;8,1)
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andy; > 0 < z; = 1. The model forz; is a traditional probit regression analysis

where® is the cumulative distribution function of a standard nadrtiatribution. Impor-
tantly, if 3 has a normal prior distribution, the posterior distribatiof 3|y, ..., y, is also
normal.

Much of the work using normal-Jeffreys penalty functiongy&ti (2003), Figueiredo (2003))
attempts to find a single mode. Bae and Mallick (2004) andibadt al (2005) on the other
hand go for full posterior simulation using MCMC, but in faving the NJ overlooks the
fact that the likelihood times prior for this remains impeogs the likelihood fofs at zero
is bounded away from zero and hence the behaviour in therregipero is still proportional
to 1/5 and integrates to Iq@), which blows up atero. See Gelfand and Sahu (1999) for
more detailed analysis of such improprieties. This presdufiill Bayesian posterior anal-
ysis using the NJ prior but does formally allow it to act as ®ick for generating modes
from the ‘likelihood times prior’ in the spirit of penalisditkelihood. It is yet another reason
for our preference for the NEG which retains some of the eitvas of NJ but without the
dominating spike at zero.

3.3 Choosing hyperparameters

The standard subjectivist interpretation of the priorrtbsttion is an expression of our beliefs
about the likely values of and, in this case, the number of non-zero regression casftei
needed to explain the variation in the responses. Howevsrapproach can be problematic
when combined with the MAP estimation procedure. Considprodit regression model
with a relatively diffuse prior distribution fof, (in the sense that its effect can be ignored
when comparing local modes). The penalized likelihood fionds

n n k
L=Y zlog®(f+ XiB) + Y (1 —z)log(l — &(5% + XiB) — > _ p(|6])-
=1

=1 =1

If only the j-th regressor takes a non-zero valdg,and the intercept iééj ) then

L= zlog (35 +Xi;8)+_(1—z)log(1—® (3 + Xi;3;))—p(| 3;]) — (k—1)p(0).

i=1 i=1
Comparing this value to the penalized log likelihood for alfmodel” for which all regres-
sion coefficients, except the intercept, are set to zero shbat the “null model” will be
superior unless there is at least one regressor for which

P R _
> slo v EXB) 90— g AL -5 -0
=1 1_(1)(ﬂ0)
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wheref, is the estimated intercept in the null model. The improverirethe log likelihood,
on the left-hand side of the equation, is bounded since &tyrffitting model has log like-
lihood zero. If the difference between the penalty for a z=timate and a typical non-zero
estimate is large, we will define a penalty functions for viahice “null model” is superior to
all other model. However, we believe that a small number oegewill explain the differ-
ences between the classes. To avoid a problem of “overipatiah”, we first defind.,,,;.,,
the penalized log-likelihood for the null model,

n

Linin = logéz z + log(l - é) Z(l - Zi) - ]Cp(O)
1=1 i=1

= n[flogf + (1 — 6)log(1 — 6)] — kp(0)

whered = En:le The log likelihood at any posterior mode lie must betwéep,, and 0.

If we could find3*, a subset off with &’ elements which could perfectly fit the data, it would
have penalized log likelihood

0— 3" pa) — (k — K)p(0).
TEF*
The null model will not be the global mode if there is a sub$etwhose log posterior is
greater tharl,,,;,, or

> [p(2]) = p(0)] < n[flogf + (1 — ) log(1 — ).

TEL*
The quantity on the left-hand side controls the level of sho#ding and suggests a simple
method for controlling its value relative to the log likedibd of the null model on the left-
hand side. Decide on a value fbrand expected value for the estimate of a non-z&rsay
v, then

n -~ ~ ~ N

= y[HlogH + (1 —6)log(1l — 0)].
whered is estimated from the data. Now we have a prior which enaldds €ix the scale
parametety, and being data dependent will tend to avoid overshrinkageaanode at the ori-
gin. Although data dependent, the prior only depends ondkettirough design parameters,
sample sizep, and proportion of observations in the disease gréup,

p(y) —p(0)

3.4 An EM algorithm to find a mode of 5

Local posterior modes can be found using the EM algorithni{psteret al 1977, Meng
and van Dyk 1997) which has been suggested by both Kiivefip@nd Figueiredo (2003)
as a means for fitting models using scale mixture of normairgri The heavy tails of our
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Table 2:The forms of Ewijwj] for some mixing distributions

prior distribution can lead to slow convergence. In genevaluse the EM algorithm to find
a promising and small subset of variables with non-zeroession coefficients. Once this
subset has been found a standard optimization techniqah, asiconjugate gradient, can
be used to find the posterior mode using the variables in theesu In our case, the prior
variances of the regression coefficiegits . . . , ¢, and the unobserved valugs, . . . , v, are
treated as missing data. Kiiveri (2003) suggests applyiegEM algorithm directly to the
‘likelihood times prior’ in the generalised linear modetts®. The M-step is approximated
by a Newton-Raphson line search for the MLES&Nd the algorithm is started from a ridge
regression estimate.

The standard EM algorithm outputs a sequence of estingidtes3? | . .. that under reg-
ularity conditions converge to a local maximumjt. The sequence is defined by iterating
between an E step and an M step

1. E-step: Le'rAg.? = E[ﬁlzﬂ forj=1,...,kand
J

o1 1 _ 1.2 if ..
49— E [y‘g(ifl)] _) e @(—g)mexl){ 2 j} if2;=0
/ G+ 7174,%7@)\/% exp {—%CJQ} if 2, =1
where¢ = X301, The forms of E[w% \ﬁ(“l)} for various choices of penalty func-

tion are shown in table 2, with that for the Exponential Ganpriar derived in Ap-
pendix 3.

2. M-step: Sep3) equal to the mode af (3|A0—1 4= which will follow a normal
distribution. The new valug(® will be equal to the expectation of this distribution and
a computationally efficient form is shown in equation (15).

The naive use of this EM algorithm can often lead to a sequeniceerging to the empty
model whereg3; = 0 for all j. Several strategies lead to improved convergence of this EM
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algorithm. A poorly chosen initial valug®) can cause convergence problems. Before find-
ing the posterior mode using these prior distributions, stgrtor mode with a normal prior
distribution with fixed varianc& = I is found. A second problem we face is the lack of in-
formation from our data. If there are a large number of coimpetariables with similar, but
useful, predictive properties, the algorithm will blindigmove all the variables because for
any variable there are many other similar choices. A poweeesion of the likelihood is use-
ful for counter-acting this problem. The idea is called Deti@stic Annealing EM (DAEM)
and was introduced by Udea and Nakano (1995) (see also Midraehd Peel (2000), pp
58-60). They suggest multiplying the log-likelihood by anstant¢(® in the i-th iteration

of the EM algorithm. The sequence should be chosen to coanter). We will assume that
each observation occugs?) times in the datase{?) and¢(® will have the same effect on
the algorithm). The standard EM algorithm is run using tlesvered likelihood with a se-
guence of values for the power (a typical starting value e 32) converging to 1. If both
the likelihood and prior distribution were powered thersthiould be an annealing approach
which should give better discrimination between competiagterior modes. Only powering
the likelihood defines a pseudo-posterior distribution chihjives more weight to the data
than in the posterior distribution. We anticipate that #nsra data information will guide
the EM algorithm towards interesting areas of the paransgiace. A powered likelihood
will also lead to decreased standard errors for estimateahpaters which should lead to
less thresholding of variables. We expect that by smoothénging the power, the thresh-
olding also changes smoothly. Therefore, we hope to ihjtidentify a promising subset
of the variables associated with a large value of the powersinink this set as the power
decreases.

The second idea attempts to alleviate a practical probletthie algorithm can be over-
whelmed by the large number of variables. In other wordsy#r@bles tend to be shrunk
from the model at a uniform rate and with a large number ofaldes the data can often be
fitted using relative small values of all regression coedfits. This will often lead to conver-
gence to a mode at the origin. Updating subsets of the vagdblthe maximisation step of
the EM algorithm allows us to vary the rates at which regmessoefficients are shrunk to
zero. In particular, only thé* lowest| ;| are updated wherk* is uniformly distributed over
the rang€0.5k, 0.8k]. This step is initially alternated with a full update. Aften initial pe-
riod of alternating updates, only full updates are useds Wil guarantee convergence of the
algorithm. We would want to maximise the conditional disition of the some parameter
conditional on the other parameters. However, this exadatipg is computationally expen-
sive and we updatg by maximising the marginal distribution @f and checking that this
change leads to an increase in the posterior density valge Afrather different promising
strategy for improving convergence of the EM algorithm, tnigtd here, is that of parameter
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expansion, see Liat al (1998), or in the context of MCMC for the probit model Liu (200
section 8.5).

4 Application to Arthritis Diagnosis

Bayesian thresholding using a NEG prior distribution islegapto a problem in immunology.
The study measured gene expression level for 755 genes winkiumction for two groups
of patients. A rheumatoid arthritis (RA) group with 24 suitfeand a osteoarthritis (OA)
group with 7 subjects. Three expression level measuremestestaken for each sample and
averaged to reduce noise-levels. The data was previoualysad in Shat al (2003) and the
interested reader is referred to this paper for a more detdiéscription of the experiments.
The value of the\ parameter set to be 0.1 of the NEG distribution were chosén the
“typical” value of a non-zero regression coefficient) seRtandk’ set to be 5 and 2.5. Here
we will not attempt an exploration of sensitivity to hypergaeter choices andk’ nor the
model’s application to other datasets.

Figure 8 shows the form of the penalty function and its dékea(which controls the
amount of shrinkage) for the two choices of hyperparamétes; 5 solid line andk’ = 2.5
dotted.

Penalty Derivative

Figure 8: The penalty functiop(|3|), and its derivative for the two choices of hyperparameter,
k' =5 (solid), ¥’ = 2.5 dotted

For both hyperparameter settings, the EM algorithm wasestat 100 randomly chosen
initial values of the regression coefficients. 89 and 60mtstmodes were found fde' = 5
and k¥’ = 2.5 respectively.  The posterior distribution ¢fis highly multi-modal with
seemingly no overall dominating mode in both cases. Figusbdvs the empirical cdf of
log[r(y|3)w(3)] whenk’ = 5,2.5 for all the local posterior modes found and also the log
likelihood values as a function of number of genes seledtedcomparison the lowest value
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Figure 9: The top row shows plots of ranked valueslog|[r(y|3)x(3)] for the distinct values of the
modes found and the bottom row show the values of the logiliketl for each mode (unsorted) as a
function number of selected genes

is associated with the model using no genes which has a lelifidod of—16.5589. Clearly
many of the modes found have roughly similar posterior dgnsilues. Although, we would
still like to express a preference for models including $emadumbers of regressors. Figures
10,11 show the actual genes chosenkfor= 2.5,5. Figure 12 shows the regressors whose
estimated coefficients are non-zero in the top ten modesedabi¢ their posterior density
values with labels of selected genes on the x-axis. Thissgostdensity includes the value
of the penalty function and penalises less parsimoniousetso®educing the value éf to

2.5 leads, unsurprisingly, to sparser models. Severakaj¢imes appeared in both figures and
in particular, the genes 290 appears in the top 3 modes. Tthdatahe included variables
with the dividing hyperplane (the locus of points for whitie probability of membership to
the two groups is equal with" = 2.5) are shown in figure 13. This suggests that 290 has
substantial power to distinguish between the two diseasgcees.

The effect of each gene on group membership can be gaugedifrora 14 which plots
the non-zero regression coefficient estimate for a selectighe genes. It shows that high
expression levels of the genes 290 (Immunoglobulin Kappayhehain) and 754 (ZAP 70)
are associated with a larger chance of belonging to the ramidharthritis group than the
osteoarthritis group, as does 729. In contrast, high exfmedevels of gene 170 are asso-
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Figure 10: The log likelihood for the top modes with= 2.5 which include: (a) 1 variable, (b)
2 variables and (c) 3 variables
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Figure 11: The log likelihood for the top modes with= 5 which include: (a) 2 variable, (b) 3
variables, (c) 4 variables and (d) 5 variables
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K =25

26 83 89 170 178 258 200 392 424 478 532 649 665 729 754 26 49 170 258 200 473 498 530 547 754

Figure 12: A summary of the ten modes with the highest pasteensity values found by the
algorithm

15 2 25 3 o 05 1 15
290 290

Figure 13: Plot of the gene expression levels for two geneshi® rheumatoid arthritis group
(dots) and the osteoarthritis group (crosses) with thelfitieiding hyperplane

ciated with a higher chance of membership of the osteotsttyioup. Gene 290 is coding
for a B lymphocyte-specific gene and clearly is very stroragigociated with disease class in
this very small data set. It also came to the fore in the MCM@ragach of Shat al (2003).

K =5 K =25

26 83 89 170 178 258 290 392 424 478 532 649 665 729 7154

26

49 170 258 290

a73

a98 539 547
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Figure 14: Modal regression parameter estimates for eawh ge
These results show important genes which should be inclidagredictive model both
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singly and in combination.

5 Discussion

In this paper we have proposed a class of prior distributsuggestive of a population of
coefficients many of which are zero or near zero. By focusimghe modes of the posterior
through an EM algorithm we are able to develop a method thes dot search subsets but
can produce coefficients that are exactly zero, much in tivé epthe original lasso. Our
preferred prior is a member of the class of scale mixture®ohals, the normal-exponential-
gamma (NEG), which allows a spike at zero which is not infiaitel is proper over its full
range. It retains some of the strong thresholding progedi¢he normal-Jeffreys with weak
shrinkage for large coefficients without its evident ovevpdng drawback of impropriety of
both prior and posterior.

We have compared the thresholding properties of severaridi§ choices of prior in
the scale mixture of normal class, illustrating the shapeegfons in two dimensions. In
higher dimensions these are harder to characterise altHfougulae are provided. In cases
of more variablesk, than observationsy, as in the microarray example, then only ink)
coefficients can be non-zero.

We have developed an EM algorithm strategy to find modal esgéismn Convergence is an
issue with the latent variable probit model where informaiin the likelihood is weaker than
in the linear regression model. One arm of our strategy pewprthe likelihood whilst the
other updates selectively within EM. Direct maximisatidritee posterior utilising Newton-
Raphson with EM as in Kiiveri (2003) would be an alternativerili exploring in the con-
text of generalised linear modelling. Our algorithm uses gmgular value decomposition
to reduce the dimensions of coefficient space whilst retgifiull information content and
thresholding on the original coefficients rather than thiegved.

The modal analysis quantifies the posterior probabilitiesoefficients being outside of
a near-zero region and uses these to select interestirapiesi We are also able to look at
variables in combination.

Ackn owledgementSrhe second author (PJB) is grateful to CSIRO for sponsor-
ing a visit in 2002 and to H. Kiiveri for discussions on his e, which gave impetus to the
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Appendix 1
For the lasso and simple regression, equation (13) has iagupoint if |B| > %2,5'7212
i=1"1
at the point
02

S
B=p- 5'9“(5);@ (18)

which is also the Bayesian threshold since

3 1 L _n 1 -
log m(Bly) —log 7(0y) = 552 [ﬁQ 25522 - 252%‘%] - §|5|
i1 i—1
_Z?:ﬂ’? 32 _ 937 of 1
5o [5 2606 + 22?:1 25 |ﬂ|]
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and substituting in equation (18) and noting that ségi’r) = sign (ﬂ) gives

z S P S 2
g (/1) ~ log m(0l) = ZT 520 ) 2
— 212 12 7 /82 > 0.

Appendix 2
The region of different types of thresholding with a lassaalty and two variables can
be derived in the following way. The assumed form¥f X implies that

1 p
(XTX)fl — 6(1;p2) (1*pi)\/a
(1—p2)Ved  d(1-p?)

and equation (13) can be re-arranged to give

1 0L

A~ 1. 1 d -
;%—ﬂl ﬂl‘i‘ES'gn(ﬂl);'i_\/gp(BQ_BQ)

and
Cllgﬂi Ba — B + 5|gn(ﬁ2) \/50(31 —B1).

If a mode exists with both parameters non-zero, the follgwganditions must hold

0= SGn(3)|51 — -+ Lsign(n) -+ NENES

and
0 =Sian) ] + i)+ [Sotn - o).

Some algebra gives the expression.

o ; 1 1 [1  p : ]
81| = sign(B1) 81 — Wel—p2 % + ﬁSIQﬂ(ﬁl)Slgn(ﬁg)—
and
ol = 003}~ — ot |22+ Lsign ) sion(s |
Since the right-hand side of both expression is greaterzbem
sign(31) 51 > LS _sign(s,)sign(2)

Wel=p? [Ve Vd

and _ -
SOb)y > i | o sian(s)
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So, the regions where neither parameter is thresholdedthakiorm of four squares. The
regions where one parameter is thresholded are boundee lbguhdisjoint squares and the
lines

A 1 [ p 5 signB)l]
= — | — —|- —
& m[ﬁcﬁl Vi )
for the region whergJ; is thresholded and
A L [p .~ signp)l]
= — | Zdp, + -
g \/E[\/E = 5]

for the region wheres, is thresholded. These lines cross at the corners of therregiere
both variable are thresholded.dfindd are equal, the graph is symmetric in the lines x
andy = —x. The region where both regressor is thresholded forms alsh@whwhose shape
changes with the value @f The volume of the region will be determined by the rati%%
and ﬁ.

If the sum of squares for the two variablesafdd) are not equal, the shape of the region
where both regressors are thresholded can be less reghtash@ipe is a closed figure except
if

1 1 1 P
vk

11 1 p
Wal- 2 [ﬁ Ve
psignssiann) < - psin)sionn) < [

)
C

sigrm)sign(ﬁg)} <0

or

sign(ﬂusign(ﬂg)} <0

This condition reduces to
. , min{c, d}
pSign(B1)sign(Ba) < — | (e, d]
Appendix 3

Here we derive results for normal exponential gamma digiob for (i) the marginal
distribution of g (ii) the derivative of its form as a penalty function and)(tihe form of the
E-step for it. ¢ From Gradshtein Ryzik (1980, p319)

| e ) R () de = 2 ) exp (502} D1 (V25 R)
b (19)
| ok 57 R expl s = 2T exp{(8°/2) Do (V2 )

0
(20)
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(i) Marginal distribution of3

exp{ ]./82} (1 n \IJ/ ) (A+1) Al

1
V2w 2w

“Jo
—(A+1)
(b-l—
632 exp | — =32
= [ ee{ g} ( ? ) @

Y e P 2 1 —Fy
- /0 =" Ve 560 6+ dé

Letv =A+1/2, p= %ﬁQ andg* = 712 and substitute into equation (20)

A 2
m(8) = %%F(A +1/2)exp {iﬁg } D_s0r+1/2) <@>

(il) The derivative of the penalty function

~( )
0 _1_gA+1/2 132 AQ b+ % d
R - w 1 o)

- oD
v J e —hos?y A (o4 &) do

Using the substitution = A + 3/2, u = 132 and* = # and substitute into equation
19)

R SR W 2 1 ~A+D
/ S e 560 o+ do

1A 1 3 B
_ == 22/\+1F()\+3/2)|ﬁ| exp{472}D1 o <%>

18]
d 1 8 P-@r2) <7>
— L ogn(B) = (A+1/2)s S EEA
ap v 1B @A) <@>

(ii) The E-step of the E-M algorithm.
Lyt [~ 1 Ex (A+1)
2(59) =5 |, vmwmer{-d vt

1 [>® 1 ¢+ 5 “
- = 1/2 - 2
<l 7 M}v( s ) 0

S S ol U VEY { }1( i)‘““)
W(ﬁ)/o = R exp {50 5 (04 dé.
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For the integral let = X\ + 3/2, p = 3% and8* = 712 and substitute into equation (19),
then usingr () derived above the E-step formula

1P (B
18] D—(2>\+1) (@> .
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