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A Comparison of Markov-Functional and

Market Models: The One-Dimensional Case

Michael N. Bennett, Joanne E. Kennedy
University of Warwick

July 25, 2005

Abstract

The LIBOR Markov-functional model is an efficient arbitrage-free pricing
model suitable for callable interest rate derivatives. We demonstrate that the
one-dimensional LIBOR Markov-functional model and the separable one-
factor LIBOR market model are very similar. Consequently, the intuition
behind the familiar SDE formulation of the LIBOR market model may be
applied to the LIBOR Markov-functional model.

The application of a drift approximation to a separable one-factor LIBOR
market model results in an approximating model driven by a one-dimensional
Markov process, permitting efficient implementation. For a given parameteri-
sation of the driving process, we find the distributional structure of this model
and the corresponding Markov-functional model are numerically virtually
indistinguishable for short maturity tenor structures over a wide variety of
market conditions, and both are very similar to the market model. A theoret-
ical uniqueness result shows that any accurate approximation to a separable
market model that reduces to a function of the driving process is effectively
an approximation to the analogous Markov-functional model. Therefore, our
conclusions are not restricted to our particular choice of driving process. Mi-
nor differences are observed for longer maturities, nevertheless the models
remain qualitatively similar. These differences do not have a large impact
on Bermudan swaption prices.

Under stress-testing, the LIBOR Markov-functional and separable LI-
BOR market models continue to exhibit similar behaviour and Bermudan
prices under these models remain comparable. However, the drift approxi-
mation model now appears to admit arbitrage that is practically significant.
In this situation, we argue the Markov-functional model is a more appropri-
ate choice for pricing.
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1 Introduction

The problem of pricing callable exotic interest rate derivatives, such as the

Bermudan swaption, is one of the most important problems in option pricing

theory, being of great practical importance in the marketplace. The LIBOR

market model of interest rate dynamics, developed by Brace, Ga̧tarek &

Musiela [1997], Milterson, Sandmann & Sondermann [1997], and to a lesser

extent the corresponding swap-based market model developed by Jamshidian

[1997], have now become some of the most popular models for pricing such

derivatives. They are generally considered to have more desirable theoretical

calibration properties than short-rate models such as the Vasicek-Hull-White

model (Hull & White [1990]). However, the high dimensionality of the full

market model specification means that it is usually desirable to approximate

the model in some way to obtain an efficient pricing algorithm.

One popular technique for obtaining an approximation to the market

model is to estimate the drift of the market model over large time steps.

For example, Pelsser, Pietersz & van Regenmortel [2004] describe accurate

approximations for the drift of a LIBOR market model based on a Brownian

bridge (see Section 2.3). Also see Hunter, Jäckel & Joshi [2001] and Kur-

banmaradov, Sabelfield & Shoenmakers [2002]. The application of such a

drift approximation leads to gains in efficiency if we assume the instanta-

neous volatility structure of the market model is of a separable form, since

this allows the market model to be approximated by a model driven by a

low-dimensional Markov process (following Pelsser et al. [2004]; see Section

2.3). For one of the first references on separability see Carverhill [1994]. For

a one-factor LIBOR market model we say the model is separable if the in-

stantaneous volatility function of each LIBOR at any time t is proportional

to a common instantaneous volatility function σt. It is straightforward to
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show that under such a model the drift-approximated forward LIBORs may

be written as a function of a one-dimensional Markov process of the form

xt :=

∫ t

0

σs dWs . (1)

We will henceforth refer to this approximate pricing model as the drift ap-

proximation model. We shall see that the concept of separability introduced

in the construction of this efficient model provides the link between market

models and Markov-functional models.

The LIBOR Markov-functional model (Hunt, Kennedy & Pelsser [2000])

can fit Black’s formula for caplets (or indeed any arbitrage-free European

caplet formula) in a similar fashion to the LIBOR market model but it has the

advantage that derivative prices can be calculated just as efficiently as under

a Gaussian short-rate model such as the Vasicek-Hull-White model (Hull &

White [1990]). This is an important consideration for practitioners. Efficient

implementation is possible because under a Markov-functional model all dis-

count bond prices are at any time a function of some low-dimensional Markov

process, hence it is only necessary to keep track of this driving process in the

pricing algorithm. Note that in contrast with the LIBOR market model,

one cannot write a simple SDE for the behaviour of the relevant LIBORs

under the Markov-functional model and this relatively non-standard model

formulation makes its properties somewhat less transparent.

In this article we perform a comparison of one-factor versions of the

separable LIBOR market model and both the associated drift approxima-

tion model and the corresponding Markov-functional model. For both the

drift approximation and Markov-functional models it is possible to study

the distributional structure explicitly by examining the functional forms of
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rates (in terms of the driving process). Although theoretically the drift ap-

proximation admits arbitrage, in practice this not a significant problem, at

least for short maturity tenor structures under typical market conditions

(we find the martingale property of numeraire-rebased assets holds to high

accuracy numerically). The foundations for our numerical comparison are

provided by a theoretical uniqueness result, which tells us that when the

one-dimensional drift-approximation model does not admit any noticeable ar-

bitrage, it should provide a close match to the corresponding one-dimensional

Markov-functional model (Section 3.3). This follows because the construction

of the one-dimensional Markov-functional model is essentially unique. There-

fore, any precise approximation to a one-factor separable LIBOR market

model that may be written as a deterministic function of a one-dimensional

Markov process must effectively be an approximation to the arbitrage-free

LIBOR Markov functional model driven by the same process. In this case,

even though the separable one-factor LIBOR market model is theoretically

Markovian only in high dimensions, its behaviour resembles that of a one-

factor model.

We contrast numerically the structure of rates under each of the three

models for a particular parametrization of the driving process (1). (This

parametrization is more sophisticated than the ‘toy’ mean reversion exam-

ple considered in Hunt et al. [2000], although all our results also hold for

this case.) The parameterisation used here is motivated by the Vasicek-

Hull-White model, a model which remains popular with practitioners. In

view of the uniqueness result (Section 3.3) we expect our conclusions hold

for any parameterisation of the driving process, since the essential assump-

tion is a separable volatility structure. Under normal market conditions the

distributions of LIBORs under the separable LIBOR market model and the
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associated drift approximation model appear extremely close to those under

the analogous Markov-functional model with the same driving process. For

short maturities the three models are virtually indistinguishable numerically.

However, for longer maturities slight numerical differences are observed, al-

though qualitatively the models remain very similar (see Section 4). We

reach similar conclusions when investigating the analogous link between the

one-factor swap Markov-functional model and the corresponding one-factor

separable swap market model.

From the close relationship between the separable LIBOR market model

and the LIBOR Markov-functional model, we anticipate that exotic deriva-

tive prices calculated using these models should be very similar. This is illus-

trated with the example of a standard Bermudan swaption. As expected, for

short maturities the prices under the separable LIBOR market model (com-

puted using the least squares method of Longstaff & Schwartz [2001]), the

drift approximation model and the corresponding Markov-functional model

are virtually identical over all scenarios. At longer maturities, slight differ-

ences are observed, although it is arguable that these differences would be

acceptable to practitioners.

In comparing the three LIBOR models under stress-testing scenarios, we

find that the close association generally observed between these models be-

gins to break down under certain scenarios. In particular, for long maturi-

ties and high volatilities the functional forms of LIBORs under the LIBOR

Markov-functional model and the corresponding drift approximation model

begin to differ. Under the market model, we observe that the scatter plot of

a given LIBOR versus the terminal LIBOR (at a given exercise date) tends

to exhibit significant dispersion and is therefore no longer well represented

by a single functional form (see Section 4.4). Evolving LIBORs forwards
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through time, the drift approximation appears on the surface to be a good

proxy for the LIBOR market model. However, this is not representative

of the way the model will be used in practice to price a callable deriva-

tive, since this involves computation of the time-value of the derivative back-

wards through each of the respective exercise dates. We demonstrate that

this model now admits significant arbitrage by showing numerically that the

martingale property of numeraire-rebased discount factors no longer holds to

sufficient accuracy. Therefore, the drift approximation model is inappropri-

ate for derivative pricing under these extreme scenarios. Considering again

the example of the Bermudan swaption, prices under the drift approxima-

tion model are significantly lower than those computed under the separable

LIBOR market model (computed using Longstaff & Schwartz [2001]). It is

interesting to note that the Markov-functional and separable LIBOR mar-

ket models continue to exhibit similar qualitative behaviour and the prices

of Bermudan swaptions under these models remain comparable. The choice

of an exact model such as the Markov-functional model, which admits an

efficient arbitrage-free numerical implementation without the need for ap-

proximation, would seem preferable to the use of an approximation whose

limitations may be unknown.

In the following we shall not enter into any debate on the appropriate-

ness of the assumption of separability or the use of a single factor model

in any particular pricing problem, since our focus here is to understand the

relationship between the three models. The reader may find these relatively

contentious issues discussed elsewhere. For example, Andersen & Andreasen

[2000] consider one and two-factor LIBOR market models and find a suitably

parameterised one-factor model is sufficient for pricing Bermudan swaptions

in practice. Recent work by Pelsser & Pietersz [2004] comparing single factor
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Markov-functional and multi-factor market models also supports the claim

that Bermudan swaptions can be adequately priced and risk managed with

single factor models. For a discussion of when a low dimensional model is

enough see forthcoming work by Hunt & Kennedy [2005]. Pelsser et al. [2004]

state the view that separability is a non-restrictive assumption.

Although our conclusions regarding the drift approximation model are

negative with regard to it being used in its own right as a pricing model, it

may be of interest in the context of higher-dimensional Markov-functional

models. The close qualitative relationship between the drift approximation

and Markov-functional models suggests that in higher dimensions the drift

approximation may be a more suitable Markov-functional pre-model than

that discussed in Hunt & Kennedy [2000]. This is the subject of current

research. A stochastic volatility version of the Markov-functional approach

is also under investigation.

The rest of this paper is organised as follows: Our notation is estab-

lished in Section 2 and the standard specification of both the LIBOR and

swap-based market models is reviewed. The drift approximation model is in-

troduced, under which a separable market model is approximated using the

Brownian bridge drift approximation (Pelsser et al. [2004]). In Section 3, we

describe the construction of the LIBOR Markov-functional model and state

the uniqueness result that forms the basis of our numerical study. The results

of this study are detailed in Section 4, where we examine the behaviour of

the one-factor LIBOR Markov-functional model and both the corresponding

separable one-factor LIBOR market model and the associated drift approx-

imation model. Bermudan swaption prices under each model are compared

using typical market data. In addition, the behaviour of the three models

under unusual market conditions is discussed. In Section 5, we summarise
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the corresponding results for the comparison of the analogous swap-based

Markov-functional and market models. Our conclusions are presented in

Section 6.

2 The market model and separability

We begin by describing the standard construction of the market model and

the drift approximation model under which a separable LIBOR market model

is approximated by a model driven by a low-dimensional Markov process.

2.1 Notation and definitions

In this section our notation for the LIBOR market model is introduced. Let

DtT denote the time-t value of a zero-coupon discount bond with maturity

T. Let T1 < T2 < . . . < Tn+1 be a sequence of dates and for i = 1, . . . , n

define the corresponding forward LIBORs

Li
t :=

DtTi
−DtTi+1

αiDtTi+1

, (2)

where the αi are the accrual factors.

We develop all models in this paper under the terminal measure F, which

is the equivalent martingale measure associated with the numeraire D·Tn+1
.

For later reference it is convenient to define the numeraire-rebased discount

bonds

D̂tT :=
DtT

DtTn+1

. (3)

Note immediately from (2) and (3) that

D̂tTi
= (1 + αiL

i
t)D̂tTi+1

. (4)
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2.2 The LIBOR market model

Under the one-factor LIBOR market model (Brace et al. [1997], Milterson

et al. [1997]), each of the forward LIBORs Li solve an SDE of the form

dLi
t = µi

tL
i
t dt+ σi

tL
i
t dWt, (5)

for some instantaneous volatility functions σi
t, where W is a standard Brown-

ian motion.1

If the model is to be arbitrage-free under F, the drift term must have the

following form, for 1 ≤ i < n,

µi
t(L

i+1, . . . , Ln) = −
n∑

j=i+1

αjL
j
t

1 + αjL
j
t

σj
tσ

i
t. (6)

The drift µn of the terminal forward rate is zero since Ln is a martingale

under F.

For future reference, it is convenient to observe that the formal solution

to (5) is given by

Li
t = Li

0 exp

[∫ t

0

(
µi

s −
1

2

(
σi

s

)2
)
ds+

∫ t

0

σi
s dWs

]
. (7)

2.3 Brownian bridge drift approximation and separa-

ble volatility structure

In this section we review the two essential steps introduced in Pelsser et al.

[2004] that result in a tractable one-dimensional approximation to the true

LIBOR market model (5). The first step requires some approximation for

the drift of all un-expired forward rates at dates T1, . . . , Tn. There are a vari-

ety of increasingly sophisticated approximations available, such as predictor-

corrector schemes (Hunter et al. [2001]) or Brownian-bridge approximations

1This standard construction may also be found in, for example, Hunt & Kennedy [2000].
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(Pelsser et al. [2004]). The second step is the introduction of a restriction

on the form of the instantaneous volatility functions, known as separability,

which allows the drift-approximated forwards to be represented as functions

of a low-dimensional Markov process.

For the first step we use a method based on a Brownian-bridge (Pelsser

et al. [2004]) to approximate the drift of each of the still-alive forward rates

from time zero to a given exercise date Tk. As the drift of the nth forward

rate is zero, Ln
Tk

is immediate given the value of
∫ Tk

0
σn

s dWs. Working back

recursively from the nth forward rate down to the first, suppose that for a

given i < n we already have approximations for Li+1
Tk
, . . . , Ln

Tk
and we wish

to estimate Li
Tk
. Rewriting equation (7) using (6),

Li
Tk

= Li
0 exp

[
−

n∑

j=i+1

H i,j
Tk

−
∫ Tk

0

1

2

(
σi

s

)2
ds+

∫ Tk

0

σi
s dWs

]
, (8)

where

H i,j
Tk

:=

∫ Tk

0

αjL
j
s

1 + αjL
j
s

σj
sσ

i
s ds , j = i+ 1, . . . , n. (9)

It is clear that Li
Tk

may be estimated given the value of
∫ Tk

0
σi

sdWs if we have

an approximation for H i,j
Tk
, j = i + 1, . . . , n. If each Lj

Tk
(j > i) has already

been estimated, then the value of Lj
s for any s ∈ (0, Tk) may be approximated

by the mean at time s of the generalised geometric Brownian bridge that joins

Lj
0 and Lj

Tk
(this interpolating formula is available analytically, see Appendix

A of Pelsser et al. [2004] for details). The approximation for H i,j
Tk

is computed

by substituting this approximation for all terms Lj
s appearing in the integrand

of (9) and evaluating the integral numerically.2

2Note that by reversing the order of summation and integration in (8), it is only actually
necessary to perform a single numerical integration to obtain an approximation for Li

Tk
.
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The second step of this pricing approach is the key ingredient required

for efficient implementation. This is a condition on the specification of in-

stantaneous volatilities, known as separability. Separability has appeared in

the literature several times in the context of requiring certain processes to

be Markovian, see for example Carverhill [1994] and references contained in

Pelsser et al. [2004]. It is this condition that allows us to make the connection

between market models and Markov-functional models.

Definition. (Separability) A collection of instantaneous volatility functions

σi is separable if there exists an instantaneous volatility function σ such that

σi
t = γiσt

for some constants γi, for 0 ≤ t ≤ Ti, i = 1, . . . , n.3

If the volatility structure is separable then the stochastic integral appear-

ing in equation (8) may written

∫ Tk

0

σi
sdWs =

∫ Tk

0

(γiσs)dWs = γixTk
,

where

xt :=

∫ t

0

σs dWs . (10)

Also notice that the approximated drift terms H i,j
Tk

appearing in (8) are im-

plicitly functions of xTk
, since they are functions of previously determined

values of Lj
Tk
, j = i + 1, ...n. Thus the combination of the use of a drift ap-

proximation and the specification of a separable volatility structure results in

a model under which all (drift-approximated) forwards are known functions

of the one-dimensional driving Markov process x. This permits the applica-

tion of efficient computational methods such as numerical integration or finite

3This definition extends to d-dimensional volatility specifications, see Pelsser et al.
[2004].
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differences in the calculation of derivative prices. Note that any other drift

approximation could be substituted for the Brownian bridge approximation

in this approach.

We shall subsequently refer to the market model with such a separable

volatility structure above as the market model with ‘driving process’ x, since

we only require a pathwise realisation of x to compute all corresponding

path-dependent LIBORs. Applying a drift approximation means that we

only need compute values of LIBORs at each exercise date and we may

view these as a function of the one-dimensional Markov process x. Note that

given a parameterisation of x, the specification of this LIBOR market model

is complete once the constants γi have been determined by, for example,

matching vanilla caplet prices. This final calibration step is discussed in

Section 4.1.

Theoretically, the use of any drift approximation will of course introduce

arbitrage. Pelsser et al. [2004] show that in pricing short maturity Bermudan

swaptions (8Y), these effects are relatively small and the drift approximation

model yields reasonably similar prices to those computed using the least-

squares simulation-based methodology introduced by Longstaff & Schwartz

[2001]. However, we shall see in Section 4.4 that the presence of arbitrage in

the drift approximation model becomes noticeable for long maturities and in

unusual market conditions.

2.4 The swap-based market model

In this section the drift approximation approach introduced above in the

context of LIBOR-based market models is applied to the analogous swap-

based market models.
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For i = 0, . . . , n define

P i
t :=

n∑

j=i

αjDtTj+1
.

Then the ith co-terminal forward par swap rate is given by

yi
t =

DtTi
−DtTn+1

P i
t

. (11)

Following Jamshidian [1997], the one-factor swap market model is specified

by assuming these forward par swap rates satisfy the usual lognormal dy-

namics

dyi
t = µ̄i

ty
i
t dt+ σ̄i

ty
i
t dWt, (12)

for some instantaneous volatility functions σ̄i
t, where W is a standard Brown-

ian motion. For this model, it may be shown that under the terminal measure

F the drift restriction imposed by no-arbitrage is given by

µ̄i
t = −

n∑

j=i+1

(
j−1∏

k=i

(1 + αky
k+1
t )

)
P̂ j

t

P̂ i
t

(
αj−1y

j
t

1 + αj−1y
j
t

)
σ̄i

tσ̄
j
t , 1 ≤ i < n,

where P̂ i
t := P i

t /DtTn+1
. Formally, the solution to the SDE (12) may be

written

yi
Tk

= yi
0 exp

[
−

n∑

j=i+1

H̄ i,j
Tk

−
∫ Tk

0

1

2

(
σ̄i

s

)2
ds+

∫ Tk

0

σ̄i
s dWs

]
,

where

H̄ i,j
Tk

:=

∫ Tk

0

(
j−1∏

k=i

(1 + αky
k+1
s )

)
P̂ j

s

P̂ i
s

(
αj−1y

j
s

1 + αj−1y
j
s

)
σ̄i

sσ̄
j
sds , (13)

for j = i+ 1, . . . , n.

In an analogous procedure to that in the LIBOR case, a swap drift approx-

imation model may be constructed as follows. Suppose that for a given i, the
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values of yj
Tk

have already been approximated for given values of
∫ Tk

0
σ̄j

s dWs,

for j = i + 1, ..., n. Then the values of yj
s (j = i + 1, ..., n) at intermediate

times s ∈ (0, Tk) may be approximated using a Brownian-bridge (as dis-

cussed in Section 2.3 in the context of LIBOR market models). Once these

yj
s have been estimated, the values of P̂ j

s may be recovered from these using

the recurrence relation

P̂ j
s = αj + (1 + αjy

j+1
s )P̂ j+1

s , P̂ n
s = αn

(j = i+ 1, ..., n). Substituting these approximations in the integrand of (13)

and evaluating the integral numerically gives an approximation for H̄ i,j
Tk

and

thus yi
Tk

(in terms of
∫ Tk

0
σ̄i

s dWs).

If the instantaneous volatility structure is separable, the resulting drift

approximation model is driven by a one-dimensional Markov process of the

form (10) and approximates the dynamics of the original swap market model.

3 Markov-functional models

3.1 Basic assumptions of Markov-functional models

We now turn our attention to the specification of Markov-functional models

that are analogous to the market models of the previous section. The defin-

ing characteristic of Markov-functional models is that pure discount bond

prices are at any time a function of some low-dimensional process x which

is Markovian in some martingale measure. Implementation of these mod-

els is efficient as it is only necessary to track the driving Markov process

(c.f. market models which suffer from high dimensionality). The functional

forms are chosen so that calibration to relevant market prices and market

skew is achieved, a property not possessed by short rate models, and so that

14
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the model is arbitrage free. Note that in the Markov-functional approach

we are not restricted to fitting Black’s formula for caplets (or swaptions)

but our discussion will focus on this case here as we interested in studying

the relationship of this approach to market models. A general discussion of

Markov-functional models can be found in Hunt & Kennedy [2000].

To set up the Markov-functional model to match the LIBOR market

model introduced earlier we assume the same tenor structure T1, ..., Tn+1 and

work with the terminal discount bond D·Tn+1
as numeraire. The driving

Markov process x is of the form given in equation (10). The model will

actually only be defined on a grid. That is, we specify the functional forms

DTiTj
(xTi

) for 1 ≤ i < j ≤ n + 1, since this is (typically) all that is needed

in practice. Further, note that since the model is arbitrage-free, we need

only define the functional forms associated with the numeraire bond DTiTn+1
,

i = 1, . . . , n. This follows because the remaining functional forms can be

recovered using the martingale property for numeraire-rebased assets under

F: For t ≤ T ≤ Tn+1 ,

DtT (xt) = DtTn+1
(xt)EF

[(
DT Tn+1

(xT )
)−1 |Ft

]

= DtTn+1
(xt)

∫ ∞

−∞

(
DT Tn+1

(u)
)−1

φxTn+1
|xT

(u) du , (14)

where φxTn+1
|xT

denotes the density of xTn+1
given xT and {Ft} is the aug-

mented Brownian filtration associated with the driving process x. Note from

(10) that φxTn+1
|xT

is a Normal density function with mean xT and variance
∫ Tn+1

T
(σu)

2 du.

In the next section, we show how to determine the functional form of

the numeraire discount bond by fitting it to the prices of caplets as given

by Black’s formula. This leads to a LIBOR Markov-functional model which,

as we shall see, is closely related to the LIBOR market model of the last
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section. In Section 5 we calibrate a Markov-functional model to Black’s

swaption prices instead to obtain a swap model.

3.2 The LIBOR Markov-functional model

As in the LIBOR market model, we assume a set of contiguous forward

LIBORS denoted by Li for i = 1, ..., n with tenor structure T1, ..., Tn+1. The

market prices for the caplets on these LIBOR rates are assumed to be given

by Black’s formula with volatility σ̃i. We make one further assumption in

setting up the model; that is that the ith forward LIBOR rate at time Ti,

Li
Ti
, is a monotonic increasing function of the variable xTi

.

Initially the functional form of DTnTn+1
is determined by observing that

(DTnTn+1
)−1 = 1 + αnL

n
Tn
.

Now, the assumption that the final caplet price is given by Black’s formula

with implied volatility σ̃n means that log(Ln
Tn

) has a Normal distribution

under F with mean (log(Ln
0 ) − 1

2
(σ̃n)2Tn) and variance (σ̃n)2Tn. Using (10)

we can express Ln
Tn

explicitly in terms of the Markov process x at time Tn :

Ln
Tn

(xTn
) = Ln

0 exp

(
−1

2
(σ̃n)2Tn +

√
(σ̃n)2Tn∫ Tn

0
(σu)2 du

xTn

)
, (15)

and thus

(DTnTn+1
)−1(xTn

) = 1 + αnL
n
0 exp

(
−1

2
(σ̃n)2Tn +

√
(σ̃n)2Tn∫ Tn

0
(σu)2 du

xTn

)
.

Note that Ln
Tn

is a monotonic increasing function of xTn
.

We now show how market prices of the calibrating vanilla caplets can be

used to imply, numerically at least, the functional forms DTiTn
for i < n.

Since we are assuming these caplet prices are given by Black’s formula, it
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is equivalent to calibrate to the inferred market prices of digital caplets. If

the market price of the ith vanilla caplet is given by Black’s formula with

volatility σ̃i, the price at time zero for the corresponding digital caplet is

Ṽ i
0 (K) = D0Ti+1

(x0)Φ

(
log(Li

0/K)

σ̃i
√
Ti

− 1

2
σ̃i
√
Ti

)
,

where Φ denotes the standard cumulative Normal distribution function. Also

working with the terminal measure F and applying the usual valuation for-

mula this digital caplet value can be expressed as

Ṽ i
0 (K) = D0Tn+1

(x0)EF

[
D̂TiTi+1

(xTi
)1{Li

Ti
(xTi

)>K}

]
, (16)

where D̂tT (xt) denotes the numeraire-rebased discount bond defined in equa-

tion (3).

To determine the functional forms for the numeraire DTiTn+1
for i < n

we work back iteratively from the terminal time Tn. Consider the ith step

in this procedure and suppose that DTjTn+1
has already been determined for

j = i+1, ..., n. As at time Tn, first the functional form of the LIBOR rate Li
Ti

is determined, from which the functional form of DTiTn+1
may be recovered.

Suppose we choose some x∗ ∈ R. Define

J i
0(x

∗) = D0Tn+1
(x0)EF

[
D̂TiTi+1

(xTi
)1{xTi

>x∗}

]
(17)

= D0Tn+1
(x0)EF

[
EF

[
D̂Ti+1Ti+1

(xTi+1
) |FTi

]
1{xTi

>x∗}

]

= D0Tn+1
(x0)

∫ ∞

x∗

[∫ ∞

−∞

1

DTi+1Tn+1
(u)

φxTi+1
|xTi

(u) du

]
φxTi

(v) dv

(18)

where φxTi
denotes the transition density function of xTi

and φxTi+1
|xTi

the

density of xTi+1
given xTi

. Note that the integrand in (18) only depends on

DTi+1Tn+1
(xTi+1

) which has already been determined in the previous iteration
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at Ti+1. Thus at time Ti, J
i
0(x

∗) may be evaluated numerically for different

values of x∗. Furthermore, using market prices it is possible to find the value

of K such that

J i
0(x

∗) = Ṽ i
0 (K) . (19)

Comparing (16) and (17) it is clear that the value of K satisfying (19) is

precisely Li
Ti

(x∗), since Li
Ti

(xTi
) is monotonically increasing in xTi

by as-

sumption. If market prices are taken to be given by Black’s formula, this

means that

Li
Ti

(x∗) = Li
0 exp

[
−1

2
(σ̃i)2Ti − σ̃i

√
Ti Φ−1

(
J i

0(x
∗)

D0Ti+1
(x0)

)]
.

Finally, to obtain the value of DTiTn+1
(x∗) we observe using (4) that

DTiTn+1
(x∗) =

((
1 + αiL

i
Ti

(x∗)
)
D̂TiTi+1

(x∗)
)−1

,

noting that the numeraire-rebased discount factor on the right-hand side may

be evaluated using the martingale property (14).

3.3 A uniqueness result

The following result is crucial in making sense of the numerical results to

follow.

Theorem. Consider a LIBOR Markov-functional model based on the tenor

structure T1, ..., Tn+1 which satisfies the following conditions:

(i) The driving Markov process x is a deterministic time change of a

Brownian motion and satisfies (10) under the equivalent martingale

measure F corresponding to the numeraire D·Tn+1
;
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(ii) The pure discount bond prices are of the form

DtT = DtT (xt), 0 ≤ t ≤ T ≤ Tn+1 ,

and satisfy the martingale property (14);

(iii) The ith forward LIBOR at time Ti, L
i
Ti
, is a monotonic increasing

function of the variable xTi
;

(iv) The model is calibrated to vanilla caplet prices corresponding to the

rates L1, L2, ..., Ln setting at dates T1, T2, ..., Tn.

If such a model exists then it is unique as far as its determination on grid

points is concerned. That is, the functional forms DTiTj
(xTi

) : 1 ≤ i < j ≤
n+ 1 are uniquely determined.

Proof. This follows immediately from the construction of the Markov-

functional model discussed in the last section.

The above result, though a trivial observation mathematically, has signif-

icant implications in practice. Any approximation to a one-factor separable

LIBOR market model that is designed to be approximately arbitrage-free but

reduces to a function of the one-dimensional process x is, in effect, also an

approximation (on grid points) to the unique arbitrage-free Markov-functional

model that calibrates to Black’s formula for pricing the corresponding vanilla

caplets. We take up this discussion again in the following section.

4 Numerical comparison of one-factor Markov-

functional and LIBOR market models

It is natural to study the structure of the drift-approximation and Markov-

functional models by regarding the values of LIBORs Li at a given time as
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functions of the driving process x, or equivalently as functions of the ter-

minal LIBOR Ln. In Section 4.2 we explore these functional relationships

under a number of realistic implied volatility and initial LIBOR curve sce-

narios for a particular parameterisation of x (described in Section 4.1). The

uniqueness theorem of Section 3.3 indicates that, provided the use of drift

approximations does not introduce arbitrage that is practically significant,

the drift approximation model must be similar to the arbitrage-free Markov-

functional model. However, it is not clear from this result how these models

compare numerically. For our choice of x the functional forms under each

model are found to be very close for realistic values of initial LIBORs and

implied volatilities.

The corresponding separable LIBOR market model (with the same driving

process) is also investigated by approximating the SDE (5) using a log-Euler

discretisation. A scatter plot of the ith vs the nth LIBOR at time t gives

us some indication of the relationship between these random variables un-

der the true market model. These results are suggestive only since it is not

possible to compute an exact functional relationship under the LIBOR mar-

ket model. However the scatter plot may be overlaid on the graph of the

functional forms implied by the Markov-functional or drift approximation

models, thus enabling comparison between models.

For reasonable parameter values, our results give a strong indication that

both the Markov-functional model and drift approximation model are very

close to the separable LIBOR market model. The relationship between the

logarithms of the ith and nth LIBORs is found to be approximately linear

(thus the ith LIBOR is approximately lognormal under the terminal mea-

sure F). This linear relationship is a general feature of all three models under

consideration, certainly at 10 years and, to a lesser degree, even as far as 30
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years. Slopes and intercepts for different models are virtually indistinguish-

able for tenor structures associated with shorter maturities such as 10Y with

a small bias for longer maturities above 30Y. The trends observed in our re-

sults may be explained using a heuristic argument based on an approximate

log-linear model, presented in Section 4.2 below.

During our investigations we have also explored the implied distributions

of certain rates not explicitly fixed by the calibration procedure in both

LIBOR and swap-based models. Section 4.2 concludes with a description

of the implied functional forms of co-terminal swap rates under the LIBOR

Markov-functional model. Subsequently, as part of our numerical study of

swap-based models in Section 5, the implied functional forms of LIBORs

under the swap-based Markov-functional model are discussed.

In Section 4.3, Bermudan swaption prices are compared under the LIBOR

Markov-functional and separable LIBOR market models, where prices under

the latter are computed using both the drift approximation model and the

least-squares method of Longstaff & Schwartz [2001]. Since it is important

to determine for what range of parameter values and maturities the LIBOR

Markov-functional model is numerically close to the corresponding separa-

ble LIBOR market model and its associated drift approximation model, we

perform stress-testing of these models in Section 4.4.

4.1 Choice of correlation structure for numerical re-

sults

In comparing the Markov-functional and market models we assume the same

correlation structure for both, that is, the driving Markov process x (see equa-

tion (10)) of the LIBOR Markov-functional model (as described in Section

3.2) is the same as that of the separable LIBOR market model (see Section
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2.3). Although we present numerical results only for a particular parameteri-

sation of this driving process, the uniqueness result of Section 3.3 leads us to

believe that our findings hold for any parameterisation. We have found this

to be true for an alternative parameterisation of the driving process, mean

reversion, where σs = exp(−as) for some a > 0. This parameterisation is

used by Pelsser et al. [2004] in their study of the drift approximation model.

Our choice of the process x is motivated by the Hull-White model, a

model which has been popular in the market for many years because of its

tractability. Under a LIBOR model, the variances ξTi
:= var(xTi

) =
∫ Ti

0
σ2

udu

of x at times Ti, i = 1, ..., n, are taken to be

ξTi
=

(
αiL

i
0

(1 + αiLi
0)(ψTi

− ψTi+1
)

)2

(σ̃i)2Ti , (20)

where

ψt :=
1

a
(1 − e−at) .

This approximation is arrived at by considering a Hull-White model cali-

brated to at-the-money caplet prices. The mean reversion parameter a ap-

pearing in this approximation is a user input that, as in the usual Hull-White

model, must be hedged. The details of the derivation of this approximation

may be found in Appendix A. Note that the variance of the process x at the

times Ti, i = 1, ...n, is all that is necessary for a practical implementation

of the Markov-functional model as this fixes the conditional distributions of

the xTi
’s.

To complete the specification of the corresponding separable LIBOR mar-

ket model it is necessary to extend this definition for general t. We choose

a simple interpolation that is smooth in t (see Appendix A, equation (25)).

We find that this choice does not have any significant impact on our results;

for reasonable parameter values performing simple linear interpolation has
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a negligible effect on the numerical distributions of LIBORs at each exer-

cise date. This observation is anticipated, at least for values of parameters

and tenor structure where the drift approximation model of Section 2.3 is

an accurate approximation, since it is only the values of integrals of the in-

stantaneous volatility over intervals [0, Tk] that appear in the integrated drift

term of each LIBOR (refer to Equations (8) and (9)).

Calibration of both the separable LIBOR market model and the corre-

sponding LIBOR Markov-functional model to caplet implied volatilities is

straightforward given the driving process x. The calibration of the LIBOR

market model with separable volatility structure (Section 2.3) is completed

by determining the constants γi from caplet prices as follows. If ξt =
∫ t

0
σ2

udu

is known for times t = T1, . . . , Tn, then for i = 1, . . . , n,

(γi)2ξTi
= (σ̃i)2Ti , (21)

where σ̃i is the implied volatility of the caplet on the ith forward rate. Hence

γi is immediate. Since we are assuming caplet prices are given by Black’s

formula, calibration of the LIBOR Markov-functional model to the implied

volatility of the terminal forward rate Ln is also immediate (see equation

(15)). The remaining caplet volatilities are fitted indirectly (for all strikes)

when determining the functional forms of asset prices numerically at each

step of the algorithm. Note that a separable LIBOR market model may be

calibrated in various ways. However this is done, we may construct an analo-

gous Markov-functional model by calibrating to caplet volatilities calculated

via equation (21).
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4.2 Scenario analysis

In this section, we present our numerical comparison of the LIBOR models

under a number of typical market data scenarios. Recall the values of the

LIBORs under the LIBOR Markov-functional model are only determined

at the exercise dates T1, . . . , Tn, since that is all that is typically required in

practice. Therefore it is only necessary to compute the functional relationship

Li
t = g(Ln

t )

at times t = Tk (for all LIBORs i ≥ k which have not yet expired). These

functional relationships can be directly compared with those computed un-

der the drift approximation model. In presenting our results we plot the

functional form of log(Li
Tk

) against log(Ln
Tk

) under these models. This is

equivalent to examining the functional relationship with the driving process

xTk
since log(Ln

Tk
) is just a linear transformation of xTk

.4 A scatter plot of

these variables simulated under the separable LIBOR market model may be

overlaid for comparison.

The market scenarios considered in our numerical study are detailed in

Table 1. The tenor structure is taken to be annual with n = 29, thus T1 =

1, T2 = 2, . . . , Tn = 29, with final maturity Tn+1 = 30. In our specification

of the common driving process the mean reversion parameter a is taken to

be 5% (see Section 4.1). However we have also examined results for other

values of a ∈ (0, 20%) and find they are consistent with our conclusions.

4For the market model and drift approximation model this is immediate since Ln has
zero drift (see equation (7)). Under the Markov-functional model this holds by definition
at Tn (see equation (15)). At earlier times we may recover the relationship between Ln

and x by applying the martingale property to Ln (the relationship is the same as under
the market model).
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Scenario Description Li

0 σ̃i

A Flat LIBORs and vols 7% 15%
B Increasing LIBORs, flat vols 5% + 5%(Ti/30) 15%
C Decreasing LIBORs, flat vols 9% − 5%(Ti/30) 15%
D Flat LIBORs, increasing vols 7% 10% + 10%(Ti/30)
E Increasing LIBORs, increasing vols 5% + 5%(Ti/30) 10% + 10%(Ti/30)
F Decreasing LIBORs, increasing vols 9% − 5%(Ti/30) 10% + 10%(Ti/30)
G Flat LIBORs, decreasing vols 7% 20% − 10%(Ti/30)
H Increasing LIBORs, decreasing vols 5% + 5%(Ti/30) 20% − 10%(Ti/30)
K Decreasing LIBORs, decreasing vols5 8% − 2%(Ti/30) 17% − 4%(Ti/30)

Table 1: Scenarios for initial LIBORs Li
0 and caplet implied

volatilities σ̃i considered in our numerical study. 6

We first present our results under Scenario A, where initial LIBORs and

caplet implied volatilities are flat, since these are typical of the results across

all scenarios. The lines shown on Figure 1 display the functional relationship

between a selection of LIBORs Li and the terminal LIBOR Ln under the LI-

BOR Markov-functional model at T15. The drift approximation model could

not be distinguished from the Markov-functional model on this plot and so is

not shown. It is striking that the scatter plot overlaid of the corresponding

market model simulation exhibits very little dispersion. We observe the plots

are very close to a straight line (on a log-log scale) under both the Markov-

functional and market models, for all exercise dates and scenarios. As an

approximate measure of the linearity of these plots we consider the value of

the statistic R2 computed using a large number of points; for this exercise

5The scenario for decreasing rates and implied volatilities has been adjusted to ensure
that the approximation ξt is strictly increasing for all t (see Section 4.1).

6Under the market model and associated drift approximation model we require values of
initial LIBORs and implied volatilities at times other than T1, ..., Tn+1 in the computation
of ξt (see Appendix A); these are obtained by linear interpolation.
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date all plots have an R2 of at least 0.999 (indicating they are extremely

close to straight lines).7

In general under Scenario A there is a close match between slopes and

intercepts corresponding to the Markov-functional model and those of the

least squares linear regression computed from the separable LIBOR market

model simulation (results for T15 are given in Table 2). For a given exercise

date Tk, the slopes corresponding to the Markov-functional model tend to be

slightly higher than for the market model; the greatest difference generally

occurs for LIBORs Li where i lies midway between k and n (at T15 this

occurs for L23). Note that under all models the relationship between Lk
Tk

and Ln
Tk

under F is constrained to some extent by fitting to the kth Black’s

caplet price. In addition, the terminal LIBOR Ln is exactly lognormal under

F. Therefore, if the market model exhibits little dispersion it is only for

LIBORs Li with i between k and n that we would expect any significant

differences between models.

The drift approximation model is very close to both the Markov-functional

and market models (in terms of slopes and intercepts). In general we observe

that the Markov-functional model appears to be slightly closer to the market

model for LIBORs i close to k (at T15 this holds for L15, L16 and L17) and

the drift approximation is closer for the remainder.

Any small differences between slopes and intercepts increases with the

maturity of the tenor structure under consideration. These slopes and in-

tercepts match to at least 3 s.f. for a maturity of 10Y, whereas we begin to

observe small numerical differences for longer maturities (matching only to 2

7That is, the proportion of the variance in observations explained by a linear relation-
ship is at least 99.9%.
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Figure 1: Graph of log(Li
T15

) vs. the terminal LIBOR, log(L29
T15

), for a selection of
forward rates i, assuming flat initial LIBORs and implied volatilities (Scenario A).
Lines show the functional relationship under the Markov-functional (MF) model.
Scatter plots overlaid give an indication of the relationship under the corresponding
separable LIBOR market model (BGM).

LIBOR Log-linear MF BGM DA

Slopes L15 2.01 1.84 1.88 1.84
L21 1.49 1.51 1.45 1.44
L27 1.11 1.14 1.10 1.10

Intercepts L15 1.9 2.0 1.9
L21 1.3 1.1 1.1
L27 0.4 0.2 0.2

Table 2: Slopes and intercepts of the (approximately linear) functional forms of
(log) LIBORs shown in Figure 1, under Markov-functional (MF) and drift approx-
imation (DA) models and the log-linear approximation. Also shown are slopes
and intercepts of the least squares linear regression fitted to the results of the
corresponding separable LIBOR market model simulation (BGM).
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s.f. at 20Y). These small differences may lead to minor differences in deriv-

ative prices calculated under each model; these are discussed with reference

to the example of the standard Bermudan swaption in Section 4.3.

This analysis of the relationship between LIBORs for various times Tk

has been repeated under all scenarios given in Table 1. The qualitative

observations detailed above are found to hold under all scenarios. The same

conclusions are also reached under a scenario corresponding to typical USD

market data.8

The linearity of the market model’s scatter plot is perhaps surprising, as

one might reasonably expect the model to produce more dispersion because

the drift term is stochastic for LIBORs i < n. These plots indicate that

the stochastic component of the drift remains small, hence although the

market model is theoretically Markovian only in n dimensions, it generally

resembles a one-dimensional model for all practical purposes. We take up this

discussion again in Section 4.4, where we observe that for high volatilities and

long maturities this is no longer the case and the market model plot exhibits

much greater scatter.

As a means of understanding the trends in slopes of the three models it

is convenient to contrast their behaviour with the following log-linear model.

Since we have observed that the relationship between log(Li
t) and log(Ln

t )

is close to linear, it follows that Li
t is approximately lognormal under F.

Therefore, suppose

log(Li
t) ≈ ηi

t + cixt = ηi
t + ci

∫ t

0

σudWu

under F for some constant ci and a deterministic function of time ηi
t. Note

that this model will admit arbitrage since otherwise we would require ηi
t

8Market quotes taken at the close of 14 Feb 2001.
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to be stochastic. Now Var(log(Li
t)) ≈ (ci)2ξt, hence (ci)2ξTi

≈ (σ̃i)2Ti by

matching terminal variances (since we are calibrating our model to caplet

prices). Comparing with the separable volatility structure of the analogous

LIBOR market model, ci ≈ γi. Thus,

log(Li
t) ≈

(
γi

γn

)
log(Ln

t ) + η̂t
i

for some deterministic η̂t
i. This is a coarse approximation to the LIBOR

market model and the corresponding LIBOR Markov-functional model but

the slopes of this log-linear model are certainly comparable with the actual

slopes observed under these models (matching to at least 1 s.f.; see Table 2).

The approximation provides a good guide to trends expected in slopes of the

log-log plots. For example, when ξTi
is specified according to our Hull-White

approximation (20), then γi is decreasing with i for flat caplet volatilities

(see equation (21)). Therefore, it is not surprising that we see decreasing

slopes on the associated log-log plots (see Figure 1).

We now consider the functional forms of the co-terminal forward par swap

rates yi
Ti

(corresponding to swaps with fixed maturity Tn+1) implied by the

one-factor LIBOR Markov-functional model. Subsequently, in Section 5 we

perform a similar examination of the functional forms of LIBORs Li
Ti

under

the swap-based Markov-functional model.

Functional relationships between log(yi
Ti

) and log(yn
Ti

) under Scenario A

are displayed in Figure 2 for a selection of forward rates i.9 These functional

forms are typical in that the numerical relationship appears to be close to

linear, with slight positive convexity. This convexity is anticipated since par

swap rates are a linear combination of lognormal forward rates, hence cannot

also be lognormal.

9Note that the terminal par swap rate yn is simply the terminal LIBOR Ln.
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Figure 2: Typical graph of the functional relationship between a selection of co-
terminal forward par swap rates log(yi

Ti
) and the terminal forward rate log(y29

Ti
)

under the LIBOR Markov-functional model.
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4.3 Example application:

Pricing a Bermudan swaption

It is clear from the numerical results above that for typical market data the

LIBOR Markov-functional model is very close to the separable LIBOR mar-

ket model with the same driving process, especially for short maturity tenor

structures. Therefore we would also expect prices of exotic derivatives under

the two models to be similar because these prices are effectively summary

statistics. We demonstrate this with the example of a standard Bermudan

swaption.

In common with most exotic derivatives with early exercise features, it is

very difficult to price a standard Bermudan swaption directly using a sim-

ulation of the market model. It is necessary to introduce further approxi-

mations to determine the optimal exercise boundary. In theory, simulation-

based methods such as the least-squares approach suggested by Longstaff

& Schwartz [2001] can be used to compute the exercise boundary to any

required accuracy but considerations of computation time must be taken

into account. In contrast with the market model, the arbitrage-free Markov-

functional model permits an efficient implementation as it stands, without

the need for approximation.

Suppose we wished to price Bermudan swaptions in a model in which

LIBORs are lognormal (this may be to mirror the behaviour of the LIBOR

market model or to avoid negative LIBOR rates, for instance). In practice,

we would need to choose the driving process x and market model parameters

γi carefully to reflect the appropriate joint distributions of rates (for example,

we may wish to calibrate to a particular set of swaptions). The analogous

Markov-functional model could then be constructed. Here we will use those

parameters chosen previously for consistency in comparing the models. The
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correlation structure of all models is as described in Section 4.1 with mean

reversion parameter a = 5%.

In Tables 3-5 we display a summary of prices of annual Bermudan swap-

tions (7% payers swaptions) with various maturities under the one-factor

LIBOR Markov-functional (MF) model and the corresponding drift approx-

imation (DA) model. Also included are Longstaff-Schwartz (LS) prices com-

puted by direct simulation of the separable LIBOR market (SLM) model.

A single explanatory variable (the current swap net present value) was used

in the LS algorithm to determine the exercise boundary of the Bermudan

swaption (via a simple linear regression across all in-the-money sample paths

at each exercise date). Including further explanatory variables, which should

theoretically improve the approximation to the exercise boundary, was not

found to increase prices significantly. This observation may also be found

in Pelsser et al. [2004] and Pelsser & Pietersz [2004]. The prices shown

correspond to flat initial LIBORs and flat implied volatilities (Scenario A),

however the results are found to be very similar over all scenarios.

Although the MF and SLM models are specified in very different ways,

the prices of Bermudan swaptions are extremely close under both models

at 10Y. The differences between Bermudan prices computed under the MF

model and those computed using the LS approximation to the SLM price are

all much less than the standard errors in the LS prices. The MF vegas, which

are a good proxy for the margins currently charged on such trades, are much

greater than these LS standard errors. Therefore, we conclude the prices are

virtually indistinguishable from a practical perspective (any differences are

certainly not statistically significant). One would not necessarily anticipate

such close numerical similarities simply by observing that they are both one-

factor models calibrated to the same (Black) caplet prices.
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Strike MF Price DA Price LS Price LS s.e. MF vega

5% 123.0 123.0 123.0 0.19 0.6
6% 73.1 72.9 73.0 0.18 2.0
7% 41.4 41.2 41.3 0.16 2.8
8% 24.0 23.9 24.0 0.13 2.7
9% 14.4 14.3 14.4 0.10 2.2

Table 3: 10Y annual Bermudan swaption prices (in basis points) under the
Markov-functional model (MF) and the corresponding SLM model computed using
both Longstaff-Schwartz (LS) and drift approximation (DA).

Strike MF Price DA Price LS Price LS s.e. MF vega

5% 197.0 196.6 196.6 0.30 1.7
6% 124.8 123.5 123.8 0.33 4.5
7% 80.6 79.0 79.4 0.32 5.7
8% 54.4 53.0 53.3 0.29 5.7
9% 38.1 36.8 37.3 0.25 5.2

Table 4: 20Y annual Bermudan swaption prices.

Strike MF Price DA Price LS Price LS s.e. MF vega

5% 235.8 234.5 234.9 0.38 2.7
6% 154.9 151.3 152.7 0.44 6.5
7% 105.9 101.4 103.2 0.44 8.0
8% 76.0 71.5 73.6 0.42 8.0
9% 56.5 52.4 54.5 0.38 7.6

Table 5: 30Y annual Bermudan swaption prices.
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At 20Y, slight price differences are observed between the (arbitrage-free)

SLM and MF models in all scenarios. The MF model gives consistently

higher prices especially for out-of-the-money options. Recall from section 4.2

that the slopes and intercepts of the log-LIBOR plots do not match to such

high accuracy at 20Y, though it is clear from the distributional study that

the models remain very similar qualitatively. It is arguable that in practice

these price differences would not be considered large (they are consistently

well below the MF vega). Prices under the DA model are reasonably close to

LS but are systematically lower. This may be of concern since the LS price

is theoretically a lower bound for the true Bermudan price under the SLM

model (since the exercise strategy may theoretically be improved).

At 30Y, the price differences increase across all scenarios. Again DA prices

are observed to be below LS prices, which in turn lie below MF prices. The

numerical error between LS and DA prices is still small in comparison with

MF vega; the maximum difference is approximately half the vega. From a

practitioner’s viewpoint, it is arguable that this model error is still acceptable,

being within what would be taken in profit, though it is clear the observed

differences could represent a large proportion of that profit.

Numerical accuracy is important in determining the LS price. To achieve

convergence to the desired accuracy 100,000 paths were required (50,000

plus 50,000 antithetic), each with 100 time steps between each exercise date.

Using fewer time steps introduces discretisation error that may affect the

Bermudan price at this accuracy.10 As the MF model remains qualitatively

similar to the SLM model its efficient implementation would appear to be

preferable.

10This could be remedied by, for example, applying a predictor-corrector approximation
over slightly larger time steps.
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It is anticipated that including the smile in implied volatilities (in this

one-factor setting) will have a much larger impact on prices than these model

differences, since this will change the functional forms significantly. This is

illustrated by Pelsser & Pietersz [2004], who note similarities in Bermudan

prices between the MF and SLM models that both exhibit displaced diffusion

dynamics. A version of the uniqueness result can still be formulated in this

situation; this would certainly help explain the similarity between the models

in the one-factor case.

4.4 Stress testing

In this subsection the three LIBOR models are compared under more un-

usual market conditions. We find that it is the presence of high volatilities

that has a significant impact on the match between models. Results of the

distributional study are presented only for a maturity of 30Y because for

shorter maturities the effect is far less noticeable. The effects of stressing

the values of initial LIBORs for reasonable volatility levels have also been

examined but the consequences are relatively insignificant.

The impact of high volatilities is clearly illustrated in Figure 3, where

we plot log(Li
T15

) against log(Ln
T15

) for extremely high implied volatilities of

50%. Under the market model, the linear relationship previously observed

between log(Li
Tk

) and log(Ln
Tk

) breaks down. Also the points of the scatter

plot are more widely spread out, hence the market model can no longer be

well represented by a single functional form.

On initial inspection, the drift approximation appears to provide a better

match to the market model than the Markov-functional model in these un-

usual market conditions. Indeed, under this scenario, the Markov-functional
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Figure 3: Plot of log(Li
T15

) vs. log(Ln
T15

) for initial LIBORs of 7% and very
high implied caplet volatilities of 50%. Functional forms (lines) correspond to
the LIBOR Markov-functional model and the drift approximation. Scatter plots
correspond to the SLM model. As before we assume a mean reversion parameter
of a = 5%.

36

CRiSM Paper No. 05-11, www.warwick.ac.uk/go/crism



model and the drift approximation model may give rise to very different func-

tional forms even when the market model exhibits little dispersion at a given

exercise date. This can be seen for example by looking at the plots for L28
T15

in

Figure 3 and is further illustrated below by increasing mean reversion. Note

that under the conditions of Figure 3 the drift approximation model begins

to exhibit significant arbitrage and the effects of this are not immediately

clear (see discussion below).

Figure 4 displays the same results as given in Figure 3 for a higher value

of the mean reversion parameter (a = 15%). Consider the plots of L21
T15

under

each model. The presence of high mean reversion means that the common

instantaneous volatility function σ increases steeply over successive time in-

tervals. This results in the constants γi, chosen via equation (21), decreasing

dramatically as i increases. Therefore, under the market model the stochas-

tic component of the integrated drift terms appearing in the expression for

L21
T15
, which contains a (γi)2 term, will dominate the non-stochastic compo-

nent of the drift, which only contains terms γiγj, j > i (see equations (8)

and (9)). Thus, the scatter plot of the market model simulation exhibits

little dispersion at T15. For the same reason, the standard application of the

Brownian bridge drift approximation to this market model gives a functional

form that lies close to the scatter plot. In contrast, the functional form of

L21
T21

under the Markov-functional model is typically very close to the corre-

sponding market model plot at T21 but may differ at earlier times; we observe

significant differences at T15. As we explain below, this is because these func-

tional forms are computed iteratively, backwards through time, by applying

the martingale property (14).

The explanation for the observed disparity between the Markov-functional

and drift approximation models is that these plots mask the presence of no-
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Figure 4: The same set of results for high volatilities as displayed in Figure 3 but
with mean reversion parameter a = 15%.
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ticeable arbitrage in the drift approximation model. In order to ensure the

implementation of any model is arbitrage-free in practice, we require that

the martingale property of numeraire-rebased discount factors is numerically

sufficiently accurate at all times. This is far from true for the drift approxima-

tion model under these unusual circumstances, as we show below. Accuracy

of the martingale property is essential for pricing Bermudan-style derivatives

since it is implicitly assumed when computing the time value of a derivative

(the value of continuation) at a given exercise date (for a Bermudan swap-

tion this is the maximum of the expectation under F of the payoff at the

subsequent exercise date and the value of immediate exercise).

A practical implementation of the drift approximation model may of

course be constructed by assuming the functional forms of Li
Ti

are taken

to be those given by the usual drift approximation model for 1 ≤ i ≤ n and

recovering the remaining functional forms of Li
Tj

at exercise dates Tj < Ti

using the martingale property of numeraire-rebased discount factors (14).11

In our example, the terminal LIBOR L29 is a known analytic function of x

at all times. If L28
T28

is assumed to be given by the drift approximation as

usual, then L28
T27

may be recovered by applying the martingale property.

Figure 5 allows us to compare the functional forms of logL28
T28

under both

the Markov-functional model and the drift approximation model constructed

using the martingale property. In displaying these functional forms, for each

value of the terminal LIBOR L29
T28

we have simulated the market model con-

ditional on this value and subtracted the mean value of logL28
T28

under this

model from each of the functional forms. Confidence intervals under the mar-

ket model for the value of logL28
T28

conditional on the value of L29
T28

are also

11Note that this may be considered to be a different approximation model to that given
in Pelsser et al. [2004], where all functional forms are determined using the drift approxi-
mation and the martingale property is not used in the construction of the model.
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provided. It appears that the functional form of logL28
T28

under the Markov-

functional model is closer to the mean value of logL28
T28

under the market

model (given L29
T28

) than under the drift approximation model.

log(L^29)

lo
g(

L^
28

) 
- 

(m
ea

n 
lo

g(
L^

28
) 

un
de

r 
B

G
M

)

-15 -10 -5 0 5

-2
-1

0
1

2

BGM median
BGM 50% CI
BGM 95% CI
MF
DA

Figure 5: Plot of log(L28
T28

) minus the mean value of log(L28
T28

) conditional on
the value of L29

T28
under the separable LIBOR market model, against the terminal

LIBOR, log(L29
T28

).

Given this observation, it is reasonable to expect that when applying

martingale property to compute the values of L28 at earlier exercise dates the

Markov-functional model will be closer to the market model than the drift

approximation model. This is confirmed by Figure 6, which shows a typical

LIBOR functional form computed by applying the martingale property to

the drift approximated LIBORs L28 at the previous exercise date T27. This

plot demonstrates that if our pricing model is forced to remain arbitrage-
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free under these extreme circumstances, then in general it is the Markov-

functional model that appears to be closer to the market model than the

drift approximation model.

log(L^n)

lo
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Figure 6: Plot of log(L28
T27

) vs. the terminal LIBOR, log(L29
T27

). Here the drift
approximation plot (DA) is calculated by applying the martingale property to the
functional form of L28

T28
that is computed under the drift approximation model (see

Figure 5).

Note that since the functional forms for the original drift approximation

model are very different to those calculated by using the martingale property,

as is the case with the Markov-functional model, we must have introduced

a significant arbitrage into the drift approximation model. The effects of

this arbitrage may be magnified in the pricing algorithm, as errors are com-

pounded when we compute the time value of the option iteratively down

from the last exercise date.
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We conclude this section with a brief discussion of Bermudan swaption

prices under this unusual scenario (see Table 6). Generally, the standard

error in the Longstaff-Schwartz price is very large; this is not surprising be-

cause simulated Bermudan prices are likely to be much more spread out if

implied volatilities are very high. For 30Y, the standard error is so large

(approx 220 bps for 100,000 paths), it renders the method practically use-

less without much more sophisticated variance reduction methods. For all

maturities, including a second explanatory variable (the current LIBOR) in

the least-squares regression at each step increases the Bermudan price signif-

icantly (these prices are denoted by ‘LS2 Price’ in Table 6). This is because

under these market conditions the separable LIBOR market model is no

longer well represented by a one-dimensional model (with the correspond-

ing one-dimensional exercise boundary). It is possible that including further

explanatory variables in the regression may increase the price still further.

The MF prices consistently remain very close to the centre of the 95% LS2

confidence interval, whereas the DA price is typically below the lower 95%

confidence limit. This example illustrates how any approximation to the

LIBOR market model may break down in unusual circumstances even if it

performs well in the majority of situations.

Strike MF Price DA Price LS Price LS s.e. LS2 Price LS2 s.e. MF vega

5% 183.8 176.1 166.8 0.7 181.5 2.8 2.3
6% 160.2 151.0 139.0 0.7 157.1 2.9 2.7
7% 141.7 131.6 119.5 2.8 138.5 2.9 2.9
8% 127.0 116.5 100.7 2.8 126.3 4.3 3.1
9% 115.0 104.3 88.9 2.9 113.8 4.2 3.2

Table 6: 10Y annual Bermudan swaption prices for extremely high implied volatil-
ities of 50%.

42

CRiSM Paper No. 05-11, www.warwick.ac.uk/go/crism



5 Numerical comparison of swap models

In this section we report the results of a similar numerical study of the anal-

ogous relationships between rates under the swap market model,12 the asso-

ciated swap drift approximation model and the corresponding swap Markov-

functional model with the same driving process.

The construction of a swap Markov-functional model that closely matches

the swap market model considered in Section 2.4 is analogous to that for the

LIBOR case. As in the swap market model we assume a set of co-terminal

forward par swap rates, denoted by yi for i = 1, .., n. The ith forward par

swap rate yi sets on date Ti with coupon payments on dates Ti+1, ..., Tn+1 and

satisfies (11). We assume that the market prices for the vanilla swaptions on

the ith swap rate are given by Black’s formula. The driving Markov process

and the choice of numeraire are exactly as in the LIBOR case but now it

is the ith forward par swap rate at time Ti, y
i
Ti
, which is assumed to be a

monotonic increasing function of the variable xTi
.

The numeraire bond at time Tn, DTnTn+1
(xTn

), is chosen exactly as for the

LIBOR model. However the functional form for the numeraireD·Tn+1
at times

Ti, i = 1, ..., n−1, needs to be determined. The reader is referred to Hunt &

Kennedy [2000] for the full details of the calibration step, this time carried

out using synthetic PVBP-digital swaptions as the calibrating instruments.

The algebra involved in these intermediate steps is no more onerous than

for the LIBOR-based Markov-functional model (whereas the drift term of

the swap market model is found to be more complex than in the LIBOR

market model). The reader will note that a similar uniqueness statement to

that given in Section 3.3 can be formulated for the swap Markov-functional

model.

12Some authors refer to these models as “Swap-rate based LIBOR market models.”
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In the following, the driving process x of the swap Markov-functional

model is taken to be of the same form as for the LIBOR-based model but

the variances of x at each Ti are now chosen by considering a Hull-White

model calibrated to at-the-money European swaption prices (see Appendix

A). Linear interpolation is used to complete the specification of the swap-

based market model. The mean reversion parameter is taken to be a = 5%.

The tenor structure under consideration is taken to be the same as for the

LIBOR case.

Our conclusions are very similar to those for the analogous LIBOR-based

models for the scenarios in Table 1. We observe that log(yi
Tk

) is approxi-

mately linear in log(yn
Tk

) for all models and that the slopes and intercepts

agree to high accuracy (see Table 7 for the case of flat initial LIBORs and

implied caplet volatilities (Scenario A)). Note that the accuracy of approxi-

mations suggested in Pelsser & Pietersz [2004] for the calibration of a swap

Markov-functional model to a swap correlation matrix (either market-implied

or historically estimated) is easily explained by the linearity of this relation-

ship, since this means the Taylor expansion of log(yi
Tk

) about xTk
to order

one is almost exact. Approximations along the same lines could be derived to

aid calibration of the LIBOR Markov-functional model by observing the lin-

earity of the corresponding relationship between log LIBORs and the driving

process under the LIBOR model.

In exploring the functional forms of the forward LIBORs Li
Ti

implied by

the swap-based Markov-functional model we find that these may be unrealis-

tic for long maturities above twenty years (see discussion below). This is also

the case for the analogous swap market model. Recall from Section 4.2 that

under the LIBOR model the functional forms of par swap rates behave as

expected. Therefore, although the one-factor swap Markov-functional model
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Swap rate Log-linear MF BGM DA

Slopes y15 1.45 1.32 1.36 1.41
y21 1.23 1.22 1.20 1.21
y27 1.05 1.07 1.05 1.05

Intercepts y15 0.54 0.74 0.90
y21 0.51 0.43 0.48
y27 0.17 0.11 0.11

Table 7: Slopes and intercepts of functional forms of for a selection of (log) forward
par swap rates at T15 under the Markov-functional model (MF), drift approxima-
tion (DA) and the log-linear approximation. Also shown are slopes and intercepts
of the least squares linear regression fitted to the corresponding swap market model
(BGM) results.

may be considered an adequate choice for pricing a Bermudan swaption, a

LIBOR-based model may be a more appropriate choice in other applications.

Typical functional forms of LIBORs under the swap Markov-functional

model are displayed in Figure 7. These particular results correspond to flat

zero curves and flat swaption volatilities but results are very similar in all sce-

narios. Notice there is significant non-linearity, which is far more pronounced

than the relationship between forward swap rates under the LIBOR-based

model. This non-linearity is easily explained by observing that forward swap

rates are a linear combination of LIBORs. Thus a change in the distribu-

tion of a single LIBOR will have a marginal effect on the distribution of the

forward swap rate, which is an average, but a similar change in the distri-

bution of a single forward par swap rate has far more significant impact on

the distribution of the LIBORs, which are effectively obtained by differenc-

ing. We note that using typical market data this non-linearity is minor for

maturities up to twenty years. However, for longer maturities such as thirty

years these effects become more apparent and we may also observe negative
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Figure 7: Forward LIBOR functional forms under the swap-based Markov-
functional model: Plot of log(Li
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) for a selection of forward LIBORs
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LIBORs. Functional forms are truncated for negative values of Ln
Ti

in the

graph shown.

6 Conclusion

In this paper we have explored the relationship between LIBORs under the

one-factor LIBOR market model with separable volatility structure and the

corresponding one-factor Markov-functional model. We have observed that

for short maturities (10Y) these models are numerically equivalent for all

practical purposes under a wide range of market conditions. For longer ma-

turities, slight differences are observed in our distributional study, however

the models remain qualitatively similar. Therefore, much of the intuition of

the familiar SDE formulation of the separable market model may be applied

in the specification and calibration of the Markov-functional model. As ex-

pected given the close match between models at 10Y, the prices of exotic

derivatives such as Bermudan swaptions under these models are practically

identical. For longer maturities, it is possible to distinguish between prices,

however it is arguable that the difference is not material from a practical

perspective. In this case, the straightforward efficient implementation LI-

BOR Markov-functional model may be preferable to any time-consuming

simulation-based implementation of the LIBOR market model. It is also

preferable to the drift-approximation model because it is guaranteed to be

arbitrage-free.

Under scenarios corresponding to long maturities and high volatilities,

the market model is no longer well approximated by a one-dimensional model

and the relationship between each LIBOR and the terminal LIBOR cannot

be approximated by a single functional form. We have demonstrated that
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the drift approximation model now exhibits noticeable arbitrage and conse-

quently it may lead to inaccurate derivative prices. In contrast, the LIBOR

Markov-functional model remains qualitatively similar to the LIBOR market

model and may therefore be considered a more appropriate choice of pricing

model. Considering again the example of the Bermudan swaption, it appears

that prices under these two models remain consistent under this extreme sce-

nario, whereas the drift approximation model tends to lead to a significant

underpricing. Our results highlight the dangers of using an approximation to

an arbitrage-free model where the limitations of the approximation are not

fully understood.

In a separate line of discussion, the behaviour of functional forms of for-

ward LIBORs under the swap-based Markov-functional model are found to

be somewhat unrealistic for long maturities (where in some cases LIBORs

may become negative). This is an artefact common to all one-factor swap

rate based models. In contrast, the behaviour of forward par swap rates

under the LIBOR Markov-functional is found to be as expected.

We have restricted ourselves in this article to considering one-factor mod-

els. However, given the qualitative similarities between the drift approxima-

tion model and the Markov-functional model in one dimension, it is likely that

the n-factor drift approximation model may provide a useful starting point

in the construction of an n-dimensional Markov-functional model. Indeed,

this may be preferable to the original suggestion given in Hunt & Kennedy

[2000].
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A Approximating the Hull-White correlation

structure

In this appendix we specify the driving process x by deriving an approximate

expression for the variance

ξTi
:= var(xTi

)

of x at times Ti, i = 1, ..., n. This approximation is arrived at by considering

a Vasicek-Hull-White model calibrated to at-the-money caplet prices in the

LIBOR case and at-the-money European swaption prices in the swap case.

Consider a Hull-White model in which the short-rate process r solves the

SDE

drt = (θt − art)dt+ σ̂tdŴt ,

where a is a constant, θ and σ̂ are deterministic functions of t and Ŵ is a

standard Brownian motion under the risk-neutral measure Q. For 0 ≤ t ≤
Tn+1 the measures F and Q are related by

dF

dQ

∣∣∣∣
Ft

= exp

(
−
∫ t

0

rudu

)
DtTn+1

D0Tn+1

.

Let x be defined as in equation (10) and define σ̂t = e−atσt. Working in the

measure F it is straight forward to derive an analytical expression for the

functional forms D̂tTi
(xt), i = 1, ..., n. We find

D̂tTi
= D̂0Ti

exp

(
(ψTn+1

− ψTi
)xt −

1

2
(ψTn+1

− ψTi
)2ξt

)
, (22)

where

ψt :=
1

a
(1 − e−at) ,

and

ξt :=

∫ t

0

e2auσ̂2
udu .
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Suppose we wish to use the above Hull-White model to price a prod-

uct where the relevant calibrating instruments have cash flows restricted to

the times Ti, i = 1, ..., n + 1, and suppose that the parameter a has been

chosen. From the above equation we can easily see that in order to specify

completely the Markov-functional implementation of the Hull-White model

only the variances ξTi
= var(xTi

), i = 1, ..., n, are required. In practice this

could be done numerically by calibrating directly to an appropriate choice of

cap or swaption prices.

We now derive a crude approximation to the ξTi
’s in the case where the

Hull-White model is calibrated to caplets on the forward LIBORS Li. The

market prices of these caplets are assumed to be given by Black’s formula

with implied volatilities σ̃i. The formula obtained is used as the basis for the

choice of the driving process used in the numerical comparison of Section 4.

Observe that approximately

(DTiTi+1
)−1 = (1 + αiL

i
Ti

) . (23)

Note that this approximation is exact if the Lj
Ti
, j ≥ i, are equal. Writing

exp(Zi
t) := 1 + αiL

i
t ,

by Itô’s formula

exp(Zi
t)dZ

i
t +

1

2
exp(Zi

t)d[Z
i]t = αidL

i
t

and so

dZi
t = αi(1 + αiL

i
t)

−1dLi
t + f.v. ,

where f.v. denotes terms having finite variation. Thus

d[Zi]t = α2
i (1 + αiL

i
t)

−2d[Li]t .
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Setting t = Ti in equation (22) we can obtain an expression for

D̂TiTi

D̂TiTi+1

= (DTiTi+1
)−1 .

Comparing the quadratic variation of the exponential term for this expres-

sion with that in equation (23), the following approximate relationship is

obtained:

(ψTi
− ψTi+1

)2ξTi
= α2

i (1 + αiL
i
Ti

)−2[Li]Ti
. (24)

Further, assuming the market prices of the caplets are given by Black’s for-

mula we see that approximately

[Li]Ti
= (σ̃i)2(Li

0)
2Ti ,

where σ̃i denotes the implied volatility of the ith caplet. Substituting this in

(24), approximating Li
Ti

by Li
0 and solving for ξTi

yields equation (20):

ξTi
=

(
αiL

i
0

(1 + αiLi
0)(ψTi

− ψTi+1
)

)2

(σ̃i)2Ti .

Note that here we have proposed a correlation structure that is linked ex-

plicitly to market volatilities.

For a constant tenor structure αi = α this formula may be extended for

general t by taking

ξt =

(
αL0(t)

(1 + αL0(t))(ψt − ψt+α)

)2

(σ̃(t))2t . (25)

where L0(t) = L0[t, t+α] is the initial forward LIBOR corresponding to time

t with tenor α and σ̃(t) is the implied volatility of the caplet associated with

this LIBOR. Note that linear interpolation of the ξTi
’s is equally viable since

we observe in our numerical comparison that this leads to indistinguishable
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results. To complete the specification of the LIBOR market model with this

correlation structure, observe that

x = Ŵξt
,

where Ŵ is a Brownian motion under F. Therefore, the instantaneous volatil-

ity of the driving process in the log-Euler discretisation of the market model

SDE may be approximated with

σt =

√
ξt+h − ξt

h
,

where h is the step-size of the discretisation.

For the case when the Hull-White model is calibrated to Black’s swaption

prices an argument similar to the above yields the approximation

ξTi
=

(
Tn+1 − Ti

(1 + αiyi
0)(ψTn+1

− ψTi
)

)2

(σ̃i)2Ti , (26)

where σ̃i now denotes the implied volatility of the ith co-terminal European

swaption. In this case we use linear interpolation to complete the specifica-

tion of the swap-based market model.
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