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Discrete Bayesian Networks (BNs) have been very successful as
a framework both for inference and for expressing certain causal hy-
potheses. In this paper we present a class of graphical models called
the chain event graph (CEG) models, that generalises the class of dis-
crete BN models. This class is suited for representing conditional in-
dependence and sample space structures of asymmetric models. It re-
tains many useful properties of discrete BNs, in particular admitting
conjugate estimation. It provides a flexible and expressive framework
for representing and analysing the implications of causal hypotheses,
expressed in terms of the effects of a manipulation of the generating
underlying system. We prove that, as for a BN, identifiability analyses
of causal effects can be performed through examining the topology
of the CEG graph, leading to theorems analogous to the Backdoor
theorem for the BN.

1. Introduction

Bayesian networks have now been extended to Causal Bayesian Networks
(CBNs) using a non-parametric representation based on structural equation
models [14, 26, 27, 43]. These provide a framework for expressing assertions
about what might happen when the system under study is externally ma-
nipulated and some of its variables are assigned certain values. Recently the
desirability of CBN models have been vigorously debated for example against
the classes of models based on counterfactuals [32, 35] and [10, 28, 33, 36]. It
seems to us that the extension of a BN to a CBN depends strongly on three
assumptions:

1. the existence of information about a background idle (unmanipulated)
system,

2. the existence of a network of simulators, or equivalently a collection
of data generating processes, that can be used to generate conditional
independences [27, 28, 43] and that is believed to appropriately model
the process of interest,

3. the belief that manipulation of one or more simulators can model an
external intervention on the underlying process being modelled.

Keywords and phrases: Backdoor theorem, Bayesian networks, Event trees, Causal
graphical models, Probability estimation, Chain event graph.
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2 RICCOMAGNO AND SMITH

The appropriateness of the adopted definition of a cause as system manip-
ulation is highly contentious in general and will only be touched upon in the
conclusion of the paper (see [16, 28]). But, as a description of a manipula-
tion of a simulator network it appears very natural. Thus this paper assumes
that the simulator analogy in Items 2. and 3. above is valid. In particular the
term “causal” will apply to the modelling simulator network and not to the
underlying process being modelled.

Even within the scope of the simulator analogy it is not clear that a defini-
tion of causality in terms of a BN is as appropriate or as general as it might be.
Motivated by comments in [36], we develop an alternative graphical represen-
tation of causal models, called chain event graph model. This is constructed
from an event tree together with a set of exchangeability assumptions. It can
be seen as a generalisation of a probability graph [4, 36] and typically has
many less nodes than the original event tree. It was introduced in [40] in par-
allel with the present paper. Within the class of CEG models, for any given
application, an analogue of the causal extension used to transform a BN into
a CBN is transparent and is as compelling as it is for a BN. This class thus
relaxes the hypothesis in Item 1. above, whilst retaining the hypotheses in
Items 2. and 3.

There are several technical reasons why chain event graph models are im-
portant. Throughout the paper we motivate our results with comparison and
analogies to BNs and CBNs.

The first one is entirely practical. Many observed systems can be elegantly
modelled by a BN, but many other processes arising from, for example ge-
nomic, epidemiology, multi-agent systems, cannot be so conveniently and fully
described by a BN. For examples of these see [3, 22, 29]. Despite the prolif-
eration of graphical models over the last two decades, the first stage of the
elicitation of a model can still be based on the elicitation of an event tree.
This happens for example in Bayesian decision analysis [13], risk analysis [2],
physics [20], biological regulation [7]. Although often topologically vast, event
trees have several advantages over BNs including: (i.) they explicitly acknowl-
edge asymmetries embedded in a structure both in its development and in its
sample space structure, (ii.) their semantics are much closer to many verbal
descriptions of the world: especially when that description revolves round how
things happen rather than how the world appears. These advantages are com-
pellingly argued in e.g. [36] and [27, 43] in the context of “causality”. Various
methods for interrogating an elicited model and for forming a framework for
propagation have been developed in the recent years. In particular [12, 18]
discuss probability decision graphs to embody sets of conditional indepen-
dence statements and to give an explicit representation of the sample space of
the problem. Essentially they depict state transitions in the study of discrete
stochastic processes. Context-specific networks [3] supplement the BN with
additional structure often via trees, [29] use confactors to study propagation
even outside tree structures, [24] develop methods based on case-factor dia-
gram. For a comparison of these representations with CEGs we refer to the
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CHAIN EVENT GRAPHS 3

introduction in [40].

A second reason is that by using the framework of event trees, the def-
inition of manipulative cause is freed from the shackles of the conditional
independence relations imposed by the restrictive class of BN models and al-
lows direct analogues to BNs of, for example, total causal effect analysis [26].
Whilst the graph of a BN expresses conditional independence statements ex-
plicitly, event trees and probability trees depict relationships between state
spaces directly. In probability trees conditional independence relations can be
embedded through equations linking probabilities labelling the edges of the
tree. These are used to construct the vertices of the CEG and its undirected
edges. Analogues to d-separation theorems that give sufficient conditions for
determining whether a conditional independence statement holds, are given
for CEG in [40]. Recently separation theorems associated with other graphical
models have also been derived [9, 19, 25, 27].

Third, the flexibility of a framework based on event trees separates the
causal hypotheses (Item 3.) from any direct link with the measurement pro-
cess (Item 2.). One problem with some graphical models is that they take
a collection of measurement random variables as a given and express and
manipulate conditional independence properties round these. But if a model
embodies hypotheses about how situations might unfold, it is often not obvi-
ous how to define random variables whose mutual relationships might express
this unfolding. CEG models can be used to automatically construct random
vectors whose conditional independence structure represents the relationships
implied by an event tree description of a process.

Fourth, it has recently been noted that the dimension of the sample space
is critical for determining identifiability especially when many variables are
hidden, even in symmetric models [37, 38, 41]. This cannot be expressed
explicitly in a BN but it is expressed in an event tree and is retained in
the CEG. Notice that the sample space given by a tree is not necessarily of
product form as in a BN.

The next examples show that together with those technical reasons there
are other compelling modelling reasons to develop CEG models.

Nowadays networks of simulators exist that purport to model environmen-
tal catastrophes. One such network was supported under the RODOS project
[39]. Usually a simulator in the RODOS network is extremely complex, often
with a randomising component, so that simulation samples are costly. Vari-
ous scenarios can be played out through the system but accurate margins of
the variables are difficult to access reliably. Each simulator is owned by an
agent who will give only the output and not the internal algorithms so that
the only data available are the values obtained from each simulator given
certain configurations of its inputs. In fact, this and prior experimental infor-
mation about individual mechanisms modelled by the simulators is all that
is available for inference. Data on how the process proceeds through the real
network is rarely available: most types of accident have not yet taken place
(thankfully). So understanding the workings of the simulator network is often
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4 RICCOMAGNO AND SMITH

as close as we can get in an empirical study.

Different scenarios will lead to different simulators of the network to be ac-
tive. For example when modelling a nuclear accident with an associated release
of contaminating substances in the atmosphere, if there is no release then the
only simulators that are enacted are the possible precautionary countermea-
sures that might be put in place and the module evaluating the economic cost
of these. If there is a release and the countermeasure of a carefully enforced
total food ban is put in place, then the human intake module of the network
will not depend on the absorption of contamination in food, and so on. So
what happens earlier determines not only the value but the nature of what
happens subsequently. A BN gives a useful and compact summary of some
of the network information, but it cannot express graphically all the context
specific network information whereas a probability tree can. In this respect it
is safer and more comprehensive to build definitions of causal effects around
the event tree rather than the BN.

Not all simulators are manipulable in the sense that any manipulation can
be given a real interpretation. Furthermore the types of manipulations that
are of interest are likely to be incremental modifications to certain coun-
termeasures in certain contingencies, like including an additional area in an
evacuation policy, not wholesale uniform change as addressed in a causal BN.

Another class of examples where the tree is often a better representation
of an underlying process is in models of biological regulatory mechanisms.
Often such mechanisms are highly asymmetrical and context specific, typically
containing many noisy “and” and “or” gates. The simulator analogy seems to
work well in this class of examples [1]. In particular asymmetric manipulations,
such as attaching a virus to a gene to enforce overexpression, would appear
to preserve this analogy when it is extended to the manipulated system.

Although effects of a cause can be reasonably represented by a random
variable, at times the specification of a cause as the value of a random vari-
able can be artificial. For example, suppose interest focuses on the effect of
inspection frequency on numbers of derailments of goods trains: our cause.
Why is it necessary to construct a random variable representing all possible
inspection frequencies (with an associated distribution) when interest lies only
in the relative merits of a rail track inspection program with 3 monthly checks
as against 6 monthly checks (or even just one of these)? It seems perverse to
define causality in a way that demands this unnecessary level of specifica-
tion. At the root of the problem here and in the examples cited above is the
fact that causes are more naturally represented as conditioning events than
as random variables. Such conditioning is not elegantly expressed in the BN
but is simply and intrinsically described in a probability tree and the derived
CEG. Analogous arguments are made by Dawid [10] who argues that causes
are decisions and not decision rules.

Finally, in an event tree the postulated causal mechanism is made more
explicit by relating the predictions to hypotheses about how the observer be-
lieves things might happen. This is appealing from the Bayesian perspective
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because it admits the formal inclusion of the observer into the inference, con-
trasting with the implicit and arguably misleading apparent determinism of
the CBN which is based on spuriously objective collections of measurements.

For a good discussion of many of the above points see [36], in particular on
the advantages of event trees for coding asymmetrical problems, as powerful
expression of an observer’s beliefs especially when those beliefs are based on
an underlying conjecture about a causal mechanism

Section 2 contains the basic terminology and definitions. In Section 3 we
show that as discrete faithful BNs (see [9, 17, 42] for observed systems and
[8] for manipulated systems) CEG models admit a conjugate multinomial-
Dirichlet prior to posterior analysis when hypotheses are about populations
of exchangeable units. The extension from event trees and CEGs to causal
probability trees and causal CEG is made in Section 4. A theorem of identi-
fiability analogous to the Backdoor theorem is proved in Section 5.

2. Simulating with Probability Trees

From a Bayesian perspective probability trees describe the observer’s beliefs
about what will happen as events unfold. From standard probability theory
the edges out of a node v of the probability tree represent the possible un-
folding that can occur from the situation labelled by v, or equivalently the
event space of a random variable that can be indexed by v. The sample space
of the experiment at a node is given by the branches of the probability tree
at that point step.

Through two equivalence relations on the vertices of the event tree, we
construct a new model structure, called a chain event graph, which includes
Bayesian Networks and which provides a natural framework for defining causal-
ity.

We start with some definitions to set up notation and formalise ideas. Some
of these definitions are slightly non-standard for reasons that will become
apparent later in the paper. Section 2.1 draws strongly from [36, 40] and we
refer to those works for further details.

2.1. Probability trees
2.1.1. Graphs
Definition 1 A (rooted mixed) graph G = (V(G), Eq(9), Eu(G)) consists of

1. V(G) = {vo,v1,...,v,} a finite set of vertices or nodes,
2. E,(G) = {{v,v'} : v,0" € V(G) and v # v'} a finite set of undirected
edges and

3. Eq(G) = {e = (v,0) 1 v,0" € V(G) and v # V'} a multiset of ordered
pairs of vertices and two maps pa,ch : E4(G) — V(G) where pa(v,v') =
pa(e) = v is the parent of v' and ch(v,v") = ch(e) = v’ is a child of v.
E4(G) is the multiset of directed edges of G.

Sometimes we use the notation (V, Ey4, E,) for G. Note the following.
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6 RICCOMAGNO AND SMITH

- We assume that exactly one vertex vy € V(G) has no parent and call it
the root vertex.

- A graph where F, is the empty set is called a directed graph, sometimes
written G = (V(G), E(G), pa, ch).

- A (directed) tree is a directed graph in which all vertices except the root
vertex have exactly one parent. A vertex of a tree with no child is called
a leaf. We write 7 = (V(7),E(T)) = (V, E).

- A (purely directed) path between two vertices v; and v; in a graph is a
sequence of directed edges A = A(v;,v;) = (e1, ..., ep[y) Where pa(e1) =
vi, ch(eyy) = vj, ch(ex) = pa(egs1) for k =1,...,n[A] — 1. The number
of edges in the path is called the length of the path and it is n[A].

- We also write v € A when the path A passes through the vertex v.

- A graph G = (V, Ey4, E,) is said to have coloured directed edges if there
is a non-trivial partition {E{(G) : 1 < i < K} of By with K integer,
K>1.1Tfe e € Eg)(g) then e and €’ are said to have the same colour
i1<i<K.

Definition 2 Two graphs G = (V(G1), Eq(G1), Ey(G1)) with associated maps
pai,chy and Ga = (V(Ga), Ei(G2), Ew(G2)) with pay,chy are isomorphic if
there exists a one-to-one map u: V(G1) — V(Ga) such that

1. (u(v), u(v")) € Eq(G2) if and only if (v,v') € Eg(G),
2 pay (u(v), u(v')) = p(v) if and only if pay (v,v') = v,
3. cho(p(v), u(v")) = pu(v') if and only if chy(v,v") = v and
4- {u(v), u(v')} € Eu(G2) if and only if {v,v'} € Eu(G1).
In this paper only rooted mixed graphs and purely directed paths are of

interest and so the qualifiers “rooted mixed” and “purely directed” will hence-
forth be omitted.

2.1.2. Trees

Let T = (V(7T),E(T)) be a directed tree. The set S(7) of non-leaf vertices
is called the set of situations of 7 and has particular significance.

Definition 3 Let X = {A(vg,v) : v € V(T)\S(T)} be the set of root-to-leaf
paths. Elements of X are called atomic events. For v € S(7T) let X(v) be the
set of children of v.

Note that

- X(v) can be seen equivalently as the set of edges out of v and that
{X(v) :v e S(T)} U {v} partition V(7).

- X is in one-to-one correspondence with the leaves of the tree.

- A partial order on V(7) is determined by the paths. Heuristically, if
there is a path from v to v/ then v’ cannot happen before v and v/
follows v in the partial order induced by the paths.

The situations along each root-to-leaf path correspond to a possible his-
torical development of the problem we are modelling. The directionality in
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CHAIN EVENT GRAPHS 7

the tree is natural and expresses a conjecture about the ordering in which
one situation follows another (see in particular [36, Section 2.8]). Later this
directionality will play the role of a causal (partial) ordering.

A probability tree is a directed tree such that to each situation v € S(7) is
associated a discrete random variable X (v) whose sample space is X(v). The
basic measurable space is the one given by the set of atomic events endowed
with the path o-algebra. The random variable X (v) can be defined conditional
on having reached the position v. Thus for A € X X (v)(\) = ¢ is equivalent
to say that X (v) maps A into the set of paths through v and v’. Existence
and uniqueness of a joint probability distribution for the full tree follows from
standard probability theory.

The distribution of X (v), v € S(7), is determined by the primitive proba-
bilities w(v'|v) = P(X (v) = ') for v/ € X(v).

Moreover the random variables on vertices along a path are required to be
mutually independent.

The primitive probability 7 (v'|v) is a colour for the directed edge e = (v,v’),
thus we shall write m(e) = 7(v'|v) as well. If 7(v'|v) = 0 for some v,v’ then
the branch starting at v’ can be deleted from the tree as any atomic event
including v’ has zero probability of occurring.

Example 4 To explain notation, Figure 1 shows the probability tree for two
binary random variables X and Y with X happening before Y and joint
law P(X = z,Y = y) for z,y € {0,1}. We have X(vg) = X, X(v1) =
Y|X =0], X(v2) = [Y|X = 1] and 7(v1|vg) = P(X =0), 7(vs|v1) = P(Y =
0/X = 0). The recursive formula for a joint probability corresponds to the
independence of random variables along a path, e.g. P(X = 0,Y = 0) =
m(v1|vg)m(vs|vr) as X (vg) and X (v1) are independent. No statement is made
about the dependence relation between random variables on nodes on different
paths.

The interpretation of the random variables {X(v),v € S(7)} is clearest
when the probability tree describes the paths taken through a network of
simulators. A sample from the network begins with the root situation vy that
is an active random variable X (vp). The simulator produces an output vy
equivalently X (vg) = v}, € X(v) with some probability; the simulator located
at v is activated and a value from the random variable X (v()) is drawn. The
process is repeated until a leaf node is reached. Only one simulator is active
at each step. Thus a draw from the whole simulator network corresponds to
a root-to-leaf path of the probability tree: a point we utilize in Section 4. In
particular, each sample unit runs across a single path of the tree.

Definition 5 Two situations v1,vy € S(7T) are stage-equivalent if and only
if
1. there exists a one-to-one map p: X(v1) — X(ve) and

2. the distributions of X (v1) and X (ve) are the same consistently with p,
that is w(v|vy) = m(p(v)|ve) for all v € X(vy).
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8 RICCOMAGNO AND SMITH

P(X=0y~n(v1|vo)

Fic 1. Probability tree for Example 4

The corresponding equivalence classes are called stages and L(7T) is the set of

stages.
For each stage w € L(T) define

M(u) = {r(v'|v) : v" € X(v) for some v representative of u}

and I(T) = U, p () IH(u).
The pair (T,11(7T)) is called a probability tree model.

The set of primitive probabilities II(7") is no larger than the set of all
primitive probabilities and clearly still sufficient for a complete description of
all distributions defined on the probability tree.

The probability m(\) of an atomic event A € X can now be given as products
of the primitive probabilities in II(7'). Let A = (e1, ..., e,[x) € X be the path
from the root vg to the leaf vertex ch(ey[y), where n[A] > 1 is assumed. Then

n[A] n[A]
w(A) = [ w(e;) = [ w(chle))Ipale))) (1)
j=1 j=1

where 7(e;) € Il(pa(e;)). The sum-to-one condition gives >, x m(A) = 1
together with >, /cx(,) m(v'[v) =1 for all v € S(7).

Stages express conditional independence statements by stating that if two
situations are in the same stage, then their probability distributions are the
same.
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|

BUC|A

Fi1G 2. Stages and independence.

Example 6 (cont. Example 4) In Figure 1 if v; and vy are in the same
stage then two cases can occur according to whether v3 maps onto v5 or onto
vg. Either P(Y =1|X =0) = P(Y =1|X =1) i.e. X and Y are independent
oo PV =0l X =0)=P(Y =1|X =1)ie. P(Y =0[X =0) = P(X =Y =
0)+ P(X =Y =1). If the values X and Y take were —1 and 1 then this last
equality would imply the independence between X and XY [38].

For an analysis of the relationship between stages and independence see
[40]. Here we just consider a small example. Only three events A, B,C can
occur and their joint history unfolds according to the probability tree in Figure
2. The independence between A and B corresponds to 7(vs|vy)w(vi|vg) =
[ (ve|va) + 7(vg|v7)m(v7|V2)] T (V2|V0). If V7 Were a leaf node then vy and vy
would be in the same stage with 7(vs|v1) = 7(vglvg) and w(v4|v1) = w(v7|v2)
if and only if A and B would be independent events.

2.2. Chain event graphs

Probability trees depict the structure of a state space but cannot express
graphically, as a BN can, any relationships between the underlying random
variables. In this section we assume that the observer is able to express two
pieces of qualitative information: the topology of the probability tree and its
stages. We will show that these two sources of information can be fully rep-
resented using a mixed graph with coloured edges called a chain event graph.
The colouring of this graph can then be used to read off conditional indepen-
dence statements associated with various random variables measurable with
respect to the path o-algebra of the underlying probability tree model.
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10 RICCOMAGNO AND SMITH

Suppose that two units have arrived at different situations v and v* of a tree
and that the processes governing their subsequent evolutions is believed to be
identical. For this to happen it is necessary that the sub-trees 7 (v) beginning
at v and 7 (v*) with root v* are topologically isomorphic, in particular their
vertices and edges can be identified. Moreover the non-leaf vertices of these
two sub-trees are in the same stage. In [19] 7 (v) is called the subgraph induced
by v and its ancestors.

Definition 7 Let T = (V(7T),E(T)) be a probability tree model. For v,v* €
S(T) define T (v) (T (v*)) to be the sub-tree of T starting at v (v*) respectively.
We say that v and v* are equivalent if and only if

1. T(v) and T (v*) are isomorphic. Let p be the map in Definition 2.

2. For every w non-leaf vertex in T (v), w and p(w) are in the same stage
and

3. m(ve|vy) = w(p(v2)|p(v1)) for all possible vi,vy € T (v).

The induced equivalence classes are called positions and K(7T) is the set of
positions.

Note that this is a predictive, not a retrospective equivalence. Once a unit
reaches the vertex v or the vertex v* all pairs of possible unfoldings from v and
v* have the same probabilities. Thus two situations have the same position
when their future evolutions are governed by collections of random variables
with the same distribution. It is in this respect that positions are natural
objects on which to describe a causal manipulation.

Clearly the partition of situations into position is a coarsening of that into
stages.

Positions are used to form the vertices of a new graph called the chain
event graph. This is a mixed graph whose undirected edges join positions at
the same stage and whose directed paths correspond to root-to-leaf paths of
the probability tree model.

Definition 8 Let (7,1I(7)) be a probability tree model. Its chain event graph,
C(T), is the mixed graph with coloured edges defined as follows.

1. The vertex set is V(C(T)) = K(T)U{woo}. The verter we is called the
sink vertex.

2. The directed edge multiset E4(C(T)) is partitioned into two sets, E1(C(T))
and Eo(C(T)) constructed as follows. For each w € K(T) choose v €
V(T) a representative of w. For each (v,v") edge in E(T)

(a) if V' is in position w' then add a direct edge from w to w' to the

multiset E1(C(T)),

(b) if v' is a leaf node then add a directed edge from w to we to the
multiset Eo(C(T)).
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CHAIN EVENT GRAPHS 11

(el ()

Fic 3. CEG for Example 1

3. The set of undirected edges is

E.(C(T)) ={{w,w'} : with w # w' and
there exist v,v" € S(T),u € L(T) with v,v" € u
and v € w,v' € W'}

that s, undirected edges join positions in the same stage.
4. If er,ea € E4(C(T)) and w(e1) = w(ez) in the original tree, then ey and
ea have the same colour in the CEG.

By Item 4 above, the primitive probabilities give the colouring of the di-
rected edges. Undirected edges are not coloured.

The CEG is as expressive as a tree for a sample space. However usually
it has many less edges and its topology expresses a set of conditional inde-
pendence statements. There are as many directed root-to-leave paths in the
original tree as there are root-to-sink paths in its CEG. This is important be-
cause, in the network analogy, a single draw of a typical unit, whose process
is described by the simulator network, corresponds to a root-to-sink path in
its CEG.

If two vertices v and v* of the original tree are in the same position, then
for each path A(v,vys) in the sub-tree 7 (v) there exists a corresponding path
A*(v*,v3,) in T (v*) along which the same evolutions occurs. This implies
m(A\) = w(A*). In particular consider the root-to-leaf paths, given in terms of
vertices, A(vg,...,v,...,vp) and AN*(vg,...,v*, ..., v3;) where vy and v},
are leaves in 7 and v, v* are in the same position. Then

() = 7(Mwg, v))m(A(v,vp1))
T(A*) = w(A*(vg, v*))m(A(v,var))

Because the stage set is a refinement of the partition given by the position
we can set II(C) =1II(7) and L(C) = L(7T).

Example 9 Figure 3 gives the CEG for the example in Figure 1 in the case
of independence between X and Y that is when v; and vy are in the same
stage.

Example 10 Figures 4 and 5 give a tree and its CEG for the stage set
{{vo}, {v1,v3,v13,v17}, {va, v7}, {vs, 09}, {v19}} and the position set {{vop},

{v1,vs}, {vs, v}, {va}, {vr}, {vis}, {vir}, {vio ), weo b
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Fic 5. CEG for the event tree in Figure 4
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CHAIN EVENT GRAPHS 13

Example 11 (Bayesian network) In [40] the authors prove that any dis-
crete Bayesian network G on the random variables {X1,..., X, } can be fully
expressed by a CEG C(G). Like context specific BNs [3] but unlike the prob-
ability decision graph [18] or the probability graph [4], the CEG provides a
generalisation of the BN. Thus suppose X; has parents Q; C {X1,...,X;-1}
in G, 2 < i < n. Then two situations v,_; = (x1,22,...,2,-1) and v, | =
(), xh,...,2,_|) are in the same stage u; of C(G) if and only if the values of
their parents agree. This fully expresses the conditional independence state-
ment embodied in the BN.

Topological characteristics of a CEG derived from a discrete BN include:
(i.) all the root-to-sink paths have the same length, (ii.) the stages consist
of situations all of whose distances (length of the path from the root to the
situation) from the root are the same, and (7i.) for 2 < ¢ < n all stages u;
associated with different configurations of parents of X; contain exactly the
same number of situations. Various examples and d-separation theorems for
CEGs are given in [40].

3. Conjugate estimation in chain event graphs

One appealing property of a BN is that under appropriate sampling regimes
it supports a product Dirichlet multinomial conjugate analysis on its joint
distribution, provided probabilities respect local and global independence: see
for example [9, 17, 42]. In this section we show that this property is shared
by CEGs.

To sidestep foundational issues associated with the appropriateness of the
simulator network, consider the problem of how to estimate the primitive
probabilities associated with each simulator/situation from a computer ex-
periment. Here we assume that random and independent draws are taken
from simulators lying along a path in C(7") that begins at the root vertex.

Run the tree simulator ¢ times. Let N[u] be the number of times we pass
through a stage u so that there are N|u| independent replicates {X,,(u) : 1 <
m < N[u]} from a random variable with the same distribution of X (v) for a
v in the stage u. Let Ny[u] be the random variable counting the number of
X (u) taking value v for v € X(u), where X(u) is the sample space of X (v)
for a v representative of u. This provides the basis for the construction of the
likelihood function associated with this computer experiment.

A full Bayesian model on a CEG C is given by the triple (C,II(C), P) where
P is the observer’s distribution to be updated over time starting from ¢ = 0.

Definition 12 Let w(u) = (w(vju) : v € X(u)) be the vector whose compo-

nents are the elements of II(u) and w(C) the analogous vector for II(C).
Let (C,1I(C),P) be a CEG with distribution P with density p(w(C)). The
density p(mw(C)) is called local if

p@C) = [I pulr(w)
)

ueL(T

where py(m(w)) is a function only of its argument m(u), u € L(T).
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14 RICCOMAGNO AND SMITH

Theorem 13 If an observer’s prior distribution on the CEG (C,TI(C), Pl
is local then the posterior density p)(w(C)) after t independent runs of the
stmulator from the root is also local so that

@)= [[ pir(w)
ueL(T)
Furthermore, if the components of the observer’s prior densities pg?} (m(u)) are
all Dirichlet so that, on its simplex, in the notation above,

(7 (u)) o H 7 (v]a) e 01

veX(u)

(where au, ,[0] are the parameters of the Dirichlet distribution) then the compo-
nents pg] (m(u)), uw € L(T) of the observer’s posterior density are also Dirich-

let densities given by

) o J] w(wfuw)et-t

veX(u)

where
Oy [t] =y p[0] + nylul

and ny,[u] is the observed value of the random variable N,[u).

Proof. The form of the computer experiment provides a likelihood L (7(C))
of the probabilities of the outputs of the different simulators in the network
from the ¢ path simulations that separates over the probabilities in the stages

so that
xe) = 11 11 =™
u€L(C) veX(u)
for each u € L(C) we have m(v|u) > 0 for all v € X(u) and >, =(v|u) = 1.
veX(u)
Now Bayes rule gives us immediately that

pmE) e T #iw(w)

weL(T)

Since pl(7(C)) must integrate to unity this proportionality must in fact be
an equality. Under the prior Dirichlet hypothesis the posterior density clearly
retains the Dirichlet monomial form in probabilities with the new powers of
the monomial term 7(v|u) given by oy, »[t] — 1. This completes the proof. W

This provides the obvious analogue to the conjugate prior to posterior anal-
ysis for a BN given ancestral data as outlined in, for example, [42]. Complete
data sampling is a special case of the above where all sampled paths are
root-to-sink paths in C. In the subclass of CEG models constituting discrete
BNs it is now well known that Dirichlet conjugacy is lost when sampling is
non-ancestral, even in the simplest models. Indeed it is often the case that
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CHAIN EVENT GRAPHS 15

certain functions of the parameters are unidentifiable when certain interior
positions are unobserved. This is because it is then only possible to learn di-
rectly about collections of polynomials in primitives and these may or may
not have unique solutions see, for example, [38]. The CEG, coding as it does
more asymmetric collections of monomials, suffers from the same difficulty.
The observer then sees the result of a simulator whose stage — and hence its
associated component simulator — is uncertain to her. So except in certain de-
generate circumstances, conjugacy and sometimes identifiability is lost under
non-ancestral sampling.

Assuming a local prior and that ¢t independent path draws beginning at the
root vertex are drawn, the predictive mass function qt(i)l (Ai41) of a subsequent
root-to-sink path draw from the simulator network, represented by Aj+1 = A,
is given by

qﬁﬂﬂz/quWMQMMW)
n[A]
5/Hm%ﬂmxmeMQMM®
3=0

where, in C,
A = Mwo, w1, -.ey , Why])

Under the local Dirichlet prior given above this is the expectation of a mono-
mial in the probabilities of a product Dirichlet. So it can be expressed explic-
itly — albeit via a rather complicated formula — as the product and quotient
of gamma functions whose parameters are linear functions of the posterior
hyper-parameters defining the posterior density pl (7 (C)). It is easily checked
that any polynomial functions of future draws can also be found explicitly as
an even more complicated function of gamma functions. An important special
case is the predictive distribution of the next N draws.

In general, if each of the positions {wo, w1, ...,,wyy} along the path A lie
in distinct stages {wy, € ug : 0 < k < n[A]} — as they do for example in a BN
— then a local prior, q,gi)l(/\) will also take a product form. Explicitly

n[A]
¢ () = 1T qt(i)l,k(ﬂ'k(uk))
k=1

where, for 0 < k < n[)|, if ug is the k£ numbered stage, so that mg(ug) =
m(v(k)|u) where v[k] is an index of the child of uy in A, then

g () = g (o )

— [ muglulpl () ()
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16 RICCOMAGNO AND SMITH

Note that predictive random variables {Xt(i)]L (u) : w e L(C)} whose distribu-
tions are given by

mﬁmmzwzﬁmb/mmﬁMMMMm

v € X(u), provide the obvious predictive analogue to {X(u) : u € L(C)}.
In particular, if the observer has a local prior, the mutual independence of
{X(u) : v € L(C)} will imply the mutual independence of {Xt(j_)1 (u) :u €
L(C)}.

Note that when the Dirichlet product conjugate prior is appropriate, from
the above we have that

0, o () = / r(o(®)l) T] (ol dru)

veX(u)

= Oy u(k)) [t] (au,v(k) [t])il

where

au,v(k)[t] = Z auﬂl[t]

veX(u)

Let IV (C) be the set of predictive probabilities after ¢ simulations. Suppose
that the CEG (C,II(C)) accurately expresses the observer’s beliefs. It follows
that if her prior beliefs are local then, after observing ¢ observations, her beliefs
about the next observation are described by the CEG (C,II)(C))), with the
same graphical topology where II(*) (C) defined above substitutes “best esti-
mates” for their corresponding true values of II(C). Therefore, from a Bayesian
perspective, the study of dependence structures when primitive probabilities
are known gives valuable insight into predictive dependence structures and
applies directly to analogous statements at time ¢, albeit only when beliefs
are local. Thus for clarity the remainder of this paper, we assume all prim-
itive probabilities are known. Analogous constructions and results can then
be applied to estimated systems using the correspondence above.

3.1. Model selection

Next, we briefly address how to perform model selection on a class of CEGs.
Thus suppose the observer’s beliefs are accurately expressed by one of the
CEGs in a class C where the prior probability that CEG C© e C is the
right model is P(©) [0]. A popular method of Bayesian model selection chooses
a model with the highest log posterior probability [5, 11]. Here the CEG C(©)

marginal likelihood density qft)()\) of what we observe given C(© is

loga” (V) =Y 4 (mya (w))
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CHAIN EVENT GRAPHS 17

where
o) (@)= > {logT(al)[t]) — log I'(a)[0])}
veX(u,C()
—logT( > @l +logl( > alo])
vEX (u,C()) vEX(u,C(e))
+logT( Y mful+ 1)~ Y logD(nyfu] + 1)
vEX (u,C(e)) vEX (u,C())

where I'" is the Gamma function and

Relative to an arbitrary reference CEG C(©) the posterior probability P(¢)[¢]
is uniquely calculable from the familiar log-odds formula

ol =1og P [t] — log PO [t]
—{10gPO11] ~ 1og PO} + { ) (759 (w) = af2) (moy () }

Thus o(©) acts as a score function: by choosing the CEG C(©) with the highest
score we choose the model with the highest posterior probability. Clearly
setting the prior probabilities to all CEGs considered equal simplifies this
score, removing its dependence on P(9)[0].

Of course, as with the analogous problem for selection of BNs using this
method we still have the knotty problem of specifying appropriate priors for
the different CEGs in C. Although a discussion of this point is outside the
scope of this paper we note that it is straightforward to use techniques evoking
the principles that beliefs about different models should correspond to the
same “dummy sample” [21] or that models that are statistically equivalent
are given the same prior probability [6].

4. Manipulation and Causality

4.1. Manipulations

Like a BN, a CEG provides a flexible framework for expressing what might
happen were a model manipulated in certain ways. The validity of such a
framework is of course heavily dependent on context. Shafer [36] argues sim-
ilarly for probability trees. Through developing notions of causality in terms
of simultaneous equation models implicitly Pearl [27] uses the context of sim-
ulator networks in his definition of causal effects.

This context is extremely valuable because it defines a domain where the
predicted effects of a proposed manipulation is uncontentious. Here we follow
Pearl; first developing a model for the manipulation of a network of simulators
and then leaving the issue of whether a manipulation of a real context has
an effect exactly analogous to the manipulation of a simulator network, to
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18 RICCOMAGNO AND SMITH

(i 40— ()

Fic 6. Manipulated CEG for Example 15

practical considerations particular of the application under study. Translated
into our framework therefore, manipulation of a set of situations D C S(7)
corresponds to substituting the simulator whose output is governed by X (v),
v € D, by another simulator whose output is governed by the random variable
X (v) with a different probability mass function 7(-|v), v € D. Having made
this substitution, the network is then run as before. Note that the type of
atomic manipulation that provides the focus of Pearl’s work [27, 28] sets
{X(v) : v € D} so that 7(-|v) is a degenerate probability mass function with
all its probability mass on a preassigned child of v in 7.

Some discussions of notions of the manipulation of a system and interven-
tion and various applications can be found in [15, 27, 36, 43].

Definition 14 Let (7,11(7)) be a probability tree model and D C S(7T) a
subset of situations. A manipulation on D of the tree is a triple (D, (X (v) :
v € D),(II(v|D) : v € D)) where P(X(v) = v') = 7(v/|[v) for v/ € X(v) is a
distribution of X (v) and Il(v|D) = {F(v'|v) : v € X(v)}.

The effect of this manipulation is the transformation (7 ,11(T)) — (7, ﬁ(D))

where
~ o m() ifvé D
P(X(v)_v)_{%(v’\v) ifveD

for v" € X(v). The manipulated tree is the probability tree model so obtained.
The manipulated CEG is the CEG of the manipulated tree.

If two unmanipulated situations were in the same stage of the original tree
and are manipulated in the same way, then they remain in the same stage in
the manipulated tree.

It seems to us that Definition 14 is the obvious choice of definition of the
(effect of) manipulation when dealing with simulator networks. It may not
be reasonable in other cases, see for example Shafer [36, Section 4.5]. It will
always be necessary to check whether the simulator analogy extends to a given
context.

Example 15 (cont. Example 4) Let v; and vy be in the same stage with
v3 mapping into vs. Let D = {v1,v5} and P(X(v1) = v3) = 1, P(X(vy) =
v5) = 1. The CEG of the manipulated tree is in Figure 6 where we did not
draw the edge out of the “manipulated position” and into ws, with zero
probability. Later we shall come back to the idea of a manipulated position.

A probability tree model (7,1I(7)) is said to be valid for an application if
its associated simulation network accurately expresses the observer’s beliefs
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CHAIN EVENT GRAPHS 19

about how situations happen in that application. A CEG model (C,II(C)) is
valid for an application if so is its underlying probability tree.

A manipulated tree can be valid for an application even when its idle ver-
sion is not. An important example of a valid tree is the decision tree 7 where
D c S(T) is the set of decision nodes. The unfolding of situations correspond-
ing to each (non-randomised) decision rule in the decision tree is given by the
tree itself. The primitive probabilities in II(D), not associated with the degen-
erate distributions associated with the chosen manipulation/decision rule, are
simply the probabilities associated with the chance nodes S(7°) \ D. Clearly
in this context sets of situations labelling decision nodes in 7 have degenerate
distributions.

Furthermore, the manipulation of a real system (for example, by controlling
values of covariates, employing randomised designs and so on) is a common
way of trying to ensure that a simulator network analogy of the manipulated
system might be at least plausible when the simulator network analogy to
the idle system certainly would not be valid: for an example see [22, 23].
This is extremely important because estimated parameters may be parameters
associated with the effects after a planned manipulation/treatment regime
where no idle system currently exists.

4.2. Causal probability trees

In any context there must be a practical manipulation of the real system we
hypothesize corresponds to our actual manipulation. For any given application
modelled by a simulator network there may be ways in which we envisage
performing a manipulation in practice. In a medical context, for example, such
a manipulation might be a certain type of treatment regime e.g. “whenever
a unit lies in a position w treat it so that it always moves to a position
w’” where w and w’ are connected by a direct edge. Note that for a valid
CEG such a manipulation will be well defined. The issue is then whether
the observer believes that the corresponding manipulation of the simulator
network faithfully describes her beliefs about the relationship between the
variables under her chosen real manipulation.

Analogously to Pearl [27, Definition 1.3.1], we say that a probability tree
model (7,1I(7)) is causal (written a CPT) if for any manipulation the ma-
nipulated tree (7, I1(D)) is valid.

Note that the probability tree model of an application will be causal if and
only if any appropriately defined real world manipulation has the same effect
as the manipulation of the corresponding simulator network. Moreover note
that as pointed out by Shafer [36] a manipulation could destroy the inherent
conditional independence statements, here expressed through the position and
stage partitions in the unmanipulated system.

There are important classes of manipulations associated with a CEG.

Definition 16 A manipulation is called positioned if the partition of posi-
tions after the manipulation is equal to or a coarsening of the partition before
manipulation. It is called staged if the partition of stages after the manipula-
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Fic 7. Manipulated CEG for Example 17

tion is equal to or a coarsening of the partition before manipulation.

Example 17 Example 15 is an example of a staged manipulation and triv-
ially also of a positioned manipulation.

Example 18 In Figure 4 the staged manipulation defined by
m(vslv1) =1, T(velvs) =1, 7(virlviz) =1, 7(viglvrr) =1

will lead to a CEG like that in Figure 5 in which the edges into ws, from the
positions [v1,v3], [v13] and [v17] are removed as the associated manipulated
probabilities become zero.

The staged manipulation corresponding to 7(vg|ve) = 1 and 7(vi2|v17) =1
cuts off the branch starting at ve through v; from the probability tree in
Figure 4 again because the probability of passing through v7 is zero. The
CEG of the manipulated tree is in Figure 7.

A positioned manipulation manipulates all sample units identically when
their future development distributions are identical, using the same (possibly
randomising) allocation rule. A staged manipulation will treat sample units
identically if their next development in the idle system is the same. In our ex-
perience in practice it seems often appropriate to restrict study to positioned
manipulations. All manipulations on a BN considered by Pearl are also nec-
essarily staged. Example 19 gives a simple case when a staged manipulation
is not reasonable.

Example 19 An English university has residence blocks of flats with two
rooms each. It allocates prospective second year students (either English (E)
or Chinese (C)) to one of the two rooms of each flat. The second room has
to be allocated to a prospective first year student. In the past this has been
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done at random. However it has been noticed in a survey that the probability
of satisfaction of home students placed with home students is higher and
of Chinese students placed with Chinese students is higher than when they
are mixed. In order to cause students’ satisfaction to increase, the university
decides to place first year students with a second year student with the same
ethnicity.

The BN and CEG of this problem are given in Figure 8 where X represents
the ethnicity of the second year student, Y that of the first year student
and Z is a binary index of the satisfaction of two students in the same flat,
taking values U and S. Thus for example X (vg) = X, X(v;) = [Y|X = E]|,
X(vs3) = [Z|X = E,Y = E] and w(vs|va) gives the probability of allocating
a Chinese first year student to a flat with a Chinese second year student.
The vertices v and vs are in the same stage to indicate a non-mixed flat,
analogously interpretation has the stage vy, vg. The undirected edge between
v1 and vy represents the random allocation of the first year student to a flat.

The relationship between satisfaction and shared race is not depicted in
the BN whilst it is in the CEG through the colouring of its edges. More
significantly it is impossible to determine, either from the semantics of the
BN or the factorisation of the probability mass function of the path events,
whether the allocation of the prospective second year student occurs before the
allocation of the prospective first year student. The CEG states that second
year allocation occurs before first year allocation explicitly, so that “causal”
manipulation of the type suggest by the survey above is a possibility. The
semantic of a BN is not refined enough to represent the sort of quite legitimate
manipulation considered in this example.

A manipulation that forces individuals of the same ethnicity to share a flat
implies a CEG without the direct edge between v; and vy and without the
crossing arrows in the CEG of Figure 8.

4.3. Manipulating CEGs

The CEG can be used as a framework for positioned manipulations. So it lies
usefully between the transparent but restrictive class of models fully expressed
by a causal BN and the CPT which is extremely expressive but rather too
demanding for many purposes, because a CPT requires that any manipulated
tree is valid.

Definition 20 A collection W of positions of a CEG is called a fine cut if
all paths from wy to wee pass through exactly one element of W.

In particular W = {wp} is a fine cut. In the CEG of Figure 5 the set
{[v1,vs], [v2]} is a fine cut of minimal size.

Just as in the causal BN it is possible to prove various results about iden-
tifiability of an effect of a staged manipulation simply from the topology of
the CEG. The next section concerns inferences that can be made about a
manipulated simulator network from observing certain statistics of random
samples taken from the corresponding idle network.
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()

Fic 8. BN and CEG for the example of university room allocation
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The standard manipulations of a BN are those that force the outputs of
some of the components of a simulator network to take pre-assigned values
[27, 28]. The analogue for the CEG is to consider manipulations which force all
the paths of a simulator network to pass through an identified set of positions
W. For example the assignment of a particular type of unit, here described
by their current position, to a particular treatment regime, here described
by a set of subsequent positions W. A set of positions W fulfills the role
described above and labels a manipulation unambiguously if it exhibit certain
properties.

For a CEG C and a set of position W in C, let pa(W') denote the set of all
parents of the elements in W, that is pa(W) = {w* € V(C) : there exists w €
W such that (w*,w) € E4(C)}.

Definition 21 A subset W of positions of a CEG C is called ¢ manipulation
set if

1. all root-to-sink paths in C pass through exactly one position in pa(W),
and
2. each position in pa(W) has exactly one child in W.

Example 22 In the CEG in Figure 6 the position [v1,v9] is a manipulation
set. Excluding the trivial case of a manipulation set consisting of the root
node only, there is no manipulation set in the CEG in Figure 5.

In the analogy above the set pa(WW) will then correspond of the positions
any unit must reach to be submitted to a treatment forcing them into the
position W. Note that when W is a manipulation set then all units will be
submitted to the treatment regime. Although the CEG obviously does not
force us to consider only manipulation to a manipulation set — indeed many
manipulations we might like to consider may be more general than this — it is
straightforward to develop theorems about such manipulations analogous to
those for causal BNs. Note, in particular, that all manipulations considered for
causal BNs are to a manipulation set as is the type of manipulation described
in Example 19.

Definition 23 A manipulation (D, (X (v),v € D),(II(v|D) : v € D)) of a
complete CEG is called a pure manipulation to the positions W if
1. it is a positioned manipulation,
2. for each v € D there exists w € W such that ﬁ(X(v\D) = w) =
m(wlv) =1 and
3. nov & D is manipulated.

Definition 24 A CEG (C,1I(C)) is called causal if
1. (C,II(C)) is valid and

2. for the pure manipulation to any manipulation set of C the corresponding
manipulated CEG is also valid.

If a CEG admits a description as a BN and the CEG is causal then so
is the BN. So in this sense a causal CEG is a natural generalisation of the
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causal BN, applicable to asymmetric models. It is however amenable to more
varied types of manipulations: for example those based on certain functions
of preceding variables as in Example 19.

5. Identifying effects of a manipulation

5.1. Identification of causal effects

Considerable recent interest in causal BN literature is in studying when the
effect of a manipulation on a prespecified random variable Y can be identi-
fied from observing a subset of its variables that are observed or “manifest”.
Typically sufficient conditions on the topology of the BN are given for such
identifiability to exist. This allows us to design experiments on the original
“idle” system so as to be able to estimate effects on a manipulated system:
for example the effects of a proposed new treatment regime. The topology
of the CEG can also be used for this purpose. Indeed it can be used to find
functions of the data (not just subsets of possible measurements) that when
observed in the idle system allows allows us to estimate all the effects of a
given manipulation of a causal CEG. As in [27] we prove several sufficient
conditions for identifiability and generalise Pearl’s Backdoor theorem to CEG
models.

We first need some definitions. We begin by stating what it means for a
random variable, measurable with respect to the path o-algebra of a CEG, to
be observed or manifest.

5.1.1. Manifest random vectors

To a path A(v1,v2) between the vertices v and vy in a probability tree cor-
responds a path A(wi,w2) in the CEG between two positions. A(w,w) is a
path through w and the sink node. Thus the path o-algebra on the probabil-
ity tree maps into a o-algebra on the CEG. However the paths between two
positions are easier to specify on a CEG than on an event tree because they
correspond to the set of paths between two vertices of the CEG itself. Note
that in the CEG there may be more than one path between two positions.

A random vector M is C-measurable if it is measurable with respect to the
path o-algebra induced on the CEG. Let 2y denote the sample space of M.
For each value m € Qy, let Ay, be the set of paths corresponding to the
event {M = m}. Let Ay, (wi,w2) denote the set of paths in the CEG that
pass through first w; and next wq, and are contained in the event {M = m}.
If W7 and W5 are fine cuts, then

{Aqn(unjlvg): wi € Wi, wy € VV&,IH.ES)RI}

forms a partition of the set of paths in the CEG. Other partitions are given
by {Am(wo,w) : m €Qn} and {Am(w, weo) : m €Q0} for any position w.

Definition 25 A random vector M is called observed (or manifest) if and
only if indicators on events in the path o-algebra corresponding to the set of
paths Am is observed for all m €Qng.
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Definition 26 Call a manipulation of a CEG (C,II(C)) forced to (the posi-
tion) w if

1. it assigns probability one to the event {w} ={\ € X:w € A}, and
2. all primitive probabilities in the manipulated CEG, 11(C), associated with
positions at or after w in C are those of the idle system.

This means that a manipulation forced to w forces the network to pass
through w by manipulations of the network before w but subsequently allows
the path evolution to be governed by the original network of simulators. Note
that when {w} is a manipulation set of C the pure manipulation to w is a
particular example of a manipulation forced to w.

Example 27 In Example 19 a manipulation forced to w = [vs, v5] is obtained
by setting 7(v4|vy) = 0 = 7(vg|v2), that is by allocating students with the
same ethnicity to the same flat. This manipulation directly on the CEG is
given by 7([v4, ve]|[v1]) = 7 ([vs, vs]|[v2]) = 0.

First we prove some results for a manipulation forced to a position w and
next extend them to a more general type of manipulation.

There is a natural domain for describing what happens after a manipulation
forced to w. Let (C(w),II(C(w))) denote the CEG whose graph consists of all
vertices and edges that lie on paths from w to ws in the CEG and whose
stages and their corresponding random variables are inherited from those of
the original CEG. Let us call C(w) the subCEG of C forced to w. Note that the
CEG C(w) describes what happens in the network C after any manipulation
forced to w. Explicitly any atomic event associated with a root-to-sink path in
C(w) is associated with a w-to-sink path in C and has an associated probability
as the product of primitives in the original CEG —i.e. associated with the path
through the network of simulators in C forced to w.

5.1.2. Effect random variable

To keep the analogy with the work by Pearl and others on identifiability,
next we consider an effect random variable. We partition the set of root-to-
sink paths in C(w) as A} (w,ws) for y in some index set Qy and interpret

it as the sample space of a random variable }A/(w) on the manipulated CEG.
The random variable ?(w) could be a measurement of an effect after any
manipulation forced to w.

There is a natural random variable, defined on the unmanipulated CEG,
that can be associated with Y (w): namely the one whose event {Y (w) = y}
consists of all paths in C passing through w and then continuing along a path
in A} (w, weo ). Thus formally let Y (w) denote a C-measurable random variable
such that {Y (w) = y} if and only if A € A, (wp, w). Observe that A, (wo,w) =
A~ (wop, w) x Ay(w, we) and A~ (wp,w) is the set of all truncated root-to-w
paths in the unmanipulated CEG C and X indicates the concatenation of
paths to give paths in C.

Lemma 28 equates the probability of the event {Y (w) = y|w} in the idle
CEG with the probability of the event {}A/(w) = y} in the manipulated CEG.

imsart-aos ver. 2005/05/19 file: CEG_causality.tex date: October 20, 2005

CRiSM Paper No. 05-16, www.warwick.ac.uk/go/crism



26 RICCOMAGNO AND SMITH

Lemma 28 For all y € Qy, under a manipulation forced to w

A~ o~

PY(w) =y) = P(Y(w) = ylw)

provided that in the unmanipulated system P(w) > 0.
Proof. By definition

P(Y (w) =y) = F(Ay (w, o)) = T(Ay (W, Wes))

where 7 (A, (w, wo)) denotes the probability that a root-to-sink path in C(w)
will lie in A;r (w,ws). The last equality holds because the manipulation
is forced to {w}. Directly from the construction of (C(w),II(C(w))) from
(C,II(C)) given above, we have

P(Y (w) =y, w) = m(Ay (w, weo)) m(A™ (w0, w))

where m(A™ (wp, w)) is the probability that a root-to-sink path in C will pass
through w in the unmanipulated network. Since, for A(wg, w), the set of path
passing through w in C, we have 7(A~ (wg, w)) = 7(A(wp, w)), the result now
follows from the definition of conditional probability. W

So for a manipulation forced to w it is possible to observe indicators on
the events {A,(wo,w) : y € Qy} in the unmanipulated system and to identify
the effects on Y (w) of the manipulation, using Lemma 28. An important
special case of this occurs when a manipulation to a set W is a manipulation
to a position w occurring after all positions in W: a graphical property of
the CEG that can be easily identified by eye. So if such a manipulation is
valid for a given application, then the effect on Y (w) of the manipulation
can be directly observed from the unmanipulated system. The formula in
Lemma 28 is satisfied if we can find any position w such that, after enacting a
manipulation, all paths pass through w in C and we can learn that the event
{w} occurs from our set of measurements.

It is not always possible, even in models that can be described by a causal
BN, to observe indicators on the events {A(y,w) : y € Qy} for a suitable
choice of w but only a set of coarser events. Nevertheless being able to observe
indicators on the events {A(y,W) : y € Qy} where, for some W, for each
y € Qy,

Ay, W) = | Ay, w)

can also be sufficient for identifiability. However to show this is less straight-
forward and first we need some further definitions.

Definition 29 A set of positions W of a CEG C is called C-regular if no two
positions in W lie on the same directed path of C.

By definition, a manipulation set of C is always C-regular.
Let W be a C-regular set of positions. Define a new CEG, (C(W),II(C(W)))
formed by connecting the subCEGs C(w), w € W, to a new root vertex wg
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CHAIN EVENT GRAPHS 27

and retaining all edges between the C(w)’s in the original CEG. For w € W
the new edge (wg, w) is labeled

(A~ (wo, w))

P(X () = w) = Zoro s

where 7(A™ (wo, w)) = D \exower T(A) is the probability of passing through w
in the original CEG and (A~ (wo, W) = > cw > aexiwex T(A) is the prob-
ability of passing through a position in the set W in the original CEG. Note
that because W is C-regular,

Y P(X(wg) =w) =1

weW

Let {A) (W, ws) : y € Qy} denote any partition of the set of root-to-sink
paths of C(W) where Qy is an index set, for example Qy is the set mentioned
just before Definition 29. One way to construct a sample from C(WV) using a
sample from C is to simply reject all samples whose root-to-sink paths do not
pass through W and accepting all others.

Let Y (W) denote a C-measurable random variable such that

{Y(W) =y} & X e Ay(wy, W)

with
Ay(wo, W) = A~ (wo, W) x A;(VV, Woo)

In this sense Y (W) is a random variable that happens after W in the unma-
nipulated system.

Next we construct an effect random variable associated with a manipulation
forced to W where W is a C-regular set. }/}(W) denote a C(W)-measurable
random variable representing the effect if and only if for y € Qy

Y (W) =y} = A (W, wso) (2)

so that Qy is the sample space of }A/(W)
Next we look for sufficient conditions on the manipulation and on the topol-
ogy of the unmanipulated CEG so that w € W

(A~ (wo, w))

PX(w)) =w) = =5

= P(X(wp) = w) (3)
holds. That is, we want that an effect of a manipulation forced to a C-regular
set of positions W can be determined directly from probabilities in the un-
manipulated system. We do this through the notion of an amenable manip-
ulation. We need to construct a graph representing what happens until we
reach a given position w. Let C*(w) denote the coloured subgraph of C whose
vertices and edges are those along the root-to-w paths in C and whose edge
colouring is inherited from C as well. Usually C*(w) is not a CEG. Write
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28 RICCOMAGNO AND SMITH

K (C*(w)) for the set of positions in C whose vertices are in C*(w) excluding
w.
For any regular set of positions, W, let

K w) = |J K(C*(w)

weW
Definition 30 Call a set of positions, W, simple if

1. W is C-regular
2. there exists a partition of the set K (C*(W)) into K®(C*(W)) and K®(C*(W))

called active and background positions respectively such that

(a) two background positions wy and wy are in the same stage if for
all wh,...,w} € KB(C*(W)) along a root-to-w, path there exist
wi, ..., wy € KP(C*(W)) along a root-to-ws path such that the
colour of the edge with parent w' equals that of wh fori=1,....,n

(b) the same holds for the active positions and moreover if for w}, w,
wy,wy € K4(C*(W)), in the notation above, there exist the edges
(wl,w1) and (W, wa), then they have the same colour.

Point 2. in Definition 30 means that two background positions are in the
same stage if they share the same sequence of background edges. Note that
it is sometimes tedious but always straightforward to determine from the
coloured graph of C whether or not a given set of positions W is simple.

Definition 31 A manipulation is called amenable forcing to a set W if

1. the set W is simple in (C,11(C)), R R
2. the set W is simple in (C,1I(C)) and under (C,1I(C)), P(W) = 1,
3. TI(C) and II(C) differ only on edges whose parents lie in K*(C*(W)).

When W = {w} , a singleton, the set of background positions will be
empty and so all the conditions above are vacuous and so W is simple. It
follows that a pure manipulation forced to w is amenable. The point of Defi-
nitions 30 and 31 is that, in a sense to be defined below, the random variables
associated with positions lying in K*(C*(W)), are independent of those lying
in K?(C*(W)). An amenable manipulation may change probabilities in active
positions, but will always leave probabilities associated with variables labelled
by background positions unchanged.

Thus remember (A~ (wo, w)) and (A~ (wo, w)) represent respectively the
probabilities in the idle (C,II(C)) and manipulated (C,II(C)) that a path in
C will pass through the position w € W, that is it reaches w. From Equation
1 and Definition 30, for each w € W

(A~ (wo, w)) = 7(A~ (wo, w))7? (A~ (wo, w))

where 7%(A~ (wo,w)) [7?(A~ (wg,w))] is a product of primitive probabilities
in II(C) associated with random variables whose positions lie in K%(C*(W))
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CHAIN EVENT GRAPHS 29

[KP(C*(W))] respectively. Furthermore, from the definition of K%(C*(W))
for any indices w,w’ € W

T (A (wo, w)) = 7 (A (wo, w')) = miy (say)

The fact that W is also simple in (C,II(C)) for the amenable manipulation
implies that
(A (wo, w)) = 7% 7 (A~ (wo, w))

for all w € W. So summarising these comments, for an amenable manipulation
we have that
(A~ (wo, w)) = iy 7 (A~ (wo, w)) (4)

and

(A (wo, w)) = 7y 77 (A~ (wo, w)) (5)
Lemma 32 Consider an amenable manipulation forcing to a simple set W.
The distribution of Y (W) — defined above in (2)  is identified from the proba-
bilities in the unmanipulated system of the events {Y (W) =y, W} fory € Qy
and its probabilities are given by the equation

PV (W) = y) = )

where P(W) = %"y m(A™ (wo,w)) and provided that 7(A~ (wo,w)) > 0 for
allw e W.

Proof.

= Z P(Y (w) = )7 (A (wo, w)) by the definition of Y (w)
= Z P(Y (w) = y|lw)m(A™ (wo, w)) by Lemma 28

= > P(Y(w) = ylw)7fym’ (A~ (wo, w))
weW

by equation 5. Hence by Equation (4)

B (W) =y, W) = % S P(Y(w) = ylw)rynd(AY)

™

weW
Ty Ty
W w

Since as a function of y

~

PY (W) =y, W) < P(Y(W) =y, W)
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30 RICCOMAGNO AND SMITH

it follows that

as required. Wl

In a causal BN the effect of a manipulation of X on a later ordered random
variable Y is identified from observing the distribution of the unmanipulated
pair (X,Y) if and only if the vector of unobserved (hidden) variables H in
the system can be partitioned as H = (H;, Hy) where

HQJ_L(Hl, X)

and
(Y,Hy)LIH, | X

It is straightforward to check that, for a CEG drawn taking positions in
any order associated with such a BN, this is exactly the condition of Lemma
32. In this correspondence the states of the vector of hidden variables H;
and X define the values the active positions take whilst the vector of hidden
variables Hy define the values the background positions take. So Lemma 32
is an exact analogue of this well known result for causal BNs for the more
general class of CEGs. Moreover conditions in Lemma 32 only depend on an
appropriate factorisation of probabilities associated with the manipulated set
w.

5.2. A Backdoor Theorem for CEG’s

An important graphical condition on causal BNs, called the backdoor crite-
rion, gives sufficient conditions for when values of a vector Z of measurements
together with a manipulated variable X and an effect variable Y are observed
but all other variables in the BN are hidden [27, Section 3.3.1] and [28]. We fin-
ish this section by generalising this result. We find an analogous theorem that
applies a graphical and sufficient criterion to a CEG to determine whether
we can identify the effect of an observed manipulation on a random variable
Y from the observation of a random variable Z — happening before the ma-
nipulation in the partial ordering induced by the paths — together with the
observation of Y in the unmanipulated system.

Our strategy is to apply the graphical results of Section 5.1. Let Z be a
random variable observed in the unmanipulated network whose events {Z =
z}, for z € Q7 can be expressed as a partition {2, : z € Qz} of the set of
positions. Suppose that there exists a fine cut 2 which gives a refinement of
such partition. Let the set of paths in the unmanipulated CEG intersecting €,
be denoted by A, z € Qz. For Z to occur before the manipulation we require
that every position w, whose associated random variable is manipulated, lies
on a path in the unmanipulated CEG between a position in 2, and we,
z€Qg.

Note that under this condition, the probability of {Z = z}, z € Q, is the
same under the manipulated CEG and the unmanipulated CEG. For z € Q
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let C(Q2;) be the CEG defined in the last section. Furthermore the effect
random variable Y defined in the last section is such that {Y = y|Z = z} is
a measurable event with respect to C(£2), z € Q7 and

P(Y=y)= > PV =ylZ=2)P(Z=2z)

ZEQZ

Definition 33 A set of positions W in a CEG is called simple conditioned
on Z, if
1. W= |J W(z) where W(z) is simple in C(2),
2EQy
2. each set W (z) is non empty and contains, say, w,, and
3. there is a directed path in C — and hence by definition also in C(Q2,) —
from a position in Q, to w,.

Note that a simple W is simple conditioned on the constant function. It is
possible to determine from the coloured graph of C whether or not W is simple
conditioned on Z.

For z € Qg let C(Q2,) denote the CEG constructed in the same way as
C(W) defined Section 5.1.2 and call the new root variable X (w{(z)).

Consider an amenable manipulation to a set W and let W be simple con-
ditioned on Z. Z is called a backdoor variable to the manipulation. Note that
such manipulation does not change any primitive probabilities from the idle
system lying on a path between wg and positions in Q,, z € Q. Let ?(W)
be the image of Y in the manipulated CEG. Then {?(W) =ylZ =z}is a
C(£2,) measurable random variable and

PY(W)=y)= > PY(W)=y|lZ=2)P(Z=2)
2EQy

Theorem 34 If a set W is simple conditioned on Z then the distribution
of Y after an amenable manipulation to W and for which Z is a backdoor
variable is identified from the probability (in the unmanipulated system) of
the events {Y =y, W, Z =z}, y € Qy, z € Qz and its probabilities are given
by the formula

PY(W)=y)= )

2EQy

PY =y, W|Z==2)
PWI|Z = z)

P(Z ==z)

Proof. By definition

~

PY(W) =y, W|Z=2)=PY(W)=y,W()|Z =z)

where W is simple in C(€2,), the CEG is valid given that {Z = z}. Applying
exactly the same argument in the proof of Lemma 32 we have that

PY(W) =y, W(2)|Z = 2) = P(Y(W;EVZT’ZVV:(Z))'Z =2)

The result now follows. W
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32 RICCOMAGNO AND SMITH

Corollary 35 Consider a causal CEG and a pure manipulation to a manip-
ulation set W. Then if all the events {Y =y, W, Z =z}, y € Qy, z € Qg
are manifest, then the effect of the manipulation is identified and given by the
formula above whenever W is simple conditioned on Z.

Proof. It follows from Theorem 34 because the CEG is causal, so that the
manipulation above is valid. W

Note that if a CEG of a BN is constructed so that the backdoor variables
are introduced as early as possible compatibly with the ordering of the BN,
then the conditions of Theorem 34 are satisfied for atomic intervention on a
causal BN.

So to summarise: by examining the topology and colouring of the CEG it
is possible to determine sufficient conditions for whether an effect of a causal
manipulation can be identified from a given partial set of observations of the
paths that units take through a network of simulators. We feel this result is a
very significant generalisation of the Backdoor theorem for two reasons. First
it applies to highly asymmetric models just as well as ones exhibiting the
strong types of symmetry that can be coded by a BN. For example different
values of Z could subsequently lead to quite different topologies in the CEG
evoking different ways of satisfying the criteria of Theorem 34 for different
configurations z. Of course if it is possible to fully express a model using a
BN then this property is quite useless because of each configuration z leads
to identical topologies of C(£2,).

Second the search for an appropriate random variable Z, whose observa-
tion ensures identifiability, is not just restricted to subvectors of the original
(non-descendant) measurement vectors. We can search over all functions of
such measurements. For example in an asymmetric model we might chose the
indicator on whether one of the non-descendant measurements took a par-
ticular value. Searching over functions of measurements to find the cheapest
way of identifying the quantity of interest will often be of much greater value
than simply searching over subsets of measurements. This will be particularly
useful if those measurements have not yet been collected, or their parametri-
sations have been chosen by convention rather than because they reflect in
some natural way the mechanism by which things happen.

It can be shown, by adjusting the methodology of Section 3, that the graph-
ical deconstruction outlined in the proofs of the results above can also be used
to guide the estimation of a total causal effect of a manipulation. However
such an analysis is nearly always non-conjugate and beyond the scope of this
paper. For related issues see [34].

6. Discussion

CEGs provide a much more flexible and general framework within which to
express ideas about causal relationships in discrete simulator networks than a
BN. This is not an accident. For networks of simulators causality is more natu-
rally expressed through predictions concerning the manipulation of unfolding
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situations than it is through assertions about the effects of manipulations on
dependence relationships between measurements. But as for the BN, a CEG
is appropriate for expressing causal relationships in practical scenarios only
when it might be plausible to believe that an observer’s perceived reality can
be fully expressed by this simulator analogy.

How often can a modeller reasonably believe that reality corresponds to
manipulating some of the input settings of some of the simulators? Clearly
this depends on the context. One might expect the analogy to work best when
simulators are of physical components of a machine. Even in these contexts
the simulator analogy can be fragile. For example, it is common practice when
designing a car to search for an optimal design by simulating various compo-
nents, performing computer experiments and pasting the results together in
ways similar to those described above. But only after a prototype car is actu-
ally built, the inadequacy of the models based on this network of simulators
can become apparent.

Of course if randomised experiments are designed so that what is observed
exactly mirrors a system later to be manipulated, then the simulator anal-
ogy is almost automatically sound when used to answer what might happen
to a typical unit [22, 23]. Essentially such experiments attempt to isolate a
component of the real system modelled by a single simulator in the network
and address policy questions about the relevant population under specific
types of unambiguous manipulation. But whenever the simulators are net-
worked together to produce a composite picture and are used as a source of
data, enormous leaps of faith have to be made. We believe that to label such
speculative deductions as “causal” deductions introduces an implicit spurious
determinism which could be inappropriate.

We have limited the scope of the models discussed in this paper intention-
ally. Now we turn to briefly discuss two generalisations.

First it is commonplace to meet structures that cannot be expressed simply
in terms of the exchangeable relationships in a BN, as in the examples above.
Many examples of when no BN can fully describe a structure are given in,
for example, [30, 31]. We have found in these cases that the partial descrip-
tion of the model through the CEG is helpful for framing causal hypotheses.
However issues of estimation and identifiability are subsequently better ad-
dressed through combining graphical methods with the algebraic structure of
the model. Various methods for exploiting the combined algebraic and graph-
ical structures of a CEG model to address estimation and identification will
be reported on a later paper.

The prior densities we have considered in this paper have purposely been
chosen as naive: in any practical context it can be expected that non-modular
context specific information will have to be incorporated and a numerical
Bayesian methodology will typically be needed. Under the conditions in Sec-
tion 3 above the general methodology we have described above is still valid.

Despite these caveats we hope we have demonstrated the advantages of the
CEG over the BN as a framework for expressing processes where predictions
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34 RICCOMAGNO AND SMITH

about classes of manipulations need to be made and explained. They are much
more general than the BN, are often more simple to explain and, under the
appropriate assumptions as easy to estimate. Most importantly we would ar-
gue that, just because data is conveyed to us within a certain parametrisation
this should not be allowed to force us to think of potential causal hypotheses
only in terms of these random variables as encouraged by the BN technology.
It is now well appreciated that it is often necessary to separate causal struc-
ture from the dependence structures introduced into measurements through a
particular sampling mechanism specific to the acquisition of information for a
particular study. The BN is not the most transparent framework within which
to accomplish this separation. Indeed in our experience it is not an expressive
enough framework within which to accomplish this task. The CEG however
does provide such a framework.
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