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Abstract
Power converters enable efficient conversion of electric power, thereby reducing power
consumption and cost. The key enabling technologies inside power converters, typically
used in hybrid electric vehicles, are the semiconductor devices. Device reliability is of high
priority because they generate heat from the dissipation of electric power which can lead
to failure if the device maximum junction temperature is exceeded. Furthermore, device
temperatures can vary largely in switching applications, leading to thermal-mechanical
fatigue failure. As electronic designers are pushed to deliver smaller and more powerful
packages, they are finding thermal issues increasingly difficult to solve. The primary goal
of this thesis is to develop a fast and accurate thermal simulation design tool which is
capable of simulating realistic power converter operation.

Most commercial thermal simulators use finite-element software. Despite their per-
ceived accuracy, they suffer from severe computational requirements and offer limited
ability to explore power converter packaging converter designs during realistic converter
operation. Traditional approaches using R-C networks as thermal equivalent circuits are
of little use as a design tool since for every geometrical layout of the packaging struc-
ture which is tested, the designer must return to the starting point which is either a
time-consuming FE simulation or a practical experiment.

The Fourier thermal model presented in this thesis is a purely conductive model requir-
ing no parameter extraction or use of a FE simulator. The starting point for the Fourier
model is the heat equation. The Fourier thermal model yields solutions to the heat
equation by carrying out spatial discretisation using a truncated Fourier series and using
MATLAB/Simulink to perform temporal discretisation using a dynamic ODE solver.

Validation using the finite volume thermal simulator FLOTHERM showed that the
transient Fourier model could accurately simulate 3-D heat conduction through a wide
range of power converter packaging structures. The Fourier thermal model is an excellent
early stage design tool because its simulation speed is far superior to FLOTHERM, even
though both models operate with a similar accuracy.

The use of MATLAB/Simulink as the simulation environment enabled the Fourier
thermal model to operate within the framework of an electro-thermal simulator and there-
fore simulate realistic load conditions. This is major advantage over existing approaches
which fail to simulate electro-thermal interaction. Experimental validation of the fast
electro-thermal converter simulator was achieved by utilising an inverter back-to-back rig
and recording transient device temperatures using an infrared camera. The similarity
between the experimental and simulated results indicated that the Fourier thermal model
was sufficiently accurate. The electro-thermal simulator operated at a simulation speed
which was ten times real time, which is extremely fast compared to existing approaches
which can take up to two days to simulate a 60 second drive cycle. ‘Ten times real time’
represents a significant step forward for power converter packaging design.

In the future device reliability can be accurately predicted if the electro-thermal sim-
ulator model is combined with a reliability model. The potential of the Fourier thermal
model to aid numerical optimisation of the whole power converter is exciting.
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Chapter

1 Introduction

1.1 Background

Global consumption of electricity is projected to double in the next twenty years [1]. By

that time, it is anticipated that nearly all electrical energy will be processed through

power electronics converters [2]. Power converters enable electrical energy to be used

more efficiently and flexibly, thereby reducing power consumption and cost. Within the

power converters, semiconductor devices provide the means for the control and conversion

of electric power by modifying voltage, current or frequency.

The Insulated Gate Bipolar Transistor (IGBT), first demonstrated by Baliga in 1979

[3], has become the power semiconductor device of choice for use in medium to high power

applications. The rise in demand of consumer electronics, in addition to the increasing

importance of environmental issues has forced people to take note of the IGBT power

converter market. Many of its key applications are driven by energy conservation, namely

renewable energy generation and automotive traction control. The Hybrid Electric Vehicle

(HEV) power converter market stood at £200M in 2009 and is expected to grow strongly
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at a growth rate as high as 30% until 2020 [4]. The associated need for size and cost

reduction and automotive reliability has prompted research into novel device materials,

structures, circuit topologies and thermal modelling.

Problems associated with the thermal dissipation and heat transfer through power

converters is one of the most urgent issues that requires significant attention in order

to produce efficient and reliable packaging solutions. During operation, the power de-

vices contained in power converters never achieve 100% efficiency due to conduction and

switching power losses. Conduction losses occur while the devices are on and conducting

current. Switching losses represent the power dissipated during the turn-on and turn-

off switching transitions. In a typical IGBT-based motor drive, 2-10% of the controlled

power is dissipated as heat within the device [5]. The heat generated as a result of these

losses must be conducted away from the power devices and into the environment using

a heatsink. If an appropriate thermal system is not used elevated temperatures can ad-

versely affect electronic device operation, power-handling capability, achievable packing

density and, crucially, reliability.

1.1.1 Thermal Simulation

The US Air Force examined the causes for failure in electronic equipment in an investiga-

tion called the “US Air Force Avionics/Electronics Integrity Program”. The investigation

showed that more than 55% of the electronic failures were caused by heat [6].

Thermal simulation is necessary as a design tool in order to predict the temperature of

power devices. The transient temperature changes can be used to predict the reliability.

For the power semiconductor devices used in power converters there are typically two

main stages in reliability estimation: 1) transient simulation of the device temperature,
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and 2) estimation of the damage accumulation due to thermo-mechanical stress cycling

in the device packaging. Device thermal models are essential to aid early stage design

feasibility studies which can narrow the spectrum of possible design choices. Through

accurate thermal simulation, it is possible to test new concepts immediately without the

need to order and implement new systems which can be time-consuming and expensive.

Thermal simulation can reveal information about the operating conditions which lead to

failure. Critical operating temperatures prior to failure can be reproduced which makes

it relatively easy to identify problematic designs. Thermal modelling is not necessarily

a stand alone process, however. Thermal models can be used as part of total system

optimisation if they are linked with other electrical or mechanical models in order to

simulate realistic transient conditions.

It must be noted that thermal simulations often rely on assumptions and so it is up to

the experience and knowledge of the design engineer to verify the usefulness and accuracy

of the result. In summary, thermal simulations can reduce development time and cost

by predicting and designing out the various failure modes associated with power module

thermo-mechanical stresses.

1.1.2 Power Module Packaging Design Challenges

Power module technology has evolved through multiple generations each with incremen-

tal improvements. The development trends for power modules have been focused on

increasing current and voltage levels to reduce the number of devices needed, increasing

operational temperature to reduce the demands on the cooling system, enhancing reliabil-

ity and reducing losses, as well as reducing size, weight and cost [7]. Fig. 1.1 demonstrates

these trends in converter design.
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Figure 1.1: Diagram showing the development trends in power converters [8].
MTBF stands for mean time before failure.

Designers are driven to deliver increasingly efficient power modules to ensure a good

utilisation of the energy resources and a low operating cost. The trend of operating losses

in various power devices appears in Fig. 1.2. It can be seen from this figure that the

losses are currently heading down towards 10% based on new materials.

Cost is an issue which permeates the whole of power electronics; this includes the cost

of assembly as well as the cost of the materials. Power electronic modules today represent

about 20% of the materials costs of hybrid vehicles, so cost is given great consideration

by all the vehicle manufacturers [4].

Designers select packaging materials with high thermal conductivity, to transfer heat

from the small surface area of the device to the larger surface area of the heat spreader and

heatsink. It is vital for the functionality of a device that its device maximum operating

temperature is not exceeded. The maximum allowed junction temperature for silicon
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Figure 1.2: Bar chart showing the trends of operating losses of various devices [9].

IGBTs is 175◦C or even 200◦C for hybrid vehicle applications; however, because reliability

is reduced by high temperature cycling, the operating temperatures are limited to below

150◦C [10].

In addition to allowing effective heat removal from the power devices, the power mod-

ule packaging must also electrically insulate the devices. It is challenging for a designer

to find materials which achieve both simultaneously. Electrical insulation is essential to

ensure the safe operation of the power module. The combination of different materials

used in the package must also be mechanically compatible. A critical consideration in the

packaging of devices is whether the bond between different materials can sustain the ther-

momechanical stresses it endures during its service life. The location of semiconductor

devices within a power module should be optimal from a thermal management viewpoint,
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although this then affects the electrical characteristics of the module.

A reduction in the volume and weight of power module packaging would reduce the

complexity of the engine compartment in a hybrid vehicle, enabling simple installation,

handling and maintenance, which is particularly important for hybrid vehicles. A lighter

power module would result in a more fuel efficient vehicle. Weight reduction would also

minismise the risk from potentially damaging stresses resulting from shock loads.

It is particularly important to optimise the size of the heat spreader and heat sink:

adequate heat dissipation is necessary but overkill leads to waste. The power density

of power electronic converters has roughly doubled every 10 years since 1970 [11]. The

continuity of this trend has become questionable due to the fact that silicon based de-

vice technologies, more recently centering on the IGBT concept, have started to show

a tendency to saturate in terms of performance improvement. The difficulty has arisen

because of the desire to increase current and voltage levels while simultaneously reducing

size. Unfortunately, the requirement to minimise size of the power module is constrained

by the need to maintain acceptable temperatures of the power semiconductor devices used

in the converter. It is for this reason that research is being conducted into new semicon-

ductor materials such as Silicon Carbide, Gallium Nitride and Diamond. Devices based on

the aforementioned materials have the potential to operate at much higher temperature

although the packaging issues remain unclear.

The importance of IGBT power module reliability has significantly increased due to

widespread use of these devices in fields which are associated with challenging operating

conditions. The reliability of a power module is of vital importance to the user, who

expects the system to operate correctly throughout its entire service life. For example,

an IGBT module for railway traction has the lifetime requirement of 30 years [12]. The

reliability of the whole package is tied to its temperature regime because there are many
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mechanisms that lead to package degradation as a result of elevated temperatures and

thermal cycling.

A package should be designed in such a way as to allow effective heat removal. A

balanced engineering approach is necessary when considering the many factors involved.

Final designs are typically in the form of an optimised configuration, a trade-off between

reliability, cost, efficiency, size, device performance and thermal performance [9, 13].

1.1.3 Fast Electro-thermal Converter Simulation

A significant challenge in the design of a HEV powertrain is the optimisation of its power

converter. The conditions expected by the power converter determine its specifications,

from which the power devices and cooling design can then be selected. The converter

conditions are dependent on how the HEV is driven and the vehicle’s powertrain config-

uration. Drive cycles are standardised speed versus time profiles which can be used to

simulate how a HEV is driven. Realistic converter conditions can therefore be acquired by

simulation using drives cycles and a model of the HEV powertrain configuration. These

converter conditions, in turn, can be fed into a converter simulator. A fast and accurate

electro-thermal converter simulation is required in order to carry out converter thermal

optimisation, which is one of the main drivers for this work.

Electro-thermal device models are essential since the device temperature affects the

device electrical characteristics which in-turn affects the device power losses. There is

feedback loop because the device power losses affect the device temperature. Electro-

thermal device simulation requires accurate device models; previous attempts at electro-

thermal device simulation use compact or behavioural device models in conjunction with

a thermal model, see references [14–19]. These models require simulation times of a
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few seconds for every device switching cycle. Therefore these models cannot be used to

simulate converter operation for longer than tens of milliseconds because there are millions

of switching events leading to prohibitive simulation times.

Simulation techniques have been developed which enable device power losses and de-

vice temperatures to be simulated over long drive cycles [20]. One such simulation tech-

nique has been adopted in this work; it was originally published in [21, 22]. An explanation

of this technique, the ‘Fast electro-thermal converter simulator’, follows.

The look-up table of device losses, shown in Fig. 1.3, is critical to the operation of the

electro-thermal simulator. Rather than simulating device switching at every switching

event, which is time-consuming, the inverter simulator simply looks up a power loss value

for the device from a look-up table. The look-up table is pre-calculated prior to an

electro-thermal converter simulation taking place. The simulation controller supplies the

device switching model with a number of permutations of device switching conditions

(load current, duty ratio and device temperature). The device switching model runs

just one switching cycle simulation for each set of switching conditions and returns the

simulated power value to the simulator controller. The simulation controller is then able

to populate the look-up table. The advantage of the electro-thermal converter simulator

being decoupled from device switching model is that it can accurately predict device power

losses while maintaining a fast simulation speed.

The inverter load conditions which feed into the electro-thermal simulator are also

precalculated prior to an electro-thermal converter simulation taking place. Driving cycle

data is used to determine the motor speed and torque profiles of a hypothetical electric

vehicle. This is achieved by simulating the powertrain based on vehicle parameters in-

cluding the mass, drag coefficients and wheel size. A simple drive model then simulates

the electric motor using these speed and torque profiles. The drive model generates the
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1.1 Background

inverter load conditions (Vrms, Irms, power factor and output modulation frequency) over

the duration of a drive cycle, i.e. an inverter load cycle.

Within the electro-thermal converter simulator hightlighted in Fig. 1.3 is an inverter

simulator which dynamically converts the inverter load conditions and the device tem-

peratures, supplied by the thermal model, into device switching conditions. The inverter

simulator then calculates the device power losses for a given time step, using a look-up

table, and supplies it to the thermal model. The electro-thermal converter simulator de-

mands that the instantaneous device temperature be calculated simultaneously using a

thermal model, enabling the electro-thermal feedback through the devices to be simulated.

In previous work, over-simplified thermal models have been entered into this framework.

Such models, while accurate for a given packaging structure, can not be modified easily in

order to examine different packaging geometries. Interactive optimisation of the converter

packaging can therefore not cannot take place.

All stages of this simulation method are implemented in MATLAB/Simulink, giving

the benefit of a common and flexible simulation environment shown in Fig. 1.3. The

electro-thermal simulator allows rapid evaluation of a device’s electrical performance and

the thermal performance of the converter packaging.
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1.1 Background

Figure 1.3: Schematic diagram showing the framework of the electro-thermal simulator.
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1.2 Motivation

Engineers apply optimisation to obtain the best result under given circumstances. Trade-

offs must be made depending on the factors considered in section 1.1.2. Suitable models

can be used to evaluate the behaviour of the entire power train used in a hybrid electric

vehicle. The aim of the work is to develop a rapid and accurate 3-D thermal model, capable

of simulating and subsequently optimising the heat diffusion through power converters

typically utilised in HEVs.

A fast accurate thermal model is required which is compatible with the simulation

framework shown in the previous section. The thermal model must be able to co-simulate

with an existing converter simulator. Therefore the thermal model should be implemented

in MATLAB/Simulink to allow straightforward integration with the converter simulator.

The co-simulation can be used to optimise thermal management of power module pack-

aging and aid prediction of the reliability of the whole traction system when used in

conjunction with reliability models [21, 22]. Testing for reliability under realistic con-

verter load conditions in this manner has been identified as an important requirement for

traction converter design and evaluation for automotive applications [23].

There are many requirements for a suitable thermal model. The thermal model must

be able to run quickly in order to co-simulate with the inverter simulator in Fig. 1.3. In

general, the faster the simulation, the more effective the simulation based design phase.

Therefore a computationally efficient model is essential to calculate the transient temper-

ature distributions in power converter packaging structures.

Another requirement of the thermal model is that it is sufficiently accurate. Accuracy

is important as simulated results are meaningless if they bear no resemblance to empirical

data. A full 3-D thermal model of an IGBT power module is required to accurately
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evaluate a complete packaging structure. This is accomplished by computing the 3-D

heat diffusion through many layers of device packaging. The thermal model must not

simply provide the device temperature; the temperature distribution across the whole

package is necessary to help detect hotspots. A packaging designer would also benefit

from being able to visualise heat flow through a structure. It is intended to create a

thermal model which will be used in the early stages of design to test design feasibility.

Certain assumptions and simplifications are necessary in order for the model to achieve the

required simulation speed which will inevitably lead to a degree of inaccuracy. However,

a reasonably high model accuracy is required to provide a thermal designer with useful

guidance.

Traditional approaches employ Resistor-Capacitor (RC) networks as thermal equiva-

lent circuits [24–30]. RC networks are popular as they are extremely fast to simulate and

can be easily integrated with an inverter simulator. However, RC networks cannot model

3-D diffusion accurately and require time consuming parameter extraction from transient

results. Such transient results are either obtained by a practical experiment [31, 32] or

commercial thermal simulators such as FLOTHERM, which utilises numerical methods

[33–36]. Both practical experiments and commercial simulators are undesirable for a ther-

mal designer. Commercial simulators are powerful simulation tools, which can analyse

complex structures and can provide accurate results. However, they are of limited use in

power module design. They require a long computation time to simulate realistic con-

verter load cycles with sufficient accuracy, especially for 3-D simulations [31]. In addition,

commercial simulators cannot be practically integrated with a inverter simulator.

Recently, there has been an emergence of Model Order Reduction (MOR) thermal

models. These are able to co-simulate with a inverter simulator to enable electro-thermal

simulation. Despite having many advantage over RC networks, MOR models suffer a
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similar drawback. MOR models require a commercial simulator to run in order for them

to be created. A designer of power module packaging wishes to test the thermal per-

formance of many packaging layouts in an efficient manner. This is not possible using

MOR models or RC networks because every design iteration would necessitate the use of

a time-consuming commercial simulator.

Clearly, it is desirable to find a fast and accurate thermal model which does not rely on

time-consuming commercial simulators; critically, it must be able to be integrated with a

converter simulator so that total converter optimisation can take place quickly. A thermal

model is therefore required which can be generated directly from the material properties

and the geometry of a structure. This thesis concerns the creation of a suitable 3-D

thermal simulator of power electronics packaging. A thermal model is required which can

fulfil all of the stated requirements without possessing the drawbacks of existing models.

1.3 Thesis Outline

The basic operation of a power converter is examined in chapter 2, along with details of

the converter power losses caused by switching and conduction losses. There is a review

of the power converter packaging used in the Toyota Prius HEV and the reliability issues

of power converters are highlighted.

The concepts of the physics of heat diffusion are introduced in chapter 3, followed

by a derivation of the heat conduction equation. The customary separation of variable

technique, used to solve the heat equation, is presented and there is an explanation of

why it is unsuitable for use this work.

A discussion on the choice of thermal model and the important issues in thermal

modelling is provided in chapter 4. Continuation of the work initiated by Bin Du et al
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[37, 38], which involves developing a Fourier thermal model, is then identified as a suitable

way to proceed with the thesis.

Chapter 5 presents the basic 1-D, 2-D and 3-D Fourier thermal model used to simulate

heat conduction through a single block. Results generated by the basic Fourier thermal

model are compared with results from FLOTHERM simulations in order to validate the

Fourier thermal model.

The method employed to enable the Fourier thermal model to simulate the material

interfaces present in the packaging layers of power converters are presented in chapter 6.

Results generated by the Fourier thermal model when simulating material interfaces is,

once again, validated by results from the software package FLOTHERM.

Chapter 7 shows the Fourier thermal model which is embedded into the power con-

verter simulator framework set out in section 1.1.3 in order to simulate a single inverter

phase leg during realistic load conditions. Experimental results are generated by a sin-

gle phase leg from a Toyota Prius inverter supplied with realistic load conditions by a

‘back-to-back’ inverter test rig. Experimental results of transient device temperatures are

recorded using an infrared camera and then compared with the simulated results in order

to achieve experimental validation.

The thesis conclusions are given in chapter 8. Suggestions for further research, which

would possibly serve to increase the capabilities of the Fourier thermal model featured in

this thesis, are also described.
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Chapter

2 The Power Converter

Chapter 1 stated that the motivation for this thesis was to create a fast and accurate

3-D thermal model of a HEV power converter package. This chapter begins by examining

the operation of a power converter and its function within a HEV. An in depth review

of the power converter packaging structure follows. The whole issue of device reliability

is then addressed, which features sections concerning thermal cycling, power converter

failure modes and methods of reliability estimation.

2.1 Power Converter Operation

The Power Converter has an important role in the electrical power conversion processes

which take place in a HEV. Fig. 2.1 shows the location of the power converter in the

powertrain of a Toyota Prius HEV. In Fig. 2.1 a pair of electric motor-generators (MGs)

are present, that can operate as motors or generators. Both MG1 and MG2 are permanent

magnet three-phase alternating current motor generators.
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2.1 Power Converter Operation

Figure 2.1: The role of the power converter within the powertrain of a Toyota Prius.
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2.1 Power Converter Operation

When MG assemblies run as three-phase motors, they require a variable voltage,

variable frequency (VVVF) three-phase AC supply. In this instance, the power converter

acts as an inverter, converting the DC line input into the AC output according to the

requirements for motor speed and torque as set by the driver and vehicle powertrain. The

inverter has three phase-legs each consisting of two IGBTs and two diodes (labelled with

subscripts A, B and C), as shown in Fig. 2.2.

A common inverter control method is sine-triangle pulse width modulation (STPWM)

control, which is displayed in Fig. 2.3. With STPWM control, the switches of the

inverter are controlled based on a comparison of a sinusoidal control signal (Vcontrol)

and a triangular switching signal (Vtri) at the switching frequency (fsw). The sinusoidal

control waveform establishes the desired fundamental frequency of the inverter output,

while the triangular waveform establishes the switching frequency of the inverter [39].

Figure 2.2: Circuit diagram of a three-phase inverter.
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Figure 2.3: Sine-triangle pulse width modulation [40].

To achieve the pulsed output voltages in Fig. 2.3, the switches of the phase-legs are

controlled based on the following comparison:

VA control > Vtri, TA+ is on

VA control < Vtri, TA− is on

VB control > Vtri, TB+ is on

VB control < Vtri, TB− is on

VC control > Vtri, TC+ is on

VC control < Vtri, TC− is on

When the upper device TA+ is on, the lower device TA− will be off, and vice-versa. The

same is true of the other phase-legs. This ensures that there is no short-circuit between

the positive and negative DC supply rails. The antiparallel diodes, connected across each

of the IGBT switches, are present to provide a path for the inductive load current when

the switch is turned off.
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2.1 Power Converter Operation

As shown in Fig. 2.3, the square wave pulses are the output from each of the inverter

legs with duration proportional to the amplitude and frequency of the associated control

signals. The inductance of the motor windings acts as a filter, limiting the change in

current over time and therefore averages out the switched (pulsed) current through the

inverter. When the switching frequency is matched to the winding inductance, and leg

output frequency, it produces a low ripple sinusoidal current signal for each phase-leg of

the inverter, depicted in Fig. 2.4. This low ripple sine wave is supplied to the electric

motor causing it to rotate.

Figure 2.4: Low ripple sinusoidal current at inverter leg output with motor load.

When MG1 acts as a motor it applies direct power to drive the MG2 assembly. MG1

additionally serves as the electric motor used to start the combustion engine in the power

train. In motor mode, MG2 is the primary electric drive motor. MG2 and the engine are

used together or separately to drive the front wheels via reduction gears.

In Fig. 2.1, the boost converter is present to raise this DC voltage entering the inverter

from the 200V of the battery to 650V (Prius 2010). The increase in DC voltage allows

a greater peak-to-peak output AC voltage from the inverter. This in turn allows the

motors to operate at a faster speed but at a reduced torque. Since power P = V I must

be conserved, the current entering the inverter is less. Therefore the I2R heating losses in

the motor and wires is less, enabling the use of thinner wires and a smaller device area.
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2.1 Power Converter Operation

When MG assemblies run as generators, rotated by either the combustion engine or

the wheel rotation during regenerative braking, the power converter operates as a rectifier.

The power converter rectifies the three-phase AC output of the MG assemblies into DC,

with the diodes playing a key role. In order to gain a basic understanding, one can imagine

the rectifier circuit operating solely with diodes, as shown in Fig. 2.5. This is a basic

three-phase full wave bridge rectifier circuit.

When the three-phase AC is rectified, the phase-shifted pulses overlap each other to

produce a DC output. Fig. 2.6 shows the full-wave rectification of a three-phase AC

supply. The function of the capacitor in Fig. 2.5, is to attenuate high frequency signals

which has the effect of smoothing the DC supply. After filtering and regulation (using

the boost converter circuit in reverse), the recovered energy recharges the batteries in the

powertrain.

Figure 2.5: Circuit diagram of a three-phase full wave bridge rectifier.
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Figure 2.6: Three-phase full wave rectification.

A control system adjusts and regulates the internal combustion engine (ICE), MG1,

and MG2 to meet the driving demands signalled by gear selection, accelerator pedal

position and vehicle speed. Crucially, it also controls the operation of the power converter

and balances the power requirements of the car.

2.1.1 Power Loss Generation in Power Devices

Semiconductor devices exhibit power losses that fall into two main categories: conduction

losses and switching losses. The type of losses responsible for the majority of the overall

system losses in the converter, depends on the switching frequency.

All silicon devices provide resistance to the flow of electric current that originates from

the resistivity of the bulk semiconductor material. Hence, whilst the device operating in

the on-state, there is conduction power loss given by:

Pcond = ρ1 IFVF , (2.1)
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where ρ1 is the duty ratio, IF is the current during forward bias (on-state), while VF

represents the voltage through the device during forward bias. Duty ratio is defined as:

ρ1 =
∆ton

∆toff +∆ton
= ∆tonfsw, (2.2)

where ∆ton is the time spent in on-state, ∆toff is the time spent in off-state and where

fSW represents the switching frequency. It can be seen from Equation (2.1) and (2.2) that

the conduction losses increase in proportion to the fsw. Off-state leakage current can also

lead to conduction losses but is negligible compared to the on-state loss.

The other form of power dissipation, coined “switching losses”, originates during the

device transition from the on-state to the off-state or vice versa. When a semiconductor

component is turned on, the device aims to switch from the blocking state to an unblocking

state. Ideally, the voltage would drop to zero and the current would reach its set level,

determined by the load, instantaneously. In practice, the voltage never drops to zero

and when a device is signalled to turn on or off the device current does not change

instantaneously but instead rises or falls in a finite time. These dynamic non-idealities of

the power devices result in switching losses and are due to the presence of stray inductance

and device capacitance. There is an energy loss for every device switching event. Fig.

2.7 illustrates the non-ideal switching behaviour of a typical semiconductor device, in this

instance an IGBT. Esw(on) represents the turn on energy losses and Esw(off) the turn off

energy losses. The time spent in onstate ton is the time taken to turn on, while toff is

the time taken to turn off. VDC is the DC line supply voltage, which appears at the leg

outputs when the associated upper switching is on.
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Figure 2.7: Power losses, P (t), in an IGBT device during a switching cycle.

It is possible to calculate the total amount of energy lost during a switching cycle,

Etotal, since:

Etotal = Eon + Eoff , (2.3)

where Eon represents the on-state energy losses and Eoff is the off-state energy losses,

which are defined below:

Eon =

∫

∆ton

P (t)dt, (2.4)

Eoff =

∫

∆toff

P (t)dt. (2.5)
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Using the relationship between energy and power, it is possible to represent Ptotal which

is total power loss of the device:

Ptotal = fSWEtotal, (2.6)

As an expression for Ptotal and Pcond exists, it is therefore possible to calculate the power

switching losses Pswitch using the equation:

Ptotal = Pcond + Pswitch (2.7)

Fig. 2.8 summarises the parameters which influence the total device power loss in a

semiconductor device.

Figure 2.8: Parameters which influence the power losses in semiconductor devices.

The on-resistance of a device is temperature dependent, which explains why the device

conduction losses are temperature dependent [41]. The device junction temperature Tj

affects the both the IF tail at turn-off and the diode characteristic at turn-on in Fig. 2.7,

hence the switching losses are a function of device junction temperature [42]. Since Tj is

dependent on the total device power losses, a coupled electro-thermal system exists with

the device physics interacting with the thermal properties of the switching device and

heatsink and the external load conditions. This justifies the use of the electro-thermal
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converter simulator framework displayed in section 1.1.3, which is able to simulate this

coupled electro-thermal system providing a suitable thermal model can be created. To

recap, a thermal model is required which can produce a profile of the device junction tem-

perature, Tj, using a device power loss profile. However, it must be able to co-simulate

with the inverter simulator shown in Fig. 1.3 since simulation of the electro-thermal feed-

back through the devices is required as the device conduction and switching losses change

with device junction temperature, as shown in Fig. 2.8. In order to create a suitable

thermal model the packaging structure which is being modelled must be understood.

2.2 Power Converter Structure

The use of semiconductors in the power converter leads to heat being generated by these

devices. Despite the converter efficiency being more than 90%, the large quantity of power

being converted leads to significant quantities of heat being generated. Adequate cooling

is paramount in order to keep the switching devices operational over the lifetime of the

vehicle. Power converter installations in hybrid vehicles have their own dedicated cooling

system. Part of the cooling system, the heatsink, is placed beneath the packaging of the

switching devices. The heatsink, the switching devices and their packaging are collectively

known as a power converter module.

The first power converter module was the SEMIPACK, introduced in 1975 [7]. Since

then a significant amount of engineering time and effort has been spent on topology and

packaging design. In recent years, a number of companies in the electronics industry have

released power modules known as “bricks”. The bricks are simply bolted to a heatsink,

and electrically attached to the control and filter stages of the power converter [43]. The

advantage of this modularity is reduced cost. The bricks are an attempt to standard-
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ise power electronics design, thus reducing the required time for engineers to focus on

electronic packaging and thermal issues.

Before a thermal model may be created for the power converter it is necessary to

review the geometry of commercially available power module packages. An image of the

power converter in Fig. 2.1 is given in Fig. 2.9. This power module is constructed with

multiple devices electrically connected in parallel. Upon close inspection, bond wires can

been seen connecting the device to bus bars and terminals. The entire transistor/diode

array assembly used by the power converter is encapsulated in a sea of protective silicone

gel protecting against debris, dust and moisture. The gel also protects the bond wires

giving shock and vibration protection. The gel does not migrate or flow, allowing the

converter mounting angle to be unrestricted.

Figure 2.9: Photograph of a power converter from the Toyota Prius HEV [44]. The gate
drive PCB and shielding plate have been removed.
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The power semiconductor devices (IGBTs and diodes) placed in the power converter

are the main components and both play the role of the switching devices. Owing to

symmetry, the main objective is to simply model the structure highlighted in Fig. 2.9

which repeats throughout the power module structure. The presence of this repeated

structure makes model expansion straightforward and a detailed structural view of it

appears in Fig. 2.10.

Figure 2.10: Structural view of the power module package from the power converter used
in the Toyota Prius (not to scale). Heat dissipates from the silicon device at the top and

travels through the packaging layers before being removed by the coolant. [45, 46].

Conventionally, high power electronic packages are of stack configuration. The config-

uration used in the Toyota Prius is shown in Fig. 2.10. Alternative configurations exist

with AlO used in place of AlN for the dielectric and AlSiC being the material selected for

the baseplate. In the Toyota Prius stack configuration, the silicon devices are soldered

onto an insulating substrates of AlN, which is sandwiched between two metal layers. The

substrate acts to electrically isolate the power devices from the heatsink. Beneath the
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substrate is a CuMo heat spreader which moves heat away from the sensitive devices

and provides proper mechanical support. The lateral heat spreading is caused by the

limited cooling capability of the module, lowering the heat flux to a level suitable for

further transportation to the heatsink. The important characteristics of a thermal heat

spreader material are its thermal conductivity and its coefficient of thermal expansion

(CTE). Copper and aluminium were formerly the industry standard heat spreaders due

to their high thermal conductivity properties, as stated in table 2.1. More recently, ma-

terials such as Metal Matrix Composites (MMCs) or CuMo are preferred because they

match the CTE characteristics of silicon more closely, while at the same time retaining

high thermal conductivity properties.

The heatspreader is connected to the heatsink by a thin layer of grease. The inverter

generally sits on a separate heatsink, thermal grease is used to provide a thermal contact

which is better than air. Although Table 2.1 shows that thermal grease has a low thermal

conductivity, it improves thermal contact by occupying the microscopic voids and cavities

between mating surfaces. The heatsink conducts heat away from the devices. Typically,

the inverter has a heatsink in which the coolant flows channels cast into the heatsink. In

most inverter configurations, a clamping mechanism, such as bolts, is used in the package.

This results in the thermal interface materials being subjected to a pressure of the order

of 0.17 - 0.34 MPa [46].

In summary, the repeating structure labelled in Fig. 2.9 shall be modelled in order

to determine the transient temperature of the switching devices used in the Toyota Prius

power converter during realistic operation. The repeating structure is essentially a stack

of blocks of material with their own thermal and mechanical properties. The transient

temperature regime of the switching devices can promote power converter failure modes

which directly affects the reliability of the power converter.
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Table 2.1: Comparison of material properties.

Material CTE Thermal Conductivity

(ppm/K) (W/mK)

Si 2.6 149

Solder 46

Al2O3 6.4 35

AlN 4.3 180

Aluminium 22 226

Copper 17 393

CuMo 7.2 197

Be-BeO MMC 6.8 240

Graphite-Cu MMC 0-2.0 (Directional) 356 (minimum)

Diamond 0.8-2.0 1000-2000

Gold 14 317

Thermal grease 1.09

Aluminum alloy 5086 23.7 125

Aluminum alloy 6061 23.4 167
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2.3 Power Device Reliability

Reliability is the probability that the item will perform its required function under given

conditions for a stated time period [47]. Device reliability may be affected by many fac-

tors, including excessive current causing heating and device destruction, cosmic radiation

causing breakdown in the off-state, gate oxide breakdown, and thermal runaway. Most

failures are due to thermal effects, so effective thermal management is essential.

Reliability should be examined as a function of time. Device failure rate, follows a

so-called “bathtub” curve shown in Fig. 2.11. The behaviour of failure rate with time is

quite revealing with respect to the causes of failure.

Figure 2.11: A “bathtub” curve representing a time-dependent failure rate [48].

Latent defects tend to be caused by defective components at manufacture. Missing

parts, substandard material batches, components which are out of tolerance and damage

in transit are a few of the quality control short comings that cause excessive failure rates
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near the beginning of working life. The middle section of the bathtub curve contains the

lowest failure rates; failures during this time are caused by freak overloads; power surges,

vibrations, mechanical impact, temperature fluctuations and moisture variation are a few

possible causes.

Towards the end of the product’s working life the failure rates increase. The onset of

rapidly increasing failure rates normally forms the basis for specifying a system’s lifetime.

The mechanism for thermally induced failure is thermo-mechanical cycling. This is the

expansion and constriction of materials with dissimilar material properties, namely elastic

moduli and coefficient of thermal expansion (CTE). This tends to contribute to the latter

stages of degraded strength and wear out. Here thermal cycling, reliability estimation

and the failure modes resulting from the cumulative effects of thermo-mechanical fatigue

will be considered.

2.3.1 Thermal Cycling

Thermal cycling may be characterised by:

i) High frequency cycling - with a time period of tens of milliseconds, the device

temperature varies with the load current during an inverter modulation cycle.

ii) Low frequency cycling - with a time period of many seconds, is due to the variation

in average (rms) load current throughout the load cycle, as the inverter load changes.

iii) Deep thermal cycling - with a time period of many minutes or hours, it is caused

by operational changes, i.e. the rise and fall in device temperature as the converter comes

in and out of use.

Thermal cycling is often responsible for damage to power semiconductor devices. Fig.

2.12 defines key temperature variables which influence power module reliability. The
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critical variable is ∆T which is the peak-to-peak temperature, it exposes power modules

to thermo-mechanical stresses which leads to fatigue failure. The stresses are due to

the mismatch of material properties such as Young’s modulus and coefficient of thermal

expansion (CTE). The effects of incompatible materials appear at interfaces. ∆T is two to

five times more likely to be responsible for failure than the maximum junction temperature

Tjmax [49, 50]. In summary, the failure rate in thermal cycling is related to:

Figure 2.12: IGBT temperature profile.

1. the total number of cycles,

2. the total temperature fluctuation over the cycle, ∆T ,

3. the mean temperature of the cycle, Tm,

4. the rate of temperature change, i.e. ∆T/∆t

2.3.2 Thermally Induced Power Module Failure Modes

2.3.2.1 Bond Wire Failure

Reliability of bond wire is influenced by the bond wire length and loop height [51]. Two

main types bond wire failure been reported:
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a) bond wire lift-off,

b) the heel crack failure.

Bond wire lift off is caused by the large mismatch of CTE between the Al bond wire

(22x10−6/K) and the silicon device (2.6x10−6/K). This generates a significant thermo-

mechanical stress in the bonding zone during thermal cycling. This stress eventually

leads to bond wire lift-off, as shown in Fig. 2.13. The current density through the

surviving wires increases accordingly, accelerating their failure, resulting in the complete

failure of the device [52, 53]. Poor bonding during the manufacturing process due to

surface contaminants can also be a contributory factor. Thermo-mechanical stress can

also lead to the mechanical deformation of the bond wire resulting in a fatigue crack,

as shown in Fig. 2.14. Other contributory factors mechanical resonances caused by a

combination of external field and time varying current through the bond wires [51, 54,

55]. Considerable improvements in tool design and bond wire material composition has

significantly improved reliability at the device-bond wire interface.

Figure 2.13: High resolution X-ray radiograph of IGBT bond wire
lift-off during a power cycling test [52].
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Figure 2.14: High resolution X-ray radiograph of a heel crack initiation
in an IGBT bond wire [54].

2.3.2.2 Degradation of Solder Layers

Soft soldered joints are the greatest reliability limiter. Solder joint failure is mainly due to

fatigue resulting from thermal cycling. A temperature swing causes stress to be applied

to the solder between materials whose CTEs are different. Repeated application of this

stress, as the temperature alternates between its high and low values (∆T ), causes the

solder to crack, as displayed in Fig. 2.15. Both process-induced and fatigue-induced solder

cracks propagate due to deformation from cyclic stresses.

In the case of IGBT power modules, failures are most likely to occur in the solder

layers located between the base plate and the Metal(1)-AlN-Metal(2) insulator sandwich.

These solder layers are exposed to the toughest conditions with regard to lifetime fatigue

[56–59] because the materials either side have a large CTE mismatch and the solder layers

occupy a large area.

34



2.3 Power Device Reliability

Figure 2.15: High resolution X-ray radiograph of a Au-Sn solder layer located beneath a
silicon device. The solder thickness is about 75µm [60].

Solder cracks and relatively large voids in the solder layer can have detrimental effects

on the heat dissipation performances of the assembly. The heat must flow around them,

causing unequal flux distribution and resulting in increased device temperature and the

formation of localised hotspots. This can accelerate the evolution of several other failure

mechanisms, such as bond wire lift-off and solder fatigue [61, 62].

2.3.2.3 Silicon Device and Substrate Cracking

Silicon and AlN have a low CTE in the useful range for electronics. At room temperature,

silicon and AlN have a CTE of 2.6x10−6/K and 4.3x10−6/K respectively [63]. Very few

materials have such low values in this temperature range to match either Silicon or AlN.

Consequently, silicon and AlN layers, within a power module structure, are often located

alongside materials with a dissimilar CTE to their own. Therefore, silicon and AlN

regularly endure the stresses which cause the brittle silicon and alumina to crack [64].
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2.3 Power Device Reliability

2.3.2.4 Delamination

The critical zones for delamination are the interfaces between the ceramic substrate AlN

and the metal above and below. The difference in their CTE leads to stress within the

interfaces when subjected to temperature changes. The bimetallic effect causes bending

deformation which leads to delamination of the metal from the substrate [65]. Solder

delamination occasionally occurs due to the presence of voids similar to those shown in

Fig. 2.15. Solder delamination tends to creep from the edges inwards.

2.3.3 Reliability Estimation

Typically, device and packaging reliability has been tested by simulating or accelerating

thermal cycling. This may be active, by operating and self-heating the device, or passive,

where heat is supplied by an outside source. This is a means for evaluating packaging

performance.

More recently, the LESIT project [66] was set up to explore power device reliability

in relation to temperature. A large sample of devices were tested across a wide range of

cycle conditions, but the project only considered instances when the failure mechanism

was bond wire lift-off. This work provides the only known comprehensive set of data for

thermal reliability of IGBT power modules and is a valuable starting point for determining

power device reliability, despite only examining bond wire lift-off.

Data from the LESIT project for various combinations of Nf , Tm and ∆T is plotted in

Fig. 2.16. The number of cycles to failure, Nf , is the key variable describing the average

lifetime of a component. The data implied that Nf had a power law dependency on the

temperature range ∆T , essentially a Coffin Manson relationship [67, 68]. The almost

parallel shift in the data for various values of Tm indicated an Arrhenius approach [69].
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2.3 Power Device Reliability

The LESIT project put forward the following equation:

Nf = B∆T β exp

(
Qact

R1Tm

)
, (2.8)

where R1 is the gas constant (8.314 Jmol−1K−1). Using a least square fit, values were

found for the remaining constants, B = 640, β = -5, and the activation energy per mole

Qact=7.8x104 (Jmol−1). By proposing Equation (2.8), the LESIT project allowed the

determination of Nf as a function of Tm and ∆T .

Figure 2.16: Dependence of the number of cycles to failure, Nf , on the mean (Tm) and
amplitude (∆T ) of the temperature cycling taken from [66]. The lines indicate the best

fit through the experimental data points.

For the solder cracking failure mechanism the relationship is more complex, and also

depends on time since the solder creeps. The difficulty is that the interaction between
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2.4 Summary

failure mechanisms for different temperature cycling conditions is not known with cer-

tainty [70]. It has been suggested in [71] that above the temperature range ∆T of 130K

the dominant mechanism is solder cracking, while below 130K it is bond wire lift-off.

2.4 Summary

This chapter began by highlighting the role of the power converter, utilising the power-

train of the Toyota Prius hybrid electric vehicle. A detailed explanation of how a power

converter operates, either as an inverter or rectifier followed. Semiconductor device power

losses, more specifically, switching losses and conduction losses were introduced. These

losses are worthy of mention because they are responsible for the increase in temperature

of the power module packaging.

The structure of a power module package from the Toyota Prius HEV was reviewed.

Attention was given to the structure which repeated with the packaging module that the

simulation domain for the thermal model is based upon.

Consideration was given to the power device reliability; thermal cycling was addressed.

The typical failure modes of power module packaging are featured. These include bond

wire failure and solder layer degradation, solder cracks and delamination. The chapter

concludes with a brief mention of existing methods of reliability estimation.

Thermo-mechanical stress-induced fatigue mechanisms are a direct result of the tem-

perature cycling caused by rapid switching of a large load, typical of the conditions seen

in a HEV. To keep these effects to a minimum, the device junction temperature swing

(∆Tj) has to be minimised; this required careful design and a thorough knowledge of heat

diffusion and associated material properties.
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Chapter

3
An introduction to the Physics of

Heat Diffusion

Heat energy can be transferred from one place to another by conduction, convection

and radiation. The majority of heat generated by the semiconductor devices in a power

converter module is transported via conduction to the bottom of the power module.

Other mechanisms are seldom sufficient to cause any noticeable change [43, 72]. Therefore

convection and radiation are only covered briefly in this chapter. Conduction is addressed

in more detail and Fourier’s law is stated. Finally, the derivation of the heat equation is

presented, followed by its solution using the customary separation of variables method.

3.1 Convection

Convective heat transfer tends to refer to the thermal interaction between a surface and an

adjacent moving fluid. Convection is a combination of diffusion and advection. Diffusion

is the random Brownian motion of individual particles in the fluid. Advection is when

heat is transported by the larger-scale motion of currents in the fluid. Near the surface

the fluid velocity is low, and diffusion dominates. Away from the surface, advection has

the greatest significance [73].

39



3.2 Radiation

Determination of the heat transfer rate between a surface and an adjacent fluid in

motion is based on Newton’s law of cooling:

q′′s = h(Ts − T∞), (3.1)

where q′′s (W) is the surface heat flux, Ts (K) is surface temperature, T∞ (K) is the fluid

temperature away from the surface and h (WK−1) is the heat transfer coefficient [74].

3.2 Radiation

Electromagnetic radiation is continuously emitted from all substances because of the

molecular and atomic agitation associated with their internal energy. Radiation travels

directly to its point of absorption at the speed of light and does not require an intervening

medium to carry it. The energy exchange between two surfaces depends on the geometry,

shape, area, material crystal orientation, absorptivity and emissivity of the two surfaces.

Emissivity ε refers to a material’s ability to emit heat. The determination of the net

heat exchange by radiation between two surfaces, q12 (W), can be complex. However, the

analysis is simplified for an ideal model for which absorptivity is equal to the emissivity.

For the case where a small surface is surrounded by a much bigger surface the net heat

change exchange can be expressed by the Stefan-Boltzmann radiation law [75]:

q12 = ε1σA11(T1
4 − T2

4) (3.2)

where ε1 is the emissivity of the small surface, A11 (m2) is its area, T1 (K) its absolute

temperature, and T2 (K) is the absolute temperature of the larger surrounding surface. σ

is called the Stefan-Boltzmann constant and has a value of 5.6703x10−8 (Wm−2K−4).
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3.3 Conduction

In this instance, conduction refers to heat conduction as opposed to the previous chap-

ter where “conduction losses” referred losses which occurred in semiconductor devices

conducting electrical current.

Conduction describes how energy is transmitted through solids. Heat conduction

occurs by charge carrier transport, lattice vibrations, electromagnetic waves and spin

waves. All these mechanisms contribute to the overall thermal conductivity of a material,

denoted by k (Wm−1K−1) [76]. Charge carrier transport and lattice vibrations are the

main mechanisms by which conduction occurs.

3.3.1 Lattice Vibrations

Lattice vibration occurs when the nucleus of one atom vibrates causing energy to be

passed on to nearby nuclei. There is no net motion of the media as the energy propagates

through. Atoms vibrating more energetically in one part of a solid transfer that energy to

less energetic neighbouring atoms. The effectiveness of lattice vibrations can be increased

by cooperative motion in the form of propagating lattice waves, called phonons.

In insulators lattice vibrations are the dominant heat transportation mechanism and

the magnitude of their lattice thermal conductivities k can vary over an extremely wide

range. Diamond has a thermal conductivity of 900 - 2320Wm−1K−1, higher than any

metal, while in polymeric materials k can be as low as 0.003Wm−1K−1 [77].

Fig. 3.1 aids the visualisation of lattice vibrations. Note that if heat energy is supplied

to one part of a solid, the atoms vibrate faster. As they vibrate more, the bonds between

atoms are shaken more. This passes vibrations on to the next atom, and so on. Eventually

the energy spreads throughout the solid resulting in an overall temperature increase.
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3.3 Conduction

Figure 3.1: Diagram showing heat conduction due to lattice vibrations
in a solid material.

3.3.2 Charge Carrier Transport

This heat transport mechanism occurs in metals. The unique feature of metals, as far

as their structure is concerned, is the presence of charge carriers, specifically conduction

electrons. The conduction electrons in a metal are non-localized, i.e. they are not tied to

any particular atom. The same mobile electrons which participate in electrical conduction

also take part in the transfer of heat. Factors which determine the heat conductivity of a

metal include:

i) the density of conduction electrons,

ii) the average speed of conduction electrons,

iii) the distances that the electrons travel before they suffer a collision.

It is noteworthy that even in pure metals there is some ‘thermal scattering’ since the atoms

are always vibrating out of position because of the energy linked with their temperature

(lattice vibration). In a pure metal, the heat current associated with the flow of electrons

far exceeds the small contribution due to lattice vibration. Fig. 3.2 depicts how conduction

electrons become excited by the heat source and transport energy through the material.
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3.3 Conduction

Figure 3.2: Diagram showing heat conduction in a metal due to carrier charge transport.
Conduction electrons move freely within the atomic lattice.

3.3.3 Fourier’s Law of Conduction

The empirical law of heat conduction states that the rate of heat flow by conduction in a

given direction is proportional to the area normal to the direction of heat flow and to the

gradient of temperature in that direction. It is known as the Fourier rate equation and

appears in Equation (3.3).

.

Qn = −kA
dT

dn
, (3.3)

where
.

Qn (W) is the rate of heat flow in n-direction, k (Wm−1K−1) is the thermal con-

ductivity of the material and A (m2) is the area normal to the n-direction. The sign

convention implies that the direction of heat flow between two neighbouring points is in

the direction of the lower temperature.
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3.4 Derivation of the Heat Conduction Equation

3.4 Derivation of the Heat Conduction Equation

The heat equation is derived from Fourier’s law and the law of conservation of energy

[78–80]. Consider the volume of heat conducting material in Fig. 3.3. It is a rectangu-

lar parallelepiped whose sides are parallel to the axes of coordinates and are of lengths

dx, dy and dz. The solid is assumed to be homogenous, isotropic and to have thermal

conductivity k which is dependent on temperature only. Q (W) represents the heat energy.

Figure 3.3: Rectangular parallelepiped of heat conducting material

According to Fourier’s Law, the total quantity of heat flowing through the face dydz

at x1 in time dt is:

dQx1 = −dydzk(T )
∂T

∂x
dt, (3.4)

while the rate of loss of heat through the face dydz at x1 + dx is:

dQx1+dx = dQx1 +
∂

∂x
(dQx1)dx. (3.5)

Substituting Equation (3.4) into the parenthesis in Equation (3.5) yields:
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3.4 Derivation of the Heat Conduction Equation

dQx1 − dQx1+dx = dydz

[
∂

∂x

(
k(T )

∂T

∂x

)
dx

]
dt. (3.6)

Similarly from the other faces we obtain the following equations

dQy1 − dQy1+dy = dxdz

[
∂

∂y

(
k(T )

∂T

∂y

)
dy

]
dt, (3.7)

dQz1 − dQz1+dz = dydx

[
∂

∂z

(
k(T )

∂T

∂z

)
dz

]
dt. (3.8)

Assuming that the material does not generate its own heat, the basic law of conserva-

tion of heat energy for the volume states that the rate of change of heat inside the volume

is equal to the net flow of heat through the boundaries. Therefore:

dQnet = dQx1−dQx1+dx+dQy1−dQy1+dy + dQz1−dQz1+dz. (3.9)

Using elementary physics, a change in the internal energy U of the volume in time dt can

be described by:

dU = ρ1cpdxdydz

(
∂T

∂t

)
dt, (3.10)

where ρ (kgm−3) is the density and cp (JKg−1K−1) is specific heat capacity .

In the absence of work done, the first law of thermodynamics becomes:

dU = dQnet. (3.11)

Now substitute each of the expressions from Equations (3.6), (3.7) and (3.8) into

Equation (3.9). Substituting the resulting expression and Equation (3.10) into Equation
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3.4 Derivation of the Heat Conduction Equation

(3.11) leads to the following expression:

cρ
∂T

∂t︸ ︷︷ ︸
Change in thermal energy storage

=

(
∂

∂x

[
k(T )

∂T

∂x

]
+

∂

∂y

[
k(T )

∂T

∂y

]
+

∂

∂z

[
k(T )

∂T

∂z

])

︸ ︷︷ ︸
Net transfer of thermal energy into the control volume (inflow − outflow)

.(3.12)

Assuming the physical properties are constant (i.e. k is independent of temperature)

results in the following 3D heat equation:

∂T (x, y, z, t)

∂t
= α

(
∂2T (x, y, z, t)

∂x2
+

∂2T (x, y, z, t)

∂y2
+

∂2T (x, y, z, t)

∂z2

)
, (3.13)

where α = k/(cρ). α is known as thermal diffusivity and represents the ratio of thermal

conductivity to thermal capacity. It is a measure of how quickly heat spreads through a

given material.

In order to be able to simulate heat conduction through solid matter, such as power

module packaging, it is necessary to solve the 3-D heat equation. By doing so, it is

possible to generate an expression for T (x, y, z, t), which is the temperature distribution

in a structure over time.

3.4.1 Solving the 1-D Heat Equation.

Consider the 1-D heat conduction problem in Fig. 3.4 which is the classical problem

of heat conduction through a simple rod. The solution to the 1-D heat equation is

an expression of T (x, t). The initial temperature distribution and heat flux boundary

conditions are known, called Neumann conditions. The assumption is that the rod is

perfectly insulated, i.e. there is no heat flow out of the boundaries.
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3.4 Derivation of the Heat Conduction Equation

Figure 3.4: Heat conduction in a rod with known boundary conditions.

Assuming that heat energy is neither created nor destroyed in the interior of the rod,

the following 1-D Heat equation applies:

∂T (x, t)

∂t
= α

(
∂2T (x, t)

∂x2

)
for all 0 < x < l and t > 0. (3.14)

Boundary conditions:

∂T (0, t)

∂x
=

∂T (l, t)

∂x
= 0. (3.15)

Initial condition:

T (x, 0) = f(x). (3.16)

3.4.1.1 Linearisation of the Heat Equation

When material properties, k, c and ρ, are constant in the heat equation, it is called

linear. There are many mathematical benefits; for example one can use the superposition

principle. Computationally, it is much easier to solve a linear partial differential equation

(PDE) than a non-linear PDE. Almost all analytical solutions require the heat equation

to be linear. For numerical methods it is not a requirement but is still desirable.
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3.4 Derivation of the Heat Conduction Equation

3.4.1.2 Separation of Variables Method

The heat equation is a partial differential equation (PDE) which can be solved by the

classical method called the separation of variables. The separation of variables method

represents one of the most powerful and most used analytical techniques for solving a

variety of PDEs. The following approach was first proposed by Fourier in his classical

work Thorie analytique de la chaleur (1822; The Analytical Theory of Heat) [81].

Assume the solution can be separated, i.e.:

T (x, t) = X(x)T (t). (3.17)

Begin by substituting (3.17) into (3.14), giving:

∂

∂t
[X(x)T (t)] = α

∂2

∂x2
[X(x)T (t)] . (3.18)

Separate the equation so that the one side depends only on t, while the other depends

only on x. Both sides must be equal to a constant (λ) since one side depends only on t

and the other only on x, so the equation becomes:

T ′(t)
αT (t)

=
X ′′(x)
X(x)

= −λ. (3.19)

The minus sign appears for convenience. The equation in (3.19) contains a pair of separate

ordinary differential equations (ODEs). The first ODE to solve is:

T ′(t) + λαT (t) = 0. (3.20)
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3.4 Derivation of the Heat Conduction Equation

This is straightforward to solve, rearranging and integrating leads to:

∫
1

T (t)
dT (t) =

∫
−λαdt. (3.21)

Therefore:

T (t) = CCe−λαt, (3.22)

and using the law of indices:

T (t) = CCeαe−λt. (3.23)

As a constant multiplied by a constant generates another constant, the expression in

Equation (3.23) can simply be written as:

T (t) = CCe−λt. (3.24)

Eigenvalues and eigenfunctions must be found for the second ODE which is:

X ′′(x) + λX(x) = 0. (3.25)

When λ < 0, there exists real numbers D, E such that:

X ′(x) =
√
−λDe

√−λx −
√
−λEe−

√−λx. (3.26)

Applying boundary conditions from (3.15) means that D = E = 0, which implies X(x)
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3.4 Derivation of the Heat Conduction Equation

is identically 0. Also, suppose that λ = 0, then there exists real numbers D, E such that:

X(x) = Dx+ E. (3.27)

From (3.15), in the same manner as in the previous case, it can be concluded that that

D = 0. So every constant function X0(x) = E is an eigenvalue λ0 = 0.

When λ > 0 there exists real numbers D, E such that:

X ′(x) = −D
√
λ sin(

√
λx) + E

√
λ cos(

√
λx). (3.28)

The boundary condition X ′(0) = 0 means E = 0, and the boundary condition X ′(l) = 0

provides the expression:

D sin(
√
λl) = 0 (3.29)

To avoid having a trivial solution,
√
λl must be equal to nπ. Therefore, the eigenvalues

and eigenfunctions are:

λn =
(nπ

l

)2

n = 0, 1, 2...., (3.30)

and

Xn(x) = cos
(nπx

l

)
n = 0, 1, 2..... (3.31)

Notice the result from λ = 0 case is incorporated into this solution. The resulting functions

associated with (3.24) are:

Tn(t) = CCne
−λnt (3.32)
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The linear combination of (3.31) and (3.32), written as the formal infinite sum for any

integer N and constants {CCn}Nn=0, is:

Tn(x, t) =
1

2
CC0 +

∞∑
n=1

CCne
(nπ

l )
2
t cos

(nπx
l

)
, n = 0, 1, 2..... (3.33)

The initial condition (3.16) means the following must be satisfied:

T (x, 0) = f(x) =
1

2
CC0 +

∞∑
n=1

CCn cos
(nπx

l

)
, n = 0, 1, 2..... (3.34)

This is nothing more than a Fourier cosine series expansion of the function f(x) over

the interval (0, l). Fourier’s successful approach was to substitute the expression for

{CCn}Nn=0, from the Fourier series definition, into (3.33). This gave rise to a solution to

1D heat equation in terms of T (x, t). Prior to Fourier’s work there was no known solution

to the heat equation.

The problem with the customary separation of variables technique is that it can only

provide a solution to the 1-D heat equation, in terms of T (x, t), for known analytic

time-varying boundary conditions. For non-analytic time-varying boundary conditions

the traditional separation of variables approach is inappropriate for the task. It merely

reduces the 1D heat equation into a set of two ODEs, one ODE in terms of T (x) and the

other in terms of T (t), which can not be solved. Therefore it is not worth incorporating

the customary separation of variable technique into a thermal model to attempt to fulfil

the requirements of this work. Non-analytic time-varying boundary conditions, in the

form of heat fluxes, must exist to accurately simulate the material interfaces which are

present in the layered structure of a power module.

Other existing thermal models should be examined to see if there are any that can

fulfill all of aims set out in the motivation section of this thesis.
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Chapter

4 Thermal Models for Power Converters

This chapter introduces existing thermal models which are frequently employed to cal-

culate the temperature of power semiconductor devices used in power converters. The

models are divided into separate categories; compact thermal models, dynamic compact

thermal models, numerical methods and analytic solutions. The theory behind each of the

thermal models and their mode of operation is considered. At the end of the chapter is a

detailed discussion which examines the advantages and disadvantages of existing models.

A suitable way to proceed, considering the motivation for this thesis, is then stated.

4.1 Steady State Compact Thermal Models

Compact thermal models (CTMs) provide a simple quantitative description of a modelled

packaging structure. CTMs provide an abstract description of power module packaging

behaviour when construction details are too detailed to be of use at the desired level

of analysis. CTMs simulate quickly when compared with detailed thermal models. A

requirement for a CTM is to be reasonably boundary condition independent so that the

variation of the environment does not affect the compact thermal model [82].
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4.1 Steady State Compact Thermal Models

4.1.1 Resistive Networks

Thermal resistive networks are behavioural CTMs which aim to predict steady state

temperature in a package, accurately, but only at a few critical points. Resistive networks

are not based on the geometry and material properties of the actual packaging. Instead,

they attempt to mimic the power module packaging response to a heat source.

4.1.1.1 Single Resistor Model

A simple one-resistor network Rj−amb (KW−1) represents the steady state thermal resis-

tance between the junction and ambient in a packaging structure, it is defined by:

Rj−amb =
(Tj − Tamb)

qc
(4.1)

where Tj (K) is junction temperature, Tamb (K) is the ambient device temperature, and qc

(W) is the device heat dissipation. This is analogous to Ohm’s law, in which the electrical

resistance is defined as the ratio of the voltage drop across a resistor to the current flow

across the resistor.

This approach has been used for decades and it is still widely used today because of

its simplicity and ease of application. An example of the use of this primitive network

appears in [83]. According to [84, 85] a single junction-to-ambient thermal resistance is

not adequate for package design, because too much information about the temperature

distribution across the package is lost. If a model is to be at all useful, it should be as

close as possible to reality for any boundary conditions [86, 87]. Unfortunately, the Rj−amb

value is only valid for the one environment that it was measured in and is therefore not

boundary condition independent. The one-resistor model is is not a predictive tool and

therefore of little use.
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4.1.1.2 Two Resistor Model

The two resistor model is derived from [88]. The two resistor network model lumps the

complicated geometry of the package into two thermal resistances, as shown in Fig. 4.1.

Figure 4.1: Diagram of a two resistor compact thermal model.

Attempts to create two-resistor models, in accordance with the guidelines set out by

the by the JEDEC JC15.1 standards committee [89], appear in [90, 91]. Although they are

not expected to provide high accuracy, two-resistor models are a major improvement in

accuracy over traditional single resistor approach [92]. The advantages of the two-resistor

model is its ease of generation and its low computational cost. However, the approach

fails to recognise that heat may flow by more than two paths in order to leave the junction

node. Model accuracy is dependent on the packaging structure and operating conditions

it is modelling. In [93], the two-resistor model accuracy varied between 2-20% compared

with the results from a detailed model.
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4.1 Steady State Compact Thermal Models

4.1.1.3 Star Shaped Resistive Network

The star shaped network has a higher level of complexity than the two resistor model.

The method was proposed in [84, 94, 95]. A package is characterised by a limited number

of well-chosen thermal resistances. The model attempts to capture all the dominant

conductive heat flow paths in a structure.

Unfortunately, many different star shaped resistive network topologies are required

for each of the different packaging structures [96]. In [97], the star shaped model failed

to predict accurately the junction temperature for packaging structures attached to heat

sinks, which indicates the model is not fully boundary condition independent.

4.1.1.4 DELPHI Model

The DELPHI (development of physical models for an integrated design environment)

model is shown in Fig. 4.2. It is an extension of the star shaped method because resistive

paths are considered which are not aligned with the heat source.

In [93], the DELPHI compact model was found to have an accuracy within 5% of a

detailed model. According to [99], the DELPHI model is reasonably boundary condition

independent since it is not limited to certain packages or environments.

Unfortunately, the extraction of the DELPHI compact model is time-consuming be-

cause the process involves many network nodes. As stated in [97], dedicated compact

model generation software is required to produce DELPHI models. This suggests a high

computational cost compared with the two-resistor model.
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Figure 4.2: Diagram of a typical multi-resistor (DELPHI) compact thermal model [98].

4.2 Dynamic Compact Thermal Models

Dynamic Compact Thermal Models (DCTMs) can mimic the transient thermal response

of a heated packaging structure. This is a clear advantage over ordinary CTMs which can

only simulate a package in steady state conditions. The main methods for constructing

DCTMs can be divided into two categories:

i) RC equivalent circuits,

ii) Reduction models.

4.2.1 RC Equivalent Circuits

An electrical equivalent circuit is created to provide a transient response which describes

the transient thermal impedance of the packaging structure. It employs the well estab-

lished thermal-electrical analogy which is stated in Table 4.1.
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Table 4.1: Corressponding physical variables using the electrical-thermal analogy

Thermal ⇐⇒ Electrical

Temperature (K) Voltage (V)

Power (W) Current (A)

Thermal resistance (KW−1) Electrical resistance (Ω)

Thermal capacitance (JK−1) Electrical capacitance (F)

Typically, a transient thermal impedance curve resulting from a step change in power

is required to extract a RC network. Power module manufacturers tend to provide nor-

malised impedance curves, as shown in Fig. 4.3. Zth(j−c)(t) represents the transient

thermal impedance from junction-to-case. Values of Zth(j−c) can be obtained by multiply-

ing the value of steady state thermal resistance Rth(j−c) by the normalised factor taken

from the curve at the time of interest. Rth(j−c) is specified by a packaging manufacturer

and is typically between 0.2-0.4 K/W for a power module [100]. Unfortunately, manu-

facturers tend to provide information which is unreliable. Furthermore, data concerning

Zth(j−c)(t) does not allow for the presence of the power module heatsink.

The transient thermal impedance curve of Zth(j−amb)(t) is needed. This represents

the transient thermal impedance between the junction and ambient conditions, therefore

including the heatsink. Fortunately, a cooling/heating curve representing the junction

temperature Tj(t) may be generated by simulation software employing numerical methods

or from experimental measurements. From a curve of Tj(t) it is possible to generate a

curve of Zth(j−amb)(t) using Equation (4.2):

Zth(j−amb)(t) =
Tj(t)− Tamb(t)

P
, (4.2)

where t (s) is time, Tamb(t) (K) is the known ambient temperature and P (W) is the

known power distribution step.
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Figure 4.3: Graph showing a typical normalised transient thermal impedance curve
which would be provided by a power module manufacturer.

An equivalent circuit may then be fitted to Zth(j−amb)(t) in light of the following

approximation:

Zth(j−amb)(t) =
n∑

i=1

Ai

(
1− e

− t
τi

)
(4.3)

where Ai (KW−1) is the pre-exponential coefficient and τi (s) is the time constant. Exam-

ples of this curve fitting approach appear in [24, 26, 28–30]. The two dominant types of

RC equivalent circuits are the Foster (partial fraction) model and the Cauer (continued

fraction) model.

58



4.2 Dynamic Compact Thermal Models

4.2.1.1 Foster Model

The Foster model equivalent circuit appears in Fig. 4.4. Its networks element values are

related to Equation (4.3) by: Ri = Ai; Ci =
τi
Ai
.

This property simplifies determination of the values of the equivalent elements and which

can be directly fitted as shown in [101]. Its computational simplicity explains the wide

application and popularity of this equivalent network.

Figure 4.4: Foster RC equivalent circuit.

The Foster network is a “black box” approach. It can describe the curve of the junction

temperature with any excitation but it has no physical meaning since its RC elements are

not directly related to the layers in the structure. Therefore, the Foster model can not be

used for physical identification of heat flow through the structure [102–104]. The reason is

that the node-to-node capacitances are physically inconsistent, as stated in [25, 27, 105].

For instance, if a pulse of thermal power is injected at the model input the temperature

at every internal node would change immediately due to the capacitors forming a series

connection between input and the output side. This differs from reality, where there

is a time delay before the heat diffuses through the structure. Another weakness of this

“black box” approach is that it would be necessary to produce a new graph of the transient

junction temperature, and then recalculate the values for all of the RC elements, if an

extra layer was added to a structure which had been previously modelled.
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4.2.1.2 Cauer Model

The Cauer model equivalent circuit appears in Fig. 4.5. The Cauer model is the transmis-

sion line equivalent circuit [106–108] containing grounded capacitors and floating resistors.

It is able to describe the internal heat flow of the structure it is modelling. There is a clear

correlation between the RC elements in the equivalent circuit and each physical layer of

the power module package. Unfortunately, component manufacturers do not make the

value of network parameters readily available.

Figure 4.5: Cauer RC equivalent circuit.

Therefore it is necessary to determine values for the RC elements in the structure, a

process known as parameter extraction. This is a long arduous process when using the

step response of the Cauer network since it is difficult to achieve mathematically [109]. It

occurred with limited success in [110], which required a Laplace transform and aid from

a curve fitting algorithms.

The Cauer network can also be obtained by converting from a Foster network [111,

112]. However, this conversion should be used with caution since it is only valid when

Tamb, labelled in Fig. 4.4 and Fig. 4.5, can be considered constant.

Unfortunately, both approaches which are used to obtain Cauer networks invoke some

numerical difficulties because there is no one to one relation between any single network

element and the terms in Equation (4.3), unlike the Foster network. A further drawback

of the Cauer model is that it cannot accurately represent lateral heat spreading [113, 114].
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4.2.2 Model Order Reduction Models

Recently there has been a surge in interest in Model Order Reduction (MOR) compact

thermal models [115–121]. MOR models are an approximation of large-scale dynamic sys-

tems obtained through formal model reduction procedures based on a solid mathematical

background. Fig. 4.6 outlines how MOR models are generated.

Figure 4.6: Model order reduction

The starting point is a detailed thermal model constructed in a Finite Element (FE)

simulator. It is created from the known material properties and geometry of the packaging

structure being modelled. Using an accurate high dimensional FE solver to discretise in

space, it is possible to convert from the governing 3-D heat equation from a partial differ-

ential equation (PDE) system, to a system of n ordinary differential equations (ODEs).

The system of ODEs in matrix form appears as shown in Equation (4.4):

.

T (t) = FT (t) +GFu(t), (4.4)

where T (t) is the vector of unknown temperatures at nodes made during the discretisation,

G is the load vector, F is the system matrix and u(t) is the input function. An engineer

rarely needs to know the temperature at every single node in the finite element structure.

Using the output matrix H, the required output y(t) can be expressed as:

y(t) = HT (t). (4.5)

Vector T (t) has a high dimensionality in a FE solver when simulating 3-D geometries.
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This explains the long computation times associated with FE solvers. A solution to this

problem is Model Order Reduction which creates a low-order system that reasonably well

approximates the large scale dynamic system. The inputs u(t) and outputs y(t) remain

the same size but the dimension of the state vector T (t) is reduced from n to r dimensions.

Fig. 4.7 shows how the dimensions of the terms in Equation 4.5 and Equation 4.4 change

as a result of MOR. This drastic reduction in matrix dimensions gives rise to a compact

MOR model which requires less computational work to simulate heat diffusion than a FE

thermal model.

Figure 4.7: ODE system model order reduction details [115].

Every type of MOR model has the same objective which is to reduce the number of

terms or functions in a FE model while preserving an acceptable level of accuracy.

4.2.2.1 Krylov Subspace-based Approaches

In Krylov subspace-based approaches [116–119] the idea is to describe the behaviour of

vector T (t), through the low-dimensional subspace, called Krylov subspace. This is typi-

cally achieved by means of the Arnoldi [120] process or a Lanczos algorithm [121]. These
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iterative procedures reduce the system by several orders of magnitude with minimum

loss of precision. Krylov subspace-based approaches are computationally fast and can be

applied to very high-dimensional first order linear systems. One minor drawback is the

fact the user has to select the order of the reduced system manually. There is no way to

estimate the error that this approach produces.

4.2.2.2 Single Value Decomposition Approaches

Single value decomposition (SVD) approaches have a global error estimate and may be op-

erated in a fully automatic manner. The SVD-based approaches were developed in control

theory [122] and are a way of factorising matrices into a series of linear approximations

that expose the underlying structure of the matrix. The downside of this approach is

the level of computational complexity involved. It can only describe systems with fewer

than a few thousand unknowns. There is a lack of experience in this field and no software

packages have been commercially released.

4.2.2.3 Guyan Algorithm

The Guyan algorithm [123, 124] is a model order reduction method which projects a high

dimensional ODE system to a lower-dimensional one. It works by eliminating equations

from non-terminal nodes by means of linear algebraic operations. It is commercially

available within the FE solver ANSYS [125] which has a built-in automatic “master”

node selector [126]. This approach results in unnecessary large reduced order models and

does not provide the required accuracy for electro-thermal simulations [127].
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4.3 Numerical Methods Thermal Models

No single compact model can be 100% boundary condition independent. That is only

achievable by with the use of a so-called detailed model which has an infinite number of

degrees of freedom [128]. Computer-aided-design (CAD) drawings can often be exported

into detailed thermal models (DTMs) which makes it possible to represent physical ge-

ometry in great detail. Thus, the DTM can look very similar to the actual package ge-

ometry. A DTM will accurately predict temperature at various points within the package

regardless of the cooling environment in which it is placed. DTMs can require excessive

computational resources and are time-consuming.

If the domain is split into many small pieces, that discretises the space, one can

approximate the temperature field within an element by using local shape functions and

express the the whole temperature field in a piecewise fashion. This solution is referred

to as “numerical”. Numerical methods can be described as dynamic detailed thermal

models because they provide transient solutions. There are several methods associated

with a mesh, which partition the arbitrary computational domain into smaller units.

These are the finite difference method (FDM), the finite volume method (FVM) , the

finite element method (FEM) and the boundary element method (BEM). Each of these

numerical methods is described and some basic considerations associated with solving 3-D

heat conduction in power module packaging is provided.

4.3.1 Finite Element Method

Despite becoming popular in the 1960s, this method was not provided with rigorous

mathematical foundation until 1973 with the publication of [129]. FEM has since become

a branch of applied mathematics for numerical modeling of physical systems in a wide
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variety of engineering disciplines.

The method involves spatially discretising the domain under study into a mesh of

polytopes. The governing PDE therefore becomes a series of smaller elements which

are represented by a system of Ordinary Differential Equations (ODEs). An assembler

program passes over all the elements of the mesh, passing relevant information to an ap-

propriate element subprogram, and receives back the small ODE coefficient matrices. The

behaviour over the entire problem domain is determined by adding up the element con-

tributions into a large sparse global system of matrices. Once complete, the FE program

can proceed to solve the ODE system [130].

[34] states that the main advantages of the FEM are that conservation laws are exactly

satisfied even by coarse approximations. Another attractive feature of the FEM is its

ability to handle complicated irregular geometries with relative ease.

In FEM local mesh refinement is necessary where the dimensions of neighbouring

materials are significantly different. This process is straightforward but time-consuming.

Unfortunately, mesh refinement is necessary when modelling the power modules packages

because the layer thickness varies greatly throughout the structure. A further drawback

of FEM is that meaningful calculations tend to come from users who have undergone

appropriate FEM software training. Accurate 3-D thermal simulation of power module

packaging has occurred using the software package ANSYS [125] which appears in [131–

133]. The greatest problem with FEM is that it requires a great degree of computational

complexity. It renders FEM too slow to be embedded in the framework of the electro-

thermal simulator shown in Fig. 1.3.
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4.3.2 Finite Volume Method

The first step in the FVM is to divide the domain into a number of control volumes. The

meshing requirements are similar to FEM; however, there is a major difference in the way

that the element matrix contributions are computed. The finite volume method is based

on the integral conservation law equation rather than the governing partial differential

equation [134]. Conservation is satisfied for every control volume as well as for the whole

computational domain.

The Finite Volume Method (FVM) is the most versatile discretisation technique and

can even be applied to compressible flows. FVM solvers are more efficient than FEM

solvers and require less memory. Another advantage of the finite volume method is that

it is easily formulated to allow for unstructured meshes. Accurate transient thermal 3-

D finite volume models of the power module packaging, carried out using commercially

available software package FLOTHERM [135], can be found in [136–138]. Whilst having

many advantages over FEM, FVM suffers many of the same drawbacks, mesh refinement

is necessary and it is too slow to co-simulate with the circuit simulator in Fig. 1.3.

4.3.3 Finite Difference Method

Historically, the FDM was the first numerical method. It started gaining prevalence in

the 1930s following the work of R. Courant et al [139].

The finite difference method (FDM) is an alternative way of approximating solutions

of PDEs. It relies on transforming the PDEs into a group of solvable algebraic equations

[140]. FDM involves dividing the whole geometry into a mesh of discrete nodes. The

mesh is essentially cartesian although the mesh may also be defined along curvilinear

co-ordinates [130]. The mesh is not as versatile as that of FEM and so it can not model
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all geometries accurately, which explains why it is not that popular commercially.

An advantage of FDM is its formulation of ODEs. The focus is on neighbouring nodes

along mesh lines which means that discretisation is straightforward and intuitive. Very

fast methods exist to solve this special case and it is simple to implement [141]. As FDM

is restricted to a so called structured mesh, it may only be applied to regular geometries.

Conveniently, power module packages are normally simple rectangular structures so this

restriction is not an issue. In [35] and [36], FDM models have simulated heat conduction

in such structures.

Unfortunately, the quality of the approximation between grid points tends to be poor

in FDM, therefore many nodes are required to generate accurate results. This is inefficient

and results in long simulation times which renders FDM unsuitable for use in the electro-

thermal converter simulator in Fig. 1.3.

4.3.4 Boundary Element Method

Despite gaining prevalence around the same time as FEM, the boundary element method

(BEM) has been slow to gain acceptance compared to FEM. In BEM, the governing

PDE is rewritten as a boundary integral. In contrast to the other methods, the mesh

is one dimension lower than the computational geometry because only the boundary of

the geometry is discretised for 3-D analysis. This gives rise to an important time saving

in the creation and modification of the mesh and it minimises the number of algebraic

equations. Despite these advantages, simulation speed is still an issue. Boundary element

formulations typically give rise to fully populated matrices. This means that the storage

requirements and computational effort is greater per unknown than other methods leading

to a slow simulation speed. The time taken to form the BEM equations also has a negative

impact on the simulation speed.
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BEM is applicable to problems for which Green’s functions can be calculated. There-

fore the use of Green’s functions provides an exact analytical solution to the governing

heat equation (PDE) and BEM can be used to solve transient heat conduction in 3-D

electronic packages as shown in [142–144].

4.4 Analytical Solutions

Analytical methods of solving the heat equation are based on the concept of computing

solutions as sums of infinite series employing different kinds of expansion techniques. Then

it is possible to use these methods to obtain exact mathematical formulae describing the

temperature distribution in the entire structure. Usually, analytical models suffer from

the drawback that the structure geometry to be modelled is too complex. However, power

module packaging has a simple rectangular geometry. The two most commonly used series

expansion techniques are Green’s functions and the Fourier series expansion.

4.4.1 Green’s Function Technique

Green’s functions are versatile mathematical tools suitable for obtaining solutions of linear

heat conduction problems in power module packaging. The temperature distribution is

calculated by summing all the elemental contributions. This is achieved by integrating

over the sources in the directions which heat propagates.

Green’s Functions can be derived using many different methods, such as the Image

method [145] and from the Fourier method of separation of variables [146]. All these

methods yield solutions in different but mathematically identical form.

Green’s functions are capable of simulating heat diffusion from multiple heat sources.

Another feature of Green’s functions is that they can easily be extended from 1-D up to
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2-D or 3-D Green’s functions [147]. Unfortunately, Green’s function do not generate a

whole temperature distribution map easily and suffer from poor accuracy [148].

A further shortcoming of Green’s functions is that they tend to display slow conver-

gence [149]. Thermal models using Green’s functions are too slow to be embedded into

the electro-thermal converter simulator in Fig. 1.3. Although, in [150] and [104] a RC

network has been generated from the results of a Green’s function model to overcome the

issue of slow simulation speed.

4.4.2 Fourier Series Expansion

All of the Fourier Series Expansion approaches use Fourier’s separation of variables tech-

nique but not in the traditional sense of solving a PDE with a set of known analytic

time-varying boundary conditions. It is called separation of variables because the space

and time variables are solved separately. This is possible due to the linearity of the heat

equation. The Fourier series expansion is invariably used to discretise in space.

In 1972 Lindsted and Surty [151] used the Fourier series expansion approach to evaluate

the 3-D temperature distribution generated by a rectangular heat source placed on the

surface of a device. A few years later Kokkas [152] presented a solution which determined

the temperature distribution in the top surface of a multi-layered rectangular structure.

Dorkel et al [153] advanced that work by creating a model which could simulate a structure

with various cross-sectional areas. The Fourier Method was employed in simulators called

Monstra [154] and Therman [155].

A major drawback of all the Fourier models mentioned so far is that they are only able

to describe 3-D temperature distribution in a packaging structure at steady state. They

are unable to produce a 3-D transient thermal models of a packaging structure using a

purely analytical approach. In [154], an FEM simulator was used to generate transient
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results, while [155] was dependent on experimental results. [152] and [153] attempted to

generate transient models by using a Laplace transform to discretise temporally. Unfor-

tunately, they were only able to generate transient results for one single block of material.

Clearly, this is of limited benefit to a thermal designer. In the literature, only a limited

amount of research appears on use of the Fourier series expansion for this very reason.

Instead, researchers have tended to focus their effort on finite difference approaches from

which transient models can be generated easily in an intuitive fashion.

The recent work of Du et al [37, 38] revisited the Fourier series expansion. In this,

a transient Fourier thermal model was created which can describe the 2-D temperature

distribution in a heated packaging structure over time. This purely analytical approach is

able to model structures with varying cross-sectional areas. The model has been created

by using the Fourier cosine expansion to discretise in space which reduces the governing

heat equation (PDE) into a set of ODEs. The ODEs can be written in matrix form

into a group of solvable algebraic equations. These ODEs are solved using the dynamic

solver MATLAB/Simulink, which discretises temporally. This approach can accept non-

analytical boundary conditions over time, and therefore simulate heat diffusion for general

cases. The model can be embedded in the electro-thermal converter simulator in Fig. 1.3,

and therefore the thermal model is able to model the transient device temperatures during

realistic converter operation.

The Fourier model has a significant advantage over FDM. The Fourier series expansion

approach can describe a device temperature distribution over a silicon device as a smooth

curve even at very low resolution, especially if the shape is similar to one of the harmonics.

The FDM numerical method cannot, however; it may only describe the temperature profile

as a straight line between nodes, as shown in Fig 4.8. FDM requires a large number of

nodes in order to model a curved distribution with sufficient accuracy. Therefore the
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Fourier model tends to require fewer terms than a FDM model especially in the 3-D case

which potentially gives it a faster simulation speed.

Figure 4.8: Comparison between a device temperature distribution produced by the
Fourier method and finite difference model at very low resolution.

A beneficial feature of the Fourier models are that they are able to calculate the

solution directly from the material properties and geometry of a structure. It is therefore

likely to be a useful design tool that may be used to calculate an optimal set of geometrical

parameters. The models are able to represent the whole temperature distribution in a

packaging structure; in doing so the model can supply important information to a thermal

designer.

In practice, only a finite number of Fourier terms can be summed using this ap-

proach. Consequently, the Fourier model relies on the truncation of the theoretically

infinite Fourier series which will inevitably lead to an error. Fortunately, higher-order

Fourier terms have a negligible effect on the solution because the series rapidly converges

to zero. The number of expansion coefficients retained depends on the precision needed.

However, there are no strict guidelines on how many Fourier coefficient to select to obtain

the desired accuracy.
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4.5 Discussion

None of the resistive networks featured in this chapter are suitable thermal models for

power converter packaging. As pointed out by [128], the problem with all the resistive

networks stem from the fact that heat does not flow from one “point” to another “point”

and the flow of heat is inevitably different from 1-D flow of electrical current in wires: it

is in fact 3-D diffusion.

The most significant drawback of resistive networks is that they are steady state

models. Therefore they can not carry out transient thermal simulation of power converters

during realistic operation, which is essential in order to predict the reliability of power

module packaging. Transient temperature profiles are far more important than the steady

state temperature provided by these resistive networks [156–158] because semiconductor

devices in power modules are subjected to large transient heating loads that are often

several orders of magnitude larger than corresponding steady state loads [159]. Such

transient heating loads lead to dynamic thermal stresses which are damaging due to their

repetitive nature causing fatigue [62, 160, 161]. Therefore dynamic compact thermal

models are essential.

Generating transient RC equivalent circuits as thermal models is popular because the

thermal models can be easily implemented in an electro-thermal circuit simulator. How-

ever, their generation is a manual process and the likelihood of human error is great,

especially when attempting to model 3-D heat diffusion in the extensive RC network

shown in [103]. A designer must also choose the number and position of the RC ladders

without strict guidelines. The parameter extraction involved is also unattractive to a

packaging designer because it is a manual time consuming process. In optimising the de-

sign of a converter and packaging, the designer must test many different layouts. For each
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geometrical layout of the packaging structure which is tested, the designer must return

to the starting point which is either an FEM/FDM simulation or a practical experiment

[31, 32]. Both models struggle to model coupling from multiple heat sources [162–167].

Consideration has been given to the dominant Model Order Reduction (MOR) models

which exist; the Krylov subspace approach appears the most suited to modelling the type

of structures encountered by a converter designer as it can handle large linear models.

MOR models can be embedded into electro-thermal simulators, such as that in Fig. 1.3.

This was also a feature of RC networks, however, MOR models possess the following

advantages over RC networks:

i) there is no time consuming parameterisation,

ii) the procedure involves following clear guidelines,

iii) it can accurately simulate multiple heat sources [168].

Nevertheless, MOR approaches do share a similar significant drawback with RC net-

works. MOR models are generated from FEM simulations and are therefore structure

specific. MOR compact models can carry out fast transient thermal simulation for a

given structure under a set of boundary conditions without being able to generalise the

model and make it re-usable for all structures. Clearly, it is desirable to use compact mod-

els which do not rely on time-consuming detailed FEM simulations as a starting point.

A compact thermal model is required which can be generated directly from the material

properties and the geometry of a structure.

The numerical methods featured in this chapter are powerful simulation tools, which

can analyse complex structures and provide accurate results. Numerical methods are

not computationally efficient and demand a long computation time to simulate realistic

converter load cycles with sufficient accuracy, especially for 3-D structures. In addition,

the user is often required to generate a structural model and a suitable mesh which
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can occupy even more time. Commercially available simulation software, which usually

employ numerical methods, cannot be integrated easily into a electro-thermal converter

simulator which is one of the goals of this work. Also, the cost of the software license can

be expensive and the user may require training.

The most promising approach is the Fourier expansion approach used by Du et al

[37, 38]. This is a purely analytic method of solving the heat equation based on the

concept of computing solutions as sums of the infinite series. In this case, a geometrical

2-D Fourier expansion is employed to obtain an exact mathematical formula describing

the 2-D temperature distribution in an entire packaging structure. Therefore it is possible

to determine the temperature distribution across a device, rather than rely on it being

represented as a node, as with some compact thermal models. The model is also able

to simulate 2-D heat diffusion through boundaries where the cross-section of a structure

changes. This Fourier model offers an improved trade off between simulation speed and

accuracy compared to FEM/FDM simulations. The method simulates with a speed ap-

proaching that of RC networks but without the presence of artificial assumptions. Unlike

previous attempts using the Fourier expansion approach, Du et al have produced a tran-

sient thermal model which is suitable to co-simulate with the circuit simulator in Fig. 1.3,

enabling long mission profiles to be simulated. The approach is superior to the other main

analytical model that uses Green’s functions. The Green’s function models are slower to

converge and require a greater computational cost. This means that models based on

Green’s functions are not suitable to be embedded into the electro-thermal circuit simu-

lator in Fig. 1.3. The Du et al model in [37, 38] contains some unavoidable simplifying

hypotheses which enable numerical calculation to be carried out. For example, it assumes

that there is zero contact resistance at a material boundary, which is clearly different

from reality. However, it remains an attractive early stage design tool particularly as
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it can simulate directly from the model geometry and material properties. Therefore, a

packaging designer can search for optimum design configurations effectively. The need for

prototyping is eliminated which reduces costs and potentially the time-to-market of a new

product. There is also no parameter extraction process, making the use of FEM/FDM

commercial simulators no longer necessary.

As stated, the work by Du et al [37, 38] has some very positive features, however, there

are aspects of the model which require improvement. The first and obvious improvement

would be to extend the model so that it could simulate full 3-D diffusion rather than

2-D. Furthermore, the approach used to model the 2-D material boundaries in [38] seems

ineffective; it resorts to converting the temperature distribution of the materials either side

of the boundary from the Fourier domain to the spatial domain. The material boundary

is then represented as a row of nodes along where the materials come into contact. The

representation of flux which is obtained is then returned into the Fourier domain. This

approach to the material boundaries would not model 3-D diffusion through material

boundaries with differing cross-sectional areas in both the x and y lateral directions. A

more elegant approach with a firm mathematical background would be preferable. Ideally,

the boundary situation would be modelled by allowing all the data to remain in the Fourier

domain because this would increase the simulation speed of the model. Another failure

of the approach proposed by Du et al is that it cannot easily support material boundaries

where multiple heat sources come into contact with a single layer. This is the situation

which occurs in power module packaging, as shown in Fig 2.9. The model also seems

to use an excessive number of Fourier coefficients throughout the whole structure. One

reason for this could be that it supports the existing approach to modelling the material

boundaries.
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A suitable way to proceed is therefore to create a 3-D Fourier thermal model based on

the approach set out by Du et al in [37, 38]. The objective is to make the required

improvements which have been mentioned on the previous page. This will give rise to a

a fast and accurate compact 3-D thermal model which can:

� model the layered structure similar to that in Fig. 2.10,

� provide results in the form of a transient 3-D temperature distribution,

� co-simulate with the circuit simulator in Fig. 1.3.
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Chapter

5 Fourier Thermal model

The next two chapters show the development of a Fourier thermal model. The model

can simulate heat conduction through the whole of a power module packaging structure.

Chapter 5 describes the basic model in 1-D, 2-D and 3-D. Chapter 6 describes the method

used for modelling the material interfaces between packaging layers.

The Fourier thermal model relies on the assumptions stated at the start of this chapter

in the model hypothesis. The remainder of this chapter demonstrates how the Fourier

thermal model was developed to the stage where it could simulate 3-D heat conduction

through a single block of material. Each stage of model development has been validated

against the FVM commercial software package FLOTHERM.
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5.1 Model Hypothesis

The Fourier thermal model is required to model power converter packaging. Fortunately,

power converter packaging tends to consist of a structure - usually rectangular in nature

- which is repeated many times in order to form the whole power converter packaging.

The repeated structure packaging of a Toyota Prius HEV converter is highlighted in Fig.

2.9. Therefore, the simulation domain need only be the structure shown in Fig. 5.1.

Figure 5.1: Diagram of the simulation domain - the packaging associated with one IGBT
and one diode, in a ceramic isolated power converter module. Diagram not to scale.
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In Fig. 5.1, Rh and Ch represent the thermal resistance and thermal capacitance at the

underside of the Aluminium alloy layer respectively. If a thermal model can simulate this

simulation domain, model expansion to simulate the whole power converter package is

straightforward.

Certain assumptions allow the Fourier thermal model to simulate the simulation do-

main; each layer in the package is assumed to be a perfect cuboid. This assumption may

not be true for the solder layers which are likely to have tapered edges. It is assumed that

isotropic 3-D heat conduction is the only heat transfer mechanism occurring in the elec-

tronic packaging. This is a fair assumption to make, because in the range of temperatures

in which power electronic equipment operates, the majority of heat generated in devices

is transported via conduction to the bottom of the power module. Other mechanisms are

seldom sufficient to cause a noticeable change [72][43]. The thermal material properties

are assumed to be temperature independent. This is also not strictly true; however, it

allows the heat equation to be treated as a linear partial differential equation. For many

materials, such as Copper and Aluminium, the thermal conductivity is virtually constant

over a wide temperature range, supporting the use of this assumption [169].

Heat conduction at material interfaces is assumed to be perfect, when in reality mate-

rial interfaces influence thermal performance [170]. However, it is a reasonable assumption

to make for an power converter module because the packaging layers have been forced

together under an evenly distributed pressure by screws, minimising the contact thermal

resistance. Heat is assumed to enter the packaging at the top surface of the devices only,

which means that the heat generation function within the structure is zero. The side

walls are assumed to be adiabatic. Heat may only leave the packaging through the heat

sink despite the fact that in real modules there is heat transfer through the top surface
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and wire bonds. The thermal grease layer is potentially difficult to model because of

its relatively unknown thickness, its inhomogeneity over the whole interface area and its

instability during the module ageing duration [171]. For modelling purposes, the thermal

grease is assumed to have uniform thickness. The bond wires are ignored as well as the

silicone gel used to protect the devices. The small metal (1) layer that makes a connection

with the bond wire in Fig. 2.10 are ignored too. A detailed model of the heatsink with

the coolant flowing through the pin fins shall not be created. Instead, only the thermal

resistance Rh and capacitance Ch at the underside of the Aluminium alloy layer will be

taken into account as it is provided by the manufacturers.

5.2 Modelling a Single Block of Material

As a power module package compromises of many blocks of material in contact with one

another, a useful starting point is to create a thermal model which can simulate heat con-

duction through a single block of material. This will provide the foundations from which

a full packaging model can be constructed. It necessary to solve the heat equation in

order simulate heat diffusion through a single block. Therefore both spatial and temporal

discretisation is necessary. The Fourier series solution can achieve spatial discretisation

using by a truncated Fourier series, while MATLAB/Simulink can perform temporal dis-

cretisation using a dynamic ODE solver. The resulting Fourier thermal model can yield

solutions to the heat equation using non-analytic time-varying boundary conditions. The

Fourier series solution and its MATLAB Simulink implementation is presented in this

section for the 1-D, 2-D and 3-D case.
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5.2.1 1-D Fourier Thermal Model

5.2.1.1 Fourier Series Solution of the 1-D Heat Equation

The 1-D heat equation is a partial differential equation which describes the variation in

temperature along a single dimension over time. When the heat generation function is

zero and the heat diffuses in the z dimension only, the 1-D heat equation is defined as:

∂T (z, t)

∂t
= α

(
∂2T (z, t)

∂z2

)
, (5.1)

where α = k/(cpρ). α is the thermal diffusivity of the medium, T is the temperature, t is

the time variable and z is the space variable. k is thermal conductivity, and ρ and cp are

mass density and specific heat capacity of the material respectively.

The boundary conditions of a single block of material are labelled in Fig. 5.2. The heat

fluxes are applied at z = z1 and z = z2 and are represented by a single numerical value.

The solution to Equation (5.1) is a line which describes the temperature distribution

through the depth of the block of material, i.e. between z1 and z2. Geometrically, the

solution can be represented using the Fourier cosine series expansion for a line, defined

below:

T (z, t) ∼
∞∑

k=0

Tk(t) cos

(
πk(z−z1)

(z2−z1)

)
, (5.2)

and the Fourier series harmonics Tk(t) are described by:

T0(t) =
1

(z2−z1)

z2∫

z1

T (z, t)dz, k = 0, (5.3)

Tk(t) =
2

(z2−z1)

z2∫

z1

T (z, t) cos

(
πk(z−z1)

(z2−z1)

)
dz, k ≥ 1. (5.4)
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Each of the Fourier terms are represented in Fig. 5.3. The Fourier cosine series is well

suited to the boundary conditions, since the DC term of a cosine series is non-zero. The

temperature profile given by the Fourier series are only valid between z1 and z2.

Figure 5.2: 1-D heat conduction through a block of material. Heat fluxes are
represented by a single numerical value.

Figure 5.3: Temperature profiles for various Fourier coefficients
in the Fourier cosine series.
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The 1-D heat equation is the starting point of the thermal model. Each term in

Equation (5.1) is multiplied through by:

cos

[
πk(z−z1)

(z2−z1)

]
,

and integrated with respect to z between z1 and z2, giving:

I1 = I2. (5.5)

When k ≥ 1, the following expression represents I1:

I1 = α

z2∫

z1

(
∂2T (z, t)

∂z2

)
cos

(
πk(z−z1)

(z2−z1)

)
dz. (5.6)

Applying integration by parts gives:

I1 = α cos (πk)

(
∂T (t)

∂z

∣∣∣∣
z2

)
− α

(
∂T (t)

∂z

∣∣∣∣
z1

)

+
απk

(z2−z1)




z2∫

z1

(
∂T (z, t)

∂z

)
sin

(
πk(z − z1)

(z2 − z1)

)
dz


 . (5.7)

Integration by parts is now applied again to the integral in the square brackets, re-

sulting in the expression below:

z2∫

z1

(
∂T (z, t)

∂z

)
sin

(
πk(z−z1)

(z2−z1)

)
dz = − πk

(z2−z1)

z2∫

z1

T (z, t) cos

(
πk(z−z1)

(z2−z1)

)
dz (5.8)

Substitution of the Fourier cosine series definition for k≥1 from Equation (5.4) into

Equation (5.8) leads to:
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z2∫

z1

(
∂T (z, t)

∂z

)
sin

(
πk(z−z1)

(z2−z1)

)
dz = − πk

(z2−z1)

(z2−z1)

2
Tk(t). (5.9)

Further substitution of (−1)k = cos(πk), and Equation (5.9) into Equation (5.7), allows

I1 to be expressed as:

I1 = α

[
∂T (t)

∂z

∣∣∣∣
z2

(−1)k −
(
∂T (t)

∂z

∣∣∣∣
z1

)]
− α

(
πk

(z2−z1)

)2
(z2−z1)

2
Tk(t). (5.10)

When k≥1 I2 is represented by:

I2=

z2∫

z1

∂T (z, t)

∂t
cos

(
πk(z−z1)

(z2−z1)

)
dz. (5.11)

Substitution of the Fourier cosine series definition into Equation (5.11) produces the

following expression:

I2 =
(z2−z1)

2

dTk(t)

dt
. (5.12)

Substituting Equation (5.10) and Equation (5.12) into Equation (5.5) and rearranging

results in the following Ordinary Differential Equation (ODE):

dTk(t)

dt
=

2α

(z2−z1)

[
∂T (t)

∂z

∣∣∣∣
z2

(−1)k − ∂T (t)

∂z

∣∣∣∣
z1

]

︸ ︷︷ ︸
Material properties and boundary conditions

−
[
απ2

(
k2

(z2−z1)
2

)]

︸ ︷︷ ︸
Diffusive terms

Tk(t). (5.13)

A similar process can be carried out to derive the ODE for the DC (0-th) term in the

Fourier series which appears in Appendix 1. The result is this expression:

dT0(t)

dt
=

α

(z2−z1)

[
∂T (t)

∂z

∣∣∣∣
z2

− ∂T (t)

∂z

∣∣∣∣
z1

]
. (5.14)
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5.2.1.2 1-D Implementation

Spatial discretisation has been achieved using the Fourier series solution which reduced

the 1-D heat equation from a PDE to a set of ODEs. To simulate the dynamics of

a thermal system over a period of time, it is necessary for the time to be discretised

to a series of points. This can be achieved using a variable step stiff ODE solver in

MATLAB/Simulink, either solver ode15s or ode23tb [172]; these operate using backward

differentiation, known as Gear’s method [173]. A benefit of using a variable step solver

is that for a given accuracy the time step can then be substantially enlarged so that the

computation of the integration becomes much faster. The solver ode23tb has been found

to give the most stable results. The maximum step size is 10−2s, the minimum step size

is 10−6s and the initial step size is set to auto. The relative tolerance is 10−3 and the

absolute tolerance is 10−4. The implementation of the equations within Simulink relied on

the use of function blocks (e.g. integrators, transfer functions, mathematical functions).

A benefit of this approach was that system debugging could be carried out swiftly. In

order to implement the ODEs into MATLAB/Simulink, the ODEs are written in matrix

form as shown in Fig. 5.4.

Figure 5.4: ODEs from the Fourier series solution to the 1-D heat equation
written in matrix form.
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T̄ (t) is a vector of Fourier series harmonics as shown below:

The diffusive terms form the transfer matrix while the material properties and boundary

conditions contribute to the input matrix in Fig. 5.4. The matrix equation, and therefore

the ODEs, can be solved using MATLAB/Simulink. Simulink was chosen because it

allows straightforward integration with the converter simulator, which is also in Simulink

[22],[21].

In order to find an exact solution to the 1-D heat equation, Tk(t), it would be necessary

to use an infinite number of Fourier terms in every direction (K=∞). Practically, this

cannot be achieved. A convenient method of finding an approximate solution to the heat

equation is to truncate the theoretically infinite Fourier series. Truncation will inevitably

lead to error. Fortunately, higher-order Fourier terms only have a negligible effect on the

solution as the series tend to rapidly converge to zero. Therefore K can be assigned a

finite number. The fewer Fourier terms used, the less computational power required to

solve the heat equation, however, the greater the error in the solution [174].

Fig. 5.5 shows the basic form of the Simulink implementation. The model shown can

simulate 1-D diffusion for the heat conduction problem presented in Fig. 5.2. The Fourier

to space conversion matrix is a premultiplying matrix created using the relationship from

Equation (5.2). The Ambient block is present to give the block of material an initial

temperature. The block subsystem is highlighted to show the potential for the single

block model to interact with other layers.
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Figure 5.5: Block diagram showing the MATLAB/Simulink implementation of the
Fourier series solution. The letters are defined in Fig. 5.4.

5.2.2 2-D Fourier Thermal Model

5.2.2.1 Fourier Series Solution of the 2-D Heat Equation

The 2-D heat equation is a partial differential equation which describes the variation in

temperature in two dimensions over time. When the heat generation function is zero and

heat diffusion occurs in the x and z dimensions, the 2-D form of the heat equation is

defined as:

α

(
∂2T (z, x, t)

∂z2
+

∂2T (z, x, t)

∂x2

)
=

∂T (z, x, t)

∂t
. (5.15)

The boundary conditions labelled in Fig. 5.6 are applied to the block of material

shown. The heat fluxes, ∂T (x,t)
∂z

∣∣∣
z1

and ∂T (x,t)
∂z

∣∣∣
z2
, are represented by a line distribution

which varies between x1 and x2.

The solution to Equation (5.15) is a x-z 2-D surface distribution. Geometrically, this

can be represented using the Fourier cosine series expansion for an area, defined by:

T (z, x, t) ∼
∞∑

k=0

∞∑
m=0

Tkm(t) cos

(
πk(z−z1)

(z2−z1)

)
cos

(
πm(x−x1)

(x2−x1)

)
, (5.16)
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Figure 5.6: 2-D heat conduction through a block of material. The arbitrary heat fluxes
are a line distribution which may vary across the x dimension.

The Fourier series harmonics associated with Equation (5.16) are:

T00(t) =
1

(z2−z1)(x2−x1)

z2∫

z1

x2∫

x1

T (z, x, t)dxdz, (5.17)

Tk0(t) =
2

(z2−z1)(x2−x1)

z2∫

z1

x2∫

x1

T (z, x, t) cos

(
πk(z−z1)

(z2−z1)

)
dxdz, (5.18)

T0m(t) =
2

(z2−z1)(x2−x1)

z2∫

z1

x2∫

x1

T (z, x, t) cos

(
πm(x−x1)

(x2−x1)

)
dxdz, (5.19)

Tkm(t) =
4

(z2 − z1)(x2 − x1)

z2∫

z1

x2∫

x1

T (z, x, t) cos

(
πm(x− x1)

(x2 − x1)

)
cos

(
πk(z − z1)

(z2 − z1)

)
dxdz.(5.20)

The procedure is similar to the one-dimensional solution. Initially, the 2-D heat equation

in multiplied by:

cos

[
πk(z−z1)

(z2−z1)

]
cos

[
πm(x−x1)

(x2−x1)

]
, (5.21)
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and integrated with respect to z between z1 and z2, and with respect to x between x1 and

x2, giving:

I1 = I2, (5.22)

where I1 is defined by the following equations when k ≥ 1 and m ≥ 1:

I1 = α

x2∫

x1




z2∫

z1

∂2T (z, x, t)

∂z2
cos

(
πk(z−z1)

(z2−z1)

)
dz


 cos

(
πm(x−x1)

(x2−x1)

)
dx

+ α

z2∫

z1




x2∫

x1

∂2T (z, x, t)

∂x2
cos

(
πm(x− x1)

(x2 − x1)

)
dx


 cos

(
πk(z − z1)

(x2 − z1)

)
dz. (5.23)

Breaking this expression down into constituent parts produces:

I1 = I1z + I1x. (5.24)

Therefore:

I1z = α

x2∫

x1




z2∫

z1

∂2T (z, x, t)

∂z2
cos

(
πk(z−z1)

(z2−z1)

)
dz


 cos

(
πm(x−x1)

(x2−x1)

)
dx. (5.25)

Integration by parts is applied successively to the expression in the square brackets which

produces the following expression for I1z:

I1z = α

[
∂T (x, t)

∂z

∣∣∣∣
z2

cos (πk)− ∂T (x, t)

∂z

∣∣∣∣
z1

] x2∫

x1

cos

(
πm(x−x1)

(x2−x1)

)
dx

−α

(
πk

(z2−z1)

)2
x2∫

x1

z2∫

z1

T (z, x, t) cos

(
πm(z−z1)

(z2−z1)

)
cos

(
πm(x−x1)

(x2−x1)

)
dzdx.(5.26)

Substitution of the expression in Equation (5.20) and (−1)k = cos (πk) in Equation (5.26)

leads to:
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I1z = α(−1)k
x2∫

x1

∂T (x, t)

∂z

∣∣∣∣
z2

cos

(
πm(x−x1)

(x2−x1)

)
dx− α

x2∫

x1

∂T (x, t)

∂z

∣∣∣∣
z1

cos

(
πm(x−x1)

(x2−x1)

)
dx

−α

(
πk

(z2−z1)

)2 (z2−z1)(x2−x1)

4
Tkm(t). (5.27)

As shown in Fig. 5.6, ∂T (x,t)
∂z

∣∣∣
z
is defined along each edge at z = z1 and z = z2.

∂T (x,t)
∂z

∣∣∣
z

can be considered to be ∂T (t)
∂z

∣∣∣
z
(x), and therefore it can be represented as a Fourier series

and take the form of any arbitrary distribution which is a function of x. ∂Tm(t)
∂z

∣∣∣
z
is the

m-th term in a Fourier series of ∂T (t)
∂z

∣∣∣
z
(x). The conversion from the spatial domain to

the Fourier domain for the heat fluxes is shown below:

∂Tm(t)

∂z

∣∣∣∣
z

=
2

(x2−x1)

x2∫

x1

∂T (x, t)

∂z

∣∣∣∣
z

(x) cos

(
πm(x−x1)

(x2−x1)

)
dx, m ≥ 1 (5.28)

The substitution of Equation (5.28) into Equation (5.27) simplifies to:

I1z = α
(x2−x1)

2

[
∂Tm(t)

∂x

∣∣∣∣
z2

(−1)k − ∂Tm(t)

∂x

∣∣∣∣
z1

]

−α

(
πk

(z2−z1)

)2
(z2−z1)(x2−x1)

4
Tkm(t). (5.29)

Using the same approach for I1x:

I1x = α

[
∂Tk(t)

∂x

∣∣∣∣
x2

cos (πm)− ∂Tk(t)

∂x

∣∣∣∣
x1

] z2∫

z1

cos

(
πk(z−z1)

(z2−z1)

)
dz

−α

(
πm

(x2−x1)

)2
(z2−z1)(x2−x1)

4
Tkm(t). (5.30)
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However, due to the insulated surfaces at x1 and x2, shown in Fig. 5.6, there exists:

∂Tk(t)

∂x

∣∣∣∣
x2

=
∂Tk(t)

∂x

∣∣∣∣
x1

= 0, (5.31)

and therefore:

I1x = −α

(
πm

(x2−x1)

)2
(z2−z1)(x2−x1)

4
Tkm(t). (5.32)

Substitution of Equation (5.32) and (5.29) into Equation (5.24) leads to:

I1 = α
(x2−x1)

2

[
∂Tm(t)

∂z

∣∣∣∣
z2

(−1)m − ∂Tm(t)

∂z

∣∣∣∣
z1

]

−α

(
π2k2

(z2−z1)2
+

π2m2

(x2−x1)2

)
(z2−z1)(x2−x1)

4
Tkm(t). (5.33)

The expression for I2 is:

I2 =

z2∫

z1

x2∫

x1

∂T (z, x, t)

∂t
cos

(
πm(z−z1)

(z2−z1)

)
cos

(
πm(x−x1)

(x2−x1)

)
dzdx. (5.34)

Using the Fourier series definition this simplifies to:

I2 =
(z2−z1)(x2−x1)

4

dTkm(t)

dz
. (5.35)

Substitution of Equation (5.33) and (5.35) into Equation (5.24) followed by rearrangement

produces the following ODE:

dTkm(t)

dt
=

2α

(z2−z1)

[
dTm(t)

dz

∣∣∣∣
z2

(−1)k − dTm(t)

dz

∣∣∣∣
z1

]

− Tkm(t)

[
απ2

(
k2

(z2−z1)
2 +

m2

(x2−x1)
2

)]
. (5.36)

A similar process can be carried out to determine the ODEs associated with the DC (0-th)

terms in the Fourier series; this process appears in Appendix 1. The resulting
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expression for when k = 0 and m = 0 is:

dT00(t)

dt
=

1

(z2−z1)
α

[
∂To(t)

∂z

∣∣∣∣
z2

− ∂To(t)

∂z

∣∣∣∣
z1

]
, (5.37)

and when k ≥ 1 and m = 0 is:

dTk0(t)

dt
=

2α

(z2−z1)

[
∂T0(t)

∂z

∣∣∣∣
z2

(−1)k − ∂T0(t)

∂z

∣∣∣∣
z1

]
− Tk0(t)

[
απ2

(
k2

(z2−z1)
2

)]
, (5.38)

and finally when k = 0 and m ≥ 1 is:

dT0m(t)

dt
=

α

(z2 − z1)

[
∂Tm(t)

∂t

∣∣∣∣
z2

− ∂Tm(t)

∂t

∣∣∣∣
z1

]
− T0m(t)

[
απ2

(
m2

(x2−x1)
2

)]
. (5.39)

5.2.2.2 2-D Implementation

The implementation of the 2-D Fourier series solution is very similar to the implementation

for the 1-D case shown in section 5.2.1.2. On this occasion the Fourier series solution

reduces the 2-D heat equation from a PDE to a set of four ODEs. The ODEs are written

in matrix form as shown in Fig. 5.7.

Figure 5.7: ODEs from the Fourier series solution to the 2-D heat equation written in
matrix form.

92



5.2 Modelling a Single Block of Material

T̄ (t) is a matrix of Fourier series harmonics as shown below:

The Simulink model for the 2-D case appears as shown in Fig. 5.5. However, in this

case it is simulating 2-D heat diffusion for the heat conduction problem presented in Fig.

5.6. Therefore the letters labelled in the Simulink model are now defined by Fig. 5.7

and T̄ is a 2-D matrix as defined above. Consequently, a premultiplying matrix and post

multiplying matrix, applying the relationship from Equation (5.16), was required in order

to carry out the conversion from the Fourier to the space domain.

5.2.3 3-D Fourier Model

5.2.3.1 Fourier Series Solution to the 3-D Heat Equation

The 3-D heat equation is a partial differential equation which describes the variation in

temperature in three dimensions over time. When the heat generation function is zero

and heat diffusion occurs in the x, y and z dimensions over time, the 3-D form of the heat

equation is defined as:

α

(
∂2T (x, y, z, t)

∂x2
+

∂2T (x, y, z, t)

∂y2
+

∂2T (x, y, z, t)

∂z2

)
=

∂T (x, y, z, t)

∂t
. (5.40)

The solution to Equation (5.40) is a volume which describes the temperature distribution

throughout the 3-D block of material. Geometrically, this can be represented using the

Fourier cosine series expansion for a cuboid, defined overleaf:
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T (x, y, z, t) ∼
∞∑

m=0

∞∑

n=0

∞∑

k=0

Tmnk(t) cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πn(y−y1)

(y2−y1)

)
cos

(
πk(z−z1)

(z2−z1)

)
, (5.41)

where the Fourier series harmonics are described by:

T000(t) =
1

(z2−z1)(y2−y1)(x2−x1)

x2∫

x1

y2∫

y1

z2∫

z1

T (x, y, z, t)dxdydz, (5.42)

Tm00(t) =
2

(z2−z1)(y2−y1)(x2−x1)

x2∫

x1

y2∫

y1

z2∫

z1

T (x, y, z, t) cos

(
πm(x−x1)

(x2−x1)

)
dxdydz, (5.43)

T0n0(t) =
2

(z2−z1)(y2−y1)(x2−x1)

x2∫

x1

y2∫

y1

z2∫

z1

T (x, y, z, t) cos

(
πn(y−y1)

(y2−y1)

)
dxdydz, (5.44)

T00k(t) =
2

(z2−z1)(y2−y1)(x2−x1)

x2∫

x1

y2∫

y1

z2∫

z1

T (x, y, z, t) cos

(
πk(z−z1)

(z2−z1)

)
dxdydz, (5.45)

Tmn0(t) =
4

(z2−z1)(y2−y1)(x2−x1)

×
x2∫

x1

y2∫

y1

z2∫

z1

T (x, y, z, t) cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πn(y−y1)

(y2−y1)

)
dxdydz,(5.46)

Tm0k(t) =
4

(z2−z1)(y2−y1)(x2−x1)

×
x2∫

x1

y2∫

y1

z2∫

z1

T (x, y, z, t) cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πk(z−z1)

(z2−z1)

)
dxdydz, (5.47)
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T0nk(t) =
4

(z2−z1)(y2−y1)(x2−x1)

×
x2∫

x1

y2∫

y1

z2∫

z1

T (x, y, z, t) cos

(
πn(y−y1)

(y2−y1)

)
cos

(
πk(z−z1)

(z2−z1)

)
dxdydz,(5.48)

Tmnk(t) =
8

(x2−x1)(y2−y1)(z2−z1)

×
x2∫

x1

y2∫

y1

z2∫

z1

T (x, y, z, t) cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πn(y−y1)

(y2−y1)

)
cos

(
πk(z−z1)

(z2−z1)

)
dxdydz.(5.49)

The boundary conditions shown in Fig. 5.8 are applied to the block of material. The

heat fluxes are in the form of a 2-D x-y surface distribution.

Figure 5.8: 3-D heat conduction through a block of material. Heat fluxes are
represented by a 2-D function of arbitrary distribution.

The procedure for solving the 3-D heat equation is similar to the approach for solving

the 1-D and the 2-D heat equation. For the 3-D case, each term in Equation (5.40) is

multiplied by:

cos

[
πm(x−x1)

(x2−x1)

]
cos

[
πn(y−y1)

(y2−y1)

]
cos

[
πk(z−z1)

(z2−z1)

]
,
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and integrated with respect to x between x1 and x2, with respect to y between y1 and y2,

and with respect to z between z1 and z2, giving:

I1=I2. (5.50)

I1 when m≥1, n≥1, k≥1, is:

I1 = α

x2∫

x1

y2∫

y1

z2∫

z1

(
∂2T (x, y, z, t)

∂x2
+

∂2T (x, y, z, t)

∂y2
+

∂2T (x, y, z, t)

∂z2

)

× cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πn(y−y1)

(y2−y1)

)
cos

(
πk(z−z1)

(z2−z1)

)
dxdydz, (5.51)

which is treated as:

I1=I1x+I1y+I1z. (5.52)

The expression for I1z is shown below:

I1z = α

y2∫

y1

x2∫

x1




z2∫

z1

∂2T (x, y, z, t)

∂z2
cos

(
πk(z−z1)

(z2−z1)

)
dz




× cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πn(y−y1)

(y2−y1)

)
dxdy (5.53)

Applying integration by parts successively produces:

I1z =

y2∫

y1

x2∫

x1

(−1)k
(

∂T (x, y, t)

∂z

∣∣∣∣
z2

)
cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πn(y−y1)

(y2−y1)

)
dxdy

− απ2k2

(z2−z1)
2

z2∫

z1

y2∫

y1

x2∫

x1

T (x, y, z, t) cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πn(y−y1)

(y2−y1)

)
cos

(
πk(z−z1)

(z2−z1)

)
dxdydz

−
y2∫

y1

x2∫

x1

(
∂T (x, y, t)

∂z

∣∣∣∣
z1

)
cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πn(y−y1)

(y2−y1)

)
dxdy. (5.54)
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For this integral, ∂T (x,y,t)
∂z

∣∣∣
z1
6= 0 and ∂T (x,y,t)

∂z

∣∣∣
z2
6= 0, because the x-y surfaces at z=z1

and z=z2 are not insulated. These heat fluxes can be represented by any arbitrary 2-D

function when in the form of a 2-D Fourier series. ∂Tmn(t)
∂z

∣∣∣
z1

is the 2-D Fourier series for

the boundary heat flux at z=z1, and
∂Tmn(t)

∂z

∣∣∣
z2

is the 2-D Fourier series for the boundary

heat flux at z=z2. The relationship between a 2-D boundary Fourier series and a 2-D

spatial boundary function is shown below:

∂Tmn(t)

∂z

∣∣∣∣
z

=
4

(x2−x1)(y2−y1)

×
y2∫

y1

x2∫

x1

∂T (x, y, t)

∂z

∣∣∣∣
z

cos

(
πn(y−y1)

(y2−y1)

)
cos

(
πm(x−x1)

(x2−x1)

)
dxdy.(5.55)

Substitution of Equation (5.55) and (5.49) into Equation (5.54) produces:

I1z = (−1)k
(x2−x1)(y2−y1)

4

∂Tmn(t)

∂z

∣∣∣∣
z2

− (x2−x1)(y2−y1)

4

∂Tmn(t)

∂z

∣∣∣∣
z1

− απ2k2

(z2−z1)

(x2−x1)(y2−y1)

8
Tmnk(t) (5.56)

The same approach is used to find an expression for I1x; however, in this case the y-z

plane at x=x1 and x=x2 is insulated. Therefore ∂T (y,z,t)
∂x

∣∣∣
x1

= 0, ∂T (y,z,t)
∂x

∣∣∣
x2

= 0 and I1x

becomes:

I1x = −απ2m2(y2−y1)(z2−z1)

8(x2−x1)
Tmnk(t). (5.57)

The same approach to get an expression for I1y. The x-z plane at y=y1 and y=y2 is

insulated and so the resulting expression is:

I1y = −απ2n2(x2−x1)(z2−z1)

8(y2−y1)
Tmnk(t). (5.58)
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In order to gain an expression for I1, we substitute in Equation (5.57), (5.58) and (5.56)

into (5.52), which produces:

I1 = (−1)k
(x2−x1)(y2−y1)

4

∂Tmn(t)

∂z

∣∣∣∣
z2

− (x2−x1)(y2−y1)

4

∂Tmn(t)

∂z

∣∣∣∣
z1

−απ2k2(x2−x1)(y2−y1)

8(z2−z1)
Tmnk(t)− απ2n2(x2−x1)(z2−z1)

8(y2−y1)
Tmnk(t)

−απ2m2(y2−y1)(z2−z1)

8(x2−x1)
Tmnk(t) (5.59)

Now attention turns to the integral I2:

I2 =

x2∫

x1

y2∫

y1

z2∫

z1

∂T (x, y, z, t)

∂t
cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πn(y−y1)

(y2−y1)

)
cos

(
πk(z−z1)

(z2−z1)

)
dxdydz (5.60)

Substitution of the Fourier series definition simplifies I2 to:

I2 =
(x2−x1)(y2−y1)(z2−z1)

8

dTmnk(t)

dt
. (5.61)

Equating I1 and I2 then rearranging produces the following Ordinary Differential Equa-

tion (ODE) for the m ≥ 1, n ≥ 1, k ≥ 1 case:

dTmnk(t)

dt
=

2α

(z2−z1)

[
∂Tmn(t)

∂z

∣∣∣∣
z2

(−1)k − ∂Tmn(t)

∂z

∣∣∣∣
z1

]

︸ ︷︷ ︸
Material properties and boundary conditions

−
[
απ2

(
m2

(x2−x1)
2 +

n2

(y2−y1)
2 +

k2

(z2−z1)
2

)]

︸ ︷︷ ︸
Diffusive terms

Tmnk(t). (5.62)

Further use of this mathematical approach appears in Appendix 1, where the ODEs

associated with the DC (0-th) terms in the Fourier series are determined, resulting in:

m ≥ 1, n ≥ 1, k ≥ 1:
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dT000(t)

dt
=

α

(z2−z1)

[
∂T00(t)

∂z

∣∣∣∣
z2

− ∂T00(t)

∂z

∣∣∣∣
z1

]
, (5.63)

m ≥ 1, n = 0, k = 0:

dTm00(t)

dt
=

α

(z2−z1)

[
∂Tm0(t)

∂z

∣∣∣∣
z2

− ∂Tm0(t)

∂z

∣∣∣∣
z1

]
−

[
απ2

(
m2

(x2−x1)
2

)]
Tm00(t), (5.64)

m = 0, n ≥ 1, k = 0:

dT0n0(t)

dt
=

α

(z2−z1)

[
∂T0n(t)

∂z

∣∣∣∣
z2

− ∂T0n(t)

∂z

∣∣∣∣
z1

]
−
[
απ2

(
n2

(y2−y1)
2

)]
T0n0(t), (5.65)

m = 0, n = 0, k ≥ 1:

dT00k(t)

dt
=

2α

(z2−z1)

[
∂T00(t)

∂z

∣∣∣∣
z2

(−1)k − ∂T00(t)

∂z

∣∣∣∣
z1

]
−
[
απ2

(
k2

(z2−z1)
2

)]
T00k(t), (5.66)

m ≥ 1, n ≥ 1, k = 0:

dTmn0(t)

dt
=

α

(z2−z1)

[
∂Tmn(t)

∂z

∣∣∣∣
z2

− ∂Tmn(t)

∂z

∣∣∣∣
z1

]

−
[
απ2

(
m2

(x2−x1)2
+

n2

(y2−y1)2

)]
Tmn0(t), (5.67)

m ≥ 1, n = 0, k ≥ 1:

dTm0k(t)

dt
=

2α

(z2−z1)

[
∂Tm0(t)

∂z

∣∣∣∣
z2

(−1)k − ∂Tm0(t)

∂z

∣∣∣∣
z1

]

−
[
απ2

(
m2

(x2−x1)
2 +

k2

(z2−z1)
2

)]
Tm0k(t), (5.68)

m = 0, n ≥ 1, k ≥ 1:

dT0nk(t)

dt
=

2α

(z2−z1)

[
∂T0n(t)

∂t

∣∣∣∣
z2

(−1)k − ∂T0n(t)

∂t

∣∣∣∣
z1

]

−
[
απ2

(
n2

(y2−y1)
2 +

k2

(z2−z1)
2

)]
T0nk(t). (5.69)
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5.2.3.2 3-D Implementation

The implementation of the 3-D Fourier series solution is similar to the implementation for

the 1-D case shown in section 5.2.1.2. On this occasion the Fourier series solution reduces

the 3-D heat equation from a PDE to a set of eight ODEs. The ODEs are written in

matrix form as shown in Fig. 5.9.

Figure 5.9: ODEs from the Fourier series solution to the 3-D heat equation
written in matrix form.

Although MATLAB can handle multidimensional arrays, Simulink only accepts 2-D

matrices. Therefore, for this case, 3-D matrices were represented in 2-D form, as shown

in Fig. 5.10. The Simulink model for the 3-D case also appears as shown in Fig. 5.5.

However, in this case it is simulating 3-D heat diffusion for the heat conduction problem

presented in Fig. 5.8. Therefore the letters labelled in the Simulink model are now defined

by Fig. 5.9.
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Figure 5.10: A 3-D matrix represented as a 2-D matrix.

For this 3-D case, T̄ (t) in Fig. 5.9 appeared as shown below:

As a result of the stacked configuration of T̄ , the Fourier to space conversion process

was not as straightforward as the 1-D and 2-D cases. An explanation of how the Fourier

to space conversion matrices were constructed for this case, using the relationship from

Equation (5.41), appears in Appendix 2.
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5.3 Results

The chapter has shown the development of a Fourier thermal model to simulate heat

conduction through a single block of material. This results section acts to validate the 1-

D, 2-D and 3-D Fourier thermal model. Results generated by the various Fourier thermal

models are compared with those from the software package FLOTHERM.

5.3.1 FLOTHERM

Simulation results produced by FLOTHERM are presented over the next two chapters.

As mentioned, these results are necessary to validate the Fourier thermal model. For

each validation, a FLOTHERM model was created to simulate a specific heat conduction

problem. An explanation of the general procedure which was carried out to create all of

the FLOTHERM thermal models now follows. The FLOTHERM solution type was set to

transient and conduction only. Blocks of material were added to a root assembly and the

blocks were assigned their dimensions and their location. The resulting structure could

be visibly checked on the FLOTHERM drawing board. Each of the blocks were then

assigned the appropriate material properties (thermal conductivity, density and specific

heat capacity) and given their thermal properties, either purely conducting or acting as a

heat source. For each heat conduction problem presented in this and the next chapter, the

value assigned to each heat source represents the total power applied over the specified

area. This allows for a clearer understanding of the data entered into the FLOTHERM

model as opposed to using a value of heatflux.

The initial temperature of the whole structure also had to be determined and some

block faces were set to ‘insulated’ in order to match the heat conduction problem being

modelled by the Fourier model. The FLOTHERM mesh had to be adjusted to the desired

density. On occasions, grid patches were added because the existing mesh was not suitable.
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The transient grid was adjusted to determine the number of time steps FLOTHERM

would use over the transient solution period. FLOTHERM’s accuracy was determined

by the density of both the transient grid and spatial mesh. Temperature monitoring

points were positioned in the appropriate location throughout the entire structure. Upon

completion of all of the above, the solver could be finally be initialised. Following the

completion of the FVM solver, the transient temperature monitoring point data was

transferred from FLOTHERM to MATLAB, via Excel. Plots of the FLOTHERM results

could then be created in MATLAB for direct comparison with the Fourier model.

5.3.2 Validation of the 1-D Fourier Thermal Model

The 1-D Fourier thermal model and FLOTHERM simulated the 1-D heat conduction

problem shown in Fig. 5.11. The block of silicon which appears in the figure is of similar

size to that of the IGBT device used in the Toyota Prius power converter. The heat

entering the silicon is retained within the structure.

Figure 5.11: Diagram showing the 1-D heat conduction problem. The power input is
applied evenly across the whole top x-y surface of the silicon, with no variation in the x

or y direction, for a duration of 1.5ms. The initial temperature of the block is 0◦C.
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Fig. 5.12 compares results generated by the Fourier thermal model and FLOTHERM

when simulating the heat conduction problem in Fig. 5.11. The total simulation time for

the 1-D Fourier model was measured using the MATLAB tic function. K represents the

number of Fourier terms used in the Fourier model simulation. The FLOTHERM model

employed a low density mesh which contained 67072 nodes, chosen because it could deal

with this relatively straightforward heat conduction problem. The FLOTHERM model

simulated using 20 time steps and temperatures were recorded by positioning 7 monitoring

points through the depth of the silicon block.
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FLOTHERM. Simulation time: 32min 10s
Fourier K=3.  Simulation time: 0.045s
Fourier K=9.  Simulation time: 0.047s

axis (m) Distance along z

time=0.0015s

time=0.0010s
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Figure 5.12: Comparison of the results generated by the 1-D Fourier thermal model and
FLOTHERM. The simulation time represents the time taken to simulate 1.5ms.

K represents the total number of Fourier terms used.
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5.3.3 Validation of the 2-D Fourier Thermal Model

The 2-D Fourier thermal model and FLOTHERM were used to simulate a single block of

solder heated at both ends, as shown in Fig. 5.13. The solder had an initial temperature

of 0◦C. The power inputs shown were applied for 3 seconds in order to test the Fourier

model over a longer transient than in the previous validation. The FLOTHERM model

employed a dense mesh model containing 226400 nodes to ensure accurate results. The

FLOTHERM model contained 121 temperature monitoring points and calculated results

at 50 time steps.

Figure 5.13: Diagram of a 2-D heat conduction problem. The power inputs span the
whole x-y surface of the block and do not vary in the y direction.
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The thermographs in Fig. 5.14 show results generated by the Fourier thermal model

and FLOTHERM. The thermographs represent the temperature distributions over the

x-z cross-section of the solder at time t=3s. K and M represent the number of Fourier

coefficients used in the z and x dimension respectively. In order to enable a clearer

comparison between the two models cut lines were taken from the plots shown in Fig.

5.14, appearing in Fig. 5.15.

(a) (b)

(c) (d)
Figure 5.14: Thermographs illustrating the simulation results from modelling

the heat conduction problem in Fig. 5.13. The thermographs represent the x-z plane
at z=z3, at time t=3s.

(a) Fourier model K=M=3. Simulation time: 0.029s.
(b) Fourier model K=M=6. Simulation time: 0.034s.
(c) Fourier model K=M=12. Simulation time: 0.079s.
(d) FLOTHERM model. Simulation time: 1hr 25 mins.
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FLOTHERM.            Simulation time: 1hr 25min
Fourier M=3.K=3.     Simulation time: 0.029s
Fourier M=6.K=6.     Simulation time: 0.034s
Fourier M=12.K=12. Simulation time: 0.078s

axis (m)

Figure 5.15: Cut lines taken from the four plots which appear in Fig. 10. The cut lines
represent z=0.02m along the x dimension.
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5.3.4 Validation of the 3-D Fourier Thermal Model

Fig. 5.16 shows a 3-D heat conduction problem. The top quarter of a block of silicon is

heated by the 5W power source shown. The initial temperature of the silicon block was

300K. The thermographs in Fig. 5.17 represent the x-y plane at z=0, at time t=0.5s. Fig.

5.17(a) and Fig. 5.17(b) display the results from the Fourier model and FLOTHERM

model respectively. The FLOTHERM model used a medium density mesh, containing

102060 cells, and 350 time steps. The Fourier model used eight Fourier terms in every

direction (M=N=K=8). For further comparison between the two models, cut lines were

taken along y=0m in Fig. 5.17(a) and Fig. 5.17(b). The cut lines appear in Fig. 5.18.

Results generated by the Fourier thermal model with fewer Fourier terms are also included.

Figure 5.16: A 3-D heat conduction problem. The power source shown is to the top x-y
plane of the silicon block for 0.5 seconds.
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(a) (b)

Figure 5.17: The thermographs illustrate the temperature distribution in the x-y plane
at z=0 of the silicon block featured in Fig. 5.16, at time t=0.5s. Figure 5.17(a) is from

the 3-D Fourier model with M=N=K=8, and the plot in Fig. 5.17(b) is from the
FLOTHERM model.
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Figure 5.18: Cut lines along the x axis at depth z=0m, at time t=0.5s.
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5.4 Discussion

The results from the 1-D Fourier thermal model and FLOTHERM, shown in Fig. 5.12,

all agree closely over the short transient period. The Fourier model using nine Fourier

terms (K = 9) matches the FLOTHERM result more closely than the K = 3 Fourier

model result. The K = 9 Fourier result is marginally slower to simulate than the K = 3

Fourier result. The 1-D Fourier thermal model simulated the heat conduction problem in

Fig. 5.11 in less than 0.05 seconds for both K=3 and K=9. The simulation speed of the

1-D Fourier model was therefore far superior to the FLOTHERM model which took over

32 minutes to simulate despite employing a low density mesh.

It is clear from Fig. 5.13 that the 2-D Fourier thermal model was able to simulate

the 2-D heat conduction problem in Fig. 5.14 accurately. All the results from the 2-D

Fourier model show evidence of capturing the thermal behaviour because all the Fourier

results resemble the FLOTHERM result over a long transient period of 3 seconds. The

comparison of the cut lines in Fig. 5.15 shows that when the 2-D Fourier model contained

twelve Fourier terms along the z and x dimension (K=M=12), it was a near perfect match

to the FLOTHERM result. It is apparent that as the number for Fourier terms used in

the Fourier model increases, the accuracy of the result increases. However, the accuracy

comes at the expensive of simulation speed. All the results from the 2-D Fourier thermal

model simulated much more quickly than the FLOTHERM model. The 2-D validation

involved simulating power entering a block at either end of the structure, which is unlikely

to occur in a real power converter packaging structure. However, the result is relevant

because shows that the 2-D Fourier model is correctly simulating 2-D heat diffusion and

it suggests the MATLAB/Simulink implementation of the model has been a success.

The thermographs in Fig. 5.17(a) and Fig. 5.17(b) are very similar. Both temperature

distributions are symmetrical about the line y = x, as would be expected give the power
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input shown in Fig. 5.16. Therefore the 3-D Fourier thermal model appears to working

successfully when using eight Fourier terms in each direction (M=N=K=8). This is also

supported by the cut lines which appear in Fig. 5.18. It is clear that increasing the

number of Fourier terms used in the 3-D Fourier model improves accuracy while having

a detrimental affect on the simulation speed. This is what would be expected since the

3-D Fourier model with more terms is likely to provide a more accurate solution to the

3-D heat equation. However, the downside is that MATLAB/Simulink must handle a

greater number of terms which leads to a slower simulation speed. It is worth noting

that for the 3-D Fourier thermal model of a single block, the total number of terms is the

product of KMN . This suggests that when modelling 3-D diffusion in structures which

contain more than just one block, it is likely that the number of Fourier terms can quickly

become excessive if care is not taken. Fig. 5.18 suggests that four Fourier terms in each

dimension is a suitable compromise of simulation speed and accuracy, since the Fourier

model is significantly slower when using eight Fourier terms in each dimension.

It is clear that the 1-D, 2-D and 3-D Fourier thermal models can capture the required

aspects of heat diffusion through a single block. All the Fourier thermal models have

proven accurate when simulating a range of transients. It is apparent that the accuracy

of the 1-D, 2-D and 3-D Fourier thermal models is dependent on the number of Fourier

terms used in the model. However, the benefit of using fewer terms is that the model

simulates more quickly. As rapid simulation speed is vital for the thermal model, since it

must be suitable for design and optimisation, it is clearly necessary to find a compromise

between simulation speed and accuracy.

The Fourier thermal model is computationally efficient when compared with FLOTHERM.

Regardless of the mesh employed by FLOTHERM, the Fourier model was significantly

faster to simulate for every test case. A superior simulation speed was not the only advan-
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tage of the Fourier model over FLOTHERM. The appearance of the results generated by

the Fourier thermal model looked more realistic than those generated by FLOTHERM.

The reason is that the FLOTHERM results were plotted as straight lines joining speci-

fied monitoring points whereas the Fourier model results took the form of a continuous

wave. The fact that the Fourier model does not only supply temperatures at specified

monitoring points is what makes the Fourier model a useful tool for hotspot detection.

The implementation of the Fourier thermal models in MATLAB/Simulink proved

straightforward. The validation of the Fourier model proved a useful method of verifying

the MATLAB/Simulink function blocks which were constructed and the MATLAB codes

which were written. A positive indication of successful implementation was the fact that

as the number of Fourier terms increased, so did the model accuracy. This is what would

be expected when modelling pure heat conduction. Also, the methods used to convert

between the spatial and Fourier domain which were implemented all appeared correct,

which is particularly reassuring when using stacked 2-D matrices in the 3-D Fourier model.

Implementing the power inputs as heat fluxes was simple because the Fourier model was

created to describe any arbitrary heat flux at the top and bottom block boundary. The

benefit of this feature will become more apparent when dealing with material boundaries.

This chapter has shown that the Fourier thermal model is capable of accurately simu-

lating 1-D, 2-D and 3-D heat conduction through a single block of material. The Fourier

thermal model is clearly producing the correct behaviour. Nevertheless, the Fourier ther-

mal model is ultimately required to model the structure shown in Fig. 5.1, which is much

more complicated than a single block of material in that multiple blocks of different cross-

sectional areas are required to be modelled. Therefore the Fourier model requires further

development in order to achieve this aim.
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Chapter

6 Material Interfaces

The Fourier series thermal, which featured in chapter 5, undergoes further development

in this chapter so that it is capable of modelling a whole power module package. Power

module packaging structures consist of many vertically stacked blocks of material with

different cross-sectional areas. Many different material interfaces are present within these

structures. This chapter describes the methods employed by the Fourier thermal model

to simulate these material interfaces. Every stage of Fourier series thermal model devel-

opment is validated using the FVM software package FLOTHERM.
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6.1 Constant Cross-sectional Area

6.1.1 1-D Heat Conduction

An appropriate place to begin is to consider the simplest of material interfaces: 1-D heat

diffusion through the interface shown in Fig. 6.1. This situation, with blocks of constant

x-y cross-section vertically stacked, occurs in power module packaging structures.

Figure 6.1: Diagram showing 1-D (z) heat conduction through a material interface. The
x-y cross-sectional area is the same in block 1 and block 2.

Block 1 and block 2 have the same cross-sectional area (x-y plane). However, z1 6=z2 and

the material properties of each block are different. The point highlighted in the centre

of Fig. 6.1 represents an infinitely small point in the x-y plane of the interface. The

temperature of this point is the same whether considering block 1 or block 2, i.e:

Tbot1(t) = Ttop2(t), (6.1)

where Tbot1 represents the temperature at the bottom of block 1 and Ttop2 represents the

temperature at the top of block 2. It is also important to ensure that the total power

entering the interface is equal to the total power leaving the interface. So the second

constraint is:
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6.1 Constant Cross-sectional Area

Pin = Pout. (6.2)

According to Fourier’s Law for heat conduction,

P = −kA
dT (t)

dz

∣∣∣∣
z

. (6.3)

The constant of proportionality here is k (W/mK), the thermal conductivity. A is the area

of the x-y plane. ∂T (t)
∂z

∣∣∣
bot1

is the heat flux leaving the bottom of block 1, and ∂T (t)
∂z

∣∣∣
top2

is

the heat flux entering the top of block 2. Using Equations (6.2) and (6.3), and the fact

that the area is the same in both blocks, gives:

∂T (t)

∂z

∣∣∣∣
bot1

=
k2
k1

∂T (t)

∂z

∣∣∣∣
top2

. (6.4)

The Fourier series solution from section 5.2.1.1 can be used to calculate Tbot1(t) from

∂T (t)
∂z

∣∣∣
bot1

. Similarly, the Fourier series solution can calculate Ttop2(t) when given ∂T (t)
∂z

∣∣∣
top2

.

However, the outputs of the Fourier series solution are the temperatures and the inputs

are the heat fluxes, so Equations (6.1) and (6.4) cannot be used directly.

The solution to the problem is to use a “Virtual Earth” feedback system based on

[175] and shown in Fig. 6.2. It is given its name because it ensures that the temperature

at the interface of the materials is consistent, i.e. it constrains Tbot1 = Ttop2 by using a

large gain to force e(t)≈0, where e(t) is the error between the temperatures on either side

of the interface. It also fulfils the other system requirement because it forces the power

leaving the underneath of the top block to be equal to the power entering the top of the

block below. Fig. 6.2 shows that the two temperature readings, Tbot1(t) and Ttop2(t), meet

at a summing junction.
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6.1 Constant Cross-sectional Area

Figure 6.2: Diagram of the Virtual Earth Feedback system used to simulate the material
interface in Fig. 6.1. FS1 and FS2 are the Fourier series solutions to the heat equation

in block 1 and block 2 respectively.

The error e(t) is obtained directly:

e (t) = Tbot1 (t)− Ttop2 (t) . (6.5)

This error is available for manipulation and is the input to the controller. The controller

output, ∂T (t)
∂z

∣∣∣
bot1

, is the multiplication product of the error signal and the proportional

gain. This can be mathematically expressed as:

∂T (t)

∂z

∣∣∣∣
bot1

= Gain ∗ e(t). (6.6)

Therefore, substituting in equation 6.4) and rearranging gives:
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6.1 Constant Cross-sectional Area

∂T (t)

∂z

∣∣∣∣
top2

= Gain ∗ e(t) ∗ k1
k2

. (6.7)

This is a simple procedure because it only involves a controller which consists entirely of

a multiplying constant (gain). The controller provides the required compensation. The

controller output ∂T (t)
∂z

∣∣∣
bot1

is then the input to plant 1. ∂T (t)
∂z

∣∣∣
top2

is the input to plant 2.

The closed loop equations relating Tbot1 to Ttop2 are given by:

Loop 1

Tbot1 = −FS1 ∗ ∂T (t)

∂z

∣∣∣∣
bot1

. (6.8)

Substitution of Equation (6.6) and Equation (6.5) into Equation (6.8) produces:

Tbot1 =

(
(FS1 ∗Gain)

(1 + FS1 ∗Gain)

)
Ttop2. (6.9)

Loop 2

Ttop2 = FS2 ∗ ∂T (t)

∂z

∣∣∣∣
top2

. (6.10)

Substitution of Equation (6.7) and Equation (6.5) into Equation (6.10) produces:

Ttop2 =

( (
FS2 ∗Gain ∗ k1

k2

)
(
1 + FS2 ∗Gain ∗ k1

k2

)
)
Tbot1. (6.11)

In the steady state, i.e. t > ∞, as long as (FS1 ∗Gain) >> 1 and
(
FS2 ∗Gain ∗ k1

k2

)
>> 1, the output will be just about equal to the input for any type

of input signal. It is clear that the gain must greatly exceed unity; this applies to all

negative feedback systems regardless of system details.
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6.1 Constant Cross-sectional Area

In order to supplement the understanding of the system, consider what would happen

at the instant at which Tbot1(t) increased. This would cause the value of e(t) to be a

negative value. Therefore the value of ∂T
∂z

∣∣
bot1

would also be negative, providing the gain

was positive. This means that power would leave the underneath of block 1 (Fourier’s

law). Similarly, the value of ∂T
∂z

∣∣
top2

would be negative. Therefore, heat would enter the

top of block 2, causing Ttop2 to rise, therefore reducing e(t) and bringing the values of

Tbot1 and Ttop2 closer together.

The gain value depends on the required accuracy. Increasing leads to a smaller error in

the system, but less numerical stability. Another consequence of using increasing feedback

gain is an increase in the number of steps required to find the solution, which in turn leads

to a longer simulation time. An infinitely high feedback gain would be needed to simulate

a ‘perfect’ interface [176, 177].

A whole chain of feedback loops would be required in order to model more than two

packaging layers, as shown in Fig. 6.3.

Figure 6.3: Diagram of a chain of feedback loops required to simulate the material
interfaces in N layers of material with a constant x-y cross-sectional area.
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6.1 Constant Cross-sectional Area

6.1.2 2-D Heat Conduction

Other than an added dimension, the approach for this case is very similar to that shown

in section 6.1.1. The difference is that an infinitely thin boundary line is used to represent

the boundary, as shown in Fig. 6.4, rather than an infinitely small point. The data along

the line is in the Fourier domain and can therefore describe any distribution along the x

dimension. Therefore the boundary can model 2-D (x-z) diffusion through the two blocks.

Figure 6.4: Diagram showing 2-D (x-z) heat conduction through a material interface.
The x-y cross-sectional area is the same in block 1 and block 2.

There are two constraints on the system. The first is that the temperature distribution

along the boundary line is the same whether considering block 1 or block 2, i.e: ,

Tm,bot1(t) = Tm,top2(t), (6.12)

where Tm,bot1(t) represents the temperature distribution along the x dimension at the bot-

tom of block 1. Tm,top2(t) represents the temperature distribution along the x dimension

at the top of block 2. The second constraint is that the power entering the interface is

equal to the power leaving the interface, giving rise to the following expression:

∂Tm(t)

∂z

∣∣∣∣
bot1

=
k2
k1

∂Tm(t)

∂z

∣∣∣∣
top2

, (6.13)

where ∂Tm(t)
∂z

∣∣∣
bot1

is the heat flux at the bottom of block 1 and ∂Tm(t)
∂z

∣∣∣
top2

is the heat flux at

the top of block 2. The “Virtual Earth” method is applied as shown in Fig. 6.2; however,

the data is in the form of a line distribution along the x dimension rather than a single

numerical value.
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6.1 Constant Cross-sectional Area

6.1.3 3-D Heat Conduction

The technique used in this case is again similar to section 6.1.1. However, an infinitely

thin x-y surface is used to represent the boundary, as shown in Fig. 6.5, rather than an

infinitely small point. The data describing the surface is in the Fourier domain and can

therefore describe any x-y surface distribution. Therefore the boundary can model 3-D

(x-z) diffusion through the two blocks. Two constraints are placed on the system. The

Figure 6.5: Diagram showing 3-D (x-y-z) heat conduction through a material interface.
The x-y cross-sectional area is the same in block 1 and block 2.

first constraint is that the temperature distribution of the x-y boundary surface is the

same whether considering block 1 or block 2, i.e:

Tmn,bot1(t) = Tmn,top2(t), (6.14)

where Tmn,bot1(t) represents the temperature distribution of the x-y surface at the bottom

of block 1. Tmn,top2(t) represents the temperature distribution of the x-y surface at the

top of block 2. The second constraint is that the power entering the interface is equal to

the power leaving the interface, giving rise to the following expression:

∂Tmn(t)

∂z

∣∣∣∣
bot1

=
k2
k1

∂Tmn(t)

∂z

∣∣∣∣
top2

, (6.15)

where ∂Tmn(t)
∂z

∣∣∣
bot1

is the heat flux at the bottom of block 1 and ∂Tmn(t)
∂z

∣∣∣
top2

is the heat

flux at the top of block 2. The “Virtual Earth” method, described in Fig. 6.2, is applied.

However, the data is in the form of a x-y surface distribution rather than a numerical

value for this case.
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6.2 Different Cross-sectional Area

The vertically stacked blocks of material which make up a power module package tend

to have varied x-y cross-sections. This gives rise to different material interfaces to those

shown in the previous section and require simulation. When considering 2-D heat diffusion

it is necessary to model a cross-sectional change in one dimension only, either the x or

y dimension. However, when modelling 3-D diffusion cross-sectional changes in both the

x and y dimension must be acknowledged. 1-D heat diffusion is not considered in this

section since, by its very nature, it assumes a constant x-y cross-section.

6.2.1 2-D Heat Conduction

This section will demonstrate the approach to modelling 2-D diffusion for a cross-sectional

change in the x dimension only, although the approach would be the same if modelling a

change in the y dimension only. Therefore, in Fig. 6.6, block 1 and block 2 have different

x and z dimensions but a common y dimension. The Fourier model requires the heat flux

entering block 2, between x=0 and x=x3 at z=z1, to be accurately represented. Also,

the temperature distribution across the top of block 2, between x=x1 and x=x2, must be

extracted. To achieve this, it is necessary to transform between different Fourier domains

in a way which represents the spatial change in the x dimension. This is possible through

the use of a heat flux window matrix and a temperature extraction matrix. Each matrix

is applied within the feedback system shown in Fig. 6.7.
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6.2 Different Cross-sectional Area

Figure 6.6: Heat diffusion through two blocks with a different x dimension. Block 1 has
I Fourier harmonics, while block 2 has M Fourier harmonics, to describe a distribution

in the x dimension.

Figure 6.7: A schematic showing the approach to modelling the problem shown in Fig.
6.6. Ti are the temperature harmonics based on the domain x=x1 to x=x2, and Tm are

those based on x=0 to x=x3.
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6.2 Different Cross-sectional Area

6.2.1.1 Heat Flux Window

In order to convert the heat flux at z = Z1 in Fig. 6.6 from the block 1 domain (x=x1 to

x=x2) to the block 2 domain (x=0 to x=x3), a transformation between the two Fourier

domains is required.

In Fig. 6.8, an arbitrary function, f1(x), represents the heat flux leaving the bottom

of block 1. The function f2(x), which also appears in Fig. 6.8, represents the heat flux

entering block 2. It is observed that f1(x)=f2(x) for x1 ≤ x ≤ x2 because a perfect

thermal contact is assumed at the material interface. f2(x)=0 for 0≤x≤x1 and x2≤x3

because the heat flux is zero where block 1 is not in contact with block 2.

Figure 6.8: The function, f1(x), represents heat flux at the bottom of block 1 in Fig.
6.6. The function, f2(x), describes the heat flux entering the top of block 2, in Fig. 6.6.

The definition of 1-D Fourier cosine series gives: ,

f1(x) =
∞∑
i=0

F1i cos

(
iπ(x− x1)

x2 − x1

)
, (6.16)

where F1i represents the Fourier coefficients in the block 1 domain and i is the index for

the Fourier series F1i. The 1-D Fourier cosine series definition of the function f2(x) is:

f2(x) =
∞∑

m=0

F2m cos

(
mπx

x3

)
, (6.17)
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6.2 Different Cross-sectional Area

where F2m represents the Fourier coefficients and m is the index for the Fourier series

F2m. Since f1(x)=f2(x) for x1≤x≤x2, the expression for F2m in terms of F1i is:

F2m =





1
x3

x2∫
x1

∞∑
i=0

F1i cos
(

iπ(x−x1)
(x2−x1)

)
dx, m=0

2
x3

x2∫
x1

∞∑
i=0

F1i cos
(

iπ(x−x1)
(x2−x1)

)
cos

(
mπx
x3

)
dx, m>0

(6.18)

The solution to Equation (6.18) is:

F2m=





[(x2 − x1)/x3]F1i, m=0, i=0

2
mπ

[
sin

(
mπx2
x3

)
− sin

(
mπx1
x3

)]
F1i, m>0, i=0

[0]
I∑

i=0
F1i, m=0, i>0

−2m
πx2

3


 1(

i2

(x2−x1)
2

)
−
(

m2

x23

)




(
(−1)i sin

(
mπx2
x3

)
− sin

(
mπx1
x3

)) I∑
i=0

F1i. m>0, i>0

(6.19)

Fig. 6.9 shows how to convert from I Fourier harmonics (block 1 domain) toM Fourier

harmonics (block 2 domain) in order represent the heat flux window entering block 2.

Each expression in Equation (6.19) occupies a different region within the premultiplier

conversion matrix.

Figure 6.9: Matrix multiplication to convert from a Fourier series with I Fourier
harmonics (block 1) to a Fourier series with M Fourier harmonics (block 2).
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6.2.1.2 Temperature Extraction

In order for the feedback loop in Fig. 6.7 to model the situation in Fig. 6.6 correctly, the

temperature distribution in block 2 between x=x1 and x=x2 at z=z1 must be extracted

and then compared with the temperature distribution at the bottom of block 1. To achieve

this a transformation between the two Fourier domains must be performed.

The arbitrary function f3(x), in Fig. 6.10, represents the temperature distribution

between x=0 and x=x3, at z=z1, in the block 2 domain. The function f4(x), in Fig. 6.10,

is extracted from f3(x). It represents the temperature distribution between x=x1 and

x=x2 z=z1, in block 1 domain.

Figure 6.10: The function, f3(x), represents the temperature distribution across the top
of block 2. The function f4(x) represents the temperature distribution at the top of
block 2 between x=x1 and x=x2. f4(x) has been extracted from the function f3(x).

The 1-D Fourier cosine series of the function f3(x) is:

f3(x) =
∞∑

m=0

F3m cos

(
mπx

x3

)
, (6.20)

where F3m represents the Fourier coefficients and m is the index for the Fourier series.
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6.2 Different Cross-sectional Area

The 1-D Fourier cosine series of the function f4(x) is:

f4(x) =
∞∑
i=0

F4i cos

(
iπ(x− x1)

(x2 − x1)

)
, (6.21)

where F4i represents the Fourier coefficients and where i is the index of the Fourier series.

An expression of F4i in terms of F3m is required to create a pre-multiplying conversion

matrix. Since f3(x)=f4(x) for x1≤x≤x2, the expression for F4m in terms of F3i is:

F4i =





1
(x2−x1)

∞∑
m=0

F3m

x2∫
x1

cos
(

mπx
x3

)
dx, i=0

2
(x2−x1)

∞∑
m=0

F3m

x2∫
x1

cos
(

mπx
x3

)
cos

(
iπ(x−x1)
(x2−x1)

)
dx. i>0

. (6.22)

The solution to Equation (6.22) is:

F4i=





F3m, i=0, m=0

[0]F3m, i>0, m=0

x3

mπ(x2−x1)

(
sin

(
mπx2

x3

)
− sin

(
mπx1

x3

)) M∑
m=0

F3m, i=0, m>0

−2m
π(x2−x1)x3


 1(

i2

(x2−x1)2

)
−
(

m2

x2
3

)




(
(−1)

i
sin

(
mπx2

x3

)
− sin

(
mπx1

x3

)) M∑
m=0

F3m. i>0, m>0

(6.23)

Using the solution in Equation (6.23), it is now possible to construct a premultiplying

conversion matrix needed to convert from M Fourier harmonics (block 2 domain) to I

Fourier harmonics (block 1 domain). This conversion matrix will extract the required

temperature distribution. This happens in a similar fashion to the matrix multiplication

in Fig. 6.9.
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6.2.2 3-D Heat Conduction

The same approach used to model the heat conduction problem in Fig. 6.6 is applied to

model the situation in Fig. 6.11. Whether representing the 2-D x-y heat flux window

entering block 2 or carrying out the necessary x-y temperature distribution extraction,

a transformation between Fourier domains is required. To simulate the problem in Fig.

6.11 it is necessary to convert in both the x dimension and the y dimension. Therefore a

post-multiplying conversion matrix is used to convert in the y dimension in addition to

the pre-multiplying conversion matrix which is used to convert in the x dimension.

Figure 6.11: 3-D heat diffusion through two blocks with different x, y and z dimensions.
The IJ Fourier domain describes the x-y distribution in block 1. The MN Fourier

domain describes the x-y distribution in block 2.
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6.2.2.1 Heat Flux Window

The matrix algebra associated with a change from the IJ Fourier series domain (block

1) to the MN Fourier series domain (block 2) is shown in Fig. 6.12. This is required

to generate the 2-D heat flux window entering the top of block 2, in Fig. 6.11. The

derivation of the MI pre-multiplying conversion matrix proceeds as in section (6.2.1.1).

The derivation of the post-multiplying JN conversion matrix is similar.

Figure 6.12: Matrix conversion from the IJ domain (block 1) to the MN domain (block
2). The M by I matrix converts in the x dimension, the J by N matrix converts in the

y dimension.

6.2.2.2 Temperature Extraction

The matrix algebra associated with a change from the MN Fourier series domain (block

2) to the IJ Fourier series domain (block 1) is shown in Fig. 6.13. This is required to

extract the 2-D temperature distribution from the region of block 2 which is in contact

with block 1. The derivation of the pre-multiplying IM conversion matrix proceeds as in

section (6.2.1.2). The derivation of post-multiplying NJ conversion matrix is similar.

Figure 6.13: Matrix conversion from the MN Fourier domain (block 2) to the IJ
Fourier domain (block 1). The I by M matrix converts in the x dimension, the N by J

matrix converts in the y dimension.
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6.3 Multiple Heat Sources
The principle of superposition is applied in order to model thermal interactions from

multiple independent heat sources. This is achieved by simply adding the heat flux

representations from the individual heat sources (i.e. adjacent devices). The use of this

principle for this purpose is widely reported in literature [178–182]. Consider the metal

(1) block, which appears in the packaging structure in Fig. 5.1. If both silicon devices

were to dissipate heat, the heat flux reaching the metal (1) block is the sum of the flux

coming down from the IGBT solder block and the flux from the diode solder block. Fig.

6.14 helps visualise superposition in the spatial domain. Simple addition also works in

the Fourier domain because the heat equation is linear. Adding heat fluxes in this way

ensures that the effects of thermal coupling are taken into account. It is worth mentioning

that IGBT and diode in the simulation domain, shown in Fig. 5.1 of chapter 5, are never

switched on at the same time during the operation of the Toyota Prius power converter.

Therefore the devices do not dissipate heat at the same time because they are anti-parallel

and conduct current in different directions. Nevertheless, it is essential that the Fourier

model can simulate this scenario because heat continues to diffuse through the packaging

structure from a hot device even when it is switched off.

Figure 6.14: A spatial representation of the superposition principle. The heat flux into
the metal (1) block, shown in Fig. 2.10, equates to the sum of the individual heat fluxes.
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6.4 Results

Throughout this results section heat diffusion is simulated through a range of structures

in order to test the approaches presented in this chapter for modelling various material

interfaces. Validation of the Fourier thermal model is achieved by comparison between

the results generated by it and FLOTHERM. The procedure for creating FLOTHERM

thermal models is explained in section 5.3.1

6.4.1 Constant Cross-sectional Area

This section aims to validate the ‘Virtual Earth’ feedback system shown in Fig. 6.2. Only

structures with non-varying x-y cross-sectional areas will be considered.

6.4.1.1 1-D Heat Conduction

Fig. 6.15 shows a 1-D heat conduction problem. The x-y cross-sectional area of the

structure shown matches that of the silicon diode in a Toyota Prius power converter. The

z dimensions of the materials also match those from the Toyota converter but only the

material as far down as the metal (2) layer is considered. Therefore the blocks below

the silicon layer have different material properties and thicknesses. The underside of the

metal (2) layer is fixed at 300K. A transient power input of 50W was dissipated into the

top of the silicon diode for 1 second, as shown in Fig. 6.15.

To enable comparison between the 1-D Fourier model and FLOTHERM, the transient

temperatures at the centre of each block of material were plotted on log scale, as shown

in Fig. 6.16. The mesh used in FLOTHERM was fine, containing 106032 nodes and it

solved using 50 time steps. K represents the number of Fourier harmonics used in the

Fourier model to represent each block of material. The Fourier model feedback gain was

very high at 108 to ensure a “perfect” thermal contact at the material interfaces.

130



6.4 Results

Figure 6.15: Diagram of a 1-D heat conduction problem containing vertically stacked
materials with constant x-y cross-sectional area. The power input is applied evenly

across the top surface for 1 second. Drawing not to scale.
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FLOTHERM. Simulation time:1hr 26min
Fourier. K=3. Simulation time:0.0.071s
Fourier. K=5. Simulation time:0.080s
Fourier. K=9. Simulation time:0.110s
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Figure 6.16: Transient temperature profiles generated by the Fourier thermal model and
FLOTHERM. The temperatures represent the centre point of each block of material

shown in Fig. 6.15. Results are plotted on a log scale.
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6.4.1.2 2-D Heat Conduction

This simulation applies the 2-D Fourier series model and FLOTHERM to 2-D heat con-

duction problem shown in Fig. 6.17. The z dimensions and material properties of the

materials match those which are used in a Toyota Prius power converter package. The

initial temperature of the structure was 300K and the underside of the Al alloy layer is

fixed at 300K.

Figure 6.17: Diagram of a 2-D heat conduction problem containing vertically stacked
materials with constant x-y cross-sectional area. The power input was applied across
the whole of the top surface, with no variation in the y dimension for a total of 10

seconds. Diagram not to scale.
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The results of modelling this structure using the 2-D Fourier model and FLOTHERM

appear in the thermographs shown in Fig. 6.18. The Fourier thermal model used a high

feedback gain of 108 to model the material boundaries. K and M represent the number

of Fourier harmonics used in the Fourier model along the z and x dimension respectively.

The FLOTHERM model employed a coarse mesh with 101175 nodes, and it calculated

using 120 time steps. The FLOTHERM model relied on 729 temperature monitoring

points in order to produce the thermograph shown in Fig. 6.18(d).

Figure 6.18: Thermographs illustrating the simulation results from modelling the heat
conduction problem in Fig. 6.17. The thermographs represent the x-y plane at z=z3, at

time t=10s.
(a) Fourier model K=M=3. Simulation time: 0.015s.
(b) Fourier model K=M=5. Simulation time: 0.76s.
(c) Fourier model K=M=9. Simulation time: 4.96s.
(d) FLOTHERM model. Simulation time: 2hr 35min.
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6.4.2 3-D Heat Conduction

The power source shown in Fig. 6.19 was applied for 0.5 seconds to the structure shown.

The structure consists of two blocks of material which are vertically stacked. The blocks

have the same x-y cross-sectional area and an initial temperature of 300K.

The 3-D heat conduction problem in Fig. 6.19 was simulated by a 3-D Fourier series

model and FLOTHERM. Fig. 6.20 shows a comparison of the temperature distribution

in the x-y plane at z = z2 after 0.5 seconds. The FLOTHERM model contained 121

temperature monitoring points in the x-y plane at z = z2. The FLOTHERM model em-

ployed a medium density mesh of 369920 nodes and calculated results over 25 time steps.

K, M and N represent the number of Fourier harmonics in the z, x and y dimensions

respectively. The Fourier thermal model has used a feedback gain of 108 at the material

interface.

Figure 6.19: 3-D heat conduction problem containing vertically stacked materials with a
constant x-y cross-sectional area. The power input is applied for 0.5 seconds. Diagram

not to scale.
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Figure 6.20: Thermographs illustrating the simulation results from modelling the heat
conduction problem in Fig. 6.19. The thermographs represent the x-y plane at z=z2, at

time t=0.5s.
(a) Fourier model K=M=N=3. Simulation time: 0.09s.
(b) Fourier model K=M=N=5. Simulation time: 0.21s.
(c) Fourier model K=M=N=8. Simulation time: 1.17s.
(d) FLOTHERM model. Simulation time: 1hr 27 mins.

In order to gain a clear comparison between the results generated by FLOTHERM

and the Fourier thermal mode, cut lines of the results in Fig. 6.20 were taken. Fig. 6.21

and Fig. 6.22 show the cut lines taken along the x and y axes respectively.
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FLOTHERM.          Simulation time: 1hr 27min
Fourier M=N=K=3. Simulation time: 0.09s
Fourier M=N=K=5. Simulation time: 0.21s
Fourier M=N=K=8. Simulation time: 1.17s

Figure 6.21: Graph showing a cut line from the results in Fig. 6.20 taken along the x
axis.
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FLOTHERM.          Simulation time: 1hr 27min
Fourier M=N=K=3. Simulation time: 0.09s
Fourier M=N=K=5. Simulation time: 0.21s
Fourier M=N=K=8. Simulation time: 1.17s

Figure 6.22: Graph showing a cut line from the results in Fig. 6.20 along y axis.
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6.4.3 Different cross-sectional area

In this section the approach to modelling vertically stacked blocks with varying x-y cross-

sectional areas will be validated. Namely, the approach shown in Fig. 6.7 which relied on

the use of heat flux window and temperature extraction matrices.

6.4.3.1 MATLAB Code Test

The proposed method for dealing with a material interface where blocks are vertically

stacked but have a different x-y cross-sectional area was presented in section 6.2. Prior

to implementing the model designed to simulate this type of interface, shown in 6.7, it

is worth testing MATLAB code which has been implemented. Namely, the code which

creates a heat flux window and the code responsible for temperature distribution. These

two scripts are vital since it is responsible for enabling the simulation of a change in x-y

cross-sectional area at a material interface.

Heat Flux Window - The aim is to represent the heat flux passing into the top of block

2 in the heat conduction problem shown in Fig. 6.6, when x1 = 3, x2 = 7 and x3 = 10.

It is assumed that the heat flux passing through the material interface is uniform, and

given an arbitrary value of 5 Wcm−2; the results of the code test are shown in Fig. 6.23.

It is clear that the more Fourier terms used to represent the flux, the closer the plot is to

representing the flux as a pulse input in space. However, undershoot appears to occur in

every case. Gibbs phenomenon is visible for a high number of Fourier terms.

Temperature Extraction - The test results from a temperature extraction process

are shown in Fig. 6.24; this shows a 2-D plot of the arbitrary function y = sin x+x. This

function, a black dashed line, represents the temperature distribution along the x-axis.

The temperature of various regions is extracted and plotted in Fig. 6.24. It is clear that

the code is working correctly. The more Fourier terms that are used to represent a region,

the more accurately the temperature distribution of that region follows the ideal curve.
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Figure 6.23: Graphical representation of the heat flux entering the top of block 2, using
a different number of Fourier terms in each case.
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Figure 6.24: Extraction of the temperature distribution of various regions along the
x-axis. The temperature distribution is assigned the function y = sin x+ x.
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6.4.3.2 Cross-sectional change (x dimension only).

The 2-D Fourier thermal model and FLOTHERM have been used to model the heat

conduction problem presented in Figure 6.25. The structure has an initial temperature of

300K. Simulated results showing the temperature distribution between x=0 and x=x3, in

the bottom of the aluminium block, appear in Fig. 6.26. The FLOTHERM model used

contained a very coarse mesh of 28840 nodes and used 50 time steps. The Fourier model

used a gain of 108. M and K represent the number of Fourier harmonics used in the x

and z dimension respectively.

Figure 6.25: A 2-D heat conduction problem. The y dimension of the structure is fixed
at 0.01m. The heat source is applied for a total of 0.5 seconds.
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FLOTHERM. Simulation time: 19minutes 21s
Fourier M=3 K=2. Simulation time: 0.088s
Fourier M=5 K=2. Simulation time: 0.095s
Fourier M=9 K=2. Simulation time: 0.098s

time =0.10s

time =0.25s

time =0.5s

Figure 6.26: Temperature profile between x=0 and x=x3, at depth z=z2. The
simulation times stated represents the time taken to simulate to time t=0.5s
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6.4.3.3 Cross-sectional Change (x & y dimensions)

The 3-D Fourier thermal model and FLOTHERM have been used to simulate the 3-D heat

conduction problem in Fig. 6.27. The results are displayed in the form of thermographs in

Fig. 6.28. These thermographs represent the temperature distribution of the x-y surface

at z = z3, at time t=0.5s. The FLOTHERM model applied a coarse mesh with 34568

nodes and calculating results at 20 time steps. The FLOTHERM model relied on 121

temperature monitoring points to produce the thermograph in Fig. 6.28(d). Meanwhile,

M , N and K represent the number of Fourier harmonics used in the Fourier model to

represent the x, y and z dimensions. The Fourier model used a feedback gain of 108 to

simulate the material interfaces.

Figure 6.27: 3-D heat conduction problem. The power source is applied to the top of the
diode block for total of 0.5 seconds. The structure is insulated everywhere except where

the power enters the structure. The initial temperature of the structure is 300K.
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Figure 6.28: Thermographs illustrating the simulation results from modelling the heat
conduction problem in Figure 6.27. The thermographs represent the x-y plane at z=z2,

at time t=0.5s.
(a) Fourier model M=N=3 K=2 . Simulation time: 0.008s.
(b) Fourier model M=N=5 K=2. Simulation time: 0.26s.
(c) Fourier model M=N=11 K=2. Simulation time: 2.16s.

(d) FLOTHERM model. Simulation time: 15min 34s.

Cut lines were taken from each of the four thermographs in Fig. 6.28 in order to

investigate the results more closely. Fig. 6.29 displays cut lines taken beneath the centre

of the diode and parallel to the x axis, while Fig. 6.29 shows cut lines taken beneath the

centre of the diode and parallel to the y axis of Fig. 6.28.
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FLOTHERM.
Fourier. M=N=3 K=2
Fourier. M=N=5 K=2
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Figure 6.29: Cutline from Fig. 6.28 taken parallel to x axis,
beneath the centre of the diode.
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FLOTHERM.
Fourier. M=N=3 K=2
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Fourier. M=N=11 K=2

Figure 6.30: Cutline from Fig. 6.28 taken parallel to y axis, beneath the centre of the
diode.

143



6.4 Results

6.4.4 Multiple Heat Sources

In this section the use of applied the superposition principle in order to model multiple

heat sources with a Fourier series model will be presented. Since the 3-D Fourier thermal

model is easily adapted from the last section to validate this approach, only 3-D heat

conduction is considered. The 3-D Fourier series model and FLOTHERM have mod-

elled the situation shown in Fig. 6.31. This structure can be found in a Toyota Prius

power converter; however, it would normally have many more blocks beneath it. Multi-

ple heat sources are applied to the structure simultaneously for 0.5 seconds. The initial

temperature of the structure is 300K.

Figure 6.31: 3-D heat conduction problem. The heat sources are applied simultaneously
for 0.5 seconds. The structure is insulated everywhere except where the power enters the

structure.
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Fig. 6.32 shows thermographs which represent the temperature distribution of the

x-y surface at z = z2, at time t=0.5s. The FLOTHERM model employed a medium

density mesh with 328440 nodes and calculated results along 20 time steps. K, M and

N represent the number of Fourier harmonics in the z, x and y dimensions respectively

of the Fourier model. The Fourier model used a feedback gain of 100 million to simulate

the material interfaces.

Figure 6.32: Thermographs illustrating the simulation results from modelling the heat
conduction problem in Figure 6.31. The thermographs represent the x-y plane at z=z2,

at time t=0.5s.
(a) Fourier model M=N=3, K=2. Simulation time: 0.122s.
(b) Fourier model M=N=5, K=2. Simulation time: 0.436s.
(c) Fourier model M=N=7, K=2. Simulation time: 1.863s.

(d) FLOTHERM model. Simulation time: 1hr 6mins.
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6.4.5 Modelling the Whole Simulation Domain

In chapter 5 it was established that if a thermal model could model the simulation domain

in Fig. 5.1, it would also be able to accurately model the power converter packaging

present in a Toyota Prius. The approaches to modelling material interfaces presented in

this chapter have enabled the Fourier thermal model to simulate the simulation domain.

This section will test whether the Fourier model can simulate it speedily and accurately.

The most important output from the 3-D Fourier thermal model is the IGBT and diode

temperature profiles because this is data which it will have to provide when it is placed

inside the power converter simulator from section 1.3 at a later stage. Therefore the

temperature profiles generated by the Fourier model will be compared with FLOTHERM

in this section.

6.4.5.1 Single Heat Source

Figure 6.33: Diagram showing a 3-D heat conduction problem concerning the whole
simulation domain. The IGBT is heated by 50W power for 10 seconds through its top

surface. All other surfaces are insulated.
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The Fourier thermal model and FLOTHERM were required to model the 3-D heat

conduction problem in Fig. 6.33. The initial temperature of the structure was 300K. A

FLOTHERM model and 3-D Fourier series model simulated the transient temperature

profiles of the IGBT device, to produce the results shown in Fig 6.34. The FLOTHERM

model used for validation employed a fine mesh consisting of 941,640 nodes and calculated

at 80 time steps. The FLOTHERM model relied on 162 monitoring points, 81 over the

surface of the IGBT and 81 over the surface of the unheated diode. This enables an average

device temperature to be taken in each case. In the Fourier model M ,N and K represent

the number of Fourier terms used in the x, y and z direction respectively. The value of

the feedback gain used by the Fourier model was varied to see how it would affect the

Fourier model’s performance. Up until now, the Fourier model has always used a feedback

gain value of 108 in order to simulate a near perfect thermal contact. However, with so

many material interfaces in this structure it is likely that using such a high gain value may

adversely affect the Fourier model’s simulation speed. The average device temperature

was straightforward to ascertain using the Fourier model because it was simply the DC

term inside the Simulink subsystem representing each device. Attention is also paid to

the temperature of the unheated diode whilst solely heating the IGBT. The result for this

case is given in Fig. 6.35, the Fourier model used a feedback gain of 104 and M=N=3,

K=2. The same FLOTHERM simulation was used to validate this result.
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FLOTHERM.   Simulation time=5hr 10min

Fourier. M=N=3 K=2. Gain=103. Simulation time=0.28s

Fourier. M=N=3 K=2. Gain=104. Simulation time=0.36s
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Figure 6.34: Temperature of the IGBT when heated by 50W of power
(diode unheated). The ‘gain’ represents feedback gain.
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Figure 6.35: Temperature of the unheated diode when the IGBT is
heated by 50W of power.
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6.4.5.2 Dual Heating

Figure 6.36: Diagram showing a 3-D heat conduction problem concerning the whole
simulation domain. The IGBT and diode are heat simultaneously for 10 seconds. The
IGBT is heated by 50W power, while the diode is heated by 30W of power. Both
devices are heated through their top surfaces. All other surfaces are insulated.

This 3-D heat conduction problem also concerns the whole simulation domain. How-

ever, both devices are being heated simultaneously according the to power sources shown

in Fig. 6.36. The structure has an initial temperature of 300K. The 3-D Fourier ther-

mal model and FLOTHERM simulated the heat conduction problem in Fig. 6.36. The

temperature profiles of the IGTB and diode which were generated by each of the thermal

models appear in Fig. 6.37. The same number of Fourier terms were used as with the

previous case (M=N=3, K=2). A feedback gain value of 10,000 was chosen as it was

shown to give the best compromise of simulation speed and accuracy in Fig. 6.34. The

FLOTHERM model was the same as the previous section 6.4.5.1.
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Diode. Fourier. M=N=3 K=2. Gain=104

Diode. FLOTHERM

IGBT. Fourier. M=N=3 K=2. Gain=104

IGBT. FLOTHERM

Figure 6.37: Transient temperature profiles of both the diode and IGBT. The results are
generated by the 3-D Fourier model and FLOTHERM model when simulating the heat

conduction problem in Fig. 6.36
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6.5 Discussion

The transient temperature profiles in Fig. 6.16, produced by the Fourier model and

FLOTHERM, matched very closely as the temperature at the centre of each block in-

creased. However, the steady state temperatures generated by the Fourier model became

more accurate as the number of Fourier terms used in the model increased. This is not

surprising since an infinitely high number of terms would be required to solve the heat

equation with complete accuracy.

The results in Fig. 6.18 show the expected behaviour, with the peak temperature oc-

curring in the top of the silicon block for each result. Both models show that there is a large

temperature difference across thin block of thermal grease at 0.005115m<z<0.005175m.

As the number of Fourier terms used in the Fourier model increased, the closer the re-

sults matched FLOTHERM. However, the increased accuracy came at the expense of

simulation speed.

Fig. 6.20 shows that the 3-D Fourier model is able to simulated the material interface

in Fig. 6.19, where each block has the same x-y cross-sectional area. The Fourier model

appears accurate whether using 3, 5 or 9 Fourier terms in each dimension. The cut lines

in Fig. 6.21 and Fig. 6.22 support this point and they show that as the Fourier thermal

model used more Fourier terms, it becomes more accurate. However, the improvement is

only very slight and does not seem to warrant the substantial increase in simulation time.

The results in Fig. 6.26 show that the Fourier model can simulate a material boundary

with a constant cross-section and a material boundary with a change in the x direction.

The results support the use of the approach to modelling material interfaces which ap-

peared in sections 6.1 and 6.2 because the Fourier model results match FLOTHERM

closely over the time period which heat is applied. However, the Fourier model with
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M = 3 and K = 2 harmonics seemed to undershoot the FLOTHERM result where

x < 0.005m, and overshoot where x > 0.025m. This is potentially a consequence of

having just three Fourier harmonics to describe the temperature distribution in the x

dimension.

It is clear that the 3-D Fourier model can simulate 3-D heat diffusion correctly where

the x-y cross-sectional area of the stack blocks changes. Fig. 6.28 shows that all the

results generated by the Fourier model simulate the thermal behaviour of the problem in

Fig. 6.27 very well, even when using very few Fourier harmonics.

The cut lines in Fig. 6.29 and Fig. 6.30 show that the Fourier thermal model case of

M=N=11, K=2 is a near-identical match to the FLOTHERM. However, caution should

be applied to this particular result; the extra computational cost of using so many Fourier

terms is evident by its simulation time. That said, all the Fourier results are still far faster

at simulating the 3-D diffusion than FLOTHERM. It is interesting to see the result in Fig.

6.29 where the Fourier M=N=5 K=2 result oscillates for the range 0.0175m<x<0.03m.

This oscillation causes an undershoot of the 300K temperature mark where x>0.026m.

Fig. 6.32 shows that the 3-D Fourier thermal model can successfully simulate heat

diffusion from multiple heat sources. It is clear that the superposition principle to repre-

sent multiple heat sources has been successful. The greater the value of M and N Fourier

terms, the more accurately the 3-D Fourier model results matched FLOTHERM. Having

just two Fourier terms in the z direction did not seem to have a negative impact on the

results. The thermograph obtained using the M=N=7, K=2 Fourier model is almost

identical to the result provided by FLOTHERM. Once again, the 3-D Fourier thermal

model’s simulation speed is far superior to that of FLOTHERM.

The trend shown in Fig. 6.34 is what would be expected: as the feedback gain

increases, the Fourier model resembles the results of FLOTHERM more closely. The
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FLOTHERM model used a very fine mesh and so it would simulate the interface as a

near-perfect thermal contact, while the Fourier thermal model would require a feedback

gain approaching infinity to achieve this. The disadvantage of using a higher feedback

gain is that the Fourier model takes more time to simulate. A feedback gain value of 104

seems a good compromise of speed and accuracy. The result with a gain value of 103

is clearly not nearly accurate enough, whilst the improvement in accuracy as the gain

increases from 104 to 105 is not sufficient to warrant the increase in simulation time.

Fig. 6.35 shows an unusual result. The temperature of the unheated diode appears

to decrease between time t = 0.01 s and t = 1 s. This slight undershoot shows a cooling

effect on the unheated diode while heat is applied to the IGBT. In reality, the temperature

should not decrease since the structure is fully insulated. The undershoot appears to be

occuring as a result of using too few Fourier terms. In this case the heat flux entering

the metal (1) block must have a negative component beneath the unheated diode, as

visualised in Fig. 6.38. Undershoot was also present in the results shown in Fig. 6.26

and during the heat flux window code test in Fig. 6.23 when too few Fourier terms were

used. Clearly using only 3 Fourier harmonics to replicate a step heat flux in the lateral

(x,y) direction is not ideal for the case shown in Fig. 6.27. The 3-D Fourier model does

not show the unheated diode to be heating up until time t=1s. Beyond this point in time

the result correlates well with FLOTHERM. The reason is that in the long transient the

heat has diffused far enough for the area beneath the unheated diode to get warmer. The

impact of the negative heat flux being passed down is overwhelmed by the overall heat

diffusion which is occurring in the structure.

Simply increasing the number of Fourier terms in the metal (1) layer in order to over-

come the undershoot issue will have a negative impact on the simulation time of the

Fourier series model. A large attraction of the Fourier series model is a fast simulation
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Figure 6.38: Diagram showing a spatial representation of the heat flux entering the
metal (1) block during IGBT only heating. There is negative flux entering the metal (1)

layer beneath the diode.

speed and this should be retained. Another method to overcome the problem of under-

shoot could be to use a filter which could remove the unwanted presence of negative heat

flux. However, the drawback of this approach is that by smearing the heat flux one would

be artificially altering the diffusion process. Undershoot is not a major issue because it

only occurs on occasions and is very slight when it does occur as shown in Fig. 6.35. The

benefit of the fast simulation speed associated with Fourier thermal model far outweighs

this drawback.

The result from Fig. 6.37 shows that the 3-D Fourier series model is able to sim-

ulate multi-source heating accurately using a very few number of Fourier terms. The

results showing the temperature of each device matched the FLOTHERM results closely

throughout the 10 second period being simulated.

In order to extract the temperatures in a packaging structure using FLOTHERM for

each validation, temperature monitoring points are placed at specific locations before

the FEM solver begins. Meanwhile, using the Fourier thermal model a temperature

distribution map of the whole structure is automatically generated during the simulation.

In all the heat conduction problems faced in this chapter, the power inputs were either

uniformly spread over a surface or a step input because FLOTHERM, unlike the Fourier
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model, could not represent any arbitrary power source over a surface. A further difficulty

of using FLOTHERM was the requirement to create a suitable mesh to model a structure.

The Fourier model, in comparison, automatically had a suitable resolution to model every

layer in a structure.

For all validation cases presented in this chapter, the speed of the Fourier model was

far superior to that of FLOTHERM. The Fourier model was able to match the accuracy of

the FLOTHERM model when a high number of Fourier harmonics were used. Although

this chapter showed the validation of the 1-D and 2-D Fourier thermal models, this was

more of a stepping stone towards the 3-D Fourier thermal model. The validation process

in this section has shown that the 3-D Fourier thermal model can simulate heat diffusion

through material boundaries of vertically stacked blocks, with:

� constant x-y cross-sectional area,

� changing x-y cross-sectional area,

� multiple heat sources.

The approach to simulating the material interfaces presented in this chapter is a sig-

nificant step forward from that employed by Du et al [37, 38] (see chapter 4). Material

interfaces are simulated by converting between two Fourier domains using a sound math-

ematical approach. There is no need to convert from the Fourier domain to space and

back again as in [37, 38].

The Fourier model is versatile and not restricted to modelling simply the power con-

verter of a Toyota Prius. The approaches presented for simulating material interfaces in

this chapter make it possible for the Fourier thermal model to simulate any power module

package which is made up of vertically stacked blocks of material.

The 3-D Fourier thermal model could simulate the structure which was identified as

the simulation domain in Fig. 5.1 of chapter 5. However, one aspect of the simulation
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domain was not simulated in Fig. 6.36 and Fig. 6.33 of this chapter, that is, the heat

diffusing from the underside of the Al alloy block (heatsink). The next chapter will present

a method for modelling the heat diffusing from the underside of the Al alloy block. The

ability of the Fourier thermal model to co-simulate with an inverter simulator will be

tested. Throughout this chapter the Fourier model was validated against FLOTHERM.

Both models simulated pure heat conduction by solving the heat equation. A more

relevant validation of the Fourier model will take place in the next chapter. The results

generated from the 3-D Fourier thermal model simulating realistic load conditions will be

compared with experiential results from a real power converter during operation.
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Chapter

7 Experimental Validation

The work outlined in this chapter concerns the experimental validation of the fast electro-

thermal converter simulator which was described in section 1.1.3. A 3-D Fourier thermal

model is embedded within the framework of the fast electro-thermal converter simulator.

The operation of a single phase leg of an inverter during realistic inverter load condi-

tions is replicated using an existing inverter ‘back-to-back’ rig. Experimental results are

presented in the form of transient device temperatures which are recorded on the rig using

an infrared camera. These experimental results are then compared with simulated tran-

sient device temperature profiles obtained by supplying the fast electro-thermal converter

simulator mentioned in the previous chapter, with the same inverter load conditions.
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7.1 Experimental Setup

7.1.1 Test Rig Operating Principle

The back-to-back rig is able to impose realistic inverter load conditions on a 3-phase test

inverter. All three inverter phase legs do the same amount of work but are set 120◦ out

of phase. Only one inverter phase leg is considered in this work. The inverter under test,

rated at 50kW, is from a Toyota Prius HEV. This is the motor drive inverter, which is used

to convert DC power from the battery to three-phase variable voltage variable frequency

(VVVF) AC suitable for driving the permanent magnet traction motor. The back-to-back

rig simulates the loaded motor of the HEV with an additional 3-phase inverter connected

to the test inverter via an air-cored inductive load per phase.

The desired motor speed is related to the output of the test inverter phase leg by the

rms voltage of the PWM output. The desired motor torque is set by the rms current

through the load inductor by setting the voltage on the load side of the inductor by the

equation V = L(di/dt). The speed and torque versus time (motor drive cycle) are applied

to the test inverter in this manner to operate the inverter switching devices with the same

conditions that would be seen in the real vehicle when driven according to the drive cycle.

The motor model from [183] is used here to convert the motor speed and torque into the

resulting inverter conditions (Vrms, Irms, power factor and switching frequency). For the

purposes of this work the temperature of these devices is measured.

A back-to-back inverter test rig is used to validate the results generated by the power

converter simulator in section 1.1.3 because the test inverter cannot be easily loaded for

testing using an electric motor. Two electric motors would be required, one to load the

test inverter and a second motor to provide resistance to the other motor in order to

create the required torque. The second motor would require another converter to control
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it, making the whole arrangement complicated. The recirculation of the power using

the ‘back-to-back’ technique means that the overall power consumption of the test is

significantly reduced and a smaller DC supply can be used.

7.1.2 The Back-to-Back Rig

A schematic of the back-to-back test rig is shown in Fig. 7.1. Fig. 7.2 shows a photograph

of some of the main components of the rig housed in the white enclosure covered with

a transparent lid. A timed interlock circuit locks the lid while the rig is operating to

prevent access to the high voltages inside the enclosure.

Figure 7.1: Simplified representation of the back-to-back rig operation
for one phase leg only.
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A capacitor bank minimises the ripple in the DC link. The capacitor bank consists of

ten 470µF 450V capacitors connected directly onto the same terminals that deliver power

to the inverters. A current transducer senses the current through the load inductor.

The current measurement is fed back to a controller, where it is compared to the set

current value. The current is increased or reduced accordingly to maintain the desired

condition, by varying the voltage at the output of the load inverter.

The FPGA controller operates the test inverter according to programmed inverter

drive cycle. The IGBT gate drives are driven by logic signals from the controller. The

gate drives contain opto-couplers for isolating logic from the high voltage inverter supply.

Figure 7.2: Photograph showing a plan view of the equipment from the test rig which
was housed in a container as a safety precaution.
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Fig. 7.3 shows the test environment. The power supply used is a Sorenson 600V/16A

DC power supply. Although not shown clearly in Fig. 7.3, Toyota Prius water-cooled

heatsinks are present beneath both power converter modules. These inverters are cooled

in parallel by a constant water inlet temperature, as shown in the water cooling block

diagram shown in Fig. 7.4.

Figure 7.3: Photograph of some key elements of the back-to-back rig.
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Figure 7.4: Block diagram of the heating/cooling system used to maintain the water
flowing through the Prius heatsinks at a set temperature.

In this cooling/heating system, the inlet temperature is maintained constant by a

combination of flow, heated pumped by the radiator, large thermal mass of the water tank

and tank heat controller by a PID controller. The system is sized to pump a maximum

of approximately 2.5kW of waste heat from the inverter under test and used standard

domestic heating system components. The water is pre-heated to the start temperature

(54◦C) with the immersion heater. An expansion tank absorbs the excess water volume

as it expands so that the pipes do not burst.

7.1.2.1 Oscilloscope

The Tektronic TDS 5054B Oscilloscope, shown in Fig. 7.3, measured the test inverter

output conditions (pk-pk voltage, pk-pk current, phase angle and modulation frequency)

which were monitored to ensure that the test inverter was operating correctly.

The raw test inverter output voltages are PWM square waves at the high voltage DC

link voltage. In order to observe the average (modulated) voltage signal which would

ordinarily be at the motor terminals, the PWM signals were filtered by a RC low-pass

filter, as shown in Fig. 7.1. Fig. 7.5 shows a typical oscilloscope output displaying the

ILOAD, VTEST and ITEST waveforms.

162



7.1 Experimental Setup

Figure 7.5: A screen grab from the oscilloscope located in the back-to-back circuit as
shown in Fig. 7.1.

7.1.2.2 Infrared Camera

The transient device temperatures must be captured as the inverter load cycle proceeds in

order to validate the electro-thermal converter simulator and therefore assess the perfor-

mance of the Fourier thermal model developed in this work. The transient temperature

measurements were performed with an FLIR Thermovision A20M infrared camera [184]

with the following basic specifications:

� an accuracy of 2%,

� a resolution of 160 x 120 pixels,

� a temperature range of -20◦C to 900◦C,

� the ability to detect temperature variations as small as 0.12◦C,

� standard 60 Hz colour video output.
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It was possible to take infrared camera images of the devices and the surrounding area

because the test inverter had its cover removed, with no silicon gel used for isolation.

Before using the infrared camera a number of ambient measurement conditions were

observed. The sensor ambient air temperature, the distance object-to-camera, and the

emissivity ε of the measured object were programmed into the camera through its software

interface. Since the material surfaces in the proximity of the test devices were reflective,

a very thin coating of Magnaflux SKD-S2 solvent-based developer, with emissivityε ≈ 1,

was sprayed over the area. This ensured a uniform emissivity was created which enabled

accurate temperature readings to be taken across all the devices and all materials. A pair

of test devices (upper and lower devices of a single phase leg) are shown in Fig. 7.6. The

equivalent thermograph is shown in Fig. 7.7. Temperature variations caused by the bond

wires were not visible due to the poor resolution of the infrared camera.

The transient device temperatures were measured at the hottest point of each device,by

moving the cursors shown in Fig. 7.7. For simplicity, this was interpreted as the average

temperature of the device surface rather than taking an average across the device surface

area. Clearly, the average temperature would be slightly less than this reading; however,

as a temperature drop is likely to occur across the developer coating above the devices,

this was deemed to be a fair approximation.

The infrared camera results were recorded by a PC at a rate of 1Hz, which was the

highest rate that the camera could update the real time image. The manufacturer’s claim

of a 60 Hz video output could not be achieved in practice. The accompanying thermal

researcher software was used to convert the stored infrared images into spot transient

device temperatures by analysing the colour scale on each of the frames.
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Figure 7.6: Photograph of the test devices covered by a thin layer of developer.

Figure 7.7: Infrared camera image of the test devices in Fig. 7.6.

165



7.2 Fast Electro-thermal Converter Simulator

7.2 Fast Electro-thermal Converter Simulator

In order for the fast electro-thermal converter simulator, illustrated in Fig. 1.3 of sec-

tion 1.1.3, to operate as fast as possible, it required a fast and accurate compact 3-D

thermal model which could simulate the structure of a power converter module and be

implemented into the converter simulator framework. The Fourier thermal model, devel-

oped in chapters 5 and 6, was specifically designed to fulfil these requirements and was

subsequently embedded into that framework.

In order to validate the electro-thermal converter simulator, and therefore assess the

performance of Fourier thermal model embedded in it, the experimental test rig described

earlier in this chapter was used. To enable a like for like comparison with the experiment

test rig, the electro-thermal simulator models only one inverter phase leg only.

7.2.1 Packaging Structure of a Single Inverter Phase Leg

The Fourier series thermal model was programmed to simulate heat conduction through

the device packaging structure shown in Fig. 7.8. To model the structure in Fig. 7.8

power is applied uniformly over the top surfaces of the devices. The packaging layers are

identical to those shown in Fig. 5.1. The structure is made up purely of blocks which

makes it an appropriate subject for the Fourier thermal model. In Fig. 7.8, Rh represents

the thermal resistance while Ch represents thermal capacitance at the bottom of the Al

alloy. This is the point at which the Al alloy comes into contact with water flowing

through the cast channels beneath it.

7.2.2 Heatsink Model

The heatsink consists of the Al alloy block shown in Fig. 7.8 and water flowing through

cast channels beneath it as depicted in Fig. 2.10. The 3-D Fourier thermal model can

be applied to simulate heat transfer as far down as the bottom of the Aluminium alloy
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block.

Figure 7.8: Isometric view of simplified packaging structure
associated with one inverter leg.

Heat transfer from the underside of the Aluminium alloy into the water is not heat con-

duction. A fluid is contacting a solid which means that convection will occur. Therefore

the Fourier model cannot be used.

Instead, a simple 1-D RC Cauer model is used; it is a simple and effective method of

utilising the limited information available about the heat transfer from the underside of

the Al alloy, represented by Rh and Ch. The rate of temperature change at the underside

of the Al alloy is described by the following equation:

dToutput(t)

dt
=

1

RhCh

(Pin(t)Rh − Toutput(t) + TAmbient) (7.1)

The RC Cauer model subsystem shown in Fig. 7.9 represents Equation (7.1). It

is implemented in MATLAB/Simulink so it may connect to the bottom of the Fourier

thermal model of the Al alloy, as shown in Fig. 7.9. These two subsystems fit into the

full inverter thermal model described in section 7.2.3.
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Figure 7.9: MATLAB/Simulink implementation of the heatsink model. A one cell Cauer
network is used to model heat transfer away from the underside of the Al alloy to the

water beneath it.

7.2.3 Thermal Model of a Single Inverter Phase Leg

The full Fourier thermal model of one inverter leg phase is implemented in Simulink as

shown in Fig. 7.10. This Fourier model uses the methods described in chapters 5 and 6 to

simulate heat diffusion through the whole of the packaging structure, with the exception

of the underside of the Al alloy layer which relies on one cell RC Cauer model of Fig.

7.9. The full thermal model was embedded into the electro-thermal converter simulator

using the input and output connections shown at the top of Fig. 7.10. Power losses are

the inputs to the thermal simulator while the device temperatures are the outputs to the

converter simulator. The blocks of material which make up the structure in Fig. 7.8 are

represented in the Simulink model by subsystems labelled with the material name. The

RC Cauer model subsystem described in section 7.2.2 can be seen at the very bottom of

the structure.
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The Fourier thermal model used a feedback gain of 104 at every material interface; this

value was found to be the best compromise of simulation speed and accuracy in chapter

6. The number of Fourier terms in each of the Fourier subsystems (representing one block

of material) was selected to optimise the simulation speed:

� Vertical (z) : k = 0; 1 (2 terms) for all layers;

� Lateral (x; y) : m;n = 0; 1; 2 (3 terms) for all layers.

Figure 7.10: The Fourier series thermal model of one inverter phase leg implemented in
MATLAB/Simulink. This model is embedded into the electro-thermal converter

simulator in Fig. 1.3. The “Ambient” is the initial condition.
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7.3 Results

The ARTEMIS and the Federal Urban Driving Schedule (FUDS) drive cycles have been

created from data collected on the actual driving of vehicles in Europe and America

respectively. These drive cycles are standardised for testing vehicle emissions. Realistic

inverter load conditions may be investigated through use of these drive cycles because the

drive cycle conditions can be transformed into inverter load cycle conditions using the

method described in [183]. Therefore the inverter load conditions fed into the converter

electro-thermal simulator will be identical to those demanded of the test inverter present

in experimental set-up, leading to a meaningful validation of the electro-thermal converter

simulator. Results are presented in the form of transient temperatures profiles of the upper

and lower pairs of devices over the duration of the ARTEMIS (test 1) and FUDS (test 2)

drive cycles. The validation of the electro-thermal converter simulator is carried out by

the comparison of experimentally obtained results with simulated results.

7.3.1 Test 1: Artemis Driving Cycle

The inverter load conditions demanded during the ARTEMIS driving cycle are shown in

Fig. 7.11. Experimentally obtained results are compared with simulated results over the

duration of ARTEMIS load cycle in Fig. 7.12. The time taken for the electro-thermal

converter simulation to run was 605 seconds; the look-up tables of device losses took an

additional 119 seconds to run beforehand, giving a total of 724 seconds (approximately

12 minutes) using a Intel Dual Core 1.86GHz (each) and 3GB RAM computer.

7.3.2 Test 2: Federal Urban Driving Schedule (FUDS)

The inverter load conditions demanded during the FUDS drive cycle appear in Fig. 7.13.

Experimentally obtained results are compared with simulated results over the duration of

the FUDS drive cycle in Fig. 7.12. It took 7011 seconds (approx. 1hr 57mins) to simulate

640seconds of the FUDS cycle using the same computer as test 1.
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Figure 7.11: Inverter load conditions for one minute
of the ARTEMIS drive cycle.
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Figure 7.12: Phase leg device temperatures for the ARTEMIS load cycle.
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Figure 7.13: Inverter load conditions for 640 seconds
of the FUDS drive cycle.
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Figure 7.14: Phase leg device temperatures during the FUDS drive cycle.
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7.4 Discussion

The results in Fig. 7.12 show that the transient device temperatures predicted by the fast

electro-thermal converter simulator match the experimental results closely. The model has

clearly captured the thermal transients during the ARTEMIS drive cycle. The measured

temperature profile of the IGBT follows the load current. The simulated results show a

greater degree of granularity than the measured results, this is because the infra-red cam-

era was too slow to capture the high frequency temperature variations that the simulation

predicted, the experimental device temperatures mostly stay within the envelopes of the

simulated temperatures.

The transient device temperatures simulated by the fast electro-thermal converter

simulator match the results captured by the infrared camera closely over the duration of

the FUDS drive cycle. This shows the model works well, particularly as the plots from the

FUDS drive cycle in Fig. 7.14 are taken over a time period which is ten times longer than

that of the ARTEMIS drive cycle. That said, the results from the FUDS drive cycle seem

to have sharper peaks. The peaks from the simulated and measured results line up well,

although the measured magnitude of the IGBT temperature profiles does appear higher

than the corresponding simulated results. Meanwhile the measured diode temperatures

tend to be lower than the simulated results. This is potentially caused by the fact that

very few Fourier terms were used in each layer of the thermal model (M = N = 3,

K = 2) which led to some overshoot of the diode temperature and undershoot of the

IGBT temperature. An anomalous result appears at time t=200s where the matching is

poor for the temperature for every device. One potential reason for the poor matching

could be the sampling frequency of the infrared camera which is 1Hz. Ideally, the sampling

frequency of the infrared camera would by about 50 times that of the switching frequency
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fsw. Another possible reason for the anomalous result could be a glitch in the look-up

table generation process which appears in Fig. 1.3. This would then show the transient

temperature during each switching cycle which the thermal simulation does not predict.

However, since the rate at which the electro-thermal converter simulator accesses the

look-up tables is determined by the fsw, a camera sampling rate to match fsw would

be sufficient since it would be possible to obtain direct comparison of experimental and

simulated results at every time step.

The back-to-back test rig has proved to be effective in terms of providing a low cost

means of experimentally validating the fast electro-thermal converter simulator. The

successful validation of the fast electro-thermal converter simulator suggests it can play a

important role in converter design. Numerical optimisation of the whole power converter

is possible [183], including the devices, circuit and thermal system.

The close matching of the transient device temperatures from the test rig and converter

simulator was dependent on several factors: the power losses from the devices, i.e. the

switching and conduction behaviour of the device model, and the thermal model. The

presence of the thermal model developed in this thesis within the electro-thermal simulator

framework allows the thermal performance of power module packaging to be investigated

during realistic operating conditions.

In contrast, existing approaches fail to test power converter packages using electro-

thermal co-simulation, even though the ability to simulate realistic conditions is essential

in order to accurately predict package reliability. Existing methods employ inverter sim-

ulators to create a power dissipation profile which is then fed into a RC thermal network.

According to colleagues from the Toyota Motor Corporation, these inverter simulators can

take up to two days to simulate a 60 second load cycle because they model every switching

event. Further simulation delays are caused by the need to extract a RC network which is
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a non-automatic time-consuming process, reliant on a prior FEM simulation. Therefore,

using existing methods, a power module packaging designer must run a FEM solver for

every packaging design which is tested and then extract a RC network from those results

in order to create a thermal model. Meanwhile, the Fourier thermal model is a useful

early stage design tool since it allows various packaging geometries and materials to be

investigated efficiently, without recourse to finite element methods.

The electro-thermal converter simulator accurately simulates transient device tem-

peratures at a speed approximately ten times slower than real-time. This compares ex-

tremely favourably with existing methods which are employed commercially. Therefore,

the Fourier thermal model presented in this work is a significant step forward for power

converter packaging design.
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Chapter

8
Concluding Remarks and

Further Work

This chapter presents the general conclusions of the research work carried out. The future

benefits of the work are stated and valid avenues for further work are considered. Methods

of increasing the capabilities of the Fourier thermal model are also discussed.

8.1 Conclusions

Power converters are essential for supplying energy for today’s society in a more efficient,

sustainable and controllable manner. Thermally induced failure modes are the main

cause of power converter reliability issues. The introductory remarks within this thesis

highlighted the need for a fast and accurate 3-D thermal model, capable of simulating 3-D

heat diffusion through power converter packaging during realistic operating conditions.

This need was met by the development of the Fourier thermal model in this work.

Chapters 5 and 6 showed the development of the Fourier thermal model. Validation

using FLOTHERM proved that the Fourier model could successfully simulate 3-D heat

conduction through many blocks of material with different x-y cross-sectional areas. It

was evident that the Fourier model could also simulate heat diffusion from multiple heat
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sources. Using the approaches presented for simulating material interfaces in chapter

6, any power module package made up of vertically stacked blocks of material could be

modelled. The Fourier thermal model was computationally efficient, with a simulation

speed far superior to that of the FVM software package FLOTHERM for every test case.

The Fourier thermal model had many advantages over FLOTHERM other its superior

simulation speed. The Fourier thermal model was easier to use because it did not require

mesh refinement prior to a simulation. Instead it operated directly from the material

properties and the geometry of a structure. Furthermore, the results generated by the

Fourier thermal model were in the form of a continuous wave and looked more realistic

than those generated by FLOTHERM. The Fourier model had the advantage of being able

to determine the temperature distribution across the whole converter package rather than

just at monitoring points. This would be of benefit for locating hotspots and visualising

the heat flow. A further advantage of the Fourier thermal model was its ability to describe

any arbitrary heat flux, which was not possible using FLOTHERM.

In chapters 5 and 6, the accuracy of the Fourier thermal model was dependent on the

number of Fourier terms used in the model; the more terms used, the greater accuracy.

However, the benefit of using fewer terms was that the model simulated more quickly.

The Fourier model appeared sufficiently accurate to provide a thermal designer with

useful guidance in all the test cases, even when using very few terms. A drawback of the

Fourier thermal model was the occasional presence of undershoot when simulating short

transient periods, caused by using very few Fourier terms. However, this drawback is

fairly insignificant when consideration is given to the model’s simulation speed.

Chapter 7 showed the successful experimental validation of the fast electro-thermal

converter simulator using a back-to-back rig. This suggests the electro-thermal simulator

can play a important role in converter design. The whole power converter, including the
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devices, circuit and thermal system can be numerically optimised. The similarity between

the experimental and simulated results suggest the Fourier thermal model, which operates

within the framework of the electro-thermal simulator, has clearly been fit for purpose.

The use of Simulink as the simulation environment takes advantage of the highly

flexible programming facilities within MATLAB to couple the thermal and converter sim-

ulation. It has been shown to be an effective and compact means of simulating heat

conduction in power module packaging during realistic load conditions. Thermally mod-

elling devices during realistic load conditions is a major benefit of the work presented

in this paper. Existing approaches fail to test power converter packages using electro-

thermal co-simulation, even though the ability to simulate realistic conditions is essential

in order to accurately predict package reliability.

The comparison between simulation speeds of existing approaches and the electro-

thermal simulator suggest that the Fourier model enabled a significant step forward in

power converter packaging design. Existing approaches can take up to two days to simu-

late a 60 second load cycle according to colleagues from Toyota. Meanwhile, the electro-

thermal simulator, which contains the Fourier thermal model proposed in this work, op-

erates with a simulation speed which is ten times real time. The fast simulation speed

of the Fourier model ensures a more effective simulation based design phase. From an

industrial perspective this is beneficial because ‘time is money’.

The Fourier thermal model has the potential for commercial success as an early stage

design tool. It allows various packaging geometries and materials to be investigated effi-

ciently and in a meaningful way. Use of the Fourier thermal model to thermally optimise

power converter packaging will hopefully give rise to cheaper, lighter, more compact and

more reliable power converter packages in the future.
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8.2 Suggestions for Further work

Although the experimental validation of the Fourier thermal model in chapter 7 was suc-

cessful, the FLIR Thermovision A20M infrared camera, with a frame rate of 1Hz, did not

record device temperature data quickly enough. This prevented a detailed comparison

between experimental and simulated results. An alternative approach to transient tem-

perature measurement should be sought. A faster frame rate could be achieved using a

thermocouple or a thermistor, however, neither provides a contact-free method of temper-

ature leading to issues caused by electromagnetic interference. An optical probe, which

is essentially a one pixel version of an infrared camera, would be a good option. It would

provide a contact-free device temperature measurement at a frame rate of 1000 Hz.

Device temperature profiles during realistic load conditions can be generated using the

Fourier thermal model within the framework of the electro-thermal converter simulator.

However, this data is of limited use in isolation. An essential line of further work is the

integration of reliability lifetime models into the framework of electrothermal converter

simulator. This would enable prediction of device reliability based on power converter

packaging design.

The Fourier thermal model is capable of simulating thermal diffusion through a wide

range of packaging configurations. In the future it would be worthwhile investigating the

thermal performance of innovative designs, such as the substrate-free Copper leadframe

package in [185]. The prospect of being able to identify the most effective packaging

designs and optimise their geometrical layout is exciting.

In the Fourier thermal model of the Toyota Prius power converter package in chapter

7, the bond wires attached to the semiconductor devices were ignored. However, research

in [186] has suggested that as many bond wires as possible should be connected to the
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semiconductor devices, as shown in Fig. 8.1, because they play a significant role in con-

ducting heat away from the devices. Furthermore, copper bond wires have been proposed

in [187] because they have a higher thermal conductivity than Aluminium. Therefore, in

future work, the thermal simulation of the bond wires should be considered.

Figure 8.1: Photograph showing many bond wires connected in parallel to devices [186].

The model of the power converter heatsink used in chapter 7 is overly simplified. A

RC network is used to model the thermal interface at the underside of Aluminium alloy

packaging layer. In the future, it would be beneficial to investigate if the data provided

by Toyota about this interface, i.e. the thermal resistance and thermal capacitance, is

accurate. It would also be interesting to discover if heat is evenly distributed at this inter-

face. This information would allow the formation of a more detailed and more accurate

heatsink model which could possibly allow improvement in the design of water conduit.

Possibly, contact resistance at material interfaces could be simulated by the Fourier

model. This might be possible by modifying the feedback gain value used at interface

to reflect the contact resistance, this is worth exploration. Being able to model lateral

Material interfaces would further add to the capability of the Fourier thermal model.

Simulating a packaging design where a silicon device is embedded into another material

would be possible. Another possible method of improving the Fourier thermal model
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would to incorporate the fact that the material properties are temperature dependent

into the model. However, this would add a degree of difficulty because the heat equation

would become non linear.

Selecting the number of terms assigned to each layer based on the packaging structure,

such as that shown in Fig. 8.2, may be of benefit. This has the potential to improve the

model’s accuracy, by preventing against undershoot, while maintaining a fast simulation

speed. In the future, work could be carried out to automate the selection of the number

of Fourier terms since it is time consuming for the model user.

Figure 8.2: Diagram showing the number of Fourier terms which might be selected to
represent some layers of this structure.
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Finally, exploring possible means of increasing the simulation speed of the Fourier

thermal model is important future work. Even though the model is far faster than

FLOTHERM there might be further room for improvement. Simulation speed could

potentially be increased using a Fast Fourier transform. According to [188], Fast Fourier

transforms (FFTs) can reduce CPU time by a factor of 100 to 1000. However, a long-

winded numerical integration procedure is required [189]. According to [153], each block

of material in the power converter package would require its own fast Fourier transform,

so FFTs might be impractical in this case.
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Appendix

A
Appendix 1 - Fourier series solution

(DC terms)

This appendix links in with chapter 5. To have stated all the working of the Fourier series

solution for the 1-D, 2-D and 3-D case would have been too exhaustive to include in the

main body of this thesis.

A.1 1-D Fourier series solution DC term

The workings for the 1-D Fourier series solution DC term follows:

When k = 0, the following expression represents I1:

I1 = α

z2∫

z1

(
∂2T (z, t)

∂z2

)
dz. (A.1)

Applying integration gives:

I1 = α

[(
∂T (t)

∂z

∣∣∣∣
z2

)
−

(
∂T (t)

∂z

∣∣∣∣
z1

)]
. (A.2)

When k=0, I2 is represented by:
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A.2 2-D Fourier series solution DC terms

I2=

z2∫

z1

∂T (z, t)

∂t
dz. (A.3)

Substitution of the Fourier cosine series definition produces the following expression

for I2:

I2=(z2−z1)
dT0(t)

dt
. (A.4)

Equating I1 and I2 leads to the expression:

dT0(t)

dt
=

α

(z2−z1)

[
∂T (t)

∂z

∣∣∣∣
z2

− ∂T (t)

∂z

∣∣∣∣
z1

]
. (A.5)

A.2 2-D Fourier series solution DC terms

The workings for 2-D Fourier series solution DC terms follows:

When k=0, m=0 :

I1 = α

x2∫

x1




z2∫

z1

∂2T (z, x, t)

∂z2
dz


 dx+ α

z2∫

z1




x2∫

x1

∂2T (z, x, t)

∂x2
dx


 dz. (A.6)

I1 = α

x2∫

x1

[
∂T (x, t)

∂z

∣∣∣∣
z2

− ∂T (x, t)

∂z

∣∣∣∣
z1

]
dx+ α

z2∫

z1

[
∂T (z, t)

∂x

∣∣∣∣
x2

− ∂T (z, t)

∂x

∣∣∣∣
x1

]
dz (A.7)

Substitute in ∂T (z,t)
∂z

∣∣∣
x2

= 0 and ∂T (z,t)
∂z

∣∣∣
x1

= 0. Then represent ∂T (x,t)
∂z

∣∣∣
z2

and ∂T (x,t)
∂z

∣∣∣
z1

in

Fourier series form, which leads to:

I1 =
(x2−x1)

α

[
∂T0(t)

∂z

∣∣∣∣
z2

− ∂T0(t)

∂z

∣∣∣∣
z1

]
. (A.8)
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A.2 2-D Fourier series solution DC terms

I2 =

x2∫

x1

z2∫

z1

∂T (x, z, t)

∂t
dxdz. (A.9)

Using the relationship:

(x2−x1)(z2−z1)
dT00(t)

dt
=

x2∫

x1

z2∫

z1

∂T (x, z, t)

∂t
dxdz, (A.10)

and then equating I2 to I1 leads to the expression:

dT00(t)

dt
=

α

(z2−z1)

[
∂To(t)

∂z

∣∣∣∣
z2

− ∂To(t)

∂z

∣∣∣∣
z1

]
. (A.11)

When k=0, m≥1 :

I1 = α

z2∫

z1

x2∫

x1

∂2T (x, z, t)

∂x2
cos

(
πm(x− x1)

(x2 − x1)

)
dxdz (A.12)

+α

z2∫

z1

x2∫

x1

∂2T (x, z, t)

∂z2
cos

(
πm(x− x1)

(x2 − x1)

)
dxdz.

I1 = I1x + I1y. (A.13)
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A.2 2-D Fourier series solution DC terms

I1x = α

z2∫

z1




x2∫

x1

∂2T (x, y, t)

∂x2
cos

(
πm(x−x1)

(x2−x1)

)
dx


dz. (A.14)

x2∫

x1

∂2T (x, z, t)

∂x2
cos

(
πm(x−x1)

(x2−x1)

)
dx =

[
∂T (z, t)

∂x

∣∣∣∣
x2

cos (πm)− ∂T (z, t)

∂x

∣∣∣∣
x1

]
(A.15)

−
(

πm

(x2−x1)

)2
x2∫

x1

T (x, z, t) cos

(
πm(x−x1)

(x2−x1)

)
dx,

∂T (z,t)
∂x

∣∣∣
x2

= 0 and ∂T (z,t)
∂x

∣∣∣
x1

= 0, and using the relationship:

z2∫

z1

x2∫

x1

T (x, z, t) cos

(
πm(x−x1)

(x2−x1)

)
dxdz =

(x2 − x1)(z2 − z1)

2

dT0m(t)

dt
, (A.16)

leads to:

I1x = −απ2m2(z2 − z1)

2(x2 − x1)

dT0m(t)

dt
. (A.17)

I1y = α

z2∫

z1

∂2T (x, z, t)

∂z2
dz

x2∫

x1

cos

(
πm(x− x1)

(x2 − x1)

)
dx. (A.18)

I1y = α

x2∫

x1

∂T (x, t)

∂z

∣∣∣∣
z2

cos
πm(x− x1)

(x2 − x1)
dx− α

x2∫

x1

∂T (x, t)

∂z

∣∣∣∣
z1

cos
πm(x− x1)

(x2 − x1)
dx. (A.19)
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A.2 2-D Fourier series solution DC terms

Therefore:

I1 = α
(x2−x1)

2

[
∂Tm(t)

∂t

∣∣∣∣
z2

− ∂Tm(t)

∂t

∣∣∣∣
z1

]
− α

(z2−z1)(x2−x1)

2

(
πm

(x2−x1)

)2

T0m(t).(A.20)

I2 =

y2∫

y1

x2∫

x1

∂T (x, z, t)

∂t
cos

(
πm(x−x1)

(x2−x1)

)
dxdz. (A.21)

Substituting in:

z2∫

z1

x2∫

x1

∂T (x, z, t)

∂t
cos

(
πm(x−x1)

(x2−x1)

)
dxdz =

(x2 − x1)(z2 − z1)

2

dT0m(t)

dt
, (A.22)

results in the following expression:

I2 =
(x2 − x1)(z2 − z1)

2

dT0m(t)

dt
. (A.23)

Equating I1 and I2, and rearranging, leads to:

dT0m(t)

dt
=

α

(z2 − z1)

[
∂Tm(t)

∂t

∣∣∣∣
z2

− ∂Tm(t)

∂t

∣∣∣∣
z1

]
− T0m(t)

[
απ2

(
m2

(x2−x1)
2

)]
. (A.24)

When k≥1, m=0 :
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A.2 2-D Fourier series solution DC terms

I1 = α

z2∫

z1

x2∫

x1

(
∂2T (x, z, t)

∂x2
+

∂2T (x, z, t)

∂z2

)
cos

(
πk(z − z1)

(z2 − z1)

)
dxdz. (A.25)

I1 = α

z2∫

z1

x2∫

x1

∂2T (x, z, t)

∂x2
cos

(
πk(z − z1)

(z2 − z1)

)
dxdz (A.26)

+ α

z2∫

z1

x2∫

x1

∂2T (x, z, t)

∂z2
cos

(
πk(z − z1)

(z2 − z1)

)
dxdz

I1 = I1x + I1y, (A.27)

I1x = α

x2∫

x1




z2∫

z1

∂2T (x, z, t)

∂z2
cos

(
πk(z−z1)

(z2−z1)

)
dz


dx. (A.28)

z2∫

z1

∂2T (x, z, t)

∂z2
cos

(
πk(z−z1)

(z2−z1)

)
dz =

[
∂T (x, t)

∂z

∣∣∣∣
z2

cos (πk)− ∂T (x, t)

∂z

∣∣∣∣
z1

]
(A.29)

−
(

πk

(z2−z1)

)2
z2∫

z1

T (x, z, t) cos

(
πk(z−z1)

(z2−z1)

)
dz

Substituting leads to:

I1x = α(−1)k
x2∫

x1

∂T (x, t)

∂x

∣∣∣∣∣∣
z2

dx−
x2∫

x1

∂T (x, t)

∂x

∣∣∣∣
z1

dx (A.30)
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A.2 2-D Fourier series solution DC terms

−
(

πk

(z2−z1)

)2
z2∫

z1

x2∫

x1

T (x, z, t) cos

(
πk(z−z1)

(z2−z1)

)
dxdz

∂Tk,x(t)

∂x
=

1

(z2−z1)

z2∫

z1

∂T (x, t)

∂x

∣∣∣∣
z

dz (A.31)

I1x = α(z2−z1)

[
∂Tm(t)

∂z

∣∣∣∣
z2

(−1)k − ∂Tm(t)

∂z

∣∣∣∣
z1

]
(A.32)

−
(

πk

(z2−z1)

)2
(x2−x1)(z2−z1)

2
Tk0(t).

I1y = α
∂2T (x, z, t)

∂z2

z2∫

z1

x2∫

x1

cos

(
πk(z−z1)

(z2−z1)

)
dxdz. (A.33)

The following expression:

z2∫

z1

cos

(
πk(z−z1)

(z2−z1)

)
dz =

(z2−z1)

kπ

[
sin

(
πk(z−z1)

(z2−z1)

)]z2
z1

, (A.34)

results in:

I1y = 0. (A.35)

I2 =

z2∫

z1

x2∫

x1

∂T (z, x, t)

∂x
cos

(
πk(z − z1)

(z2 − z1)

)
dzdx, (A.36)
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A.3 3-D Fourier series solution DC terms

which by this stage is a standard result:

I2 =
(x2−x1)(z2−z1)

2

dTk0(t)

dt
. (A.37)

Substitution leads to the following expression:

dTk0(t)

dt
=

2α

(z2−z1)

[
∂T0(t)

∂z

∣∣∣∣
z2

(−1)k
∂T0(t)

∂z

∣∣∣∣
z1

]
− Tk0(t)

[
απ2

(
k2

(z2−z1)
2

)]
. (A.38)

A.3 3-D Fourier series solution DC terms

The workings for 3-D Fourier series solution DC terms follows:

When m=0, n=0, k=0 :

I1 = α

x2∫

x1

y2∫

y1

z2∫

z1

(
∂2T (x, y, z, t)

∂x2
+

∂2T (x, y, z, t)

∂y2
+

∂2T (x, y, z, t)

∂z2

)
dxdydz.(A.39)

I1=I1x+I1y+I1z. (A.40)

I1x = α

z2∫

z1

y2∫

y1




x2∫

x1

∂2T (x, y, z, t)

∂x2
dx


 dydz. (A.41)

I1x = α

z2∫

z1

y2∫

y1

[
∂T (y, z, t)

∂x

∣∣∣∣
x2

− ∂T (y, z, t)

∂x

∣∣∣∣
x1

]
dydz. (A.42)
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A.3 3-D Fourier series solution DC terms

∂T (y, z, t)/∂x|x2
= 0 and ∂T (y, z, t)/∂x|x1

= 0 and so:

I1x = 0 (A.43)

I1y = α

z2∫

z1

x2∫

x1




y2∫

y1

∂2T (x, y, z, t)

∂y2
dy


 dxdz (A.44)

I1y = α

z2∫

z1

x2∫

x1

[
∂T (x, z, t)

∂y

∣∣∣∣
y2

− ∂T (x, z, t)

∂y

∣∣∣∣
y1

]
dxdz. (A.45)

∂T (x, z, t)/∂y|y2 = 0 and ∂T (x, z, t)/∂y|y1 = 0 and so:

I1y = 0 (A.46)

I1z = α

x2∫

x1

y2∫

y1




z2∫

z1

∂2T (x, y, z, t)

∂z2
dz


 dydx (A.47)

I1z = α(x2−x1)(y2−y1)
∂Tmn(t)

∂z

∣∣∣∣
z2

− α(x2−x1)(y2−y1)
∂Tmn(t)

∂z

∣∣∣∣
z1

(A.48)

I2 =

x2∫

x1

y2∫

y1

z2∫

z1

∂T (x, y, z, t)

∂t
dxdydz. (A.49)
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Substituting:

x2∫

x1

y2∫

y1

z2∫

z1

∂T (x, y, z, t)

∂t
dxdydz = (z2−z1)(y2−y1)(x2−x1)

dT000(t)

dt
. (A.50)

I2 = (z2−z1)(y2−y1)(x2−x1)
dT000(t)

dt
. (A.51)

Equating I2 and I1 yields:

α(x2−x1)(y2−y1)
∂T (x, y, t)

∂z

∣∣∣∣
z2

− α(x2−x1)(y2−y1)
∂T (x, y, t)

∂z

∣∣∣∣
z1

= 0 + (z2−z1)(y2−y1)(x2−x1)
dT000(t)

dt
. (A.52)

This results in the following ODE (for m = 0, n = 0, k = 0):

dT000(t)

dt
=

α

(z2−z1)

[
∂T00(t)

∂z

∣∣∣∣
z2

− ∂T00(t)

∂z

∣∣∣∣
z1

]
. (A.53)

When m≥1, n=0, k=0 :

I1 = α

x2∫

x1

y2∫

y1

z2∫

z1

(
∂2T (x, y, z, t)

∂x2
+

∂2T (x, y, z, t)

∂y2
+

∂2T (x, y, z, t)

∂z2

)
× (A.54)

cos

(
πm(x−x1)

(x2−x1)

)
dxdydz

I1=I1x+I1y+I1z (A.55)
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A.3 3-D Fourier series solution DC terms

I1x = α

z2∫

z1

y2∫

y1




x2∫

x1

∂2T (x, y, z, t)

∂x2
cos

(
πm(x−x1)

(x2−x1)

)
dx


 dydz (A.56)

Using the same approach as before:

I1x = −απ2m2(z2−z1)(y2−y1)

2(x2−x1)
Tm00(t). (A.57)

I1y = α

z2∫

z1

x2∫

x1




y2∫

y1

∂2T (x, y, z, t)

∂y2
dy


 cos

(
πm(x−x1)

(x2−x1)

)
dydz, (A.58)

I1y = α

z2∫

z1

x2∫

x1

[
∂T (x, z, t)

∂y

∣∣∣∣
y2

− ∂T (x, z, t)

∂y

∣∣∣∣
y1

]
cos

(
πm(x−x1)

(x2−x1)

)
dxdz. (A.59)

∂T (x, z, t)/∂y|y2 = 0 and ∂T (x, z, t)/∂y|y1 = 0 and so:

I1y = 0 (A.60)

I1z = α

x2∫

x1

y2∫

y1




z2∫

z1

∂2T (x, y, z, t)

∂z2
dz


 cos

(
πm(x−x1)

(x2−x1)

)
dydx (A.61)

I1z = α

y2∫

y1

x2∫

x1

[
∂T (x, y, t)

∂z

∣∣∣∣
z2

− ∂T (x, y, t)

∂z

∣∣∣∣
z1

]
cos

(
πm(x−x1)

(x2−x1)

)
dxdy, (A.62)
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A.3 3-D Fourier series solution DC terms

I1z =
α(x2−x1)(y2−y1)

2

[
dTm0(t)

dt

∣∣∣∣
z2

− dTm0(t)

dt

∣∣∣∣
z1

]
. (A.63)

I2 =

x2∫

x1

y2∫

y1

z2∫

z1

∂T (x, y, z, t)

∂t
cos

(
πm(x−x1)

(x2−x1)

)
dxdydz. (A.64)

Using the Fourier definition:

I2 =
(z2−z1)(y2−y1)(x2−x1)

2

dTm00(t)

dt
(A.65)

Equating I1 and I2 yields:

− απ2m2(z2−z1)(y2−y1)

2(x2−x1)
Tm00(t) +

α(x2−x1)(y2−y1)

2

[
dTm0(t)

dt

∣∣∣∣
z2

− dTm0(t)

dt

∣∣∣∣
z1

]
(A.66)

= 0 +
(z2−z1)(y2−y1)(x2−x1)

2

dTm00(t)

dt
.

This results in the following ODE (for m = 1,n = 0,k = 0):

dTm00(t)

dt
=

α

(z2−z1)

[
dTm0(t)

dt

∣∣∣∣
z2

− dTm0(t)

dt

∣∣∣∣
z1

]
− Tm00(t)

[
απ2

(
m2

(x2−x1)

)]
. (A.67)

When m=0, n≥1, k=0 :

I1 = α

x2∫

x1

y2∫

y1

z2∫

z1

(
∂2T (x, y, z, t)

∂x2
+

∂2T (x, y, z, t)

∂y2
+

∂2T (x, y, z, t)

∂z2

)
× (A.68)

cos

(
πn(y−y1)

(y2−y1)

)
dxdydz
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A.3 3-D Fourier series solution DC terms

I1=I1x+I1y+I1z (A.69)

I1x = α

z2∫

z1

y2∫

y1




x2∫

x1

∂2T (x, y, z, t)

∂x2
dx


 cos

(
πn(y−y1)

(y2−y1)

)
dydz. (A.70)

I1x = α

z2∫

z1

y2∫

y1

[
∂T (y, z, t)

∂x

∣∣∣∣
x2

− ∂T (y, z, t)

∂x

∣∣∣∣
x1

]
cos

(
πn(y−y1)

(y2−y1)

)
dydz. (A.71)

∂T (x, z, t)/∂x|x2
= 0 and ∂T (x, z, t)/∂x|x1

= 0 and so:

I1x = 0. (A.72)

I1y = α

z2∫

z1

x2∫

x1




y2∫

y1

∂2T (x, y, z, t)

∂y2
cos

(
πn(y−y1)

(y2−y1)

)
dy


 dxdz. (A.73)

Using the same approach as before:

I1y = −απ2n2(z2−z1)(x2−x1)

2(y2−y1)
T0n0(t). (A.74)

I1z = α

x2∫

x1

y2∫

y1




z2∫

z1

∂2T (x, y, z, t)

∂z2
dz


 cos

(
πn(y−y1)

(y2−y1)

)
dydx, (A.75)

I1z =
α(x2−x1)(y2−y1)

2

[
dT0n(t)

dt

∣∣∣∣
z2

− dT0n(t)

dt

∣∣∣∣
z1

]
. (A.76)
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I2 =

x2∫

x1

y2∫

y1

z2∫

z1

∂T (x, y, z, t)

∂t
cos

(
πn(y−y1)

(y2−y1)

)
dxdydz. (A.77)

From the relationship:

x2∫

x1

y2∫

y1

z2∫

z1

∂T (x, y, z, t)

∂t
cos

(
πn(y−y1)

(y2−y1)

)
dxdydz =

(z2−z1)(y2−y1)(x2−x1)

2

dT0n0(t)

dt
.(A.78)

I2 =
(z2−z1)(y2−y1)(x2−x1)

2

dT0n0(t)

dt
. (A.79)

Equating I1 and I2:

− απ2n2(z2−z1)(x2−x1)

2(y2−y1)
T0n0(t) +

α(x2−x1)(y2−y1)

2

[
dT0n(t)

dt

∣∣∣∣
z2

− dT0n(t)

dt

∣∣∣∣
z1

]

= 0 +
(z2−z1)(y2−y1)(x2−x1)

2

dT0n0(t)

dt
(A.80)

This results in the following ODE (for m = 0, n = 1, k = 0):

dT0n0(t)

dt
=

α

(z2−z1)

[
dT0n(t)

dt

∣∣∣∣
z2

− dT0n(t)

dt

∣∣∣∣
z1

]
− T0n0(t)

[
απ2

(
n2

(y2−y1)

)]
(A.81)

When m=0, n=0, k≥1 :

I1 = α

x2∫

x1

y2∫

y1

z2∫

z1

(
∂2T (x, y, z, t)

∂x2
+

∂2T (x, y, z, t)

∂y2
+

∂2T (x, y, z, t)

∂z2

)
× (A.82)

cos

(
πk(z−z1)

(z2−z1)

)
dxdydz. (A.83)
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A.3 3-D Fourier series solution DC terms

I1=I1x+I1y+I1z. (A.84)

I1x = α

z2∫

z1

y2∫

y1




x2∫

x1

∂2T (x, y, z, t)

∂x2
dx


 cos

(
πk(z−z1)

(z2−z1)

)
dydz, (A.85)

I1x = α

z2∫

z1

y2∫

y1

[
∂T (y, z, t)

∂x

∣∣∣∣
x2

− ∂T (y, z, t)

∂x

∣∣∣∣
x1

]
cos

(
πk(z−z1)

(z2−z1)

)
dydz (A.86)

∂T (y, z, t)/∂x|x2
= 0 and ∂T (y, z, t)/∂x|x1

= 0 and so:

I1x = 0. (A.87)

I1y = α

z2∫

z1

x2∫

x1




y2∫

y1

∂2T (x, y, z, t)

∂y2
dy


 cos

(
πk(z−z1)

(z2−z1)

)
dxdz (A.88)

Due to the insulated sides:

I1y = 0. (A.89)

I1z = α

x2∫

x1

y2∫

y1




z2∫

z1

∂2T (x, y, z, t)

∂z2
cos

(
πk(z−z1)

(z2−z1)

)
dz


 dydx. (A.90)

I1z =

y2∫

y1

x2∫

x1

(−1)k
(
∂T (x, y, t)

∂z

∣∣∣∣
z2

)
dxdy −

y2∫

y1

x2∫

x1

(
∂T (x, y, t)

∂z

∣∣∣∣
z1

)
dxdy
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− απ2k2

(z2−z1)2

z2∫

z1

y2∫

y1

x2∫

x1

T (x, y, z, t) cos

(
πk(z−z1)

(z2−z1)

)
dzdxdy. (A.91)

Using the following relationships:

y2∫

y1

x2∫

x1

∂T (x, y, t)

∂t

∣∣∣∣∣∣
z

dxdy =
(x2−x1)(y2−y1)

1

dTmn(t)

dt

∣∣∣∣
z

, (A.92)

x2∫

x1

y2∫

y1

z2∫

z1

T (x, y, z, t) cos

(
πk(z−z1)

(z2−z1)

)
dxdydz =

(z2−z1)(y2−y1)(x2−x1)

2
T00k(t), (A.93)

I1z =
(x2−x1)(y2−y1)

1
(−1)k

dT00(t)

dt

∣∣∣∣
z2

− (x2−x1)(y2−y1)

1
(−1)k

dT00(t)

dt

∣∣∣∣
z1

(A.94)

− απ2k2

(z2−z1)
2

(z2−z1)(y2−y1)(x2−x1)

2
T00k(t).

I2 =

x2∫

x1

y2∫

y1

z2∫

z1

∂T (x, y, z, t)

∂t
cos

(
πk(z−z1)

(z2−z1)

)
dxdydz. (A.95)

Use the relationship:

x2∫

x1

y2∫

y1

z2∫

z1

∂T (x, y, z, t)

∂t
cos

(
πk(z−z1)

(z2−z1)

)
dzdxdy =

(z2−z1)(y2−y1)(x2−x1)

2

dT00k(t)

dt
,(A.96)

I2 =
(z2−z1)(y2−y1)(x2−x1)

2

dT00k(t)

dt
. (A.97)
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Equating I1 and I2:

(x2−x1)(y2−y1)

1
(−1)k

dT00(t)

dt

∣∣∣∣
z2

− (x2−x1)(y2−y1)

1

dT00(t)

dt

∣∣∣∣
z2

+ 0

− απ2k2

(z2−z1)2
(z2−z1)(y2−y1)(x2−x1)

2
T00k(t) =

(z2−z1)(y2−y1)(x2−x1)

2

dT00k(t)

dt
. (A.98)

This results in the following ODE (for m = 0, n = 0, k = 1):

dT00k(t)

dt
=

2

(z2−z1)

[
(−1)k

dT00(t)

dt

∣∣∣∣
z2

− dT00(t)

dt

∣∣∣∣
z2

]
− T00k(t)

[
απ2

(
k2

(z2−z1)2

)]
.(A.99)

When m≥1,n≥1, k≥0 ):

I1 = α

x2∫

x1

y2∫

y1

z2∫

z1

(
∂2T (x, y, z, t)

∂x2
+

∂2T (x, y, z, t)

∂y2
+

∂2T (x, y, z, t)

∂z2

)

cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πn(y−y1)

(y2−y1)

)
dxdydz. (A.100)

I1=I1x+I1y+I1z. (A.101)

I1x = α

z2∫

z1

y2∫

y1




x2∫

x1

∂2T (x, y, z, t)

∂x2
cos

(
πm(x−x1)

(x2−x1)

)
dx


 cos

(
πn(y−y1)

(y2−y1)

)
dydz

(A.102)

Using integration by parts:

x2∫

x1

∂2T (x, y, z, t)

∂x2
cos

(
πm(x−x1)

(x2−x1)

)
dx =

[
cos (πm)

(
∂T (y, z, t)

∂x

∣∣∣∣
x2

)
−

(
∂T (y, z, t)

∂x

∣∣∣∣
x1

)]
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A.3 3-D Fourier series solution DC terms

+
πm

(x2−x1)

x2∫

x1

(
∂T (x, y, z, t)

∂x

)
sin

(
πm(x− x1)

(x2 − x1)

)
dx

∂T (y, z, t)/∂x|x2
= 0 and ∂T (y, z, t)/∂x|x1

= 0 and so:

I1x = − απ2m2

(x2−x1)2

z2∫

z1

y2∫

y1

x2∫

x1

T (x, y, z, t) cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πn(y−y1)

(y2−y1)

)
dxdydz(A.103)

Resulting in:

I1x = −απ2m2(y2−y1)(z2−z1)

4(x2−x1)
Tmn0(t), (A.104)

Now use the same method for I1y:

I1y = α

z2∫

z1

x2∫

x1




y2∫

y1

∂2T (x, y, z, t)

∂y2
cos

(
πn(y−y1)

(y2−y1)

)
dy


 cos

(
πm(x−x1)

(x2−x1)

)
dxdz (A.105)

Here ∂T (x, z, t)/∂y|y2 = 0 and ∂T (x, z, t)/∂y|y1 = 0. and so we get the following

expression by applying the same method as for I1x

I1y = −απ2n2(x2 − x1)(z2−z1)

4(y2 − y1)
Tmn0(t). (A.106)

Now for I1z:

I1z = α

y2∫

y1

x2∫

x1




z2∫

z1

∂2T (x, y, z, t)

∂z2
dz


 cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πn(y−y1)

(y2−y1)

)
dydx. (A.107)

In Fourier form this becomes:
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A.3 3-D Fourier series solution DC terms

I1z =
α(x2−x1)(y2−y1)

4

[
dTmn(t)

dt

∣∣∣∣
z2

− dTmn(t)

dt

∣∣∣∣
z1

]
. (A.108)

Therefore:

I1 =
(x2−x1)(y2−y1)

4

∂Tmn(t)

∂z

∣∣∣∣
z2

− (x2−x1)(y2−y1)

4

∂Tmn(t)

∂z

∣∣∣∣
z1

−απ2n2(x2−x1)(z2−z1)

4(y2−y1)
Tmn0(t)− απ2m2(y2−y1)(z2−z1)

4(x2−x1)
Tmn0(t) (A.109)

I2 =

x2∫

x1

y2∫

y1

z2∫

z1

∂T (x, y, z, t)

∂t
cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πn(y−y1)

(y2−y1)

)
dxdydz

(A.110)

Successive substitution produces:
(x2−x1)(y2−y1)

4

∂Tmn(t)

∂z

∣∣∣∣
z2

− (x2−x1)(y2−y1)

4

∂Tmn(t)

∂z

∣∣∣∣
z1

−απ2n2(x2−x1)(z2−z1)

4(y2−y1)
Tmn0(t)− απ2m2(y2−y1)(z2−z1)

4(x2−x1)
Tmn0(t)

= 0 +
(x2−x1)(y2−y1)(z2−z1)

4

dTmn0(t)

dt
. (A.111)

This brings us to the following ordinary differential equation m≥1,n≥1, k≥0 :

dTmn0(t)

dt
=

α

(z2−z1)

[
∂Tmn(t)

∂z

∣∣∣∣
z2

− ∂Tmn(t)

∂z

∣∣∣∣
z1

]
− Tmn0(t)

[
απ2

(
m2

(x2−x1)2
+

n2

(y2−y1)
2

)]

(A.112)
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A.3 3-D Fourier series solution DC terms

When m≥1,n=0, k≥1 :

I1 = α

x2∫

x1

y2∫

y1

z2∫

z1

(
∂2T (x, y, z, t)

∂x2
+

∂2T (x, y, z, t)

∂y2
+

∂2T (x, y, z, t)

∂z2

)

cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πk(z−z1)

(z2−z1)

)
dxdydz. (A.113)

I1=I1x+I1y+I1z. (A.114)

I1x = α

z2∫

z1

y2∫

y1




x2∫

x1

∂2T (x, y, z, t)

∂x2
cos

(
πm(x−x1)

(x2−x1)

)
dx


 cos

(
πk(z−z1)

(z2−z1)

)
dydz. (A.115)

Using the same approach as before:

I1x = −απ2m2(z2−z1)(y2−y1)

4(x2−x1)
Tm0k.(t)

(A.116)

I1y = α

z2∫

z1

x2∫

x1




y2∫

y1

∂2T (x, y, z, t)

∂y2
dy


 cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πk(z−z1)

(z2−z1)

)
dxdz (A.117)

∂T (x, z, t)/∂y|y2 = 0 and ∂T (x, z, t)/∂y|y1 = 0 and so:

I1y = 0. (A.118)

I1z = α

x2∫

x1

y2∫

y1




z2∫

z1

∂2T (x, y, z, t)

∂z2
cos

(
πk(z−z1)

(z2−z1)

)
dz


 cos

(
πm(x−x1)

(x2−x1)

)
dydx. (A.119)
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A.3 3-D Fourier series solution DC terms

I1z =

y2∫

y1

x2∫

x1

[
∂T (x, y, t)

∂z

∣∣∣∣
z2

(−1)k − ∂T (x, y, t)

∂z

∣∣∣∣
z1

]
cos

(
πm(x−x1)

(x2−x1)

)
dxdy

− απ2k2

(z2−z1)2

z2∫

z1

y2∫

y1

x2∫

x1

T (x, y, z, t) cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πk(z−z1)

(z2−z1)

)
dzdxdy. (A.120)

I1z =
α(x2−x1)(y2−y1)

2

[
dTm0(t)

dt

∣∣∣∣
z2

(−1)k − dTm0(t)

dt

∣∣∣∣
z1

]
(A.121)

− απ2k2(x2−x1)(y2−y1)

4(z2−z1)
Tm0k(t) (A.122)

(A.123)

I2 =

x2∫

x1

y2∫

y1

z2∫

z1

∂T (x, y, z, t)

∂t
cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πk(z−z1)

(z2−z1)

)
dxdydz (A.124)

I2 =
(z2−z1)(y2−y1)(x2−x1)

4

dTm0k(t)

dt
, (A.125)

Equating I1 and I2 leads to:

α(x2−x1)(y2−y1)

2

[
dTm0(t)

dt

∣∣∣∣
z2

(−1)k − dTm0(t)

dt

∣∣∣∣
z1

]
− απ2k2(x2−x1)(y2−y1)

4(z2−z1)
Tm0k(t)

−απ2m2(z2−z1)(y2−y1)

4(x2−x1)
Tm0k(t) = 0 +

(z2−z1)(y2−y1)(x2−x1)

4

dTm0k(t)

dt

(A.126)
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A.3 3-D Fourier series solution DC terms

This results in the following ODE (for m = 1, n = 0, k = 1):

dTm0k(t)

dt
=

2α

(z2−z1)

[
dTm0(t)

dt

∣∣∣∣
z2

(−1)k − dTm0(t)

dt

∣∣∣∣
z1

]
(A.127)

− Tm0k(t)

[
απ2

(
m2

(x2−x1)
2 +

k2

(z2−z1)
2

)]

When m=0, n≥1, k≥1 :

I1 = α

x2∫

x1

y2∫

y1

z2∫

z1

(
∂2T (x, y, z, t)

∂x2
+

∂2T (x, y, z, t)

∂y2
+

∂2T (x, y, z, t)

∂z2

)

cos

(
πn(y−y1)

(y2−y1)

)
cos

(
πk(z−z1)

(z2−z1)

)
dxdydz (A.128)

I1=I1x+I1y+I1z (A.129)

I1x = α

z2∫

z1

y2∫

y1




x2∫

x1

∂2T (x, y, z, t)

∂x2
dx


 cos

(
πn(y−y1)

(y2−y1)

)
cos

(
πk(z−z1)

(z2−z1)

)
dydz (A.130)

Due to insulation on the sides of the block:

I1x = 0. (A.131)

I1y = α

z2∫

z1

x2∫

x1




y2∫

y1

∂2T (x, y, z, t)

∂y2
cos

(
πn(y−y1)

(y2−y1)

)
dy


 cos

(
πk(z−z1)

(z2−z1)

)
dxdz (A.132)
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A.3 3-D Fourier series solution DC terms

I1y = − απ2n2

(y2−y1)2

z2∫

z1

y2∫

y1

x2∫

x1

T (x, y, z, t) cos

(
πn(y−y1)

(y2−y1)

)
cos

(
πk(z−z1)

(z2−z1)

)
dxdydz(A.133)

Using similar procedures to earlier:

I1y = −απ2n2(z2−z1)(x2−x1)

4(y2−y1)
T0nk(t). (A.134)

I1z = α

x2∫

x1

y2∫

y1




z2∫

z1

∂2T (x, y, z, t)

∂z2
cos

(
πk(z−z1)

(z2−z1)

)
dz


 cos

(
πn(y−y1)

(y2−y1)

)
dydx, (A.135)

I1z =

y2∫

y1

x2∫

x1

[
∂T (x, y, t)

∂z

∣∣∣∣
z2

(−1)k − ∂T (x, y, t)

∂z

∣∣∣∣
z1

]
cos

(
πn(y−y1)

(y2−y1)

)
dxdy

− απ2k2

(z2−z1)2

z2∫

z1

y2∫

y1

x2∫

x1

T (x, y, z, t) cos

(
πn(y−y1)

(y2−y1)

)
cos

(
πk(z−z1)

(z2−z1)

)
dzdxdy, (A.136)

I1z =
α(x2−x1)(y2−y1)

2

[
dT0n(t)

dt

∣∣∣∣
z2

(−1)k − dT0n(t)

dt

∣∣∣∣
z1

]
(A.137)

− απ2k2(x2−x1)(y2−y1)

4(z2−z1)
T0nk(t). (A.138)

I2 =

x2∫

x1

y2∫

y1

z2∫

z1

∂T (x, y, z, t)

∂t
cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πn(y−y1)

(y2−y1)

)
dxdydz (A.139)
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A.3 3-D Fourier series solution DC terms

I2 =
(z2−z1)(y2−y1)(x2−x1)

4

dT0nk(t)

dt
(A.140)

Equating I1 and I2 yields:

α(x2−x1)(y2−y1)

2

[
dT0n(t)

dt

∣∣∣∣
z2

(−1)k − dT0n(t)

dt

∣∣∣∣
z1

]
− απ2k2(x2−x1)(y2−y1)

4(z2−z1)
T0nk(t)

−απ2n2(z2−z1)(x2−x1)

4(y2−y1)
T0nk(t) = 0 +

(z2−z1)(y2−y1)(x2−x1)

4

dT0nk(t)

dt
(A.141)

This results in the following ODE (for m = 0,n = 1,k = 1):

dT0nk(t)

dt
=

2α

(z2−z1)

[
dT0n(t)

dt

∣∣∣∣
z2

(−1)k − dT0n(t)

dt

∣∣∣∣
z1

]
(A.142)

− T0nk(t)

[
απ2

(
n2

(y2−y1)
2 +

k2

(z2−z1)
2

)]
.
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Appendix

B
Appendix 2 - Fourier to space

conversion for 3-D implementation

This chapter looks at the creation of the conversion matrices featured in section 5.2.3.2.

The conversion matrices convert data from the Fourier domain to the spatial domain. In

order to use MATLAB/Simulink, 3-D conversion matrices are implemented in 2-D form.

B.1 Conversion in the z dimension only

Converting between the Fourier (m-n-k) domain and the spatial (x-y-z) domain is achieved

using the Fourier cosine series geometrical expansion of the 3-D heat equation which is

given below:

T (x, y, z) ∼
∞∑

m=0

∞∑

n=0

∞∑

k=0

Tmnk cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πn(y−y1)

(y2−y1)

)
cos

(
πk(z−z1)

(z2−z1)

)
, (B.1)
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B.1 Conversion in the z dimension only

Figure B.1: Cube labelled with x-y-z co-ordinates.

Using Equation (B.1), the eight co-ordinates in the x-y-z space shown in Fig.B.1 may

be defined as follows:

T (0, 0, 0) = T000 cos (0) cos (0) cos (0) T (0, 1, 0) = T000 cos (0) cos (π) cos (0)

+ T001 cos (0) cos (0) cos (0) + T001 cos (0) cos (π) cos (0)

+ T010 cos (0) cos (0) cos (0) + T010 cos (0) cos (π) cos (0)

+ T011 cos (0) cos (0) cos (0) + T011 cos (0) cos (π) cos (0)

+ T100 cos (0) cos (0) cos (0) + T100 cos (0) cos (0) cos (0)

+ T101 cos (0) cos (0) cos (0) + T101 cos (0) cos (0) cos (0)

+ T110 cos (0) cos (0) cos (0) + T110 cos (0) cos (π) cos (0)

+ T111 cos (0) cos (0) cos (0) + T111 cos (0) cos (π) cos (0)

T (0, 0, 1) = T000 cos (0) cos (0) cos (0) T (0, 1, 1) = T000 cos (0) cos (0) cos (0)

+ T001 cos (0) cos (0) cos (π) + T001 cos (0) cos (0) cos (π)

+ T010 cos (0) cos (0) cos (0) + T010 cos (0) cos (π) cos (0)

+ T011 cos (0) cos (0) cos (π) + T011 cos (0) cos (π) cos (π)

+ T100 cos (0) cos (0) cos (0) + T100 cos (0) cos (0) cos (0)

+ T101 cos (0) cos (0) cos (π) + T101 cos (0) cos (0) cos (π)

+ T110 cos (0) cos (0) cos (0) + T110 cos (0) cos (π) cos (0)

+ T111 cos (0) cos (0) cos (π) + T111 cos (0) cos (π) cos (π)

T (1, 0, 0) = T000 cos (0) cos (0) cos (0) T (1, 1, 0) = T000 cos (0) cos (0) cos (0)

+ T001 cos (0) cos (0) cos (0) + T001 cos (0) cos (0) cos (0)

+ T010 cos (0) cos (0) cos (0) + T010 cos (0) cos (π) cos (0)

+ T011 cos (0) cos (0) cos (0) + T011 cos (0) cos (π) cos (π)

+ T100 cos (π) cos (0) cos (0) + T100 cos (π) cos (0) cos (0)

+ T101 cos (π) cos (0) cos (0) + T101 cos (π) cos (0) cos (0)

+ T110 cos (π) cos (0) cos (0) + T110 cos (π) cos (π) cos (0)

+ T111 cos (π) cos (0) cos (0) + T111 cos (π) cos (π) cos (0)
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B.1 Conversion in the z dimension only

T (1, 0, 1) = T000 cos (0) cos (0) cos (0) T (1, 1, 1) = T000 cos (0) cos (0) cos (0)

+ T001 cos (0) cos (0) cos (π) + T001 cos (0) cos (0) cos (π)

+ T010 cos (0) cos (0) cos (0) + T010 cos (0) cos (π) cos (0)

+ T011 cos (0) cos (0) cos (π) + T011 cos (0) cos (π) cos (π)

+ T100 cos (π) cos (0) cos (0) + T100 cos (π) cos (0) cos (0)

+ T101 cos (π) cos (0) cos (π) + T101 cos (π) cos (0) cos (π)

+ T110 cos (π) cos (0) cos (0) + T110 cos (π) cos (π) cos (0)

+ T111 cos (π) cos (0) cos (π) + T111 cos (π) cos (π) cos (π)

Consider the situation depicted in Fig. B.2.

Figure B.2: x-y is in the space domain but z is in the Fourier domain

The Fourier cosine series geometrical expansion of the 2-D heat equation, with the z

direction remaining in the Fourier domain, is given below:

T (x, y)k

∞∑
m=0

∞∑
n=0

Tmnk cos

(
πm(x−x1)

(x2−x1)

)
cos

(
πn(y−y1)

(y2−y1)

)
, (B.2)

Defining x-y co-ordinates, when k=0, gives:

T (0, 0)0 = T000 cos (0) cos (0) T (0, 1)0 = T000 cos (0) cos (0)

+ T010 cos (0) cos (0) + T010 cos (0) cos (π)

+ T100 cos (0) cos (0) + T100 cos (0) cos (0)

+ T110 cos (0) cos (0) + T110 cos (0) cos (π)

T (1, 0)0 = T000 cos (0) cos (0) T (1, 1)0 = T000 cos (0) cos (0)

+ T010 cos (0) cos (0) + T010 cos (0) cos (π)

+ T100 cos (π) cos (0) + T100 cos (π) cos (0)

+ T110 cos (π) cos (0) + T110 cos (π) cos (π)
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B.1 Conversion in the z dimension only

Defining x-y co-ordinates, when k=1, gives:

T (0, 0)1 = T001 cos (0) cos (0) T (0, 1)1 = T001 cos (0) cos (0)

+ T011 cos (0) cos (0) + T011 cos (0) cos (π)

+ T101 cos (0) cos (0) + T101 cos (0) cos (0)

+ T111 cos (0) cos (0) + T111 cos (0) cos (π)

T (1, 0)1 = T001 cos (0) cos (0) T (1, 1)1 = T001 cos (0) cos (0)

+ T011 cos (0) cos (0) + T011 cos (0) cos (π)

+ T101 cos (π) cos (0) + T101 cos (π) cos (0)

+ T111 cos (π) cos (0) + T111 cos (π) cos (π)

All definitions featured so far in this chapter lead to the creation of the z conversion

matrix shown in Fig. B.3, which converts from the Fourier domain to the spatial domain

in the z direction only.

Figure B.3: The creation of the z conversion matrix.

Upon inspection, it is clear how to construct the z conversion matrix above. The z

conversion matrix is a pre-multiplier. Identity matrices (with m-by-m dimensions) are

present within another matrix. They appear within the conversion matrix as:

Figure B.4: Identity matrices within the z conversion matrix.
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B.1 Conversion in the z dimension only

The pre-multiplying matrix does not affect the x co-ordinates thanks to the presence

of the identity matrices. It is desirable to convert in the z direction only at this stage. The

dimension of the square identity matrix I matches the number of Fourier terms (M=2)

in the x dimension.

Each identity matrix ‘I’ is multiplied by the element it replaces in the conversion

matrix which links T (z) to Tk in the formula:

T (z) =
∑∞

k=0
Tk cos

(
kπ (z − z1)

(z2 − z1)

)
, (B.3)

where k represents each of the Fourier coefficients and the z terms are described as follows:

The following equation therefore holds true:

z − z1 = numz∆z =
numz(z2 − z1)

Nz

(B.4)

where numz is the number of segments along the z dimension and Nz is the total number

of segments.

This is how the expression in Equation (B.3) is implemented:
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B.2 Conversion in the x dimension only

In this example K = 2 , and so each I (M by M) identity matrix is multiplied by the

element it replaces in the resulting z conversion matrix:

Therefore a conversion matrix which converts from the Fourier to space in the z dimension

only can be easily constructed for any positive integer value assigned to M and K.

B.2 Conversion in the x dimension only

In order to convert in the x direction a pre-multiplying conversion matrix is used. In this

case, it is necessary to convert from the Fourier domain to the space domain in the x

direction only. This means that the x conversion matrix must operate within each value

of the Fourier coefficient k (k=0, k=1 ..) if it is to allow the z direction to remain in

Fourier domain.Looking closely, it is clear how to construct the x conversion matrix above for any

value of M and K. Start with an identity matrix with dimensions (K by K). Each

element is multiplied by and replaced with a mini conversion matrix.

The mini x conversion matrices come from the relationship between T (x) and Tm in
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B.2 Conversion in the x dimension only

the formula:

T (x) =
∑∞

k=0
Tm cos

(
mπ (x− x1)

(x2 − x1)

)
, (B.5)

where m represents each of the Fourier coefficients and the x terms are described as

follows:
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B.3 Conversion in the y dimension only

The following equation therefore holds true:

x− x1 = numx∆x =
numx(x2 − x1)

Nx

(B.6)

where numx is the number of segments along the x dimension and Nx is the total number

of segments.

This is how the expression in Equation (B.5) is implemented:

It is possible to convert in x dimension and z dimension at once with one premulti-

plying matrix which is x conversion matrix * z conversion matrix.

B.3 Conversion in the y dimension only

In order to convert from Fourier domain to space in the y dimension, matrix post-

multiplication is required. The y conversion matrix has no baring on the x and z di-

rections thanks to the vertical stacking of each k Fourier coefficient. The matrix post-

multiplication appears like this:
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B.3 Conversion in the y dimension only

The y conversion post multiplying matrix describes the relationship between T (y) and

Tn in the following expression:

T (y) =
∑∞

n=0
Tn cos

(
nπ (y − y1)

(y2 − y1)

)
, (B.7)

Equation (B.7) is implemented as follows in order to create the y post multiplying

conversion matrix:

where numy is the number of segments along the y dimension and Ny is the total number

of segments. The y terms are determined in the same fashion as the x terms were.
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