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Summary

This thesis presents some major improvements in the following computations: a

lower bound for the canonical height, period lattices, and elliptic logarithms.

On computing a lower bound for the canonical height, we have successfully
generalised the existing algorithm of Cremona and Siksek [CS06] to elliptic curves
over totally real number fields, and then to elliptic curves over number fields in
general. Both results, which are also published in [Tho08] and [Thol0] respectively,

will be fully explained in Chapter 2 and 3.

In Chapter 4, we give a complete method on computing period lattices of elliptic
curves over C, whereas this was only possible for elliptic curves over R in the
past. Our method is based on the concept of arithmetic-geometric mean (AGM).
In addition, we extend our method further to find elliptic logarithms of complex
points. This work is done in collaboration with Professor John E. Cremona; another

version of this chapter has been submitted for publication [CT].

In Chapter 5, we finally illustrate the applications of our main results towards
certain computations which did not work well in the past due to lack of some
information on elliptic curves. This includes determining a Mordell-Weil basis,
finding integral points on elliptic curves over number fields [SS97], and finding

elliptic curves with everywhere good reduction [CLO7].

A number of computer programs have been implemented for the purpose of
illustration and verification. Their source code (written in MAGMA) can be found

in Appendix A.
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Chapter 1

Introduction

We will first introduce all underlying concepts which are necessary for later chapters,
together with an overview of this thesis. In this chapter, we will start by a brief
definition of elliptic curves, before move on to describe more specific concepts related
to elliptic curves over number fields, and finally, elliptic curves over C. A synopsis

of each chapter will be also mentioned where appropriate.

1.1 An Overview of Elliptic Curves

In this section, we will briefly describe the definition an elliptic curve over a general

field, and how to construct an operation defining the group law on it.

Definition. Let K be a field. An elliptic curve E defined over K (denoted by
FE/K) is a non-singular projective plane curve of degree 3 over K, with a specified

point of inflection O which is also defined over K.

We can assume (see [Mil06, Proposition 1.2]) that E is given by a homogeneous

Wezierstrass equation
Y2Z 4+ XYZ 4 asYZ? = X3+ au X?Z + ay X 7% + ag 23,

where all a; € K are constants. If Z # 0, then we can divide every term above by

1



2 Chapter 1. Introduction

73 to obtain an affine Weierstrass equation

E: 4+ aizy+ asy = 22 + asx® + asx + ag, (1.1)

viax = X/Z,y=Y/Z. The line Z = 0 intersects £ at (0 : 1 :0) with multiplicity
3, so we may take O = (0 : 1 :0); this is called the point at infinity of E. It is also
easy to prove (see [Was03, p. 20]) that every vertical line intersects F at O.

From now on, we shall always assume that an elliptic curve E is given by an
affine Weierstrass equation (1.1), unless otherwise stated. As in [Sil86, p. 46], we

define the following quantities associated to a Weierstrass equation:

2 2
bg = aq + 4@2, b4 = 2@4 + aasg, b6 = ds + 4&6,
be = a2ap + 4 . 2 2
s = A6 Q20 — Q10304 + Q203 — Ay,

A = —b2bg — 8b3 — 27b% + bybybs.

The quantity A is known as the discriminant of E. An example of elliptic curves

defined over K = R is illustrated in Figure 1.1.

—
N

(a) A<O (by A>0

Figure 1.1: Elliptic curves over R

In this thesis, our field K will be either R, C, or a number field, hence char(K) =
0. For now we note that, since char(K) # 2, we can rewrite the Weierstrass equation

of £ as

E: (u+aix+a3)* = f(x) = 42° + bya?® + 204w + bg.
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It can be shown (see [Sil86, Proposition II1.1.4]) that A # 0 if and only if f(z) has

three distinct roots, which is equivalent to the non-singularity of E.

Definition. Let E be an elliptic curve defined over a field K, and let L O K be a

field. The set of all L-points of E, denoted by E(L), is given by

E(L) = {(z,y) € L* 1 ¥* + a1zy + azy = 2° + a22” + aux + ag} U {O}.

For any two points P, P, € E(L), we can construct an operation so-called
addition (denoted by +) geometrically as follows. First, let L; be the straight line
through Pj, P, (or if P, = P, take L; to be the tangent line to E at that point).
Then L; will intersect £ at another point, say, P;. Let Lo be the vertical line
through P;. Then L, will intersect E at another point, say Ps;. Finally, we define

P, + P, = P;. An example of this process for L = K = R is shown in Figure 1.2.

(a)Pl#PQ (b)P1:P2

Figure 1.2: Addition on elliptic curves

It is readily shown (see, e.g., [Was03, Section 2.2]) that E(L) becomes an abelian
group with O as the identity once being equipped with this addition. We say that
a point P € E(L) is a torsion point if P has finite order in E(L); otherwise, P is

said to be non-torsion.
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1.2 Elliptic Curves over Number Fields

In this section, we shall first explain the definition of heights on elliptic curves over
number fields, and then briefly describe the importance of a lower bound for the
canonical height towards computing a Mordell-Weil basis. Throughout this section,

our elliptic curve E will be defined over a number field K.

1.2.1 Heights

Roughly speaking, the height function is a way to measure how “complicated” the
x-coordinate of a point P € F(K) is. In this thesis, we will be using the canonical
height, which can be expressed as a sum of all contributions from local heights. 1t
should be noted that normalisation of heights varies in literature. In our case, the
local and canonical heights are defined with respect to the divisor 2(0). This leads
to the same normalisation as the one used in the computer package MAGMA, and
gives double the values compared with Silverman’s paper [Sil88] where heights are

defined with respect to (O).

The Canonical Height

Denote the sets of real and complex archimedean places of K by M}, and Mj
respectively, and let Mg be the set of all places of K. For v € Mg, let n, =

K, : Q,], and let o, be the associated embedding of K into the completion K.

Definition. For z € K, the absolute value of x at a place v € Mk is given by

|y ()] if v e My UMy,
|z = (1.2)

N(p)—ordp(z)/np if o= D,

where p is the prime ideal associated to a non-archimedean place v, and N denotes

the norm of an integral ideal of K.
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It is a standard fact (see, e.g., [Coh07, Proposition 4.1.14]) that this definition

satisfies all axioms of valuation theory and the product formula [],c,, |z[3 = 1.

Definition. For P € E(K), the naive height of P (relative to K) is defined by

1 if P =0,
Hg(P) = (1.3)
[ max{1|z(P),}™ if P#O0.

vEME

Definition. For P € E(K), the logarithmic height of P is defined by

}MP):IR%zﬁkgk@(P) (1.4)

From this, the canonical height of P is given by

h(P) = lim h(Q—jP).

lim = (1.5)

Observe that h(P) > 0 for all P € E(K), thus we also have h(P) > 0 for all
P € E(K). Moreover, we have h(mP) = m2h(P) for all P € E(K) and m € Z (see
[Sil86, p. 230] for the proof). In particular, if P is a torsion point of order m, then

we have

0 = h(O) = h(mP) = m*h(P)

(the fact that h(O) = 0 follows easily from (1.6)), i.e., h(P) = 0. In fact, the
canonical height h : E(K) — [0,00) is a positive definite quadratic form on
E(K)/Eios(K), which gives it the structure of a lattice. Hence there exists a

positive lower bound for A(P) among all non-torsion P € E(K).

Computing such a lower bound has a number of applications in the arithmetic
of elliptic curves. In particular, it is a crucial step in determining a Mordell-Weil
basis for F(K); see Section 1.2.2 for more details. In the past, a number of explicit

lower bounds for the canonical height on E(K) have been proposed. Some of
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them, including [HS88, Theorem 0.3|, aim to prove Lang’s conjecture (see [Sil86,
Conjecture VIIL.9.9]), which states that there exists a constant ¢k, depending only
on K, such that

~

h(P) > cx log N (Dg/k)

for all non-torsion P € E(K), where Dg/k is the minimal discriminant of £/K. As
we will see later on, however, the lower bound obtained by that result is too small
for practical use.

In this thesis, we will develop an alternative method for determining a larger
positive lower bound for the canonical height on elliptic curves over number fields.
The underlying methodology is mainly inspired by the algorithm of Cremona and
Siksek [CS06], which allows one to compute such a lower bound for elliptic curves
defined over Q only. Our work on this is divided into two parts, namely, deter-
mining certain contributions from all real embeddings, and then from all complex

embeddings. Both parts will be described in Chapter 2 and 3 respectively.

Local Height Functions

Finally, we give the definition of local heights. Suppose P € E(K) with 2P # O.
Then one can observe that x(2P) = g(P)/f(P), where

f(P) = 42(P)? + byx(P)? 4 2by2(P) + bs, g(P) = x(P)* — byx(P)* — 2bgx(P) — bs.

Hence by (1.3), we have

Hi(2P) = ] max{1,|z(2P),}™
= ]I wmax{11g(P)L/1/(P)}"™
= I 5P T max{1,|g(P)/1(P)}™

— H max{|f(P)l|v, |g(P)|,}"™

vEME
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(note that [T e, [f(P)[5 =1 by the product formula), and so

h(2P) = log max{[f(P)lv, g(P)l.}

UEMK
by (1.4). Together with (1.4) again, this easily yields

1
(K- Q

h(2P) — 4h(P) = > nylog ®,(P), (1.6)

vEME

where

1 if P=0,

max{|f(P)]v,l9(P)l.} .
e L o (P} if P#0.

Definition. For v € Mg, let K, be the completion of K at v. The function

Ay @ E(K,) — R defined by

log @, (27 P)
Ao(P) = logmax{1, |z(P)|,} + Z I (1.8)

is called the local height function at v.

To see the relationship between the canonical height and local heights, we use

(1.5) and the telescoping sum to obtain

Wp) = MP%FLTT__MPﬂ+{MZPX‘MTﬂ}

- _[Kl o] Z T (logmax{l, 2(P)]} + log‘IZ(P) . log‘IZ;(ZP) L )

veEMK

1

(the second equality follows directly from (1.4) and (1.8)). This therefore allows
us to obtain fz(P) by combining the contribution of A, on each local model E(K,),

noting that A,(P) = 0 for almost all v.
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1.2.2 Mordell-Weil Bases

Recall that F(K) is an abelian group under addition. By the Mordell-Weil theorem
(see, e.g., [Sil86, Chapter VIII] for more details), it is also well known that E(K)

is finitely generated. It then follows that

E(K) = Eios(K) X Z7,

where Eios(K) is the torsion subgroup of E(K) (i.e., the set of all torsion points in
E(K)), and the rank r > 0 of E(K) is the cardinality of a Mordell-Weil basis for
E(K) (i.e., the set of all non-torsion points in F(K') whose images in E(K)/Eios(K)
form a Z-basis for it).

In general, it turns out that the torsion subgroup of E(K) can be determined
more easily than a Mordell-Weil basis for F(K). According to [Sik95], the task of

explicit computation of such a basis consists of the following steps:

1. Determine Py, ..., P. whose images in E(K)/E.s(K) generate a subgroup of
finite index of E(K)/Eios(K). Usually, these are obtained by performing an

m-descent for some m > 2.

2. A lower bound A > 0 for the canonical height h(P) is determined, which in

turn yields an upper bound on the index n = [E(K)/Eios(K) : (P1, ..., P.)].

3. A sieving procedure [Sik95, Section 4] is then used to deduce a Mordell-Weil
basis for E(K).

In step (2), we certainly wish to have an upper bound for n as small as possible.
In particular, P, ..., P. will certainly be a Mordell-Weil basis of F(K) if n = 1.
It follows from the following theorem that, in order to have a smaller upper bound

for n, one must obtain a larger lower bound for the canonical height.
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Theorem 1.2.1 (The Geometry of Numbers). If E(K) contains no points P of

infinite order with E(P) < A for some A\ > 0, then the index n satisfies
n < R(Pr,..., )2, /0,
where R(Py, ..., P.) =det((P;, P;))1<ij<r and
(PP = 5 (W(P+ ) = h(P) — h(P)
Moreover, the values 7, may be taken to be

’711:17 7324/37 7??:27 ’7511:47

% =8, % = 64/3, 7 = 64, % =25
and v, = (4/7)C(r/2 + 1)¥" forr > 9.

Proof. See [Sik95, Theorem 3.1]. ]

As mentioned earlier, we will fully explain a new method for computing A in
Chapter 2 and 3. Some examples on how to determine a Mordell-Weil basis using

A and the process above will be also shown in Chapter 5.

1.3 Elliptic Curves over C

We now move on to elliptic curves defined over C, where we will give a brief intro-
duction on period lattices of elliptic curves and elliptic logarithms of points, which

will be the subject of Chapter 4.

Definition. A lattice A is a free Z-module of rank 2 embedded as a discrete sub-
group of C, i.e.,

A = {njw; + nows : ny,ne € Z}
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for some wy, wy € C with wy/wy ¢ R.

For a lattice A, we can also identify C/A with the set
thwz = {)\111}1 —+ )\2?1]2 0< )\1,)\2 < 1}

called the (open) fundamental parallelogram for A (or if we allow both \; = 1, we

say that it is closed). In the topological point of view, this is a torus. Clearly,

choosing a different Z-basis for A yields a different fundamental parallelogram.
Let E be an elliptic curve defined over C. With some change of variables, we

can assume that the Weierstrass equation of E is of the form
E: Y?=4(X —e)(X —e)(X —e3),

where all e; are distinct and Z?Zl e; = 0. It is well known (see, e.g., [Was03,

Chapter 9]) that E(C) =2 C/A for some lattice A via the map

P = (pa(2), 9a(2)) <= =z (mod A),

O «— 0 (modA).

We say that A is the period lattice of E, and z is an elliptic logarithm of P. The
values of pa(z) and @ (2) can be computed using the power series expansion as

shown in the following proposition.

Proposition 1.3.1 ([Coh93, Proposition 7.4.4]). Let {wy,ws} be a Z-basis for A

chosen so that S(ws/wy) > 0. Set

T =wy/wy, q=exp(2inT), u=exp(2miz/w;)
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(here, 1 = /—1). Then

pa(z) = (%)2 <112 1—u2 2t i { 1 — giu)? (1 —qj:j;l‘l)Q (1 iq;j)2}>

J=1

and

2im\* 14+u 14+ ¢u ¢ +u
/ — RS
@A(z)—<w1) (1—u 21 {1—q3u +(qj_u)3 :
To be precise, a Z-basis for the period lattice of E is given by any two of the

generators wy, wy, w3, where pa(w;/2) = e; and @) (w;/2) = 0 for all j. Suppose ¢;

is the straight line on the complex plane starting from 0 to w,;/2. Then we have

/d_/dpA —/'d}i{, (1.10)

where C; is the image of ¢; on E under (pa, ©)), i.e

C; = {(paltwy/2), o (tw;/2) : 0 < t < 1},

More generally, if zp is an elliptic logarithm of P € E(C), then

X
Zp = —  (mod A),
p= ] 5 mod )

where Cp = {(pa(tzp), P\ (tzp)) : 0 <t < 1}.

If E is defined over R, then we obtain one of two special cases for the lattice
A of E. Tt can be shown (see, e.g., [Was03, pp. 274-275]) that if £ has positive
discriminant (see Figure 1.1b), then A is rectangular, i.e., there exists a Z-basis
{wy,ws} for A where w; € R and wy € iR. In this case, the connected component
of the identity (i.e., the one containing O) is parameterised by the line {tw; : 0 <

t < 1}, while the “loop” component is parameterised by the line {tw; + wy/2 : 0 <
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t < 1}. For E/R with negative discriminant (see Figure 1.1a), we obtain a skewed
lattice, i.e., there exists a Z-basis for A with w; € R and R(we/w;) = 1/2. In this

case, the whole E(R) is connected and parameterised by the line {tw; : 0 <t < 1}.

Finding period lattices and elliptic logarithms is an important computation in
its own right, and also has a number of applications towards certain algorithms, in-
cluding one for determining a lower bound for the canonical height on elliptic curves
over number fields, which will be fully explained in Chapter 2 and 3. Although there
are some algorithms including [Coh93, Algorithm 7.4.7 and 7.4.8] readily available
for computing both period lattices and elliptic logarithms, those algorithms only
work for elliptic curves over R. In Chapter 4, we will show how to develop a com-
plete method for computing period lattices and elliptic logarithms for elliptic curves
over C in general, based on the method of arithmetic-geometric mean (AGM). As
we will see later on, our algorithm will allow one to compute both values with high

degree of precision very rapidly.

In conclusion, we have introduced all necessary concepts to be used later on in
this thesis, including an overview of each chapter. The next two chapters will focus
on development of our first main result, namely, an algorithm for computing a lower

bound for the canonical height on elliptic curves over number fields.



Chapter 2

Height Bound 1

We will now focus on our first main result, where we develop an algorithm for
computing a lower bound for the canonical height on elliptic curves over number
fields. Our algorithm, which is inspired by the one of Cremona and Siksek [CS06],
involves estimating local heights and solving a system of certain inequalities on both
real and complex embeddings.

In this chapter, we will first show how to derive an estimate for local heights,
and then show how to solve the system of inequalities mentioned above on real
embeddings. This in turn will suffice for computing a lower bound for the canonical
height on elliptic curves over number fields with at least one real embedding. A
more sophisticated method for solving such inequalities on complex embeddings will
be explained in Chapter 3.

Another version of this chapter, which is more specific to elliptic curves over

totally real number fields, has been published in [Tho08].

2.1 Points of Good Reduction

Let E be an elliptic curve defined over a number field K, given by a Weierstrass
equation

E: v +azy+asy =2 + ax® + ayx + ag

13
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with all a; € O, where O is the ring of integers of K. Let A be the discriminant
of E. As in Chapter 1, we denote the sets of real and complex archimedean places
by M}, and Mj; respectively, and let My be the set of all places of K.

For all non-archimedean places v, let £ be a local minimal model for E over
the completion K,, while we simply set £ = E for all archimedean places v. We

define the map
¢: EB(EK)—[]EY(K),

veES
where S = M} U M5 U{p : p | A}, in such a way that P is mapped into its

corresponding point on:

e EW(R), for each v € M, and
e EW(C), for each v € M§, and

e EW(K,), for each non-archimedean place v | A.

Note that if K has class number greater than 1, then E®) may differ for different
non-archimedean places v, i.e., £ may not have a globally minimal model. As we

will see, our formulae can be simplified if F is given by a globally minimal model.

We wish to compute a positive lower bound A for the canonical height h on
E(K). Instead of working on E(K) directly, we determine a positive lower bound

i for the canonical height on the subgroup

Ey(K)=¢" (H Eé“(&)) ,

veS

where E\"(K,) is the connected component of the identity (for non-archimedean
v, this is the set of points of good reduction). The next lemma shows that we can

obtain A\ very easily once p is known.

Lemma 2.1.1. Let p be a positive lower bound for the canonical height on Eg ().
Set

A= p/c,
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where ¢ is the least common multiple of the Tamagawa indices
_ 1) . (v)
Cy = [E (Kv) : By (Kv)]

for allv € My. Then X is a positive lower bound for the canonical height on E(K).

Proof. Note that c¢ is well-defined since ¢, = 1 for all v ¢ S. For all non-torsion

point P € E(K), it is clear that cP € E, (K). Then by quadraticity of h, we have
1 < h(cP) = h(P),

and so h(P) > p/c?. Hence we can take A = /c2. O

In this chapter, we will first derive an explicit formula for computing pu. The
value of p obtained by this formula, in practice, will not be as good as the one
obtained by the algorithm to be derived later on in Chapter 3. Using a number of
criteria, our algorithm will check whether a given p¢ > 0 is a lower bound on E,, (K).

The value of p then can be refined further by repeating the algorithm.

2.2 Estimation of Local Heights

Recall the definition of local and canonical heights in Section 1.2.1. From (1.9), we
have seen that the canonical height can be written as a sum of local heights given
by (1.8). This therefore allows us to estimate iL(P) by approximating each local
height A\, for v € M.

2.2.1 Non-Archimedean Cases

For P € E(K), let P® be its corresponding point of P (via the map ¢) on the
minimal model E®. Let Ap and )\,(Jp) be the local heights associated to E and

E® respectively. Assume that E is integral and E® has all coefficients in O, =



16 Chapter 2. Height Bound I

{z € K : ordy(x) > 0}, we denote A and A® the discriminants of E and E®
respectively. These values are related by A = (u(”))12 AP for some u® € O,. If
E is given by a globally minimal model, then we may take E® = E for all p.

The following lemma illustrates the relation between A\, and /\,(f).

Lemma 2.2.1.

1
Mo(P) = AP (PP) + Clog [A/AP)],,

Proof. This follows from the use of two different normalisations of local heights
which differ by log |- |,/6, and the fact that one of them is independent of the choice

of Weierstrass model. For full details, see [CPS06, Section 4]. ]

Now for P € Eg(K), it follows that P®) ¢ Eép)(Kp) at every prime ideal p. In

this case, we can easily compute )\gp)(P(p)) with the following lemma.

Lemma 2.2.2. Let p be a prime ideal and P® € Eép)(Kp) \{O} (i.e., P is a point

of good reduction). Then
AP (P®) = log max{1, [z(P®)],}.

Proof. This is a standard result; see, e.g., [Sil88, Section 5]. Note that the definition
that we use of local height of a point with good reduction does not include a multiple

of —log |AW)], (cf. [Sil88, p. 351]). O

Definition. Let # € K. The denominator ideal of x, denoted by denom(z), is the

integral ideal B such that (z) = AB™!, where A, B are coprime integral ideals.

The next lemma yields a simplified formula for computing the sum of all non-

archimedean local heights on E, (K).

Lemma 2.2.3. Suppose P € E.(K)\{O}. Then

an)\p(P) = L(P) — %logN(ME),
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where

L(P) = log N H p—ordp(m(P(P))) Mg = Hpordp(A/A(p))'
p|denom (x(P())) p

Note that N(Mg) =1 if E is given by a globally minimal model.

Proof. Since P € Eg,(K) by assumption, we have P® € E(()p)(Kp) for all p. It then

follows from Lemma 2.2.1 and Lemma 2.2.2 that

1
Dome(P) = Do mpNY (PP 4 2 Y nplog [A/AP),
p p p

1
= E :nplogmax{1,|x(P(p))|p}+6 E :"p10g|A/A(p)|p- (2.1)
p p

Clearly, the term log{1, |#(P®)|,} will vanish if |z(P®)|, < 1. Hence the first sum

in (2.1) is obtained by all those p satisfying |z(P®)|, > 1. Recall from (1.2) that
|z(P®))], = N (p) e @) mp

Observe that |z(P®)|, > 1 if and only if p | denom(z(P®)). Therefore, the first

sum in (2.1) becomes

> nplogmax(1, [z(P®)],) = log N [I po®e@®) = Lp).
p p|denom(z(P®)))

Secondly, it follows from (1.2) that the second sum in (2.1) is
1 ») 1 ordy (A/A®)) 1
Eanlog A/AP], = —Zlog II» = —z log N'(Mp).
P P

Finally, if E is given by a globally minimal model, then A® = A for all p, so
N(Mg)=1. O
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2.2.2 Archimedean Cases

For v € M} U M}, we define o, by

o, = 1(n)f d,(P)
PeE"” (Ky)

(see (1.7) for the definition of ®,). The exponent —3 is introduced in order to
simplify expressions appearing later on. These «, can be computed very rapidly
using the method in [CPS06, Section 7 and 9], according as v € M}, and v € Mj,.

The following lemma gives us an estimate for the archimedean local heights.

Lemma 2.2.4. If P € E"(K,) \ {O}, then
logmax{1, |z(P)],} — A\ (P) < log .

Proof. Rearrange (1.8) and use the fact that

L log @,(27P) _ <= log(a;?)
2 g 2 n = ~losan,
j=0 =0

2.3 Multiplication by n

In this section, we will derive a lower estimate for the contribution that multiplica-
tion by n makes towards L(nP), where L is defined as in Lemma 2.2.3.

Let k, be the residue class field of p, and let e, be the exponent of the group
E® (ky) = EY () /EP (). Define

Dp(n) = Y 2(1+ ordey(n/e,))log N(p), (2.2)

p prime
ep|n

where c(p) is the characteristic of k,. Note that k, is a finite field, so ¢(p) is always
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a prime number. In particular, N'(p) = |ky| < C(p)[Ki@}_
Proposition 2.3.1. If e, | n, then we have the following:
1. N(p) < (n+ 1)maX{2,[K:Q]}_

2. Dg(n) is finite. Moreover, if P € Eq(K) is non-torsion and n > 1, then

L(nP) > Dg(n).

Proof. Suppose e, | n. If E® has bad reduction at p, then e, is c¢(p), N'(p) + 1, or
N(p) — 1 depending on whether E® has additive, non-split multiplicative, or split

multiplicative reduction at p. In any case, this implies

and thus NV(p) < (n+ 1)@, Now for p at which E® has good reduction, we have

EW(k,) = EW(k,) 2 Z/d,Z x 7.]dyZ,

ns

where d; | dy and dy = e,. It then follows from Hasse’s theorem (see, e.g., [Sil86,

Theorem V.1.1]) that
(VN(p) = 1) < [ED (k)| = dudy < ef < .

Thus MV (p) < (n + 1)2.. Combining this with above result, this yields N(p) <

(n + 1)m42K:Q} which proves (1). It is then immediate that Dg(n) is finite.

To prove the rest of (2), first note that P € E,(K) implies P®) € Eép)(Kp) for

every p. Define

EP(K,) = {P € E{"(K,) : ordy((P)) < —2n}.
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Then it is known (see [Coh07, Lemma 7.3.28]) that for all n > 1,

EW(K,)/BEY) (K,) = ki = (Z/c(p)Z),

for some integer ¢ > 0. Let e(p) = ordp(n/ep). Then nP® € Eé?g)H(Kp), ie.,
ord,(denom(z(nP™))) > 2(e(p) + 1).
This implies that e, | n is equivalent to p | denom(z(nP®)). Hence
H N (p) =t @mP®) > H N (p)2e®D)
pldenom (z(nP®))) P gpr‘igle
The result then follows after taking logarithms on both sides. n

2.4 A Bound for Multiples of Points of Good Re-
duction

In this section, we will first derive a bound for the z-coordinates of nP, where
P € E,(K) is non-torsion. This in turn yields an explicit lower bound for the
canonical height on E,, (K).

For 1 > 0 and n € Z+, define B, (1) by

1
log B, (1) = [K : Qn*u — Dgp(n) + 6 log N (Mg) + Z log o,y + 2 Z log .
veMi veMS
Proposition 2.4.1. If B,(u) < 1 then h(P) > p for all non-torsion P € Eg(K).

If Bn(p) > 1, then for all non-torsion P € Eg(K) with h(P) < p, we have

Bn(ﬂ) va € M;O
|z(nP)ls <

Bn(p) ifve Mg.
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Proof. Suppose P € E, (K) is a non-torsion point with h(P) < p. By Lemma
2.2.4, we have
logmax{1, |x(nP)|,} — A\ (nP) < loga,

for all v € M}, U Mj,. This implies that

Z log max{1,|z(nP)|,} + 2 Z log max{1, |x(nP)|,}

vEM, vEME
< Z Ao(nP) + 2 Z Ao(nP) + Z log o, + 2 Z log o, (2.3)
vEMy, veEMY, veEM7, veEMy,

Note that n, = 1 for all v € Mk and n, = 2 for all v € M. By writing 2(nP) as

a sum of local heights (see (1.9)), we have

> MmP)+2 ) A(nP) = [K : Qh(nP) =) ny)y(nP)

vEM vEMS,

= [K :QJh(nP) — L(nP) + %logN(ME) by Lemma 2.2.3

< [K:Q]h(nP) — Dg(n) + é log N (MEg) by Proposition 2.3.1(2)
< [K:Qn*u— Dg(n) + %log./\/'(ME) since h(P) < p.

Combining this with (2.3) and taking the exponential, we obtain
[T max(temp)l} | | TT max(v. )} | < Bulo)
veEMp, veEM7,

But the left-hand side is at least 1. Thus, if B, () < 1, then we have a contradiction,
i.e., h(P) > p for all non-torsion P € E,(K). On the other hand, it can be seen

that |z(nP)|, < Bn(u) for all v € Mk, and |z(nP)|> < B,(p) for allv € M§. O

We are now ready to state an explicit formula for a lower bound on E,, (K).



22 Chapter 2. Height Bound I

Theorem 2.4.2. Let p be a prime ideal such that

Ne) > | T Voo | [ T] o | M) (2.4)

veEM vEM

Setn = e, and

1

0= g | Do) = 3 g2 3 togen,— Lot
(K : Qln 6

vEM, vEME,

Then o > 0, and h(P) > o for all non-torsion P € Eq(K).

Proof. Suppose p is a prime ideal satisfying (2.4). By definition of Dg(n) (see
(2.2)), we have

1
Dg(n) > 2log N (p) > Z log av, + 2 Z log av, + glog./\/’(ME),

vEM}, vEMS,

which implies that pg > 0. Then for any p < pg, we have

1
[K : Qn*u — Dg(n) + Z log a,, + 2 Z log o, + 8 log N (MEg)

veEM}, veMS,
1
< [K : Qn*uo — Dg(n) + Z log v, + 2 Z log av,, + glog./\/’(ME) = 0.
veMi ve Mg,
Thus B, (1) < 1, and so h(P) > p for all non-torsion P € E,(K) by Proposition

2.4.1. Since this is true for all i < o, then h(P) > g as claimed. O

Although it is possible to obtain a lower bound for the canonical height on
E.(K) simply from this theorem, our practical experience shows that this bound
is not as good as the one obtained by collecting more information on z(nP). This

claim will be illustrated in Example 5.1.1.
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2.5 Solving Inequalities I: Real Embeddings

In order to obtain a larger positive lower bound on Ej, (K') than the one obtained by
Theorem 2.4.2, we finally concentrate on how to derive an alternative criterion for
deciding whether a given y > 0 is a lower bound. This new criterion, which requires
more information on x(nP), will involve solving a system of certain inequalities on
each embedding E), for every v € M} U M§.

Given y > 0, we wish to check whether A(P) > y for all non-torsion P € Ey(K).
If B,(p) < 1 for some n > 0, then it follows easily from Proposition 2.4.1 that p
is a lower bound. On the other hand, if no such n exists, then Proposition 2.4.1

states that all non-torsion P € E, (K) with h(P) < p must satisfy

By () if v e Mg,

B,(pn) ifv e My,

for all n > 0. This can be regarded as a system of inequalities on each embedding
E®_ In particular, if such a system has no solution, then this contradicts our
assumption that h(P) < p for some non-torsion P € Ey(K), so p must be a lower
bound on E, (K).

In this section, we will explain how to solve this system of inequalities on each
real embedding E®) (i.e., where v € M}). A similar computation on each complex
embedding, however, is more sophisticated, and hence will be explained later in
Chapter 3. To prove that ﬁ(P) > p for all non-torsion P € E,(K), we attempt to
derive a contradiction from these inequalities using an application of period lattices

and elliptic logarithms, which will be fully described in Chapter 4.

2.5.1 Periods and Elliptic Logarithms

We will now introduce a simplified definition of periods and elliptic logarithms on

elliptic curves over R, and use it to obtain a contradiction from the system of
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inequalities mentioned earlier on each real embedding E).

For v € M}, recall that E® is of the form

EY  y? to,(a)zy + ou(as)y = 2° + 0,(az)s” + oy(as)z + 0,(ag),

where o, is the associated embedding from K to R. With the change of variables

O'U(bg) Y—av(al)x—av(ag)

:X— =
x 12 ) y 2 Y

we can rewrite E®) as
Y2 =4(X —e)(X —e3)(X —e3)

for some eq, e, €3 with Z;’:l e; = 0. Since E® is defined over R, then either all
e; € R, or there is only one e; € R. Without loss of generality, we can assume that
e3 is the largest real root.

) can be parameterised

Recall from Section 1.3 that the connected component E(gv
by the real line {t€2, : 0 < ¢t < 1}, where Q, € R is one of the periods generating
the period lattice of E(. We will see in Chapter 4 that €2, is uniquely determined

up to sign, but for now we shall take €2, > 0. It then follows from (1.10) that

(0] [e%e)
o [0 Xy [Tt
(e.0) ¥ .V fol)

(we rearrange O and (eg,0) so that €, > 0), where

fo(z) = 42% + 0, (by) 2 4 20, (bs)z + 0, (bg),

ov(b2)

and (3, = ez — =5> is the largest real root of f,. If § is a real number satisfying

¢ > [B,, then there exists n such that 2n + o,(a1)€ + 0,(az) > 0 and P = (£,n) €
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Eév) (R). An elliptic logarithm of P is then obtained in a similar way, i.e.,

Pax ¢ de
ZP,UZ/O 72/00 ) (mod €,).

Note that zp, € [Q,/2,9Q,]. Moreover, we may take z_p, = —zp, (mod §2,) (so

that z_p, € [0,€,/2]). At this point, one may use [Coh93, Algorithm 7.4.7 and
7.4.8] to compute €2, and zp, respectively. We will explain a complete method
for computing period lattices and elliptic logarithms on elliptic curves over C in
Chapter 4.

For convenience, we shall define ¢, : E(()v) (R) — [0,1), the normalised elliptic

logarithm, by

ZPw

eu(P) = pu((Em) =
1 —py(—P) otherwise.

if 2n + o,(a1)€ + o,(agz) > 0,

For &€ > (3, we also define

() = u((&m) € [1/2,1),

where (£,7) € Eév)(R) with 2n + o,(a1)€ + 0,(as) > 0. In other words, 1,(&) is
the normalised elliptic logarithm of the “higher” of the two points on Eé”) with

x-coordinate &.

For real &), & with & < &, we define the subset S C [0,1) as follows:

(

(Z) if §2 < Bva
§M(E1&) = ) [1 - (&), bu(&) if & < B, <&,
[1 - wv(£2)7 - %(51)] U [wv(fl)a wv(€2)] 1f 51 2 ﬁzw

\

The following lemma is clear.
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Lemma 2.5.1. Suppose & < & are real numbers. Then P € E(()v)(]R) satisfies

& < x(P) < & if and only if p,(P) € SW (&, &).

If U;[a;, b;] is a disjoint union of intervals and a € R, we define

a+ U[aj,bj] = U[aj + o, b; + af,
J

j
aU[aj,bj] = U[aaj,abj] (for a > 0).
J J
Lemma 2.5.2. Suppose & < &, andn € Z~g. Let
n—1

SW(&), &) = U (% + %S(v)(&’&)) .

a=0
Then P € Eév) (R) satisfies & < x(nP) < & if and only ,(P) € S (&1,&).

Proof. By Lemma 2.5.1, P € E(()U) (R) satisfies & < x(P) < & if and only if ¢, (P) €

SW(&1,&). Let v, be the multiplication-by-n map on R/Z. If § € [0, 1), then

Vgl(é):{g—l—é:a:0,1,2,...,n—1}.
n o n

But since ¢, is an isomorphism, we have ¢, (nP) = np,(P) (mod 1). Hence

po(nP) € SW(6,6) <= ¢u(P) € v, (SW(&,&)) = SW (4, &)

This together with Proposition 2.4.1 leads to the following proposition.

Proposition 2.5.3. If B,(u) < 1 for some integer n > 0, then h(P) > u for
all non-torsion P € Eg(K). If B,(pn) > 1 for all n = 1,... Nyax, then every

non-torsion point P € Eq(K) with h(P) < p satisfies

Tmax

2u(00(P)) € [ S (=Bu(), Bu(n))
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for every v € Mj.. Here, o, : K — R is the real embedding of K associated to v.
In particular, if the intersection is empty for some v € Mj., then lAz(P) > i for

all non-torsion P € Eg (K).

Finally, we remark that if K is also a totally real number field (i.e., My, =
(), then Proposition 2.5.3 alone will suffice for computing a lower bound for the
canonical height on E/K. We shall not discuss such computation in detail here,
since this will be a special case of our algorithm to be developed in Section 3.4. Some

examples illustrating the applications of this algorithm will be shown in Chapter 5.

To summarise, we have developed all necessary formulas for estimating local
heights, which leads to a criterion for deciding if a given p > 0 is a lower bound for
the canonical height. Such criterion requires solving a system of certain inequalities
on each embedding of E. In this chapter, we have managed to do this for real
embeddings, which turns out to be sufficient for computing a lower bound for the
canonical height on elliptic curves over number fields with at least one real embed-
ding. The next chapter will focus on our remaining task, i.e., solving inequalities

on complex embeddings.



Chapter 3

Height Bound II: Complex
Embeddings

In this chapter, we will continue our work on computing a lower bound for the
canonical height from Chapter 2 by introducing a new method for solving a system
of certain inequalities on complex embeddings. This together with our work we
have done so far will allow us to compute such a lower bound on elliptic curves over
number fields in general, which will complete our work on height bound.

Let E be an elliptic curve defined over a number field K. Recall the definition
of B,(u) in Section 2.4. If B,(x) > 1, then Proposition 2.4.1 implies that all non-
torsion P € E,, (K) with h(P) < p satisty |z(nP)|, < V/B(p) for every v € M.
By computing B, (i) for several n € Z-, this yields a system of certain inequalities
on each complex embedding E®). We will see later that each of these inequalities
corresponds to a region in the fundamental parallelogram for the period lattice
of E® and solving the system of these inequalities is equivalent to finding the
intersection of all such regions.

A combined version of Chapter 2 and this chapter, which explains a complete
algorithm for computing a lower bound for the canonical height on elliptic curves

over number fields, has been published in [Thol0].

28
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3.1 Corresponding Regions I: An Overview

In this section, we will describe how to visualise an inequality on the x-coordinate
of points in E(*)(C) obtained by Proposition 2.4.1 as a corresponding region on the

fundamental parallelogram for the period lattice of E().

3.1.1 Fundamental Parallelograms

For v € M§, let E® be the complex embedding of E associated to v. As mentioned
in Section 1.3, it is well known that there exists a complex analytic group isomor-
phism ¢, : E®(C) — C/A, for some lattice A (for more details on computing this

isomorphism, see Chapter 4).

Definition. Let A be a lattice with Z-basis {wy,ws}. The (closed) fundamental

parallelogram for A is the set
thwg = {)\111]1 + )\2w2 -0 S )\1,)\2 S 1}

Note that every element of C/A has a representative in F,, ,, which is unique
except for points on the boundary of F,, .,. After choosing a lift in £, ., for each
P € E®(C), we may view ¢, as a map E®)(C) — Fy, .., C C.

Without loss of generality, we can choose a Z-basis for A so that the quantity

T = wy/w, satisfies the following:
T >1, IR <12, S(r) = V3/2. (3.1)

Let A, be the lattice generated by 1,7. Then it is clear that the map 6 : C — C
given by z — z/w; induces a bijection A — A,. To ease notation, we shall denote

Fy ; by F;, and let H, be the “lower half” of F, i.e.,

HT:{)\1+)\2’T0§A1§1,0§A2§1/2}
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Let ¢/ = do¢, (viewed as a map E®)(C) — F;). Clearly, ¢ maps each P € E®)(C)

to a point z € F;, and maps either P or —P to a point in H,.. Hence we can let

WP)  itUL(P) €M,
iy e (3.2

Uy(=P) iYL (P) & H-,

so that ¢,(P) € H, in all cases.

3.1.2 Visualising the Region

From now on, we shall always assume that our Z-basis {wy, ws} for A is chosen so
that 7 satisfies (3.1). To see what the region corresponding to an inequality given
by Proposition 2.4.1 looks like, we first recall that the Weierstrass parameterisation
C/A, — Ew(C), where Ey is the elliptic curve of the form Y? = 4X3 — gy (A,) X —

g3(A;) (for the definition of g;, see, e.g., [Was03, Section 9.2]), is given by

27 (91, (2), 94, (2))- (3.3)
Suppose E®) is given by a Weierstrass equation
EW . y2 + a1y + asy = 3+ a2x2 + a4x + ag

for some a; € C. Then we have an isomorphism Ey, (C) — E®(C), given by

by wf3Y—a1x—a3

(V) (o) = (w6 - SIS

Hence for any £ > 0, it is immediate from the triangle inequality and (3.3) that

|z| < & if and only if |pa, ()| < Ug, where

b
Ug = |w1|2 (§+ %) .
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We can now consider the set ¢ = {z € H, : |pa.(2)| = U¢} as a curve! on H,

(see Figure 3.1). This is the boundary of the region

RO(E) = {z € H. : |pa, (2)] < Ue}.

Since the Weierstrass gp-function becomes a one-to-one continuous map once its
domain is restricted to H,, the equation |py, (2)| = U yields only one curve on
H,. By symmetry (about the mid-point of F;), we also have another identical
boundary on the upper half of F.. Depending on Uy, the boundaries on both halves
topologically form either one or two identical loops on the torus C/A,, as shown in
Figure 3.2.

Y2 = 2% + 2 + (1 + 4i) over Q(4)

0.4F /
Ay

/
& !
0

3
0.2} / \
2\ N /7
0.1} /
/ 5
A
0 -
0 0.4

/
Y
5
0.2

1.4

R(z)

Figure 3.1: The boundary on H, associated to different Us. Each curve is labelled
by the relevant value of €.

3.2 Corresponding Regions II: Estimation

In practice, however, it is very difficult to determine the region R exactly. For
example, it is impossible to store an infinitesimal amount of its information on a
computer. To circumvent this problem, we approximate R by a finite number

of parallelograms whose union covers R(). Denote by S the finite set of these

!This may have either one or two connected components on H..
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T
. 7
A -
A
.
— @ — (D
[ |
L4 o B
a D

Figure 3.2: Loops on the torus C/A, when the boundary varies

parallelograms. A finer approximation to R(*) then can be obtained by decreasing
the size of parallelograms in S

This section, to which most of our work on height bound is devoted, will focus
on a number of approximation techniques which eventually allow us to construct

S™. For now we mention that S®(£) has the following properties:

L Ugeste € 2 RM(€), i.e., the union of all parallelograms in S™ (&) contains

the actual region R (€).

2. Every C' € 8™ (£) contains z such that |pa.(2)| < Ug, hence C N R™(€) # )
for all C € S®(¢).

3.2.1 The Weierstrass p-function

Let g = exp(2miT) and let u = exp(2miz) (where ¢ = v/—1). For k € Z, we define

k—1 ; j /
= 2mi)’ | — + — s e
fk(,z,q-)_(Q ) (1—u + +]Zl [ 1—q3u (1—qju_1)2 (1_qj)2” .

It can be seen from Proposition 1.3.1 that pa (z) = limg_o fr(2,7) for all non-
lattice points z. By choosing a suitable k, we can bound the error which occurs

when | fx(z, 7)| is used as the approximation to |px . (z)|, as shown in the next lemma.
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Lemma 3.2.1. For z € H, with z # 0,1, let « = I(z)/(7). Define

e(k) =

47T2( |q|Fte N lq[F N 2|q|* )
1— gl \ (1 —|g[F*+e)2 (1 —g|*=)2 * (1 —|q[*)?

TheanA \—|kaTH<e k).

Proof. By Proposition 1.3.1, we have

- ¢u! 2¢/
O fe(z,7) = (2mi)? { . — . 1 :
A ( ) k( ; 1 — qju (1 _ q]u—l)Q (1 — qg)z

Observe that |u| = |¢|*. By the triangle inequality, we obtain

g gl 2|¢’|
1—[glite)2  (1—|gl=*)2 = (1—|¢7])?

oa,(2) — (e, 7)) < zwi k | @

Since we work on H,, we have |¢g| < 1 and 0 < « < 1/2, which implies that

|ql’£® < 1 for all j > 1. Thus we have the estimate

SHU TIPS e
= (L= gP=)? = (1 —g|=)? ~ (1= [g[*)*(1 = q])’
and similarly,
i 2]ql? 2]q|*
= (1= lg)? (1 — lgl*)?(1 —|ql)
This together with (3.4) and the triangle inequality yields the result. O

One can easily verify that, in the range 0 < o < 1/2, the absolute error (k)
given by Lemma 3.2.1 attains its maximum at o = 1/2, and becomes smaller as
k increases. Moreover, it can be seen that e(k) decreases as (1) increases. Some

examples of maximum values for €(k) are listed in Table 3.1 (based on o = 1/2 and
(1) = V/3/2).

Recall that every parallelogram C' in S®(¢) satisfies |pa, (2)] < Ug for some

z € C. In practice, we can compute |fi(z,7)| and add it with the error given by
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Table 3.1: Maximum values for €(k)

|

‘ Maximum error ‘

k

1 3.349
2 0.013
3

4

5.568 x 10~°
2.413 x 1077

5 1.046 x 1072
10 | 1.598 x 10—2¢
20 | 3.731 x 10~%
23 | 3.036 x 10722

Lemma 3.2.1 to obtain a (small) interval which contains |ps, (z)]. On each of the
four line segments comprising the boundary of C', we can parameterise | fx(z, 7)| by
a real-valued function fi(z,7) or fr(y,7), where z = R(z) and y = 3(z). We wish
to find the range of f, when z or y varies along the line. For this computation, we

find some techniques from interval arithmetic (see [Moo66]) to be very useful.

3.2.2 Interval Arithmetic

Before we proceed to its application, we shall first explain briefly what interval

arithmetic is.
Definition. Let I = [a,b] and J = [¢,d] (with a < b and ¢ < d) be two intervals of
real numbers. An arithmetic operation on intervals I, .J is defined by

IxJ={xxy:a<z<b c<y<d}

where % is an operation on real numbers.

A number of usual arithmetic operations on real numbers can be extended to

the ones on intervals. For example,

I+J=Ja+c¢b+d, [—J=a—db—,
I - J = [min{ac, ad, be, bd}, max{ac, ad, bc, bd}],

I/J=]a,b]-[1/d,1/c] (provided that 0 ¢ .J).
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It can be seen easily that interval addition and interval multiplication are both
associative and commutative. Distributivity, however, does not always hold for

interval arithmetic. For example,

1,3]-([1,3] — [1,3]) = [1,3] - [-2,2] = [—6,6], whereas

1,3 [1,3] = [1,3] - [1,3] = [1,9] = [1,9] = [-8,8].

Instead, we always have subdistributivity, i.e., I -(J+ K) C I-J+ 1K for all
intervals I, J, K.
One important property of interval arithmetic is that it is inclusion monotonic,

ie., if I C K and J C L are intervals, then

I+JCcK+L, I-JCK-L, I-JCK-L,

I/J cC K/L (provided that 0 ¢ L).

This leads to the following theorem.

Theorem 3.2.2 ([Moo66, Theorem 3.1]). Let f(Xy,...,X,) be a rational expres-
sion with real coefficients in the interval variables X1, ..., X,, i.e., a finite combi-
nation of X1,...,X, and a finite set of constant intervals with interval arithmetic

operations. Then

X cXy, ..., X.CX, = f(X|,...,X))C f(X1,...,X,)

for every set of intervals Xy, ..., X, for which the interval arithmetic operations in

f are defined.

Suppose f(z1,...,z,) is a real rational expression, i.e., f is a quotient of real
polynomials in terms of xy,...,z,. Then by Theorem 3.2.2, the resulting interval
F = f(Xy,...,X,) will always contain the actual range of f(z1,...,z,) for z; € X;.

In particular, F' will be the actual range of f(z1,...,z,) for x; € X, if each variable
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x; occurs only once in f (note that :BJZ = x; - x; is taken as two occurrences). With
some techniques, for example, using subdistributivity to group common terms in f,
the resulting interval F' can be made smaller. For more information on this subject,

see [Moo66, Chapter 3 and 6].

Recall the function fi(z,7) in Section 3.2.1. Suppose z = z + iy € C is on a
fixed line segment L. Depending on L, we can regard z as a function of either x
or y (for example, if z is on a vertical line, then x is fixed but y varies). Thus,
provided that L is fixed and z € L, we can consider the function g(z2) = | fx(z, 7)|?
as a real function of one real variable, i.e., either g(z) = g(z(x)) or g(z) = g(2(y)),

depending on L. To ease notation, we shall write

where * is either x or y, depending on how z is parameterised along L.

The next proposition shows that we can apply interval arithmetic to f(x).

Proposition 3.2.3. Define f(x) as above. Then f can be extended to a real rational

expression of at most three interval variables, depending on the line segment L.

Proof. First, we note that

F) = 1filz, TP = R(fi(2, )7 + S(fi(z, 7))

We will show how to obtain the real part of fi(z,7); the imaginary part of fi(z,7)
can be deduced in a similar way.
The real part of fi(z,7) consists of the real parts of the terms
U 1 7u ¢dut ¢

(1 —u)?’ 12’ (I—qgu? (1-—gul)Z (1—g) (3.5)
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where v = exp(2miz) and ¢ = exp(2miT). Write z = x + iy. Let
x1 = exp(—27my), x9 = cos(2mx), x3=sin(2wz).

Consider the following two cases:

1. If L is a non-vertical line (i.e., y = ax + 3 for some finite a and (), then

- u  myao(l + 2f) — 223
(1—u)?2) (1 -2z 20 +27)2°

Similarly, it can be shown that the real parts of the other terms in (3.5) can

be written as rational expressions in terms of z1, x5, x3.

2. If L is a vertical line (i.e., z is fixed), then we have R(u/(1 — u)?) as
above. Since zo and x3 are now constant, we have R(u/(1 —u)?) as a rational
expression in terms of z; only. This is also the case for the real parts of the

other terms in (3.5).

Thus we have f(x) as a real rational expression in terms of xy, z9, x3. Suppose

that a < x <band ¢ <y <d on L (note that ¢,d > 0 since we work on H,). Let

X = exp(—2r]c,d]) = [exp(—27nd), exp(—2mc)],

Xy = cos(27[a, b)) = [ar%lxlgb cos(2mz), max cos(2mx)], (3.6)
X3 = sin(2nla, b)) = [aglfglb sm(27ra:),ar£3§b sin(27z)).

After replacing x1,xo, 3 in f with X, X5, X3 respectively, we finally obtain the

interval version of f. O]

Since f(X7, X2, X3) is a real rational expression of interval variables, then The-
orem 3.2.2 applies. Together with the error term in Lemma 3.2.1, the following

proposition is immediate.
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Proposition 3.2.4. Define X1, X5, X3 to be the intervals depending on a line seg-
ment L as in (3.6). For a fized k € Z~o, let € = €(k) be the mazimum absolute

error given by Lemma 3.2.1. Then for all z € L, we have

Vur =€ < fpa, (2)] < Vuz + ¢,

where [uy, us) = f(X1, Xo, X3) (with ug > uy >0).

3.2.3 Approximate Corresponding Regions

We are now ready to construct S, which in turn yields an approximation to the
corresponding region R,

Let L be a line segment in the complex plane. By Proposition 3.2.4, the interval

I(L) = [V — €, /i3 +

contains the actual range of |pa_(2)| for z € L. We can then extend this notion to

any parallelogram C' by letting

1c)={J 1o,

LeoC

where JC' is the boundary of C. Note that the four intervals I(L) for L € 0C will
overlap, so I(C) is an interval.

For v € M§ and & > 0, we define S (€) recursively as follows. First we let
SUOE) = {H-).
Next, for r > 0, suppose S (¢) = {C4,...,C,,}, where m = 4", Let

4
St = {Cp,...,Cuae o, Conn o, Cona : C = | Cih,
k=1
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Figure 3.3: Four quarters of C}

ie., Cj,...,Cjy are the four quarters of C;, as shown in Figure 3.3.

Suppose E™ is of the form Y? = 4X% + AX + B for some A, B € C. Let
P € E®(C) be a point with X(P) = 0. Let Cy € S'*1 be the parallelogram
containing ¥, (P) (see (3.2) for its definition). Note that we may have I(Cy) N

0, Ue] = 0. Then we define
ST = {0} ULC € ST L I(C) M [0, U £ 0.

Finally, we let S® (&) = S (¢) for some r > 0.
For a set S of parallelograms in C, we denote |J,.g C simply by (JS. It is then

obvious from the construction above that

Ug(v,O)(g) S US(”’l)(f’) 5. US(U’T)(@ oD RW(E).

In other words, our approximation to R becomes finer as r increases.

vr+1) with above definition can be very time-consuming.

In general, computing S¢
Fortunately, we can usually speed up this process using a combination of the fol-

lowing techniques.

Lemma 3.2.5 (Four-Corner Test). Suppose C € SV (¢). Let zy, ...,z be the
corners of C, and let € = €(k) be the mazimum absolute error given by Lemma 3.2.1

for some fixed k € Z~q. Define

I(z) = [[fs(z,7)] = & [fu(z, ) + €].
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If I(z;) C [0,U¢] for some j =1,...,4, then C € SCr+(¢),

Proof. If such condition holds, then we simply have |px,(2)| < Ug for some z € C,

namely, z = z;. Hence C € S+ (¢). O

In practice, checking whether C'is in S®@7*1(¢) by this test is considerably faster
than the usual criterion I(C) N [0, Ug]. The next lemma provides a quick way to

exclude all parallelograms which are not in S®m+1(¢).

Lemma 3.2.6. For r > 0, let S, be the set of all parallelograms in S+ (€)

which satisfy the condition in Lemma 3.2.5. Let

08,11 = {C € SWHV(E)\ S,yy : C is adjacent to |J Syi1}.

IfI(C)N[0,Ue) = 0 for all C' € 9S4, then SOV (€) = S,4;.

Proof. 1f all parallelograms in 95, are excluded from S®™"+1(¢), then this means
that there is no part of the boundary ¢ of the actual region R (£) passing through
JOS,11. Thus the one-to-one and continuity properties of the Weierstrass g-
function on H, imply that the boundary ¢ of R™(¢) lies entirely in | JS,;1, and so

all parallelograms in S""+1(¢€)\ S,,; can be discarded. O

An illustration of using these lemmas to construct S*) is shown? in Figure 3.4.

In this figure, the process of determining S(*) consists of the following steps:

1. Starting with 8’7+ (¢) for some 7, we use Lemma 3.2.5 to identify a number
of parallelograms C' € SV (¢) which are also in S+ (¢) (these are

marked by “*”). Let S,.;1 be the set of all such parallelograms C'.
2. Identify all parallelograms in 05,1 (these are marked by “?”).

3. For each C' € 05,41, check if I(C) N [0,U;] = 0. If so, then C ¢ StV (¢)

and thus can be discarded (this is marked by “.”).

2Here S = 84 (0.4) for the elliptic curve y? = 2° 4+ 2 + (1 + 44) defined over Q(i).
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Initial status of parallelogram

Parallelogram included by Four-Corner Test
Parallelogram which i=s not * but adjacent to =
Ezcluded Parallelogram

o
*
?

Figure 3.4: An illustration of how to obtain S(. The top-left entry represents the
parallelogram containing z = 0.

4. If it turns out that the set 0.5,,1 is entirely discarded, then by Lemma 3.2.6,
we have ST+ (¢) = S,.,1. In other words, every parallelogram in 8’71 (€£)\

S,41 is discarded. Finally, we let S®(¢) = SO+ (¢).

3.3 Solving Inequalities II: Complex Embeddings

In this section, we finally explain how to solve a system of inequalities given by
Proposition 2.4.1 on complex embeddings, which is analogous to our previous result
in Section 2.5.

As we have already seen, the inequality |z(P)|, < ¢ yields the cover [ JS®(€)
which approximates the corresponding region R(™ in H,. Since the Weierstrass
p-function is even, we also have another identical region in the upper half of F;.
Let 7™ (£) be the union of both regions. Then clearly 7 ) (£) contains the set
{z€ Pt lon. (2)] < Ug).

Recall the isomorphism 1+, : E®(C) — F, from Section 3.1.1. Given a point
P € EW(C), we wish to consider all points @ € E®)(C) such that P = nQ. Let
z =1 (P) and 2z’ = ¢/ (Q). Then we have

(mod A,).

z=nz
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//Wy

ivisionbyd i

Figure 3.5: Division on F, by 3

In fact, if 2 = a + g7 for some 0 < o, 3 < 1, then

ge{a+s+(ﬂ+ﬂr

:Ogs,tgn—l}.
n n

This therefore allows us to “divide” 7 () by n (see Figure 3.5 for an illustration)

to obtain a new region

T'V(€) ={7 € F. :n2 (mod A,) € C for some C' € T (£)}.

n

Due to the symmetry of 7", we can let

T,0(€) = T, () N'H..

n

The following lemma is analogous to Lemma 2.5.2.
Lemma 3.3.1. If P € E®(C) satisfies |x(nP)| < £, then 1,(P) € T,"().

Proof. If |x(nP)| < &, then we have 1, (nP) € C for some C € SV (&) c TW(¢).
Since ni, (P) is either ¥, (nP) or —1,(nP) (mod A,), in any case we have 1, (P) €
T NH, = T (€). O

The next proposition, which is analogous to Proposition 2.5.3, follows easily

from the previous lemma together with Proposition 2.4.1.

Proposition 3.3.2. If B,(u) > 1 for alln = 1,... ,nnax, then every non-torsion

point P € Ey(K) with h(P) < u satisfies

Tmax

Yo(ou(P) € [ T (V/Ba()



3.4. An Algorithm for Height Bound 43

for allv e My.. Here, 0, : K — C is the complex embedding of K associated to v.
In particular, if the intersection is empty for some v € M., then lAz(P) > i for

all non-torsion P € Eg (K).

3.4 An Algorithm for Height Bound

Combining Proposition 2.5.3 and Proposition 3.3.2, we are now ready to state our

main theorem.

Theorem 3.4.1. Let pn > 0. If B,(11) < 1 for some n € Zsg, then h(P) > p for
all non-torsion P € Ey (K). Otherwise, if B,(p) > 1 for alln =1,... Npax, then

every non-torsion point P € Eq (K) with fAL(P) < p satisfies

Mmax

©u(00(P)) € () S (=Buln), Bu(w))

for every v € M}, and moreover,

for every v € Mj..
In particular, if one of the intersections is empty for some v € My U M., then

~

h(P) > p for all non-torsion P € Eq(K).

Theorem 3.4.1 in turn yields an algorithm for computing a lower bound for the

canonical height on E,, (K'), which consists of the following steps:

1. Given an initial value g > 0 and the number of steps np.., we start by
computing B, (p) for n = 1,... npax. If B,(p) < 1 for some n, then we can

conclude immediately that i(P) > p for all non-torsion P € Ey(K).

2. Otherwise, we proceed to compute [)™3* Sflv)(—Bn(u), B(n)) for every v €

n=1

M;j.. If the intersection is empty for some v, then again fL(P) > pu for all
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non-torsion P € E, (K).

3. If not, then we compute ("% 7;(1))( B,(u)) for every v € M. Again,

if the intersection is empty for some v, then fAL(P) > p for all non-torsion

P € Ey(K). Otherwise, we fail to show that p is a lower bound on Ey, (K).

4. We can refine p further in the following way: if u is shown to be a lower
bound, then we increase ;1 and repeat the process to see if it is still a lower
bound. However, if the algorithm fails to show that u is a lower bound, then

we decrease p (or increase npay) and repeat the process.

5. Return the largest value of ;1 which is known to be a lower bound for E,, (K).

Once p is determined, we can simply use Lemma 2.1.1 to obtain a positive lower
bound for the canonical height on F(K). Some examples on how to compute such
a lower bound using this algorithm (see Appendix A.3 for its MAGMA code) will be

shown in Chapter 5.

3.5 Remarks

Finally, it should be noted that the lower bound we obtain is not model-independent,
unlike the one of Hindry and Silverman [HS88, Theorem 0.3]. For example, the
values «, in Section 2.2.2 depend on the coefficients of the Weierstrass equation of
E. At present, we have not systematically investigated how the bound obtained
by our algorithm is affected by a change of model. As mentioned in Chapter 2,
however, our formulas can be simplified if E is given by a globally minimal model.

Regarding the computational complexity, it can be seen that computing B,, ()
is less time-consuming than computing 872”), which in turn is less time-consuming
than computing T, Therefore it is plausible to use B, (u) as the first criterion,

followed by the intersection of S and 7,(") respectively, as we do in our algorithm.
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Let ¢ be the least common multiple of all Tamagawa indices as in Section 2.1.
As pointed out by an anonymous referee of [Thol0], it may be possible to obtain a
larger lower bound by making use of the explicit formulas for the local heights at
non-archimedean places of bad reduction (see, e.g., [Sil88, Theorem 5.2]), provided
that c is large. This approach, however, is different to ours which uses the subgroup
of points of good reduction. In particular, our lower bound on E(K) will be small

if ¢ is large. Nevertheless, it might be an interesting area for further study.

In conclusion, we have completed our work on height bound by introducing a
method for solving a system of certain inequalities on complex embeddings. Our
method involves a number of approximation techniques which eventually yield an
approximate region corresponding to each inequality, where finding a solution to
the system of these inequalities is equivalent to finding the intersection of all such
regions. Together with our results from Chapter 2, we finally obtain an algorithm
for computing a lower bound for the canonical height on elliptic curves over number

fields in general.

Finally, in order to solve a system of inequalities using the methods in Section 2.5
and 3.3, we need to compute period lattices of certain real and complex embeddings,
as well as elliptic logarithms of certain real and complex points. Nevertheless,
algorithms for determining both quantities are currently available only for elliptic
curves over R (see Section 1.3 for more discussion). Motivated by this problem, the
next chapter will aim to develop a complete method for computing period lattices

of elliptic curves over C, and elliptic logarithms of complex points.



Chapter 4

Period Lattices and Complex

Elliptic Logarithms

We will now move on to the second main result of this thesis, where we present a
complete method for computing period lattices of elliptic curves over C, and then
generalise it to compute elliptic logarithms of complex points. Based on the complex
arithmetic-geometric mean (AGM) first studied by Gauss, our method will allow
one to compute both quantities to a high degree of precision very quickly. For more
background on this chapter, see Section 1.3.

The work in this chapter is done in collaboration with Professor John E. Cre-
mona at the University of Warwick. Another version of this chapter has been

submitted for publication as a joint paper [CT].

4.1 Introduction

In this chapter, we will assume that an elliptic curve F is defined over C, and is

given by a Weierstrass equation of the form

E:Y?=4(X —e)(X — e2)(X — e3),

46
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where all the roots e; € C are distinct and ) _; e; = 0. As mentioned in Section 1.3,
it is well known that there exists an isomorphism (of complex analytic Lie groups)

C/A — E(C) for some lattice A, given by the map

2 (mod A) — P = (pa(2), 9 (2))

0 (mod A) — O.

(4.1)

Definition. Let E be an elliptic curve defined over C, the period lattice of E is the
lattice A for which E(C) = C/A via (4.1).

To be precise, we take A to be the lattice of periods of the invariant differential
dX/Y on E. It is a discrete subgroup of C spanned by a Z-basis {w;,ws} with

wy/wy ¢ R.
Definition. The inverse map of (4.1) is called the elliptic logarithm. For P € E(C),
we say that a value z such that

P~z (modA)

via this inverse is an elliptic logarithm of P (note that z is determined modulo A).
From this, two natural questions are:

1. Given a Weierstrass equation of FE, how can we compute a Z-basis for its

period lattice A?
2. Given a point P € E(C), how can we compute its elliptic logarithm 2?7

For elliptic curves over R, these questions have been answered satisfactorily,
since algorithms for computing period lattices of elliptic curves over R and elliptic
logarithms of real points are well-known and available in the literature (see, e.g.,

[Coh93, Algorithm 7.4.7 and 7.4.8] or [Cre97, §3.7]). The theory behind these

algorithms, which heavily relies on the AGM of positive real numbers, is explained
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succinctly by Bost and Mestre [BM88]. The situation for elliptic curves over C,
however, is less satisfactory.

In this chapter, we therefore aim to develop a complete method for computing
period lattices and elliptic logarithms for elliptic curves over C. Our approach will
closely follow that of [BMS88] in the real case, and will also illustrate the connection

between the following three classes of objects:

o AGM sequences over C, which were first studied by Gauss and have been

explored in depth by Cox [Cox84];
e Chains of lattices in C;
e Chains of 2-isogenies between elliptic curves defined over C.

This connection will allow us to derive an explicit formula for computing the period
lattice of E, which yields the first algorithm of this chapter. We then continue
further by generalising it to an algorithm for computing elliptic logarithms of points
in F(C). Finally, we illustrate the efficiency of both algorithms via some examples.

For computational purposes, we have implemented both algorithms in MAGMA
(see Appendix A.1 for the source code); these have been also implemented indepen-

dently in Sage (available from version 4.4) by Professor John E. Cremona.

4.2 AGM Sequences

In this section, we will give a brief overview of arithmetic-geometric mean of complex

numbers. For more in-depth survey on this subject, see [Cox84].

Definition. Let (a,b) € C? be a pair of complex numbers satisfying

a#0, b#0, a# *b. (4.2)
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We say that (a,b) is good if R(a/b) > 0, or equivalently

la = b| < [a+b]; (4.3)

otherwise the pair is said to be bad.

Clearly, only one of the pair (a,b), (a,—b) is good, unless ®(a/b) = R(b/a) =0

(or equivalently, |a — b| = |a + b|), in which case both pairs are good.

Definition. An AGM sequence is a sequence ((an,by))s>, whose pairs satisfy the
relation

20p41 = Gy + by, biH = a,b, (4.4)
for all n > 0.

It is easy to see that if any one pair (a,,b,) in the sequence satisfies (4.2) then
all do, and we will make this restriction henceforth.

Given a starting pair (ag, by), one can obtain uncountably many AGM sequences
by iterating the procedure of replacing (a,,b,) by their arithmetic mean a,+1 =
(an + b,)/2 and their geometric mean by, = \/a,b,, with a choice of the square
root for b, 1 at each step. However, we usually prefer to consider the entire sequence

as a whole.

Definition. We say that an AGM sequence is good if the pairs (a,,b,) are good
for all but finitely many n. A good AGM sequence in which (a,,b,) are good for
all n > 0 is said to be optimal; and strongly optimal if in addition (ag, by) is good.

If an AGM sequence is not good, then we say that it is bad.

For an optimal AGM sequence ((ay,,b,))52, with a given starting pair (ao, bo),
at first it might seem that there could be many such sequences, since there could
be several n > 0 for which both pairs (a,, £b,) are good. Fortunately, the following

lemma shows that this is not the case.
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Lemma 4.2.1. For every starting pair (ag,by), there is exactly one optimal AGM
sequence ((an, bn))5%, unless ag/by is real and negative, in which case there are two

optimal AGM sequences with different signs of by.

Proof. For n >0, let r, = a, /b,. Using (4.4), we can rewrite r,,1 as

1 1
Tpa1 = £—= T+ —— .
=g (vt =)
One can then verify the following very easily:
e 1, is real and positive if and only if 7, is real;

e 7, is real and negative if and only if r,,; is purely imaginary.

If both pairs (a,41, £b,41) are good, then (4.3) implies that 7, is purely imag-
inary, and so all preceding ratios r, are real. Thus equality can hold in (4.3) at most
once in any AGM sequence; and only for n = 0 or n = 1 in an optimal sequence
(since R(r,,) > 0 for all n > 1 in an optimal sequence). In particular, this only holds

for n =1 (i.e., both (ay, £b;) are good) if and only if ry is real and negative.  [J

The following proposition is due to Cox; see [Cox84] for its proof. Note that
Cox defines the notion of “good” more strictly than above (when R(a/b) = 0 he
requires (a/b) > 0, so that exactly one of (a,=+b) is good in every case), but in

view of the preceding remarks this does not affect the following result.

Proposition 4.2.2. Given a pair (ag,by) € C? satisfying (4.2), every AGM se-

quence ((an, b)), starting at (ag,by) satisfies the following:
1. lim,,_. a, and lim,,_. . b, exist and are equal;
2. The common limit, say M, is non-zero if and only if the sequence is good;

3. |M| attains its mazimum (among all AGM sequences starting at (ao, b)) if

and only if the sequence is optimal.
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For an AGM sequence ((ay,, b,))22, starting at (ao, by), we will denote the com-
mon limit lim,, . a, = lim, .. b, by Mg(ag,b), where S C Z-q is the set of all
indices n for which the pair (a,,b,) is bad. For example, My(ag,by) denotes the
common limit for the optimal AGM sequence. Note that the sequence is good if

and only if S is a finite set. To ease notation, we shall write My(ag, by) as M (ag, by).

4.3 Chains of Lattices

We now move on to consider the second class of objects, namely, chains of lattices
of index 2. In this section, we will give the definition of a chain and describe its
properties, which later will be seen to be analogous to those of an AGM sequence.

Throughout this chapter, a lattice will always be a free Z-module of rank 2,
embedded as a discrete subgroup of C. Elements of lattices will often be called

periods, since in our application lattices will arise as period lattices of elliptic curves

defined over C.

Definition. A chain of lattices (of index 2) is a sequence of lattices (A,)2°, which

satisfies the following conditions:
1. A, DA,y forall n > 0;
2. [An i Api] =2 for all n > 0;
3. Ao/A,, is cyclic for all n > 1; equivalently, A, 11 # 2A,,_ for all n > 1.

Thus for each n > 1, we have

A1 = (W) + 27, (4.5)

for some w € A, \ 2A,, 1.
Given an initial lattice Ay, there are three choices for A;. When n > 1, one of the

three choices for A,,;; is excluded since it is contained in 2A,,_; (which contradicts
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the last condition in the definition of a chain), and so there are only two choices
for A,, ;1. The number of such chains starting with Aq is therefore uncountable; we

will distinguish a countable subset of these as follows. Let

Ay = Fj)An.

Then A, is free of rank at most 1; the rank cannot be 2 since for all n,
[AO : Aoo] Z [AO . An] = 2”,

so [Ag : Aso] is infinite.

Definition. A chain of lattices (A,,)52, is said to be good if A, has rank 1; in this
case a generator for A, will be called a limiting period of the chain. If a chain is

not good, then we say that it is bad.

We will first show that the limiting period is primitive, i.e., not in mA, for any

m > 2.

Lemma 4.3.1. Let (A,)>2, be a good chain with Ay = (Weo). Then we have the

following:
1. we is primitive; equivalently, No/As is free of rank 1;
2. N, = (Woo) + 2"y for all n > 0.

Proof. Suppose wo, = mw for some m > 1, and w € A,, C Ay for some n > 0. If
m is odd, then (m — 1)w € A, 1. Since mw = wy € Api1, we have w € A, yg.
Hence w € Ay by induction. Thus ws, = mw = m(m'wy) for some m’ € Z, and
som = 1.

Next, suppose that w., = 2w for some w € Ag. By definition of w,,, we then

have w ¢ A, and hence there exists n > 0 such that w ¢ A,. This implies that
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Woo € Ay \ 2A,,_1 (recall that A, D 2A,,_1). But since wy, € A, 11, we have

A1 = (Weo) + 27, = (2w) + 2A,, C 2A,,

which contradicts the definition of a chain. Thus we, is primitive, which proves (1).
Since wy, is primitive, then A, /2"Ay is cyclic of order 2", and is generated by

Weo modulo 2"Ag. Hence (2) follows. O

So far, our notion of a good chain has been defined as a property of the chain as a
whole, and only used the abstract structure of lattices as free Z-modules. Using the
next definition, we will see that this property can be also seen in terms of individual
steps A, D A, 11, when all lattices A, are embedded in C. In view of (4.5), the

choice of A, ;1 is determined by the class of w modulo 2A,,.

Definition. For n > 1, we say that A,,.1 C A,, is a right choice of sublattice of A,
if A1 = (w) + 2A,, where w is a minimal element in A, \ 2A,,_; (with respect to

the usual complex absolute value).

In general, there will be only one right choice at each step; for more details on

the exceptional case, see Section 4.3.1.

Lemma 4.3.2. Let (A,)22, be a good chain with Asy = (Wao). Then wy is minimal

in N, for all but finitely many n > 0.

Proof. Let wy = ws. By Lemma 4.3.1, w; is primitive and there exists ws € Ag
such that A, = (wy,2"ws) for all n > 0. For a non-zero w € A,,, we write w =
mwy + k2"ws with m,k € Z. If k = 0, then clearly |w| = |m||wi| > |wy|. On the

other hand, if |[k| > 1, then

lw/wi| = |m + k2"ws /wr| > 2"|S(w2/wr)| = 1,

for all n > —log, |$(wz/wy)|. This proves the lemma. O
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The following proposition yields an alternative definition of a good chain. For
now we remark that this is analogous to the definition of a gopod AGM sequence in

Section 4.2; more of its analogues will be seen in later sections.

Proposition 4.3.3. A chain of lattices (A,,)$2 is good if and only if A1 C A, is

n=0

a right choice for all but finitely many n > 1.

Proof. Let (A,)5, be a good chain with A, = (ws). Then by Lemma 4.3.2
there exists an integer ng such that w., is minimal in A, for all n > ng. Since
A1 = (Weo) + 2A,, for all n, then by definition, A, 11 C A, is a right choice for all
n > ng.

Conversely, suppose that A1 C A, is a right choice for all n > ng (where
no > 1). Without loss of generality, we may suppose that ny = 1. Let w; be a
minimal element of A;. Then w; is certainly primitive (as an element of A;, though
not necessarily in Ag). We claim that w; € A, for all n > 1, so that the chain is
good with limiting period w;.

To prove the claim, suppose that w; € A; for all j < n. Then A, = (w;)+2" 1Ay,
since the latter is contained in the former and both have index 2"~! in A;. Hence
A, = (wy, 2" 'w,y), where wy € Ay is such that Ay = (wy,w;). By minimality of
wy, the right sublattice A, 41 of A, is clearly (w;) + A, (note that w; is a candidate

since wy € A, \ 2A,,_1); in particular, wy € A, 41 as required. O

In the next subsection, we will introduce a special type of a lattice chain, whose
properties will be analogous to those of an optimal AGM sequence. This type
of lattice chain will play an important role in Section 4.5, where we develop an

algorithm for computing period lattices of elliptic curves over C.

4.3.1 Optimal Chains and Rectangular Lattices

Definition. A lattice chain (A,,)5°, is said to be optimal if A,,41 C A, is a right

choice for all n > 1.
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In general, there will be only one optimal chain for each of the three choices
of Ay C Ag. In order to describe this statement more precisely, however, some
preparation is necessary.

We say that a lattice A C C is rectangular if it has an orthogonal Z-basis
{wy,ws}, i.e., one which satisfies R(wy/w;) = 0. For example, the period lattice
of an elliptic curve defined over R with positive discriminant is rectangular, where
an orthogonal basis is given by the least real period and the least imaginary period
(see Section 1.3 for more details). In fact, rectangular lattices are homothetic to
the period lattices of this family of elliptic curves.

If {wy,wsy} is any Z-basis for a lattice A, the three non-trivial cosets of 2A in A
are given by C; = w; + 2A for j = 1,2, 3, where ws = w; + wy. By a minimal coset
representative, we mean a minimal element of one of these cosets. The next three

lemmas explain some of its properties.
Lemma 4.3.4. Minimal coset representatives are primitive.

Proof. Let w be a minimal coset representative. Then w ¢ 2A, since by definition w
does not represent the trivial coset 2A. Moreover, if w = mw’ for some odd m > 3,
then |w| = m|w'| > |w’|. But since both w, w’ belong to the same coset modulo 2A,

this contradicts the minimality of w. Hence m = 1, i.e., w is primitive. Il

Lemma 4.3.5. In each coset C;, the minimal coset representative is unique up to
sign, unless A is a rectangular lattice with orthogonal Z-basis {wy,ws}, in which

case the coset Cs has four minimal vectors +(wy £ ws).

Proof. For a rectangular lattice A with orthogonal Z-basis {w1,ws}, it is easy to
see that the minimal coset representatives are as stated. Conversely, if a lattice A
has a coset C' with at least two pairs of minimal elements 4w, £w’, then wy, wy =
(wE£w')/2 € A are easily seen to be orthogonal.

Next, we will show that w;, wy, and w = w; + ws are non-trivial coset repre-

sentatives modulo 2A. If w; = 0 (mod 2A), then wy = w (mod 2A). But then
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lwa| < |wy 4+ wy| = |w|, which contradicts the minimality of w in its coset. Hence
wy; # 0 (mod 2A). Similarly, wy # 0 (mod 2A). Moreover, w; # wy (mod 2A)
since w = wy; + we #Z 0 (mod 2A). Therefore, wy,wy, w do represent the three
non-trivial cosets modulo 2A.

Finally, it remains to show that {wy, ws} is a Z-basis for A. Suppose the contrary
that this is not the case. Then there would exist a non-zero period wg = aw, + Bws
with 0 < a, 3 < 1. Clearly, one of wy, wy — w1, wy — ws, wy — w is in the same coset

as w, but since all these periods are smaller than w, this yields a contradiction. [J

As we will see later on, our algorithm for computing period lattices of elliptic
curves will actually compute these minimal coset representatives. To ensure that

we thereby obtain a Z-basis for the lattice, the following lemma is required.

Lemma 4.3.6. For j = 1,2,3, let w; be minimal coset representatives for a non-
rectangular lattice A. Then any two of these w; form a Z-basis for A, and ws =

:l:(w1 + wg).

Proof. We may assume that |w;| < |ws| < |ws|. Then w; is minimal in A and ws
is minimal in A\ (w;). Hence (by negating wy if necessary), 7 = ws/wy is in the
standard fundamental region for SLy(7Z) acting on the upper half-plane, {w;, ws} is

a Z-basis for A, and ws = w; £ wy; the sign depends on that of (7). O

The following proposition shows that the limiting period of an optimal chain is

closely related to minimal coset representatives.

Proposition 4.3.7. A good chain of lattices (A,)22, with Aoo = (Weo) is optimal

if and only if ws is a minimal coset representative of 2Mg in Ag.

Proof. Suppose that w,, is a minimal coset representative. Then it is clear that
A1 = (Weo) + 2A,, C A, is a right sublattice for all n > 1, since w,, is certainly
minimal in A, \ 2A,,—;. Thus the chain (A,)22, is optimal with limiting period wy.

Conversely, suppose that a chain (A,)52, is optimal with limiting period we,. Let

w € Ay be a minimal element of A;\2Ag, so that w is a minimal coset representative
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for the unique non-trivial coset modulo 2A( contained in A;. Note that w is unique
up to sign, unless Aq is rectangular, in which case (for one of the cosets) there will
be two possibilities for w up to sign. By optimality, the sublattice Ay C A; is the
right choice. In particular, if Ag is not rectangular, then we must therefore have
Ay = (w) + 2A;. This, however, may not hold in the rectangular case, but it will
hold if we replace w by the other choice of minimal coset representative.

Now we claim that A,, = (w) + 2A,,_; for all n > 2. We already know this for
n = 2. If the claim is true for n, then certainly w is also minimal in A, \ 2A,_1,
so the (unique) right choice of sublattice of A, is (w) + 2A,,. By optimality, this is
Apt1, and so the claim holds for n + 1. Thus w € () _, A, = (W), and indeed,

w = Fwy, since w is primitive by Lemma 4.3.4. ]
This together with Lemma 4.3.5 gives the following conclusion.

Corollary 4.3.8. Every non-rectangular lattice A has precisely three optimal lat-
tice chains (A,)22, (with Ag = A), whose limiting periods are the minimal coset
representatives in each of the three non-zero cosets of 2A in A. Every rectangular

lattice A has precisely four optimal lattice chains associated to it.

4.4 Chains of 2-Isogenies

We finally consider the last class of objects, where we construct a chain of elliptic
curves defined over C using 2-isogenies. Since each elliptic curve uniquely has an
associated period lattice, we will see that this chain will be analogous to a chain of
lattices defined in Section 4.3. Most of the formulas we use in this section are due
to Bost and Mestre [BM8S|.

Let Ejy be an elliptic curve over C given by a Weierstrass equation

Eo: Y2 =4(Xo—eM)(Xo—e) (X — el (4.6)
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0
j

is fixed. Similar to [BM88], we define a,,, b, for n > 0 by

where all roots e'” are distinct and $° ') = 0. Assume that the ordering of e§-0)

Jj=1"7

(0) (0)

apg=1\e; —ey’, by=1\le; —ey’,
an + b, 9
Gpi1 = 5 by, 1 = apyb, forn >0.

Note that ag, by are so far defined only up to sign, and also satisfy (4.2) since all egp)
are distinct. Given a,, b,, it is easy to see that we can compute a,,+; unambiguously,

whereas b, is obtained up to sign. Starting from a given pair (ag, by), this then

o0

determines an AGM sequence ((ay,by,))o,,

where we obtain a different sequence by
choosing the sign of b, differently at each step. Associated to this AGM sequence,

for n > 1 we let

€§n) _ CL?L -+ bi e(n) B afl — 2b721 (n) 6721 — 2&721

3 2 = 3 y €37 = 3 (4‘7>

Observe that this identity also holds for n = 0, and all e§-”) are distinct and satisfy
233':1 e§") = 0 for all n > 0. Hence we can construct a sequence (E,), of elliptic

curves over C, where F,, is given by the Weierstrass equation
En: Y2=4(X, — ") (X, —ef") (X, — ).

For n > 1, we define ¢, : F, — FE,_; to be the morphism which sends

(Xnayn) = (Xn—h Yn—l)a where

Observe that ker(y,) = ((eé"), 0)). Thus ¢, is a 2-isogeny (note that it is a 2-to-1

map). It is well known (see, e.g., [Sil86, Theorem II1.6.1]) that there exists a dual
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1sogeny ¢ : E,_1 — E, such that ¢, o ¢, is the multiplication-by-2 map on F,,.

Note that ker(¢,) = <(e§n_1), 0)). However, ©,, 0,1 is not the multiplication-by-2

map on F, 1, since, for example,

en (o ((67,0)) ) = wal(el”,0)) = ("7, 0) £ 0.
This therefore allows us to construct a chain of 2-isogenies, as depicted below.

3
—Pn> 3
“<;1Ene¢n—En—l4>"'<;El — ko

Co I

The number j next to each arrow originating from F,, denotes the point (ej ,0).

To see the effect of choosing a different sign of b,,, first note that we can rewrite

€§n+1)

given by (4.7) as

™) | oy b ™ 5 p _
(D) _ E "‘4 Gnon ) %’ et = %. (4.9)

For n > 1, if we replace (ay,b,) by (a,,—b,), then this interchanges e§”+” and

(n+1

"™ but leaves e{"™

unchanged. This relabelling of the roots e§-n+1) therefore has
no effect on the curve £, 1, but in turn yields a different curve E, 5. For n = 0,
recall that ag, by are determined up to sign. It is easy to see that if only one of ag, by
changes the sign, then this interchanges egl) and eél) but fixes egl); all egl) remain
unchanged if both signs of ag, by are changed.

Given a pair (ag, by) € C? satisfying (4.2), knowing (ag, by) not only tells us which
curve Fy we started with and which 2-torsion point (ego), 0) we used to construct
Ey, it also determines the labelling of all the roots of E; (see (4.9)), and hence

determines the curve Es. Thus we have a bijection between:

e The set of all AGM sequences starting at (ag, by), and
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e The set of all chains of 2-isogenies starting at Ey with the subsequence

E2—>E1 —>E0.

We now consider what happens to a chain of 2-isogenies (E,)%%, as n — oo.
Given an elliptic curve Ey = F over C, we can construct all elliptic curves FE,, re-
cursively as above. This construction in turn yields an AGM sequence ((ay, b,))52,
associated to the isogeny chain. Let S C Z-( be the set of all indices for which the

pair (ayn,by,) is bad. It then follows from (4.7) that

n  2M bo)? n n  —M bo)?
Jim 7= SRR ) = i 7 = SRR o

where Mg(ag, bo) is the common limit of the AGM sequence. The limiting curve
E, for the isogeny chain is thus given by

2 2\ 2
En: Y2=4 <Xoo = —2MS(§°’60> ) (Xoo + —MS(CL;’ bo) ) . (4.11)

Observe that F., is a singular curve. We say that the isogeny chain is good if the
singular point of F., is a node; otherwise it is said to be bad.

In Section 4.3, we have seen that the notion of a good chain of lattices, which
has been defined as a property of the chain as a whole, can be also considered in
terms of individual steps. We will finally show that this is also the case for our

notion of a good isogeny chain defined above.

Definition. Let (E,)2%, be a chain of 2-isogenies. For n > 2, we say that E, is

the right choice for the isogeny chain if its roots satisfy
e = el < Jei” = et

otherwise we say that FE,, is the bad choice.
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In other words, E, is the right choice if e is closer to e{™ than it is to e{”.

The following lemma is immediate.

Lemma 4.4.1. Let (E,)32, be an isogeny chain, and let ((a,,b,))>2, be its asso-
ciated AGM sequence. Then for all n > 1, the pair (an,b,) is good if and only if

E, .1 is the right choice for the isogeny chain.

Proof. From (4.7), we have
n+1 n+1
Al — eV = a2y — a2 | = [by — anl?,
and
4ef™ — ") = a2 = by + an”

The lemma now follows directly from the definition of a right choice given above. [

The following proposition, which is analogous to Proposition 4.3.3, follows easily

from the properties of complex AGM.
Proposition 4.4.2. The following are equivalent:
1. A chain of 2-isogenies (E,)5, is good;
2. Its associated AGM sequence is good;

3. E, is chosen to be the right choice for all but finitely many n > 2.

Proof. Equivalence of (1) and (2) follows easily from Proposition 4.2.2, while equiv-
alence of (2) and (3) is immediate from Lemma 4.4.1 and the definition of a good

AGM sequence. [

4.5 Period Lattices of Elliptic Curves

In this section, we will combine all three classes of objects we have introduced

so far into an algorithm for computing period lattices of elliptic curves over C.
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Our approach will follow closely with the classical definition of periods and elliptic

logarithms given in Section 1.3. For an alternative approach, see [CT, Section 6.

4.5.1 General Case

(0)

Let Ey be an elliptic curve over C of the form (4.6) as before, where all roots e;

are given in some fixed order. As mentioned in Section 1.3, it is well known that

Ey = C/A, for some lattice Ay via the map

P:(KJAO(Z),QZXO(Z)) = 2 (HlOd AO)

O — 0 (mod Ay).

Let wy € Ay and let z; = w;/2. Then by above isomorphism, we can see that

(9a0(21), @), (21)) is a 2-torsion point in Ey(C). Hence we can assume that

oo (21) = e P, (21) =0

(note that there are three ways to choose e§°)). Define ¢; to be the straight line on

the complex plane starting from 0 to z;. Then we have

Wi, :/dzz/ dXo
2 ! 0y C§O>§/07

where C%O) is the path on the elliptic curve Fy defined by

C” = {(pao(t21), 9, (t21)) 1 0 <t < 1},

Given Ej, we can construct a chain of 2-isogenies (F,)32, and its associated
AGM sequence ((an, by))5e, using the method described in Section 4.4. As we will
see below, this will also yield the corresponding chain of lattices (A,,)°,. Note that

one can obtain a different isogeny chain with the same starting curve Fy depending
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on how the sign of b, is chosen at each step. We will now combine what we have
so far in order to determine z; (and hence wy).
For each n > 1, since E,, = C/A,, for some lattice A,,, we have the connection

between an isogeny chain and a chain of lattices as shown in Figure 4.1.

C/A, C/Apqg—---
l(mn,@ﬁ\n) i(mn_l,@gnl)

Pn
En En—l —

Figure 4.1: A chain of 2-isogenies linked with a chain of lattices

By definition of ¢, (see (4.8)), it can be verified that

dX, 1 ax,
. = 4.12
e (52) (412)

for all n > 1, where ¢} is the pullback of the differential on E,,_; by ¢,. This
therefore induces the identity map id : C — C, which in turn induces the map
C/A, — C/A,—; via z (mod A,,) — z (mod A,_;). Since ¢, is a 2-to-1 map, it
then follows that A, D A, with [A,,_; : A,] = 2. Moreover, since @, © ¢, 41 is not
the multiplication-by-2 map on FE, ., for all n > 1, we have A, # 2A,,_;. Hence

this gives us the relationship between a chain of lattices and a chain of 2-isogenies.

Next, let C§") be the path on the elliptic curve F,, defined by

Cfn) = {(pAn(tzl), pﬁ\n(tzl)) 0<t <1}

Then we can regard CYL) as a map [0,1] — E,, as shown in the diagram below.

C§n+1)
[0, 1] — Lip41

lid \L@nJrl

0,1] —— E,
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By commutativity of this diagram, we have ¢, 0 C\"™ = ™). Together with

(4.12), this implies that

/ an—H _/ an
c§n+1) YTL+1 - ci") Yn’

and so

— =21 = Z = _— e —_ ...
2 ! o c© Yo c Yi cm Yy

Recall the limiting curve E, of the isogeny chain (E,)5%, from (4.11). As
n — 00, the path Cfn) on E, approaches to some path on F., say, Cfoo), whose
starting point is O. We now describe another end-point of Cioo) as follows. For all

n > 1, one can easily check from (4.8) that

2u(0) = o0 ((57.0)) = 0

pu ((e7.0)) = ou ((e5”,0)) = (e"V,0).

Moreover, we can rewrite (4.8) as

2 L =) )
(Xn — )

where

5 = (Xt — )2 — 4(e” — ) (e — )

is defined up to sign. By definition of Cfn), it is clear that its starting point is always
O € E,(C). In addition, we already know that ¢, o Cfn) = CYL_I). Hence for all

n > 1, the sign of s, must be chosen so that O € E,, 1 — O € E,. This can be
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achieved provided that s, satisfies
(Xt = e5"”) = sl < 1Ko = 7) + 5. (4.14)

By continuity, this criterion for s, then holds along the path Cf”fl). But since

another end-point of C{O) is (6(10),0

) by definition, (4.14) eventually implies that
(ego),O) — (e§1)70). Hence by induction, the two end-points of CYL) are O and

(egn), 0) for all n > 0, and so the two end-points of C§°O) are

n—0o00 3

2M, bo)?

(the last equality is from (4.10)), where ((an, bn))52, is the AGM sequence associated
to the isogeny chain, and S is the set of all indices for which (a,,b,) is bad.

Similar to [BM88], by writing

QMS(CL(), b0)2

)(oo:t2 )
+ 3

Yoo = 2t<t2 =+ M5<CLO, b0)2),

and letting tan @ = t/Mg(ag, by), we have

and also

Then it is easy to see that

(2ky — 1)m

P=P <= t=00 <= cosf =0 < 0= 5

P=P, < t=0 <= sinfl =0 <= 0 =kyrr

for some ki, ko € Z. If we choose k1 = ky = k for some k € Z (i.e., we choose the
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values for arctan from the same branch), we finally have

dX o 2 /’” T
W=+ =2 = df = —————.
! /C§°°) Yoo MS(&(]? bo) kr—% Ms(ao, bo)

Note that w; we just obtained is up to sign. If we had chosen ki, ko differently
then we would have obtained some odd multiple of w;, which would not change w,

modulo 2A,.

Given (ag, bg), we already know that the value of Mg(ag,by) depends on the
set S. If we choose S = (), then |Ms(ag,bo)| = |M(ag, by)| will attain its maximum
among all AGM sequences starting at (ag, by) by Proposition 4.2.2. Thus the period
wy € Ay obtained by making the optimal choice for the AGM sequence with a fixed
starting pair (ag, by) will be the minimal one (hence primitive), and may also be
a minimal coset representative modulo 2Ag. If we can determine the other two
minimal coset representatives ws, w3 (by choosing e§°) differently and computing w;
in a similar way), then by Lemma 4.3.6, any two of these w; form a Z-basis for Ay.

Recall that

ap = e§°) — ego), by = e§°) — ego),

i.e., both ag, by are determined up to sign. Then we have the problem of deciding
which one of /M (ag, £by) is actually a minimal coset representative of 2Aq in Ay,
since both are periods of Ay and belong to the same coset modulo 2Ay. To avoid
this ambiguity, we will regard the pairs (ag, +by) as the two results of computing

AGM “one step backwards”. To be precise, we wish to find a_1,b_; such that
2&0 =a_1+ bfl, bg = a,lb,l.
It is then easy to show that

a1 =ap+*cy, b=ayTFco,
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where ¢ = aZ — b2, so both pairs (ag, +by) come from (ag + co, ag — ¢p).

Let w = w/M((ag + ¢, a0 — ¢p). One can easily observe that changing the sign
of ¢y has no effect on w, whereas changing the sign of ay simply negates w. Thus
w is uniquely determined up to sign regardless of the signs of ag, cy. Moreover, the

optimality of M (ag + co, a9 — co) implies that

™ ™
w = =

M(ap + co,a0 — o) M(ag, by)’

provided that (ag, by) is good, i.e., |ag — bo| < |ag + bo|. Hence if (ag, by) is chosen to
be good, then wy = 7/M/(ag,by) = w is smaller than w/M (ag, —bo), and is thus a
minimal coset representative modulo 2Ay. Finally, it follows from Proposition 4.3.7
that the corresponding lattice chain (A,,)$°, is optimal with limiting period wy, and
there exists wy € Ay such that A, = (wy, 2"w,) for all n > 0.

Thus we have proved our first result on period lattices of elliptic curves over C.

Theorem 4.5.1 (Period Lattices of Elliptic Curves over C, first version). Let Ej

be an elliptic curve over C of the form (4.6), with period lattice Ay. Set

1= /e — e, by = \fe® — e,

where the sign of by is chosen so that (ag,by) is good (i.e., |ag — bo| < |ag + bo|).

Then
s
w = ——F—
M (ag, bo)
s a primitive period of Ao, and is a minimal coset representative modulo 2.

Define the other two minimal coset representatives wq,ws in a similar way (by

permuting eg-o)). Then any two of these w; form a Z-basis for Ay.

As we can see, this theorem computes each minimal coset representative w; by
choosing e§°) differently at a time. Nevertheless, it turns out that we may obtain

all w; by using only one fixed ordering of the roots egp) and three different AGM
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computations. This alternative method, which also exhibits a certain relationship

among all w;, will be explained in Section 4.5.4.

4.5.2 Special Case I: Rectangular Lattices

For the rest of this chapter, we set i = \/—1. Recall that if |ag — bo| = |ao + bol,
then both (ag,+by) are good and R(bo/ag) = 0. This implies that by = ikay for

some k € R\ {0}. Let r = k. Then we have

(0) (0)

by = ikay — 2 _ _,.
S0 0
1 3

Using the fact that 25:1 65-0) = 0, we can rewrite eéo) in terms of e§°), ego) and obtain

0 1+2r 0 0 r+2 0

provided that r # 1. Clearly, the sign of (1 + 2r)/(1 — r) is always opposite to the

sign of (r +2)/(r — 1) for all r > 0 (apart from 1). Geometrically, this means that
all 65»0) are collinear on the complex plane with e§°> in the middle. If » = 1, then

one can easily check that this is still the case, with e§°) =0and e

O _ _ 0

To see what the associated period lattice looks like, first we let w = 7/ M (aq, bo)
and w' = 7/ M (ag, —bo). Then both w,w’ (up to sign) are the minimal elements in
the same coset modulo 2Ay. Hence by Lemma 4.3.5, the periods wy, we = (wtw')/2
form an orthogonal Z-basis for Ag, so the period lattice is rectangular. Alternatively,
we could obtain a Z-basis for Ay by computing two minimal coset representatives
(see Theorem 4.5.1) using the two other roots of Ey which are not “in the middle”
in the role of ego).

Finally, we note that if all e§0) are collinear, then we can always “rotate” them
by a suitable constant in C \ R so that the scaled roots €’; are all real. Then

one could use an algorithm for computing period lattices of elliptic curves over R

(e.g., [Coh93, Algorithm 7.4.7]) to compute the period lattice of the elliptic curve
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E (Y2 =4(X' —e)) (X' —ey) (X' — ¢}). The period lattice of our original elliptic
curve Fj is then obtained after some suitable scaling.
In particular, one can arrange all roots € so that e > e > e3 and obtain an

orthogonal Z-basis for the period lattice of E’ by setting

T s

= , Wy =
M<\/e’1—eg,\/e’1—e’2> M(\/e’l—eg,\/eé—eg>

Wy

with all positive square roots. In fact, these formulas are familiar from the literature;

see, e.g., [Coh93, Algorithm 7.4.7] or [Cre97, (3.7.1)].

4.5.3 Special Case II
If the roots of Ej are such that

650) . ego)

e50) B 6:(),0)

=1 with e§°) — ego) =+ i(ego) — ego)),

(

J

% lie on an isosceles triangle having e§°) as the vertex where

then geometrically all e
the sides of equal length intersect. As before, one can rotate this triangle by a
suitable constant in C\ R so that ego) € R, and ego), eéo) are complex conjugates.
This yields a new elliptic curve E’ over R, whose Weierstrass equation has only one
real root. In other words, E’/R has negative discriminant.

Again, one can use an algorithm for computing period lattices of elliptic curves
over R (e.g., [Coh93, Algorithm 7.4.7]) to compute the period lattice of E'. It is

well known that the period lattice of E’ is of the form A’ = (w/, w}), for some w}, w}

satisfying

/
w; €ER,  R(w)) = %

The period lattice Ag = (wy,wsq) of Ey can then be obtained by a suitable scaling
on wi, wy. Note that this time we have $(ws/w;) = 1/2. This will be illustrated in

Example 4.7.4.
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4.5.4 A Relationship amongst the Periods

In this subsection, we will present an alternative method for computing period
lattices of elliptic curves over C. Unlike Theorem 4.5.1, this time all three minimal
coset representatives wy, wy, w3 will be determined by using only one fixed ordering
of the roots and three different strongly optimal AGM sequences. Finally, we will
also show that all w; obtained by this new method satisfy a certain linear relation.

Let Ey be an elliptic curve over C of the form (4.6) as before. Assume that its
roots are arranged in some fixed order, say, (ego), eéo), ego)). Then we can compute
ao, bo (uniquely up to sign) as before. Let ¢y = \/m, which is again up to sign.
We claim that one can always choose the signs of ag, by, ¢y in such a way that the

following conditions hold:
‘CLO—b0| < |a0—i—b0], ‘Cg—ibgy < |Co+?:b0’, ‘CLO—CO| < |CLO+C()‘. (415)

To prove this claim, we first consider the case when equality occurs in one of
the conditions in (4.15). It might seem possible at first that there could be at least
two equalities occurring in (4.15) simultaneously. However, it is very easy to verify
that this is not the case. If there exists exactly one equality in (4.15), then one can
always choose the sign of the variables appearing in the equality in such a way that

all the conditions in (4.15) are satisfied. For example, if
ag=1, by =1, 00:\/5
(note that ¢2 = a? — b3), then we have
lag — bo| = |ao + bo|, |co — ibo| > |co + ibo|, |ao — co| < |aog + col-

However, if by = —i, then ag, by, ¢y now satisfy all the conditions in (4.15).

Now we consider the case when all the conditions in (4.15) are strictly inequal-
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ities. In this case, we start by choosing the sign of ag arbitrarily. Then we can
always choose the signs of by, co so that the first and the third conditions in (4.15)
hold. The second condition, however, requires some extra work. First, we note that
this condition is equivalent to &(cg/by) > 0. Hence, if our chosen by, ¢y are such that
I(ep/by) < 0, then at first one might consider interchanging by and co; this would
make the second condition satisfied, whereas other conditions remained unaffected.
Unfortunately, such attempt will affect our curve E,. To be precise, suppose we

interchange by and ¢o. Then by (4.7), we have

JO_ %t agtg o
1 3 3 3
2_2b2 2_22
ego):ao 0o ., % coz_ego)
3 3
b2 — 942 2 _ 942
6:())o): 0 3 % . % 3 o :_ego)’

i.e., Fy is mapped to another elliptic curve isomorphic to it. In this case, we should

therefore use a new ordering for the roots of Ey. Let

a =iay, bV =1icy,  =iby.

Then one can easily check that (a')? — (0/)? = ()?. Moreover, we have

la' V| =lag £ co|, | Li|=]|ibg Fcol, |a'£|=ag= byl

Since ag, by, co satisfy all but the second conditions in (4.15), this leads to

la" = b'| < |d' 4+ V|, |d—=i|<|d+i|, |d—{|<]d+],

and so a’,b', ¢ satisfy all conditions in (4.15). Defining e}, €}, €} in a similar way as
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in (4.7), we finally obtain

(@) + ) b —2a5 _ (o

el = 3 = 3 = ey
, (@) =2(0)* _ag—205 (g
62 — - - 62
3 3
;W) =2()? _ag+b (o
ey = 3 =—g =a.

This can be summarised into the following proposition.

Proposition 4.5.2. Let (ego), ego), eéo)) be an ordering of the roots of Ey, and define

ag, by, co as before. Then we have one of the following cases:
1. ag, by, co readily satisfy all the conditions in (4.15);

2. ag, by, co yield an equality in (4.15). In this case, we can choose the sign of

the variables appearing in the equality so that all the conditions in (4.15) are

satisfied;

3. Otherwise, suppose the signs of ag, by, co are chosen so that
lag — bo| < |ag +bo| and |ag— co| < |ag + col.

Then if |co — ibg| > |co + ibo|, the new ordering (ego), ego), ego)) will give a new
set {ag, bo,co} (where ag, by, cy is replaced by iag,icy,iby respectively), whose

signs can be chosen so that all conditions in (4.15) hold.
We are now ready to state an alternative version of Theorem 4.5.1.

Theorem 4.5.3 (Period Lattices of Elliptic Curves over C, second version). Let

Ey be an elliptic curve over C of the form (4.6), with period lattice Ay as before.

Order the roots (e§°>, eéo), ego)) of Ey so that the signs of
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can be chosen to satisfy all the conditions in (4.15). Define

T T T

= M(ao,bo)7 W2 = M(Co,ib0)7 Ws = M(&Q,Co).

Then all w; are primitive periods of Ny, and are minimal coset representatives

modulo 2\y; any two of these form a Z-basis for Ag.

Proof. By Proposition 4.5.2, it is always possible to order (ego),eg ), eéo)) so that

(ap, by, co) satisfies all the conditions in (4.15). We will show that this new definition

(0)

of w; still agrees with Theorem 4.5.1 where each root e;” plays the role of ego).

To show this, first note that wy = +7/M (ag, by) as before, since (ag, by) is good.

Letting (e}, €5, e4) = (eg ), e§°>, eé ), we find that (a’,b") = (co,ibg) is good, so

™ ™
==+ = Wa.

M(CL/, b/) M(Co, Zbo)

Similarly, by letting (e}, €}, €4) = (ego),eg ),e(o)), we find that (a',0") = (ico,iag) is

good, and so
s o
p— :]: pu— .
M@ V)~ Mag,co)  °

Note that these w; are minimal coset representatives of 2A( in Ay by Theorem 4.5.1,

hence any two of them form a Z-basis for Ay by Lemma 4.3.6. O

Since any two of wy, ws, w3 given by Theorem 4.5.3 form a Z-basis for Ay, we
have +w; £+ wy + w3 = 0 for some suitable signs. We now aim to determine these
signs unambiguously.

Suppose that (eg ),ego),eg )) is an ordering of the roots of E, which yields

(ao, by, co) satisfying all conditions in (4.15). Let (¢/{° ),e’go), ") be another or-
dering of the roots of Ey which also yields (aj, bj, ¢;) satisfying all conditions in

(4.15). If {wq, wq, w3} and {w], wh, wh} are the periods obtained by Theorem 4.5.3
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using (ag, by, ¢o) and (ay, by, ¢;) respectively, then for some suitable signs, we have

tw; twy+ws =0 and +w]+wy+w;=0.

But since all wj,w} are of minimal length, we must have w; = twy, for some 7, k.
This leads to a system of two linear equations in terms of w;. It turns out that all
signs in the first equation must be either identical or opposite to those in the second
equation; since otherwise we will have either w; = 0 for some j, or w; = fwy, for
some j # k, which contradicts the fact that any two of wq, we, w3 form a Z-basis.
Finally, to obtain the right signs of wy,ws, w3, we explore all possible cases
of rearranging the roots of Ey. For each ordering (¢ §0),e'§°),e’ go)), we compute
(ap, by, cp) which satisfies all conditions in (4.15) as before (using Proposition 4.5.2
to rearrange the roots if necessary), and rewrite it in terms of ag, by, co. Next, note
that there are eight possible triples (fwy, ws, £w3). By applying (ay, b, ¢;) to
Theorem 4.5.3 and rewriting w}, wj, wj in terms of wy, wy, w3, we “map” each triple
(wq, tws, £ws) (which can be regarded as a linear equation) to another triple. By
above argument, the right signs of w, ws, w3 are therefore the ones which remain
fixed for any ordering of the roots of Ey. By exhaustive trials and errors, we will

eventually see that

W1 — W2 — W3 = 0.
From this, we can state a more general result in view of complex AGM.

Proposition 4.5.4. Let a,b,c € C\ {0} satisfying ¢ = a®> — b* and the following:

la—b <la+bl, |a—c|<|a+¢|, |c—1ib|<]|c+ b

Then

1 1 1
M(a,b)  M(c,ib) * M (ia,ic) 0.

A more symmetric version of this identity may be obtained by replacing a by
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ai and imposing the relation a® + b? + ¢ = 0. We have not done so above, since it
seemed more natural to state the theorem above as giving the set of all values of

M (a,b) rather than the set of all values of M (ia,b).

4.6 Complex Elliptic Logarithms

In this section, we will finally generalise our method for computing period lattices
of elliptic curves over C to compute elliptic logarithms of complex points.

As before, we let Fy be an elliptic curve over C given by a Weierstrass equation
(4.6). Recall that an elliptic logarithm of P € Ey(C) is a value zp € C such that
P = (pa,(2p), 9}, (2p)). Note that zp is unique modulo Ao, where Ay is the lattice
of periods of the differential dX/Yp, so that Ey(C) = C/Ay. We will show that zp
can be determined by a similar method to that shown in Section 4.5.

Let /p be the straight line from 0 to zp (which is to be found) on the complex

Jo= Iy %
zp = dz = —_—,
‘p el Yo

where c}?’ is the path on the elliptic curve Fy defined by

plane. Then

CJ(:?) = {(a,(t2p), P, (tzp)) : 0 <t < 1}

Given Ej, we construct a chain of 2-isogenies (E,,)%%, using the method described
in Section 4.4, with a good AGM sequence (and preferably, a strongly optimal one,
as we will see later). Consider the diagram shown in Figure 4.1. For all n > 1, it
follows that

O © Cl(gn) = C](anl),

where cf;” is the path on the elliptic curve E,, defined by

Co) = {(pa, (tzp), oy (tzp)) 1 0 <t <1},
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Together with (4.12), we again have

/ ix, / X,
e Yn N O S

/ dXo / dX, / ax,
z = _— e = e ..
F c© Yo e Y cm Yy

Recall the definition of ¢, : E, — FE,_; from (4.8). In Section 4.5.1, we have

and so

seen that (4.8) can be rewritten as (4.13), i.e.,

(Xno1 4+ €5™) + s, Y1
2 (e = e (e — )
(X, — ey

X, =

where

S =\ (X — )2 — 46 — ) (el — ).

Since the starting point of Cl(gn) is O for all n > 0, we must again choose the sign of

sp (for n > 1) so that (4.14) holds, i.e.,
(X1 = e§"™) = sl < |(Xnr = €§) 4 54,

and by continuity, this will be also satisfied along the path c},").

Note that if P is the 2-torsion point (e&o), 0) € Ep(C), then the above process is
simply what we have seen in Section 4.5.1. In particular, if we construct our isogeny
chain using a strongly optimal AGM sequence, then by Theorem 4.5.1, we will have
2zp as a minimal coset representative modulo 2Ag, where two of which also form
a Z-basis for Ag. Hence from now on, we will always construct our isogeny chain
using a strongly minimal AGM sequence.

For P = (z0,y0) € Eop(C), we can therefore construct the subsequent points
(Tn, Yn) € By, foralln > 1 using (4.13) and (4.14). This then gives us a limiting point

(Zoos Yoo) ON the limiting curve Ey, (see (4.11) for the equation of E). As discussed
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earlier, in this case we compute Mg(ag, by) with a strongly minimal sequence. It

/ dX / dX
F c® Yo o) Yoo

where C](DOO) is the path on E, given by

then follows that

c) = {(hm pA"(tZP)’T}LIEo pkn(t2p)> 0<t< 1}

n—oo

(for the formulas of lim,, . 4, (2) and lim,, ., @ (), see Proposition 4.6.1), start-
ing from O t0 (Ze, Yoo ). Note that if we choose ego) differently, then this will result
in a different sequence ((z,,yn))5,, and hence a different limiting point (Zs, Yoo)-

The next proposition confirms that (.., ¥so) does exist.

Proposition 4.6.1. Suppose {wy,ws} is a Z-basis for Ay with S(wy/wy) > 0. Let

A, = (wq, 2"ws) and let uw = exp(2mwiz/wy). Define

e - () ey

wy ) (1—wu)3’

Then as n — 00, pa,(2) converges uniformly to Xo(z), and @) (z) converges

uniformly to Yoo (2). In consequence, (To, Yoo) ezists and is not equal to O.

Proof. We will first prove the uniform convergence for p,, (z); such convergence for
@\, (2) can be proved in a similar way.

Let X,,(2) = pa, (2), and let

2" wo 2miz .
Ty = , U= exp . Gn = exp(2miTy,).
w1y
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Then by Proposition 1.3.1, we have

Xa(2) = (2@0—77)2 <ﬁ+%+i {u—qj—qijuﬁ

N gu! 2q?

)

Since S(wo/w1) > 0, we have |q| < 1, and so |g,| = |@|*" < 1. By writing
z = aw; + Bw, with 0 < a, 8 < 1, we also have |u| = exp(—2753(79)) = |qo|® < 1.
Hence for all n > m, we have

w1 ] X (2) = Xoo(2)]

42

NE

( aGhu__ g 2q, )

A\ —ghu?  (L-gu)?  (1-@)?
[ el e 2lal }
(1 =lgul)*  (1=lgu)? (1 |g@)?

{ LA I i I }
(L= lgnul)* (1= lgnu=))* (1= lgnl)?

<.
Il

H'ME@ EMES

—_

J

It can be seen that

|4}, Iqm! 0>
Qm|] - e
; e S Tl Z‘ o A= T
Similarly,
f: gl _  2daml e
(1—|gh))? = (T=lagml)® (1 —ql*")*
and
S ey e < LTI
= (1= lgmu™t|) ]:1 (1= lgol’ ) qol(1 = [qo|*"~1)2(1 — |qo[*™)

Putting everything together, we finally have

| X0 (2) — Xoo(2) A’ (( S N o)™ )

| _— m m m
a2 \ (1= lg0l*)* ol (T = lgo[*"~1)*(1 — [qo[*")
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for all n > m. Observe that the right-hand side is strictly decreasing as m increases.
Hence for any given € > 0, we can always find m = m(¢) (not depending on z) such
that | X,(2) — X (2)| < € for all n > m. Thus X,,(2) converges uniformly to X, (z),

which proves the first part.

[e.9]

o 0, Where

To prove the second part, we first note that our isogeny chain (E,,)

each elliptic curve FE,, is of the form
En: Y?P=4(X, —e") (X, — ") (X, —el™),

is now constructed by a strongly minimal AGM sequence. This in turn yields a
corresponding chain of lattices (A,,)5° . Let wy € C be the one obtained by Theorem
4.5.1. Then we have already seen in Section 4.5.1 that w; is a minimal coset
representative modulo 2Ay, and the lattice chain is indeed optimal with limiting
period wy. Hence there exists we € Ag such that A, = (wy,2"wy) for all n > 0.
Without loss of generality, we can also assume that S(wq/wq) > 0.

By definition of elliptic logarithm, we have

X, = pAn(2)7 Y, = @/An(z>v

so we can regard X,,,Y, as functions of z. The first part then implies that X, (z)
converges uniformly to X (z), and Y, (2) converges uniformly to Y, (z), for any z.
By letting z = zp, we finally have x,, = X (2p) and Yo = Yoo(2p). In addition, if

zp is not a lattice point in Ay, then u(zp) # 1, and S0 (Too, Yoo) # O. O

Although one can compute the limiting point (s, Yoo ) as above, we find that it
is more convenient to obtain (Z.,¥s) by making some change of variables. Below

we will present one possible way to do this; an alternative version can be seen in

[CT, Section 8.3].
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Given an elliptic curve Ej of the form (4.6) as before, let

ag = e§°) - eéo), by = e§°) - eéo).

oo
n=0

Recall that we wish to construct an isogeny chain (E,)%, using a strongly mini-
mal AGM sequence. Hence we compute the AGM sequence ((an, b,))22, using the
method in Section 4.2, in such a way that |a, — b,| < |a, + b,| for all n > 0. For

P = (x0,y0) € Eo(C) \ {O}, we define

_ _ .0 _ _ .0
Uy = Zo €3, Vo = Zo €y .

The sign of ug can be chosen arbitrarily. To choose the sign of vy, we first recall
that for all n > 1 we map (z,—1,Yn—1) € En_1 — (2, yn) € E, via (4.13) in such
a way that s, satisfies the criterion (4.14). It can be verified that such criterion is
equivalent to

|un—1 - Un—1| S ‘un—l + Un—1| (416>

(the situation when this becomes an equality will be explained later). Hence we

choose the sign of vy so that |ug — vg| < |ug + vo|. Next, we define

\/ o — ego) if xg = eéo) for some 7 =1,2,3,

Yo
QUQUO

t() ==
otherwise.

Note that if P is a 2-torsion point in Ey(C), then t, is determined up to sign. This
will have no effect on our result, since we will obtain half a primitive period of Ay
in this case. For a non-2-torsion point P, one can easily observe that if we had
chosen the other sign for ug, then vy would also have been negated, but ¢, remains

unchanged. In fact, ¢y is where we embed the information on the sign of zp.
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For n > 1, we define w,,v,,t, in a similar way, i.e.,

(n) (n)

Up =\ Tp—e€3", Vp=V\Tp—ey , tp=1\T,—e —

 Qu,,
We will show that these quantities can be determined by w,_1,v,_1,t,_1 obtained

earlier. In (4.13), one can rewrite x, in terms of wu,, to obtain (after some algebra)

o Up—1 + Un—1

Un,

Note that the sign of u, is determined unambiguously. For v,, it is also easy to

check that

_ (n) _
Up =\ Xp — €y =/ u2 —c2,

where ¢ = a? — b2. Again, we choose the sign of v,, so that (4.16) holds. Similarly,

one can show using (4.8) that

untn—l
t, = .
Un

Recall that if we had chosen the other sign for ug, then by (4.16), vy would be also
negated, while ¢y remains unchanged. From these new formulas, it then follows that

this will also negate both w,,v,, while again ¢,, will remain unchanged.

By definition, we have u2 = z,, — e{”, v2 = z,, — 5", and 2 = x,, — e{". Since

(n)

Too = liM, oo T, exists by Proposition 4.6.1, and lim,, ejn exists forall j =1,2,3

(see (4.10)), then each w,,v,,t, has a limit as n — oco. Let

U= lim u, = limv,, T = limt,,

n—oo n—oo n—oo

M:M(ao,bo) (Where ’ao—bo‘ < ’GQ—FboD.
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We finally have

M?
Too = (lim uy)? + lim e{” = U? — =—
e e 3 (4.17)
Yoo = 2(lim #,)(lim w,)(lim v,) = 2TU.

n—o0 n—0o0 n—oo

It is easy to see that if P = (ego), 0), then ¢, =0 for all n > 0, so T" = 0.

Consider the limiting curve F.,. Similar to [BM88|, we again define ¢, 60 by

2M? t
X =t2+ 5 Yo, = 2t(t* + M?), tan@zM.

As before, this gives us
and

Hence we have

(2k + 1)m

5 for some k € Z.

P=0 << t=00 < cosf =0 << 0=

Let tan0* = T'/M. Then we have

A = _— = —
P e Yo M Jers M

2

If we choose k differently, then zp will be changed by adding a multiple of w; = /M,
which is a primitive period of Ay by Theorem 4.5.1. Thus zp we just obtained is
unique modulo Ay. By letting & = 0 and using the fact that tan(f — 7/2) =
—1/tan(@), we finally have

-3 -1 M
— 2 _ _
Zp = = — arctan ( T) : (4.18)
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IfT =0 (ie., xg = ego)), then one can use the fact that arctan(z) — 7/2 as x — oo
to obtain zp = —n/(2M), which (up to sign) is half of the primitive period w;
obtain by Theorem 4.5.1.

To summarise, we have the following algorithm.

Algorithm 4.6.2 (Elliptic Logarithms of Complex Points). Given an elliptic curve
Ey defined over C and a point P € E,(C), return an elliptic logarithm of P.

Input: An elliptic curve Ey of the form (4.6), and P = (x¢,yo) € Eo(C).

1. If P=0, return zp = 0.

2. Let ay = \/e?) — ego) and by = \/ego) — eéo). Choose the sign of by so that

|CLO — bo| S |CL() + bo'

3. Let uy = /29— 63 and vg = \/zo — eg)) Choose the sign of vy so that

|U0 — 'Uol < ]uo + 'Uol.

4. Let
Ty — e§°) if xg = e ) for some j=1,2,3,
to =
Y0 otherwise.
QUD’UO

If to =0, return zp = 7/(2M (ag, by)).
5. Set n = 1. Repeat the following:

(a) Let
Ap—1 + bn—l 2 2 2
ap = Ta bn =V an—lbn—lu Cp, = ay — bn
Choose the sign of b, so that |a, — b,| < |a, + b,|.

(b) Let u, = (up—1 +vp_1)/2 and v,, = — ¢2. Choose the sign of v, so

that |u, — v,| < |u, + vy
(c) Let t, = upty_1/vp.

(d) n—n+1.
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until |a,, —b,| and |u,, —v,| are sufficiently small. Let M and T be the limiting

values of a,, and t, respectively.

Output:

(M
Zp = —— arctan | — .
P T

Remark. If the criterion (4.16) becomes an equality, then we have R(u,,_1/v,—1) = 0,
or equivalently, x,,_1 lies on the straight line joining eén_l) and eén_l). To avoid the
ambiguity of the sign of v,,_;, one can recover all e§~”_1), ZTn_1, and rearrange the
roots of E,_; so that the new wu) _,, v/ _, satisfy a strict inequality. Nevertheless,
we will see in Example 4.7.5 that both £v,,_; are equally good for computing zp.

Moreover, the requirement for sufficiently small |u,, — v,| as another stopping
criterion in Algorithm 4.6.2 may be omitted in practice, since our experience shows
that both AGM sequences ((an, b,))22, and ((un, v,,))22, seem to converge roughly
at the same rate.

Finally, note that our formulas shown in Algorithm 4.6.2 are somewhat similar
to the ones in Cohen’s algorithm [Coh93, Algorithm 7.4.8] for computing elliptic
logarithms of real points (where our w, is called ¢, in his algorithm). Using the fact
that U? = T? + M?, we can rewrite zp as

-1 . (M
Zp = —— arcsin { —
P M U y

which is similar (up to sign) to the output of Cohen’s algorithm. By writing zp
this way, however, we have an ambiguity of the sign of zp, since this information is

embedded in 7. Our formulas remove this ambiguity.

4.7 Examples

Finally, we will illustrate our method for computing period lattices of elliptic curves

over C and elliptic logarithms of complex points via some examples.
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For computational purposes, we have implemented our algorithms in MAGMA
(see Appendix A.1 for the code), including our own function for computing an opti-
mal AGM sequence (since the existing function in MAGMA does not always return
an optimal one). Note that all complex numbers in our examples are computed

correctly up to 100 decimal places, but only the first 20 decimal places are shown.

Example 4.7.1. Let E be the elliptic curve over C given by the Weierstrass equa-
tion Y2 = 4(X —¢e1)(X — e3)(X — e3), where

61:3—2i, 62:1+i, 63:—4+i.

Observe that Z?Zl ej = 0. We will compute the period lattice of F using the

method described in Section 4.5.4. To do this, first we let Ey = E and calculate
aozm, bozm, Co = \/a%—b37
in such a way that the signs of ag, by, ¢y satisfy all conditions in (4.15), i.e.,
lag — bo| < |ao +bo|, |ao — co| < lao+ col, |co—ibo| < |co + ibo.
In this example, one can verify that such ag, by, ¢y are

ap = 2.70331029534753078867 ... — 10.55487525889334275023 . ..
bp = 1.67414922803554004044 ... —10.89597747612983812471 ...

co = 2.23606797749978969640 . ...

In fact, all conditions in (4.15) are strictly inequalities in this case, so the period
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lattice of E is non-rectangular. By Theorem 4.5.3, we have

wy = 1.29215151748713051904 . .. + 10.44759218107818896608 . . .
we = 1.42661373451784507587 ... —10.80963848056301882107 . ..
wg = —0.13446221703071455682 . .. 4 11.25723066164120778715 . ..

and any two of w; form a Z-basis for the period lattice A of £. In our computa-
tion, we also have |w; — wy — ws3| &~ 10719 which agrees with the result given by

Proposition 4.5.4. Note that these w; are minimal coset representatives of 2A in A.

Next, we wish to compute an elliptic logarithm of the point P = (2 —4,8+44i) €
E(C) (which has infinite order), i.e., a value zp such that P = (pa(zp), @\ (zp)).

Using ag, by as above, Algorithm 4.6.2 shows that

Too = 1.67097624471645689380 ... —11.23329436157704253331 . ..

Yoo = T7.78679958972849436041 ...+ 14.93520281519385276354 . ..
and then
zp = —0.72212997914002299126 . .. +¢0.01717122412650902249 . . ..

Let up = exp(2mizp/wy). One can verify that

A up 1
I S ~ 10-100
! <w1> ((1—UP)2+12)

\ 3
Yoo — 2mi\ " u(l 4 u) ~ 10-100
wy ) (1—u)3

which agrees with our result in Proposition 4.6.1.
Note that zp is unique modulo A. Depending on a Z-basis {wy,ws} for A, it

can be seen that zp we just obtained may not necessarily lie in the fundamental
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parallelogram

Fy v, = { w1 + Aawz 1 0 < Ay Ap < 1}

In this example, one can check that

zp = (—0.33249952362000772434 .. .)w; — (0.20502411273191295799 . . .)w,

(0.66750047637999227565 . . .)w; + (0.79497588726808704200 . . .)ws,

and so zp is not in the fundamental parallelogram spanned by {w;,ws}. Finally,

we verify that
pa(zp) = 2(P)| = 1077, [g)(zp) — y(P)] = 1071,

Moreover, we have

‘@A <%> - 61‘ ~ 107, ‘@A <%> - 62‘ ~ 107190, ’pA (%) _ 63‘ ~ 107100,

and @) (w;/2) =0 for all j =1,2,3.
Finally, one can verify the above results by the following MAGMA instructions
together with our code given in Appendix A.1 (elog.m) and Appendix A.6.3 (wp.m):

Attach("elog.m"); // main program for computing AGM and periods
Attach("wp.m"); // for computing Weierstrass \wp-function and its derivative
C<i> := ComplexField(100);

el := 3 - 2%i;

e2 =1 + i;

e3 := -el-e2;

// SetVerbose("Elog", 1); // enable this line to see more details

// Find the periods of E

wl, w2, w3 := Explode(PeriodLattice([el,e2] : Prec := 95));

// Verify the linear relation given by Proposition 4.5.4

// x-coordinates

Abs (wi-w2-w3);
1.17816443575150054062725524993448403636587562123424388601691323101044034030022\
6132528675450933671261E-100

> // Verify if wl, w2, w3 are correct

> Abs(WeierstrassP([w2, wil], wi1/2, 50) - el);
2.20747531330043896996542943812725847188126730617040279215444803133824417103286\
6144311648981370662044E-99

> Abs(WeierstrassP([w2, wll, w2/2, 50) - e2);
5.39146074176779045544868662827922952875374920561946845403545921692677749128000\
5892434123803155519330E-100

> Abs(WeierstrassP([w2, wil], w3/2, 50) - e3);
7.31869026819967803811375482953644914168443489670665762614998969952898413491169\
4598918797783156020261E-100

>
>
>
>
>
>
>
>
>
>
>
>
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> // y-coordinates: these should be approximately zero

> Abs(WeierstrassPDash([w2, wil], w1/2, 50));
2.82876767754734938062989398764171049509529029868803288456734927230913261092665\
4283463886683263971737E-100

> Abs(WeierstrassPDash([w2, w1l], w2/2, 50));
4.38561633458687845525097123923260356126641282115988382100951102970680973369649\
1851983769446498162005E-99

> Abs(WeierstrassPDash([w2, wl], w3/2, 50));
5.99971141235607783993827798548907710252418335884779083090787357542560402559964\
8051923838692563910701E-99

> // Compute elliptic logarithm

> P := [2-i, 8+4x*i];

> z := EllipticLog([el,e2], P : Prec := 95);

> // Verify if z is correct

> Abs(WeierstrassP([w2, wi]l, z, 50) - P[1]); // x-coordinate of P
1.09183717246442593788494967963740510277283315168344063938693650250580317981161\
3117768124118045632460E-99

> Abs(WeierstrassPDash([w2, will, z, 50) - P[2]); // y-coordinate of P
5.07568772514116893992973135901504904741011653109894737126771076469299791093717\
3608880287799817547263E-99

Example 4.7.2 (Rectangular Lattice). Let E be the elliptic curve over C given by

the Weierstrass equation Y2 = 4(X — e;)(X — e3)(X — e3), where
61:1+3i, 62:—4—12i, 63:3+9i.

Observe that Z?Zl e; = 0 and all e; are collinear. By letting £y = E and computing

ag, bo, co as before, we have

ap = 1.47046851723128684330 ... —12.04016608641756892919. ..
by = —3.22578581905571472955... —42.32501487101070997214 . ..

2.75099469475848456460 . . . — ¢3.81680125374499001591 . . ..

Co

This time, however, we have |ag — by| = |ag + bo|, while the other two conditions in
(4.15) are strictly inequalities. Let A be the period lattice of E. Then we have two
minimal elements (up to sign) in one coset of 2A in A, so A is rectangular.

To obtain an orthogonal Z-basis for A, first we let w,w’ = 7/M(ag,£by). In

this example, we have

w = —0.29920293143872535713 ... 4 ¢1.10940038117892953702. . .

w' = 1.14708588706988127437 . .. + i0.06697438037476960963 . . . .
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One can check that |w| = |[w/|. Let wi,wy = (w £ w')/2. Then wy,ws form an

orthogonal Z-basis for A, as proved in Lemma 4.3.5. Here, we have

wy = 0.42394147781557795862 ... + 10.58818738077684957333 . ..

wy = —0.72314440925430331575 ... 4 ¢0.52121300040207996369 . . . .

Note that R(ws/w;) = 0.

Let zp be an elliptic logarithm of the point P = (3+2¢,28 —144) € E(C) (which

has infinite order). Algorithm 4.6.2 shows that

zp = —0.42599662534207481578 ... —10.02491254923738153924 . ..

= (0.62858224538977667533 .. .)w; + (0.37134662195976180031 . . .)ws.

Finally, we verify that

loa(zp) — 2(P)] = 107%,  |p) (2p) — y(P)| = 1077,

and moreover,

|oa (w1/2) — ea| 2 1077, [pa (w2/2) —e3] = 0, [pa (w/2) — er] = 107,

|h(wi/2)| = 1077, | (w2/2)] = 1077, [l (w/2)] ~ 1071

The following MAGMA instructions show how to obtain an orthogonal Z-basis
for A, again using the files elog.m and wp.m. An elliptic logarithm of P can be

verified in a similar way as shown in Example 4.7.1.

> Attach("elog.m"); // main program for computing AGM and periods

> Attach("wp.m"); // for computing Weierstrass \wp-function and its derivative
> C<i> := ComplexField(100);

> // SetVerbose("Elog", 1); // enable this line to see more details

> el := 1+43%i;

> e2 := -4-12x%i;

> e3 := -el-e2;

> a := Sqrt(el-e3);
> a;

1.47046851723128684330254176415932882757934632925063202585257054049178684226400\
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1831020031879802582806 - 2.0401660864175689291956325887585436785734507064582131\
37290943291102853999582318510016726755448634758%*1

> b;
-3.2257858190557147295516289406182650806557448471050546074243274562891072631871\
62001538411197428191589 - 2.325014871010709972142178001058151104070502895062003\
693010129666408387578241476849515074193271660734*1

> Abs(Abs(a-b)- Abs(a+b)); // verify that |a - bl = |a + bl
4.57194956512909992886313419322136383780763997929119464486050337291053054362695\
2782701792087440688119E-100

> pi := Pi(C);

> w := pi/AGM(a, b : Prec := 95);

> ww := pi/AGM(a, -b : Prec := 95);
>wl = (w + ww)/2;

> w2 = (w - ww)/2;

> wi;

0

.42394147781557795862104108451583325218540296467808645416241553331745683008606\
62127128283559353975721 + 0.588187380776849573332658158493542874116418229902161\
0326163517745228902456925146045970240201987725525%1

> w2;
-0.7231444092543033157523323868910488724744712281993332254624654321404914554803\
399613137210706926560197 + 0.52121300040207996369472283211439558155896679705797\
72970116852535996111823376486101852769042774175303*1

> // Verify if {wl, w2} is an orthogonal basis

> Re(w2/wl);
-7.6352603423015381956954855779163449469554786250994576835812198451328553107125\
07033265598593411221379E-101

> // Verify if wl, w2, w are correct

> // x-coordinates

> Abs(WeierstrassP([wl, w2], wi1/2, 50) - e2);
1.64843985859082574350158649425508147196704280044505469963422818407231391472547\
4218257253154816311912E-99

> Abs(WeierstrassP([wl, w2], w2/2, 50) - e3);
0.00000000000000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000

> Abs(WeierstrassP([wl, w2], w/2, 50) - el);
1.68081338403849523085419022263205037921338943239522224235841907631395165557588\
7712068183785261110306E-99

> // y-coordinates

> Abs(WeierstrassPDash([wl, w2], w1/2, 50));
6.69272401551455381640554427977041501148285482666808576557724361561660086006328\
1676381838174025125113E-99

> Abs(WeierstrassPDash([wl, w2], w2/2, 50));
1.37087320923631349850694112417327140914523618578899209687300276078802639116200\
9130596388077486470522E-99

> Abs(WeierstrassPDash([wl, w2], w/2, 50));
3.12259514171601361038429329884569956358081514140971787795567528907927420775011\
1710974566400775635803E-99

Example 4.7.3. Let K = Q(#) where 6 is a root of the polynomial 23 — 2. Let E

be the elliptic curve defined over K given by the Weierstrass equation

E: Y?=4(X-0)(X —1)(X+1+0).

Note that K has one real embedding and one conjugate pair of complex embeddings.
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Let Ey, E5 be the real and complex embedding of E respectively, i.e.,

Ei: Y2=4(X-V2)(X - 1)(X +1+V2)

By:  Y?=4(X —wV2)(X —1)(X +1+wV?2)

where w = exp(27i/3) is a cube root of unity. Since E; has three real roots, then
the period lattice of Fj is rectangular. In fact, by letting e§°) = /2, eéo) =1, ego) =

—1 — /2, we can compute ay, by, ¢y satisfying all the conditions in (4.15) as follows:

ay = 1.87612422291002530767 . ..
by = 0.50982452853395859808. ..

co = 1.80552514518487755254 .. ..

One can then verify that |cy — iby| = |cy + iby|. As before, we compute
w = L = 2.90130425944817643666 . .. — ¢1.70677932803214980295 . . .
M(007 ZbO)
/ ™ /lI]
nwn = - =
M(CO7 _ZbO) 7

and let wy, wy = (w=xw')/2. Then wy, ws form an orthogonal Z-basis for the period

lattice of E;. In this example, we have w; = R(w) and wy = i(w).

Nevertheless, the period lattice of Es is non-rectangular, since all roots of F,
are not collinear. In fact, by letting e\” = —1 — w2, el = 1,el” = w2 (note
that we use Proposition 4.5.2 here to ensure that ag, by, ¢y satisfy all the conditions

in (4.15)), we have

ao 1.10851094368231305521 . .. —¢0.98431471713501219051 . ..
by = 0.43669517024285334726 ... — 11.24929666083200513980. . .

1.34004098848655674756 . .. — 10.40712323180652750769 . . . .

Co
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In fact, one can check that all the conditions in (4.15) are strictly inequalities, hence
this also confirms that the period lattice of Ej is non-rectangular. By Theorem 4.5.3,

we finally obtain

wy; = 1.28194824894788708942 ... + 11.88277404359595361782 . ..
we = 2.36557653380849535471 ... —¢0.03808700290170419307 . ..

wy = —1.08362828486060826529 ... +11.92086104649765781090 . ..

with |w; — wy — ws| ~ 10719 as claimed by Proposition 4.5.4.
Example 4.7.4. Let E be the elliptic curve over C given by the Weierstrass equa-
tion Y2 = 4(X —¢1)(X — e3)(X — e3), where

61:—1—32', 62:3+i, 63:—2+2Z

Observe that 2321 e; = 0 and |e; —e3| = |e2 — e3|. Thus ey, €3, e3 form an isosceles
triangle, as explained in Section 4.5.3. By letting Fy = F and computing aqg, by, o

satisfying all the conditions in (4.15) as before, we have

ap = 1.74628455779589152702 ... —1.43161089573822132705. ..
by = 0.91017972112445468260 ... — 12.19736822693561993207 . . .

co = 2.24711142509587014360 ... —20.22250788030178260411 . . ..
Hence by Theorem 4.5.3, we obtain

wy; = 0.81646689790312614904 . .. + :1.10773333340066743861 . . .
we = 1.36061503191563570645 ... —10.20595647167234558716 . . .

wg = —0.54414813401250955741 ... 4 41.31368980507301302578 . . .

with [w; —wsy — w3 & 10719 as claimed by Proposition 4.5.4. In addition, one can
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check that R(w;/ws) = 1/2 as claimed in Section 4.5.3. Let A be the period lattice

of E. We finally verify that |pa(w;/2) — e;| &= 107 for all j = 1,2, 3, and
[ (wi/2)] = 107, | (wa/2)] = 107, |y (ws/2)] = 107

Example 4.7.5. Let E be the elliptic curve over C given by the Weierstrass equa-
tion Y2 = 4(X — €1)(X — €3)(X — e3), where

61:—2—2i, 62:—1+6i, 63:3—4’i.

By Theorem 4.5.3, the period lattice A of E has the following minimal coset repre-

sentatives; two of which form a Z-basis for A:

wy = 1.04665075729832942736 . .. + 10.45525281255263173893 . ..
wy = 0.67791651620742852409 ... —10.77797238161544820221 . ..

ws = 0.36873424109090090326 . . . +21.23322519416807994115. ..

with |w; — wy — w3] &~ 10719 which again agrees with Proposition 4.5.4.

Now we wish to find an elliptic logarithm of the point
P=(1+4i,v12+492) = (1 +14,15.8768... +1i15.4942...) € E(C).
Letting Ey = E and computing ug, vg, we have
ui = z(P) — eéo) =—-2+5i, vi=x(P)— eV =2 5i= —uZ.
Thus |ug — vo| = |ug + vo|. If we choose

vo =V2—5:=19216... —11.3009.. .,
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then Algorithm 4.6.2 gives

2531) = —0.52013573443395982317 ... +10.13628275717388366013 . . ..
However, if we choose —vg, then we obtain

22 — 0.15778078177346870092 . . . — i0.64168962444156454207 . . ..

But then 21(32) — zg) = wy. Hence both choices for vy are equally good for computing

elliptic logarithms. Finally, we verify that
P) — (D] ~ 10—98 P) — / (DN ~ 10_98
T(P) — pa,(2p")| = . |y(P) @AO(ZP )|~ .

In conclusion, we have presented a complete method, based on complex AGM,
for computing period lattices of elliptic curves defined over C, and generalised it
into an algorithm for computing elliptic logarithms of complex points. As we can
see from the above illustrative examples, this work, which is done in collaboration
with Professor John E. Cremona, finally allows one to compute both quantities on
any elliptic curves over C, while such computations in the past were possible only
for elliptic curves over R. For more information on precise running time of complex
AGM, see Dupont’s thesis [Dup06] or his paper [Dup].

In the next chapter, we will bring all the main results we have obtained so
far to illustrate their applications in assisting some essential computations in the

arithmetic of elliptic curves over number fields.
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Applications

In this final chapter, we will illustrate the applications of all the main results we
have obtained so far towards some computations in the arithmetic of elliptic curves
over number fields, whose existing methods experienced some difficulties in the past
due to lack of certain information on elliptic curves.

In this chapter, we will start by showing how to compute a lower bound for the
canonical height (see Chapter 2 and 3) and use it to determine Mordell-Weil bases
for elliptic curves over number fields. Then we will move on to demonstrate an
algorithm of Smart and Stephens [SS97] for computing integral points on elliptic
curves over number fields, which involves determining complex elliptic logarithms
(see Chapter 4) of all generators of Mordell-Weil bases. Finally, we will conclude
this chapter by illustrating some examples of finding all elliptic curves with every-
where good reduction based on the method of Cremona and Lingham [CLO7], which

requires integral points on elliptic curves of a certain type over number fields.

5.1 Height Bound III: Examples

In this section, we will show several illustrative examples on how to use Theorem
3.4.1 to determine a positive lower bound for the canonical height on elliptic curves

over number fields. Note that our computation, which also involves real and complex

95
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elliptic logarithms (see Chapter 4), will be more sophisticated if the base number
fields are not totally real. We have implemented our algorithm for computing the
following examples in MAGMA; its source code can be found in Appendix A.3. For

a brief demonstration of how to use our program, see Example 5.1.4.

5.1.1 Case I: Totally Real Number Fields

We will first concentrate on the case when our elliptic curves are defined over totally
real number fields. As we will see, this will require periods of elliptic curves over R
and elliptic logarithms of real points, which can be obtained by Algorithm 4.6.2 or
Cohen’s algorithms [Coh93, Algorithm 7.4.7 and 7.4.8]. For the relevant notations,

the reader should refer to Chapter 2.

Example 5.1.1. Let E = E, where E is the elliptic curve defined over K = Q(v/2)

given by the Weierstrass equation
B y=2+z+(1+2V2).

The discriminant A of E is —3952 — 1728v/2. Moreover, we have (A) = pSp2p,,
where

pr=(V2), po=(7.3+V2), ps= (769,636 + 2),

are prime ideals. Since ord, (A) < 12 for all j, then £ is given by a globally minimal
model, and so Mg = 1.

As explained in Section 3.4, our algorithm, based on Theorem 3.4.1, will start by
checking whether a given y > 0 is a lower bound for the canonical height on E, (K)
by computing B,,(u) for n = 1,... npax. If By(p) < 1 for some n, then p is indeed
a lower bound. Otherwise, we proceed to compute (™9 SfLU)(—Bn(u), By,(u)) for
every real archimedean place v € Mj. (here, we do not have to compute any ’Z;L(v),

since K is totally real). If the intersection is empty for some v, then p is a lower

bound. Note that we obtain no conclusion if none of the intersections is empty.
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In this example, we define vy, v_ to be the real archimedean place of K whose
associated real embedding sends v/2 +— +1.414 ... respectively. By letting u = 1

and Npma.x = 5, we have

Bi(p) = 8.117389,  By(p) = 8.186971 x 10?,  Bs(u) = 7.213201 x 107,

By(p) = 5.421641 x 10", Bs(u) = 5.685757 x 102",

Since none of these is less than 1, we have to compute ()""7 87(1”)(—Bn(u), Bn(w))
for every v € M}.. Recall from Section 2.5 that S (&1,&2) is defined in terms of
Vy(&1), 1y (&), where 1, : E(()U) (R) — [1/2,1) is the normalised elliptic logarithm of
the “higher” of the two points on Eév) with the same z-coordinate. For v = v,

one can check that the corresponding real embedding £ has only one real root at

B, = —1.352786. Using Algorithm 4.6.2, we have (after normalisation)
Uy(By(p)) = 0.891227,

which yields! 8\ (=B (), B1(1)) = [0.108773,0.891227].

Computing Sflv)(—Bn(u), B(u)) for all m = 2, ..., nyax in a similar way, we will
eventually see that (™% ST(LU)(—Bn(,u), By, (1)) # 0. A similar procedure also shows
that another intersection associated to v = v_ is non-empty. Hence we fail to show
that © = 1 is a lower bound on E, (K), in which case we shall repeat the above
computation with a smaller p (and/or a larger npay). On the other hand, if u is
known to be a lower bound, then we can repeat such process with a larger u to see

if it is still a lower bound. This refinement can be done repeatedly as required.

After a number of refinements as shown in Table 5.1, our algorithm finally shows
that

h(P) > 1= 0.2415

1Only v, (B (1)) is required in this case, since —Bi(u) < 3, < B1(p).



98 Chapter 5. Applications

Table 5.1: Illustration of the algorithm for Example 5.1.1

Initial | Initial Is any Is any intersection Ispa Next | Next

i Nmax | Bn(p) <17 empty? lower bound? i Nmax
1.0000 5 No No Fail 0.5000 6
0.5000 6 No No Fail 0.2500 7
0.2500 7 No No Fail 0.1250 8
0.1250 8 Yes Skipped Yes 0.1875 8
0.1875 8 No Yes Yes 0.2187 8
0.2187 8 No Yes Yes 0.2343 8
0.2343 8 No Yes Yes 0.2421 8
0.2421 8 No No Fail 0.2382 9
0.2382 9 No Yes Yes 0.2402 9
0.2402 9 No Yes Yes 0.2412 9
0.2412 9 No Yes Yes 0.2416 9
0.2416 9 No No Fail 0.2414 10
0.2414 10 No Yes Yes 0.2415 10
0.2415 10 No No Fail 0.2415 11
0.2415 11 No Yes Yes

for all non-torsion points P € E, (K). Nevertheless, the lower bound for E,, (K)

derived from Theorem 2.4.2 is not as good as this one. In this example, we have
a,, = 1.096562, «,_ = 1.001830,

and so a,, a,_ = 1.098569. We now choose a prime ideal p whose norm is greater
than |/a, a,—, and set n = e,. To minimise n, we choose p = <\/§> to obtain
n = e, = 2. Then we have Dg(2) = 1.386294, which finally yields the lower bound

Dg(n) —log(a,, a,_)  1.386294 — log(1.098569)

o (K : Qln? 8 01015

In order to obtain a lower bound for the canonical height on F(K), we first
note that the Tamagawa indices ¢, at v = py, o, p3 are 4, 2, and 1 respectively.
Moreover, one can easily see that both real embeddings of E have only real root,

S0 ¢y, = ¢, = 1. Hence ¢ = lem{4,2,1} = 4. By Lemma 2.1.1, we finally have

h(P) > pu/c® = 0.2415/4% = 0.0150

for all non-torsion points P € E(K).
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Table 5.2: Illustration of the algorithm for Example 5.1.2

Initial | Initial Is any Is any intersection Ispa Next | Next

i Nmax | Bn(w) <17 empty? lower bound? i Nmax
1.0000 5 No No Fail 0.5000 6
0.5000 6 No No Fail 0.2500 7
0.2500 7 No No Fail 0.1250 8
0.1250 8 No Yes Yes 0.1875 8
0.1875 8 No No Fail 0.1562 9
0.1562 9 No No Fail 0.1406 10
0.1406 10 No Yes Yes 0.1484 10
0.1484 10 No No Fail 0.1445 11
0.1445 11 No No Fail 0.1425 12
0.1425 12 No No Fail 0.1416 13
0.1416 13 No No Fail 0.1411 14
0.1411 14 No Yes Yes 0.1413 14
0.1413 14 No Yes Yes 0.1414 14
0.1414 14 No Yes Yes 0.1415 14
0.1415 14 No Yes Yes

Example 5.1.2. Let E = E,, where E is the elliptic curve defined over K = Q(+/7)

given by the Weierstrass equation
Ey: v+ B+3VTay+y=2a"+ (26 +4V7)2* + .

The discriminant A of E is —937513 — 2993941/7. Moreover, (A) can be factorised

into a product of prime ideals as pipops, where
p1 = (4219,1083 + V/7), py = (4657,3544 +V/7), py = (12799,5358 + /7).

Again, since ordy, (A) < 12 for all j, E is already given by a globally minimal model,

and thus Mg = 1. Our algorithm shows that

~

h(P) > 0.1415

for all non-torsion points P € E, (/). This is obtained after a number of refine-
ments as shown in Table 5.2.
Finally, we note that the Tamagawa indices ¢, at v = p1,po, p3 are all 1. In

addition, since both real embeddings of £ have three real roots, we have ¢, = 2 for
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both v € M}, and so ¢ = 2. Hence by Lemma 2.1.1, we have

h(P) > 0.1415/2% = 0.0353

for all non-torsion points P € F(K).

Example 5.1.3. Let £ = Ej3, where Ej3 is the elliptic curve defined over K =

Q(v/10) given by a Weierstrass equation

By y*=2°4125.

Note that K has class number 2. Decomposing the discriminant A of F into prime

ideals, it can be seen that (A) = (—213355) = p{%p3p3ps, where

p1=(5,V10), po=(3,4+V10), p3=(3,2+V10), ps=(2,V10).

Observe that the model of F is now minimal everywhere except at p;. With the

substitutions
= V10’2, y=(V10)*/,

R | /8. This time, however, the model

we have a new elliptic curve E’ : 3/
of E' is minimal everywhere except at all prime ideals dividing 2. Thus we let
E®) = E' and E® = E for any p # p; in our computation. Our algorithm then
shows that

~

h(P) > 0.2859

for all non-torsion points P € E,, (K). This is based on a number of refinements as
shown in Table 5.3.

To derive a lower bound on E(K), we first note that the Tamagawa indices ¢, at
v = P1, P2, P3, P4 are 1, 2, 2, and 1 respectively. Moreover, we have ¢, = 1 for both

v € M., since both real embeddings of F have only one real root. Hence ¢ = 2,
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Table 5.3: Illustration of the algorithm for Example 5.1.3

Initial | Initial Is any Is any intersection Ispa Next | Next

i Nmax | Bn(w) <17 empty? lower bound? i Nmax
1.0000 5 No No Fail 0.5000 6
0.5000 6 No No Fail 0.2500 7
0.2500 7 Yes Skipped Yes 0.3750 7
0.3750 7 No No Fail 0.3125 8
0.3125 8 No No Fail 0.2812 9
0.2812 9 Yes Skipped Yes 0.2968 9
0.2968 9 No No Fail 0.2890 10
0.2890 10 No No Fail 0.2851 11
0.2851 11 Yes Skipped Yes 0.2871 11
0.2871 11 No No Fail 0.2861 12
0.2861 12 No No Fail 0.2856 13
0.2856 13 Yes Skipped Yes 0.2858 13
0.2858 13 Yes Skipped Yes 0.2860 13
0.2860 13 No No Fail 0.2859 14
0.2859 14 Yes Skipped Yes

and thus by Lemma 2.1.1,
h(P) > 0.2859/2% = 0.0714
for all non-torsion points P € F(K).

5.1.2 Case II: Number Fields with Complex Embeddings

Next, we will consider the case when our elliptic curves are defined over non-totally
real number fields. The reader should refer to Chapter 3 for the relevant notations.

Let K be a non-totally real number field (i.e., one having non-real complex
embeddings), and let E be an elliptic curve defined over K. It can be seen from
Theorem 3.4.1 that, in order to determine a positive lower bound for the canonical
height on E,, (K), we may have to compute (7% ’];L(v)( B, (1)) for every complex
archimedean place v € Mj,, in addition to (™% ST(LU)(—Bn(u), By, (1)) for every v €

Mj,. To obtain 7;(0) (&), we first need to construct the approximate corresponding

region S (). Assume that for each v € M§., the associated complex embedding
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E® of E is of the form
EW . y?2=4X*+ AX +B

for some A, B € C. Then it can be seen from Section 3.1.2 that the definition of

S (&) requires the quantity

b
Ue = |wy|? (§+ é) :

where by is an invariant as defined in Chapter 1 for E® and w; € C is one of the
two vectors forming a Z-basis for the period lattice A of E®), in such a way that

A = (wy,wq) and 7 = wy/wy satisfies (3.1), i.e.,
Tl =1, [R(P)<1/2, S(r) = V3/2

One can then use Theorem 4.5.3 (together with some linear transformation if nec-
essary) to obtain A = (wq,wy) whose 7 satisfies (3.1).

Furthermore, one can see from Section 3.2.3 that construction of S®)(¢) requires
a parallelogram Cj containing an elliptic logarithm of a point P € E®)(C) with
X(P) = 0. Although one can use Algorithm 4.6.2 to compute an elliptic logarithm
of P, it should be noted that this is rarely required in practice, since Cy is normally
obtained as one of the parallelograms C' satisfying I(C') N [0, Ug] # 0.

We will now illustrate our algorithm for elliptic curves defined over non-totally

real number fields with the following examples. For the rest of this chapter, we

shall let ¢ = /—1.

Example 5.1.4. Let E = E,, where E is the elliptic curve defined over K = Q(3)

given by the Weierstrass equation

By y* =2+ (91 — 26i)x — (144 + 3234).
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Table 5.4: Illustration of the algorithm for Example 5.1.4

| Nmax Is any Is any 7 Is na
B,(u) <17 empty? lower bound?
0.20 4 No No Fail
0.10 4 No Yes Yes
0.15 4 No Yes Yes
0.18 4 No Yes Yes

The discriminant of E can be factorised into a product of prime ideals as pipop$,

where

p1 = (799 + 1124), po=(7T—123), p3=(1+4).

Hence the model of E is globally minimal, and so Mg = 1. Based on a number of

refinements as shown in Table 5.4, our algorithm shows that

~

h(P) > 0.18

for all non-torsion P € E, (K). Note that in this example we only have to compute
T (v/By (1)) but not S8 (=B, (1), Bu(p)), since K has no real embedding. In
addition, we choose S® = S for v € M.

It can be checked that the Tamagawa indices ¢, of E at v = py,ps, p3 are all
1. Moreover, we have ¢, = 1 where v is the only complex archimedean place of K.

Hence ¢ = 1, and by Lemma 2.1.1,

~

h(P) > 0.18

for all non-torsion P € E(K). One can verify the above results using our MAGMA
code (note that we require elog.m and every file mentioned in Appendix A.3 on-
wards) together with the following instructions:

> // Note that all of these files are required
> Attach("elog.m");

> Attach("alphas.m");

> Attach("heightbound.m");

> Attach("intersect_real.m");

> Attach("intersect_complex.m") ;

> Attach("interval_arith.m");

> Attach("interval_wp.m");
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Attach("wp.m");

// SetVerbose("Bound", 1); // enable this line to see more details
// Define elliptic curve E

_<x> := PolynomialRing(Integers());

K<i> := NumberField(x"2+1);

E := EllipticCurve([91-26%i, -144-323%i]);

// Check if 0.2 is a lower bound on E(K)

// (to get a lower bound on E_{gr}(K), multiply by a square of lcm of
// all Tamagawa indices)

IsLowerBound(E, 0.2 : n_max := 4);

false

> // Fail to show that 0.2 is a lower bound, so try something smaller
> IsLowerBound(E, 0.1 : n_max := 4);

true

> // So 0.15 is a lower bound, try to check a bigger lower bound

> IsLowerBound(E, 0.15 : n_max := 4);

true

> IsLowerBound(E, 0.18 : n_max := 4);

true

VVVVVVVYVVYV

On the other hand, the lower bound on E (K) (and also E(K) in this case)

obtained by Theorem 2.4.2 is not as good as this one. In this example, we have
o, = 4.715889.

Choose a prime ideal p with NV (p) > «,, say, p = (5,2 + ), and set n = e, = 5.
Then we have Dg(5) = 3.218876, which yields the lower bound

~3.218876 — 2log(4.715889)

_ -3
1o e =234 x 1075,

Finally, one can verify that the lower bound obtained by Hindry and Silverman
[HS88, Theorem 0.3] is
h(P) > 3.0624 x 10~%

for all non-torsion P € E(K). We leave it to the reader to compare the results.

Example 5.1.5. The following elliptic curve is from Cremona’s paper [Cre94, Ex-
ample 2|. Let £ = Es5, where Ej is the elliptic curve defined over K = Q(i) given

by the Weierstrass equation

Es: y*+iy=a"+ (1 —i)z® —iz.
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One can easily observe that Py = (0,0) € E(K). Let A be the discriminant of
E. Then we have (A) = p, where p = (13 4 8i) is prime. Moreover, we have the
Tamagawa index ¢, = 1, and also ¢, = 1 where v is the only complex archimedean
place of K. Hence ¢ = 1. Using the fact that h(Py) = 0.0230, we set our initial

guess i to be smaller than 0.0230, say, u = 0.01. Our algorithm shows that
Bs(p) =0.7772 < 1.

Thus by Proposition 2.4.1, 2(P) > 0.01 for all non-torsion P € FEy(K). Since

¢ =1, we also have h(P) > 0.01 for all non-torsion P € E(K) by Lemma 2.1.1.

Example 5.1.6. Let K = Q(6) where 6 is a root of the polynomial z* — 2. Let
E = Eg, where FEj is the elliptic curve defined over K given by the Weierstrass
equation

Ee: y*>=a°—(0°+30)x +0°

Let A be the discriminant of E. The prime ideal factorisation of (A) is pi®p,, where
p1=(2,0), po=(390433,218056 + 6).

It can be verified that the model of E is globally minimal, and so Mg = 1. Our
algorithm shows that
h(P) > 0.25

for all non-torsion P € E,, (K), which is obtained after a number of refinements as
shown in Table 5.5. Recall that if ﬂST(LU) = () for some v € M., then u is a lower
bound and so there is no need to compute [ T for any v € M.

Finally, we note that the Tamagawa indices ¢, at v = py, po are 2 and 1 respec-
tively. Moreover, since E has only one real embedding, say, £ with three real

roots, we have ¢,, = 2. Denote the only complex archimedean place of K by vs.
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Table 5.5: Illustration of the algorithm for Example 5.1.6

| Mmax Is any Is any ﬂS,({U) Is any ﬂTn(“) Ispa
B, (u) <17 empty? empty? lower bound?
0.50 3 No No No Fail
0.20 3 No Yes Skipped Yes
0.30 3 No No No Fail
0.25 3 No Yes Skipped Yes

Then again ¢,, = 1, and so ¢ = lem{1,2} = 2. Thus by Lemma 2.1.1, we have

h(P) > 0.25/2% = 0.0625

for all non-torsion P € E(K). Note that we have obtained no additional information
from the complex place in this specific example; however, there is no reason to

suppose that this would be the case in general.

In the next section, we will explain how to use a lower bound for the canonical
height to derive Mordell-Weil bases for elliptic curves defined over number fields.

This method will be illustrated when we revisit all the examples recently shown.

5.2 Mordell-Weil Bases

Computing Mordell-Weil bases for elliptic curves over number fields is one of the
most difficult computations in the arithmetic of elliptic curves, and so far there is
no known procedure which can determine such a basis in general. In this section, we
will illustrate an application of a lower bound for the canonical height in assisting
such computation. For more background on this section, see Section 1.2.2 or [Cre97,
Section 3.5].

Let E be an elliptic curve defined over a number field K. Recall from Sec-
tion 1.2.2 that, given some non-torsion points Py, ..., P, € F(K) whose images in
E(K)/Eios(K) generate a subgroup of finite index of E(K)/Eios(K), it is pos-

sible to “saturate” these points (which are normally obtained by performing an
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m-descent for some m > 2) to obtain a full Mordell-Weil basis for E(K). The

saturation process consists of the following steps:

1. Determine an upper bound ¢ for the index n = [E(K)/Eios(K) : (P, ..., P.)]
using the geometry of numbers (Theorem 1.2.1), which then requires a positive

lower bound for the canonical height on E(K) obtained by Theorem 3.4.1.

2. For each prime p < ¢, determine whether p | n, or equivalently, whether there

exists aq,...,a, € Z, not all divisible by p, such that

T

> a;P; = pQ (5.1)

j=1
for some @) € E(K). Without loss of generality, we can assume that |a;| < p/2.

3. If there exists a solution to (5.1), let a; be the minimal non-zero coefficient (in
absolute value). If a; = 41, then we can simply replace P; by @Q; otherwise,
we find a coefficient a; not divisible by a;. Write a; = a;q+b with 0 < b < |a,|.
Observe that

a;P; + a;jP; = a;(P; + qP;) + bP;.

This then allows us to replace the generator P; by P; + ¢F;, replace a; by b,
and replace ¢ by 7. This time, the index of the sublattice generated by the
new P, ..., P, in E(K) will be at most ¢|a;|/p.

4. Repeat the above steps until the index n is not divisible by any primes. The
final set {Pi,..., P.} will be a Mordell-Weil basis for E(K) modulo torsion.

Nevertheless, the upper bound ¢ obtained by Theorem 1.2.1 can be very large
even though the points P, ..., P, may already form a Mordell-Weil basis, and so
there can be too many primes p to consider. Fortunately, it is possible to quickly

eliminate some of p from our consideration before we actually have to solve (5.1).



108 Chapter 5. Applications

5.2.1 Sieving Procedure

This procedure was initially explained in [Sik95, Section 4], and has been described
in full details later by Prickett in his thesis [Pri04]. For convenience, we shall give
a summary here.

For a given prime p < £, let Poiq,..., Prys be a basis for Fiow(K)/pEios(K).

Our aim now is to determine the set

r+Ss
V,={a€F;"™:) a;P; € pE(K)}.

j=1

It can be seen easily that the index n is divisible by p if and only if V,, # {0}. We

choose a prime ideal p such that E is minimal at p, and satisfies the following:
1. E has good reduction at p;
2. #E(ky) is divisible by p, but not p* (Here, k,, is the residue class field).

Write #E(ky,) = Ip. Clearly, p 11 due to the choice of p.

Let 7 be a uniformiser at p. Now for each P;, we compute P; = [P; (mod ) for
allj=1,...,r+s. If P =0 (mod ) for every j, then this yields no information,
and so we should start with a new prime p satisfying the above conditions. Oth-
erwise, there exists a point, say, P{ # O (mod 7). The condition (2) then ensures
that [E(k,) is a cyclic group of order p. Thus for all j =1,...,r + s, we have

P =m;P/ (mod )

J

for some m; € Z. It then follows that if a € V},, then a satisfies the relation
r+s

ijaj =0 (mod p).
=1

By solving all of these r + s relations over F,, we eventually reduce V, into a smaller

set. In particular, if such r + s relations are independent, then V,, = {0}, and so
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the index n is not divisible by p.
It should be noted, however, that this method may sometimes fail to prove that
a point is p-saturated even though it actually is. For more details on modification

of this method, see [Pri04].

5.2.2 Examples Revisited

We will now revisit all the elliptic curves shown in Section 5.1 and illustrate how
to obtain their Mordell-Weil bases using a lower bound for the canonical height

together with the sieving procedure.

Example 5.2.1. Let K = Q(v/2) and let E = E; as defined earlier. In Example
5.1.1, we have obtained from our algorithm that iL(P) > 0.0150 for all non-torsion
P € E(K). In fact, one can check that the torsion subgroup of E(K) is trivial. We

now wish to determine whether E(K) = (P;), where

P = (1,1+V2) € E(K).

Using MAGMA, we know that h(P;) = 0.5033, and the rank of E(K) is at most 1.
Hence E(K) has rank 1. By Theorem 1.2.1, we have

n=[E(K): (P)] <+/0.5033/0.0150 = 5.7927.

It therefore remains to check whether the index n is divisible by any primes p <
5. Note that this upper bound can be computed using our MAGMA function

UpperBound4Index () in the file heightbound.m (see Appendix A.3) as follows:

> Attach("heightbound.m");

> // Define elliptic curve E

> _<x> := PolynomialRing(Integers());

> K<a> := NumberField(x"2-2);

> E := EllipticCurve([1, 1+2*al);

> P1 := E![1,1+a];

> // Use 0.0150 as a lower bound for the canonical height on E(K)
> UpperBound4Index([P1], 0.0150);

5.79270969603967816405459250
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In this example, one can easily check using division polynomial that P, ¢ pE(K)
forall p = 3,5, son must be 1, 2, or 4. A simple observation also shows that P, = 2P
where

P=(1-v21-2V2) e E(K),
and P # 2@Q) for any @ € E(K). Hence we have [F(K) : (P)] = 1, i.e., P generates

E(K).

Example 5.2.2. Let K = Q(v/7) and let E = E, as defined earlier. In Example
5.1.2, we have shown that h(P) > 0.0353 for all non-torsion P € E(K). Again, one

can check that the torsion subgroup of F(K) is trivial, and the points

Py =(0,0), Py=(1,V7)

are in F(K). We wish to show that E(K) = (P, P»).

Using MAGMA, one can see that

~ ~

h(Py) = 0.8051, h(Py) = 1.4957.
By computing the height pairing matrix, we have

(P, P)) (P, P) 0.8051 —0.1941
R(Py, P;) = det = = 1.1665 # 0.

(Py, P) (Ps, Py) —0.1941  1.4957
Hence P, and P, are independent. From MAGMA, we also know that the rank of

E(K) is at most 2. Hence E(K) has rank 2. By Theorem 1.2.1, we finally have

n = [E(K): (P, By] < 211005 ap 0150
0.0353 - v/3

Thus we shall apply the sieving procedure for all primes p < 31.

Using a similar argument as in the previous example, we deduce from sieving
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Table 5.6: Sieving procedure for the elliptic curve Fs

[ p ] p | #E(ky) | 1 ] (m1,ma) | (a1, az) \
2 (17) 318 159 [ (1,2) (0,0), (0,1)
3 (3,1+V7) 6 2 (1,2) (0,0)
(5) 24 8 (1,3)
5 (2,1 +V/7) 5 1 (1,3) (0,0)
(11) 115 23 (1,4)
7 (19,8 + /7) 21 3 (1,7) (0,0)
(29,6 + /7) 35 5 (1,1)
11| (47,30 +/7) 44 4 (1,5) (0,0)
(113,32 +/7) 99 9 (1,8)
13 (V1) 13 1 (1,6) (0,0)
(103,78 + /7) 91 7 (1,8)
17 | (29,23 +/7) 34 2 (1,2) (0,0),(1,8),(2,—1),
(37 7)’ (47 _2)’ ( 76)7
(6,-3),(7,5), (8,—4)
19 | (31,214 7) 38 2 (1,11) (0,0)
(37,9 +V/7) 38 2 (1,7)
23 (11) 115 5 (1,4) (0,0)
(337,119 + /7) 322 14 | (1,17)
29 | (103,25 ++/7) 116 4 (1,8) (0,0)
(149,56 + \/7) 145 5 (1,25) (0,0)
31 | (137,12 +/7) 155 5 (1,2) (0,0)
(139,110 + \/7) 155 5 (1,5) (0,0)

that V, = {0} for every p < 31 except for p = 2,17. For each p < 31, the
choice of p and their corresponding (my, ms) is shown in Table 5.6. For p = 2, the
sieving method yields a possible set for V5. To be precise, we have to check whether

(0,1) € V4, i.e. if there exists a point @ € E(K) such that

Py = (1,V7) = 2Q.

Using 2-division polynomial, it turns out that there is no such z(Q) € K which
satisfies the polynomial. Hence @) does not exist, and so V5, = {0}.

It still remains to find Vi7;. In this case, it suffices to check only one pair of
(a1, as), say, (a1,as) = (1,8). Again, by division polynomial, one can eventually
show that P, + 8P, # 17Q for any @ € F(K). Thus n =1, i.e., E(K) = (P, P»).

For large p, note that the p-division polynomial technique may become very
inefficient due to the difficulty in finding all roots of a polynomial of degree p?.

As suggested in [Sik95, Section 4.2], it is perhaps more practical to solve (5.1) by
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computing elliptic logarithms of all P® € E® where E™ is the embedding of F

associated to an archimedean place v € Mg, and P is the image of P on E®.

Example 5.2.3. Let K = Q(+/10) and let E = Fj as defined earlier. Note that
Eiors(K) is a cyclic group of order 2 generated by the point T = (—5,0) € E(K).
We have shown in Example 5.1.3 that i(P) > 0.0714 for all non-torsion P € E(K).
Let P, = (5,5v/10) € E(K). From MAGMA, we know that h(P;) = 0.6532, and the

rank of E(K) is at most 1. Hence E(K) has rank 1. By Theorem 1.2.1, we have

n =[B(K)/Ews(K) : (P))] < 1/0.6532/0.0714 = 3.0229.

In fact, we verify that P, ¢ pE(K) for p = 2,3. Hence n = 1, and so

E(K)=(T) x (P) 2 Z/2Z x 7.

Example 5.2.4. Let K = Q(i) and let £ = E, as defined earlier. One can check

that the torsion subgroup of E(K) is trivial. Let

3953 — 19
P (14502 1), P2:( 3 25317 6634+ 9@)‘

Then we have Py, P, € E(K). We will show that E(K) = (P, P»).
In Example 5.1.4, we have obtained from our algorithm that fL(P) > (.18 for all

non-torsion P € E(K'). Moreover, one can check using MAGMA that

~ ~

h(Py) =1.2326, h(Py) = 4.2804,

and the rank of F(K) is at most 2. Computing the height pairing matrix, one can
see that

R(Pl, PQ) = det((Pj, Pk))lgj,ng = 3.6050 7é 0,

i.e., P, and P, are independent. Thus F(K) has rank 2. It then follows from
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Table 5.7: Sieving procedure for the elliptic curve E,

[ p | p | #E(ky) | 1 ] (m1,mo) | (a1,0a2) |

2 (3) 10 51 (L0) (0,0)
(53,23 + i) 54 27| (1,1)

3| (13,8+4) 21 7 (1,2 (0,0)
(17,4 4 14) 24 8 | (1,1)

5 3) 10 2 (1,2 | (0,0
(5,2 + 1) 5 1| (1,3

7 (13,8 +4) 21 31 (0,1) (0,0)
(73,46 + ) 63 9 | (1,4)

11 % 11 1 (1,2 (0,0)
(109,33 +4) | 110 | 10| (1,7)

Theorem 1.2.1 that

24/3.6050

n=I[EK):(P,P)] < ——— =12.1801.

B(K): (A, P)) < 520

The sieving procedure then shows that n is not divisible by any primes p < 11; see
Table 5.7. Therefore n = 1, and so E(K) = (P, ). In fact, it can be verified
that P, has the smallest canonical height among non-torsion P € E(K), with

h(P;) = 1.2326. Compare this with our lower bound A(P) > 0.18.

On the other hand, if we had used the lower bound obtained by Theorem 2.4.2
(i.e., h(P) > 2.34 x 1073 for all non-torsion P € E(K)), then it would follow from
Theorem 1.2.1 that n < 936. Finally, we note that the lower bound obtained by
Hindry and Silverman [HS88, Theorem 0.3] (i.e., A(P) > 3.0624 x 10725 for all
non-torsion P € E(K)) would lead to n < 7.1591 x 10?*, which would make it

considerably harder to verify that n = 1.

Example 5.2.5. Let K = Q(i) and let E = Ej; as defined earlier. We have already
shown in Example 5.1.5 that h(P) > 0.01 for all non-torsion P € E(K). One can
check that E has trivial torsion subgroup and the point Py, = (0,0) € E(K). In
Cremona’s paper [Cre94, Example 2], it has been asked whether E(K) = (F). We
will show that this is the case.

Using MAGMA, one can check that the rank of E(K) is at most 1. Since B is

non-torsion, the rank of F(K) is also at least 1. Hence F(K) has rank 1. Theorem
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1.2.1 then implies that

n=[E(K): (P)] <+/0.0230/0.01 = 1.5173 < 2,

i.e., n =1. Hence E(K) = (F).

Example 5.2.6. Let K = Q(f) where 6 is a root of the polynomial z3 — 2, and
let F = Fj as defined earlier. One can verify that the torsion subgroup of E(K) is

trivial, and

P =(0,0), Po=(1+0,1), P3y=(3—90+70% 31+ 230 — 360%),

are in E(K). We wish to confirm that E(K) = (Py, P, Ps).
In Example 5.1.6, we have shown that A(P) > 0.0625 for all non-torsion P €

E(K). In addition, one can check using MAGMA that
h(P;) = 0.6303, h(P,) =0.8045, h(Py) = 2.4430,
and the rank of F(K) is at most 3. Computing the height pairing matrix, we have

R(Pl, Pz, Pg) = det((P], Pk>)1§j,k§3 = 06263 7é O,

i.e., Py, Py, P; are independent. Thus F(K') does have rank 3. Then by the geometry

of numbers (Theorem 1.2.1), we obtain

n=[E(K): (P, P, Ps)] < /2(0.6263)/(v/0.0625)% = 71.6300.

Using the sieving procedure, we can eventually show (details omitted) that n is not

divisible by any primes p < 71. Therefore n = 1, and so

E(K) = (P, P, Ps).
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It can be verified that P, has the smallest canonical height among non-torsion P €

E(K), with h(P;) = 0.6303. Compare this with our lower bound h(P) > 0.0625.

5.2.3 Comparison with a Searching Points Method

Let E be an elliptic curve over a number field K. As suggested by a referee of

[Thol0], we shall briefly describe an alternative way, as illustrated in [Sil90], to

derive a Mordell-Weil basis for F(K), and finally compare it with our method.
Suppose we can find a set of points {P,...,P.} C E(K) which bijects to a

basis for the group E(K)/mE(K) for some m > 2. Let

C, = max{ﬁ(@) :Q=mP + - +n,.P., with0<nq,...,n. <m}.

Then [Sil90, Proposition 7.2] says that the set S = {R € E(K) : h(R) < Cy}
generates F(K). Using a result of [CPS06] or [Sil90], one can compute a constant

Cy satisfying h(P) — h(P) < Cy for all P € E(K), where h(P) denotes the Weil

height of the xz-coordinate of P. It then follows that

h(R) < Cy + Cy

for all R € S. This, in principle, will allow one to search for R. If there exists
R € S which is not a linear combination of Py, ..., P, then we can replace some P,
by the linear combination of R. Repeating this process until no such R exists, the
final set of P, ..., P. will eventually be a Mordell-Weil basis for E(K).

The difficulty of this method lies in searching for points. Even though the
xz-coordinates have bounded height, this can be a non-trivial task especially if
[K : Q)] is large. In contrast, our method completely circumvents this problem.
If P,...,P. do not yet form a Mordell-Weil basis, we can use the sieving pro-
cedure to derive a new set of candidates. This process, which can be done more

quickly than searching for points, however requires an upper bound for the index
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[E(K)/Eiors(K) : (Py,. .., P.)], which in turn requires a lower bound for the canon-
ical height on E(K).

5.3 Integral Points on Elliptic Curves

In this section, we will explain how Mordell-Weil bases, periods of elliptic curves,
and complex elliptic logarithms can assist in finding integral points on elliptic curves
over number fields. The method to be described here is a summary of a paper by
Smart and Stephens [SS97] with some modifications. Some illustrative examples,
which are computed by the algorithm based on this method (see Appendix A.2 for

its MAGMA source code), will be also given at the end of this section.

5.3.1 Introduction

Definition. Let E be an elliptic curve defined over a number field K. We say that
a point P = (z,y) € E(K) is an integral point if both x,y € Ok, where O is the

ring of integers of K.

If the rank of F(K) is non-zero, then we have already seen that there are in-
finitely many points in E(K). However, this does not imply that the set of all
integral points is also infinite. In fact, it has been proved by Siegel [Sie26] that
there are only finitely many integral points in F(K).

Suppose { Py, ..., P} is a Mordell-Weil basis for E(K). Then every point P €

E(K) can be written as
P=qP+- - +q¢P+T, (5.2)

for some T' € Eios(K) and ¢qi,...,q, € Z. If P is an integral point, then Siegel’s

Theorem implies that there exists an upper bound on each coefficient |g;|. Let

Q = max {|g;|}.

1<5<r
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Provided that an upper bound for () is known, then we can, in principle, obtain all
integral points in F(K) simply by brute-force search.

Given a Mordell-Weil basis for E(K), Smart and Stephens [SS97] have proposed
a method for computing an upper bound for ¢). This method can be roughly
described as follows. For each archimedean place v € M} U M§, we let E® be the
associated (real or complex) embedding of E. Then on each E), the method will
initially compute a rather large bound (@),, and then repeatedly apply LLL basis
reduction [LLL82] to reduce @, as much as possible. Finally, we take the maximum

among all (), to be an upper bound for Q.

5.3.2 Initial Bounds

For each v € M} U M§, let E® be the associated (real or complex) embedding of

E. Without loss of generality, we can assume that E() is of the form

EW . Y?=4X?+ A,X,+ B,

for some A,, B, € C, depending on F and v. Recall from Section 1.3 that there
exists an isomorphism (of complex analytic Lie groups) C/A, — E®(C) for some

lattice A,, given by the map

z (mod Av) = (pa,(2), 94, (2))
0 (modA,) — O.

We will denote the inverse of this map, the elliptic logarithm on E®), by ¢,. For
an integral point P € F(K), let P(™) be its associated image on E™. Our aim is to
estimate both lower and upper bound for |¢,(P®)|. Combining both bounds then
yields an initial upper bound for Q).

The following lemma gives an upper bound for |p,(P®™)|; see [SS97] for the

detailed proof.
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Lemma 5.3.1. If Q > Qq, then |p,(P,)| < cgexp(—ci10Q?), for some explicitly

computable constants® Qy, co and cio depending only on E and v.

Note that the constants (g, cg,c19 are defined by a number of intermediate
constants, which are well explained in [SS97] and are defined accordingly in our
algorithm (see Appendix A.2 for the code). For now we mention that the following

information is required in order to define these constants.

1. A Mordell-Weil basis for E(K). This is essential for computing height

pairing matrix, whose least eigenvalue is required for defining )y and cyg.

2. The period lattice A, of E®. This can be obtained by Theorem 4.5.3,
and is required for the constant cg. Without loss of generality, we can assume

that A, = (wy, we) with 7 = wy/w; satisfying (3.1), i.e
7| >1, |[R(r)| <1/2, S(r) > V3/2.

3. Difference between the Weil (logarithmic) height and the canonical
height on F(K). This result can be found in [Sil90] and more recently in

[CPS06], which is required for computing y and cy.

Since ¢, : E®(C) — A, is a group isomorphism, it then follows from (5.2) that
eo(PY) = @(TV) + Z a0(P”) - (mod A,)

for some my, my € Z. Let t = ord(T). Then we have ¢, (T™)) = (njw; + nyw,)/t,

for some integers 0 < ny,ny < t. Together with (5.3), this leads to

0o (P™) Z gty (P;7) + (mat + ny)wy + (mat + ng)w,.

2All constants ¢; are indexed so that they match the ones defined in [SS97].
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In our notations, the following theorem yields a lower bound for this linear form

in elliptic logarithms.

Theorem 5.3.2 ([Dav95, Théoreme 2.1]). Let Q' = max{Qt, |mit+ny|, |mat+ns|}.
There exist explicitly computable constants® dg,dy,diy and hg, such that, if Q' >

exp(ds), then

log [ty (P™)| > —dyo(log @ + log([K : Q]dy))(loglog Q' + hg + log([K : Q]dy))" 3.

For now we note that determining dg, dy, di1g and hg requires elliptic logarithms
gpv(Pj(U)) for all 1 < j < r, which can be computed using Algorithm 4.6.2. For more
details on how to compute these constants, see [Sma98, Appendix A]; these are also
defined accordingly in our algorithm shown in Appendix A.2.

In order to make tp,(P®) lie in the fundamental parallelogram spanned by

w1, we, We require that
Im;t +n;| < tz lgx| = rQt, for j =1,2.
k=1

Thus Q' < rQt < rQeios, where ey is the exponent of Fi(K). Observe that
t | etors: Combining Lemma 5.3.1 and Theorem 5.3.2, the following proposition is

immediate.

Proposition 5.3.3 (Principal Inequality). If @ > max{Qo, exp(ds)}, then

c10Q* < dyo(log(rQeioms)+Hlog([K : Qldy))(loglog(rQeios)+hp+log([K : Qldy)) "

+ 1Og(etors Cg ) .

This proposition therefore gives us an initial upper bound for @, that is, ei-
ther the one obtained from the above inequality or max{Qy, exp(ds)}, whichever is

greater. Denote this initial upper bound by @,.

3The notations are as defined in [Sma98, Appendix A], with ¢; being replaced by d;.
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5.3.3 Bound Reduction

In general, the initial upper bound @), we just obtained is considerably too large
for a practical use. The next step in Smart and Stephens’ method is therefore to
reduce @), as much as possible. This can be achieved using an application of LLL
basis reduction [LLL82].

ri2

To use an LLL basis reduction, we first choose a constant C' ~ Q,> . Consider

the r 4+ 2-dimensional lattice generated by the columns of the matrix

1 0 0 0
0 0 0 0
L —
0 1 0 0
CRE(AD)] .. [CROe(P)] [CR(w)] [CR(ws)]
CS(o P .. [C3(pu(PON] [CS ()] [CS(ws)

(see [Sma98, p. 84]), where [-] is the rounding towards 0, i.e.,

|lz] if x>0,

2] =
[z] if 2 <0.

In general, C' can be very large, hence one needs to compute the periods wq, wy

), e ,PT(U) to a very high degree of

and complex elliptic logarithms of the points Pl(v
precision in order to ensure that their integer parts are correct.

Next, we let

251 l
e = £ tQ’/‘ = tqr )
mlt + nq )\1

mgt + no )\2
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where

A= (mat 4 ) [OR(wn)] + (mat + 1) [OR(wo)] + Y tg;[CR(pu(B))],

Jj=1

)\2 = (mlt + nl)[C%(wl)] + (m2t + ng)[C%(wg)] + thj [C%((pv<Pj(v)))]

j=1

After applying LLL algorithm [LLL82, Proposition (1.11)], one shall obtain another
basis {by, ..., b, 2} which spans the same lattice as £ does. Since £ # 0, the LLL

algorithm assures that

le® > 277"l |1

Recall that |g;| < @, for all 1 < j < 7, and |m;t + n;| < rQut < rQuetors for

j = 1,2. This leads to the following proposition.

Proposition 5.3.4. If /277 1|by[|2 — 7Q%eZ , > 3rQueios/ V2, then

1
Qz < — (log(cc9€t0rs) - IOg (\/2T1|’b1”2 - nge%ors - %eretors)) . (54)

C10

Proof. By definition of [-], we have

. " tlg)| it 4 na| [mat + ny
A +ido — Clo, (PN < V2 J
A 4 ido — Ctoy( )\_\/_(J§12+ 5 + 5
3
< —=rQvCiors-

Thus

_ 3 , 3
‘)\l + Z)\Z‘ S ETQvetors + C’tspv(P( ))’ S ETQvetors + CC9 eXp<_010Q12;)'
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Now we have

2 Yoy < Jle)? = 2 g2+ A+ ik

Jj=1

3 2
S erzefors + <Eeretors + CC9 eXp(—CloQ?;)) .

Hence

3
\/Z_T_1||b1||2 - TQgegors - Eeretors S C’C9 eXp(_€10Q121>’

and (5.4) then follows after taking logarithms on both sides, which will be well-

defined provided that

V2~ Qe > 3rQuetan/ V2.

O

Note that if £ does not satisfy the condition in Proposition 5.3.4, we can redefine
L with a larger C' until the condition is satisfied. Moreover, once we obtain a smaller
Q,, we can repeat the above process with this new (), until no further reduction
is possible. Finally, we take the maximum among all reduced @), to be an upper
bound for ). Searching for all integral points then becomes an easy task if this

bound is feasible.

5.3.4 Examples

We have implemented Smart and Stephens’ method into an algorithm and use it to
compute the following examples; its MAGMA code can be found in Appendix A.2.

A demonstration of how to use this code will be shown in Example 5.3.6.

Example 5.3.5. We will first verify the result from [SS97, Example 2]. Let E be
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the elliptic curve defined over K = Q(v/—2) given by the Weierstrass equation

E: y?=2a%— 16z + 16.

It can be checked that the torsion subgroup of E(K) is trivial. In [SS97], it is

claimed that E(K) = (P, P5), where

P =(0,4), P,=(2,-2V-2).

We will first confirm that this is indeed the case. Using our algorithm for computing

a lower bound for the canonical height, we obtain

~

h(P) > 0.012

for all P € E(K). Then one can see from the height pairing matrix that

R(Pl, Pg) = det((Pj, Pk>)1§j,k§2 = 0.0330 7é O,

i.e. P, and P, are independent. In addition, one can check using MAGMA that the
rank of E(K) is at most 2. Hence E(K) has rank 2. By the geometry of numbers

(Theorem 1.2.1), we have

n = [E(K): (P, P,)] < 17.4808.

In fact, one can verify that n = 1 after applying the sieving procedure for all primes
p < 17. Hence E(K) = (P, Py).

Next, we wish to compute all integral points P € E(K). As discussed earlier,
this is equivalent to finding an upper bound for ) = max{|q/|, |¢:|}, where P =

¢ P + ¢P». In this example, F has only one complex embedding E®). Using
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Table 5.8: LLL reduction used in Example 5.3.5

’ Previous @, \ C being chosen \ New Q, ‘

1061 1.0000 x 10%* 106
106 1.2625 x 108 27
27 5.3144 x 10° 25
25 3.9062 x 10° 24

Theorem 4.5.3 to compute the period lattice A, of E®), we have A, = (wy, wy) with

wy; = —11.225694 ..., wy =1.496729....

Note that wy, ws are chosen so that 7 = wy /w; satisfies (3.1) as required. Moreover,
one can compute both lower and upper bounds for k(P) — h(P) for all P € E(K)

using, for example, [Sil90, Theorem 1.1]*, and obtain

—5.461894 < h(P) — h(P) < 6.211695.

Using the above quantities, our algorithm shows that

Qo = 12.2286, ¢y = 2106.0087, c10 = 0.0256.

In addition, we obtain the following quantities for David’s constants:

ds = 31.5690, dg = 4.7156, dyp = 1.9249 x 10"°,  hp = 11.6136.

This finally yields @, < 10%! as an initial upper bound for Q. After applying LLL
basis reduction repeatedly until no further reduction is possible (see Table 5.8), we
are finally able to reduce an upper bound for ) to 24. A quick search within this
range then reveals all integral points in E(K), as listed (up to inverse) in Table 5.9.

Note that the quantities g, cg, 19 we obtained from our algorithm are slightly

4We use Silverman’s bounds in this example so that our constants can be compared with the
ones shown in [SS97, Example 2| directly. In our algorithm (see Appendix A.2), we will use
[CPS06, Theorem 1] to compute these bounds.
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Table 5.9: Integral points on y? = 3 — 16x + 16 over Q(v/—2)

[ (01,02) [ P=a1PL + 2P \
(1,0) [(0.4)

(2,0) | (4.4)

(3,0) | (—4,—4)

(4,0) | (8,—20)

(5,00 | (1,-1)

(6,0) | (24,116)

0,1) | (2,-2v-2)

(1,1) | (4vV/=2,-12+8V/—=2)
(1,=1) | (—4v=2,-12 - 8/-2)
(2,1) | (—4+4v/-2,20)

(2,-1) | (-4 —4v/=2,20)

(5,1) | (—10 —4y/=2,28 — 18y/=2)
(5,—1) | (=10 +4y/—2,28 + 18y/-2)
(3,2) | (60 —40y/—2,316 — 480/—2)
(3,—2) | (60 + 40y/—2, 316 + 480/—2)

different from the ones shown in [SS97, Example 2] due to some modifications in

the formulas; this, however, has no effect on the final result.
Example 5.3.6. Let K = Q(#) where 6 is a root of the polynomial 23 — 2. In
Example 5.2.6, we have readily verified that the elliptic curve Eg/K given by
Ee: y*=a°— (0> +30)x +06°
has { Py, P, Ps} as a Z-basis for F(K), where

=(0,0), Py=(1+6,1), P3=(3—90+76% 31+ 230 — 366%).

Thus any integral point P can be expressed as P = ¢1 P, + o P> + g3 P3 for some
1,42, q3 € Z. We now wish to find all integral points in Eg(K), that is, to find an
upper bound for @ = max{|qi|, |¢z|, |g3|}. To ease notation, we shall write E' = Fjg
and let v,, v, be the real and complex archimedean place of K respectively.

In order to determine such an upper bound, we will start by computing some

certain constants associated to E/K. By [CPS06, Theorem 1], we first obtain

—1.196864 < h(P) — h(P) < 0.174492
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for all P € E(K). Moreover, our algorithm shows that hgy = 11.9773. The next
step is to compute other constants associated to each real and complex embedding
of E respectively.

Consider the case when v = v,.. Using Theorem 4.5.3 and some linear trans-
formation, one can see that a Z-basis {w;,ws} for the period lattice of the real

embedding E® is given by

wy; = 11.658105..., wy = —1.815187....

Observe that 7 = wq/w; satisfies (3.1). Combining all information on F/K and

E®) we have obtained so far, our algorithm shows that

co = 19.6306, c10=0.2017, Qo= 2.8967,

and also

ds = 32.5576, dy =5.5533, dyo = 7.9894 x 10'¢L.

Hence by Proposition 5.3.3, we obtain @, = 10%7 as an initial upper bound for
Q. After applying LLL basis reduction repeatedly as shown in Table 5.10, one can
finally reduce @, to 11.

For v = v., we also obtain from Theorem 4.5.3 that the period lattice of the

complex embedding E® is given by A, = (w;,w,), where

wy; = 1.106643 ... +41.444101 ..., we = —1.838531...4+¢1.133717....

Again, wy, wy are chosen so that 7 = wy/w, satisfies (3.1). A similar computation

as before also shows that

cog = 214.9545, c¢10 = 0.1009, Qo = 3.3679,

dg = 32.5576, dg = 5.7684, dyo = 6.2775 x 106,
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Table 5.10: LLL reduction used in Example 5.3.6

V=V, \\ V=V, ‘
Previous @, | C being chosen | New @, || Previous @, | C being chosen | New @,
1087 1.0000 x 10°22 67 1087 1.0000 x 10261 60
67 2.7207 x 1016 12 60 4.6656 x 109 14
12 5.1598 x 109 11 14 7.5295 x 106 13

Table 5.11: Integral points on the elliptic curve Ejg

[ (q1,02,43) | P=aq1PL+ P2+ q3Ps ‘
(1,0,0) (0,0)
0,1,0) | (1+6,1)
(1,—1,0) | (=6,-26)
(2,-1,0) | (9+ 6,27 — 46)
(0,0,1) (3 — 90 + 762,31 + 230 — 3602)
(2,—-2,—1) | (139 + 1110 + 8762, 2837 + 22530 + 178802)

In consequence, Proposition 5.3.3 yields @, = 10%" as an initial bound, which is
eventually reduced to 13 after successive LLL reductions as shown in Table 5.10.
Hence we have ) < max{11,13} = 13. The complete list of all integral points (up
to inverse) in E(K) is shown in Table 5.11; this is computed using our MAGMA

code in Appendix A.2 (intpts.m) together with the following instructions:

Attach("nfhtbound.m"); // from Cremona - for computing CPS bound
Attach("intpts.m"); // main program for computing integral points
Attach("elog.m"); // for computing periods and elliptic logarithms
SetVerbose("Intpts", 1); // minimal printing

// Define elliptic curve E

_<x> := PolynomialRing(Integers());

K<a> := NumberField(x~3-2);

E := EllipticCurve([-a"2-3*a, a~2]);

// Generators for E(K)

P1 := E![0,a];

P2 := E![1+a,1];

P3 := E![3-9*a+7*a"2, 31+23*a-36*a"2];

L, _ := IntegralPoints(E, [P1,P2,P3]);

Maximum absolute bound on coefficients = 13

Exact arithmetic

[1, 0, 0] --=> (0 : a : 1)

VVVVVVVVVVYVVYV

[0,1, 0] --——> (a+1:1:1)

[1, -1, 0] -=-> (-a : -2%a : 1)

[2, -1, 0] ——=> (a + 9 : -4%a - 27 : 1)

[0, 0, 1] -——> (7*xa”2 - 9%a + 3 : -36%a”2 + 23%a + 31 : 1)

[ 2, -2, -1 ] -=-=> (87*a"2 + 111*a + 139 : 1788*a"2 + 2253*a + 2837 : 1)

sk sk stk ok sk stk ok sk stk ok sk sk ok sk ok ok sk ok ok o

> L;

[(O:a:1), (a+1:1:1), (-a: -2%xa : 1), (a+ 9 : -4%a - 27 : 1), (7T*a"2

- 9%a + 3 : -36%a”2 + 23xa + 31 : 1), (87*a"2 + 111*a + 139 : 1788xa"2 +
2253%a + 2837 : 1) ]

In conclusion, it should be noted that although Smart and Stephens’ method

[SS97], in principle, allows one to find all integral points on any elliptic curves over
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number fields, it requires a number of certain results on elliptic curves which may
not be obtained easily, especially in the past. For example, lack of an algorithm for
computing period lattices of arbitrary elliptic curves over C would prevent one to
apply the method to most elliptic curves other than the ones having real coefficients.
Our main results on height bound (see Chapter 3), period lattices and complex
elliptic logarithms (see Chapter 4) therefore enhance Smart and Stephens’ method

by minimising its limitations.

5.4 Elliptic Curves with Everywhere Good Re-
duction

We finally come to the last section of this thesis, where we will illustrate an applica-
tion of integral points, whose computation requires all the main results of this thesis,
on finding elliptic curves with everywhere good reduction over some quadratic num-
ber fields. The method for finding this family of elliptic curves is due to Cremona

and Lingham [CLO07], which will be explained very briefly in this section.

5.4.1 Cremona-Lingham’s Method: An Overview

Definition. Let K be a number field with ring of integers Ok, and let S be a finite
set of prime ideals of Ox. We say that € K is an S-integer if ord,(z) > 0 for all

prime ideals p ¢ S.

It is easy to verify that that the set of all S-integers is a ring, which will be
denoted by Ok s from now on.

For a finite set S of prime ideals of Ok and m € Z-, we define
K(S,m)={xe K*/K" :ordy(x) =0 (mod m) for all p ¢ S}.

Here, K* = K\ {0}. For convenience, we will also abuse the notation and say that
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an element x € K* is in K (S, m) if xK*™ € K(S,m). The following proposition

can be proved very easily.

Proposition 5.4.1 ([CLO7, Proposition 2.1]). Let m,n be coprime. Then

K(S,mn) =2 K(§,m) x K(S,n)

amubn

via the map w +— (w,w), with inverse map (u,v) — v , where am + bn = 1.

For this application, we will see later that we will need to consider K(S,m)
for m = 4,6,12, and also the set K(S,6);2 which is the image of the natural map
K(8,12) — K(S,6). By Proposition 5.4.1, it then suffices to compute K(S,m)
only for m = 2,3,4. For m = 2,3, this can be computed easily using the MAGMA
function pSelmerGroup(). A set of MAGMA functions for determining K (S, 4) has

been implemented by Professor John Cremona who kindly supplied me with them.

Let E be an elliptic curve defined over K, given by a Weierstrass equation (1.1)

as before, i.e.,

E: y2+a1wy+a3y = 2 + ayx® + agx + ag.

Definition. We say that E has good reduction at p if it has a p-integral model (i.e.,

ordy(a;) > 0 for all j) whose discriminant A is a p-unit (i.e., ord,(A) = 0).

By Shafarevich’s Theorem (see [Sil86, pp. 263-264] for the proof), it is well
known that there are finitely many isomorphism classes of E/K having good re-
duction outside a finite set of primes S. The following proposition shows the connec-
tion between K (S, 6)12 and the set of all elliptic curves over K with good reduction

outside S.

Proposition 5.4.2. Let E be an elliptic curve defined over K with j-invariant
J(E) = j #0,1728 and good reduction at all primes p ¢ S. Set w = j2(j — 1728)3.
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Then
Ae K(S,12), j€Oks, weK(S,6)n.

Conversely, if j € Og.s with w = j2(j — 1728) € K(S,6)12, then the elliptic curve

E: y* =2 —3u%(j — 1728)x — 2u®j(j — 1728)?

with uw € K* satisfying (3u)%w € K(8,12), has j(F) = j and good reduction at all

primes outside the extended set S =S U {p : ord,(6) > 0}.
Proof. See [CLO7, Proposition 3.2]. O

To obtain elliptic curves £ with j(E) # 0,1728 and good reduction outside
S, the strategy of Cremona and Lingham’s method is to consider each class w €
K (8,6)12 in turn, and determine all possible j € Ok s satisfying w = j2(j — 1728)?
(mod K*®). For each of such j, one then obtain an elliptic curve E with good
reduction outside S using the converse of Proposition 5.4.2. If such E also has
good reduction at all primes p | 6, then E has good reduction outside S, and we
discard E otherwise. By [CLO7, Proposition 3.4], the complete set of all curves
with j-invariant 7 and good reduction outside § is obtained by twisting E with

ue K(S,2).

Definition. Let E be an elliptic curve defined over a number field K, and let S
be a finite set of prime ideals of Ok. A point P = (z,y) € E(K) is said to be an
S-integral point if both z,y € Ok s. In addition, if S = 0 (i.e., Ok s = Ok), then

we simply say that P is an integral point.

The next proposition shows that all possible j can arise from S-integral points

on certain elliptic curves over K.

Proposition 5.4.3. Let w € K(S,6). Fach j € Oks \ {0,1728} with j(j —

1728)% = w (mod K*®) has the form j = 2% /w = 1728 + y*/w, where P = (z,v)
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(with xy # 0) is an S-integral point on the elliptic curve

E,: v =a2%—1728uw.

Proof. See [CL07, Proposition 3.3]. O

It should be noted, however, that not all the values 5 obtained by Proposition
5.4.3 are S-integral. Furthermore, not every S-integral j arising from an S-integral
points on some FE,, will necessarily be the j-invariant of a suitable elliptic curve,

unless j is derived from w € K(S,6)1s.

To summarise, in order to find elliptic curves with everywhere good reduction,
we set S = () and apply Cremona and Lingham’s method [CL07]. For those curves

with j-invariant neither 0 nor 1728, the computation proceeds as follows:

1. Compute K(0,6) from K(0,2) and K(0,3), and determine a (finite) represen-

tative set W of w € K(0,6)12.

2. For each w € W, find all integral points on the elliptic curve E,,/K such that

j=a%/w € Ok.

3. If such j satisfies j2(j — 1728)% € K(0,6)12, then we determine uy € K* such

that (3ug)5%(j — 1728)% € K(0,12). Let E be the elliptic curve

E: y* =2 —3uj(j — 1728)x — 2ujj(j — 1728)%.

Check if F has good reduction at all primes p dividing 6; discard F if not.
4. Repeat step (3) for each quadratic twist ™, where u € K(0,2).

Since § = (), it is immediate from [CL07, Proposition 4.1] that there is no elliptic
curve /K with j(E) = 0 and everywhere good reduction. For j = 1728, finding
elliptic curves with j-invariant 5 and everywhere good reduction does not involve

searching for integral points at all; see [CLO7, Proposition 4.2] for more details.
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5.4.2 Examples I: Real Quadratic Fields

As we have seen in Section 5.3, the applications of all the main results of this thesis
finally allow one to use Smart and Stephens’ method [SS97] to find all integral points
on elliptic curves over number fields with less restriction. This in turn benefits to the
determination of elliptic curves with everywhere good reduction using Cremona and
Lingham’s algorithm [CL07]. In particular, we are able to settle some inconclusive
cases appearing in Cremona’s compiled list® on elliptic curves over K = Q(\/E) with
everywhere good reduction for 2 < d < 100. For more information on imaginary
quadratic fields Q(\/—_d) (with 2 < d < 100), see Section 5.4.3.

In this subsection, we will illustrate these new results in full details. Note, how-
ever, that on some real quadratic fields K we may not fully confirm non-existence of
elliptic curves over K with everywhere good reduction, nor that the list of such ellip-
tic curves is complete, owing to the difficulty in searching for non-torsion points on
certain elliptic curves. Furthermore, we carry out our computation for all d < 100
which are inconclusive from Cremona’s table, apart from d = 71,79,91 in which
there are too many elliptic curves F,,/K whose Mordell-Weil bases are unknown.

Based on the tables shown later in this subsection (see next page for the de-
scription), we obtain the following conclusion in addition to what we already know

from Cremona’s table.
Proposition 5.4.4. Let 2 < d < 100. Then we have the following:

1. Ford = 55,78,95, there is no elliptic curve over Q(\/E) with everywhere good

reduction.

2. For d = 38,41,65, we have the complete list of all elliptic curves over Q(\/E)

with everywhere good reduction.

Proof. For (1), see Table 5.17, 5.22, and 5.24. For (2), see Table 5.12, 5.13, and
5.20. 0

SAvailable at http://www.warwick.ac.uk/ masgaj/ecegr/ecegrqf.html (last checked on
November 22, 2010).
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Description of Tables

In the following pages, we will illustrate in detail how to find all elliptic curves
over a quadratic number field K with everywhere good reduction using Cremona
and Lingham’s method (see Section 5.4.1). For each K, we give a table whose

columns represent the following information:

# Index of each w.

w Each w € W, where W is the set of representatives for K((),6);2; note that this
is unique modulo K*°. If a fundamental unit € of Ok exists, then w will be

expressed in terms of e.

Torsion All generators of the torsion subgroup of E, (K), where E,, is the elliptic
curve y* = 2% —1728w. Each generator is denoted by (T, t), where T € E,,(K)
is a generator, and ¢t = ord(7). If the torsion subgroup is trivial, we simply

write “O”.
Rank The rank of E,(K).

Mordell-Weil basis A Mordell-Weil basis for £, (K). If the rank is 0, we simply

. »

write

Integral Points The list of all integral points in E,(K). If no such point exists,

«

we simply write

J # 0,1728 The list of all j associated to each integral point in E,(K). If no j

w»

exists, or the corresponding 7 is 0 or 1728, we simply write in that entry.

If some information is currently unknown, then we put “?” in that entry.
Recall that not all j shown in the table may yield an elliptic curve over K
with everywhere good reduction. However, if there exists j which gives rise to

such curves, then that j and its associated integral point will be shown in bold.
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Moreover, the details of all curves arising from that j will be shown in the second

table, whose columns are as follows:
7 The j-invariant of elliptic curves

# Index of each elliptic curve E/K with j-invariant j, having everywhere good

reduction.
a,,as,as,a4,ag The a-invariants of the Weierstrass equation of F.

A The discriminant of E. In case A cannot be expressed exactly (for example,
when there is no globally minimal model for the curve), then the ideal (A)

will be shown instead.
Torsion The torsion subgroup of E(K), represented by the same notation as above.
Rank The rank of F(K).

At the end, a summary line will be given. This can be either a conclusion
(that our list of elliptic curves over K with everywhere good reduction is complete,
or that there is no such curve), or a conjecture (especially when there exists w

which currently cannot be completely settled).
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Table 5.13: Finding elliptic curves over Q(v/41) with everywhere good reduction
(a =11 ¢ =37 —10a, N(¢) = —1)

7 # 7 w 7 Torsion 7 Rank 7 Mordell-Weil basis 7 Integral points 7 j#0,1728
1 1 ((12,0),2) 0 - (12,0) -
2| -1 ((—12,0),2) 0 - (—12,0) —
31 & ((324 +120q,0),2) 0 — (324 + 120a, 0) —
4| =& | ((—324 — 120a,0),2) 0 (—324 — 120a, 0) —
51 &2 O 1 (593 — 160a, 18915 — 5110a) | (593 — 160a, 18915 — 5110a) 152753 — 40800a
6 | —&2 O 1 (177 — 48a, —3465 + 936a) (177 — 48a, —3465 + 936a) —3537 + 1296a
7 g O 2 (20 + 8a, —48 — 16a), (20 + 8a, —48 — 16a), 960 + 256a,
(6913 + 2560a, 885221 + 327670a) (6913 4 2560a, 885221 4 327670a) 29013115611 + 10739384330a
8| -2 O 2 | (700 — 120a, 17216 — 5760a), (700 — 120a, 17216 — 5760a), 39757240000 — 107407360004,
(17,—103 — 64a) (17, —103 — 64a), 181781 — 49130a,
(44 + 8a, 240 + 128a) 412608 — 113152a
9 Conjugate to #5
10 Conjugate to #6
11 Conjugate to #8
12 Conjugate to #7
List of curves?®
j 4 +# 4 a1 4 as as 4 Qa4 4 ag A 4 Torsion 4 Rank 4
152753 — 40800a 1]1 0 0 [ —27-10a 0 T, AA‘z ba Iiida) 9y, 0
111953 + 40800a 1] 1 0 0 | —37+10a 0 et 1 ((0,0),2), (822 megv 2, 1 0
29013115611 + 10739384330a | 1 | 1 0 0 | 148—40a | 37 —10a | —€° (- w wv 2) 0
39752499941 — 10739384330a | 1 | 1 0 0 | 108+ 40a | 27+ 10a | —&° (-1.3).2 0
181781 — 49130a 1]1 a a 3 —2 —Z ((1,1),4) 0
132651 + 49130a 11 [1-a|l+a 3—a —2—a | —¢ ((1,-3),4) 0

Conclusion: All elliptic curves over Q(v/41) with everywhere good reduction have been found.

®The first two curves were previously found by Comalada [Com90, Theorem 2]; we complete the list by finding other curves.
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Table 5.15: Finding elliptic curves over Q(v/46) with everywhere good reduction
(a = /46, € = 24335 — 3588a, N () = 1)

_ # w _ Torsion _ Rank _ Mordell-Weil basis Integral points _ 7 #0,1728 _
1 1 ((12,0),2) 1 (222, 9570 (12,0) -
2 -1 ((—12,0),2) 0 — (—12,0) -
3 e3 (292020 — 430564, 0), 2) 2 (486700 — 71760a, 425172384 — 62688248a), (486700 — 71760a, 425172384 — 62688248a), 8000
ASmomewm@qumﬁmf moﬁowpmmwﬁowwwwo&mmmmmmSav (202020 — 430564, 0), -
(1606110 — 236808a, 2869913592 — 423145674a) 287496
4| —23 | {(—292020 + 430564, 0), 2) 1 Apoﬁmwummmﬁwwww»omo%of HHmHﬂﬂomo»mmwmwmwmﬁmwﬂmﬂ@mmaav (—292020 + 430564, 0) _
5 &2 9] 0 — — —
6 | —&2 O 1 (8600 + 1268a, —1515064 — 223384a) (8600 + 1268a, —1515064 — 223384a) —1280 — 128a
7 € O <1 ? ? ?
8 —€ O 0 - - -
9 Conjugate to #5
10 Conjugate to #6
11 Conjugate to #7
12 Conjugate to #8

Conjecture: No elliptic curve over Q(v/46) with everywhere good reduction exists.
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We cannot find a Mordell-Weil basis for F,,(Q(v/46)) due to the difficulty in searching for a point on the curve. Any elliptic curve with everywhere

good reduction, if exists, will arise only from this case.
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Table 5.17: Finding elliptic curves over Q(v/55) with everywhere good reduction
(a =55, =89+ 12a, N(¢) = 1)

# w 4 Torsion 4 Rank 4 Mordell-Weil basis Integral points 4 j#0,1728 4
T (209 || (e (2.0 -
2 m,w AAHOQW + H%%Qu Ovu wv 1 Aiﬁﬂomwﬂm@mwowgu m%awHwoo%Moﬁwomeoﬂ%ﬂﬂav AMOQm + H%%Q, Ov -

3| -1 ((—12,0),2) 1 (5, =) (—12,0) —

4 | —e® | ((—1068 — 144a,0),2) 1 (2848 + 384a, 220528 + 29736a) (2848 + 384a, 220528 + 29736a), —32768,

(—1068 — 144a,0) -

5 g2 (@) 0 - - —

6 g (@) 0 - - -
= (@) 0 - - -

8| —¢ (0] 0 - - -

9 Conjugate to #5
10 Conjugate to #6
11 Conjugate to #7
12 Conjugate to #8

Conclusion: No elliptic curve over Q(+/55) with everywhere good reduction exists.
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Table 5.19: Finding elliptic curves over Q(v/62) with everywhere good reduction

(a =62, e =63+8a, N(¢) = 1)

# w 7 Torsion 7 Rank 7 Mordell-Weil basis Integral points 7 J#0,1728
i (Loy |1 (o, T (12.0) -
2| -1 ((—12,0),2) 0 - (—-12,0) -
3 \mlw Aﬁ\ﬂmm + @@QJ Ovu Mv 1 Awo&wmwlmwwﬂwQ, wwﬂﬂwwmwlwwmom%ooosv A\ﬂma 4 @@Qv Ov _
4 g3 | ((756 — 96a,0), 2) 2 (1260 — 160a, —56000 + 7112a), (1260 — 160a, —56000 + 7112a), 8000
A&@wo»%mm&%m%mom; :EEJ%EETE@woammmwwoooav (756 — 96a, 0) _
680625 J 561515625 V) )
(4158 — 528a, 378000 — 48006a) 287496
5¢ £2 (@) <1 ? ? ?
6 | —&* O 0 — — -
| —e (0] <1 ? ? ?
8 € (0] 0 - - -
9 Conjugate to #5
10 Conjugate to #6
11 Conjugate to #7
12 Conjugate to #8

Conjecture: No elliptic curve over Q(+/62) with everywhere good reduction exists.

We cannot find Mordell-Weil bases for both E,,(Q(v/62)) due to the difficulty in searching for a point on both curves. Any elliptic curves with everywhere

good reduction, if exist, will arise only from these two cases.
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List of curves (continued)

p1= va 2+ Qvu
p3 = (1783,119 + a),
ps — (1783, 1663 + a),

UMHAM,HA_IQV

ps = Aﬂwv 24 + @v

pe = (73,48 + a).

7 = 161923694525417 — 35735839572482a

Curve #1 : Curve #2
a1 1 0
as 24+a 2a
as 2+4+a 0
ay —21468356714742 — 6079026789064a —333242682087072 + 73355938366985a
ag —70962492158002003969 — 20096248456507716887a || —3118188486277753575488 + 688087595049844553252a
(A) p3ps” PTpa’ps’pi”
Torsion AAEgEQSMEwwSmp“ \Eﬁwéw\ﬁmwouwav 2) ((—7417048 + 18786444, 0),2)
Rank <2 <2
7 = 126187854952935 + 35735839572482a
Curve #1 : Curve #2
ay 1 0
as 2a 2a
as 2a 0
ay —27547383503792 + 6079026789066 —98182631945888 + 21018349077737a
ag —91058615802697592007 4 20096220909124213078a || —601557702514531595840 + 132331628833007719364a
(A) ps’ps- 1P psPs”
Torsion AAHmmmmmwmmﬁwwowmpu memmmwwﬁwwoﬁpv 2) ((8294824 — 20493244, 0), 2)
Rank <2 <2

144

Conclusion: All elliptic curves over Q(v/65) with everywhere good reduction have been found.




145

"SOSBD 99T} 989N} WIOIJ ATUO SSLIR [[IM ‘)STXd JI ‘UOIIONPaI POOT
AIOYMATOAD T[JIM soAInd o1ydI[e AUy "SoAINd 959y uo jurod e I0j SuryopIess Ul AYNOIPp o) 03 aup ((L9N)Q) ™4 10] soseq [IOA\—[[OPIOJN PUY JOUURD AN,

5.4. Elliptic Curves with Everywhere Good Reduction

"SISIX0 UOIIONPAI P03 oIoyMAIoAd TIM (L9A)Q) I0a0 aamd o13dIf[o oN :eanjaaluo)

Q# 09 93e3nluo) Z1
L# 03 oyeSnluop 1
9# 09 93e3nluo) 01
G# 0y oyeSnfuop) 6
- - - 0 8] 32— |8
- - - 0 o) E L
P96VIVL + 8020TT9— | (P96SSET + 8VPGG6T "P8F9 — F0EG—) | (P9688€T + 8YPGI6T "V8F9 — ¥0£G—) | T o 2= 19
l . i 1> 0 2 | S
i i i > | (@'(02p091L — ¥01985—)) | ¢— | oF
l l i > | (@'(0'0p09TL +70198%)) | ¢ | o€
— ‘0002S6L6TLTT— (021-) ‘(vgL89% ‘0829) (o= oe—) 1 (2 (0'e1-)) - |¢
- (0D (oo moe) 1 & '(0°eD) N
| STLI'0# L syurod TexSojuy | SISBq [0 -T[PPIOIN | Squey | UoIS107, m | #

(1= (3) )V ‘DLIGS + T¥8SF = 2 ‘LIN = )
TOTJONPAT POOT AINYMATOAD TIIM (LYN)D) 1040 soamd onydifo Surpurq :1g°G 9[qeL




0
g
.8
m Table 5.22: Finding elliptic curves over Q(v/78) with everywhere good reduction
.IW (a =18, e =53+ 6a, N(g) =1)
B # w 7 Torsion 7 Rank 7 Mordell-Weil basis Integral points j#0,1728
2 1 1 ((12,0),2) 2 (36,24a), (12, 239) (36,24a), 46656,
O (12,0), -
+~
= (30, —18a), 27000,
muv (3756, —26064a) 52987905216
2 ml,u AAQwQ _ .NMQJ Ov“ Mv 1 AHHmwmwm\OHwowmQ“ ﬂﬂwwwwwwmwﬂmmofumav A@W@ _ ,NMQ: OV _
3 -1 AA\HMVOYMV 1 A%v%v A\“_.Mgov _
1| —& (1272 — 144a, 2 (=212 + 24a, 22256 — 2520a), (=212 + 24a, 22256 — 2520a), 64,
—68040 + 7704a), 6) (=283100a ' 86242-9765a ) (152428 — 17256a, —84149936 + 9528120a) —23788477376,
(1272 — 144a, —68040 + 7704a), —13824,
(0, —22680 + 2568a), -
(22680 — 2568a, 4830408 — 546936a), —39191040 + 4437504a,
(—636 + 72a,0), -
(2226 — 252a, —150228 + 17010a) —T74088,
(0, 22680 — 2568a), -
(216 — 24a, —23112 + 2616a), —39191040 — 4437504a,
(1272 — 144a, 68040 — 7704a) —13824
) g2 O 0 - - -
6 g O 1 A wowoﬂMmemD ) ﬂwm%%owwmmww:@mnv — —
7| —&2 O 1 (120 + 12a, 2808 + 312a) (120 + 12a, 2808 + 312a) —15475968 + 1752192a
8| —& | ((0,216 — 24a),3) 0 - (0,216 — 24a), (0, —216 + 24a) -
9 Conjugate to #5
10 Conjugate to #6
11 Conjugate to #7
12 Conjugate to #8
Conclusion: No elliptic curve over Q(+/78) with everywhere good reduction exists.
Ne)
<t
i
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Table 5.24: Finding elliptic curves over Q(v/95) with everywhere good reduction
(a =95, ¢ =39 +4a, N(¢) = 1)

# w 4 Torsion 4 Rank 4 Mordell-Weil basis 4 Integral points 4 j#0,1728 4
1 1 ((12,0),2) 1 Amwww%%u %v (12,0) _

2 25| (468 — 484, 0), 2) 1 Aomwmmqwo\wm%mww@ﬁ \Ewd:ﬁmwmwwwwdﬁmﬁ@v (468 — 484, 0) =

3] -1 ((-12,0),2) 1 (13000, 2erle) (—12,0) -

4 | =& | ((—468 + 48a,0),2) 1 (=312 4 32a,12008 — 1232a) (=312 + 32a, 12008 — 1232a), 512,

(—468 + 48a,0), -
(3744 — 384a,—324216 + 33264a) | —884736

5 &2 (0] 0 - - -

6 € 0] 0 - - -

7| -2 (0] 0 - - -

8| —¢ 0] 0 - - -

9 Conjugate to #5
10 Conjugate to #6
11 Conjugate to #7
12 Conjugate to #8

Conclusion: No elliptic curve over Q(1/95) with everywhere good reduction exists.
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5.4.3 Examples II: Imaginary Quadratic Fields

In this subsection, we will illustrate a similar computation on finding elliptic curves
with everywhere good reduction over K = Q(v/—d) for 2 < d < 100. Most cases,
as mentioned in another Cremona’s table®, have been already proved by various

mathematicians, including:

e Kida [Kid01, Theorem 1] has proved non-existence of such curve for d = 35,

37, 51, and 91.

e Setzer has proved non-existence for several d up to 161; see [Set78, Theorem
4(a)] for the complete list. He has also showed existence of elliptic curves with

everywhere good reduction for d = 65 [Set78, Theorem 4(b)].

e Cremona has used his joint method [CL07] to confirm non-existence of such

curve for d = 23.

In general, we also have the following theorem due to Setzer.

Theorem 5.4.5 ([Set78, Theorem 5]). If the class number of K = Q(v/—d) (d > 0)

1s prime to 6, then there is no elliptic curve over K with everywhere good reduction.

Using all the main results we have so far to assist in computing Mordell-Weil
bases and integral points, we are eventually able to use Cremona and Lingham’s
method to show non-existence of elliptic curves with everywhere good reduction over
more imaginary quadratic fields in addition to the above results”. To be precise, we

obtain the following conclusion from our tables to be shown in the following pages.

Proposition 5.4.6. For d = 26,29, 31,59, 83,87, there is no elliptic curve defined

over Q(v/—d) with everywhere good reduction.

Proof. See Table 5.25, 5.26, 5.27, 5.30, 5.32, 5.33; note that we cannot use Theorem

5.4.5 since these imaginary quadratic fields have class number not prime to 6. [

6 Available at http://www.warwick.ac.uk/ masgaj/ecegr/egr_imag.txt (last checked on
November 30, 2010).
"Except at d = 89, due to the difficulty in finding Mordell-Weil bases for most E,,(K).
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Table 5.25: Finding elliptic curves over Q(1/—26) with everywhere good reduction

(a=/~26)

7 # 7 w 7 Torsion 7 Rank 7 Mordell-Weil basis 7 Integral points 7 7 #0,1728
1 1 12,0),2 2 4,8a), (4, 3la 4,8a), (12,0), 64, —,
204
(—2876,30248a), | —23788477376,
(—42,54a) —74088

2 -1 | ((-12,0),2) 1 (=215, 2TTa) (—12,0) —

3 1+a)? 19) 1 —T522092888a 6711508+ 125528 ~ —

T Imp - @Ww 5 0 A 961 20791 v — —

5 Conjugate to #3

6 Conjugate to #4

Conclusion: No elliptic curve over Q(1/—26) with everywhere good reduction exists.
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Table 5.27: Finding elliptic curves over Q(y/—31) with everywhere good reduction

AQ _ H+<wIwH v

[ w]

Torsion

Rank 7

Mordell-Weil basis

7 Integral points 7

j#0,1728

1

((12,0),2

A\@ Ev
25 125

(12,0)

-1

((=12,0),2

(

|wooww»ﬂ® IwwwmHwo»ﬁw».fmmuwwmowwwm:v
680625 561515625

(—12,0)

—8+a

0

8—a

@)

|
) |
) |
|
|

1
1
0
0

Conjugate to #3

o o | co| o = ||Fk

Conjugate to #4

Conclusion: No elliptic curve over Q(1/—31) with everywhere good reduction exists.
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Table 5.29: Finding elliptic curves over Q(v/—53) with everywhere good reduction
(a =+/—H3)

7 # 7 w 7 Torsion 7 Rank 7 Mordell-Weil basis 7 Integral points 7 j#0,1728
1 1] ((12,0),2) 0 - (12,0) -
2 -1 {(-12,0),2) 0 - (—12,0) -
3% | —208 — 8a (@) 1,2 P, = (—64 — 8a, —896 + 32a), 7 (—64 — 8a, —896 + 32a), ? —1088 + 384a, 7
44 208 + 8a 0] 1,2 | P,=(-16 + 16a,—976 + 112a), 7 | (=16 + 16a, —976 4+ 112a), 7 | 1024 — 1024a, ?
5 Conjugate to #3
6 Conjugate to #4

Conjecture: No elliptic curve over Q(1/—53) with everywhere good reduction exists.

?One can check using MAGMA that the rank r of each E,,(K) is at most 3. By applying 2-descent twice (using MAGMA code implemented by Nils
Bruin), currently we can show that 3 out of 7 non-trivial elements of the 2-Selmer group have homogeneous spaces with no rational points, hence r < 2.
Since we can find a non-torsion point, then 1 < r < 2. Note that if the Parity Conjecture is true, then r = 1, and each E,,(K) will be generated by Py, P»

respectively.
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Table 5.31: Finding elliptic curves over Q(v/—61) with everywhere good reduction

(a =+/—61)

7 # 7 w 7 Torsion 7 Rank 7 Mordell-Weil basis 7 Integral points 7 j#0,1728
1 1 12,0),2 2 Tt i), 12,0 -
((12,0),2) Tv@ Mmmﬁvv (12,0)
25 125

29 -1 ((-12,0),2) | <2 ? (—12,0), ? -7

3¢ 3 —16a 0] <1 ? ? ?
4 | =34 16a (0] 1 (—216 — 48a, —9000) | (—216 — 48a, —9000) | —13824 — 82944a
5 Conjugate to #3
6 Conjugate to #4

Conjecture: No elliptic curve over Q(1/—61) with everywhere good reduction exists.

*We cannot find Mordell-Weil bases for both E,,(Q(v/—61)) due to the difficulty in searching for a point on both curves. Any elliptic curves with

everywhere good reduction, if exist, will arise only from these two cases.
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Table 5.33: Finding elliptic curves over Q(v/—87) with everywhere good reduction

_ 14487
(@ ==5)
7 # 7 w 7 Torsion 7 Rank 7 Mordell-Weil basis 7 Integral points 7 j#0,1728
1 1] ((12,0),2) 0 - (12,0) -
2 -1 | ((-12,0),2) 0 - (—12,0) -
3¢ 14 4 13a 0] 0 - - -
4% | —14 —13a 0] 2 P, = (—66 — 3a,—138 + 105a), | (—66 — 3a, —138 4+ 105a) | 4455 — 648a
P, — A\om\wg Smﬁﬁwaav
2 4 8
5 Conjugate to #3
6 Conjugate to #4

Conclusion: No elliptic curve over Q(1/—87) with everywhere good reduction exists.
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?One can check using MAGMA that the rank r of E,,(K) is at most 2. By applying 2-descent twice, we can show that only one non-trivial case exists,

hence r = 0.

®Note that the sieving procedure fails at p = 29; in which case we prove that [E,, (K) : (P, P»)] # 29 by solving 29-division polynomial explicitly.




Appendix A

MAGMA Source Code

As mentioned earlier, we have implemented our algorithms based on the main results
of this thesis in MAGMA. For convenience, we shall split our source code into several

files according to their applications.

A.1 Period Lattices and Complex Elliptic Loga-
rithms

We have implemented all necessary functions for computing complex arithmetic-
geometric mean (AGM), period lattices of elliptic curves over C, and elliptic log-
arithms of complex points (see Chapter 4). In the following file, some important

functions include:

AGM() This function computes an AGM of two complex numbers based on a spec-

ified set of all indices for which the pair in the AGM sequence is bad.

PeriodLattice() Given an elliptic curve E/C, this function will compute all three
minimal coset representatives of A modulo 2A, where A is the period lattice

of E. Any two of these minimal coset representatives form a Z-basis for A.

159
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EllipticLog() Given an elliptic curve £/C and a point P € E(C), this function

computes an elliptic logarithm of P.

For more details on these functions, see the documentation inside the code.

/oK deskok sk ok sk ok o ok o ok sk ok sk s sk ko s stk s ok sk o sk s ok ok ok o sk sk ok sk sk ok s ko ok sk ok ok sk ok ok ok
* elog.m

* Computing Complex AGM, Period lattices, and Complex Elliptic Logarithms

* By Thotsaphon Thongjunthug

* Last updated: 02 December 2010

* Any errors should be reported to <nookaussie@yahoo.com>

stk sk of sk o ke ok sk sk s ok sk sk ok ok sk s sk sk ok sk sk ke ok sk s ok sk s ok sk s sk sk s ok sk sk sk sk s sk sk sk ks sk ke sk sk s sk sk ke ksl sk ke ok sk sk ok sk ok ok /

declare verbose Elog, 1; // O = no printing, 1 = print more details

[ KKk ok ok ok ok o oK Kok ok ok ok ok o K K KoK oK ok ok o K K KoK ok ok ok o K KK ok ok ok o K K 3K ok ok ok ok o K KoK ok ok ok o K K KoK ok ok ok o K KK ok ok ok ok
* Main intrinsic functions
kKKK oK ok ok o K K 3K oK oK ok o o K K K 3K oK ok ok o o K K 3K oK ok ok ok o K K K 3K oK ok ok o o K K 3K oK ok ok ok o K K oK oK ok ok o o K K K ok ok ok ok o K K Kok ok ok ok /

VALY

* Given a, b, compute AGM(a, b) based on the AGM sequence having (finite

* number of) bad pairs specified by S.

* Input:

* a, b = two complex numbers

S = the set of all indices at which the pair in the AGM sequence is bad

Output:

Complex AGM of a, b, subject to |a_n - b_n| < 10"-Prec
Parameter:

Prec = precision used as the stopping criterion

(should be less than the precision of a, b to avoid infinite loop

* X ¥ X ¥ *

*%/
intrinsic AGM(a::FldComElt, b::FldComElt, S::SeqEnum : Prec := 25) -> FldComElt
{Compute AGM(a, b) based on the AGM sequence having bad indices specified by S.}
require Precision(a) eq Precision(b): "a, b must have the same precision";
require (Prec ge 0) and (Prec in Integers()):
"Precision must be a non-negative integer";
require Precision(a) gt Prec: "Prec must be less than the precision of a";

n := 0;
Sort(~“S); // sort S in increasing order
repeat

n +:= 1;

al := (a + b)/2;

bl := Sqrt(a*b);

// Find the right choice for bl

if Abs(al-bl) gt Abs(al+bl) then
bl := -bil;

elif (Abs(al-bl) eq Abs(al+bl)) and (Im(bi/al) 1t 0) then
// Re(bl/al) = 0, i.e. bl = alxi (up to sign)
// Choose bl so that Im(bl/al) > 0 (Cox’s convention)

vprintf Elog: "la_%o-b_%ol| = la_lo+b_%ol|: use Cox’s convention\n",
n, n, n, n;
bl := -bl;
end if;
a := al;
if (#S ne 0) and (S[1] eq n) then
b := -bl; // bad choice

vprint Elog: "Choose bad choice for AGM at n = ", S[1];
Remove(™S, 1); // remove the first index from the list
else
b := bl; // good choice
end if;
vprintf Elog: "la_%o-b_%ol = %o\n", n, n, Abs(a-b);
until Abs(a - b) 1t (10"-Prec);
vprint Elog: "---";
if #S ne O then
vprint Elog: "Some indices still remain in S, need higher precision";
end if;
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return a;
end intrinsic;

/*%

* Given a, b, compute an optimal AGM(a, b) (i.e. no bad pair allowed in the
* AGM sequence for all n>0)

* Input:

* a, b = two complex numbers

* Output:

*  An optimal AGM of a, b, subject to |la_n - b_n| < 10"-Prec

* Parameter:

* Prec = precision used as the stopping criterion

**/

intrinsic AGM(a::F1dComElt, b::F1dComElt : Prec := 25) -> F1dComElt
{Compute an optimal AGM of a, b.}

return AGM(a, b, []: Prec := Prec);
end intrinsic;

/**
* Given an elliptic curve E: Y™2 = 4% (X-el)*(X-e2)*(X-e3) with e_j distinct
* and el+e2+e3=0, compute the three minimal coset representatives of
\Lambda modulo 2*\Lambda, where \Lambda is the period lattice of E.
Any two of them form a \Z-basis for \Lambda.

Note: Users may need to do an extra work to obtain an orthogonal basis

in case of a rectangular lattice.

*
*

*

*

*

*

* Input:
* E = [el, e2] = two roots of E (note that e3 = -el-e2)
*

*

*

*

Output:
[wl, w2, w3] = the three minimal coset representatives
Parameter:
Prec = precision used as the stopping criterion when computing AGM
sk /
intrinsic PeriodLattice(E::SeqEnum : Prec := 25) -> SeqEnum

{Given E = [el,e2], compute all three minimal coset representatives; two of which
form a \Z-basis for the period lattice of the ellipic curve Y~2=4x*(X-el)*(X-e2)*(X-e3),
with el+e2+e3=0.3}

require #E eq 2: "E must contain exactly two complex numbers";

require (Prec ge 0) and (Prec in Integers()):

"Precision must be a non-negative integer";

el, e2 := Explode(E);

require el ne e2: "All roots of E must be distinct";

require Precision(el) eq Precision(e2): "el,e2 must have the same precision";

e3 := -el-e2;

C := Parent(el); i := C!Sqrt(-1);
a := Sqrt(el-e3);

b := Sqrt(el-e2);

c := Sqrt(e2-e3);

// Rearrange el, e2, e3 (and thus redefine a, b, c) if necessary to make
// wi, w2, w3 satisfy the 3-term relation |wi-w2-w3| = 0.
// First, check if there is an equality among a,b,c (can happen at most once)
equality := false;
if Abs(a-b) eq Abs(a+b) then
equality := true;
if Abs(c-i*b) gt Abs(c+i*b) then

b := -b;

end if;

if Abs(a-c) gt Abs(atc) then
a = -a;

end if;

elif Abs(c-i*b) eq Abs(c+i*b) then

equality := true;

if Abs(a-b) gt Abs(a+b) then
b := -b;

end if;

if Abs(a-c) gt Abs(atc) then
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c := -c;
end if;
elif Abs(a-c) eq Abs(at+c) then
equality := true;
if Abs(a-b) gt Abs(a+b) then
a := -a;
end if;
if Abs(c-i*b) gt Abs(c+i*b) then
c := -c;
end if;

end if;

// No equality from this point, choose the sign of a arbitrarily
// and choose b, ¢ to satisfy other conditions
if not equality then

if Abs(a-b) gt Abs(a+b) then

b := -b;

end if;

if Abs(a-c) gt Abs(a+c) then
c = -c;

end if;

if Abs(c-i*b) gt Abs(c+i*b) then
// Change the order to (e3, e2, el);
vprint Elog: "Changing the order of el, e2, e3 ...";

el := e3;

vprint Elog: "new el = ", el;

return PeriodLattice([el, e2] : Prec := Prec);
end if;

end if;

// Now a, b, c are valid, proceed to compute wl, w2, w3
vprintf Elog: "a = %o\nb = %o\nc = Jo\n", a, b, c;

pi := Pi(C);

wl pi/AGM(a, b : Prec := Prec);

w2 := pi/AGM(c, i*b : Prec := Prec);

w3 := i*pi/AGM(a, c : Prec := Prec);

vprintf Elog: "wl = %o\nw2 = %o\nw3 = jo\n", wi, w2, w3;

// Test relationship among wil, w2, w3;
disc := Abs(wl-w2-w3);
vprintf Elog: "|wl - w2 - w3| = %o: ", disc;
if disc 1t 10" (-Prec) then
vprint Elog: "OK";
end if;
return [wl,w2,w3];
end intrinsic;

VLS

* Given an elliptic curve E by a Weierstrass model over complex numbers,
* compute the three minimal coset representatives of \Lambda modulo

* 2x\Lambda, where \Lambda is the period lattice of E. Any two of them form
* a \Z-basis for \Lambda.

* Input:

* E = an elliptic curve over complex numbers

* Output:

* [wl, w2, w3] = the three minimal coset representatives

* Parameter:

* Prec = precision used as the stopping criterion when computing AGM

%%/
intrinsic PeriodLattice(E::CrvEll : Prec := 25) -> SeqEnum
{Given an elliptic curve E by a Weierstrass model defined over complex numbers,
compute all three minimal coset representatives; two of which form a \Z-basis
for the period lattice of E.}
require Type(BaseRing(E)) eq FldCom: "E must be defined over complex numbers";
// Transform E into the form Y"2 = 4x(X-el)*(X-e2)*(X-e3) with el+e2+e3=0
el, e2 := Explode(TransformModel(E));
return PeriodLattice([el, e2] : Prec := Prec);
end intrinsic

VLS
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* Compute an elliptic logarithm of complex points on elliptic curves of the
* form Y°2 = 4x(X-el)*(X-e3)*(X-e3) with el+e2+e3=0.
* Input:
* E = [el, e2]
* P = [x,y] = a point on E
* Output:
* an elliptic logarithm of P
* Parameter:
* Prec = precision used as the stopping criterion when computing AGM
*k/
intrinsic EllipticLog(E::SeqEnum, P::SeqEnum : Prec := 25) -> FldComElt
{Compute an elliptic logarithm of a point P = [x,y] on an elliptic curve of the
form Y°2 = 4*(X-el)*(X-e3)*(X-e3) with el+e2+e3=0.3}
// Verify if inputs are valid
require #E eq 2: "E must contain exactly 2 complex numbers";
require #P eq 2: "P must contain exactly 2 complex numbers";
require (Prec ge 0) and (Prec in Integers()):
"Precision must be a non-negative integer";
el, e2 := Explode(E);
require el ne e2: "All roots of E must be distinct";
require Precision(el) eq Precision(e2): "el,e2 must have the same precision";
require Precision(el) gt Prec: "Prec must be less than the precision of E";
e3d := -el-e2;
X, y := Explode(P);
require Precision(x) eq Precision(y): "x, y must have the same precision";
require Precision(x) eq Precision(el): "Precision of E and its point must be the same";

if Round(Abs(y~2 / (4*(x-el)*(x-e2)*(x-e3)))) ne 1 then
error "P is not on E";
end if;

a := Sqrt(el - e3); b := Sgrt(el - e2);

u := Sqrt(x - e3); v := Sqrt(x - e2);

// Use two strongly optimal sequences - choose both (a,b), (u,v) to be good
// If equality holds, either choice will do

if Abs(a-b) gt Abs(a+b) then

b := -b;

end if;

if Abs(u-v) gt Abs(ut+v) then
v = -V;

end if;

// Define t

if x in [el, e2, e3] then
t := Sqrt(x - el);
else
t = y/(2%u*v) ;
end if;
// Special case: t = 0
if t eq O then
return Pi(Parent(el))/(2%¥AGM(a, b: Prec := Prec));
end if;

n := 0;
repeat
// Compute new a, b
new_a := (a + b) / 2; new_b := Sqrt(a*b);
a := new_a; b := new_b;
// Optimal sequence: choose right choice at every step
if Abs(a-b) gt Abs(at+b) then
b := -b;
end if;
c := Sqgrt(a”2 - b"2);

// Compute new u, v, t
u:= (u+ v)/2; v := Sqrt(u”2 - c~2);
// Optimal sequence: choose right choice at every step
if Abs(u-v) gt Abs(u+v) then
v o= -v;
end if;
t = ukt/v;
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n:=n+1;
vprintf Elog: "la_%o-b_%ol = %o\n", n, n, Abs(a-b);
vprintf Elog: "l|u_%o-v_%ol %o\n", n, n, Abs(u-v);
until Abs(a - b) 1t (10"-Prec);
// xinf := t72 + 2/3x(a”2); yinf := 2%tx(t"2 + a"2);
return -Arctan(a/t)/a;
end intrinsic;

/%%
* Compute an elliptic logarithm of complex points on elliptic curves
* given by a Weierstrass equation [al,a2,a3,a4,a6]
* Input:
* E = an elliptic curve in standard Weierstrass form
* P = a point on E
* Output:
* an elliptic logarithm of P
* Parameter:
* Prec = precision used as the stopping criterion when computing AGM
%%/
intrinsic EllipticLog(E::CrvEll, P::PtE1ll : Prec := 25) -> FldComElt
{Compute an elliptic logarithm of a point P on E, where E is an elliptic
curve over C given by a Weierstrass equation.}

if P eq Identity(E) then

return BaseRing(E)!0;

end if;
newE, newP := TransformModel(E, P);
return EllipticLog(newE, newP : Prec := Prec);

end intrinsic;

/******************************************************************************

* Auxiliary intrinsic functions
stk sk ke ks ok o sk sk sk ke sk sk s ko ke sk ks ko ks ks s ke sk sk ko ke sk ks ks ok ke sk sk sk o sk ks sk ko sk sk sk ok e sk ek /

VELS
* Transform an elliptic curve given by a Weierstrass model [al,a2,a3,a4,a6]
(defined over C) into the form E’: Y"2 = 4*x(X-el)*(X-e2)*(X-e3) with
el+e2+e3=0.
Input:

E = an elliptic curve of the form [al, a2, a3, a4, a6]
Output:

[e1l, e2]

* X ¥ X X *

*%/
intrinsic TransformModel(E::CrvEll) -> SeqEnum
{Transform an elliptic curve over C given by a Weierstrass model [al,a2,a3,a4,a6]
into the form E’: Y"2 = 4x(X-el)*(X-e2)*(X-e3) with el+e2+e3=0.}
C := BaseRing(E);
require Type(C) eq FldCom: "E must be defined over complex numbers";
_<t> := PolynomialRing(C);
c4, c6 := Explode(cInvariants(E));
R := Roots(t"3 - (c4/48)*t - c6/864);
el := R[1]J[1]; e2 := R[2][1];
return [el, e2];
end intrinsic;

YELS

* Transform an elliptic curve given by a Weierstrass model [al1,a2,a3,a4,a6]
* (defined over C) into the form E’: Y~2 = 4*x(X-el)*(X-e2)*(X-e3) with

* el+e2+e3=0, and map a given point P on E to its image on E’

* Input:

* E = an elliptic curve of the form [al, a2, a3, a4, a6]

* P = a point on E

* Output:

* [e1, e2], [X,Y], where [X,Y] is the image of P on E’

*%*/

intrinsic TransformModel(E::CrvEll, P::PtEl1l) -> SeqEnum, SeqEnum

{Transform an elliptic curve over C given by a Weierstrass model [al,a2,a3,a4,a6]
into the form E’: Y"2 = 4%(X-el)*(X-e2)*(X-e3) with el+e2+e3=0, and map a point
P on E to its image on E’.}
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require P ne Identity(E): "P must not be the point at infinity";
newE := TransformModel(E);
al, _, a3, _, _ := Explode(alnvariants(E));
b2 := blnvariants(E)[1];
X := P[1] + b2/12;
Y := 2xP[2] + alxP[1] + a3;
return newE, [X, Y];
end intrinsic;

/%
* Reduce any given z into the one inside the fundamental parallelogram
* spanned by L = [wl, w2], and return [a, b] such that
* reduced z = z’ = a*xwl + bxw2, with 0 <= a,b < 1
* Input:
* L = [wl, w2] = fundamental parallelogram
* z = the complex number to be reduced
* Output:
* z’ = the reduced version of z inside the paralellogram
* [a, b] = coordinates of new z on the parallelogram
*x/
intrinsic Reduce2FP(L::SeqEnum, z::FldComElt) -> FldComElt, SeqEnum
{Reduce z modulo the lattice L}
require #L eq 2: "L must have exactly two numbers";

wl, w2 := Explode(L); tau := w2/wl;
denom := wl;
IsDenomWl := true;
if Im(tau) eq O then

error "w2/wl must not be real";
elif Im(tau) 1t O then

tau := 1/tau;

IsDenomWl := false;

denom := w2;
end if;

// Reduce z into the fundamental parallelogram

z := z/denom;

if IsDenomW1 then
beta := Im(z)/Im(tau);
alpha := Re(z - beta*tau); // already real, just put it to avoid error
z := z - Floor(beta)*tau - Floor(alpha);

else
alpha := Im(z)/Im(tau);
beta := Re(z - alpha*tau); // already real, just put it to avoid error
z := z - Floor(alpha)*tau - Floor(beta);

end if;

beta := beta - Floor(beta);
alpha := alpha - Floor(alpha);
z := z*denom;
return z, [alpha, betal;

end intrinsic;

/**

* Given a period lattice L = <wl,w2>, apply linear transformation in SL(2,\Z)
* so that we obtain a new basis {wl’, w2’} with tau = w2’/wl’ in the

* fundamental domain

* (Based on Algorithm 7.4.2 in Cohen’s "A Course in Computational Algebraic
* Number Theory")

* Input:

* L= [wl, w2]

* Output:

* [wi’, w2’] = a new basis with the above property

* A = transformation matrix where [w2’ w1’]°T = Ax[w2 w1]"T

sk /

intrinsic TransformLattice(L::SeqEnum) -> SeqEnum, Mtrx
{Apply linear transformation to a basis for a lattice so that the new basis
\{w1’,w2’\} has tau = w2’/wl’ in the fundamental domain of SL(2,\Z)}

wl, w2 := Explode(L);

tau := w2/wl;
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require Im(tau) gt 0: "Im(w2/wl) must be positive";
A := Matrix(2, [1,0,0,11);
while true do

n := Round(Re(tau));

tau -:= n;

A := Matrix(2, [1,-n,0,1]) * A;

if Abs(tau) ge 1 then
break;
end if;

tau := -1/tau;
A := Matrix(2, [0,-1,1,0]) * A;
end while;
new_w2 := A[1,1]1*w2 + A[1,2]*wl;
new_wl := A[2,1]*w2 + A[2,2]*wl;
return [new_wl, new_w2], A;
end intrinsic;

A.2 Integral Points on Elliptic Curves

The following file is our implementation (with some modifications) of Smart and
Stephens’ algorithm [SS97] for finding integral points on elliptic curves over number
fields. The only main function in this file is IntegralPoints(); see the documen-

tation inside the code for more details.

/K3 sk sk ok sk ok ok ok sk ok sk sk ok sk sk ok ks sk ok sk s ke sk sk sk sk sk s ok sk o sk sk sk sk s ok sk s ok sk sk ok sk sk ke sk sk sk ok sk e ok sk sk sk s ok sk ok ke ok ok
* intpts.m

* Computing all integral points on elliptic curves over number fields

Based on Smart & Stephens’ paper (Math. Proc. Camb. Phil. Soc. 122 (1997),
pp. 9-16) with some modifications

By Thotsaphon Thongjunthug
Last updated: 07 December 2010
Any errors should be reported to <nookaussie@yahoo.com>

Required packages:

1) elog.m - for computing periods and elliptic logarithms

2) John Cremona’s "nfhtbound.m" - for Cremona-Prickett-Siksek’s bound
(available freely on his webpage at
<http://www.warwick.ac.uk/ masgaj/ftp/progs/magma/index.html>)

sk ok ok ok skokok sk ok sk ok sk sk ok sk ok skokok sk ok sk ok skok sk sk ok sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk ok sk sk sksk sk sk sk ok sk ok ok /

*
*
*
*
*
*
*
*
*
*
*
*

VLS
* Declare printing verbose
* 0 = return result only, no detail printed

* 1 = minimal amount of details shown
* 2 = all details (e.g. values of all constants) shown (for debugging only)
*k/

declare verbose Intpts, 2;

/K3 ki sk sk ok sk ok ke ok sk sk sk sk ke ok sk sk ok sk sk s ok sk sk ke ok sk sk sk sk s ok sk s sk sk s sk sk ok sk s ok sk sk s ok sk sk ke sk sk s ok sk sk ke ok sk s sk sk ok sk ok e ok ok
* Auxiliary local functions I:

* computing constants for an upper bound on linear form in logarithm.

* The indices of c are as defined in Smart & Stephens’ paper

stk of sk o ok sk ok ok sk sk ok sk sk ke ok sk o ok sk sk ok sk sk ke sk sk s ok sk s e ok sk s sk sk s ok sk o ok sk ok sk sk ok sk sk ke sk sk s sk sk ke ksl sk ke ok sk sk ok sk ok ok /

/%%
* Compute constant c3
* Input:



A.2. Integral Points on Elliptic Curves 167

* L = a sequence of points on elliptic curves over number field
* Output:
* minimum eigenvalue of the height paring matrix
sk /
function c3(L)
M := Eigenvalues(HeightPairingMatrix(L));

M := SetToSequence(M);

M := [m[1] : m in M]; // ignore multiplicity
M := Minimum(M); // least eigenvalue

return M;

end function;

/**

* Compute constant c6

* Input:

* E = elliptic curve over real/complex numbers in standard Weierstrass form

* Require:

* elog.m

sk /

function c6(E)
R := TransformModel (E);
Append ("R, -R[1]-R[2]);
R := [Abs(r) : r in R];
R := 2#Maximum(R);
return R;

end function;

* Compute constant c8, and the periods wl, w2 of the period lattice of a

* given elliptic curve E (with w2/wl in the fundamental domain).

* Input:

* E = elliptic curve over real/complex numbers in standard Weierstrass form
* Output:

* L = the constant c8

* [wl, w2] = periods of E

*
*
*
*

Parameter:
Prec = precision for computing periods
Require:
elog.m
*x/
function c8(E : Prec := 25)
wl, w2, _ := Explode(PeriodLattice(E : Prec := Prec));

if Im(w2/w1) gt O then
L := [wl, w2];
else
L := [w2, wil;
end if;
// Apply transformation by SL(2,Z) so that tau = w2/wl is in the
// fundamental domain
L, _ := TransformLattice(L);
wList [L[1], L[2], L[1]+L[2]];
wlList [Abs(w) : w in wList];
gamma := Maximum(wList);
return gamma, L;
end function;

/**
* Compute absolute logarithmic height of an element in n-projective space
* over a number field K
* Input:
* X = a sequence of elements in a number field K
*k/
function AbsLogHeight (X)

// X cannot be zero vector

if #X eq #[x : x in X | x eq 0] then

error "X cannot be zero vector";
end if;
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// Find all prime ideal that divides some denominators of x_i

I:={}
K := Parent(X[1]); // assume each x_i is in the same field
0 := RingOfIntegers(X);
for x in X do
den := 0 ! Denominator(x);
L := Decomposition(den);
L := {1[1] : 1 in L}; // ignore multiplicity
I :=1 join L;
end for;
h := 0;

// Non-archimedean contributions
for p in I do
M := [Rationals()| 1;
for x in X do
if x eq O then
Append (™M, 0);

else
Append ("M, Norm(p)~(-Valuation(x, p)));
end if;
end for;
M := Maximum(M);
M := Log(M);
h +:= M;

end for;

// Archimedean contributions

s1l, s2 := Signature(K);
// M = [log max(|x_1l_v,..., Ix_nl_v) : v in M_K]
M= [];
for x in X do
C := Conjugates(x);
newC := [];
// Real embedding contributions
for i := 1 to sl do
Append(“newC, Abs(C[i]));
end for;
// Complex embedding contributions
for i := 1 to s2 do
Append(“newC, Abs(C[s1+(2%i-1)1)"2);
end for;

if #M eq O then
M := newC;
else
for i := 1 to (s1+s2) do
if newC[i] gt M[i] then
M[i] := newC[i];

end if;
end for;
end if;
end for;
M := [Log(m) : m in M];

// Overall absolute logarithmic height
h +:= (&+M);

h /:= Degree(X);

return h;

end function;

/******************************************************************************

*

* X X *

Auxiliary local functions II:

Computing constants for David’s lower bound on linear form in logarithms.

Notation used as in Appendix A of Smart’s book

"The Algorithmic Resolution of Diophantine Equations", with c’s being

replaced by d’s

skosk sk ok s ok sk ok s ok sk ok ok sk ok sk ok s ok sk sk ok sk ok ok ok sk ok sk ok sk sk sk ok sk sk sk sk ok sk ok sk ok ok sk sk ok sk ok sk ok sk k sk ok sk sk sk sk sk skokskok ok sk ok ok ksk sk ok kokok /

VLS
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* Compute the "height" of elliptic curve

* Input:
* E = elliptic curve over number field in standard Weierstrass form
*%/
function h_E(E)
j := jInvariant(E);
C4, C6 := Explode(cInvariants(E));
g2 := C4/12;
g3 := C6/216;
m := Maximum([1, AbsLogHeight([1, g2, g3]), AbsLogHeight([1, j1)1);
return m;

end function;

/**

* Compute the list of modified height of a point P in E(K)

* depending on embedding

* Input:

* E = elliptic curve over a number field K in standard Weierstrass form
* P = a point in E(K)

*  ElogEmbedP = elliptic logarithm of the image of P in some embedding

* D7 = constant d7 (depending on embedding)

**/
function h_m(E, P, ElogEmbedP, D7)
K := BaseRing(E);
L := [Height(P), h_E(E), D7/Degree(K)*Abs(ElogEmbedP) "2] ;
L := Maximum(L);
return L;

end function;

* Compute two extra h_m’s based on the two periods

* Similar to h_m, but now ElogEmbedP becomes a period of the fundamental

* parallelogram of some embedding of E

* Input:

* E = elliptic curve over a number field in standard Weierstrass form
*  Periods = [wl, w2] = period lattice of some real/complex embedding of E

* D7 = constant d7 (depending on embedding)

function Extra_h_m(E, Periods, D7)
D := Degree(BaseRing(E));
h := h_E(E);
h1l := Maximum([0, h, D7/D*Abs(Periods[1])~2]);
h2 := Maximum([0, h, D7/D*Abs(Periods[2])"2]);
return [h1, h2];

end function;

/%

* Compute constant d8

* Input:

* E = elliptic curve over a number field K in standard Weierstrass form
* L = a sequence of points in E(K) (e.g. Mordell-Weil basis)

* Elog = a sequence of (pre-computed) elliptic logarithms of points in L

* on some fixed embedding

* Periods = [wl, w2] = period lattice of some embedding of E

* D7 = constant d7 (depending on embedding)

*%/
function d8(E, L, Elog, Periods, D7)
C := [Exp(1)*h_E(E)];
D := Degree(BaseRing(E));
for i := 1 to #L do
Append(“C, h_m(E, L[i], Elog[il, D7)/D);
end for;
C :=C cat [t/D : t in Extra_h_m(E, Periods, D7)];
C := Maximum(C);
return C;
end function;
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/%%

* Compute constant d9

* Input:

* E = elliptic curve over a number field in standard Weierstrass form

* L = a sequence of points in E(K) (e.g. Mordell-Weil basis)

* Elog = a sequence of (pre-computed) elliptic logarithms of points in L
* on some fixed embedding

*  Periods = [wl, w2] = period lattice of some embedding of E

* D7 = constant d7 (depending on embedding)

*%/

function d9(E, L, Elog, Periods, D7)

D := Degree(BaseRing(E));

c :=[;

for i := 1 to #L do
tmp := Exp(1) * Sqrt(D * h_m(E, L[i], Elog[i], D7) / D7);
tmp /:= Abs(Elogl[il);
C[i] := tmp;

end for;

// Take minimum among extra_h_m
Ehm := Extra_h_m(E, Periods, D7);
tmpl := Exp(1) * Sqrt(D*Ehm[1]/D7) / Abs(Periods[1]);
tmp2 := Exp(1) * Sqrt(D*Ehm[2]/D7) / Abs(Periods[2]);
C := C cat [tmpl, tmp2];
C := Minimum(C);
return C;
end function;

/**

* Compute constant d10

* Input:

* E = elliptic curve over a number field in standard Weierstrass form

* L = a sequence of points in E(K) (e.g. Mordell-Weil basis)

* Elog = a sequence of (pre-computed) elliptic logarithms of points in L
* on some fixed embedding

*  Periods = [wl, w2] = period lattice of some embedding of E

* D7 = constant d7 (depending on embedding)

*k/

function d10(E, L, Elog, Periods, D7)
D := Degree(BaseRing(E));
n := #L+2;
scalar := 2 * 107(8 + 7*n) * (2/Exp(1))~(2%n"~2);
scalar *:= (n+1)~(4*n"2 + 10*n) * D~ (2*n + 2);
scalar *:= (Log(d9(E, L, Elog, Periods, D7)))~(-2xn-1);
for i := 1 to #L do
scalar *:= h_m(E, L[i], Eloglil, D7);
end for;
scalar *:= &*(Extra_h_m(E, Periods, D7));
return scalar;
end function;

/%%
* Compute the right-hand side of the Principal Inequality
* Input:
* D = Degree(K), where K = number field
* r = rank(E(K))
* C9 = constant c9
* C10 = constant c10
* D9 = constant d9
* D10 = constant d10
* h = h_E(E), where E = elliptic curve over K
* Q = initial bound for the coefficients of P_i’s, where P_i’s are points
* in a Mordell-Weil basis for E(K)
* expTors = exponent of the torsion subgroup of E(K)
*%/
function RHS(D, r, C9, C10, D9, D10, h, Q, expTors)
bound := (Log(Log(Q*r*expTors)) + h + Log(D*D9)) " (r+3);
bound *:= D10*(Log(Q*r*expTors) + Log(D*D9));
bound +:= Log(C9*expTors) ;
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bound /:= C10;
return bound;

end function;

/*%

*
*
*
*
*
*
*
*
*
*
*
*
*
*

Approximate initial bound on Q = max_{1 <= i <= r}{lq_il}
Input:
D = Degree(K), where K = number field
r = rank of E(K)
Q0 = constant QO (in S&S paper, this is called KO)
C9 = constant c9
C10 = constant c10
D8 = constant d8 (from function d8())
D9 = constant d9 (from function d9())
D10 = constant d10 (from function d10())
h = h_E(E)
expTors = exponent of the torsion subgroup of E(K)

Revised: 05 May 2009

*x/
function InitialQ(D, r, QO, C9, C10, D8, D9, D10, h, expTors)

minQ := Maximum(QO, Exp(D8));

// Try to approximate Q such that Q"2 = RHS(Q) (i.e. Q makes both sides
// of the Principal Inequality equal)

// Firstly, set a guess for Q, say minQ + 1 (so that Q > minQ)

// For simplicity, let’s round Q up to the nearest power of 10

Q := minQ + 1;

x := Ceiling(Log(10, Q)); // x = log_10(Q)

// Check if Q satisfies the Principal Inequality, i.e. if Q"2 < RHS(Q)
// If so, repeat with the larger Q until we find the first Q that
// violates the Principal Inequality
// N.B. This loop will eventually terminate
exp_OK := 0; // the exponent that satisfies P.I.
exp_fail := 0; // the exponent that fails P.I.
while 107 (2*x) 1t RHS(D, r, C9, C10, D9, D10, h, 107x, expTors) do
exp_OK := x; // Principal Inequality satisfied
X *:= 2; // double x, and retry
end while;
exp_fail := x; // x that fails the Principal Inequality

// So now x = log_10(Q) must lie between exp_OK and exp_fail
// Refine x further using "binary search"
repeat
x := Floor((exp_OK + exp_fail)/2);
if 10°(2*x) ge RHS(D, r, C9, C10, D9, D10, h, 10°x, expTors) then
exp_fail := x;
else
exp_OK := x;
end if;
until (exp_fail - exp_0K) le 1;
return exp_fail; // over-estimate

end function;

/*%

*
*
*
*
*

R R K A I

Reduce the bound Q by LLL reduction until no further improvement
is possible. This function initially requires high precision to
proceed, although this should be done automatically by now
Input:
Pts = sequence of points in E(K)
j = j-th embedding (based on the index used in Conjugates()
EmbedL = a sequence of points on EmbedE (e.g. points in a Mordell-Weil
basis when embedded into EmbedE)
Elog = a sequence of (pre-computed) elliptic logarithms of points in EmbedL
C9 = constant c9
C10 = constant c10
Periods = [wl, w2] = period lattice of EmbedE
expTors = exponent of the torsion subgroup of E(K), K = number field
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* initQ = initial guess for Q to be reduced by LLL
*%/
function ReducedQ(Pts, j, EmbedL, Elog, C9, C10, Periods, expTors,
initQ)
r := #EmbedL;
newQ := initQ;
EmbedE := Curve(EmbedL[1]);

// Repeat LLL reduction until no further reduction is possible

repeat
Q := newQ;
S := r*(Q~2)*(expTors~2);
T := 3*r*Q*expTors/Sqrt(2);

// Create the basis matrix
C :=1;
repeat
= Q"Ceiling((r+2)/2);
L := ZeroMatrix(Integers(), r+2, r+2);

// Elliptic logarithm should have precision "suitable to" C
// e.g. If C = 107100, then Re(Elog[il) should be computed
// correctly to at least 100 decimal places
powl0_C := Ceiling(Log(10, C));
if powlO_C gt Precision(Elog[1]) then
vprint Intpts, 2:
"Need higher precision, recompute elliptic logarithm ...";
// Re-compute periods and elliptic logarithms
// to the right precision
// First, re-embed E into higher precision

E := Curve(Pts[1]); // elliptic curve over number field
al, a2, a3, a4, a6 := Explode(alnvariants(E));

al := Conjugate(al, j : Precision := powlO_C+10);

a2 := Conjugate(a2, j : Precision := powl0_C+10);

a3 := Conjugate(a3, j : Precision := powl0_C+10);

a4 := Conjugate(a4, j : Precision := powl0_C+10);

a6 := Conjugate(a6, j : Precision := powlO_C+10);
EmbedE i= ElllptlcCurve([al, a2, a3, a4, a6]l);
EmbedL := [];
_, Periods := c8(EmbedE : Prec := powl0_C);
X [Conjugates(P[1] : Precision := powl0_C+10) : P in Pts];
Y [Conjugates(P[2] : Precision := powl0_C+10) : P in Pts];
for i := 1 to #Pts do
P := Points(EmbedE, X[i][j1)[1];
if Abs(P[2] - Y[i]l[j]1) 1t 10~ (pow10_C/2) then
Append ("EmbedL, P);
else
Append ("EmbedL, -P);
end if;
end for;
Elog := [EllipticLog(EmbedE, P : Prec := powl0_C)
P in EmbedL];
vprint Intpts, 2: "Elliptic logarithm recomputed";
end if;
wl, w2 := Explode(Periods);

// Assign all non-zero entries
for i := 1 to r do
L[i,i] := 1;
L[r+1, i] := Truncate(C*Re(Elogl[il));
L[r+2, i] := Truncate(C*Im(Elog[il));
end for;
L[r+1, r+1] := Truncate(C*Re(wl));
L[r+1, r+2] := Truncate(C*Re(w2));
L[r+2, r+1] := Truncate(C*xIm(wl));
L[r+2 r+2] := Truncate(C*Im(w2));
L := Transpose(L); // In Magma, basis is spanned by row vector!

// LLL reduction and constants
L := LLL(L);
bl := L[1]; // 1st row of reduced basis
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// Norm(bl) = square of Euclidean norm
lhs := 2" (-r-1)*Norm(bl) - S;
until (lhs ge 0) and (Sqrt(lhs) gt T);

newQ := ( Log(CxC9*expTors) - Log(Sqrt(lhs) - T) ) / C10;
newQ := Floor(Sqrt(newQ));
powl0 := Floor(Log(10, C));
vprintf Intpts, 2: "Choose C = .40 x 10"%0. ", 1.%C/10"powl0, powlO;
vprintf Intpts, 2: "After reduction, Q <= %o\n", newQ;

until ((Q - newQ) le 1) or (newQ le 1);

return newQ;

end function;

/3% sk sk sk sk ok sk ok sk sk ok sk ok sk ok s ok sk sk ok sk ok sk ok sk ok sk ok sk sk sk ok sk sk sk sk ok s ok sk ok sk sk sk sk ok sk ok sk sk sk sk sk sk ok sk sk sk sk sk sk skok ok sk sk ok sk sk sk ok ok ok ko sk

* Main intrinsic functions
kKK KoK oK ok o o KK KoK oK ok ok o K KK oK ok ok o o K K oK oK ok ok o K KK oK ok ok ok o K KoK ok ok ok ok K KK oK ok ok ok o K KK oK ok ok ok K Kk ok ok ok /

/%%

* Search for all integral points on elliptic curves over number fields

* within a given bound

* Input:

* E = elliptic curve over a number field K in standard Weierstrass form

* L = a sequence of points in a Mordell-Weil basis for E(K)

* Q = a maximum for the absolute bound on all coefficients

* in the linear combination of points in L

* Output:

* 81 = sequence of all integral points on E(K) modulo [-1]

* S2 = sequence of tuples representing the points as a linear combination
* of points in L

* Parameter:

*  Prec = Precision used for checking integrality of points.

* (Default = 0 - only exact arithmetic will be performed)
**/

intrinsic IntegralPoints(E::CrvEll, L::[PtE1l], Q::RngIntElt : Prec := 0) ->
SeqgEnum, SegEnum
{Given an elliptic curve E over a number field, its Mordell-Weil basis L, and
a positive integer Q, return the sequence of all integral points modulo [-1]
of the form P = q_1#L[1] + ... + g_r*L[r] + T with some torsion point T and
lq_il <= Q, followed by a sequence of tuple sequences representing the points
as a linear combination of points. An optional tolerance may be given to speed
up the computation when checking integrality of points.}

// Check input validity
require IsNumberField(BaseRing(E)):
"Elliptic curve must be defined over a number field";
require (Prec ge 0) and (Prec in Integers()):
"Precision must be a non-negative integer";
require &and[P in E : P in L]: "All points in L must be in E(K)";

// Find the generators of the torsion subgroup of E(K)

Tors, map := TorsionSubgroup(E);
expTors := Exponent(Tors);
G := Generators(Tors);

if (#L eq 0) and (#G eq 0) then
return [1, [1; // nothing to do
end if;
Tors := [map(g) : g in Gl; // each generator of E(K)_tors
0rdG [Order(g) : g in G]; // order of each generator

// Create all possible (r+#Tors)-tuples
r := #L; // r = rank of E(K)
C :=[0:1iin [1..(r + #Tors)1];
ListC := [];
for i := 0 to Q do
C[1] := i;
Append (“ListC, C);
end for;

for i := 2 to r do
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tmp := [];
for j := 1 to Q do
for 1 in ListC do
tup := 1;
tupl[i] := j;

Append (“tmp, tup);

// Avoid having its negative in the list
// Only use when all previous entries in tuple are zero
for k := 1 to i-1 do

if tup[k] ne O then

tupl[i] := -j;
Append (“tmp, tup);
break;
end if;
end for;
end for;
end for;
ListC := ListC cat tmp;
end for;

// Add torsion point, if any
if #Tors ne O then
for i := 1 to #Tors do
tmp := [1;
for j := 1 to (0rdG[i]l-1) do
for 1 in ListC do
tup := 1;
tup[r+i] := j;
Append (“tmp, tup);

end for;
end for;
ListC := ListC cat tmp;
end for;
end if;

Remove ("ListC, 1); // remove point at infinity

L := L cat Tors;

vprint Intpts, 2: "Generators = ", L;
PtsList := [];

CoeffList := [];

// Skip the complex arithmetic and only perform exact arithmetic if tol = 0
if Prec eq O then
vprint Intpts : "Exact arithmetic";
for 1 in ListC do
P := g+[1[i1*L[i] : i in [1..#L1];
if IsIntegral(P[1]) and IsIntegral(P[2]) then
vprintf Intpts: "o ---> %o\n", 1, P;
Append ("PtsList, P);
TupList := [ <L[i], 1[i]> : i in [1..#L] | 1[i] ne O 1;
Append (“CoeffList, TupList);
end if;
end for;
vprint Intpts: "*"745;
return PtsList, CoefflList;
end if;

// Suggested by John Cremona

// Point search. This is done via arithmetic on complex points on each

// embedding of E. Exact arithmetic will be carried if the resulting

// complex points are "close" to being integral, subject to some precision

// Embed each generator of the torsion subgroup

basePrec := Maximum([30, Prec+10]);
X := [Conjugates(P[1] : Precision := basePrec) : P in (L cat Tors)];
Y := [Conjugates(P[2] : Precision := basePrec) : P in (L cat Tors)];

// Create all embeddings of E
K := BaseRing(E);
s1, s2 := Signature(X);
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al,
al

a2 :
a3 :
ad :

a6

//
//
/7

a2, a3, a4, a6 := Explode(alnvariants(E));
:= Conjugates(al : Precision := basePrec);

= Conjugates(a2 : Precision := basePrec);
= Conjugates(a3 : Precision := basePrec);
= Conjugates(a4 : Precision := basePrec);
:= Conjugates(a6 : Precision := basePrec);

EmbedEList := [EllipticCurve([al[j], a2[jl, a3[jl, a4[jl, a6[jl]l): j in

[1..(s1+2%xs2)]1];

Use precision to decide a possibility of "being integral".
Note that too large precision may lead to missing some integral points,
while too small precision may slow the computation.

vprint Intpts: "Precision = ", Prec;

//

Create the matrix containing all embeddings of the integral basis of K

// as its columns
IntBasis := IntegralBasis(K);
C := ComplexField(basePrec);
B := Matrix(C, #IntBasis, Degree(K),
[Conjugates(a : Precision := basePrec) : a in IntBasis]);
// Note that B is always invertible, so we can take its inverse
B := B~ (-1);
// Modified on 29-30 May 2009
// For each possible tuple representing the coefficients in a linear
// combination of points in L, compute x(P) on each embedding and store
// them. This is to:
// 1) avoid any possible risks of Magma being unable to recognise complex
// points when calling them from a nested sequence, as happen in the
// previous version, and
// 2) maintain the same (or even faster) computational speed.
// Technically, the drawback of this version is that it consumes much more
// memory than the previous one, although this is not really a huge problem
// in practice for most computers these days

x_tuple := [(C!0) : i in [1..Degree(X)1];
x_coord := [x_tuple : i in [1..#ListC]l];
for j in ([1..s1] cat [s1+1..s1+2*s2 by 2]) do

// Create the embedding of each point in L (one embedding at a time)
EmbedL := [];
for i := 1 to (r + #Tors) do
P := Points(EmbedEList[j], X[i][j1)[1];
// Choose the right sign for the y-coordinate
//if (Y[il1[j]l ne 0) and (Re(P[21/Y[il1[jl) 1t 0) then
if Abs(P[2] - Y[i][jl) 1t 10"-(basePrec/2) then
Append (“EmbedL, P);
else
Append (“EmbedL, -P);
end if;
end for;

for n in [1..#ListC] do
1 := ListC[n];
P := &+[1[i]*EmbedL[i] : i in [1..#L]];
x_coord[n] [j] := P[1];
// For each pair of complex embeddings, we only have to
// compute P on just one embedding in the pair. Another P on
// another embedding is simply the complex conjugate
if j gt sl then
x_coord[n] [j+1] := Conjugate(P[1]);
end if;
end for;

end for;

//

Point search

for n in [1..#ListC] do

// Check if the x-coordinate of P is "close to" being integral

// 1f so, compute P exactly and check if it is integral; skip P otherwise
XofP := Matrix([x_coord[n]]);

// Write x(P) w.r.t. the integral basis of (K)

// Due to the floating arithmetic, some entries in LX may have very tiny
// imaginary part, which can be thought as zero
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LX := XofP * B;
LX := [Abs( Re(LX[1,i]) - Round(Re(LX[1,i])) ): i in [1..#IntBasis]];
LX := &and[dx 1t 10"-Prec : dx in LX];

if not LX then
// x-coordinate of P is not integral, skip P
continue;

end if;

// Now check P by exact arithmetic
// Add P and the list of tuples representing P into the list
// if P is integral
1 := ListC[n];
P := &+[1[i]*L[i] : i in [1..#L]];
if IsIntegral(P[1]) and IsIntegral(P[2]) then
vprintf Intpts: "Jo ---> %o\n", 1, P;
Append ("PtsList, P);
TupList := [ <L[i], 1[i]l> : i in [1..#L] | 1[i] ne O ];
Append (~“CoeffList, TupList);
end if;
end for;
vprint Intpts: "x"745;
return PtsList, Coefflist;
end intrinsic;

/%%

* Compute all integral points on elliptic curve over a number field.

* This function simply computes a suitable bound Q, and return

* IntegralPoints(E, L, Q : tol := ...).

* Input:

* E = elliptic curve over a number field K in standard Weierstrass form
* L = a sequence of points in the Mordell-Weil basis for E(K)

* Output:

*  S1 = sequence of all integral points on E(K) modulo [-1]

* S2 = sequence of tuples representing the points as a linear combination
* of points in L

* Parameter:

*  Prec = precision used for checking integrality of points.

* (Default = 0 - only exact arithmetic will be performed)

* Require:

* elog.m - for computing elliptic logarithms

* nfhtbound.m - for computing Cremona-Prickett-Siksek height bounds

%%/

intrinsic IntegralPoints(E::CrvEll, L::[PtE1l] : Prec := 0) -> SeqEnum, SeqEnum
{Given an elliptic curve over a number field and its Mordell-Weil basis, return
the sequence of all integral points modulo [-1], followed by a sequence of tuple
sequences representing the points as a linear combination of points. An optional
tolerance may be given to speed up the computation when checking integrality of
points. (This function simply computes a suitable Q and call

IntegralPoints(E, L, Q: tol := ...)}

// Check input validity
require IsNumberField(BaseRing(E)):
"Elliptic curve must be defined over a number field";
require (Prec ge 0) and (Prec in Integers()):
"Precision must be a non-negative integer";
require &and[P in E : P in L]: "All points in L must be in E(X)";

if #L eq O then
return IntegralPoints(E, [], O : Prec := Prec);
end if;

K := BaseRing(E);
sl, s2 := Signature(K);
al, a2, a3, a4, a6 := Explode(alnvariants(E));

// Set initial precision for computing embeddings, periods, elliptic logs
// N.B. We only require high-precision elliptic logs during LLL process,
// so if our initial precision is already high enough, then we do not need
// to re-compute them again.

initPrec := 300; // this can be changed arbitrarily
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// Embed E into various (real/complex) embeddings.

al := Conjugates(al : Precision := initPrec);

a2 := Conjugates(a2 : Precision := initPrec);

a3 := Conjugates(a3 : Precision := initPrec);

a4 := Conjugates(ad : Precision := initPrec);

a6 := Conjugates(a6 : Precision := initPrec);

b2 := Conjugates(bInvariants(E) [1] : Precision := initPrec);
pi := Pi(RealField(initPrec));

// Embed generators in the Mordell-Weil basis
X [Conjugates(P[1] : Precision := initPrec) : P in L];
Y := [Conjugates(P[2] : Precision := initPrec) : P in L];

// Find the generators of the torsion subgroup of E(K)

Tors, map := TorsionSubgroup(E);

expTors := Exponent(Tors) ;

G := Generators(Tors);

Tors := [map(g) : g in G]; // generators of torsion subgroup

0rdG := [Order(g) : g in G]; // their orders

// Global constants (i.e. do not depend on any embedding of E)

C2 := -CPSLowerHeightBound(E);
C3 := c3(L);
h := h_E(E);

vprint Intpts, 2: "Global constants";
vprintf Intpts, 2: "c2 = %.40\n", C2;
vprintf Intpts, 2: "c3 = %.4o0\n", C3;
vprintf Intpts, 2: "h_E = %.4o\n", h;
vprint Intpts, 2: "-""45;

Q := [1;
// Find the most reduced bound on each embedding of E
// But first let’s adjust the index
for i := 1 to (s1+s2) do
if i le s1 then

j o= 1i;

nv := 1;

vprintf Intpts, 2: "Real embedding #Jo\n", j;
else

j = sl + (2x(i-s1)-1);

nv := 2;

vprintf Intpts, 2: "Complex embedding #jo\n", i-si;
end if;

// Create complex embedding of E

ee := EllipticCurve([al[j], a2[jl, a3[jl, a4l[jl, a6[jl1);
// Local constants (depending on embedding)

// C9, C10 are used for the upper bound on the linear form in logarithm
C4 := C3 * Degree(K) / (nv*(sl+s2));

vprintf Intpts, 2: "c4 = Y.4o0\n", C4;

C5 := C2 * Degree(K) / (nv*(sl+s2));

vprintf Intpts, 2: "cb = %.4o\n", C5;

C6 := c6(ee);

vprintf Intpts, 2: "c6 = %.4o\n", C6;

delta := 1 + (nv-1)*pi;

C8, Periods := c8(ee : Prec := initPrec-10);

vprintf Intpts, 2: "c8 = J.40\n", C8;

// N.B. Periods wl, w2 are such that w2/wl is in the fundamental domain
vprintf Intpts, 2: "Periods = %o\n", Periods;

C7 := 8%(delta"2) + (C872)*Abs(b2[j])/12;

vprintf Intpts, 2: "c7 = %.4o\n", C7;

C9 := CT+Exp(C5/2);

vprintf Intpts, 2: "c9 = %.4o0\n", C9;

C10 := C4/2;

vprintf Intpts, 2: "c10 = %.4o\n", C10;

Q0 := Sqrt( ( Log(C6+Abs(b2[j1)/12) + C5) / C4 );
vprintf Intpts, 2: "QO0 = 7%.4o0\n", QO;

// Constants for David’s lower bound on the linear form in logarithm
wl, w2 := Explode(Periods);
EmbedL := [1;
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// Find images of all points in a Mordell-Weil basis for E(K) on
// the embedding ee, and then compute complex elliptic logarithms.
for k := 1 to #L do
P := Points(ee, X[k][j1)[1];
if Abs(P[2] - Y[kI[jl) 1t 10~ (initPrec/2) then
Append (“EmbedL, P);
else
Append (“"EmbedL, -P);
end if;
end for;
//EmbedL := [[X[i1[j], Y[il[j1] : i in [1..#L1];
vprintf Intpts, 2: "Computing elliptic logarithms...";
Elog := [EllipticLog(ee, P: Prec := initPrec-10) : P in EmbedL];
vprint Intpts, 2: " : Done";

D7 := 3*pi / ((Abs(w2)"2) * Im(w2/wl));
vprintf Intpts, 2: "d7 = %.40\n", D7;
D8 := d8(E, L, Elog, Periods, D7);
vprintf Intpts, 2: "d8 = %.40\n", D8;
D9 := d9(E, L, Elog, Periods, D7);
vprintf Intpts, 2: "d9 = %.4o0\n", D9;
D10 := d10(E, L, Elog, Periods, D7);
vprintf Intpts, 2: "d10 = %.4o0\n", D10;

// Find the reduced bound for the coefficients in the linear
// logarithmic form
initQ := InitialQ(Degree(K), #L, QO0, C9, C10, D8, D9, D10, h, expTors);
vprintf Intpts, 2: "Initial Q <= 107%o\n", initQ;
initQ := 107initQ;
new_Q := ReducedQ(L, j, EmbedL, Elog, C9, C10, Periods, expTors,
initQ);
Append(~Q, new_Q);
vprint Intpts, 2: "-""45;
end for;
Q := Maximum(Q);
vprintf Intpts: "Maximum absolute bound on coefficients = %o\n", Q;
return IntegralPoints(E, L, Q : Prec := Prec);
end intrinsic;

A.3 Height Bound I: Main Functions

For the rest of this appendix, we will give our own implementation of an algorithm
for determining a positive lower bound for the canonical height on elliptic curves
over number fields, based on Theorem 3.4.1. Although all of the following files
are required for this algorithm, the only function that should be called by users is

IsLowerBound(); see the file below for more details.

ke sk sk ks sk sk ok ok sk sk sk ok ok sk sk sk ok sk sk sk sk sk sk sk sk ok sk sk o sk sk ok sk sk ke sk sk sk sk sk sk ok sk sk e sk sk sk sk sk ok ok ok
* heightbound.m

Computing a positive lower bound for the canonical height on elliptic

curves over number fields

(Based on Thongjunthug’s paper Math. Comp. 79 (2010), pp. 2431-2449)

By Thotsaphon Thongjunthug
Last updated: 07 December 2010
Any errors should be reported to <nookaussie@yahoo.com>

Required packages:
1) elog.m - for computing periods and elliptic logarithms

* K K X ¥ X ¥ ¥ ¥ *
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* 2) alphas.m - for computing alpha_v for all archimedean place v
stk sk sk ok e ok sk ok o ok sk sk sk o ok sk ok o ks ke sk sk ok ok sk s sk sk s ok sk sk sk sk s sk sk s ok sk ok o sk sk s sk sk ke ok sk ok sk sk ke sk sk e ok sk sk ok ok sk ok /

/*x
* Declare printing verbose
* 0 = minimal printing,
* 1 = full printing (for debugging purpose only)
*k/
declare verbose Bound, 1;

/******************************************************************************

* Auxiliary local functions
stk sk ok ok sk ok sk ok ok ok o ok o ok ok ok ok sk sk ok ok ok o sk o ok ok ok sk sk sk ok ok sk sk sk sk ok sk sk sk sk ok sk sk o sk sk ok ok sk sk ok sk ok ok sk ok /

* Find all Tamagawa indices at every non-archimedean places of K, and

* also c_v for all real archimedean places v of K (note that c_v = 1 for
* all complex archimedean places v of K). Return their LCM.

* Input:

* E = elliptic curve over a number field K in standard Weierstrass form
* Output:

* A least common multiplier of all Tamagawa indices

**/
function LCMTamagawa(E)
I := Locallnformation(E);
S := [t[4] : t in I]; // Tamagawa index at each bad place
// Real archimidean places
n, _ := Signature(BaseRing(E)); // no. of real embedding
A := alnvariants(E);
A := [Conjugates(a) : a in A];
for i := 1 ton do

_<x> := PolynomialRing(Parent(A[1][i])); // parent = some real field
// Set y = 0 in y~2 + al*x*y + al3%y ==> 0 = x"3 + a2*%x"2 + ad*x + a6
// and check the number of real roots.
f := x"3 + A[2][i]*x"2 + A[4][il*x + A[5][i];
if #(Roots(f)) eq 1 then

Append(°S, 1);

else
Append (°S, 2);
end if;
end for;
vprint Bound: "Tamagawa indices = ", S;

return LeastCommonMultiple(S);
end function;

/*x
* Extra constant in B_n (take care when E is not globally minimal)
* Input:
* E = elliptic curve over number field K in standard Weierstrass form
* P = sequence of prime ideals of 0_K
* L = sequence of minimal models at each prime p in P
**/
function ExtraConstant(E, P, L)
discE := Discriminant(E);
n := #P; // should be equal to #L
extraConst := 1;
for i := 1 to n do
discEp := Discriminant(L[i]);
extraConst *:= Norm(P[i]) Valuation(discE/discEp, P[il]);
end for;
extraConst := Log(extraConst)/6;
return extraConst;
end function;

Find all prime ideals whose norm <= n
last fixed on 8 Oct 2007
Input:

R = ring of integers
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* n = an upper bound for norm
*% /
function AllPrimeIdeals(R, n)
I :=[1;
S:=[t :tin [1 .. n] | IsPrime(t)];
for x in S do
tmp := Decomposition(R, x);
// Decomposition always return a list (seq) of tuples
// The first element in each tuple is the prime ideal
tmp := [ t[1] : t in tmp ];
// note that there is always at least 1 elt in tmp
// (really, up to Degree(K) elements)
// check norm of, say, first, prime ideal in tmp
if Norm(tmp[1]) le n then
I:= 1 cat tmp;
end if;
end for;
return I;
end function;

/%%
* Fine local minimal model of E at each non-archimedean place
* N.B. All models must be integral

* Input:

* E = ellliptic curve over number K in standard Weierstrass form
* Output:

* P = sequence of bad primes p

* L = sequence of locally minimal model of E at those p

* dividing the discriminant of E

*%/

function LocalMinimalModel (E)
L:=1[1; P :=[];
// Decompose the discriminant of E
0 := RingOfIntegers(BaseRing(E));
disc := 0 ! Discriminant(E);
c4, c6 := Explode(cInvariants(E));
c4d := 0!'c4; c6 := 0!c6;
tmp := Decomposition(disc);

// check minimality of each bad place
for D in tmp do
// D[1] = bad place, D[2] = multiplicity in discriminant
// E is minimal at p if ord_p(disc) < 12
// otherwise, minimal at p if ord_p(c4) < 4 or ord_p(c6) < 6
if (D[2] 1t 12) or (Valuation(c4, D[1]) 1t 4) or
(Valuation(c6, D[1]) 1t 6) then
Append(°L, E); // E is already minimal at p
else
// otherwise, find an integral minimal model at p
minModelp := MinimalModel(E, D[1]);
Append ("L, minModelp);
end if;
Append(“P, D[1]);
end for;
return P, L;
end function;

/%%
* Given a prime ideal p, calculate e_p (the exponent of the group E_ns(k_p)
* where k_p is residue class field).
* Input:
* E = elliptic curve over number field K in standard Weierstrass form
* Plcs = sequence of all bad prime ideals in E
* L = sequnece of locally minimal elliptic curves at each place in Plcs
* p = a prime ideal of 0_K
*%/
function FindEp(E, Plcs, L, p)
norm_p := Norm(p);
F, phi := ResidueClassField(p);
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// make sure we’re working on a model that is minimal at p
if p in Plcs then

// p is a bad place (i.e. p | disc(E))

// Get the corresponding minimal model at p

E := L[Index(Plcs, p)];
end if;

pl := Place(p);

// Case 1: Good reduction - E_ns is ell. curve over finite field
if (Valuation(Discriminant(E), pl) eq 0) then
A := phi(Coefficients(E));
E := EllipticCurve(A);
// Need group structors - prod. of (up to) 2 cyclic group
// of finite order
G := Generators(E);
G := [Order(g) : g in GI];
// N.B: e_p = exponent = max(dl,d2)
G, _ := Max(G);
return G;
end if;

// Otherwise, E has bad reduction at p
// calculate c4, c6

b2, b4, b6, _ := Explode(bInvariants(E));
c4, c6 := Explode(cInvariants(E));

// Case 2.1: Additive reduction
if Valuation(c4, pl) gt O then
// E_ns = k_p+
// if |k_p| is prime, E_ns is cyclic and so e_p = |E_ns| = N(p)
// otherwise, e_p = char(k_p)
if IsPrime(#F) then
return norm_p;
else
return Characteristic(F);
end if;
end if;

// case 1: char(k_p) = 2
if IsZero(norm_p mod 2) then
al, a2, a3, _, _ := Explode(Coefficients(E));
al := phi(al);
a2 := phi(a2);
a3 phi(a3);

f := func<x | x"2 + al*x + (a3/al + a2)>;
for r in F do
if f(r) eq O then
// a root exist => split mult.
return (norm_p - 1);
end if;
end for;
// otherwise, non-split
return (norm_p + 1);
end if;

// case 2: char(k_p) = 3
if IsZero(norm_p mod 3) then
//print "b2 = ", b2;
b2 := phi(b2);
if IsSquare(b2) then
return (norm_p - 1); // split
else
return (norm_p + 1); // non-split
end if;
end if;

// case 3: char(k_p) != 2,3
//c6 := -b273 + 36%b2%b4 - 216%*Db6;
c4 := phi(cd);
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c6 := phi(c6);
if IsSquare(c4 * c6) then
return (norm_p - 1); // split
else
return (norm_p + 1); // non-split
end if;
end function;

/%%
* Calculate D_E(n)
* Fixed on 8 Jan 2008
* Input:
* E = elliptic curve over number field in standard Weierstrass form
* n = a positive integer
*k/
function D_E(E, n)
K := BaseRing(E);

0 := RingOfIntegers(K);
r, _ := Max([2, Degree(K)1);
P := AllPrimeldeals(0, (n+1)°r);

S :=0;
Plcs, L := LocalMinimalModel(E);

// Choose p such that e_p divides n
for p in P do
e_p := FindEp(E, Plcs, L, p);
if ((n mod e_p) ne 0) then

continue;
end if;
cp, _ := ResidueClassField(p);
cp := Characteristic(cp); // this must be prime number
S +:= 2 % (1 + Valuation(n/e_p, cp)) * Log(Norm(p));
end for;
return S;

end function;
//load "intersect_complex.m";

Kk ko ok ok ok o K K KoK ok ok ok o KK KoK oK ok ok o K K Kok ok ok ok o K KoK ok ok ok o K K Kok ok ok ok o K KK ok ok ok o K K Kok ok ok ok o K KK ok ok ok ok
* Main intrinsic functions
kKoK oK oK ok ok o K K 3K oK oK ok ok o K K K 3K oK ok oK o o K K 3K oK ok ok ok o K K K oK oK ok ok o o K K 3K ok ok ok ok o o K K oK ok ok ok ok o K K Kok ok ok ok o o K Kk ok ok ok ok /

/%%
* Decide if a given number \lambda is a positive lower bound for the canonical
height on an elliptic curve E defined over a number field K.
Input:
E = elliptic curve over K
lambda = initial guess for a lower bound on E(K)
Output:
Return true if \lambda is a lower bound.
If the algorithm FAILS to show that \lambda is a lower bound, return false
Parameter:
n_max = maximum number for computing B_n(\mu) (i.e. for 1 <= n <= n_max)
initRes = initial resolution for region intersection (required only when E
has complex embeddings.
Note that if initRes = n, then the grid has 2°n-by-2"n dimension
*%/
intrinsic IsLowerBound(E::CrvEll, lambda::F1dReElt
n_max := 5, initRes := 4) -> BoolElt
{Check if \lambda > O is a lower bound for the canonical height on an elliptic
curve E defined over number field. If so, return true. If the algorithm fails
to confirm this, false is returned.}
//Pts := [], initRes := 4, showIntersection := false)
K := BaseRing(E);
require Type(K) eq FldNum: "E must be defined over a number field";
require IsIntegralModel(E): "E must be an integral model";
require lambda gt O: "The number to be checked must be positive";
require (n_max ge 1) and (n_max in Integers()):
"n_max must be a positive integer";
vprintf Bound: "Computing alphas...";

* X X X X X X K K K ¥ *
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end

prodAlphas := &*Alphas(E);

vprint Bound: " : Done";
P, L := LocalMinimalModel(E);
extraConst := ExtraConstant(E, P, L);

// Now we work on E_gr(K)
c := LCMTamagawa(E); mu := lambda*c”2;
vprintf Bound: "Check if mu = %o is a lower bound on E_gr(K)\n", mu;
// Step 1: Compute all B_n(mu) for 1 <= n <= n_max
// If some of them is less than 1, then mu is a lower bound on E_gr,
// and thus we return true.
Bns := [];
for n := 1 to n_max do
Bn:= Exp(Degree(K)*(n"2)*mu - D_E(E, n) + extraConst) * prodAlphas;
vprintf Bound: "B_%o(mu) = %o\n", n, Bn;
if Bn 1t 1 then
vprintf Bound: "*** B_%o(mu) < 1, we have a lower bound! ***\n", n;
return true;
end if;
Append(“Bns, Bn);
end for;

// Create s real embeddings and t complex embeddings of E
Es := []; Et := [];

s, t := Signature(X);

A := alnvariants(E);

A := [Conjugates(a) : a in Al;
for i := 1 to s do

RR := RealField(Precision(A[1][il));
// to make sure that curve will be defined over R rather than C
Append(“Es, EllipticCurve([RR| al[il : a in A 1));
end for;
for i := 1 to t do
Append(“Et, EllipticCurve([ als+(2%i-1)] : a in A 1));
end for;

// Step 2: Real Embeddings
// Find intersection of subintervals of [0, 1]
j =1
for E in Es do
vprintf Bound: "Real embedding #)o\n", j;
D := FindSn(E, -Bns[1], Bns[1], 1);
vprint Bound: "S_1 is ", D;
if #D eq O then
vprint Bound: "x** Empty intersection of intervals **x";
return true;

if;
for n := 2 to n_max do
tmp := FindSn(E, -Bns[n], Bns[n], n);
vprintf Bound: "S_%o is %o\n", n, tmp;
vprint Bound: "The Intersection now is";
D := Intersection(D, tmp);
vprint Bound: D;
vprint Bound: "-""40;
// if the intersection is empty, we again have a lower bound
if (#D eq 0) then
vprint Bound: "*** Empty intersection of intervals *x*x";
return true;
end if;
end for;
vprint Bound: "=""75;
j +i=1;
end for;

// Step 3: Complex Embeddings
// Find intersection of regions on each fundamental paralellogram

j =1
flag := GetVerbose("Bound");
flag := flag eq 1; // convert to true/false

for E in Et do
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vprintf Bound: "Complex embedding #%o\n", j;
D := ZRegion(E, Sqrt(Bmns[1]), initRes : ShowPlot := flag);
D := GridEntryTransform(D);
oldLevel := 1;
for n := 2 to n_max do
vprint Bound: "n = ", n;
tmp := ZRegion(E, Sqrt(Bns[n]), initRes : ShowPlot := flag);
tmp := GridEntryTransform(tmp);
// 1f the region is the whole lowe-half fundamental parallelogram,
// then we don’t have to do intersection and manification
if not (&and(tmp)) then
tmp := DivByN(tmp, n); // find T {(v)}_n(\sqrt{B_n(\mu)})
vprintf Bound: "After division by %o, the size is %o\n",
n, #tmp;
// Apply region’s scaling if necessary before checking
// the intersection.
refineLevel := LCM(n, oldLevel);
D := Magnify(D, Integers() ! (refineLevel/oldLevel));
tmp := Magnify(tmp, Integers() ! (refineLevel/n));
D := IntersectTwoGrids(D, tmp);
oldLevel := refinelevel;
end if;
// If the intersection is empty, we have a lower bound
if not(&or(D)) then
vprint Bound: "x** Empty intersection of regions *xx'";
return true;

end if;
end for;
vprint Bound: "=""75;
j +:=1; // move to next complex embedding

end for;
// Otherwise, fail to show that mu is a lower bound on E_gr(K)
return false;

end intrinsic;

/%%

* Compute an upper bound for the index n = [E(K)/E_tors(K) : <Pts>], where
* Pts is the set of generators in a Mordell-Weil basis of E(K), using the
* geometry of numbers

* (see Siksek’s "Infinite descent on elliptic curves", Theorem 3.1)

* Input:

* Pts = sequence of points in a Mordell-Weil basis

* lambda = a positive lower bound for the canonical height on E(K)

*%/
intrinsic UpperBound4Index(Pts::SeqEnum, lambda::F1dReElt) -> F1ldReElt
{Compute an upper bound for the index [E(K)/E_tors(K) : <P_1,...,P_r>] using

the geometry of numbers.}
E := Curve(Pts[1]);
require &and[P in E : P in Pts]: "All points must be on the same curve";
detR := Determinant (HeightPairingMatrix(Pts));
r := #Pts;
// Here, gamma := [gamma_r~r]
if r 1t 9 then
gamma := [1, 4/3, 2, 4, 8, 64/3, 64, 2°8];

gamma := gammal[r];
else

gamma := ((Gamma(l + r/2))"2) * (4 * Pi(RealField())) r;
end if;

// calculate the upper bound of n
n := Sqrt(detR * gamma / (lambda"r));
return n;

end intrinsic;
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A.4 Height Bound II: Computing «,

This file computes the quantity «, (see Section 2.2.2 for its definition) for every

archimedean place v, using the method mentioned in [CPS06, Section 7 and 9].
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* alphas.m

Computing alpha_v for all archimedean place v of a number field K

(Based on Section 7 and 9 of Cremona-Prickett-Siksek’s paper

J. Number Theory 116 (2006), pp. 42-68).

*

By Thotsaphon Thongjunthug

Last updated: 08 December 2010

Any errors should be reported to <nookaussie@yahoo.com>

stk sk ok ok sk sk ook ok ok sk ok sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk sk e sk ok sk sk sk sk ok sk sk sk sk sk sk ok sk ok ok /

*
*
*
*
*
*

forward RefineAlphaBound; // require for this recursive function
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* Generic local function: used by both real and complex cases
seokokok kok o ok sk stk o ok ok sk ok stk o sk s koo ko s sk ko s stk sk stk ok sk ok stk o ok ok o kok ok /

/%

* Find max{|P(2)1,1Q(2) |} at z}

* Input:

* P, Q = real/complex polynomial in z

* z = a real/complex number

**/

function MaxAbsPQ(P, Q, z)
tmp := [Abs(Evaluate(P, z))];
Append(“tmp, Abs(Evaluate(Q, z)));
tmp, _ := Max(tmp);
return tmp;

end function;
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* Auxiliary local functions I:

* Calculate alpha_v, where v is a real archimedean place

ko ok sk ok sk ok sk ook sk ok sk ok sk ok sk ok sk sk ok sk ok sk ok sk ok sk ok sk sk sk sk ok sk sk sk sk ok sk sk sk ok ok sk sk ok sk ok sk sk sk sk sk sk ok sk ok ok /

/**
* Only return real roots of f lying between a and b, no multiplicity.
* Sort in increasing order.
* Input:
* f = real polynomial
* a, b = two real numbers (with a <= b)
* Output:
* a sequence of roots between a and b
*k /
function JustRoots(f, a, b)

if a gt b then

error "a must be < or = b";
end if;
R := Roots(f);

R := [r[1] : r in R];

R:=[r : rinR | (r ge a) and (r le b)];
Sort (“R);

return R;

end function;

/**
* Check if a real value t is in a given real interval I
**/
function IsInInterval(I,t)
a :=I[1]; b := I[2];
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return ((t ge a) and (t le b));
end function;

/**
Find d = inf{lf(x)|, Ig(x) |} where x is real and satisfies
(this is called e in CPS’ paper!)
|x] <= 1 and £(x) >= 0.
Input:
E = elliptic curve over reals
f, g = real polynomials in x
Output:
A value of d > 0. If such d does not exist (due to the region is empty),
then -1 is returned.
*%/
function Find_d(E, f, g)
local leftPt, rightPt;
// Find the starting point of x in E_O(R)
// i.e. beta = max real root of RHS

* K K X X X X X ¥

_, a2, _, a4, a6 := Explode(alnvariants(E));
_<x> := PolynomialRing(Parent(a2));

rhs := x"3 + a2*x"2 + ad*x + ab;

tmp := Roots(rhs); // real roots

tmp := [t[1] : t in tmp];

beta, _ := Max(tmp);

// Define the domain D = {x:|x|<=1 and f(x)>=0}
if beta gt 1 then
return -1; // D empty

end if;

a, _ := Max([-1., betal);
b :=1.;

tmp := JustRoots(f, a, b);
R := {Qa@};

for i in tmp do

R := R join {@i@};
end for;
R := R join {@b@};

r := #R - 1;

D := [];

includeStatus := false;
for i := 1 to r do

midX := (R[i] + R[i+11)/2;
if Evaluate(f, midX) gt O then
// in case the root has multiplicity 2
if (#D eq 0) then
Append ("D, [ R[il, RI[i+1]1 1);
leftPt := R[i];
elif (rightPt eq R[i]) then
Prune("D);
Append ("D, [leftPt, R[i+1]]);
else
Append(“D, [ R[il, R[i+1] 1);
leftPt := R[i];

end if;
rightPt := R[i+1];
includeStatus := true; // next pivot point is included
continue;
end if;

if (Evaluate(f, R[i]) eq 0) and not includeStatus then
Append ("D, [ R[i], R[i] 1);
leftPt := R[i];
rightPt := R[i];
end if;
includeStatus := false;
end for;
if (Evaluate(f, R[r+1]) eq 0) and not includeStatus then
Append(“D, [ R[r+1], R[r+1] 1);
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end if;

if (#D eq 0) then
//print "FindD: Valid region of x is empty";
return -1;

end if;

// list all roots of f+g, f-g, f’, g’

R := JustRoots(f + g, a, b);

R := R cat JustRoots(f - g, a, b);

R := R cat JustRoots(Derivative(f), a, b);

R := R cat JustRoots(Derivative(g), a, b);
//R :=[r : rinR | (r ge -1) and (r le 1)];
//Sort("R);

// here, i is the interval
Vals := [];
for i in D do
Vals := Vals cat [ MaxAbsPQ(f,g,i[1]), MaxAbsPQ(f,g,i[2]) 1;
//print "Vals init = ", Vals;
for j in R do
if IsInInterval(i,j) then
Append(“Vals, MaxAbsPQ(f,g,j));
//Exclude ("R, j);
end if;
end for;
//print Vals;
end for;

//if IsZero(#Vals) then
// print "ERROR: Vals is empty";
//end if;
d, _ := Min(Vals);
//print "The infimum is ", d;
return d;

end function;

/**
* Find 4’ = inf{|F(x)|, |G(x)|} where x is real and satisfies
* |x|<=1 and F(x)>=0 (this is called e’ in CPS’ paper!)
* Input:
* E = elliptic curve over reals
* F, G = real polynomials in x
* Output:
* a value of d’. If such d does not exist (due to the region
* is empty), then -1 is returned.
*k/
function Find_ddash(E, F, G)
local leftPt, rightPt;
// Find the starting point of x in E_O(R)
// i.e. beta = max real root of RHS
_, a2, _, a4, a6 := Explode(Coefficients(E));
P<x> := PolynomialRing(RealField());

a2 := P ! a2;

a4 := P ! a4;

a6 := P ! a6;

rhs := x"3 + a2*x"2 + ad*x + ab;
tmp := Roots(rhs);

tmp := [t[1] : t in tmp];

beta, _ := Max(tmp);

// init the domain D’
if beta le -1 then
DDashInit := [ [-1., 1./betal, [0., 1.] 1;
elif beta le 1 then
DDashInit := [ [0., 1.] 1;
else
DDashInit := [ [0, 1./betal ];
end if;
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DDash := [];
for I in DDashInit do
a := I[1];
b := I[2];
tmp := JustRoots(F, a, b);
R := {@a@};

for i in tmp do

R := R join {@i@};
end for;
R := R join {@bQ};

r := #R - 1;
includeStatus := false;
for i :=1 to r do

midX := (R[i] + R[i+11)/2;
if Evaluate(F, midX) gt O then
// In case the root has multiplicity 2
if (#DDash eq 0) then
Append(“DDash, [ R[i], R[i+1] 1);
leftPt := R[i];
elif (rightPt eq R[il) then
Prune (“DDash) ;
Append(~DDash, [leftPt, R[i+1]]);
else
Append(~DDash, [ R[i], R[i+1] 1);
leftPt := R[il;

end if;
rightPt := R[i+1];
includeStatus := true; // next pivot point is included
continue;
end if;

if (Evaluate(F, R[i]) eq 0) and not includeStatus then
Append(“DDash, [ R[i]l, R[i] 1);
leftPt := R[il;
rightPt := R[i];
end if;
includeStatus := false;
end for;
if (Evaluate(F, R[r+1]) eq 0) and not includeStatus then
Append(~“DDash, [ R[r+1], R[r+1] 1);
end if;
end for;

if (#DDash eq 0) then
//print "FindDDash: Valid region of x is empty";
return -1;

end if;

// list all roots of F+G, F-G, F’, G’

R := JustRoots(F + G, -1, 1);

R := R cat JustRoots(F - G, -1, 1);

R := R cat JustRoots(Derivative(F), -1, 1);
R := R cat JustRoots(Derivative(G), -1, 1);
//R :=[r : rin R | (r ge -1) and (r le 1)];
//Sort("R);

// here, I is the interval
Vals := [];
for I in DDash do
Vals := Vals cat [ MaxAbsPQ(F,G,I[1]), MaxAbsPQ(F,G,I[2]) ]; // end points
//print "Vals init = ", Vals;
for j in R do
if IsInInterval(I,j) then
Append(~Vals, MaxAbsPQ(F,G,j));
//Exclude("R,j);
end if;
end for;
//print Vals;
end for;
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//if IsZero(#Vals) then
// print "ERROR: Vals is empty";
//end if;
d, _ := Min(Vals);
//print "The infimum is ", d;
return d;

end function;

/%

* Calculate the value of alpha of a given elliptic curve over real numbers
* Input:

* E = elliptic curve over reals

*k/

function AlphaReal(E)
b2, b4, b6, b8 := Explode(bInvariants(E));
<x> := PolynomialRing(Parent(b2)); // assume all b have the same precision
1= 4xx73 + b2*x"2 + 2xbdxx + b6;
x"4 - b4*x"2 - 2%b6*x - b8;
1= 4*xx + b2*x"2 + 2*bd*x"3 + b6*x"4; // = £(x)/(x74) and let x := 1/x
1= 1 - b4*x"2 - 2%b6*x"3 - b8*x"4; // similarly

QMo
i

d := Find_d4(E, £, g);
d_dash := Find_ddash(E, F, G);

// take care of cases when region of valid x is empty
if (d 1t 0) then
if (d_dash ge 0) then
return d_dash~(-1/3);

else
error "Both regions of X are empty (should not happen), please report!";
end if;
elif (d_dash ge 0) then
alpha, _ := Min([d, d_dash]);
return alpha”(-1/3);
else
return d~(-1/3);
end if;

end function;
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* Auxiliary local functions II:

* Calculate alpha_v for complex archimedean places v in K
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VLS
* Calculate min H = min{h((m+ni)/10: m"2 + n"2 <= 100}, m, n integer
* where h = max{|P(z)|, I1Q(z)I}.
* Input:
* P, Q = polynomials defined over C
**/
function AlphalnitialGuess(P, Q)
i := BaseRing(P)!Sqrt(-1);

initMin, _ := Max(Abs(Evaluate(P, -1)), Abs(Evaluate(Q, -1)));
for m := -10 to 10 do
boundN := Floor(Sqrt(100 - m~2));
for n := -boundN to boundN do
h := MaxAbsPQ(P, Q, (m + n*i)/10 );

if h 1t initMin then
initMin := h;
end if;
end for;
end for;
return initMin;
end function;

/*x
* Compute BigEpsilon(z, eta)
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* Input

* P, Q = complex polynomials
* z, eta = complex numbers

*%/

function BigEpsilon(P, Q, z, eta)
dl := Degree(P);
d2 := Degree(Q);

suml := 0;
sum2 := 0;
for n := 1 to dl do
P := Derivative(P); // P~ (n)
suml +:= (eta"n) * Abs(Evaluate(P, z)) / Factorial(n);
end for;
for n := 1 to d2 do
Q := Derivative(Q); // Q~(n)
sum2 +:= (eta"n) * Abs(Evaluate(Q, z)) / Factorial(mn);
end for;
eps, _ := Max([suml, sum2]);

return eps;
end function;

/%%

* Approximate alpha_PQ = inf max{|P(z)|, |Q(z)|}, z on unit circle
* using repeated quadrisection method recursively.

* Input:

* P, Q = complex polynomials

* mu = accuracy level (need Exp(-mu) close to 1)

* S = nested sequence representing a square

* alpha = initial alpha to be refined

* level = how many times one wishes to refine alpha

*k/

function RefineAlphaBound(P, Q, mu, S, alpha, level)
// Step 1: check if the square S intersects unit circle
// if not, return alpha
a, b := Explode(S[1]);
r := S[2];

// Modified: 25 Mar 2010 (bug found by Robert Bradshaw)
// If [a, b] = [-1, -1], the below trick won’t work.

// But of course the intersection won’t be empty.

if level eq O then

end

QaaQ
]

level :=1;

S1 := <[a, bl, r/2>;

S2 := <[a, b+r/2], r/2>;

83 := <[a+r/2, b], r/2>;

S4 := <[a+r/2, b+r/2], r/2>;

alpha := RefineAlphaBound(P, Q, mu, S1, alpha, level);

alpha := RefineAlphaBound(P, Q, mu, S2, alpha, level);

alpha := RefineAlphaBound(P, Q, mu, S3, alpha, level);

alpha := RefineAlphaBound(P, Q, mu, S4, alpha, level);

if;
[ s[1], [a, b+r], [a+r, bl, [a+r, b+r] 1;
[ c[11°2 + c[2]"2 : ¢ in C]; // square of modulus of each corner
[ (c le1) : ¢ in C]; // check if each corner is in the circle

if not (true in C) then
return alpha;

end if;
// Step 2:
if (a+r/2)°2 + (b+r/2)"2 le 1 then
u := [a+r/2, b+r/2]; // u = mid-point
eta := r/Sqrt(2);
else
// u = any corner that in unit circle
ind := Index(C, true); // position of the corner in D
if ind eq 1 then

u := [a, b];

elif ind eq 2 then

u := [a, b+r];
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elif ind eq 3 then

u := [at+r, bl;
else

u := [a+r, b+r];
end if;
eta :=r * Sqrt(2);

end if;

// Step 3 and 4: check condition for minimality

i := BaseRing(P)!Sqrt(-1);

u :=ul1] + ul[2]*i;

h := MaxAbsPQ(P, Q, u);

epsilon := BigEpsilon(P, Q, u, eta);

if (h - epsilon) gt (alpha * Exp(-mu)) then
return alpha;

else
alpha, _ := Min([alpha, h]);

end if;

// Step 5 and so on: split S into 4 quadrants and recursively apply
// this function to each S_i

level := level + 1;

S1 := <[a, bl, r/2>;

S2 := <[a, b+r/2], r/2>;

S3 := <[a+r/2, bl, r/2>;

S4 := <[a+r/2, b+r/2], r/2>;

alpha := RefineAlphaBound(P, Q, mu, S1, alpha, level);

alpha := RefineAlphaBound(P, Q, mu, S2, alpha, level);
alpha := RefineAlphaBound(P, Q, mu, S3, alpha, level);
alpha := RefineAlphaBound(P, Q, mu, S4, alpha, level);

return alpha;
end function;

* Find alphas for a given elliptic curve over complex number

* Use repeated quadrisection method from Section 9 of CPS’ paper.

* Input:

* E = elliptic curve over C

* mu = accuracy level (need Exp(-mu) close to 1)

*%/
function AlphaComplex(E : mu := 0.005)

b2, b4, b6, b8 := Explode(bInvariants(E));
<x> := PolynomialRing(Parent(b2));

4xx~3 + b2*x"2 + 2%xbdxx + b6;
X"4 - b4*x"2 - 2*%b6*x - b8;
4xx + b2xx"2 + 2%b4*x"3 + b6*x"4; // = £(x)/(x74) and let x := 1/x
1 - b4*x"2 - 2xb6%x"3 - b8*x"4; // similarly

@ T Hh
]

// S = square [-1,1] X [-1,1], represents as <[a,b], h, v> where
// [a,b] = lower left corner, r = length (same for all sides)
S := <[-1.,-1.1, 2.>;

// Step 1: find inf max{|£f(z)|, |g(z)|}, where z on closed unit disc

// Initial guess: alpha_fg = min H = min{h((m+ni)/10: m"2 + n~2 <= 100}
// where h = max{|£(2)|, lg(=2)|}

alpha_fg := AlphalnitialGuess(f, g);

alpha_fg := RefineAlphaBound(f, g, mu, S, alpha_fg, 0);

// Step 2: find inf max{|F(z)|, |G(z)|}, where z on closed unit disc

// Initial guess: alpha_FG = min H = min{h((m+ni)/10: m"2 + n~2 <= 100}
// where h = max{|F(2)|, I1G(z)I|}

alpha_FG := AlphalnitialGuess(F, G);

alpha_FG := RefineAlphaBound(F, G, mu, S, alpha _FG, 0);

// Then alpha”(-3) = Min(alpha_fg, alpha_FG)
// Note that we need alpha

alpha, _ := Min([alpha_fg, alpha_FG]);

alpha := (alpha*Exp(-mu))~(-1/3);

return alpha;
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end function;
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* Main intrinsic function
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/%%
* Return the list of alpha_v for all archimedean place v.
* For those alphas from complex embeddings, the returned values are squared
* Input:
* E = elliptic curve over number field K
* Output:
* A sequence of all values of alpha_v
*%/
intrinsic Alphas(E::CrvEll) -> SeqEnum
{Given an elliptic curve E over a number field K, compute all alpha_v associated to
E for all archimedean places v of K. If v is a complex place, then the returned
value will be alpha_v~2.}
A:= aIlnvariants(E);
tmp := [Conjugates(a) : a in A];
s, t := Signature(BaseRing(E));
alphas := [];

// Real embeddings

for j := 1 to s do
Erj := EllipticCurve([RealField() ! al[j] : a in tmpl);
Append(~alphas, AlphaReal(Erj));

end for;

// Complex embeddings

// N.B.: we pick only one conjugate from its conjugacy pair

for j := 1 to t do
Ecj := EllipticCurve([b[s + 2%j - 1] : b in tmpl);
Append(~alphas, (AlphaComplex(Ecj))~2);

end for;

return alphas;

end intrinsic;

A.5 Height Bound III: Intersection of Intervals

This file consists of all necessary functions for compute S (&1,&2) (see Section 2.5
for its definition) for each real archimedean place v. Note that S is a disjoint
union of subintervals of [0,1]. As we have seen in Section 2.5, an algorithm for
computing periods and elliptic logarithms of real points is also required for this

computation; see Appendix A.1 for its implementation.

/KoK ko sk ok ok ok o ok ook ok ok ok o ok ook ok ok ok ook o sk R ok ok o ok ok o ok ok o ok o sk R ok ok o sk ok o ok ok o ok sk ok ok ok o sk ok ok ok o ok sk ok ok ok ok ok ok
* intersect_real.m
Computing S™{(v)}_n(\xi_1, \xi_2) for all real archimedean place v

By Thotsaphon Thongjunthug
Last updated: 08 December 2010
Any errors should be reported to <nookaussie@yahoo.com>

Required package:
elog.m - for computing normalised elliptic logarithms of real points
etk sk ko ok stk o ok ok ok ok o stk o koo koo ks koo stk s ko koo ok ko koo ok sk ok ok ok ok sk o /
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/******************************************************************************

* Auxiliary local functions
sk o ok ok ok ok R oK o ok ok K oK o oK ook ok ok oK oK sk o K ok o oK o ok ok ok ok oK sk ok ok ok ok o sk sk ok ok ok sk ok ok sk ok o sk sk ok ok o sk sk sk ok ok sk ok /

* Return the list of real roots of f(x) = 4x73 + b2*x"2 + 2%bd*x + b6
* in decreasing order

* Input:

* E = elliptic curve defined over real numbers

* Output:

* a sequence of real roots

function RootsF(E)
b2, b4, b6, b8 := Explode(bInvariants(E));

<t> := PolynomialRing(Parent(b2));

:= 4xt~3 + b2*xt"2 + 2%xb4d*t + b6;

Roots(p); // real roots only

[e[1] : e in R]; // get rid of multiplicity
Sort("R);
Reverse("R); // decreasing order
return R;

end function;

=o =" R B |
o

/*%

* Find the intersection of two real intervals I1, I2
* Input:

* I1 = [a, b], I2 = [c, d] : real intervals

*%/

function IntervalsMeet(I1,I2)
if (#I1 eq 0) or (#I2 eq 0) then
// One interval is empty, nothing to do
return [];
end if;

I1[1]; b := I1[2];
12[1]; d := 12[2];

o
]

if (b 1t c) or (d 1t a) then
// Both intervals are disjoint
return [];

elif (a le c¢) and (d le b) then
return I2; // subset of Il

elif (c le a) and (b le d) then
return I1; // subset of I2

elif (a 1t c) and (b 1t d) then
return [c,b];

elif (c 1t a) and (d 1t b) then
return [a,d];

else
// Should not happen, just for checking
error "You miss some case";

end if;

end function;

* Compute a normalised elliptic logarithm of the "higher" point of the two
* having the same x-coordinate.

* Input:

* E = elliptic curve over reals in standard Weierstrass form

* x = a real number for the x-coordinate

function NormalisedElog(E, x)
// First, find a positive period of E
r := Precision(BaseRing(E));
// Warning: PeriodLattice() needs curves over C
prec := Precision(BaseRing(E));
C := ComplexField(prec);
EC := ChangeRing(E, C);
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wl, w2, _ := Explode(PeriodLattice(EC : Prec := r-10));
if Im(w2/wl) gt O then
L := [wl, w2];

else
L := [w2, wil;
end if;
L, _ := TransformLattice(L);

if Abs(Im(L[1])) 1t 10~ (-r/2) then
w := Re(L[1]1);

else
w := Re(L[2]);
end if;
if w 1t O then
w := -w; // need positive real period
end if;
[/ =",

// Find the "higher" point

al, a2, a3, a4, a6 := Explode(alnvariants(E));

_<t> := PolynomialRing(Parent(al));

f 1= t72 + al*x*t + a3t - x"3 - a2*x"2 - ad*x - ab;
tmp := Roots(f); // real roots

tmp := [y[1] : y in tmpl;

// Chose y such that 2%y + al*x + a3 >= 0

if (2*%tmp[1] + al*x + a3) ge O then

y := tmp[1];
else

y := tmp[2];
end if;

PC := Points(EC, x)[1]; // embed P to E(C)
if Abs(PC[2]-y) gt 10" (-r/2) then

PC := -PC;
end if;

// Compute elliptic logaithm and scale it to [0,1]

elog := EllipticLog(EC, PC : Prec := r-10);

elog := Re(elog/w); // already real, just to make sure
return elog - Floor(elog); // mod 1, and force it to be real

end function;

/%%

* Find $"{(v)}(el, e2)

* Input:

* el, e2 = two real number with el < e2

* Output:

* a nested sequence representing disjoint union of subinterval
*%/

function FindS(E, el, e2)

if (el ge e2) then
error "el must be less than e2";
end if;

// beta = max real root of f(x) = 4x"3 + ...
beta := (RootsF(E))[1];

if (e2 1t beta) then
return [];
elif (el 1t beta) then
el2 := NormalisedElog(E, e2);
return [ [1 - el2, el2] ];
else
ell := NormalisedElog(E, el);
el2 := NormalisedElog(E, e2);
if (ell eq 0.5) then
if (el2 eq 0.5) then
return [[0.5, 0.5]];
else
return [[1 - el2, el2]];
end if;

Appendix A. MAGMA Source Code
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else
return [ [1 - el2, 1 - el1], [ell, el2] 1;
end if;
end if;
end function;

Rk ok ok ok ok o KK KoK ok ok ok o K K KoK ok ok ok o K K Kok ok ok o o K K Kok ok ok ok o K K K ok ok ok o o K K Kok ok ok ok o K KK ok ok ok ok K K Kok ok ok ok ok
* Main intrinsic functions
kK KoKk ok ok ok o KK K 3K oK oK ok o o KK 3K oK oK ok ok o K K 3K ok ok ok o o K Kk ok ok ok ok o K K 3K ok ok ok o o K K K ok ok ok ok o K KK ok ok ok ok o K Kok ok ok ok /

/**

* Compute S~ {(v)}_n(el, e2)

* Input:

* E = elliptic curve over reals in standard Weierstrass form

* el, e2 = two real numbers (with el < e2)

* n = a positive integer

* Output:

* a nested sequence representing a disjoint union of subintervals of [0,1]
sk /
intrinsic FindSn(E::CrvEll, el::F1dReElt, e2::F1dReElt, n::RngIntElt) -> SeqEnum
{Compute S°v_n(el, e2) for real archimedean place v}

require el 1t e2 : "el must be less than e2";
require n gt 0: "n must be a positive integer";
D := [1;

S := FindS(E, el, e2);
//print "n =", n, "S =", S;
s := #S;

if s eq O then
return [];

end if;
a := (S[11)[1]1;
b := (sS[1D)[2];

if s eq 1 then
if (a eq 0) and (b eq 1) then
return [[0., 1.1];
end if;

for t := 0 to (n-1) do
Append(~D, [(t+a)/n, (t+b)/nl);

end for;
return D;
end if;
// s =2
c = (S[2])[1]1;
d := (s[2])[2];

if (a eq 0) and (d eq 1) then
D := [[0, b/nl];
for t := 0 to (n-2) do
Append ("D, [(t+c)/n, (t+1+b)/nl);
end for;
Append ("D, [(n-1+c)/n, (n-1+d)/nl);
return D;
end if;

// otherwise, ordinary append will do
for t := 0 to (n-1) do
Append(~D, [(t+a)/n, (t+b)/nl);
Append (D, [(t+c)/n, (t+d)/nl);
end for;
return D;
end intrinsic;

/*x

* Find the intersection of two disjoint unions of intervals

* Input:

* I1, I2 = nested sequences representing disjoint unions of intervals
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* Output:
* a nested sequences representing disjoint union of intervals
*%/
intrinsic Intersection(Il::SeqEnum , I2::SeqEnum) -> SeqEnum
{Find the intersection of two disjoint unions of intervals}
D:= [];
for I in Il do
for J in I2 do
tmp := IntervalsMeet(I,J);
if (#tmp ne 0) then
Append(“D, tmp);
end if;
end for;
end for;
return D;
end intrinsic;

A.6 Height Bound IV: Intersection of Regions

The following files provides functions for computing the approximate corresponding
region 7Y (see Section 3.3 for the definition) for each complex archimedean place
v. Again, we use our implementation in Appendix A.1 to compute the period lattice

of each complex embedding.

A.6.1 intersect complex.m

This is the main file which does most of the task of computing Y.

[ F ok sk ko sk ok ok oKk kKK kR KK kR KKk kKoK sk kKo sk ko sk sk kK sk ok ok sk ok kK koK K
* intersect_complex.m

* Computing T"{(v)}(\xi) and functions to be used for intersecting regions

on half fundamental parallelograms

By Thotsaphon Thongjunthug
Last updated: 08 Decemner 2010
Any errors should be reported to <nookaussie@yahoo.com>

Required packages:
1) elog.m - for computing periods of elliptic curve over C
2) interval_wp.m - for HasBoundary() function
3) wp.m - for computing error term when computing \wp(z) using
only finite number of terms in the power series expansion.
stk sk ok sk ok ok ok sk sk sk sk e ok sk sk ok ok sk s sk sk e ks sk ok ok sk s ok sk s e ok sk s sk sk s ok sk ok ok sk s sk sk ok sk sk ok sk s sk sk ke ok sk sk ke k sk sk ok sk ok ok /
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/******************************************************************************

* Auxiliary local functions/procedures
stk ok sk ok ok ok sk sk o ok ok ok sk sk o ok ok sk sk e sk ok sk sk s sk sk sk sk e sk ok ok sk sk s sk sk sk sk e sk ok sk sk s ok sk sk sk e sk ok sk sk sk ok ok /

/**

* Return half fundamental paralelogram discretised into n-by-n block
* Input:

*  tau = w2/wl

* n = dimension of the discritisation

* Output
*  <dwl, dw2, [<pivot, status>, ...]>

*% /
function HFPDiscretise(tau, n)
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dwl := 1.;

dw2 := tau/2;

pivot := 0.;

U := car<Parent(tau), Integers()>;
L := [UI];

dwl := dwl/n;
dw2 := dw2/n;
for i := 1 to n do
for j := 1 to n do
// initial status is set to be ’2’ (uncertain) for all blocks
Append ("L, <pivot, 2>);
pivot +:= dw2;
end for;
pivot := i*xdwl;
end for;
return <dwl, dw2, L>;
end function;

/%
* Plot a given brief half fundamental paralellogram into figure
* (for debug only) - outout is rotated-right of the real figure
* Status - 0 = No (cell excluded), else = Yes (included)
* Input:
* L = sequence of digits representing cells in the H.F.P.
*k/
procedure GridPlot (L)
// Check dimension = must be square (nxn)
if not IsSquare(#L) then
error "Dimension of L must be square";
else
dim := Integers() ! Sqrt(#L);
end if;
i:=1;
for ¢ in L do
if ¢ eq O then
printf "x";
elif c eq 1 then

printf "y";
elif ¢ eq 2 then

printf "f";
else

printf "u";
end if;

if (i mod dim) eq O then

printf "\n";
i:=1;
else
i+:=1;
end if;
end for;

end procedure;

/******************************************************************************

* Main intrinsic functions
kK KoK oK oK ok ok o KK K 3K oK oK ok o o K K 3K oK oK ok ok o K K 3K ok ok ok o o K K K oK ok ok ok o K K 3K ok ok ok o o K K K ok ok ok ok o K K K ok ok ok ok o K Kok ok ok ok /

* Intersect two (brief version of) regions on half fundamental

* parallelograms (HFP)

* Input:

* L1, L2 = sequence of true/false representing the region (true = in region)

* Output:

* A sequence of true/false representing the intersection

*x/

intrinsic IntersectTwoGrids(L1::SeqEnum[BoolElt], L2::SeqEnum[BoolE1lt])
-> SeqEnum[BoolElt]

{Intersect two regions of the same size}
// Both L1 and L2 must be of identical size.
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// All entries in both L1, L2 are booleans.
require #L1 eq #L2: "Both HFPs must be of identical dimension";
n := #L1; // = #L2 as well

L := [1;
for i := 1 to n do
Append ("L, L1[i] and L2[il);
end for;
return L;

end intrinsic;

/*%
* Divide a given region L by n. If L has dimention m-by-m, then the new
* divided region has dimention (m#*n)-by-(m#*n)
* Input:
* L = a sequence of true/false representing a region
* n = a positive integer
* Output:
* a sequence of true/false representing a new region
%%/
intrinsic DivByN(L::SeqEnum, n::RngIntElt) -> SeqEnum
{Division of region by n}
// Check dimension of L - must be square
require IsSquare(#L): "Dimension of L must be square";
require n ge 1: "n must be a positive integer";
0ldDim := Integers()! Sqrt(#L);

// "shrinked" block: dimension = o0ldDim x o0ldDim
// split shrink block into oldDim columns
Cols := [1;
for i := 1 to o0ldDim do
Col := [];
for j := oldDim*(i-1)+1 to oldDim*i do
Append(~Col, L[j1);
end for;
Append (“Cols, Col);
end for;

// Build up each big column.

// Swap method - top of 1st column concats to top of oldDim-th column.
// Count the total entry - stop when # = 0ldDim * n

BigCol := [1;

for i := 1 to oldDim do

BigCol[i] := []; // initialise blank big column
end for;
for i := 1 to oldDim do

ind := 1;

repeat

if (ind mod 2) eq 1 then
// pick entry from i-th column
BigCol[i] := BigCol[i] cat Cols[il;

else

BigCol[i] := BigCol[i] cat Reverse(Cols[oldDim-i+1]);
end if;
ind +:= 1;

until ind gt n;

end for;

// Concat oldDim big columns together, and keep doing this n times.
// 0Overall dim = (n*oldDim) x (n*oldDim)
LL := [];
for i := 1 to n do

for j := 1 to oldDim do

LL := LL cat BigCol[j];

end for;
end for;
return LL;

end intrinsic;

VLS
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* Magnify a brief half fundamental parallelogram by n folds
* Input:
* L = sequence of true/false representing a region, say, size m-by-m
* n = a positive integer
* Output:
* a new sequence of true/false of size (m*n)-by-(m*n)
**/
intrinsic Magnify(L::SeqEnum, n::RngIntElt) -> SeqEnum
{Magnify a brief half fundamental parallelogram by n folds}
// Check dim of L - must be square
require IsSquare(#L): "Dimension of L must be square";
0ldDim := Integers() ! Sqrt(#L);
require n ge 1: "n must be a positive integer";

// initialise BigCol - n of them

BigCol := [];

for i := 1 to n do
BigCol[i] := [1;

end for;

LL := [];

// for each cell, discretise it into nxn subcells
// do this by column
for i := 1 to (0ldDim"2) do // no. of org. cells
for j := 1 to n do // no. of subcol in each cell
for k := 1 to n do // no. of copies of that org. cell to subcol
Append(~“BigCol[jl, L[il);
end for;
end for;
if (i mod oldDim) eq O then // 1 old col done
// concat those n subcols and put into LL
for k := 1 to n do
LL := LL cat BigColl[k];

end for;
// clear all n subcols
BigCol := [1;

for k := 1 to n do
BigColl[k] := [1;
end for;
end if;
end for;
return LL;
end intrinsic;

/**

* Determine a region T v_n(\xi).

* This is done by simple methods, but still need more subtle way to confirm
* that the pre-excluded cells are indeed excluded.

* Input:

* E = elliptic curve defined over C in standard Weierstrass form
* xi = an upper bound for |X|, where Y"2 = 4*X"3 + AxX + B

* initRes = initial resolution (dimension) for the region

* Output:

* 7

* Parameter:

*  ShowPlot = if true, print the region

*

*%/
intrinsic ZRegion(E::CrvEll, xi::F1dReElt, initRes::RngIntElt
ShowPlot := false) -> SeqEnum
{Find the region T"v(\xi)}
prec := Precision(BaseRing(E));
wl, w2, _ := Explode(PeriodLattice(E: Prec := prec-10));
if Im(w2/wl) gt O then
L := [wl, w2];

else
L := [w2, wil;
end if;
L, _ := TransformLattice(L);

wl, w2 := Explode(L); tau := w2/wl;
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b2 := bInvariants(E) [1];
u_xi := (xi + Abs(b2)/12) * Abs(w1)~2; // U_{\xi}

// Create a discritisation of half fundamental paralellogram,

// both full version L and brief version C.

n := 2"initRes; // dimension needs to be a power of 2

// Format: L = <dwl, dw2, [<pivot, status>, ...]>

dwl, dw2, cells := Explode(HFPDiscretise(tau, n));

// initial C

C := [c[2] : c in cells]; // status of each cell (2 = uncertain)

// Stage 1: Four-Corner Test
for ind := 1 to (n"2) do
pivot, _ := (cells[ind])[1];
// Error term:
// Using 23 terms yields accuracy of computing \wp(z)
// within 50 decimal places
err := EstimateWPMaxError(23, 23);
// Temporary excluded the corner containing O (mod \Lambda)
if (ind eq 1) or (ind eq (n*(n-1)+1)) then
continue;
// find p(z,tau) where z are the four corners of the cell c
elif Abs(WeierstrassP([1, taul, pivot, 23))+err le u_xi then

Clind] := 1;

elif Abs(WeierstrassP([1, taul, pivot + dwl, 23))+err le u_xi then
Cl[ind] := 1;

elif Abs(WeierstrassP([1, taul, pivot + dw2, 23))+err le u_xi then
C[ind] := 1;

elif Abs(WeierstrassP([1, taul, pivot + dwl + dw2, 23))+err le u_xi then
Clind] := 1;

end if;

if C[ind] eq 1 then

// Stage 2: Identify "possibly false" boundary
// set it to ’0’ first in order to distinguish the region
// but is still subject to verification
// left cell
if ind gt n then

if Clind - n] ne 1 then

C[ind - n] := 0;

end if;

end if;

// right cell
if ind le n*(n-1) then
if C[ind + n] ne 1 then
C[ind + n] := 0;

end if;
end if;
// top cell

if (ind mod n) ne O then
if C[ind + 1] ne 1 then
Cl[ind + 1] := 0;
end if;
end if;

// bottom cell

if (ind mod n) ne 1 then
if C[ind - 1] ne 1 then

Clind - 1] := 0;

end if;

end if;

end if;
end for;

// Stage 3: Confirm "possibly false" boundary that it is indeed excluded
boundaryConfirmed := true;
for ind := 1 to (n"2) do
if C[ind] eq O then
// lower horizontal
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m := 0.; k := Im(pivot);
X := [Re(pivot), Re(pivot)+dwll;
if HasBoundary(X, m, k, u_xi, tau) then

Clind] := 1;
//printf "C[%o]: lower boundary not confirmed\n", ind;
boundaryConfirmed := false;
//print "=ss=======";
continue;
end if;

// upper horizontal

m := 0.; k := Im(pivot + dw2);

X := [Re(pivot+dw2), Re(pivot+dwl+dw2)];
if HasBoundary(X, m, k, u_xi, tau) then

Clind] := 1;
//printf "C[%o]: upper boundary not confirmed\n", ind;
boundaryConfirmed := false;
//print "s=sss==s====";
continue;
end if;

// ADDED: 18 Nov 2010
// left/right vertical (i.e. Re(tau)=0 )
if Re(tau) eq O then
if HasBoundaryVertical(Re(pivot), Im(pivot), Im(pivot+dw2),
u_xi, tau) then

C[ind] := 1;
//printf "C[%o]l: left vertical boundary not confirmed\n", ind;
boundaryConfirmed := false;
//print "s==s======";
continue;
end if;

if HasBoundaryVertical(Re(pivot+dwl), Im(pivot+dwl), Im(pivot+dwl+dw2),
u_xi, tau) then

Clind] := 1;
//printf "C[%o]: right vertical boundary not confirmed\n", ind;
boundaryConfirmed := false;
//print "=ss=ss=====";
continue;
end if;
else

// left slant
m := Im(tau)/Re(tau); k := Im(pivot) - m*Re(pivot);
if (m 1t 0) then
X := [Re(pivot+dw2), Re(pivot)];
elif (m gt 0) then
X := [Re(pivot), Re(pivot+dw2)];

end if;
if HasBoundary(X, m, k, u_xi, tau) then
C[ind] := 1;
//printf "C[%ol: left boundary not confirmed\n", ind;
boundaryConfirmed := false;
//print "s=========";
continue;
end if;

// right slant
m := Im(tau)/Re(tau); k := Im(pivot) - m*Re(pivot+dwl);
if (m 1t 0) then
X := [Re(pivot+dwi+dw2), Re(pivot+dwl)];
elif (m gt 0) then
X := [Re(pivot+dwl), Re(pivot+dwl+dw2)];

end if;
if HasBoundary(X, m, k, u_xi, tau) then
Clind] := 1;
printf "C[/o]: right boundary not confirmed\n", ind;
boundaryConfirmed := false;
//print "==========";
else
// cell can be excluded
C[ind] := 0;

if ShowPlot then
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printf "C[%o] = %o\n", ind, Clind];

end if;
//print "==========",
end if;
end if;
end if;
end for;

// Stage 4: shade region correctly
if boundaryConfirmed then
if ShowPlot then
print "Excluded boundary confirmed! Shading remaining region ...";
end if;
for ind := 1 to (n"2) do
if C[ind] eq 2 then
Clind] := 0; // 0 = exclude from the region
end if;
end for;
else
if ShowPlot then
print "Excluded boundary not entirely confirmed";
end if;
end if;

if ShowPlot then

GridPlot(C);

printf "\n";

print "Size Z = ", #C;

print " ";
end if;
return C;

end intrinsic;

/%%
* Convert grid entry from O -> false and from 1 -> true.
* If contains any other number, print error message
* Input:
* C = sequence of binaries
* Output:
* sequence of true/false
*%/
intrinsic GridEntryTransform(C::SeqEnum[RngIntE1t]) -> SeqEnum[BoolElt]
{Transform all binaries in a grid into true/false entries}
L :=[];
for ¢ in C do
if ¢ eq O then
Append ("L, false);
elif ¢ eq 1 then
Append ("L, true);
else
error "Grid must only contain O and 1";
end if;
end for;
return L;
end intrinsic;

A.6.2 wp.m

This file consists of functions for computing the approximate Weierstrass p-function
(i.e., using only finite number of terms in the power series expansion), and the

maximum error caused by such approximation. For more details, see Section 3.2.1.
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* Wp.m

* Computing Weierstrass \wp-function and the error term of using finite
number of terms in the power series expansion as the approximate for \wp(z)

By Thotsaphon Thongjunthug

Last updated: 08 December 2010

Any errors should be reported to <nookaussie@yahoo.com>
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* Main intrinsic functions
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/*x
Estimate the maximum error of |p(z,tau)-f(u)*(2*pi*i)~2| on the lower-half
fundamental parallelogram, where u = Exp(2#pi*i*z) and
f(u) = u/(1-u)"2 + 1/12 + some terms from the right-hand side of the
expression of p(z,tau) (See Silverman’s paper).

*
*
*
*
*
* Input:

* nl = starting index for the infinite sum of terms

* (qg"n)u/(1-(q"n)u) "2 + (q"n) (1/w)/(1-(q"n) (1/w)) "2

* n2 = starting index for the infinite sum of terms 2%*(q"n)/(1-q"n)"2
*

*

*

*

*

*

*

Output:
the maximum absolute error
Parameter:
q = Exp(2«pixi*tau), default = Exp(-Sqrt(3)*pi)
alpha = Im(z)/Im(tau), default = 1/2
(The default values of q and alpha are ones of the worst case scenario)
*x/
intrinsic EstimateWPMaxError(nl::RngIntElt, n2::RngIntElt :

q := Exp(-Sqrt(3)*Pi(RealField())), alpha := 1/2) -> FldReElt
{Estimate the error when using finite number of terms in the power series
expansion as the approximate to the Weierstrass p-function}

require (nl ge 1) and (n2 ge 1): "nl and n2 must be positive integers";

pi := Pi(RealField());

err := (q"(n1l + alpha))/(1 - q"(nl + alpha))~2;

err +:= (q~(nl - alpha))/(1 - q~(nl - alpha))~2;
err +:= 2%(q"n2)/(1 - q"n2)"2;
err *:= 4x(pi~2);

err /:= (1 - q);
return err;
end intrinsic;

VLS

* Calculate Weierstrass \wp-function p(z) for a given z using
* only finite number of terms in the power series

* (see Proposition 7.4.4 and Algorithm 7.4.5 in Cohen’s book)
* Input:

* L = [wl, w2] with Im(w2/wl) > O

* a complex number

* k = number of terms to be used

N
]

intrinsic WeierstrassP(L::Squnum, z::F1dComElt, k::RngIntElt) -> F1ldComElt
{Compute Weierstrass p-function of z using up to k terms in the power series
expansion}

require #L eq 2: "L must contain exactly two complex numbers";

wl, w2 := Explode(L);

require Im(w2/wl) gt 0: "Im(w2/wl) must be positive";

L, _ := TransformLattice(L);
wl, w2 := Explode(L);

tau := w2/wl;

// reduce z

z := z/wl;

n := Round(Im(z)/Im(tau));
z := z - n*tau;

z := z - Round(Re(z));
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if z eq O then
error "z is a lattice point";
end if;

// Compute precision needed, based on the error term

err := EstimateWPMaxError(k, k);
err := Ceiling(-Log(10, err));
C := Parent(tau);

pi := Pi(C); i := C!Sqrt(-1);
q := Exp(2*pixixtau);
u := Exp(2*pixixz); // since already let z <- z/wl
f 1/12 + u/(1-u)"2;
// Reset n up to k-1
// (22 term -> max abs. err.
// (50 term -> max abs. err.
for n := 1 to (k-1) do
tmp :=u * ( 1/(1 - (@m)*u)"2 + 1/((q"n) - w2 );
tmp -:= 2/(1 - q"n)"2;
tmp *:= q"n;
f +:= tmp;
end for;
f *:= (2xpixi/wl)"2;
return f;
end intrinsic;

3.4291 x 107-52)
2.3251 x 107-118)

* Calculate the 1st derivative of the Weierstrass \wp-function p(z)
* for a given z approximately, using Alg 7.4.5, and a finite of terms
* in Prop 7.4.4 in Cohen’s book
* Input:
* L = [wl, w2], the periods of L that E(C) = C/
* z = a complex number that we want to find \wp(z, L)
* k = number of terms in the infinite sum
*%/
intrinsic WeierstrassPDash(L::SeqEnum, z::FldComElt, k::RngIntElt)
-> F1ldComElt
{Compute the value of the first derivative of Weierstrass \\wp-function at z,
where z is given with respect to the fundamental parallelogram spanned by L.
This function uses the first k-1 terms in the infinite sum formula}
require #L eq 2: "L must contain exactly two complex numbers";
wl, w2 := Explode(L);
require Im(w2/wl) gt 0: "Im(w2/wl) must be positive";

L, _ := TransformLattice(L);
wl, w2 := Explode(L);

tau := w2/wil;

// reduce z

z := z/wl;

n := Round(Im(z)/Im(tau));
zZ := z - nxtau;

z := z - Round(Re(z));

// now compute p(z,tau)
if z eq O then

error "z is a lattice point";
end if;

Parent (wl) ;
C!Sqrt(-1);
i = Pi(C);
:= Exp(2*pixixtau);
Exp(2*pi*i*z); // since already let z <- z/wl
1+ uw/ - u)r3;

H e QT - Q

for n := 1 to (k-1) do
tmp := (1 + (@g°n)*u )/( 1 - (@"n)*u )~3;
tmp +:= ((@°n) + u)/((q"n) - w)"3;
tmp *:= q"n;
f +:= tmp;
end for;
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f *:=u * (2*pi*i/wl)"3;
return f;
end intrinsic;

A.6.3 interval wp.m

This file involves computing the interval version of the function f mentioned in
Proposition 3.2.3. Note that this also requires some basic arithmetic operations on

real intervals, which are implemented as shown in the next subsection.

[k ke okok sk stk ok sk ok sk ok o ok ok ok o ko sk ok sk ko s sk ok sk ok sk ook ko o s ok ok s sk ok s o sk ko o ok ok
* interval_wp.m
* Computing interval version of the approximate Weierstrass \wp-function

By Thotsaphon Thongjunthug
Last updated: 08 December 2010
Any errors should be reported to <nookaussie@yahoo.com>

Required packages:
1) interval_arith.m - for basic interval arithmetic
ok ok ok ok ok ok ok ok K K K K K K o o o o o ok ok ok ok ok ok ok ok K K K K K K o o o o o ok ok ok ok ok ok ok ok ok K 3K K K 3k ko o o o ok ok ok ok ok ok ok ok ok ok K kK ko /

LR L R

// required for recursive definition
forward HasBoundary;
forward HasBoundaryVertical;

/% skskosk sk ok sk ok sk sk ok sk ok sk ok ook sk sk ok sk ok sk ok sk ok sk ok sk sk sk sk sk sk sk sk ok sk ok sk ok ok sk sk ok sk ok sk sk sk sk sk sk ok sk sk sk sk sk sk sk ok ok sk sk ok sk ok sk ok ok sk k ok sk

* Auxiliary local functions
okt okok ok ok kokkofok ks ko sk ok ok okl ook ok ok ks ok kb ok ok ks ok ok sk kol ook ok ok sk ok ok kb ok ok ok /

/%%

* (verified 13 Jul 08)

* Compute the real part of a slant boundary y = m*x + c
* Input:

* L = [x1, x2] = range of x

* m = gradient of the boundary (m = 0 ==> horizontal boundary)
* ¢ = constant

* k = number of terms used in the power series expansion

* tau = represent the fundamental parallelogram {1, tau}

* Output:

* interval containing the range of the real part

*k /

function realPartSlant(L, m, c, k, tau)
if #L ne 2 then
error "L must contain exactly two real numbers";
end if;
x1, x2 := Explode(L);
if x1 gt x2 then
error "x1 must be < or = x2";

end if;
pi := Pi(Parent(x1));
y1l := -2*pix(m*x1 + c);
y2 := -2%pix(m*x2 + c);
if y1 le y2 then

Y := [y1, y2];
else

Y := [y2, y1l;
end if;
orgY :=Y;

Y := invExp(Y);

// ReC u/(1-u)"2 )

// denominator
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denom := invMul([2., 2.], invCos([2*pi*x1, 2*pi*x2]));

denom := invSub(Y, denom);

denom := invMul(Y, denom);

denom := invAdd([1., 1.], denom);
//print "denom 1 = ", denom;

// In case the interval contains negative numbers, try to adjust it

if denom[1]
//print
//print
//print
//print
//print
// test
diffden
diffden
diffden
diffden
diffden

error

else

// strict behaviour

denx
denx

denom := [Min(denx1,
//print "Denom 1 modified =

le O then

"problem here (real part 1)";

"Caution at L =

"y = ||’ Y;
"m = u, m;
"denom 1 = ",

", L;

denom;

for existence of local extremum in L
:= invPow(Y, 2);
:= invSub(invCos([2*pi*x1, 2*pi*x2]), diffden);
:= invMul(diffden, [m, m]);
1= invAdd(invSin([2*pi*x1, 2*pi*x2]), diffden);
= invMul(diffden, Y);
if (dlffden[l] le 0) and (0 le diffden[2]) then
// may have local extremum - should not happen

"0 is in denominator interval, please report!";

1 := 1 - 2xExp(y1)*Cos(2*pi*x1) + Exp(2*yl);
2 := 1 - 2%Exp(y2)*Cos(2*pi*x2) + Exp(2*y2);

denx2), Max(denxl, denx2)];
", denom; // successfully modified

//PTint "Ekkkskokskokkkkkkkkkkkkkkk ! 5

end if;
end if;

// numerator

numer := invAdd([1., 1.], invPow(Y, 2));

numer := invMul (numer, invCos([2*pi*xl, 2*pi*x2]));
numer := invSub(numer, invMul([2., 2.1, Y));

numer := invMul (numer, Y);

rp := invDiv(numer, invPow(denom, 2));

rp := invAdd(rp, [1./12, 1./12]);

for n := 1 to (k-1) do

agn := Exp(-2*pix*Im(tau)*n); // = |q°nl
A := Cos(2*pi*n*Re(tau));
B := Sin(2*pi*n*Re(tau));

gqnu := invAdd(orgy,

qnu := invExp(qnu);

[-2*pi*Im(tau)*n, -2*pi*Im(tau)*n]);

// Re (@"n*u / (1 - q"n*u)"2)

// denom

denom := invMul([A, A], invCos([2%pi*x1, 2*pi*x2]));

denom := invSub(denom, invMul([B, B], invSin([2*pi*x1, 2*pi*x2])));
denom := invMul(denom, [2., 2.]1);

denom := invSub(qnu, denom);

denom := invMul(denom, gnu);

denom := invSub([1., 1.], denom);

//print "denom 2 = ", denom;

// numerator

numer := invMul([A, A], invCos([2*pi*x1, 2%pi*x2]));

numer := invSub(numer, invMul([B, B], invSin([2*pi*xl, 2*pi*x2])));
numer := invMul(numer, invAdd([1., 1.], invPow(gnu, 2)));

numer := invSub(numer, invMul([2., 2.], qnu));

numer := invMul (numer, gqnu);

rp := invAdd(rp, invDiv(numer, invPow(denom, 2)));

// Re( @"n*u / (@°n - w)"2 )

// denom
denom :=
denom :=
denom :=
denom :=
denom :=
denom :=

inator

invMul ([A, Al, invCos([2*pi*x1, 2%pi*x2]));

invAdd (denom,
invMul (denom,
invMul (denom,

invMul([B, B], invSin([2#pi*x1, 2xpi*x2])));
qnu) ;
[2., 2.1);

invSub([agqn~2, aqn~2], denom);

invAdd(denom,

invPow(Y, 2));
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//print "denom 3 = ", denom;
// numerator
numer := invMul([A, A], invCos([2*pi*x1, 2*pi*x2]));

numer := invAdd(numer, invMul([B, B], invSin([2*pi*x1, 2*pix*x2])));
numer := invMul (numer, invAdd([agn~2, aqn~2], invPow(Y, 2)));

numer := invSub(numer, invMul([2., 2.], gnu));

numer := invMul (numer, gnu);

//print "real num 3 = ", numer;

rp := invAdd(rp, invDiv(numer, invPow(denom, 2)));

// Constant real part

// denominator

denom := [1 - 2%A*agqn + agn”2, 1 - 2xA*aqn + aqn~2];

//print "denom 4 = ", denom;

// numerator

numer := [aqn*Ax(1+aqn~2) - 2*aqn”2, aqn*A*(1+aqn~2) - 2xaqn”2];

numer := invMul (numer, [2., 2.]);

rp := invSub(rp, invDiv(numer, invPow(denom, 2)));
end for;
rp := invMul(rp, [-4*pi, -4*pil);
//print "rp = ", rp;

return rp;
end function;

/*x

* (verified 13 Jul 08)

* Compute the imaginary part of a slant boundary y = m*x + c
* Input:

* L = [x1, x2] = range of x

* m = gradient of the boundary (m = 0 ==> horizontal boundary)
* c = constant

* k = number of terms used in the power series expansion

*  tau = represent the fundamental parallelogram {1, tau}

* Output:

* interval containing the range of the imaginary part

**/

function imPartSlant(L, m, c, k, tau)
if #L ne 2 then
error "L must have exactly 2 real numbers";
end if;
x1, x2 := Explode(L);
if x1 gt x2 then
error "x1 must be <= x2";

end if;
pi := Pi(Parent(x1));
yl := -2xpi*x(m*x1l + c);
y2 := -2*pix(m*x2 + c);
if y1 le y2 then

Y := [y1, y2];
else

Y := [y2, yil;
end if;
orgY :=Y;

Y := invExp(Y);

// Im( u/(1-u)"2 )
// denominator
denom := invMul([2., 2.], invCos([2*pi*xl, 2*pi*x2]));

denom := invSub(Y, denom);
denom := invMul(Y, denom);
denom := invAdd([1., 1.], denom);

// In case the interval contains negative numbers, try to adjust it
if denom[1] le O then
//print "problem here (Im part 1)";

//print "Caution at L = ", L;
//print "Y = ", Y;

//print "m = ", m;

//print "denom im 1 = ", denom;

// test for existence of local extremum in L
diffden := invPow(Y, 2);
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diffden := invSub(invCos([2*pi*x1, 2%pix*x2]), diffden);
diffden := invMul(diffden, [m, m]);
diffden := invAdd(invSin([2*pi*x1, 2*pi*x2]), diffden);
diffden := invMul(diffden, Y);
if (dlffden[l] le 0) and (0 le diffden[2]) then
// may have local extremum - should not happen
error "O is in denominator interval, please report!";
else
// strict behaviour
denxl := 1 - 2*Exp(yl)*Cos(2*pi*x1) + Exp(2xyl);
denx2 := 1 - 2*Exp(y2)*Cos(2*pi*x2) + Exp(2%y2);
denom := [Min(denx1, denx2), Max(denxl, denx2)];
//print "Denom 1 modified = ", denom; // successfully modified
//PTint "kkskkskkskkkkkkkkkkkkkkkk ! 5
end if;
end if;

// numerator
numer := invSub([1., 1.], invPow(Y, 2));

numer := invMul (numer, Y);
numer := invMul(numer, invSin([2*pi*x1l, 2*pi*x2]));
ip := 1nvD1v(numer, invPow(denom, 2));

for n := 1 to (k-1) do
agqn := Exp(-2*pix*Im(tau)*n); // = Iq°nl
A Cos (2*pi*n*Re(tau));
B Sin(2*pi*n*Re (tau));
qnu := invAdd(orgY, [-2*pi*Im(tau)#*n, -2*pi*Im(tau)*n]);
qnu := invExp(qnu);
// Im (@"n*xu / (1 - q"n*u)"2)
// denom
denom := invMul([A, A], invCos([2#pix*x1, 2*pi*x2]));
denom := invSub(denom, invMul([B, B], invSin([2*pi*x1, 2*pi*x2])));
denom := invMul(denom, [2., 2.1);

denom := invSub(qnu, denom);
denom := invMul(denom, gnu);
denom := invSub([1., 1.], denom);

//print "denom im 2 = "

// numerator
numer := invMul([B, B], invCos([2*pi*xl, 2%pi*x2]));

, denom;

numer := invAdd(numer, invMul([A, A], invSin([2*pi*x1, 2xpi*x2])));
numer := invMul (numer, qnu);

numer := invMul(numer, invSub([1., 1.], invPow(gnu, 2)));

ip := invAdd(ip, invDiv(numer, 1nvPow(denom, 2)));

// ImC @"n*u / (@°n - w72 )

// denominator

denom := invMul([A, A], invCos([2%pix*x1, 2*pi*x2]));

denom := invAdd(denom, invMul([B, B], invSin([2*pi*x1, 2*pi*x2])));

denom := invMul(denom, gnu);

denom := invMul(denom, [2., 2.]1);
denom := invSub([agn~2, agn~2], denom);
denom := invAdd(denom, invPow(Y, 2));

//print "denom im 3 = "

// numerator
numer := invMul([A, A], invSin([2*pi*xl, 2*pi*x2]));
numer := invSub(numer, invMul([B, B], invCos([2*pi*x1l, 2xpi*x2])));

, denom;

numer := invMul (numer, qnu);

numer := invMul (numer, invSub([agqn~2, agqn~2], invPow(Y, 2)));
//print "num im 3 = ", numer;

ip := invAdd(ip, invDiv(numer, invPow(denom, 2)));

// Constant part

// denominator

denom := [1 - 2%A*agn + aqn”2, 1 - 2%A*aqn + aqn”2];

//print "denom im 4 = ", denom;

// numerator

numer := [agn*Bx(1-agn~2), aqn*B*(1l-agqn~2)];

numer := invMul (numer, [2., 2.]);

ip := invSub(ip, invDiv(numer, invPow(denom, 2)));
end for;
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ip := invMul(ip, [-4*pi, -4*pil);

return ip;

end function;

/*%

s

* Added 18 Nov 2010
* Compute the real part for a vertical boundary (rare case)

* Input:

* x = fixed x-coordinate
c, d = range of y-coordinates (c <= d)
k = number of terms used in the power series expansion

Output:

*
*
*  tau = the fundamental parallelogram {1, tau} (here, Re(tau)
*
*

a real interval containing the range of the real part.

**/

function realPartVertical(x, c, d, k, tau)
if c gt d then

error "c must be < or = d";
end if;
pi := Pi(Parent(x));
yl := -2*pi*c; y2 := -2%pix*d;
= [y2, yil;
orgY := Y;

Y := invExp(Y);
//print "Y =

n .
N ¢

// Re(C w/(1-u)~2 )

// denominator

denom := invMul([2., 2.], invCos([2*pi*x, 2*pix*x]));
denom := invSub(Y, denom);

denom := invMul(Y, denom);

denom := invAdd([1., 1.], denom);

//print "denom 1 = ", denom;

// numerator
invAdd([1., 1.1, invPow(Y, 2));

invMul (numer, invCos([2*pi*x, 2*pi*x]));
invSub(numer, invMul([2, 2], Y));

invMul (numer, Y);

rp := 1nvD1V(numer, invPow(denom, 2));

numer :=

numer
numer
numer

rp :

for n :=
aqn :
qnu :
qnu :

denom :
denom :
denom :
denom :
denom :

=

invAdd(rp, [1./12, 1./12]);

to (k-1) do

Exp(-2*pi*Im(tau)*n); // = |q°nl

invAdd(orgY, [-2*pi*Im(tau)*n, -2*pi*Im(tau)#*n]);
invExp(qnu) ;

// Re (q"n*u / (1 - q"n*u)"2)

// denom

invCos ([2*pi*x, 2*pi*x]);
invMul (denom, [2., 2.]1);
invSub(qnu, denom);
invMul (denom, gnu);
invSub([1., 1.], denom);

//print "denom 2 = ", denom;
// numerator

numer

numer :
numer :
numer :

rp =

invCos ([2*pi*x, 2*pi*x]);
invMul (numer, invAdd([1.,
invSub(numer, invMul([2., 2.], gqnu));
invMul (numer, qnu);

1nvAdd(rp, invDiv(numer, invPow(denom, 2)));

// Re( g"n*u / (@°n - w"2 )
// denominator

denom :
denom :
denom :
denom :

denom

invCos ([2*pi*x, 2*pi*x]);
invMul (denom, gnu);

invMul (denom, [2., 2.]1);
invSub([aqn~2, aqn~2], denom);
invAdd (denom, invPow(Y, 2));

//prlnt "denom 3 = ", denom;

1.1, invPow(qnu, 2)));

0)
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// numerator

numer := invCos([2*pi*x, 2%pi*x]);

numer := invMul (numer, invAdd([agn~2, agn~2], invPow(Y, 2)));
numer := invSub(numer, invMul([2., 2.], gnu));

numer := invMul (numer, qnu);

//print "real num 3 = ", numer;

rp := invAdd(rp, invDiv(numer, invPow(denom, 2)));

// Constant real part

// denominator

denom := [1 - 2*%aqn + agn”2, 1 - 2%agn + aqn”2];

//print "denom 4 = ", denom;

// numerator

numer := [agn*(l+agqn”2) - 2%aqn”2, agn*(l+aqn”2) - 2%aqn~2];

numer := invMul (numer, [2., 2.]1);

rp := invSub(rp, invDiv(numer, invPow(denom, 2)));
end for;
rp := invMul(rp, [-4*pi, -4xpil);
//print "rp = ", rp;

return rp;

end function;

/**

*
*
*
*

* X ¥ X ¥

Added 18 Nov 2010
Compute the imaginary part for a vertical boundary (rare case)
Input:

x = fixed x-coordinate

c, d = range of y-coordinates (c <= d)

k = number of terms used in the power series expansion

tau = the fundamental parallelogram {1, tau} (here, Re(tau) = 0)
Output:

a real interval containing the range of the imaginary part.

*%x/
function imPartVertical(x, c, d, k, tau)

if ¢ gt d then
error "c must be < or = d";

end if;

pi := Pi(Parent(x));

yl := -2%pixc; y2 := -2%pix*d;
Y := [y2, yil;

orgY :=Y;

Y := invExp(Y);

// ImC u/(1-u)"2 )

// denominator

denom := invMul([2., 2.], invCos([2*pi*x, 2*pi*x]));
denom := invSub(Y, denom);

denom invMul (Y, denom);

denom invAdd([1., 1.], denom);

// numerator

numer := invSub([1., 1.], invPow(Y, 2));

numer := invMul (numer, Y);
numer := invMul (numer, invSin([2*pi*x, 2*pixx]));
ip := invDiv(numer, invPow(denom, 2));

for n := 1 to (k-1) do

aqn := Exp(-2*pi*Im(tau)*n); // = |q nl

gqnu := invAdd(orgY, [-2*pi*Im(tau)*n, -2*pi*Im(tau)*n]);
qnu := invExp(qnu);

// Im (@"n*u / (1 - g"n*u)"2)

// denom

denom := invCos([2*pi*x, 2*pi*x]);

denom := invMul(denom, [2., 2.1);

denom := invSub(qnu, denom);

denom := invMul(denom, gnu);

denom := invSub([1., 1.], denom);

//print "denom im 2 = "

// numerator
numer := invAdd(numer, invSin([2*pi*x, 2*pix*x]));
numer := invMul (numer, qnu);

, denom;
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numer := invMul (numer, invSub([1., 1.], invPow(qnu, 2)));
ip := invAdd(ip, invDiv(numer, invPow(denom, 2)));

// Im( g"n*u / (@°n - w)"2 )
// denominator

denom := invCos([2*pi*x, 2*pix*x]);

denom := invMul(denom, gnu);

denom := invMul(denom, [2., 2.]1);

denom := invSub([agn~2, agn~2], denom);

denom := invAdd(denom, invPow(Y, 2));

//print "denom im 3 = ", denom;

// numerator

numer := invSin([2*pi*x, 2*pix*x]);

numer := invMul (numer, gnu);

numer := invMul (numer, invSub([agn~2, agn~2], invPow(Y, 2)));

//print "num im 3 = ", numer;

ip := invAdd(ip, invDiv(numer, invPow(denom, 2)));
end for;

ip := invMul(ip, [-4*pi, -4*pil);
return ip;
end function;

/******************************************************************************

* Main intrinsic functions
kK KoK oK oK ok ok o K K K 3K oK ok ok o o K K K oK ok ok ok o K K 3K oK ok ok o o K K K oK ok ok ok o K K 3K ok ok ok o o K K K ok ok ok ok o K Kk ok ok ok ok o K K Kok ok ok ok /

/**

* Check if there is part of the boundary of the region R"v(\xi) on a given
* (slant or horizontal) boundary y = m*x + c of a parallelogram.

* Input:

* L = [x1, x2] = range of x-coordinates

* m = the gradient of the parallelogram’s boundary

* c a constant

* B = bound for the function f(X1, X2, X3) (normally is the U_\xi)

*  tau = representing the fundamental parallelogram {1, tau}
*

*

Output:
true if we (suspect) that it may contain part of R"v(\xi); false otherwise

**/
intrinsic HasBoundary(L::SeqEnum, m::F1dReElt, c::FldReElt, B::FldReElt,

tau: :F1dComE1lt) -> BoolElt
{Check if there is part of the boundary of the region R"v(\xi) on a given slant
(or horizontal) boundary of a parallelogram.}

require #L eq 2: "L must have exactly two real numbers";

x1, x2 := Explode(L);

require x1 le x2: "x1 must be < or = x2";

require B ge 0: "B must be non-negative";

require Im(tau) ge O: "Im(tau) must be non-negative";

r := realPartSlant(L, m, c, 23, tau);
//if #r eq 1 then

// print "s** Null denominator *x*";
// return true;
//end if;

err := EstimateWPMaxError(23, 23);
:= invPow(r, 2);
:= invAdd(F, invPow(imPartSlant(L, m, c, 23, tau), 2));
[Sqrt(F[1]), Sqrt(F[2]1)];

:= invSub(F, [B, Bl);

:= [F[1]-err, F[2]+err];
if not ((F[1] le 0) and (0 le F[2])) then

return false;

end if;

Mmoo
i

// If still not return false, try to bisect the interval and check
midPt := (x1 + x2)/2;
L1 := [x1, midPt];

L2 := [midPt, x2];
11 := HasBoundary(L1l, m, c, B, tau);
12 := HasBoundary(L2, m, c, B, tau);

if not(11) and not(12) then
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return false;
else
return true;
end if;
end intrinsic;

/%%

* Check if there is part of the boundary of the region R"v(\xi) on a given
* vertical boundary of a parallelogram.

* Input:

* x = a fixed x-coordinate

* c, d = the range of y-coordinates

* B = bound for the function f(X1, X2, X3) (normally is the U_\xi)

*  tau = representing the fundamental parallelogram {1, tau}

* Output:

*  true if we (suspect) that it may contain part of R"v(\xi); false otherwise
*%/

intrinsic HasBoundaryVertical(x::F1dReElt, c::F1dReElt, d::FldReElt,
B::F1ldReElt, tau::F1ldComElt) -> BoolElt
{Check if there is part of the boundary of the region R"v(\xi) on a given
vertical boundary of a parallelogram.}
require c le d: "c must be < or = 4d";
require B ge O: "B must be non-negative";
require Im(tau) ge O: "Im(tau) must be non-negative";

r := realPartVertical(x, c, d, 23, tau);
//if #r eq 1 then

// print "xxx Null denominator **x*";
// return true;

//end if;

err := EstimateWPMaxError (23, 23);
invPow(r, 2);
invAdd(F, invPow(imPartVertical(x, c, d, 23, tau), 2));
[Sqrt (F[11), Sqrt(F[2]1)];
invSub(F, [B, Bl);
:= [F[1]l-err, F[2]+err];

if not ((F[1] le 0) and (0 le F[2])) then

return false;
end if;

oMo
i

// If still not return false, try to bisect the interval and check
11 := HasBoundaryVertical(x, c, d/2, B, tau);
12 := HasBoundaryVertical(x, d/2, d, B, tau);
if not(11) and not(12) then
return false;
else
return true;
end if;
end intrinsic;

A.7 Height Bound V: Interval Arithmetic

This file provides some basic arithmetic operations on real intervals.

information on the subject of interval arithmetic, see, e.g., [M0066].

/3 3k ok ok ok sk sk sk ok ok ok sk ko ok ok ok ok ok ok ok ok ok K K K K e o ok sk ok ok ok ok sk ok ok K Kk ko s ok sk ok ok ok ok ok K ok Kk Kk ok ok
* interval_arith.m
Functions for basis arithmetic on real intervals

Last updated: 08 December 2010
Any errors should be reported to <nookaussie@yahoo.com>
stk sk ok ok sk ok sk sk ok ok sk ok sk ok sk sk ok ok sk sk sk ok sk ok sk ok sk sk ok sk sk sk sk ok sk ok sk sk sk ok sk sk sk sk ok ok sk sk sk ok sk sk sk sk ok ok sk ok sk ok ok /

*
*
* By Thotsaphon Thongjunthug
*
*

For more
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/******************************************************************************

* Unary Operations
sk o ok ok ok ok R oK o ok ok K oK o oK ook ok ok oK oK sk o K ok o oK o ok ok ok ok oK sk ok ok ok ok o sk sk ok ok ok sk ok ok sk ok o sk sk ok ok o sk sk sk ok ok sk ok /

/*%

* Cosine function for the interval [a, b]
* Input:

* L = [a, b] with a <= b

*%/

intrinsic invCos(L::SeqEnum[F1dReElt]) -> SeqEnum[F1dReElt]
{Cosine function for a real interval L = [a, b].}
// Check validity of L = [a, bl
require #L eq 2: "Interval must contain exactly two real numbers";
a, b := Explode(L);
require a le b: "a must be < or = b";

// Check if L contains any multiples of Pi
pi := Pi(Parent(a));
1b := Ceiling(a/pi);
ub := Floor(b/pi);
width := ub - 1lb;
if ((lb*pi) gt b) or ((ub*pi) 1t a) then
// L contains no extremum for cos function
return [Min(Cos(a), Cos(b)), Max(Cos(a), Cos(b))];
elif width gt O then
// L contains both even and odd multiples of pi, so return [-1, 1]
return [-1, 1];
elif (1b mod 2) eq O then
// 1b = ub, and is even, then maximum of cosine = 1
return [Min(Cos(a), Cos(b)), 1];

else

// minimum of cosine = -1

return [-1, Max(Cos(a), Cos(b))];
end if;

end intrinsic;

/**

* Sine function for the interval [a, Db]

* Input:

* L = [a, b], with a <= Db

*%/

intrinsic invSin(L::SeqEnum[F1dReE1lt]) -> SeqEnum[F1dReElt]
{Sine function for a real interval L = [a, b].}

// Check validity of L = [a, b]

require #L eq 2: "Interval must contain exactly two real numbers";
a, b := Explode(L);

require a le b: "a must be < or = b";

// Check if L contains any multiples of Pi/2

pi := Pi(Parent(a));

1b := Ceiling(2*a/pi);

ub := Floor(2*b/pi);

// only care the odd multiple of pi/2 - N . 8/7/08
if (1b mod 2) eq O then

1b := 1b + 1;

end if;

if (ub mod 2) eq O then
ub := ub - 1;

end if;

width := (ub - 1b)/2;

// Case 1: when L contains no odd multiple of Pi/2
if ((lb*pi/2) gt b) or ((ub*pi/2) 1t a) then
return [Min(Sin(a), Sin(b)), Max(Sin(a), Sin(b))]1;
end if;
// Case 2: width >= 1, so L contains two odd multiples of Pi/2
if width gt 1 then
return [-1, 1];
end if;
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// Case 2: width = 0 (so 1lb = ub)
if (1b mod 4) eq 1 then

// Max of sin = 1

return [Min(Sin(a), Sin(b)), 1];
else

// Mim of sin = -1

return [-1, Max(Sin(a), Sin(b))];
end if;

end intrinsic;

/%%

* Exponential function for the interval
* Input:

* L = [a, b], with a <= Db

*%/

intrinsic invExp(L::SeqEnum[F1dReElt]) -> SeqEnum[F1ldReElt]

{Exponential function for a real interval L = [a, b].}
// Check validity of L = [a, b]
require #L eq 2:

"Interval must contain exactly two real numbers";

a, b := Explode(L);
require a le b: "a must be < or = b";
return [Exp(a), Exp(b)];
end intrinsic;
/**
* Let L be an interval, compute Ln =L * ... * L, n times
* Input:

* L = [a, b], with a <= Db
* n = a non-negative integer
*%/

intrinsic invPow(L::SeqEnum[F1dReE1lt], n::RngIntElt) -> SeqEnum[F1ldReElt]

{Compute n-th power of a real interval L.}
// Check validity of L = [a, b]
require #L eq 2:
a, b := Explode(L);
require a le b: "a must be < or = b";
require n ge 0: "n must be a non-negative integer";

if (n mod 2) eq O then
// take care when a and b is of different sign
if (a le 0) and (b ge 0) then
return [0, Max(a"n, b°n)];
else
return [Min(a"n, b™n), Max(a"n, b"n)];
end if;
end if;
return [Min(a"n, b"n), Max(a"n, b™n)];
end intrinsic;

"Interval must contain exactly two real numbers";

/******************************************************************************

* Binary Operations

*****************************************************************************/

YELS

* Add two real intervals
* Input:

* L, K = real intervals
*%/

intrinsic invAdd(L::SeqEnum[F1dReElt], K::SeqEnum[F1dReElt]) -> SeqEnum[F1dReElt]

{Add two real intervals.}
require (#L eq 2) and (#K eq 2):

"Both L, K must contain exactly two real numbers";

a, b := Explode(L);
c, d := Explode(K);
require (a le b) and (c le d): "Check if a <= b and c <= d";

return [a+c, b+d];
end intrinsic;
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/*%

* For real intervals L, K, compute L - K
* Input:

* L, K = real intervals

**/

intrinsic invSub(L::SeqEnum[F1dReE1lt], K::SeqEnum[F1dReElt]) -> SeqEnum[F1dReElt]
{Subtract two real intervals.}

return invAdd(L, [-K[2], -K[1]11);
end intrinsic;

/**

* For real intervals L, K, compute L*K
* Input:

* L, K = real intervals

*%/

intrinsic invMul(L::SeqEnum[F1dReElt], K::SeqEnum[F1dReElt]) -> SeqEnum[F1dReElt]
{Multiply two real intervals.}
require (#L eq 2) and (#K eq 2):
"Both L, K must contain exactly two real numbers";
a, b := Explode(L);
c, d := Explode(X);
require (a le b) and (c le d): "Check if a <= b and ¢ <= d";

1b, _ := Min([a*c, a*d, b*c, bxd]);
ub, _ := Max([a*c, a*d, b*c, bxd]);
return [1b, ubl;

end intrinsic;

/*%
* For real intervals L, K = [c, d], compute L/K = Lx[1/d, 1/c]
* provided that 0 is not in K
* Input:
* L, K = real intervals
*%/
intrinsic invDiv(L::SeqEnum[F1dReElt], K::SeqEnum[F1dReElt]) -> SeqEnum[F1dReElt]
{For real intervals L, K (with O not in K), compute L/K.}
require (#L eq 2) and (#K eq 2):
"Both L, K must contain exactly two real numbers";
a, b := Explode(L);
c, d := Explode(X);
require (a le b) and (c le d): "Check if a <= b and c <= d";
if (c le 0) and (0 le d) then
error "K must not contain 0";
end if;
return invMul(L, [1/d, 1/c]);
end intrinsic;
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