
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/35646

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

HEIGHTS ON ELLIPTIC CURVES OVER NUMBER

FIELDS, PERIOD LATTICES, AND COMPLEX

ELLIPTIC LOGARITHMS

By

Thotsaphon Thongjunthug

A thesis submitted for the degree of

Doctor of Philosophy

Mathematics Institute

The University of Warwick

Coventry, England

February 2011

Contents

Acknowledgements vii

Declaration viii

Summary ix

1 Introduction 1

1.1 An Overview of Elliptic Curves . 1

1.2 Elliptic Curves over Number Fields 4

1.2.1 Heights . 4

1.2.2 Mordell–Weil Bases . 8

1.3 Elliptic Curves over C . 9

2 Height Bound I 13

2.1 Points of Good Reduction . 13

2.2 Estimation of Local Heights . 15

2.2.1 Non-Archimedean Cases . 15

2.2.2 Archimedean Cases . 18

2.3 Multiplication by n . 18

2.4 A Bound for Multiples of Points of Good Reduction 20

2.5 Solving Inequalities I: Real Embeddings 23

2.5.1 Periods and Elliptic Logarithms 23

i

ii Contents

3 Height Bound II: Complex Embeddings 28

3.1 Corresponding Regions I: An Overview 29

3.1.1 Fundamental Parallelograms 29

3.1.2 Visualising the Region . 30

3.2 Corresponding Regions II: Estimation 31

3.2.1 The Weierstrass ℘-function 32

3.2.2 Interval Arithmetic . 34

3.2.3 Approximate Corresponding Regions 38

3.3 Solving Inequalities II: Complex Embeddings 41

3.4 An Algorithm for Height Bound . 43

3.5 Remarks . 44

4 Period Lattices and Complex Elliptic Logarithms 46

4.1 Introduction . 46

4.2 AGM Sequences . 48

4.3 Chains of Lattices . 51

4.3.1 Optimal Chains and Rectangular Lattices 54

4.4 Chains of 2-Isogenies . 57

4.5 Period Lattices of Elliptic Curves 61

4.5.1 General Case . 62

4.5.2 Special Case I: Rectangular Lattices 68

4.5.3 Special Case II . 69

4.5.4 A Relationship amongst the Periods 70

4.6 Complex Elliptic Logarithms . 75

4.7 Examples . 84

5 Applications 95

5.1 Height Bound III: Examples . 95

5.1.1 Case I: Totally Real Number Fields 96

Contents iii

5.1.2 Case II: Number Fields with Complex Embeddings 101

5.2 Mordell–Weil Bases . 106

5.2.1 Sieving Procedure . 108

5.2.2 Examples Revisited . 109

5.2.3 Comparison with a Searching Points Method 115

5.3 Integral Points on Elliptic Curves 116

5.3.1 Introduction . 116

5.3.2 Initial Bounds . 117

5.3.3 Bound Reduction . 120

5.3.4 Examples . 122

5.4 Elliptic Curves with Everywhere Good Reduction 128

5.4.1 Cremona–Lingham’s Method: An Overview 128

5.4.2 Examples I: Real Quadratic Fields 132

5.4.3 Examples II: Imaginary Quadratic Fields 149

A MAGMA Source Code 159

A.1 Period Lattices and Complex Elliptic Logarithms 159

A.2 Integral Points on Elliptic Curves 166

A.3 Height Bound I: Main Functions . 178

A.4 Height Bound II: Computing αv . 185

A.5 Height Bound III: Intersection of Intervals 192

A.6 Height Bound IV: Intersection of Regions 196

A.6.1 intersect complex.m . 196

A.6.2 wp.m . 202

A.6.3 interval wp.m . 205

A.7 Height Bound V: Interval Arithmetic 212

Bibliography 216

List of Figures

1.1 Elliptic curves over R . 2

1.2 Addition on elliptic curves . 3

3.1 The boundary on Hτ associated to different Uξ 31

3.2 Loops on the torus C/Λτ when the boundary varies 32

3.3 Four quarters of Cj . 39

3.4 An illustration of how to obtain S(v) 41

3.5 Division on Fτ by 3 . 42

4.1 A chain of 2-isogenies linked with a chain of lattices 63

iv

List of Tables

3.1 Maximum values for ε(k) . 34

5.1 Illustration of the algorithm for Example 5.1.1 98

5.2 Illustration of the algorithm for Example 5.1.2 99

5.3 Illustration of the algorithm for Example 5.1.3 101

5.4 Illustration of the algorithm for Example 5.1.4 103

5.5 Illustration of the algorithm for Example 5.1.6 106

5.6 Sieving procedure for the elliptic curve E2 111

5.7 Sieving procedure for the elliptic curve E4 113

5.8 LLL reduction used in Example 5.3.5 124

5.9 Integral points on y2 = x3 − 16x + 16 over Q(
√−2) 125

5.10 LLL reduction used in Example 5.3.6 127

5.11 Integral points on the elliptic curve E6 127

5.12 Elliptic curves over Q(
√

38) with everywhere good reduction 135

5.13 Elliptic curves over Q(
√

41) with everywhere good reduction 136

5.14 Elliptic curves over Q(
√

43) with everywhere good reduction 137

5.15 Elliptic curves over Q(
√

46) with everywhere good reduction 138

5.16 Elliptic curves over Q(
√

51) with everywhere good reduction 139

5.17 Elliptic curves over Q(
√

55) with everywhere good reduction 140

5.18 Elliptic curves over Q(
√

59) with everywhere good reduction 141

5.19 Elliptic curves over Q(
√

62) with everywhere good reduction 142

5.20 Elliptic curves over Q(
√

65) with everywhere good reduction 143

v

vi List of Tables

5.21 Elliptic curves over Q(
√

67) with everywhere good reduction 145

5.22 Elliptic curves over Q(
√

78) with everywhere good reduction 146

5.23 Elliptic curves over Q(
√

87) with everywhere good reduction 147

5.24 Elliptic curves over Q(
√

95) with everywhere good reduction 148

5.25 Elliptic curves over Q(
√−26) with everywhere good reduction . . . 150

5.26 Elliptic curves over Q(
√−29) with everywhere good reduction . . . 151

5.27 Elliptic curves over Q(
√−31) with everywhere good reduction . . . 152

5.28 Elliptic curves over Q(
√−38) with everywhere good reduction . . . 153

5.29 Elliptic curves over Q(
√−53) with everywhere good reduction . . . 154

5.30 Elliptic curves over Q(
√−59) with everywhere good reduction . . . 155

5.31 Elliptic curves over Q(
√−61) with everywhere good reduction . . . 156

5.32 Elliptic curves over Q(
√−83) with everywhere good reduction . . . 157

5.33 Elliptic curves over Q(
√−87) with everywhere good reduction . . . 158

Acknowledgements

First of all, I am most indebted to my supervisors Professor John E. Cremona and

Professor Samir Siksek for all their valuable guidance and support I have constantly

received during my time at the University of Warwick. Without their time and

devotion, this thesis certainly could not come this far.

Secondly, I wish to thank my family for their moral support during my hard

time overseas. Although they may not have much idea of my research, I believe

that they will be proud of what I have achieved.

In addition, thanks also go to my fellow postgraduate students at the Mathe-

matics Institute, particularly all members of Number Theory Group, for making

my time at Warwick enjoyable and unforgettable.

Last but not least, I am grateful to the Development and Promotion of Sci-

ence and Technology Talents Project (DPST), Thailand, for a scholarship to my

postgraduate study.

Coventry, England Thotsaphon Thongjunthug

February 2011

vii

Declaration

I hereby declare that this thesis is my own work and to the best of my knowledge

it contains no materials previously published or written by another person, except

where due acknowledgement is made in the thesis. Any contribution made to the

research by others, with whom I have worked at the University of Warwick or

elsewhere, is explicitly acknowledged in the thesis.

In this thesis, an alternative version of Chapter 2 and 3 has been published

in [Tho08] and [Tho10] respectively. Chapter 4 is based on my joint work with

Professor John E. Cremona at the University of Warwick; another version of this

chapter has been submitted for publication as a joint paper [CT].

Each algorithm based on this thesis has been implemented in MAGMA, a com-

puter package produced and distributed by the School of Mathematics and Statistics

of the University of Sydney, Australia.

Finally, I declare that this thesis has not been submitted for a degree at any

other institution.

Thotsaphon Thongjunthug

viii

Summary

This thesis presents some major improvements in the following computations: a

lower bound for the canonical height, period lattices, and elliptic logarithms.

On computing a lower bound for the canonical height, we have successfully

generalised the existing algorithm of Cremona and Siksek [CS06] to elliptic curves

over totally real number fields, and then to elliptic curves over number fields in

general. Both results, which are also published in [Tho08] and [Tho10] respectively,

will be fully explained in Chapter 2 and 3.

In Chapter 4, we give a complete method on computing period lattices of elliptic

curves over C, whereas this was only possible for elliptic curves over R in the

past. Our method is based on the concept of arithmetic-geometric mean (AGM).

In addition, we extend our method further to find elliptic logarithms of complex

points. This work is done in collaboration with Professor John E. Cremona; another

version of this chapter has been submitted for publication [CT].

In Chapter 5, we finally illustrate the applications of our main results towards

certain computations which did not work well in the past due to lack of some

information on elliptic curves. This includes determining a Mordell–Weil basis,

finding integral points on elliptic curves over number fields [SS97], and finding

elliptic curves with everywhere good reduction [CL07].

A number of computer programs have been implemented for the purpose of

illustration and verification. Their source code (written in MAGMA) can be found

in Appendix A.

ix

Dedicated to my beloved aunt Pissawong Thongjunthug

“You always live on in my heart”

Chapter 1

Introduction

We will first introduce all underlying concepts which are necessary for later chapters,

together with an overview of this thesis. In this chapter, we will start by a brief

definition of elliptic curves, before move on to describe more specific concepts related

to elliptic curves over number fields, and finally, elliptic curves over C. A synopsis

of each chapter will be also mentioned where appropriate.

1.1 An Overview of Elliptic Curves

In this section, we will briefly describe the definition an elliptic curve over a general

field, and how to construct an operation defining the group law on it.

Definition. Let K be a field. An elliptic curve E defined over K (denoted by

E/K) is a non-singular projective plane curve of degree 3 over K, with a specified

point of inflection O which is also defined over K.

We can assume (see [Mil06, Proposition 1.2]) that E is given by a homogeneous

Weierstrass equation

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3,

where all aj ∈ K are constants. If Z 6= 0, then we can divide every term above by

1

2 Chapter 1. Introduction

Z3 to obtain an affine Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (1.1)

via x = X/Z, y = Y/Z. The line Z = 0 intersects E at (0 : 1 : 0) with multiplicity

3, so we may take O = (0 : 1 : 0); this is called the point at infinity of E. It is also

easy to prove (see [Was03, p. 20]) that every vertical line intersects E at O.

From now on, we shall always assume that an elliptic curve E is given by an

affine Weierstrass equation (1.1), unless otherwise stated. As in [Sil86, p. 46], we

define the following quantities associated to a Weierstrass equation:

b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6.

The quantity ∆ is known as the discriminant of E. An example of elliptic curves

defined over K = R is illustrated in Figure 1.1.

(a) ∆ < 0 (b) ∆ > 0

Figure 1.1: Elliptic curves over R

In this thesis, our field K will be either R, C, or a number field, hence char(K) =

0. For now we note that, since char(K) 6= 2, we can rewrite the Weierstrass equation

of E as

E : (2y + a1x + a3)
2 = f(x) = 4x3 + b2x

2 + 2b4x + b6.

1.1. An Overview of Elliptic Curves 3

It can be shown (see [Sil86, Proposition III.1.4]) that ∆ 6= 0 if and only if f(x) has

three distinct roots, which is equivalent to the non-singularity of E.

Definition. Let E be an elliptic curve defined over a field K, and let L ⊇ K be a

field. The set of all L-points of E, denoted by E(L), is given by

E(L) = {(x, y) ∈ L2 : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6} ∪ {O}.

For any two points P1, P2 ∈ E(L), we can construct an operation so-called

addition (denoted by +) geometrically as follows. First, let L1 be the straight line

through P1, P2 (or if P1 = P2, take L1 to be the tangent line to E at that point).

Then L1 will intersect E at another point, say, P ′
3. Let L2 be the vertical line

through P ′
3. Then L2 will intersect E at another point, say P3. Finally, we define

P1 + P2 = P3. An example of this process for L = K = R is shown in Figure 1.2.

P1

P2

P
′

3

P3

L1

L2

(a) P1 6= P2

P1 = P2

P
′

3

P3

L1

L2

(b) P1 = P2

Figure 1.2: Addition on elliptic curves

It is readily shown (see, e.g., [Was03, Section 2.2]) that E(L) becomes an abelian

group with O as the identity once being equipped with this addition. We say that

a point P ∈ E(L) is a torsion point if P has finite order in E(L); otherwise, P is

said to be non-torsion.

4 Chapter 1. Introduction

1.2 Elliptic Curves over Number Fields

In this section, we shall first explain the definition of heights on elliptic curves over

number fields, and then briefly describe the importance of a lower bound for the

canonical height towards computing a Mordell–Weil basis. Throughout this section,

our elliptic curve E will be defined over a number field K.

1.2.1 Heights

Roughly speaking, the height function is a way to measure how “complicated” the

x-coordinate of a point P ∈ E(K) is. In this thesis, we will be using the canonical

height, which can be expressed as a sum of all contributions from local heights. It

should be noted that normalisation of heights varies in literature. In our case, the

local and canonical heights are defined with respect to the divisor 2(O). This leads

to the same normalisation as the one used in the computer package MAGMA, and

gives double the values compared with Silverman’s paper [Sil88] where heights are

defined with respect to (O).

The Canonical Height

Denote the sets of real and complex archimedean places of K by M r
K and M c

K

respectively, and let MK be the set of all places of K. For v ∈ MK , let nv =

[Kv : Qv], and let σv be the associated embedding of K into the completion Kv.

Definition. For x ∈ K, the absolute value of x at a place v ∈ MK is given by

|x|v =

|σv(x)| if v ∈ M r
K ∪M c

K ,

N (p)−ordp(x)/np if v = p,

(1.2)

where p is the prime ideal associated to a non-archimedean place v, and N denotes

the norm of an integral ideal of K.

1.2. Elliptic Curves over Number Fields 5

It is a standard fact (see, e.g., [Coh07, Proposition 4.1.14]) that this definition

satisfies all axioms of valuation theory and the product formula
∏

v∈MK
|x|nv

v = 1.

Definition. For P ∈ E(K), the naive height of P (relative to K) is defined by

HK(P) =

1 if P = O,

∏
v∈MK

max{1, |x(P)|v}nv if P 6= O.
(1.3)

Definition. For P ∈ E(K), the logarithmic height of P is defined by

h(P) =
1

[K : Q]
log HK(P). (1.4)

From this, the canonical height of P is given by

ĥ(P) = lim
j→∞

h(2jP)

4j
. (1.5)

Observe that h(P) ≥ 0 for all P ∈ E(K), thus we also have ĥ(P) ≥ 0 for all

P ∈ E(K). Moreover, we have ĥ(mP) = m2ĥ(P) for all P ∈ E(K) and m ∈ Z (see

[Sil86, p. 230] for the proof). In particular, if P is a torsion point of order m, then

we have

0 = ĥ(O) = ĥ(mP) = m2ĥ(P)

(the fact that ĥ(O) = 0 follows easily from (1.6)), i.e., ĥ(P) = 0. In fact, the

canonical height ĥ : E(K) → [0,∞) is a positive definite quadratic form on

E(K)/Etors(K), which gives it the structure of a lattice. Hence there exists a

positive lower bound for ĥ(P) among all non-torsion P ∈ E(K).

Computing such a lower bound has a number of applications in the arithmetic

of elliptic curves. In particular, it is a crucial step in determining a Mordell–Weil

basis for E(K); see Section 1.2.2 for more details. In the past, a number of explicit

lower bounds for the canonical height on E(K) have been proposed. Some of

6 Chapter 1. Introduction

them, including [HS88, Theorem 0.3], aim to prove Lang’s conjecture (see [Sil86,

Conjecture VIII.9.9]), which states that there exists a constant cK , depending only

on K, such that

ĥ(P) ≥ cK logN (DE/K)

for all non-torsion P ∈ E(K), where DE/K is the minimal discriminant of E/K. As

we will see later on, however, the lower bound obtained by that result is too small

for practical use.

In this thesis, we will develop an alternative method for determining a larger

positive lower bound for the canonical height on elliptic curves over number fields.

The underlying methodology is mainly inspired by the algorithm of Cremona and

Siksek [CS06], which allows one to compute such a lower bound for elliptic curves

defined over Q only. Our work on this is divided into two parts, namely, deter-

mining certain contributions from all real embeddings, and then from all complex

embeddings. Both parts will be described in Chapter 2 and 3 respectively.

Local Height Functions

Finally, we give the definition of local heights. Suppose P ∈ E(K) with 2P 6= O.

Then one can observe that x(2P) = g(P)/f(P), where

f(P) = 4x(P)3 + b2x(P)2 +2b4x(P)+ b6, g(P) = x(P)4− b4x(P)2− 2b6x(P)− b8.

Hence by (1.3), we have

HK(2P) =
∏

v∈MK

max{1, |x(2P)|v}nv

=
∏

v∈MK

max{1, |g(P)|v/|f(P)|v}nv

=
∏

v∈MK

|f(P)|nv
v ·

∏
v∈MK

max{1, |g(P)|v/|f(P)|v}nv

=
∏

v∈MK

max{|f(P)|v, |g(P)|v}nv

1.2. Elliptic Curves over Number Fields 7

(note that
∏

v∈MK
|f(P)|nv

v = 1 by the product formula), and so

h(2P) =
1

[K : Q]

∑
v∈MK

nv log max{|f(P)|v, |g(P)|v}

by (1.4). Together with (1.4) again, this easily yields

h(2P)− 4h(P) =
1

[K : Q]

∑
v∈MK

nv log Φv(P), (1.6)

where

Φv(P) =

1 if P = O,

max{|f(P)|v, |g(P)|v}
max{1, |x(P)|v}4

if P 6= O.

(1.7)

Definition. For v ∈ MK , let Kv be the completion of K at v. The function

λv : E(Kv) → R defined by

λv(P) = log max{1, |x(P)|v}+
∞∑

j=0

log Φv(2
jP)

4j+1
. (1.8)

is called the local height function at v.

To see the relationship between the canonical height and local heights, we use

(1.5) and the telescoping sum to obtain

ĥ(P) = h(P) +

[
h(2P)

4
− h(P)

]
+

[
h(22P)

42
− h(2P)

4

]
+ · · ·

=
1

[K : Q]

∑
v∈MK

nv

(
log max{1, |x(P)|v}+

log Φv(P)

4
+

log Φv(2P)

42
+ · · ·

)

=
1

[K : Q]

∑
v∈MK

nvλv(P) (1.9)

(the second equality follows directly from (1.4) and (1.8)). This therefore allows

us to obtain ĥ(P) by combining the contribution of λv on each local model E(Kv),

noting that λv(P) = 0 for almost all v.

8 Chapter 1. Introduction

1.2.2 Mordell–Weil Bases

Recall that E(K) is an abelian group under addition. By the Mordell–Weil theorem

(see, e.g., [Sil86, Chapter VIII] for more details), it is also well known that E(K)

is finitely generated. It then follows that

E(K) ∼= Etors(K)× Zr,

where Etors(K) is the torsion subgroup of E(K) (i.e., the set of all torsion points in

E(K)), and the rank r ≥ 0 of E(K) is the cardinality of a Mordell–Weil basis for

E(K) (i.e., the set of all non-torsion points in E(K) whose images in E(K)/Etors(K)

form a Z-basis for it).

In general, it turns out that the torsion subgroup of E(K) can be determined

more easily than a Mordell–Weil basis for E(K). According to [Sik95], the task of

explicit computation of such a basis consists of the following steps:

1. Determine P1, . . . , Pr whose images in E(K)/Etors(K) generate a subgroup of

finite index of E(K)/Etors(K). Usually, these are obtained by performing an

m-descent for some m ≥ 2.

2. A lower bound λ > 0 for the canonical height ĥ(P) is determined, which in

turn yields an upper bound on the index n = [E(K)/Etors(K) : 〈P1, . . . , Pr〉].

3. A sieving procedure [Sik95, Section 4] is then used to deduce a Mordell–Weil

basis for E(K).

In step (2), we certainly wish to have an upper bound for n as small as possible.

In particular, P1, . . . , Pr will certainly be a Mordell–Weil basis of E(K) if n = 1.

It follows from the following theorem that, in order to have a smaller upper bound

for n, one must obtain a larger lower bound for the canonical height.

1.3. Elliptic Curves over C 9

Theorem 1.2.1 (The Geometry of Numbers). If E(K) contains no points P of

infinite order with ĥ(P) ≤ λ for some λ > 0, then the index n satisfies

n ≤ R(P1, . . . , Pr)
1/2(γr/λ)r/2,

where R(P1, . . . , Pr) = det(〈Pi, Pj〉)1≤i,j≤r and

〈Pi, Pj〉 =
1

2

(
ĥ(Pi + Pj)− ĥ(Pi)− ĥ(Pj)

)
.

Moreover, the values γr may be taken to be

γ1
1 = 1, γ2

2 = 4/3, γ3
3 = 2, γ4

4 = 4,

γ5
5 = 8, γ6

6 = 64/3, γ7
7 = 64, γ8

8 = 28,

and γr = (4/π)Γ(r/2 + 1)2/r for r ≥ 9.

Proof. See [Sik95, Theorem 3.1].

As mentioned earlier, we will fully explain a new method for computing λ in

Chapter 2 and 3. Some examples on how to determine a Mordell–Weil basis using

λ and the process above will be also shown in Chapter 5.

1.3 Elliptic Curves over C

We now move on to elliptic curves defined over C, where we will give a brief intro-

duction on period lattices of elliptic curves and elliptic logarithms of points, which

will be the subject of Chapter 4.

Definition. A lattice Λ is a free Z-module of rank 2 embedded as a discrete sub-

group of C, i.e.,

Λ = {n1w1 + n2w2 : n1, n2 ∈ Z}

10 Chapter 1. Introduction

for some w1, w2 ∈ C with w1/w2 /∈ R.

For a lattice Λ, we can also identify C/Λ with the set

Fw1,w2 = {λ1w1 + λ2w2 : 0 ≤ λ1, λ2 < 1}

called the (open) fundamental parallelogram for Λ (or if we allow both λj = 1, we

say that it is closed). In the topological point of view, this is a torus. Clearly,

choosing a different Z-basis for Λ yields a different fundamental parallelogram.

Let E be an elliptic curve defined over C. With some change of variables, we

can assume that the Weierstrass equation of E is of the form

E : Y 2 = 4(X − e1)(X − e2)(X − e3),

where all ej are distinct and
∑3

j=1 ej = 0. It is well known (see, e.g., [Was03,

Chapter 9]) that E(C) ∼= C/Λ for some lattice Λ via the map

P = (℘Λ(z), ℘′Λ(z)) ←→ z (mod Λ),

O ←→ 0 (mod Λ).

We say that Λ is the period lattice of E, and z is an elliptic logarithm of P . The

values of ℘Λ(z) and ℘′Λ(z) can be computed using the power series expansion as

shown in the following proposition.

Proposition 1.3.1 ([Coh93, Proposition 7.4.4]). Let {w1, w2} be a Z-basis for Λ

chosen so that =(w2/w1) > 0. Set

τ = w2/w1, q = exp(2iπτ), u = exp(2πiz/w1)

1.3. Elliptic Curves over C 11

(here, i =
√−1). Then

℘Λ(z) =

(
2iπ

w1

)2
(

1

12
+

u

(1− u)2
+

∞∑
j=1

[
qju

(1− qju)2
+

qju−1

(1− qju−1)2
− 2qj

(1− qj)2

])

and

℘′Λ(z) =

(
2iπ

w1

)3

u

(
1 + u

(1− u)3
+

∞∑
j=1

qj

[
1 + qju

(1− qju)3
+

qj + u

(qj − u)3

])
.

To be precise, a Z-basis for the period lattice of E is given by any two of the

generators w1, w2, w3, where ℘Λ(wj/2) = ej and ℘′Λ(wj/2) = 0 for all j. Suppose `j

is the straight line on the complex plane starting from 0 to wj/2. Then we have

wj

2
=

∫

`j

dz =

∫

`j

d℘Λ(z)

℘′Λ(z)
=

∫

Cj

dX

Y
, (1.10)

where Cj is the image of `j on E under (℘Λ, ℘′Λ), i.e.,

Cj = {(℘Λ(twj/2), ℘′Λ(twj/2)) : 0 ≤ t ≤ 1}.

More generally, if zP is an elliptic logarithm of P ∈ E(C), then

zP =

∫

CP

dX

Y
(mod Λ),

where CP = {(℘Λ(tzP), ℘′Λ(tzP)) : 0 ≤ t ≤ 1}.

If E is defined over R, then we obtain one of two special cases for the lattice

Λ of E. It can be shown (see, e.g., [Was03, pp. 274–275]) that if E has positive

discriminant (see Figure 1.1b), then Λ is rectangular, i.e., there exists a Z-basis

{w1, w2} for Λ where w1 ∈ R and w2 ∈ iR. In this case, the connected component

of the identity (i.e., the one containing O) is parameterised by the line {tw1 : 0 ≤
t < 1}, while the “loop” component is parameterised by the line {tw1 + w2/2 : 0 ≤

12 Chapter 1. Introduction

t < 1}. For E/R with negative discriminant (see Figure 1.1a), we obtain a skewed

lattice, i.e., there exists a Z-basis for Λ with w1 ∈ R and <(w2/w1) = 1/2. In this

case, the whole E(R) is connected and parameterised by the line {tw1 : 0 ≤ t < 1}.

Finding period lattices and elliptic logarithms is an important computation in

its own right, and also has a number of applications towards certain algorithms, in-

cluding one for determining a lower bound for the canonical height on elliptic curves

over number fields, which will be fully explained in Chapter 2 and 3. Although there

are some algorithms including [Coh93, Algorithm 7.4.7 and 7.4.8] readily available

for computing both period lattices and elliptic logarithms, those algorithms only

work for elliptic curves over R. In Chapter 4, we will show how to develop a com-

plete method for computing period lattices and elliptic logarithms for elliptic curves

over C in general, based on the method of arithmetic-geometric mean (AGM). As

we will see later on, our algorithm will allow one to compute both values with high

degree of precision very rapidly.

In conclusion, we have introduced all necessary concepts to be used later on in

this thesis, including an overview of each chapter. The next two chapters will focus

on development of our first main result, namely, an algorithm for computing a lower

bound for the canonical height on elliptic curves over number fields.

Chapter 2

Height Bound I

We will now focus on our first main result, where we develop an algorithm for

computing a lower bound for the canonical height on elliptic curves over number

fields. Our algorithm, which is inspired by the one of Cremona and Siksek [CS06],

involves estimating local heights and solving a system of certain inequalities on both

real and complex embeddings.

In this chapter, we will first show how to derive an estimate for local heights,

and then show how to solve the system of inequalities mentioned above on real

embeddings. This in turn will suffice for computing a lower bound for the canonical

height on elliptic curves over number fields with at least one real embedding. A

more sophisticated method for solving such inequalities on complex embeddings will

be explained in Chapter 3.

Another version of this chapter, which is more specific to elliptic curves over

totally real number fields, has been published in [Tho08].

2.1 Points of Good Reduction

Let E be an elliptic curve defined over a number field K, given by a Weierstrass

equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

13

14 Chapter 2. Height Bound I

with all aj ∈ OK , where OK is the ring of integers of K. Let ∆ be the discriminant

of E. As in Chapter 1, we denote the sets of real and complex archimedean places

by M r
K and M c

K respectively, and let MK be the set of all places of K.

For all non-archimedean places v, let E(v) be a local minimal model for E over

the completion Kv, while we simply set E(v) = E for all archimedean places v. We

define the map

φ : E(K) →
∏
v∈S

E(v)(Kv),

where S = M r
K ∪ M c

K ∪ {p : p | ∆}, in such a way that P is mapped into its

corresponding point on:

• E(v)(R), for each v ∈ M r
K , and

• E(v)(C), for each v ∈ M c
K , and

• E(v)(Kv), for each non-archimedean place v | ∆.

Note that if K has class number greater than 1, then E(v) may differ for different

non-archimedean places v, i.e., E may not have a globally minimal model. As we

will see, our formulae can be simplified if E is given by a globally minimal model.

We wish to compute a positive lower bound λ for the canonical height ĥ on

E(K). Instead of working on E(K) directly, we determine a positive lower bound

µ for the canonical height on the subgroup

Egr(K) = φ−1

(∏
v∈S

E
(v)
0 (Kv)

)
,

where E
(v)
0 (Kv) is the connected component of the identity (for non-archimedean

v, this is the set of points of good reduction). The next lemma shows that we can

obtain λ very easily once µ is known.

Lemma 2.1.1. Let µ be a positive lower bound for the canonical height on Egr(K).

Set

λ = µ/c2,

2.2. Estimation of Local Heights 15

where c is the least common multiple of the Tamagawa indices

cv = [E(v)(Kv) : E
(v)
0 (Kv)]

for all v ∈ MK. Then λ is a positive lower bound for the canonical height on E(K).

Proof. Note that c is well-defined since cv = 1 for all v /∈ S. For all non-torsion

point P ∈ E(K), it is clear that cP ∈ Egr(K). Then by quadraticity of ĥ, we have

µ ≤ ĥ(cP) = c2ĥ(P),

and so ĥ(P) ≥ µ/c2. Hence we can take λ = µ/c2.

In this chapter, we will first derive an explicit formula for computing µ. The

value of µ obtained by this formula, in practice, will not be as good as the one

obtained by the algorithm to be derived later on in Chapter 3. Using a number of

criteria, our algorithm will check whether a given µ > 0 is a lower bound on Egr(K).

The value of µ then can be refined further by repeating the algorithm.

2.2 Estimation of Local Heights

Recall the definition of local and canonical heights in Section 1.2.1. From (1.9), we

have seen that the canonical height can be written as a sum of local heights given

by (1.8). This therefore allows us to estimate ĥ(P) by approximating each local

height λv for v ∈ MK .

2.2.1 Non-Archimedean Cases

For P ∈ E(K), let P (p) be its corresponding point of P (via the map φ) on the

minimal model E(p). Let λp and λ
(p)
p be the local heights associated to E and

E(p) respectively. Assume that E is integral and E(p) has all coefficients in Op =

16 Chapter 2. Height Bound I

{x ∈ K : ordp(x) ≥ 0}, we denote ∆ and ∆(p) the discriminants of E and E(p)

respectively. These values are related by ∆ =
(
u(p)

)12
∆(p), for some u(p) ∈ Op. If

E is given by a globally minimal model, then we may take E(p) = E for all p.

The following lemma illustrates the relation between λp and λ
(p)
p .

Lemma 2.2.1.

λp(P) = λ
(p)
p (P (p)) +

1

6
log |∆/∆(p)|p.

Proof. This follows from the use of two different normalisations of local heights

which differ by log | · |p/6, and the fact that one of them is independent of the choice

of Weierstrass model. For full details, see [CPS06, Section 4].

Now for P ∈ Egr(K), it follows that P (p) ∈ E
(p)
0 (Kp) at every prime ideal p. In

this case, we can easily compute λ
(p)
p (P (p)) with the following lemma.

Lemma 2.2.2. Let p be a prime ideal and P (p) ∈ E
(p)
0 (Kp) \ {O} (i.e., P is a point

of good reduction). Then

λ
(p)
p (P (p)) = log max{1, |x(P (p))|p}.

Proof. This is a standard result; see, e.g., [Sil88, Section 5]. Note that the definition

that we use of local height of a point with good reduction does not include a multiple

of − log |∆(p)|p (cf. [Sil88, p. 351]).

Definition. Let x ∈ K. The denominator ideal of x, denoted by denom(x), is the

integral ideal B such that 〈x〉 = AB−1, where A,B are coprime integral ideals.

The next lemma yields a simplified formula for computing the sum of all non-

archimedean local heights on Egr(K).

Lemma 2.2.3. Suppose P ∈ Egr(K) \ {O}. Then

∑
p

npλp(P) = L(P)− 1

6
logN (ME),

2.2. Estimation of Local Heights 17

where

L(P) = logN

 ∏

p|denom(x(P (p)))

p−ordp(x(P (p)))

 , ME =

∏
p

pordp(∆/∆(p)).

Note that N (ME) = 1 if E is given by a globally minimal model.

Proof. Since P ∈ Egr(K) by assumption, we have P (p) ∈ E
(p)
0 (Kp) for all p. It then

follows from Lemma 2.2.1 and Lemma 2.2.2 that

∑
p

npλp(P) =
∑

p

npλ
(p)
p (P (p)) +

1

6

∑
p

np log |∆/∆(p)|p

=
∑

p

np log max{1, |x(P (p))|p}+
1

6

∑
p

np log |∆/∆(p)|p. (2.1)

Clearly, the term log{1, |x(P (p))|p} will vanish if |x(P (p))|p ≤ 1. Hence the first sum

in (2.1) is obtained by all those p satisfying |x(P (p))|p > 1. Recall from (1.2) that

|x(P (p))|p = N (p)−ordp(x(P (p)))/np .

Observe that |x(P (p))|p > 1 if and only if p | denom(x(P (p))). Therefore, the first

sum in (2.1) becomes

∑
p

np log max{1, |x(P (p))|p) = logN

 ∏

p|denom(x(P (p)))

p−ordp(x(P (p)))

 = L(P).

Secondly, it follows from (1.2) that the second sum in (2.1) is

1

6

∑
p

np log |∆/∆(p)|p = −1

6
logN

(∏
p

pordp(∆/∆(p))

)
= −1

6
logN (ME).

Finally, if E is given by a globally minimal model, then ∆(p) = ∆ for all p, so

N (ME) = 1.

18 Chapter 2. Height Bound I

2.2.2 Archimedean Cases

For v ∈ M r
K ∪M c

K , we define αv by

α−3
v = inf

P∈E
(v)
0 (Kv)

Φv(P)

(see (1.7) for the definition of Φv). The exponent −3 is introduced in order to

simplify expressions appearing later on. These αv can be computed very rapidly

using the method in [CPS06, Section 7 and 9], according as v ∈ M r
K and v ∈ M c

K .

The following lemma gives us an estimate for the archimedean local heights.

Lemma 2.2.4. If P ∈ E
(v)
0 (Kv) \ {O}, then

log max{1, |x(P)|v} − λv(P) ≤ log αv.

Proof. Rearrange (1.8) and use the fact that

∞∑
j=0

log Φv(2
jP)

4j+1
≥

∞∑
j=0

log(α−3
v)

4j+1
= − log αv.

2.3 Multiplication by n

In this section, we will derive a lower estimate for the contribution that multiplica-

tion by n makes towards L(nP), where L is defined as in Lemma 2.2.3.

Let kp be the residue class field of p, and let ep be the exponent of the group

E
(p)
ns (kp) ∼= E

(p)
0 (Kp)/E

(p)
1 (Kp). Define

DE(n) =
∑

p prime
ep|n

2(1 + ordc(p)(n/ep)) logN (p), (2.2)

where c(p) is the characteristic of kp. Note that kp is a finite field, so c(p) is always

2.3. Multiplication by n 19

a prime number. In particular, N (p) = |kp| ≤ c(p)[K:Q].

Proposition 2.3.1. If ep | n, then we have the following:

1. N (p) ≤ (n + 1)max{2,[K:Q]}.

2. DE(n) is finite. Moreover, if P ∈ Egr(K) is non-torsion and n ≥ 1, then

L(nP) ≥ DE(n).

Proof. Suppose ep | n. If E(p) has bad reduction at p, then ep is c(p), N (p) + 1, or

N (p)− 1 depending on whether E(p) has additive, non-split multiplicative, or split

multiplicative reduction at p. In any case, this implies

n ≥ ep ≥ N (p)1/[K:Q] − 1,

and thus N (p) ≤ (n+1)[K:Q]. Now for p at which E(p) has good reduction, we have

E(p)
ns (kp) = E(p)(kp) ∼= Z/d1Z× Z/d2Z,

where d1 | d2 and d2 = ep. It then follows from Hasse’s theorem (see, e.g., [Sil86,

Theorem V.1.1]) that

(
√
N (p)− 1)2 ≤ |E(p)

ns (kp)| = d1d2 ≤ e2
p ≤ n2.

Thus N (p) ≤ (n + 1)2. Combining this with above result, this yields N (p) ≤
(n + 1)max{2,[K:Q]}, which proves (1). It is then immediate that DE(n) is finite.

To prove the rest of (2), first note that P ∈ Egr(K) implies P (p) ∈ E
(p)
0 (Kp) for

every p. Define

E(p)
n (Kp) = {P ∈ E

(p)
0 (Kp) : ordp(x(P)) ≤ −2n}.

20 Chapter 2. Height Bound I

Then it is known (see [Coh07, Lemma 7.3.28]) that for all n ≥ 1,

E(p)
n (Kp)/E

(p)
n+1(Kp) ∼= k+

p
∼= (Z/c(p)Z)t,

for some integer t > 0. Let e(p) = ordc(p)(n/ep). Then nP (p) ∈ E
(p)
e(p)+1(Kp), i.e.,

ordp(denom(x(nP (p)))) ≥ 2(e(p) + 1).

This implies that ep | n is equivalent to p | denom(x(nP (p))). Hence

∏

p|denom(x(nP (p)))

N (p)−ordp(x(nP (p))) ≥
∏

p prime
ep|n

N (p)2(e(p)+1).

The result then follows after taking logarithms on both sides.

2.4 A Bound for Multiples of Points of Good Re-

duction

In this section, we will first derive a bound for the x-coordinates of nP , where

P ∈ Egr(K) is non-torsion. This in turn yields an explicit lower bound for the

canonical height on Egr(K).

For µ > 0 and n ∈ Z>0, define Bn(µ) by

log Bn(µ) = [K : Q]n2µ−DE(n) +
1

6
logN (ME) +

∑
v∈Mr

K

log αv + 2
∑

v∈Mc
K

log αv.

Proposition 2.4.1. If Bn(µ) < 1 then ĥ(P) > µ for all non-torsion P ∈ Egr(K).

If Bn(µ) ≥ 1, then for all non-torsion P ∈ Egr(K) with ĥ(P) ≤ µ, we have

|x(nP)|v ≤

Bn(µ) if v ∈ M r
K ,

√
Bn(µ) if v ∈ M c

K .

2.4. A Bound for Multiples of Points of Good Reduction 21

Proof. Suppose P ∈ Egr(K) is a non-torsion point with ĥ(P) ≤ µ. By Lemma

2.2.4, we have

log max{1, |x(nP)|v} − λv(nP) ≤ log αv

for all v ∈ M r
K ∪M c

K . This implies that

∑
v∈Mr

K

log max{1, |x(nP)|v}+ 2
∑

v∈Mc
K

log max{1, |x(nP)|v}

≤
∑

v∈Mr
K

λv(nP) + 2
∑

v∈Mc
K

λv(nP) +
∑

v∈Mr
K

log αv + 2
∑

v∈Mc
K

log αv. (2.3)

Note that nv = 1 for all v ∈ M r
K and nv = 2 for all v ∈ M c

K . By writing ĥ(nP) as

a sum of local heights (see (1.9)), we have

∑
v∈Mr

K

λv(nP) + 2
∑

v∈Mc
K

λv(nP) = [K : Q]ĥ(nP)−
∑

p

npλp(nP)

= [K : Q]ĥ(nP)− L(nP) +
1

6
logN (ME) by Lemma 2.2.3

≤ [K : Q]ĥ(nP)−DE(n) +
1

6
logN (ME) by Proposition 2.3.1(2)

≤ [K : Q]n2µ−DE(n) +
1

6
logN (ME) since ĥ(P) ≤ µ.

Combining this with (2.3) and taking the exponential, we obtain

 ∏

v∈Mr
K

max{1, |x(nP)|v}

 ∏

v∈Mc
K

max{1, |x(nP)|v}2

 ≤ Bn(µ).

But the left-hand side is at least 1. Thus, if Bn(µ) < 1, then we have a contradiction,

i.e., ĥ(P) > µ for all non-torsion P ∈ Egr(K). On the other hand, it can be seen

that |x(nP)|v ≤ Bn(µ) for all v ∈ M r
K , and |x(nP)|2v ≤ Bn(µ) for all v ∈ M c

K .

We are now ready to state an explicit formula for a lower bound on Egr(K).

22 Chapter 2. Height Bound I

Theorem 2.4.2. Let p be a prime ideal such that

N (p) >

 ∏

v∈Mr
K

√
αv

 ∏

v∈Mc
K

αv

N (ME)1/12. (2.4)

Set n = ep and

µ0 =
1

[K : Q]n2

DE(n)−

∑
v∈Mr

K

log αv − 2
∑

v∈Mc
K

log αv − 1

6
logN (ME)

 .

Then µ0 > 0, and ĥ(P) ≥ µ0 for all non-torsion P ∈ Egr(K).

Proof. Suppose p is a prime ideal satisfying (2.4). By definition of DE(n) (see

(2.2)), we have

DE(n) ≥ 2 logN (p) >
∑

v∈Mr
K

log αv + 2
∑

v∈Mc
K

log αv +
1

6
logN (ME),

which implies that µ0 > 0. Then for any µ < µ0, we have

[K : Q]n2µ−DE(n) +
∑

v∈Mr
K

log αv + 2
∑

v∈Mc
K

log αv +
1

6
logN (ME)

< [K : Q]n2µ0 −DE(n) +
∑

v∈Mr
K

log αv + 2
∑

v∈Mc
K

log αv +
1

6
logN (ME) = 0.

Thus Bn(µ) < 1, and so ĥ(P) > µ for all non-torsion P ∈ Egr(K) by Proposition

2.4.1. Since this is true for all µ < µ0, then ĥ(P) ≥ µ0 as claimed.

Although it is possible to obtain a lower bound for the canonical height on

Egr(K) simply from this theorem, our practical experience shows that this bound

is not as good as the one obtained by collecting more information on x(nP). This

claim will be illustrated in Example 5.1.1.

2.5. Solving Inequalities I: Real Embeddings 23

2.5 Solving Inequalities I: Real Embeddings

In order to obtain a larger positive lower bound on Egr(K) than the one obtained by

Theorem 2.4.2, we finally concentrate on how to derive an alternative criterion for

deciding whether a given µ > 0 is a lower bound. This new criterion, which requires

more information on x(nP), will involve solving a system of certain inequalities on

each embedding E(v), for every v ∈ M r
K ∪M c

K .

Given µ > 0, we wish to check whether ĥ(P) > µ for all non-torsion P ∈ Egr(K).

If Bn(µ) < 1 for some n > 0, then it follows easily from Proposition 2.4.1 that µ

is a lower bound. On the other hand, if no such n exists, then Proposition 2.4.1

states that all non-torsion P ∈ Egr(K) with ĥ(P) ≤ µ must satisfy

|x(nP)|v ≤

Bn(µ) if v ∈ M r
K ,

√
Bn(µ) if v ∈ M c

K ,

for all n > 0. This can be regarded as a system of inequalities on each embedding

E(v). In particular, if such a system has no solution, then this contradicts our

assumption that ĥ(P) ≤ µ for some non-torsion P ∈ Egr(K), so µ must be a lower

bound on Egr(K).

In this section, we will explain how to solve this system of inequalities on each

real embedding E(v) (i.e., where v ∈ M r
K). A similar computation on each complex

embedding, however, is more sophisticated, and hence will be explained later in

Chapter 3. To prove that ĥ(P) > µ for all non-torsion P ∈ Egr(K), we attempt to

derive a contradiction from these inequalities using an application of period lattices

and elliptic logarithms, which will be fully described in Chapter 4.

2.5.1 Periods and Elliptic Logarithms

We will now introduce a simplified definition of periods and elliptic logarithms on

elliptic curves over R, and use it to obtain a contradiction from the system of

24 Chapter 2. Height Bound I

inequalities mentioned earlier on each real embedding E(v).

For v ∈ M r
K , recall that E(v) is of the form

E(v) : y2 + σv(a1)xy + σv(a3)y = x3 + σv(a2)x
2 + σv(a4)x + σv(a6),

where σv is the associated embedding from K to R. With the change of variables

x = X − σv(b2)

12
, y =

Y − σv(a1)x− σv(a3)

2
,

we can rewrite E(v) as

Y 2 = 4(X − e1)(X − e2)(X − e3)

for some e1, e2, e3 with
∑3

j=1 ej = 0. Since E(v) is defined over R, then either all

ej ∈ R, or there is only one ej ∈ R. Without loss of generality, we can assume that

e3 is the largest real root.

Recall from Section 1.3 that the connected component E
(v)
0 can be parameterised

by the real line {tΩv : 0 ≤ t < 1}, where Ωv ∈ R is one of the periods generating

the period lattice of E(v). We will see in Chapter 4 that Ωv is uniquely determined

up to sign, but for now we shall take Ωv > 0. It then follows from (1.10) that

Ωv = 2

∫ O

(e3,0)

dX

Y
= 2

∫ ∞

βv

dx√
fv(x)

(we rearrange O and (e3, 0) so that Ωv > 0), where

fv(x) = 4x3 + σv(b2)x
2 + 2σv(b4)x + σv(b6),

and βv = e3 − σv(b2)
12

is the largest real root of fv. If ξ is a real number satisfying

ξ ≥ βv, then there exists η such that 2η + σv(a1)ξ + σv(a3) ≥ 0 and P = (ξ, η) ∈

2.5. Solving Inequalities I: Real Embeddings 25

E
(v)
0 (R). An elliptic logarithm of P is then obtained in a similar way, i.e.,

zP,v =

∫ P

O

dX

Y
=

∫ ξ

∞

dx√
fv(x)

(mod Ωv).

Note that zP,v ∈ [Ωv/2, Ωv]. Moreover, we may take z−P,v = −zP,v (mod Ωv) (so

that z−P,v ∈ [0, Ωv/2]). At this point, one may use [Coh93, Algorithm 7.4.7 and

7.4.8] to compute Ωv and zP,v respectively. We will explain a complete method

for computing period lattices and elliptic logarithms on elliptic curves over C in

Chapter 4.

For convenience, we shall define ϕv : E
(v)
0 (R) → [0, 1), the normalised elliptic

logarithm, by

ϕv(P) = ϕv((ξ, η)) =

zP,v

Ωv

if 2η + σv(a1)ξ + σv(a3) ≥ 0,

1− ϕv(−P) otherwise.

For ξ ≥ βv, we also define

ψv(ξ) = ϕv((ξ, η)) ∈ [1/2, 1),

where (ξ, η) ∈ E
(v)
0 (R) with 2η + σv(a1)ξ + σv(a3) ≥ 0. In other words, ψv(ξ) is

the normalised elliptic logarithm of the “higher” of the two points on E
(v)
0 with

x-coordinate ξ.

For real ξ1, ξ2 with ξ1 < ξ2, we define the subset S(v) ⊂ [0, 1) as follows:

S(v)(ξ1, ξ2) =

∅ if ξ2 < βv,

[1− ψv(ξ2), ψv(ξ2)] if ξ1 < βv ≤ ξ2,

[1− ψv(ξ2), 1− ψv(ξ1)] ∪ [ψv(ξ1), ψv(ξ2)] if ξ1 ≥ βv.

The following lemma is clear.

26 Chapter 2. Height Bound I

Lemma 2.5.1. Suppose ξ1 < ξ2 are real numbers. Then P ∈ E
(v)
0 (R) satisfies

ξ1 ≤ x(P) ≤ ξ2 if and only if ϕv(P) ∈ S(v)(ξ1, ξ2).

If
⋃

j[aj, bj] is a disjoint union of intervals and α ∈ R, we define

α +
⋃
j

[aj, bj] =
⋃
j

[aj + α, bj + α],

α
⋃
j

[aj, bj] =
⋃
j

[αaj, αbj] (for α > 0).

Lemma 2.5.2. Suppose ξ1 < ξ2, and n ∈ Z>0. Let

S(v)
n (ξ1, ξ2) =

n−1⋃
α=0

(
α

n
+

1

n
S(v)(ξ1, ξ2)

)
.

Then P ∈ E
(v)
0 (R) satisfies ξ1 ≤ x(nP) ≤ ξ2 if and only ϕv(P) ∈ S(v)

n (ξ1, ξ2).

Proof. By Lemma 2.5.1, P ∈ E
(v)
0 (R) satisfies ξ1 ≤ x(P) ≤ ξ2 if and only if ϕv(P) ∈

S(v)(ξ1, ξ2). Let νn be the multiplication-by-n map on R/Z. If δ ∈ [0, 1), then

ν−1
n (δ) =

{
α

n
+

δ

n
: α = 0, 1, 2, . . . , n− 1

}
.

But since ϕv is an isomorphism, we have ϕv(nP) = nϕv(P) (mod 1). Hence

ϕv(nP) ∈ S(v)(ξ1, ξ2) ⇐⇒ ϕv(P) ∈ ν−1
n (S(v)(ξ1, ξ2)) = S(v)

n (ξ1, ξ2).

This together with Proposition 2.4.1 leads to the following proposition.

Proposition 2.5.3. If Bn(µ) < 1 for some integer n > 0, then ĥ(P) > µ for

all non-torsion P ∈ Egr(K). If Bn(µ) ≥ 1 for all n = 1, . . . , nmax, then every

non-torsion point P ∈ Egr(K) with h(P) ≤ µ satisfies

ϕv(σv(P)) ∈
nmax⋂
n=1

S(v)
n (−Bn(µ), Bn(µ))

2.5. Solving Inequalities I: Real Embeddings 27

for every v ∈ M r
K. Here, σv : K → R is the real embedding of K associated to v.

In particular, if the intersection is empty for some v ∈ M r
K, then ĥ(P) > µ for

all non-torsion P ∈ Egr(K).

Finally, we remark that if K is also a totally real number field (i.e., M c
K =

∅), then Proposition 2.5.3 alone will suffice for computing a lower bound for the

canonical height on E/K. We shall not discuss such computation in detail here,

since this will be a special case of our algorithm to be developed in Section 3.4. Some

examples illustrating the applications of this algorithm will be shown in Chapter 5.

To summarise, we have developed all necessary formulas for estimating local

heights, which leads to a criterion for deciding if a given µ > 0 is a lower bound for

the canonical height. Such criterion requires solving a system of certain inequalities

on each embedding of E. In this chapter, we have managed to do this for real

embeddings, which turns out to be sufficient for computing a lower bound for the

canonical height on elliptic curves over number fields with at least one real embed-

ding. The next chapter will focus on our remaining task, i.e., solving inequalities

on complex embeddings.

Chapter 3

Height Bound II: Complex

Embeddings

In this chapter, we will continue our work on computing a lower bound for the

canonical height from Chapter 2 by introducing a new method for solving a system

of certain inequalities on complex embeddings. This together with our work we

have done so far will allow us to compute such a lower bound on elliptic curves over

number fields in general, which will complete our work on height bound.

Let E be an elliptic curve defined over a number field K. Recall the definition

of Bn(µ) in Section 2.4. If Bn(µ) ≥ 1, then Proposition 2.4.1 implies that all non-

torsion P ∈ Egr(K) with ĥ(P) ≤ µ satisfy |x(nP)|v ≤
√

Bn(µ) for every v ∈ M c
K .

By computing Bn(µ) for several n ∈ Z>0, this yields a system of certain inequalities

on each complex embedding E(v). We will see later that each of these inequalities

corresponds to a region in the fundamental parallelogram for the period lattice

of E(v), and solving the system of these inequalities is equivalent to finding the

intersection of all such regions.

A combined version of Chapter 2 and this chapter, which explains a complete

algorithm for computing a lower bound for the canonical height on elliptic curves

over number fields, has been published in [Tho10].

28

3.1. Corresponding Regions I: An Overview 29

3.1 Corresponding Regions I: An Overview

In this section, we will describe how to visualise an inequality on the x-coordinate

of points in E(v)(C) obtained by Proposition 2.4.1 as a corresponding region on the

fundamental parallelogram for the period lattice of E(v).

3.1.1 Fundamental Parallelograms

For v ∈ M c
K , let E(v) be the complex embedding of E associated to v. As mentioned

in Section 1.3, it is well known that there exists a complex analytic group isomor-

phism ϕv : E(v)(C) → C/Λ, for some lattice Λ (for more details on computing this

isomorphism, see Chapter 4).

Definition. Let Λ be a lattice with Z-basis {w1, w2}. The (closed) fundamental

parallelogram for Λ is the set

Fw1,w2 = {λ1w1 + λ2w2 : 0 ≤ λ1, λ2 ≤ 1}.

Note that every element of C/Λ has a representative in Fw1,w2 which is unique

except for points on the boundary of Fw1,w2 . After choosing a lift in Fw1,w2 for each

P ∈ E(v)(C), we may view ϕv as a map E(v)(C) → Fw1,w2 ⊂ C.

Without loss of generality, we can choose a Z-basis for Λ so that the quantity

τ = w2/w1 satisfies the following:

|τ | ≥ 1, |<(τ)| ≤ 1/2, =(τ) ≥
√

3/2. (3.1)

Let Λτ be the lattice generated by 1, τ . Then it is clear that the map δ : C → C

given by z 7→ z/w1 induces a bijection Λ → Λτ . To ease notation, we shall denote

F1,τ by Fτ , and let Hτ be the “lower half” of Fτ , i.e.,

Hτ = {λ1 + λ2τ : 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ 1/2}.

30 Chapter 3. Height Bound II: Complex Embeddings

Let ψ′ = δ◦ϕv (viewed as a map E(v)(C) → Fτ). Clearly, ψ′ maps each P ∈ E(v)(C)

to a point z ∈ Fτ , and maps either P or −P to a point in Hτ . Hence we can let

ψv(P) =

ψ′v(P) if ψ′v(P) ∈ Hτ ,

ψ′v(−P) if ψ′v(P) /∈ Hτ ,

(3.2)

so that ψv(P) ∈ Hτ in all cases.

3.1.2 Visualising the Region

From now on, we shall always assume that our Z-basis {w1, w2} for Λ is chosen so

that τ satisfies (3.1). To see what the region corresponding to an inequality given

by Proposition 2.4.1 looks like, we first recall that the Weierstrass parameterisation

C/Λτ → EW (C), where EW is the elliptic curve of the form Y 2 = 4X3− g2(Λτ)X−
g3(Λτ) (for the definition of gj, see, e.g., [Was03, Section 9.2]), is given by

z 7→ (℘Λτ (z), ℘′Λτ
(z)). (3.3)

Suppose E(v) is given by a Weierstrass equation

E(v) : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

for some aj ∈ C. Then we have an isomorphism EW (C) → E(v)(C), given by

(X, Y) 7→ (x, y) =

(
w−2

1 X − b2

12
,
w−3

1 Y − a1x− a3

2

)
.

Hence for any ξ ≥ 0, it is immediate from the triangle inequality and (3.3) that

|x| ≤ ξ if and only if |℘Λτ (z)| ≤ Uξ, where

Uξ = |w1|2
(

ξ +
|b2|
12

)
.

3.2. Corresponding Regions II: Estimation 31

We can now consider the set ` = {z ∈ Hτ : |℘Λτ (z)| = Uξ} as a curve1 on Hτ

(see Figure 3.1). This is the boundary of the region

R(v)(ξ) = {z ∈ Hτ : |℘Λτ (z)| ≤ Uξ}.

Since the Weierstrass ℘-function becomes a one-to-one continuous map once its

domain is restricted to Hτ , the equation |℘Λτ (z)| = Uξ yields only one curve on

Hτ . By symmetry (about the mid-point of Fτ), we also have another identical

boundary on the upper half of Fτ . Depending on Uξ, the boundaries on both halves

topologically form either one or two identical loops on the torus C/Λτ , as shown in

Figure 3.2.

<(z)

=
(z

)

y2 = x3 + x + (1 + 4i) over Q(i)

10 10

5 5

2 2

1.5

1

0.5

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

Figure 3.1: The boundary on Hτ associated to different Uξ. Each curve is labelled
by the relevant value of ξ.

3.2 Corresponding Regions II: Estimation

In practice, however, it is very difficult to determine the region R(v) exactly. For

example, it is impossible to store an infinitesimal amount of its information on a

computer. To circumvent this problem, we approximate R(v) by a finite number

of parallelograms whose union covers R(v). Denote by S(v) the finite set of these

1This may have either one or two connected components on Hτ .

32 Chapter 3. Height Bound II: Complex Embeddings

Figure 3.2: Loops on the torus C/Λτ when the boundary varies

parallelograms. A finer approximation to R(v) then can be obtained by decreasing

the size of parallelograms in S(v).

This section, to which most of our work on height bound is devoted, will focus

on a number of approximation techniques which eventually allow us to construct

S(v). For now we mention that S(v)(ξ) has the following properties:

1.
⋃

C∈S(v)(ξ) C ⊇ R(v)(ξ), i.e., the union of all parallelograms in S(v)(ξ) contains

the actual region R(v)(ξ).

2. Every C ∈ S(v)(ξ) contains z such that |℘Λτ (z)| ≤ Uξ, hence C ∩R(v)(ξ) 6= ∅
for all C ∈ S(v)(ξ).

3.2.1 The Weierstrass ℘-function

Let q = exp(2πiτ) and let u = exp(2πiz) (where i =
√−1). For k ∈ Z, we define

fk(z, τ) = (2πi)2

[
u

(1− u)2
+

1

12
+

k−1∑
j=1

[
qju

(1− qju)2
+

qju−1

(1− qju−1)2
− 2qj

(1− qj)2

]]
.

It can be seen from Proposition 1.3.1 that ℘Λτ (z) = limk→∞ fk(z, τ) for all non-

lattice points z. By choosing a suitable k, we can bound the error which occurs

when |fk(z, τ)| is used as the approximation to |℘Λτ (z)|, as shown in the next lemma.

3.2. Corresponding Regions II: Estimation 33

Lemma 3.2.1. For z ∈ Hτ with z 6= 0, 1, let α = =(z)/=(τ). Define

ε(k) =
4π2

1− |q|
(|q|k+α

(1− |q|k+α)2
+

|q|k−α

(1− |q|k−α)2
+

2|q|k
(1− |q|k)2

)
.

Then
∣∣|℘Λτ (z)| − |fk(z, τ)|

∣∣ ≤ ε(k).

Proof. By Proposition 1.3.1, we have

℘Λτ (z)− fk(z, τ) = (2πi)2

∞∑

j=k

[
qju

(1− qju)2
+

qju−1

(1− qju−1)2
− 2qj

(1− qj)2

]
.

Observe that |u| = |q|α. By the triangle inequality, we obtain

|℘Λτ (z)− fk(z, τ)| ≤ 4π2

∞∑

j=k

[|q|j+α

(1− |q|j+α)2
+

|q|j−α

(1− |q|j−α)2
+

2|qj|
(1− |qj|)2

]
. (3.4)

Since we work on Hτ , we have |q| < 1 and 0 ≤ α ≤ 1/2, which implies that

|q|j±α < 1 for all j ≥ 1. Thus we have the estimate

∞∑

j=k

|q|j±α

(1− |q|j±α)2
≤ 1

(1− |q|k±α)2

∞∑

j=k

|q|j±α ≤ |q|k±α

(1− |q|k±α)2(1− |q|) ,

and similarly,
∞∑

j=k

2|q|j
(1− |q|j)2

≤ 2|q|k
(1− |q|k)2(1− |q|) .

This together with (3.4) and the triangle inequality yields the result.

One can easily verify that, in the range 0 ≤ α ≤ 1/2, the absolute error ε(k)

given by Lemma 3.2.1 attains its maximum at α = 1/2, and becomes smaller as

k increases. Moreover, it can be seen that ε(k) decreases as =(τ) increases. Some

examples of maximum values for ε(k) are listed in Table 3.1 (based on α = 1/2 and

=(τ) =
√

3/2).

Recall that every parallelogram C in S(v)(ξ) satisfies |℘Λτ (z)| ≤ Uξ for some

z ∈ C. In practice, we can compute |fk(z, τ)| and add it with the error given by

34 Chapter 3. Height Bound II: Complex Embeddings

Table 3.1: Maximum values for ε(k)

k Maximum error
1 3.349
2 0.013
3 5.568× 10−5

4 2.413× 10−7

5 1.046× 10−9

10 1.598× 10−21

20 3.731× 10−45

23 3.036× 10−52

Lemma 3.2.1 to obtain a (small) interval which contains |℘Λτ (z)|. On each of the

four line segments comprising the boundary of C, we can parameterise |fk(z, τ)| by

a real-valued function fk(x, τ) or fk(y, τ), where x = <(z) and y = =(z). We wish

to find the range of fk when x or y varies along the line. For this computation, we

find some techniques from interval arithmetic (see [Moo66]) to be very useful.

3.2.2 Interval Arithmetic

Before we proceed to its application, we shall first explain briefly what interval

arithmetic is.

Definition. Let I = [a, b] and J = [c, d] (with a ≤ b and c ≤ d) be two intervals of

real numbers. An arithmetic operation on intervals I, J is defined by

I ∗ J = {x ∗ y : a ≤ x ≤ b, c ≤ y ≤ d},

where ∗ is an operation on real numbers.

A number of usual arithmetic operations on real numbers can be extended to

the ones on intervals. For example,

I + J = [a + c, b + d], I − J = [a− d, b− c],

I · J = [min{ac, ad, bc, bd}, max{ac, ad, bc, bd}],

I/J = [a, b] · [1/d, 1/c] (provided that 0 /∈ J).

3.2. Corresponding Regions II: Estimation 35

It can be seen easily that interval addition and interval multiplication are both

associative and commutative. Distributivity, however, does not always hold for

interval arithmetic. For example,

[1, 3] · ([1, 3]− [1, 3]) = [1, 3] · [−2, 2] = [−6, 6], whereas

[1, 3] · [1, 3]− [1, 3] · [1, 3] = [1, 9]− [1, 9] = [−8, 8].

Instead, we always have subdistributivity, i.e., I · (J + K) ⊂ I · J + I · K for all

intervals I, J,K.

One important property of interval arithmetic is that it is inclusion monotonic,

i.e., if I ⊂ K and J ⊂ L are intervals, then

I + J ⊂ K + L, I − J ⊂ K − L, I · J ⊂ K · L,

I/J ⊂ K/L (provided that 0 /∈ L).

This leads to the following theorem.

Theorem 3.2.2 ([Moo66, Theorem 3.1]). Let f(X1, . . . , Xn) be a rational expres-

sion with real coefficients in the interval variables X1, . . . , Xn, i.e., a finite combi-

nation of X1, . . . , Xn and a finite set of constant intervals with interval arithmetic

operations. Then

X ′
1 ⊂ X1, . . . , X ′

n ⊂ Xn =⇒ f(X ′
1, . . . , X

′
n) ⊂ f(X1, . . . , Xn)

for every set of intervals X1, . . . , Xn for which the interval arithmetic operations in

f are defined.

Suppose f(x1, . . . , xn) is a real rational expression, i.e., f is a quotient of real

polynomials in terms of x1, . . . , xn. Then by Theorem 3.2.2, the resulting interval

F = f(X1, . . . , Xn) will always contain the actual range of f(x1, . . . , xn) for xj ∈ Xj.

In particular, F will be the actual range of f(x1, . . . , xn) for xj ∈ Xj if each variable

36 Chapter 3. Height Bound II: Complex Embeddings

xj occurs only once in f (note that x2
j = xj · xj is taken as two occurrences). With

some techniques, for example, using subdistributivity to group common terms in f ,

the resulting interval F can be made smaller. For more information on this subject,

see [Moo66, Chapter 3 and 6].

Recall the function fk(z, τ) in Section 3.2.1. Suppose z = x + iy ∈ C is on a

fixed line segment L. Depending on L, we can regard z as a function of either x

or y (for example, if z is on a vertical line, then x is fixed but y varies). Thus,

provided that L is fixed and z ∈ L, we can consider the function g(z) = |fk(z, τ)|2

as a real function of one real variable, i.e., either g(z) = g(z(x)) or g(z) = g(z(y)),

depending on L. To ease notation, we shall write

f(∗) = g(z(∗)),

where ∗ is either x or y, depending on how z is parameterised along L.

The next proposition shows that we can apply interval arithmetic to f(∗).

Proposition 3.2.3. Define f(∗) as above. Then f can be extended to a real rational

expression of at most three interval variables, depending on the line segment L.

Proof. First, we note that

f(∗) = |fk(z, τ)|2 = <(fk(z, τ))2 + =(fk(z, τ))2.

We will show how to obtain the real part of fk(z, τ); the imaginary part of fk(z, τ)

can be deduced in a similar way.

The real part of fk(z, τ) consists of the real parts of the terms

u

(1− u)2
,

1

12
,

qju

(1− qju)2
,

qju−1

(1− qju−1)2
,

qj

(1− qj)2
, (3.5)

3.2. Corresponding Regions II: Estimation 37

where u = exp(2πiz) and q = exp(2πiτ). Write z = x + iy. Let

x1 = exp(−2πy), x2 = cos(2πx), x3 = sin(2πx).

Consider the following two cases:

1. If L is a non-vertical line (i.e., y = αx + β for some finite α and β), then

<
(

u

(1− u)2

)
=

x1x2(1 + x2
1)− 2x2

1

(1− 2x1x2 + x2
1)

2
.

Similarly, it can be shown that the real parts of the other terms in (3.5) can

be written as rational expressions in terms of x1, x2, x3.

2. If L is a vertical line (i.e., x is fixed), then we have <(u/(1 − u)2) as

above. Since x2 and x3 are now constant, we have <(u/(1−u)2) as a rational

expression in terms of x1 only. This is also the case for the real parts of the

other terms in (3.5).

Thus we have f(∗) as a real rational expression in terms of x1, x2, x3. Suppose

that a ≤ x ≤ b and c ≤ y ≤ d on L (note that c, d ≥ 0 since we work on Hτ). Let

X1 = exp(−2π[c, d]) = [exp(−2πd), exp(−2πc)],

X2 = cos(2π[a, b]) = [min
a≤x≤b

cos(2πx), max
a≤x≤b

cos(2πx)],

X3 = sin(2π[a, b]) = [min
a≤x≤b

sin(2πx), max
a≤x≤b

sin(2πx)].

(3.6)

After replacing x1, x2, x3 in f with X1, X2, X3 respectively, we finally obtain the

interval version of f .

Since f(X1, X2, X3) is a real rational expression of interval variables, then The-

orem 3.2.2 applies. Together with the error term in Lemma 3.2.1, the following

proposition is immediate.

38 Chapter 3. Height Bound II: Complex Embeddings

Proposition 3.2.4. Define X1, X2, X3 to be the intervals depending on a line seg-

ment L as in (3.6). For a fixed k ∈ Z>0, let ε = ε(k) be the maximum absolute

error given by Lemma 3.2.1. Then for all z ∈ L, we have

√
u1 − ε ≤ |℘Λτ (z)| ≤ √

u2 + ε,

where [u1, u2] = f(X1, X2, X3) (with u2 ≥ u1 ≥ 0).

3.2.3 Approximate Corresponding Regions

We are now ready to construct S(v), which in turn yields an approximation to the

corresponding region R(v).

Let L be a line segment in the complex plane. By Proposition 3.2.4, the interval

I(L) = [
√

u1 − ε,
√

u2 + ε]

contains the actual range of |℘Λτ (z)| for z ∈ L. We can then extend this notion to

any parallelogram C by letting

I(C) =
⋃

L∈∂C

I(L),

where ∂C is the boundary of C. Note that the four intervals I(L) for L ∈ ∂C will

overlap, so I(C) is an interval.

For v ∈ M c
K and ξ ≥ 0, we define S(v)(ξ) recursively as follows. First we let

S(v,0)(ξ) = {Hτ}.

Next, for r ≥ 0, suppose S(v,r)(ξ) = {C1, . . . , Cm}, where m = 4r. Let

S ′(v,r+1) = {C11, . . . , C14, . . . , Cm1, . . . , Cm4 : Cj =
4⋃

k=1

Cjk},

3.2. Corresponding Regions II: Estimation 39

Cj1 Cj3

Cj2 Cj4

Figure 3.3: Four quarters of Cj

i.e., Cj1, . . . , Cj4 are the four quarters of Cj, as shown in Figure 3.3.

Suppose E(v) is of the form Y 2 = 4X3 + AX + B for some A,B ∈ C. Let

P ∈ E(v)(C) be a point with X(P) = 0. Let C0 ∈ S ′(v,r+1) be the parallelogram

containing ψv(P) (see (3.2) for its definition). Note that we may have I(C0) ∩
[0, Uξ] = ∅. Then we define

S(v,r+1)(ξ) = {C0} ∪ {C ∈ S ′(v,r+1) : I(C) ∩ [0, Uξ] 6= ∅}.

Finally, we let S(v)(ξ) = S(v,r)(ξ) for some r > 0.

For a set S of parallelograms in C, we denote
⋃

C∈S C simply by
⋃S. It is then

obvious from the construction above that

⋃
S(v,0)(ξ) ⊃

⋃
S(v,1)(ξ) ⊃ · · · ⊃

⋃
S(v,r)(ξ) ⊃ · · · ⊃ R(v)(ξ).

In other words, our approximation to R(v) becomes finer as r increases.

In general, computing S(v,r+1) with above definition can be very time-consuming.

Fortunately, we can usually speed up this process using a combination of the fol-

lowing techniques.

Lemma 3.2.5 (Four-Corner Test). Suppose C ∈ S ′(v,r+1)(ξ). Let z1, . . . , z4 be the

corners of C, and let ε = ε(k) be the maximum absolute error given by Lemma 3.2.1

for some fixed k ∈ Z>0. Define

I(z) = [|fk(z, τ)| − ε, |fk(z, τ)|+ ε].

40 Chapter 3. Height Bound II: Complex Embeddings

If I(zj) ⊂ [0, Uξ] for some j = 1, . . . , 4, then C ∈ S(v,r+1)(ξ).

Proof. If such condition holds, then we simply have |℘Λτ (z)| ≤ Uξ for some z ∈ C,

namely, z = zj. Hence C ∈ S(v,r+1)(ξ).

In practice, checking whether C is in S(v,r+1)(ξ) by this test is considerably faster

than the usual criterion I(C) ∩ [0, Uξ]. The next lemma provides a quick way to

exclude all parallelograms which are not in S(v,r+1)(ξ).

Lemma 3.2.6. For r ≥ 0, let Sr+1 be the set of all parallelograms in S ′(v,r+1)(ξ)

which satisfy the condition in Lemma 3.2.5. Let

∂Sr+1 = {C ∈ S ′(v,r+1)(ξ) \ Sr+1 : C is adjacent to
⋃

Sr+1}.

If I(C) ∩ [0, Uξ] = ∅ for all C ∈ ∂Sr+1, then S(v,r+1)(ξ) = Sr+1.

Proof. If all parallelograms in ∂Sr+1 are excluded from S(v,r+1)(ξ), then this means

that there is no part of the boundary ` of the actual region R(v)(ξ) passing through
⋃

∂Sr+1. Thus the one-to-one and continuity properties of the Weierstrass ℘-

function on Hτ imply that the boundary ` of R(v)(ξ) lies entirely in
⋃

Sr+1, and so

all parallelograms in S ′(v,r+1)(ξ) \ Sr+1 can be discarded.

An illustration of using these lemmas to construct S(v) is shown2 in Figure 3.4.

In this figure, the process of determining S(v) consists of the following steps:

1. Starting with S ′(v,r+1)(ξ) for some r, we use Lemma 3.2.5 to identify a number

of parallelograms C ∈ S ′(v,r+1)(ξ) which are also in S(v,r+1)(ξ) (these are

marked by “*”). Let Sr+1 be the set of all such parallelograms C.

2. Identify all parallelograms in ∂Sr+1 (these are marked by “?”).

3. For each C ∈ ∂Sr+1, check if I(C) ∩ [0, Uξ] = ∅. If so, then C /∈ S(v,r+1)(ξ)

and thus can be discarded (this is marked by “.”).

2Here S(v) = S(v,4)(0.4) for the elliptic curve y2 = x3 + x + (1 + 4i) defined over Q(i).

3.3. Solving Inequalities II: Complex Embeddings 41

Figure 3.4: An illustration of how to obtain S(v). The top-left entry represents the
parallelogram containing z = 0.

4. If it turns out that the set ∂Sr+1 is entirely discarded, then by Lemma 3.2.6,

we have S(v,r+1)(ξ) = Sr+1. In other words, every parallelogram in S ′(v,r+1)(ξ)\
Sr+1 is discarded. Finally, we let S(v)(ξ) = S(v,r+1)(ξ).

3.3 Solving Inequalities II: Complex Embeddings

In this section, we finally explain how to solve a system of inequalities given by

Proposition 2.4.1 on complex embeddings, which is analogous to our previous result

in Section 2.5.

As we have already seen, the inequality |x(P)|v ≤ ξ yields the cover
⋃S(v)(ξ)

which approximates the corresponding region R(v) in Hτ . Since the Weierstrass

℘-function is even, we also have another identical region in the upper half of Fτ .

Let T (v)(ξ) be the union of both regions. Then clearly T (v)(ξ) contains the set

{z ∈ Fτ : |℘Λτ (z)| ≤ Uξ}.
Recall the isomorphism ψ′v : E(v)(C) → Fτ from Section 3.1.1. Given a point

P ∈ E(v)(C), we wish to consider all points Q ∈ E(v)(C) such that P = nQ. Let

z = ψ′v(P) and z′ = ψ′v(Q). Then we have

z = nz′ (mod Λτ).

42 Chapter 3. Height Bound II: Complex Embeddings

Figure 3.5: Division on Fτ by 3

In fact, if z = α + βτ for some 0 ≤ α, β ≤ 1, then

z′ ∈
{

α + s

n
+

(β + t)τ

n
: 0 ≤ s, t ≤ n− 1

}
.

This therefore allows us to “divide” T (v)(ξ) by n (see Figure 3.5 for an illustration)

to obtain a new region

T ′(v)
n (ξ) = {z′ ∈ Fτ : nz′ (mod Λτ) ∈ C for some C ∈ T (v)(ξ)}.

Due to the symmetry of T ′(v)
n , we can let

T (v)
n (ξ) = T ′(v)

n (ξ) ∩Hτ .

The following lemma is analogous to Lemma 2.5.2.

Lemma 3.3.1. If P ∈ E(v)(C) satisfies |x(nP)| ≤ ξ, then ψv(P) ∈ T (v)
n (ξ).

Proof. If |x(nP)| ≤ ξ, then we have ψv(nP) ∈ C for some C ∈ S(v)(ξ) ⊂ T (v)(ξ).

Since nψv(P) is either ψv(nP) or −ψv(nP) (mod Λτ), in any case we have ψv(P) ∈
T ′(v)

n (ξ) ∩Hτ = T (v)
n (ξ).

The next proposition, which is analogous to Proposition 2.5.3, follows easily

from the previous lemma together with Proposition 2.4.1.

Proposition 3.3.2. If Bn(µ) ≥ 1 for all n = 1, . . . , nmax, then every non-torsion

point P ∈ Egr(K) with ĥ(P) ≤ µ satisfies

ψv(σv(P)) ∈
nmax⋂
n=1

T (v)
n (

√
Bn(µ))

3.4. An Algorithm for Height Bound 43

for all v ∈ M c
K. Here, σv : K → C is the complex embedding of K associated to v.

In particular, if the intersection is empty for some v ∈ M c
K, then ĥ(P) > µ for

all non-torsion P ∈ Egr(K).

3.4 An Algorithm for Height Bound

Combining Proposition 2.5.3 and Proposition 3.3.2, we are now ready to state our

main theorem.

Theorem 3.4.1. Let µ > 0. If Bn(µ) < 1 for some n ∈ Z>0, then ĥ(P) > µ for

all non-torsion P ∈ Egr(K). Otherwise, if Bn(µ) ≥ 1 for all n = 1, . . . , nmax, then

every non-torsion point P ∈ Egr(K) with ĥ(P) ≤ µ satisfies

ϕv(σv(P)) ∈
nmax⋂
n=1

S(v)
n (−Bn(µ), Bn(µ))

for every v ∈ M r
K, and moreover,

ψv(σv(P)) ∈
nmax⋂
n=1

T (v)
n (

√
Bn(µ))

for every v ∈ M c
K.

In particular, if one of the intersections is empty for some v ∈ M r
K ∪M c

K, then

ĥ(P) > µ for all non-torsion P ∈ Egr(K).

Theorem 3.4.1 in turn yields an algorithm for computing a lower bound for the

canonical height on Egr(K), which consists of the following steps:

1. Given an initial value µ > 0 and the number of steps nmax, we start by

computing Bn(µ) for n = 1, . . . , nmax. If Bn(µ) < 1 for some n, then we can

conclude immediately that ĥ(P) > µ for all non-torsion P ∈ Egr(K).

2. Otherwise, we proceed to compute
⋂nmax

n=1 S(v)
n (−Bn(µ), Bn(µ)) for every v ∈

M r
K . If the intersection is empty for some v, then again ĥ(P) > µ for all

44 Chapter 3. Height Bound II: Complex Embeddings

non-torsion P ∈ Egr(K).

3. If not, then we compute
⋂nmax

n=1 T (v)
n (

√
Bn(µ)) for every v ∈ M c

K . Again,

if the intersection is empty for some v, then ĥ(P) > µ for all non-torsion

P ∈ Egr(K). Otherwise, we fail to show that µ is a lower bound on Egr(K).

4. We can refine µ further in the following way: if µ is shown to be a lower

bound, then we increase µ and repeat the process to see if it is still a lower

bound. However, if the algorithm fails to show that µ is a lower bound, then

we decrease µ (or increase nmax) and repeat the process.

5. Return the largest value of µ which is known to be a lower bound for Egr(K).

Once µ is determined, we can simply use Lemma 2.1.1 to obtain a positive lower

bound for the canonical height on E(K). Some examples on how to compute such

a lower bound using this algorithm (see Appendix A.3 for its MAGMA code) will be

shown in Chapter 5.

3.5 Remarks

Finally, it should be noted that the lower bound we obtain is not model-independent,

unlike the one of Hindry and Silverman [HS88, Theorem 0.3]. For example, the

values αv in Section 2.2.2 depend on the coefficients of the Weierstrass equation of

E. At present, we have not systematically investigated how the bound obtained

by our algorithm is affected by a change of model. As mentioned in Chapter 2,

however, our formulas can be simplified if E is given by a globally minimal model.

Regarding the computational complexity, it can be seen that computing Bn(µ)

is less time-consuming than computing S(v)
n , which in turn is less time-consuming

than computing T (v)
n . Therefore it is plausible to use Bn(µ) as the first criterion,

followed by the intersection of S(v)
n and T (v)

n respectively, as we do in our algorithm.

3.5. Remarks 45

Let c be the least common multiple of all Tamagawa indices as in Section 2.1.

As pointed out by an anonymous referee of [Tho10], it may be possible to obtain a

larger lower bound by making use of the explicit formulas for the local heights at

non-archimedean places of bad reduction (see, e.g., [Sil88, Theorem 5.2]), provided

that c is large. This approach, however, is different to ours which uses the subgroup

of points of good reduction. In particular, our lower bound on E(K) will be small

if c is large. Nevertheless, it might be an interesting area for further study.

In conclusion, we have completed our work on height bound by introducing a

method for solving a system of certain inequalities on complex embeddings. Our

method involves a number of approximation techniques which eventually yield an

approximate region corresponding to each inequality, where finding a solution to

the system of these inequalities is equivalent to finding the intersection of all such

regions. Together with our results from Chapter 2, we finally obtain an algorithm

for computing a lower bound for the canonical height on elliptic curves over number

fields in general.

Finally, in order to solve a system of inequalities using the methods in Section 2.5

and 3.3, we need to compute period lattices of certain real and complex embeddings,

as well as elliptic logarithms of certain real and complex points. Nevertheless,

algorithms for determining both quantities are currently available only for elliptic

curves over R (see Section 1.3 for more discussion). Motivated by this problem, the

next chapter will aim to develop a complete method for computing period lattices

of elliptic curves over C, and elliptic logarithms of complex points.

Chapter 4

Period Lattices and Complex

Elliptic Logarithms

We will now move on to the second main result of this thesis, where we present a

complete method for computing period lattices of elliptic curves over C, and then

generalise it to compute elliptic logarithms of complex points. Based on the complex

arithmetic-geometric mean (AGM) first studied by Gauss, our method will allow

one to compute both quantities to a high degree of precision very quickly. For more

background on this chapter, see Section 1.3.

The work in this chapter is done in collaboration with Professor John E. Cre-

mona at the University of Warwick. Another version of this chapter has been

submitted for publication as a joint paper [CT].

4.1 Introduction

In this chapter, we will assume that an elliptic curve E is defined over C, and is

given by a Weierstrass equation of the form

E : Y 2 = 4(X − e1)(X − e2)(X − e3),

46

4.1. Introduction 47

where all the roots ej ∈ C are distinct and
∑

j ej = 0. As mentioned in Section 1.3,

it is well known that there exists an isomorphism (of complex analytic Lie groups)

C/Λ → E(C) for some lattice Λ, given by the map

z (mod Λ) 7→ P = (℘Λ(z), ℘′Λ(z))

0 (mod Λ) 7→ O.

(4.1)

Definition. Let E be an elliptic curve defined over C, the period lattice of E is the

lattice Λ for which E(C) ∼= C/Λ via (4.1).

To be precise, we take Λ to be the lattice of periods of the invariant differential

dX/Y on E. It is a discrete subgroup of C spanned by a Z-basis {w1, w2} with

w2/w1 /∈ R.

Definition. The inverse map of (4.1) is called the elliptic logarithm. For P ∈ E(C),

we say that a value z such that

P 7→ z (mod Λ)

via this inverse is an elliptic logarithm of P (note that z is determined modulo Λ).

From this, two natural questions are:

1. Given a Weierstrass equation of E, how can we compute a Z-basis for its

period lattice Λ?

2. Given a point P ∈ E(C), how can we compute its elliptic logarithm z?

For elliptic curves over R, these questions have been answered satisfactorily,

since algorithms for computing period lattices of elliptic curves over R and elliptic

logarithms of real points are well-known and available in the literature (see, e.g.,

[Coh93, Algorithm 7.4.7 and 7.4.8] or [Cre97, §3.7]). The theory behind these

algorithms, which heavily relies on the AGM of positive real numbers, is explained

48 Chapter 4. Period Lattices and Complex Elliptic Logarithms

succinctly by Bost and Mestre [BM88]. The situation for elliptic curves over C,

however, is less satisfactory.

In this chapter, we therefore aim to develop a complete method for computing

period lattices and elliptic logarithms for elliptic curves over C. Our approach will

closely follow that of [BM88] in the real case, and will also illustrate the connection

between the following three classes of objects:

• AGM sequences over C, which were first studied by Gauss and have been

explored in depth by Cox [Cox84];

• Chains of lattices in C;

• Chains of 2-isogenies between elliptic curves defined over C.

This connection will allow us to derive an explicit formula for computing the period

lattice of E, which yields the first algorithm of this chapter. We then continue

further by generalising it to an algorithm for computing elliptic logarithms of points

in E(C). Finally, we illustrate the efficiency of both algorithms via some examples.

For computational purposes, we have implemented both algorithms in MAGMA

(see Appendix A.1 for the source code); these have been also implemented indepen-

dently in Sage (available from version 4.4) by Professor John E. Cremona.

4.2 AGM Sequences

In this section, we will give a brief overview of arithmetic-geometric mean of complex

numbers. For more in-depth survey on this subject, see [Cox84].

Definition. Let (a, b) ∈ C2 be a pair of complex numbers satisfying

a 6= 0, b 6= 0, a 6= ±b. (4.2)

4.2. AGM Sequences 49

We say that (a, b) is good if <(a/b) ≥ 0, or equivalently

|a− b| ≤ |a + b|; (4.3)

otherwise the pair is said to be bad.

Clearly, only one of the pair (a, b), (a,−b) is good, unless <(a/b) = <(b/a) = 0

(or equivalently, |a− b| = |a + b|), in which case both pairs are good.

Definition. An AGM sequence is a sequence ((an, bn))∞n=0 whose pairs satisfy the

relation

2an+1 = an + bn, b2
n+1 = anbn (4.4)

for all n ≥ 0.

It is easy to see that if any one pair (an, bn) in the sequence satisfies (4.2) then

all do, and we will make this restriction henceforth.

Given a starting pair (a0, b0), one can obtain uncountably many AGM sequences

by iterating the procedure of replacing (an, bn) by their arithmetic mean an+1 =

(an + bn)/2 and their geometric mean bn+1 =
√

anbn, with a choice of the square

root for bn+1 at each step. However, we usually prefer to consider the entire sequence

as a whole.

Definition. We say that an AGM sequence is good if the pairs (an, bn) are good

for all but finitely many n. A good AGM sequence in which (an, bn) are good for

all n > 0 is said to be optimal ; and strongly optimal if in addition (a0, b0) is good.

If an AGM sequence is not good, then we say that it is bad.

For an optimal AGM sequence ((an, bn))∞n=0 with a given starting pair (a0, b0),

at first it might seem that there could be many such sequences, since there could

be several n ≥ 0 for which both pairs (an,±bn) are good. Fortunately, the following

lemma shows that this is not the case.

50 Chapter 4. Period Lattices and Complex Elliptic Logarithms

Lemma 4.2.1. For every starting pair (a0, b0), there is exactly one optimal AGM

sequence ((an, bn))∞n=0, unless a0/b0 is real and negative, in which case there are two

optimal AGM sequences with different signs of b1.

Proof. For n ≥ 0, let rn = an/bn. Using (4.4), we can rewrite rn+1 as

rn+1 = ±1

2

(√
rn +

1√
rn

)
.

One can then verify the following very easily:

• rn is real and positive if and only if rn+1 is real;

• rn is real and negative if and only if rn+1 is purely imaginary.

If both pairs (an+1,±bn+1) are good, then (4.3) implies that rn+1 is purely imag-

inary, and so all preceding ratios rn are real. Thus equality can hold in (4.3) at most

once in any AGM sequence; and only for n = 0 or n = 1 in an optimal sequence

(since <(rn) ≥ 0 for all n ≥ 1 in an optimal sequence). In particular, this only holds

for n = 1 (i.e., both (a1,±b1) are good) if and only if r0 is real and negative.

The following proposition is due to Cox; see [Cox84] for its proof. Note that

Cox defines the notion of “good” more strictly than above (when <(a/b) = 0 he

requires =(a/b) > 0, so that exactly one of (a,±b) is good in every case), but in

view of the preceding remarks this does not affect the following result.

Proposition 4.2.2. Given a pair (a0, b0) ∈ C2 satisfying (4.2), every AGM se-

quence ((an, bn))∞n=0 starting at (a0, b0) satisfies the following:

1. limn→∞ an and limn→∞ bn exist and are equal;

2. The common limit, say M , is non-zero if and only if the sequence is good;

3. |M | attains its maximum (among all AGM sequences starting at (a0, b0)) if

and only if the sequence is optimal.

4.3. Chains of Lattices 51

For an AGM sequence ((an, bn))∞n=0 starting at (a0, b0), we will denote the com-

mon limit limn→∞ an = limn→∞ bn by MS(a0, b0), where S ⊆ Z>0 is the set of all

indices n for which the pair (an, bn) is bad. For example, M∅(a0, b0) denotes the

common limit for the optimal AGM sequence. Note that the sequence is good if

and only if S is a finite set. To ease notation, we shall write M∅(a0, b0) as M(a0, b0).

4.3 Chains of Lattices

We now move on to consider the second class of objects, namely, chains of lattices

of index 2. In this section, we will give the definition of a chain and describe its

properties, which later will be seen to be analogous to those of an AGM sequence.

Throughout this chapter, a lattice will always be a free Z-module of rank 2,

embedded as a discrete subgroup of C. Elements of lattices will often be called

periods, since in our application lattices will arise as period lattices of elliptic curves

defined over C.

Definition. A chain of lattices (of index 2) is a sequence of lattices (Λn)∞n=0 which

satisfies the following conditions:

1. Λn ⊃ Λn+1 for all n ≥ 0;

2. [Λn : Λn+1] = 2 for all n ≥ 0;

3. Λ0/Λn is cyclic for all n ≥ 1; equivalently, Λn+1 6= 2Λn−1 for all n ≥ 1.

Thus for each n ≥ 1, we have

Λn+1 = 〈w〉+ 2Λn (4.5)

for some w ∈ Λn \ 2Λn−1.

Given an initial lattice Λ0, there are three choices for Λ1. When n ≥ 1, one of the

three choices for Λn+1 is excluded since it is contained in 2Λn−1 (which contradicts

52 Chapter 4. Period Lattices and Complex Elliptic Logarithms

the last condition in the definition of a chain), and so there are only two choices

for Λn+1. The number of such chains starting with Λ0 is therefore uncountable; we

will distinguish a countable subset of these as follows. Let

Λ∞ =
∞⋂

n=0

Λn.

Then Λ∞ is free of rank at most 1; the rank cannot be 2 since for all n,

[Λ0 : Λ∞] ≥ [Λ0 : Λn] = 2n,

so [Λ0 : Λ∞] is infinite.

Definition. A chain of lattices (Λn)∞n=0 is said to be good if Λ∞ has rank 1; in this

case a generator for Λ∞ will be called a limiting period of the chain. If a chain is

not good, then we say that it is bad.

We will first show that the limiting period is primitive, i.e., not in mΛ0 for any

m ≥ 2.

Lemma 4.3.1. Let (Λn)∞n=0 be a good chain with Λ∞ = 〈w∞〉. Then we have the

following:

1. w∞ is primitive; equivalently, Λ0/Λ∞ is free of rank 1;

2. Λn = 〈w∞〉+ 2nΛ0 for all n ≥ 0.

Proof. Suppose w∞ = mw for some m ≥ 1, and w ∈ Λn ⊆ Λ0 for some n ≥ 0. If

m is odd, then (m − 1)w ∈ Λn+1. Since mw = w∞ ∈ Λn+1, we have w ∈ Λn+1.

Hence w ∈ Λ∞ by induction. Thus w∞ = mw = m(m′w∞) for some m′ ∈ Z, and

so m = 1.

Next, suppose that w∞ = 2w for some w ∈ Λ0. By definition of w∞, we then

have w /∈ Λ∞, and hence there exists n > 0 such that w /∈ Λn. This implies that

4.3. Chains of Lattices 53

w∞ ∈ Λn \ 2Λn−1 (recall that Λn ⊃ 2Λn−1). But since w∞ ∈ Λn+1, we have

Λn+1 = 〈w∞〉+ 2Λn = 〈2w〉+ 2Λn ⊆ 2Λ0,

which contradicts the definition of a chain. Thus w∞ is primitive, which proves (1).

Since w∞ is primitive, then Λn/2
nΛ0 is cyclic of order 2n, and is generated by

w∞ modulo 2nΛ0. Hence (2) follows.

So far, our notion of a good chain has been defined as a property of the chain as a

whole, and only used the abstract structure of lattices as free Z-modules. Using the

next definition, we will see that this property can be also seen in terms of individual

steps Λn ⊃ Λn+1, when all lattices Λn are embedded in C. In view of (4.5), the

choice of Λn+1 is determined by the class of w modulo 2Λn.

Definition. For n ≥ 1, we say that Λn+1 ⊂ Λn is a right choice of sublattice of Λn

if Λn+1 = 〈w〉+ 2Λn, where w is a minimal element in Λn \ 2Λn−1 (with respect to

the usual complex absolute value).

In general, there will be only one right choice at each step; for more details on

the exceptional case, see Section 4.3.1.

Lemma 4.3.2. Let (Λn)∞n=0 be a good chain with Λ∞ = 〈w∞〉. Then w∞ is minimal

in Λn for all but finitely many n ≥ 0.

Proof. Let w1 = w∞. By Lemma 4.3.1, w1 is primitive and there exists w2 ∈ Λ0

such that Λn = 〈w1, 2
nw2〉 for all n ≥ 0. For a non-zero w ∈ Λn, we write w =

mw1 + k2nw2 with m, k ∈ Z. If k = 0, then clearly |w| = |m||w1| ≥ |w1|. On the

other hand, if |k| ≥ 1, then

|w/w1| = |m + k2nw2/w1| ≥ 2n|=(w2/w1)| ≥ 1,

for all n > − log2 |=(w2/w1)|. This proves the lemma.

54 Chapter 4. Period Lattices and Complex Elliptic Logarithms

The following proposition yields an alternative definition of a good chain. For

now we remark that this is analogous to the definition of a good AGM sequence in

Section 4.2; more of its analogues will be seen in later sections.

Proposition 4.3.3. A chain of lattices (Λn)∞n=0 is good if and only if Λn+1 ⊂ Λn is

a right choice for all but finitely many n ≥ 1.

Proof. Let (Λn)∞n=0 be a good chain with Λ∞ = 〈w∞〉. Then by Lemma 4.3.2,

there exists an integer n0 such that w∞ is minimal in Λn for all n ≥ n0. Since

Λn+1 = 〈w∞〉+ 2Λn for all n, then by definition, Λn+1 ⊂ Λn is a right choice for all

n ≥ n0.

Conversely, suppose that Λn+1 ⊂ Λn is a right choice for all n ≥ n0 (where

n0 ≥ 1). Without loss of generality, we may suppose that n0 = 1. Let w1 be a

minimal element of Λ1. Then w1 is certainly primitive (as an element of Λ1, though

not necessarily in Λ0). We claim that w1 ∈ Λn for all n ≥ 1, so that the chain is

good with limiting period w1.

To prove the claim, suppose that w1 ∈ Λj for all j ≤ n. Then Λn = 〈w1〉+2n−1Λ1,

since the latter is contained in the former and both have index 2n−1 in Λ1. Hence

Λn = 〈w1, 2
n−1w2〉, where w2 ∈ Λ1 is such that Λ1 = 〈w1, w2〉. By minimality of

w1, the right sublattice Λn+1 of Λn is clearly 〈w1〉+Λn (note that w1 is a candidate

since w1 ∈ Λn \ 2Λn−1); in particular, w1 ∈ Λn+1 as required.

In the next subsection, we will introduce a special type of a lattice chain, whose

properties will be analogous to those of an optimal AGM sequence. This type

of lattice chain will play an important role in Section 4.5, where we develop an

algorithm for computing period lattices of elliptic curves over C.

4.3.1 Optimal Chains and Rectangular Lattices

Definition. A lattice chain (Λn)∞n=0 is said to be optimal if Λn+1 ⊂ Λn is a right

choice for all n ≥ 1.

4.3. Chains of Lattices 55

In general, there will be only one optimal chain for each of the three choices

of Λ1 ⊂ Λ0. In order to describe this statement more precisely, however, some

preparation is necessary.

We say that a lattice Λ ⊂ C is rectangular if it has an orthogonal Z-basis

{w1, w2}, i.e., one which satisfies <(w2/w1) = 0. For example, the period lattice

of an elliptic curve defined over R with positive discriminant is rectangular, where

an orthogonal basis is given by the least real period and the least imaginary period

(see Section 1.3 for more details). In fact, rectangular lattices are homothetic to

the period lattices of this family of elliptic curves.

If {w1, w2} is any Z-basis for a lattice Λ, the three non-trivial cosets of 2Λ in Λ

are given by Cj = wj + 2Λ for j = 1, 2, 3, where w3 = w1 + w2. By a minimal coset

representative, we mean a minimal element of one of these cosets. The next three

lemmas explain some of its properties.

Lemma 4.3.4. Minimal coset representatives are primitive.

Proof. Let w be a minimal coset representative. Then w /∈ 2Λ, since by definition w

does not represent the trivial coset 2Λ. Moreover, if w = mw′ for some odd m ≥ 3,

then |w| = m|w′| > |w′|. But since both w, w′ belong to the same coset modulo 2Λ,

this contradicts the minimality of w. Hence m = 1, i.e., w is primitive.

Lemma 4.3.5. In each coset Cj, the minimal coset representative is unique up to

sign, unless Λ is a rectangular lattice with orthogonal Z-basis {w1, w2}, in which

case the coset C3 has four minimal vectors ±(w1 ± w2).

Proof. For a rectangular lattice Λ with orthogonal Z-basis {w1, w2}, it is easy to

see that the minimal coset representatives are as stated. Conversely, if a lattice Λ

has a coset C with at least two pairs of minimal elements ±w,±w′, then w1, w2 =

(w ± w′)/2 ∈ Λ are easily seen to be orthogonal.

Next, we will show that w1, w2, and w = w1 + w2 are non-trivial coset repre-

sentatives modulo 2Λ. If w1 ≡ 0 (mod 2Λ), then w2 ≡ w (mod 2Λ). But then

56 Chapter 4. Period Lattices and Complex Elliptic Logarithms

|w2| < |w1 + w2| = |w|, which contradicts the minimality of w in its coset. Hence

w1 6≡ 0 (mod 2Λ). Similarly, w2 6≡ 0 (mod 2Λ). Moreover, w1 6≡ w2 (mod 2Λ)

since w = w1 + w2 6≡ 0 (mod 2Λ). Therefore, w1, w2, w do represent the three

non-trivial cosets modulo 2Λ.

Finally, it remains to show that {w1, w2} is a Z-basis for Λ. Suppose the contrary

that this is not the case. Then there would exist a non-zero period w0 = αw1 +βw2

with 0 ≤ α, β < 1. Clearly, one of w0, w0−w1, w0−w2, w0−w is in the same coset

as w, but since all these periods are smaller than w, this yields a contradiction.

As we will see later on, our algorithm for computing period lattices of elliptic

curves will actually compute these minimal coset representatives. To ensure that

we thereby obtain a Z-basis for the lattice, the following lemma is required.

Lemma 4.3.6. For j = 1, 2, 3, let wj be minimal coset representatives for a non-

rectangular lattice Λ. Then any two of these wj form a Z-basis for Λ, and w3 =

±(w1 ± w2).

Proof. We may assume that |w1| ≤ |w2| ≤ |w3|. Then w1 is minimal in Λ and w2

is minimal in Λ \ 〈w1〉. Hence (by negating w2 if necessary), τ = w2/w1 is in the

standard fundamental region for SL2(Z) acting on the upper half-plane, {w1, w2} is

a Z-basis for Λ, and w3 = w1 ± w2; the sign depends on that of <(τ).

The following proposition shows that the limiting period of an optimal chain is

closely related to minimal coset representatives.

Proposition 4.3.7. A good chain of lattices (Λn)∞n=0 with Λ∞ = 〈w∞〉 is optimal

if and only if w∞ is a minimal coset representative of 2Λ0 in Λ0.

Proof. Suppose that w∞ is a minimal coset representative. Then it is clear that

Λn+1 = 〈w∞〉 + 2Λn ⊂ Λn is a right sublattice for all n ≥ 1, since w∞ is certainly

minimal in Λn \ 2Λn−1. Thus the chain (Λn)∞n=0 is optimal with limiting period w∞.

Conversely, suppose that a chain (Λn)∞n=0 is optimal with limiting period w∞. Let

w ∈ Λ1 be a minimal element of Λ1\2Λ0, so that w is a minimal coset representative

4.4. Chains of 2-Isogenies 57

for the unique non-trivial coset modulo 2Λ0 contained in Λ1. Note that w is unique

up to sign, unless Λ0 is rectangular, in which case (for one of the cosets) there will

be two possibilities for w up to sign. By optimality, the sublattice Λ2 ⊂ Λ1 is the

right choice. In particular, if Λ0 is not rectangular, then we must therefore have

Λ2 = 〈w〉 + 2Λ1. This, however, may not hold in the rectangular case, but it will

hold if we replace w by the other choice of minimal coset representative.

Now we claim that Λn = 〈w〉 + 2Λn−1 for all n ≥ 2. We already know this for

n = 2. If the claim is true for n, then certainly w is also minimal in Λn \ 2Λn−1,

so the (unique) right choice of sublattice of Λn is 〈w〉+ 2Λn. By optimality, this is

Λn+1, and so the claim holds for n + 1. Thus w ∈ ⋂∞
n=0 Λn = 〈w∞〉, and indeed,

w = ±w∞, since w is primitive by Lemma 4.3.4.

This together with Lemma 4.3.5 gives the following conclusion.

Corollary 4.3.8. Every non-rectangular lattice Λ has precisely three optimal lat-

tice chains (Λn)∞n=0 (with Λ0 = Λ), whose limiting periods are the minimal coset

representatives in each of the three non-zero cosets of 2Λ in Λ. Every rectangular

lattice Λ has precisely four optimal lattice chains associated to it.

4.4 Chains of 2-Isogenies

We finally consider the last class of objects, where we construct a chain of elliptic

curves defined over C using 2-isogenies. Since each elliptic curve uniquely has an

associated period lattice, we will see that this chain will be analogous to a chain of

lattices defined in Section 4.3. Most of the formulas we use in this section are due

to Bost and Mestre [BM88].

Let E0 be an elliptic curve over C given by a Weierstrass equation

E0 : Y 2
0 = 4(X0 − e

(0)
1)(X0 − e

(0)
2)(X0 − e

(0)
3) (4.6)

58 Chapter 4. Period Lattices and Complex Elliptic Logarithms

where all roots e
(0)
j are distinct and

∑3
j=1 e

(0)
j = 0. Assume that the ordering of e

(0)
j

is fixed. Similar to [BM88], we define an, bn for n ≥ 0 by

a0 =

√
e
(0)
1 − e

(0)
3 , b0 =

√
e
(0)
1 − e

(0)
2 ,

an+1 =
an + bn

2
, b2

n+1 = anbn for n ≥ 0.

Note that a0, b0 are so far defined only up to sign, and also satisfy (4.2) since all e
(0)
j

are distinct. Given an, bn, it is easy to see that we can compute an+1 unambiguously,

whereas bn+1 is obtained up to sign. Starting from a given pair (a0, b0), this then

determines an AGM sequence ((an, bn))∞n=0, where we obtain a different sequence by

choosing the sign of bn+1 differently at each step. Associated to this AGM sequence,

for n ≥ 1 we let

e
(n)
1 =

a2
n + b2

n

3
, e

(n)
2 =

a2
n − 2b2

n

3
, e

(n)
3 =

b2
n − 2a2

n

3
. (4.7)

Observe that this identity also holds for n = 0, and all e
(n)
j are distinct and satisfy

∑3
j=1 e

(n)
j = 0 for all n ≥ 0. Hence we can construct a sequence (En)∞n=0 of elliptic

curves over C, where En is given by the Weierstrass equation

En : Y 2
n = 4(Xn − e

(n)
1)(Xn − e

(n)
2)(Xn − e

(n)
3).

For n ≥ 1, we define ϕn : En → En−1 to be the morphism which sends

(Xn, Yn) 7→ (Xn−1, Yn−1), where

Xn−1 = Xn +
(e

(n)
3 − e

(n)
1)(e

(n)
3 − e

(n)
2)

Xn − e
(n)
3

Yn−1 = Yn

(
1− (e

(n)
3 − e

(n)
1)(e

(n)
3 − e

(n)
2)

(Xn − e
(n)
3)2

)
.

(4.8)

Observe that ker(ϕn) = 〈(e(n)
3 , 0)〉. Thus ϕn is a 2-isogeny (note that it is a 2-to-1

map). It is well known (see, e.g., [Sil86, Theorem III.6.1]) that there exists a dual

4.4. Chains of 2-Isogenies 59

isogeny ϕ̂n : En−1 → En such that ϕ̂n ◦ ϕn is the multiplication-by-2 map on En.

Note that ker(ϕ̂n) = 〈(e(n−1)
1 , 0)〉. However, ϕn ◦ϕn+1 is not the multiplication-by-2

map on En+1, since, for example,

ϕn

(
ϕn+1

(
(e

(n+1)
1 , 0)

))
= ϕn((e

(n)
1 , 0)) = (e

(n−1)
1 , 0) 6= O.

This therefore allows us to construct a chain of 2-isogenies, as depicted below.

· · · En1
oo

2

²²

3 ϕn //
En−1

1
ϕ̂noo

2

²²

3 // · · · E11
oo

3 //

2

²²

E0
1

oo

The number j next to each arrow originating from En denotes the point (e
(n)
j , 0).

To see the effect of choosing a different sign of bn, first note that we can rewrite

e
(n+1)
j given by (4.7) as

e
(n+1)
1 =

e
(n)
1 + 2anbn

4
, e

(n+1)
2 =

e
(n)
1 − 2anbn

4
, e

(n+1)
3 =

−e
(n)
1

2
. (4.9)

For n ≥ 1, if we replace (an, bn) by (an,−bn), then this interchanges e
(n+1)
1 and

e
(n+1)
2 but leaves e

(n+1)
3 unchanged. This relabelling of the roots e

(n+1)
j therefore has

no effect on the curve En+1, but in turn yields a different curve En+2. For n = 0,

recall that a0, b0 are determined up to sign. It is easy to see that if only one of a0, b0

changes the sign, then this interchanges e
(1)
1 and e

(1)
2 but fixes e

(1)
3 ; all e

(1)
j remain

unchanged if both signs of a0, b0 are changed.

Given a pair (a0, b0) ∈ C2 satisfying (4.2), knowing (a0, b0) not only tells us which

curve E0 we started with and which 2-torsion point (e
(0)
1 , 0) we used to construct

E1, it also determines the labelling of all the roots of E1 (see (4.9)), and hence

determines the curve E2. Thus we have a bijection between:

• The set of all AGM sequences starting at (a0, b0), and

60 Chapter 4. Period Lattices and Complex Elliptic Logarithms

• The set of all chains of 2-isogenies starting at E0 with the subsequence

E2 → E1 → E0.

We now consider what happens to a chain of 2-isogenies (En)∞n=0 as n → ∞.

Given an elliptic curve E0 = E over C, we can construct all elliptic curves En re-

cursively as above. This construction in turn yields an AGM sequence ((an, bn))∞n=0

associated to the isogeny chain. Let S ⊆ Z>0 be the set of all indices for which the

pair (an, bn) is bad. It then follows from (4.7) that

lim
n→∞

e
(n)
1 =

2MS(a0, b0)
2

3
, lim

n→∞
e
(n)
2 = lim

n→∞
e
(n)
3 =

−MS(a0, b0)
2

3
, (4.10)

where MS(a0, b0) is the common limit of the AGM sequence. The limiting curve

E∞ for the isogeny chain is thus given by

E∞ : Y 2
∞ = 4

(
X∞ − 2MS(a0, b0)

2

3

)(
X∞ +

MS(a0, b0)
2

3

)2

. (4.11)

Observe that E∞ is a singular curve. We say that the isogeny chain is good if the

singular point of E∞ is a node; otherwise it is said to be bad.

In Section 4.3, we have seen that the notion of a good chain of lattices, which

has been defined as a property of the chain as a whole, can be also considered in

terms of individual steps. We will finally show that this is also the case for our

notion of a good isogeny chain defined above.

Definition. Let (En)∞n=0 be a chain of 2-isogenies. For n ≥ 2, we say that En is

the right choice for the isogeny chain if its roots satisfy

|e(n)
3 − e

(n)
2 | ≤ |e(n)

3 − e
(n)
1 |;

otherwise we say that En is the bad choice.

4.5. Period Lattices of Elliptic Curves 61

In other words, En is the right choice if e
(n)
3 is closer to e

(n)
2 than it is to e

(n)
1 .

The following lemma is immediate.

Lemma 4.4.1. Let (En)∞n=0 be an isogeny chain, and let ((an, bn))∞n=0 be its asso-

ciated AGM sequence. Then for all n ≥ 1, the pair (an, bn) is good if and only if

En+1 is the right choice for the isogeny chain.

Proof. From (4.7), we have

4|e(n+1)
3 − e

(n+1)
2 | = 4|b2

n+1 − a2
n+1| = |bn − an|2,

and

4|e(n+1)
3 − e

(n+1)
1 | = 4|an+1|2 = |bn + an|2.

The lemma now follows directly from the definition of a right choice given above.

The following proposition, which is analogous to Proposition 4.3.3, follows easily

from the properties of complex AGM.

Proposition 4.4.2. The following are equivalent:

1. A chain of 2-isogenies (En)∞n=0 is good;

2. Its associated AGM sequence is good;

3. En is chosen to be the right choice for all but finitely many n ≥ 2.

Proof. Equivalence of (1) and (2) follows easily from Proposition 4.2.2, while equiv-

alence of (2) and (3) is immediate from Lemma 4.4.1 and the definition of a good

AGM sequence.

4.5 Period Lattices of Elliptic Curves

In this section, we will combine all three classes of objects we have introduced

so far into an algorithm for computing period lattices of elliptic curves over C.

62 Chapter 4. Period Lattices and Complex Elliptic Logarithms

Our approach will follow closely with the classical definition of periods and elliptic

logarithms given in Section 1.3. For an alternative approach, see [CT, Section 6].

4.5.1 General Case

Let E0 be an elliptic curve over C of the form (4.6) as before, where all roots e
(0)
j

are given in some fixed order. As mentioned in Section 1.3, it is well known that

E0
∼= C/Λ0 for some lattice Λ0 via the map

P =
(
℘Λ0(z), ℘′Λ0

(z)
) 7→ z (mod Λ0)

O 7→ 0 (mod Λ0).

Let w1 ∈ Λ0 and let z1 = w1/2. Then by above isomorphism, we can see that

(℘Λ0(z1), ℘
′
Λ0

(z1)) is a 2-torsion point in E0(C). Hence we can assume that

℘Λ0(z1) = e
(0)
1 , ℘′Λ0

(z1) = 0

(note that there are three ways to choose e
(0)
1). Define `1 to be the straight line on

the complex plane starting from 0 to z1. Then we have

w1

2
= z1 =

∫

`1

dz =

∫

C(0)
1

dX0

Y0

,

where C(0)
1 is the path on the elliptic curve E0 defined by

C(0)
1 = {(℘Λ0(tz1), ℘

′
Λ0

(tz1)
)

: 0 ≤ t ≤ 1}.

Given E0, we can construct a chain of 2-isogenies (En)∞n=0 and its associated

AGM sequence ((an, bn))∞n=0 using the method described in Section 4.4. As we will

see below, this will also yield the corresponding chain of lattices (Λn)∞n=0. Note that

one can obtain a different isogeny chain with the same starting curve E0 depending

4.5. Period Lattices of Elliptic Curves 63

on how the sign of bn is chosen at each step. We will now combine what we have

so far in order to determine z1 (and hence w1).

For each n ≥ 1, since En
∼= C/Λn for some lattice Λn, we have the connection

between an isogeny chain and a chain of lattices as shown in Figure 4.1.

· · · // C id //

²²

C

²²

// · · ·

· · · // C/Λn
//

(℘Λn ,℘′Λn
)

²²

C/Λn−1

(℘Λn−1
,℘′Λn−1

)

²²

// · · ·

· · · // En
ϕn // En−1

// · · ·

Figure 4.1: A chain of 2-isogenies linked with a chain of lattices

By definition of ϕn (see (4.8)), it can be verified that

ϕ∗n

(
dXn−1

Yn−1

)
=

dXn

Yn

(4.12)

for all n ≥ 1, where ϕ∗n is the pullback of the differential on En−1 by ϕn. This

therefore induces the identity map id : C → C, which in turn induces the map

C/Λn → C/Λn−1 via z (mod Λn) 7→ z (mod Λn−1). Since ϕn is a 2-to-1 map, it

then follows that Λn−1 ⊃ Λn with [Λn−1 : Λn] = 2. Moreover, since ϕn ◦ϕn+1 is not

the multiplication-by-2 map on En+1 for all n ≥ 1, we have Λn+1 6= 2Λn−1. Hence

this gives us the relationship between a chain of lattices and a chain of 2-isogenies.

Next, let C(n)
1 be the path on the elliptic curve En defined by

C(n)
1 = {(℘Λn(tz1), ℘

′
Λn

(tz1)
)

: 0 ≤ t ≤ 1}.

Then we can regard C(n)
1 as a map [0, 1] → En, as shown in the diagram below.

[0, 1]
C(n+1)
1 //

id
²²

En+1

ϕn+1

²²
[0, 1]

C(n)
1 // En

64 Chapter 4. Period Lattices and Complex Elliptic Logarithms

By commutativity of this diagram, we have ϕn+1 ◦ C(n+1)
1 = C(n)

1 . Together with

(4.12), this implies that

∫

C(n+1)
1

dXn+1

Yn+1

=

∫

C(n)
1

dXn

Yn

,

and so

w1

2
= z1 =

∫

`1

dz =

∫

C(0)
1

dX0

Y0

=

∫

C(1)
1

dX1

Y1

= · · · =
∫

C(n)
1

dXn

Yn

= · · ·

Recall the limiting curve E∞ of the isogeny chain (En)∞n=0 from (4.11). As

n → ∞, the path C(n)
1 on En approaches to some path on E∞, say, C(∞)

1 , whose

starting point is O. We now describe another end-point of C(∞)
1 as follows. For all

n ≥ 1, one can easily check from (4.8) that

ϕn(O) = ϕn

(
(e

(n)
3 , 0)

)
= O

ϕn

(
(e

(n)
1 , 0)

)
= ϕn

(
(e

(n)
2 , 0)

)
= (e

(n−1)
1 , 0).

Moreover, we can rewrite (4.8) as

Xn =
(Xn−1 + e

(n)
3) + sn

2
, Yn =

Yn−1

1− (e
(n)
3 − e

(n)
1)(e

(n)
3 − e

(n)
2)

(Xn − e
(n)
3)2

, (4.13)

where

sn =

√
(Xn−1 − e

(n)
3)2 − 4(e

(n)
3 − e

(n)
1)(e

(n)
3 − e

(n)
2)

is defined up to sign. By definition of C(n)
1 , it is clear that its starting point is always

O ∈ En(C). In addition, we already know that ϕn ◦ C(n)
1 = C(n−1)

1 . Hence for all

n ≥ 1, the sign of sn must be chosen so that O ∈ En−1 7→ O ∈ En. This can be

4.5. Period Lattices of Elliptic Curves 65

achieved provided that sn satisfies

|(Xn−1 − e
(n)
3)− sn| ≤ |(Xn−1 − e

(n)
3) + sn|. (4.14)

By continuity, this criterion for sn then holds along the path C(n−1)
1 . But since

another end-point of C(0)
1 is (e

(0)
1 , 0) by definition, (4.14) eventually implies that

(e
(0)
1 , 0) 7→ (e

(1)
1 , 0). Hence by induction, the two end-points of C(n)

1 are O and

(e
(n)
1 , 0) for all n ≥ 0, and so the two end-points of C(∞)

1 are

P1 = O, P2 =
(

lim
n→∞

e
(n)
1 , 0

)
=

(
2MS(a0, b0)

2

3
, 0

)

(the last equality is from (4.10)), where ((an, bn))∞n=0 is the AGM sequence associated

to the isogeny chain, and S is the set of all indices for which (an, bn) is bad.

Similar to [BM88], by writing

X∞ = t2 +
2MS(a0, b0)

2

3
, Y∞ = 2t(t2 + MS(a0, b0)

2),

and letting tan θ = t/MS(a0, b0), we have

dX∞
Y∞

=
dθ

MS(a0, b0)

and also

t =
Y∞

2
(
X∞ + MS(a0,b0)2

3

) .

Then it is easy to see that

P = P1 ⇐⇒ t = ∞ ⇐⇒ cos θ = 0 ⇐⇒ θ =
(2k1 − 1)π

2

P = P2 ⇐⇒ t = 0 ⇐⇒ sin θ = 0 ⇐⇒ θ = k2π

for some k1, k2 ∈ Z. If we choose k1 = k2 = k for some k ∈ Z (i.e., we choose the

66 Chapter 4. Period Lattices and Complex Elliptic Logarithms

values for arctan from the same branch), we finally have

w1 = · · · = 2

∫

C(∞)
1

dX∞
Y∞

=
2

MS(a0, b0)

∫ kπ

kπ−π
2

dθ =
π

MS(a0, b0)
.

Note that w1 we just obtained is up to sign. If we had chosen k1, k2 differently

then we would have obtained some odd multiple of w1, which would not change w1

modulo 2Λ0.

Given (a0, b0), we already know that the value of MS(a0, b0) depends on the

set S. If we choose S = ∅, then |MS(a0, b0)| = |M(a0, b0)| will attain its maximum

among all AGM sequences starting at (a0, b0) by Proposition 4.2.2. Thus the period

w1 ∈ Λ0 obtained by making the optimal choice for the AGM sequence with a fixed

starting pair (a0, b0) will be the minimal one (hence primitive), and may also be

a minimal coset representative modulo 2Λ0. If we can determine the other two

minimal coset representatives w2, w3 (by choosing e
(0)
1 differently and computing wj

in a similar way), then by Lemma 4.3.6, any two of these wj form a Z-basis for Λ0.

Recall that

a0 =

√
e
(0)
1 − e

(0)
3 , b0 =

√
e
(0)
1 − e

(0)
2 ,

i.e., both a0, b0 are determined up to sign. Then we have the problem of deciding

which one of π/M(a0,±b0) is actually a minimal coset representative of 2Λ0 in Λ0,

since both are periods of Λ0 and belong to the same coset modulo 2Λ0. To avoid

this ambiguity, we will regard the pairs (a0,±b0) as the two results of computing

AGM “one step backwards”. To be precise, we wish to find a−1, b−1 such that

2a0 = a−1 + b−1, b2
0 = a−1b−1.

It is then easy to show that

a−1 = a0 ± c0, b−1 = a0 ∓ c0,

4.5. Period Lattices of Elliptic Curves 67

where c2
0 = a2

0 − b2
0, so both pairs (a0,±b0) come from (a0 + c0, a0 − c0).

Let w = π/M(a0 + c0, a0 − c0). One can easily observe that changing the sign

of c0 has no effect on w, whereas changing the sign of a0 simply negates w. Thus

w is uniquely determined up to sign regardless of the signs of a0, c0. Moreover, the

optimality of M(a0 + c0, a0 − c0) implies that

w =
π

M(a0 + c0, a0 − c0)
=

π

M(a0, b0)
,

provided that (a0, b0) is good, i.e., |a0− b0| ≤ |a0 + b0|. Hence if (a0, b0) is chosen to

be good, then w1 = π/M(a0, b0) = w is smaller than π/M(a0,−b0), and is thus a

minimal coset representative modulo 2Λ0. Finally, it follows from Proposition 4.3.7

that the corresponding lattice chain (Λn)∞n=0 is optimal with limiting period w1, and

there exists w2 ∈ Λ0 such that Λn = 〈w1, 2
nw2〉 for all n ≥ 0.

Thus we have proved our first result on period lattices of elliptic curves over C.

Theorem 4.5.1 (Period Lattices of Elliptic Curves over C, first version). Let E0

be an elliptic curve over C of the form (4.6), with period lattice Λ0. Set

a0 =

√
e
(0)
1 − e

(0)
3 , b0 =

√
e
(0)
1 − e

(0)
2 ,

where the sign of b0 is chosen so that (a0, b0) is good (i.e., |a0 − b0| ≤ |a0 + b0|).
Then

w1 =
π

M(a0, b0)

is a primitive period of Λ0, and is a minimal coset representative modulo 2Λ0.

Define the other two minimal coset representatives w2, w3 in a similar way (by

permuting e
(0)
j). Then any two of these wj form a Z-basis for Λ0.

As we can see, this theorem computes each minimal coset representative wj by

choosing e
(0)
1 differently at a time. Nevertheless, it turns out that we may obtain

all wj by using only one fixed ordering of the roots e
(0)
j and three different AGM

68 Chapter 4. Period Lattices and Complex Elliptic Logarithms

computations. This alternative method, which also exhibits a certain relationship

among all wj, will be explained in Section 4.5.4.

4.5.2 Special Case I: Rectangular Lattices

For the rest of this chapter, we set i =
√−1. Recall that if |a0 − b0| = |a0 + b0|,

then both (a0,±b0) are good and <(b0/a0) = 0. This implies that b0 = ika0 for

some k ∈ R \ {0}. Let r = k2. Then we have

b0 = ika0 ⇐⇒ e
(0)
1 − e

(0)
2

e
(0)
1 − e

(0)
3

= −r < 0.

Using the fact that
∑3

j=1 e
(0)
j = 0, we can rewrite e

(0)
3 in terms of e

(0)
1 , e

(0)
2 and obtain

e
(0)
2 =

(
1 + 2r

1− r

)
e
(0)
1 , e

(0)
3 =

(
r + 2

r − 1

)
e
(0)
1 ,

provided that r 6= 1. Clearly, the sign of (1 + 2r)/(1− r) is always opposite to the

sign of (r + 2)/(r − 1) for all r > 0 (apart from 1). Geometrically, this means that

all e
(0)
j are collinear on the complex plane with e

(0)
1 in the middle. If r = 1, then

one can easily check that this is still the case, with e
(0)
1 = 0 and e

(0)
2 = −e

(0)
3 .

To see what the associated period lattice looks like, first we let w = π/M(a0, b0)

and w′ = π/M(a0,−b0). Then both w,w′ (up to sign) are the minimal elements in

the same coset modulo 2Λ0. Hence by Lemma 4.3.5, the periods w1, w2 = (w±w′)/2

form an orthogonal Z-basis for Λ0, so the period lattice is rectangular. Alternatively,

we could obtain a Z-basis for Λ0 by computing two minimal coset representatives

(see Theorem 4.5.1) using the two other roots of E0 which are not “in the middle”

in the role of e
(0)
1 .

Finally, we note that if all e
(0)
j are collinear, then we can always “rotate” them

by a suitable constant in C \ R so that the scaled roots e′j are all real. Then

one could use an algorithm for computing period lattices of elliptic curves over R

(e.g., [Coh93, Algorithm 7.4.7]) to compute the period lattice of the elliptic curve

4.5. Period Lattices of Elliptic Curves 69

E ′ : (Y ′)2 = 4(X ′− e′1)(X
′− e′2)(X

′− e′3). The period lattice of our original elliptic

curve E0 is then obtained after some suitable scaling.

In particular, one can arrange all roots e′j so that e′1 > e′2 > e′3 and obtain an

orthogonal Z-basis for the period lattice of E ′ by setting

w1 =
π

M
(√

e′1 − e′3,
√

e′1 − e′2
) , w2 =

iπ

M
(√

e′1 − e′3,
√

e′2 − e′3
)

with all positive square roots. In fact, these formulas are familiar from the literature;

see, e.g., [Coh93, Algorithm 7.4.7] or [Cre97, (3.7.1)].

4.5.3 Special Case II

If the roots of E0 are such that

∣∣∣∣∣
e
(0)
1 − e

(0)
2

e
(0)
1 − e

(0)
3

∣∣∣∣∣ = 1 with e
(0)
1 − e

(0)
2 6= ±(e

(0)
1 − e

(0)
3),

then geometrically all e
(0)
j lie on an isosceles triangle having e

(0)
1 as the vertex where

the sides of equal length intersect. As before, one can rotate this triangle by a

suitable constant in C \ R so that e
(0)
1 ∈ R, and e

(0)
2 , e

(0)
3 are complex conjugates.

This yields a new elliptic curve E ′ over R, whose Weierstrass equation has only one

real root. In other words, E ′/R has negative discriminant.

Again, one can use an algorithm for computing period lattices of elliptic curves

over R (e.g., [Coh93, Algorithm 7.4.7]) to compute the period lattice of E ′. It is

well known that the period lattice of E ′ is of the form Λ′ = 〈w′
1, w

′
2〉, for some w′

1, w
′
2

satisfying

w′
1 ∈ R, <(w′

2) =
w′

1

2
.

The period lattice Λ0 = 〈w1, w2〉 of E0 can then be obtained by a suitable scaling

on w′
1, w

′
2. Note that this time we have <(w2/w1) = 1/2. This will be illustrated in

Example 4.7.4.

70 Chapter 4. Period Lattices and Complex Elliptic Logarithms

4.5.4 A Relationship amongst the Periods

In this subsection, we will present an alternative method for computing period

lattices of elliptic curves over C. Unlike Theorem 4.5.1, this time all three minimal

coset representatives w1, w2, w3 will be determined by using only one fixed ordering

of the roots and three different strongly optimal AGM sequences. Finally, we will

also show that all wj obtained by this new method satisfy a certain linear relation.

Let E0 be an elliptic curve over C of the form (4.6) as before. Assume that its

roots are arranged in some fixed order, say, (e
(0)
1 , e

(0)
2 , e

(0)
3). Then we can compute

a0, b0 (uniquely up to sign) as before. Let c0 =
√

a2
0 − b2

0, which is again up to sign.

We claim that one can always choose the signs of a0, b0, c0 in such a way that the

following conditions hold:

|a0 − b0| ≤ |a0 + b0|, |c0 − ib0| ≤ |c0 + ib0|, |a0 − c0| ≤ |a0 + c0|. (4.15)

To prove this claim, we first consider the case when equality occurs in one of

the conditions in (4.15). It might seem possible at first that there could be at least

two equalities occurring in (4.15) simultaneously. However, it is very easy to verify

that this is not the case. If there exists exactly one equality in (4.15), then one can

always choose the sign of the variables appearing in the equality in such a way that

all the conditions in (4.15) are satisfied. For example, if

a0 = 1, b0 = i, c0 =
√

2

(note that c2
0 = a2

0 − b2
0), then we have

|a0 − b0| = |a0 + b0|, |c0 − ib0| > |c0 + ib0|, |a0 − c0| < |a0 + c0|.

However, if b0 = −i, then a0, b0, c0 now satisfy all the conditions in (4.15).

Now we consider the case when all the conditions in (4.15) are strictly inequal-

4.5. Period Lattices of Elliptic Curves 71

ities. In this case, we start by choosing the sign of a0 arbitrarily. Then we can

always choose the signs of b0, c0 so that the first and the third conditions in (4.15)

hold. The second condition, however, requires some extra work. First, we note that

this condition is equivalent to =(c0/b0) ≥ 0. Hence, if our chosen b0, c0 are such that

=(c0/b0) ≤ 0, then at first one might consider interchanging b0 and c0; this would

make the second condition satisfied, whereas other conditions remained unaffected.

Unfortunately, such attempt will affect our curve E0. To be precise, suppose we

interchange b0 and c0. Then by (4.7), we have

e
(0)
1 =

a2
0 + b2

0

3
7→ a2

0 + c2
0

3
= −e

(0)
3

e
(0)
2 =

a2
0 − 2b2

0

3
7→ a2

0 − 2c2
0

3
= −e

(0)
2

e
(0)
3 =

b2
0 − 2a2

0

3
7→ c2

0 − 2a2
0

3
= −e

(0)
1 ,

i.e., E0 is mapped to another elliptic curve isomorphic to it. In this case, we should

therefore use a new ordering for the roots of E0. Let

a′ = ia0, b′ = ic0, c′ = ib0.

Then one can easily check that (a′)2 − (b′)2 = (c′)2. Moreover, we have

|a′ ± b′| = |a0 ± c0|, |c′ ± ib′| = |ib0 ∓ c0|, |a′ ± c′| = |a0 ± b0|.

Since a0, b0, c0 satisfy all but the second conditions in (4.15), this leads to

|a′ − b′| < |a′ + b′|, |c′ − ib′| < |c′ + ib′|, |a′ − c′| < |a′ + c′|,

and so a′, b′, c′ satisfy all conditions in (4.15). Defining e′1, e
′
2, e

′
3 in a similar way as

72 Chapter 4. Period Lattices and Complex Elliptic Logarithms

in (4.7), we finally obtain

e′1 =
(a′)2 + (b′)2

3
=

b2
0 − 2a2

0

3
= e

(0)
3

e′2 =
(a′)2 − 2(b′)2

3
=

a2
0 − 2b2

0

3
= e

(0)
2

e′3 =
(b′)2 − 2(a′)2

3
=

a2
0 + b2

0

3
= e

(0)
1 .

This can be summarised into the following proposition.

Proposition 4.5.2. Let (e
(0)
1 , e

(0)
2 , e

(0)
3) be an ordering of the roots of E0, and define

a0, b0, c0 as before. Then we have one of the following cases:

1. a0, b0, c0 readily satisfy all the conditions in (4.15);

2. a0, b0, c0 yield an equality in (4.15). In this case, we can choose the sign of

the variables appearing in the equality so that all the conditions in (4.15) are

satisfied;

3. Otherwise, suppose the signs of a0, b0, c0 are chosen so that

|a0 − b0| < |a0 + b0| and |a0 − c0| < |a0 + c0|.

Then if |c0 − ib0| > |c0 + ib0|, the new ordering (e
(0)
3 , e

(0)
2 , e

(0)
1) will give a new

set {a0, b0, c0} (where a0, b0, c0 is replaced by ia0, ic0, ib0 respectively), whose

signs can be chosen so that all conditions in (4.15) hold.

We are now ready to state an alternative version of Theorem 4.5.1.

Theorem 4.5.3 (Period Lattices of Elliptic Curves over C, second version). Let

E0 be an elliptic curve over C of the form (4.6), with period lattice Λ0 as before.

Order the roots (e
(0)
1 , e

(0)
2 , e

(0)
3) of E0 so that the signs of

a0 =

√
e
(0)
1 − e

(0)
3 , b0 =

√
e
(0)
1 − e

(0)
2 , c0 =

√
e
(0)
2 − e

(0)
3

4.5. Period Lattices of Elliptic Curves 73

can be chosen to satisfy all the conditions in (4.15). Define

w1 =
π

M(a0, b0)
, w2 =

π

M(c0, ib0)
, w3 =

iπ

M(a0, c0)
.

Then all wj are primitive periods of Λ0, and are minimal coset representatives

modulo 2Λ0; any two of these form a Z-basis for Λ0.

Proof. By Proposition 4.5.2, it is always possible to order (e
(0)
1 , e

(0)
2 , e

(0)
3) so that

(a0, b0, c0) satisfies all the conditions in (4.15). We will show that this new definition

of wj still agrees with Theorem 4.5.1 where each root e
(0)
j plays the role of e

(0)
1 .

To show this, first note that w1 = ±π/M(a0, b0) as before, since (a0, b0) is good.

Letting (e′1, e
′
2, e

′
3) = (e

(0)
2 , e

(0)
1 , e

(0)
3), we find that (a′, b′) = (c0, ib0) is good, so

π

M(a′, b′)
= ± π

M(c0, ib0)
= w2.

Similarly, by letting (e′1, e
′
2, e

′
3) = (e

(0)
3 , e

(0)
1 , e

(0)
2), we find that (a′, b′) = (ic0, ia0) is

good, and so

π

M(a′, b′)
= ± iπ

M(a0, c0)
= w3.

Note that these wj are minimal coset representatives of 2Λ0 in Λ0 by Theorem 4.5.1,

hence any two of them form a Z-basis for Λ0 by Lemma 4.3.6.

Since any two of w1, w2, w3 given by Theorem 4.5.3 form a Z-basis for Λ0, we

have ±w1 ± w2 ± w3 = 0 for some suitable signs. We now aim to determine these

signs unambiguously.

Suppose that (e
(0)
1 , e

(0)
2 , e

(0)
3) is an ordering of the roots of E0 which yields

(a0, b0, c0) satisfying all conditions in (4.15). Let (e′(0)
1 , e′(0)

2 , e′(0)
3) be another or-

dering of the roots of E0 which also yields (a′0, b
′
0, c

′
0) satisfying all conditions in

(4.15). If {w1, w2, w3} and {w′
1, w

′
2, w

′
3} are the periods obtained by Theorem 4.5.3

74 Chapter 4. Period Lattices and Complex Elliptic Logarithms

using (a0, b0, c0) and (a′0, b
′
0, c

′
0) respectively, then for some suitable signs, we have

±w1 ± w2 ± w3 = 0 and ± w′
1 ± w′

2 ± w′
3 = 0.

But since all wj, w
′
j are of minimal length, we must have w′

j = ±wk for some j, k.

This leads to a system of two linear equations in terms of wj. It turns out that all

signs in the first equation must be either identical or opposite to those in the second

equation; since otherwise we will have either wj = 0 for some j, or wj = ±wk for

some j 6= k, which contradicts the fact that any two of w1, w2, w3 form a Z-basis.

Finally, to obtain the right signs of w1, w2, w3, we explore all possible cases

of rearranging the roots of E0. For each ordering (e′(0)
1 , e′(0)

2 , e′(0)
3), we compute

(a′0, b
′
0, c

′
0) which satisfies all conditions in (4.15) as before (using Proposition 4.5.2

to rearrange the roots if necessary), and rewrite it in terms of a0, b0, c0. Next, note

that there are eight possible triples (±w1,±w2,±w3). By applying (a′0, b
′
0, c

′
0) to

Theorem 4.5.3 and rewriting w′
1, w

′
2, w

′
3 in terms of w1, w2, w3, we “map” each triple

(±w1,±w2,±w3) (which can be regarded as a linear equation) to another triple. By

above argument, the right signs of w1, w2, w3 are therefore the ones which remain

fixed for any ordering of the roots of E0. By exhaustive trials and errors, we will

eventually see that

w1 − w2 − w3 = 0.

From this, we can state a more general result in view of complex AGM.

Proposition 4.5.4. Let a, b, c ∈ C \ {0} satisfying c2 = a2 − b2 and the following:

|a− b| ≤ |a + b|, |a− c| ≤ |a + c|, |c− ib| ≤ |c + ib|.

Then

1

M(a, b)
− 1

M(c, ib)
+

1

M(ia, ic)
= 0.

A more symmetric version of this identity may be obtained by replacing a by

4.6. Complex Elliptic Logarithms 75

ai and imposing the relation a2 + b2 + c2 = 0. We have not done so above, since it

seemed more natural to state the theorem above as giving the set of all values of

M(a, b) rather than the set of all values of M(ia, b).

4.6 Complex Elliptic Logarithms

In this section, we will finally generalise our method for computing period lattices

of elliptic curves over C to compute elliptic logarithms of complex points.

As before, we let E0 be an elliptic curve over C given by a Weierstrass equation

(4.6). Recall that an elliptic logarithm of P ∈ E0(C) is a value zP ∈ C such that

P = (℘Λ0(zP), ℘′Λ0
(zP)). Note that zP is unique modulo Λ0, where Λ0 is the lattice

of periods of the differential dX0/Y0, so that E0(C) ∼= C/Λ0. We will show that zP

can be determined by a similar method to that shown in Section 4.5.

Let `P be the straight line from 0 to zP (which is to be found) on the complex

plane. Then

zP =

∫

`P

dz =

∫

C(0)
P

dX0

Y0

,

where C(0)
P is the path on the elliptic curve E0 defined by

C(0)
P = {(℘Λ0(tzP), ℘′Λ0

(tzP)
)

: 0 ≤ t ≤ 1}.

Given E0, we construct a chain of 2-isogenies (En)∞n=0 using the method described

in Section 4.4, with a good AGM sequence (and preferably, a strongly optimal one,

as we will see later). Consider the diagram shown in Figure 4.1. For all n ≥ 1, it

follows that

ϕn ◦ C(n)
P = C(n−1)

P ,

where C(n)
P is the path on the elliptic curve En defined by

C(n)
P = {(℘Λn(tzP), ℘′Λn

(tzP)
)

: 0 ≤ t ≤ 1}.

76 Chapter 4. Period Lattices and Complex Elliptic Logarithms

Together with (4.12), we again have

∫

C(n)
P

dXn

Yn

=

∫

C(n−1)
P

dXn−1

Yn−1

,

and so

zP =

∫

C(0)
P

dX0

Y0

=

∫

C(1)
P

dX1

Y1

= · · · =
∫

C(n)
P

dXn

Yn

= · · ·

Recall the definition of ϕn : En → En−1 from (4.8). In Section 4.5.1, we have

seen that (4.8) can be rewritten as (4.13), i.e.,

Xn =
(Xn−1 + e

(n)
3) + sn

2
, Yn =

Yn−1

1− (e
(n)
3 − e

(n)
1)(e

(n)
3 − e

(n)
2)

(Xn − e
(n)
3)2

,

where

sn =

√
(Xn−1 − e

(n)
3)2 − 4(e

(n)
3 − e

(n)
1)(e

(n)
3 − e

(n)
2).

Since the starting point of C(n)
P is O for all n ≥ 0, we must again choose the sign of

sn (for n ≥ 1) so that (4.14) holds, i.e.,

|(Xn−1 − e
(n+1)
3)− sn| ≤ |(Xn−1 − e

(n+1)
3) + sn|,

and by continuity, this will be also satisfied along the path C(n)
P .

Note that if P is the 2-torsion point (e
(0)
1 , 0) ∈ E0(C), then the above process is

simply what we have seen in Section 4.5.1. In particular, if we construct our isogeny

chain using a strongly optimal AGM sequence, then by Theorem 4.5.1, we will have

2zP as a minimal coset representative modulo 2Λ0, where two of which also form

a Z-basis for Λ0. Hence from now on, we will always construct our isogeny chain

using a strongly minimal AGM sequence.

For P = (x0, y0) ∈ E0(C), we can therefore construct the subsequent points

(xn, yn) ∈ En for all n ≥ 1 using (4.13) and (4.14). This then gives us a limiting point

(x∞, y∞) on the limiting curve E∞ (see (4.11) for the equation of E∞). As discussed

4.6. Complex Elliptic Logarithms 77

earlier, in this case we compute MS(a0, b0) with a strongly minimal sequence. It

then follows that

zP =

∫

C(0)
P

dX0

Y0

= · · · =
∫

C(∞)
P

dX∞
Y∞

,

where C(∞)
P is the path on E∞ given by

C(∞)
P =

{(
lim

n→∞
℘Λn(tzP), lim

n→∞
℘′Λn

(tzP)
)

: 0 ≤ t ≤ 1
}

(for the formulas of limn→∞ ℘Λn(z) and limn→∞ ℘′Λn
(z), see Proposition 4.6.1), start-

ing from O to (x∞, y∞). Note that if we choose e
(0)
1 differently, then this will result

in a different sequence ((xn, yn))∞n=0, and hence a different limiting point (x∞, y∞).

The next proposition confirms that (x∞, y∞) does exist.

Proposition 4.6.1. Suppose {w1, w2} is a Z-basis for Λ0 with =(w2/w1) > 0. Let

Λn = 〈w1, 2
nw2〉 and let u = exp(2πiz/w1). Define

X∞(z) =

(
2πi

w1

)2 (
u

(1− u)2
+

1

12

)

Y∞(z) =

(
2πi

w1

)3
u(1 + u)

(1− u)3
.

Then as n → ∞, ℘Λn(z) converges uniformly to X∞(z), and ℘′Λn
(z) converges

uniformly to Y∞(z). In consequence, (x∞, y∞) exists and is not equal to O.

Proof. We will first prove the uniform convergence for ℘Λn(z); such convergence for

℘′Λn
(z) can be proved in a similar way.

Let Xn(z) = ℘Λn(z), and let

τn =
2nw2

w1

, u = exp

(
2πiz

w1

)
, qn = exp(2πiτn).

78 Chapter 4. Period Lattices and Complex Elliptic Logarithms

Then by Proposition 1.3.1, we have

Xn(z) =

(
2πi

w1

)2
(

u

(1− u)2
+

1

12
+

∞∑
j=1

[
qj
nu

(1− qj
nu)2

+
qj
nu−1

(1− qj
nu−1)2

− 2qj
n

(1− qj
n)2

])
.

Since =(w2/w1) > 0, we have |q0| < 1, and so |qn| = |q0|2n
< 1. By writing

z = αw1 + βw2 with 0 ≤ α, β < 1, we also have |u| = exp(−2πβ=(τ0)) = |q0|β < 1.

Hence for all n > m, we have

|w1|2|Xn(z)−X∞(z)|
4π2

=

∣∣∣∣∣
∞∑

j=1

(
qj
nu

(1− qj
nu)2

+
qj
nu

−1

(1− qj
nu−1)2

− 2qj
n

(1− qj
n)2

)∣∣∣∣∣

≤
∞∑

j=1

[|qj
nu|

(1− |qj
nu|)2

+
|qj

nu−1|
(1− |qj

nu−1|)2
+

2|qj
n|

(1− |qj
n|)2

]

≤
∞∑

j=1

[|qj
mu|

(1− |qj
mu|)2

+
|qj

mu−1|
(1− |qj

mu−1|)2
+

2|qj
m|

(1− |qj
m|)2

]
.

It can be seen that

∞∑
j=1

|qj
mu|

(1− |qj
mu|)2

≤ 1

(1− |qmu|)2

∞∑
j=1

|qm|j ≤ |qm|
(1− |qm|)3

=
|q0|2m

(1− |q0|2m)3
.

Similarly,
∞∑

j=1

2|qj
m|

(1− |qj
m|)2

≤ 2|qm|
(1− |qm|)3

=
2|q0|2m

(1− |q0|2m)3
,

and

∞∑
j=1

|qj
mu−1|

(1− |qj
mu−1|)2

≤
∞∑

j=1

|q0|j·2m−1

(1− |q0|j·2m−1)2
≤ |q0|2m

|q0|(1− |q0|2m−1)2(1− |q0|2m)
.

Putting everything together, we finally have

|Xn(z)−X∞(z)| ≤ 4π2

|w1|2
(

3|q0|2m

(1− |q0|2m)3
+

|q0|2m

|q0|(1− |q0|2m−1)2(1− |q0|2m)

)

4.6. Complex Elliptic Logarithms 79

for all n > m. Observe that the right-hand side is strictly decreasing as m increases.

Hence for any given ε > 0, we can always find m = m(ε) (not depending on z) such

that |Xn(z)−X∞(z)| < ε for all n > m. Thus Xn(z) converges uniformly to X∞(z),

which proves the first part.

To prove the second part, we first note that our isogeny chain (En)∞n=0, where

each elliptic curve En is of the form

En : Y 2
n = 4(Xn − e

(n)
1)(Xn − e

(n)
2)(Xn − e

(n)
3),

is now constructed by a strongly minimal AGM sequence. This in turn yields a

corresponding chain of lattices (Λn)∞n=0. Let w1 ∈ C be the one obtained by Theorem

4.5.1. Then we have already seen in Section 4.5.1 that w1 is a minimal coset

representative modulo 2Λ0, and the lattice chain is indeed optimal with limiting

period w1. Hence there exists w2 ∈ Λ0 such that Λn = 〈w1, 2
nw2〉 for all n ≥ 0.

Without loss of generality, we can also assume that =(w2/w1) > 0.

By definition of elliptic logarithm, we have

Xn = ℘Λn(z), Yn = ℘′Λn
(z),

so we can regard Xn, Yn as functions of z. The first part then implies that Xn(z)

converges uniformly to X∞(z), and Yn(z) converges uniformly to Y∞(z), for any z.

By letting z = zP , we finally have x∞ = X∞(zP) and y∞ = Y∞(zP). In addition, if

zP is not a lattice point in Λ0, then u(zP) 6= 1, and so (x∞, y∞) 6= O.

Although one can compute the limiting point (x∞, y∞) as above, we find that it

is more convenient to obtain (x∞, y∞) by making some change of variables. Below

we will present one possible way to do this; an alternative version can be seen in

[CT, Section 8.3].

80 Chapter 4. Period Lattices and Complex Elliptic Logarithms

Given an elliptic curve E0 of the form (4.6) as before, let

a0 =

√
e
(0)
1 − e

(0)
3 , b0 =

√
e
(0)
1 − e

(0)
2 .

Recall that we wish to construct an isogeny chain (En)∞n=0 using a strongly mini-

mal AGM sequence. Hence we compute the AGM sequence ((an, bn))∞n=0 using the

method in Section 4.2, in such a way that |an − bn| ≤ |an + bn| for all n ≥ 0. For

P = (x0, y0) ∈ E0(C) \ {O}, we define

u0 =

√
x0 − e

(0)
3 , v0 =

√
x0 − e

(0)
2 .

The sign of u0 can be chosen arbitrarily. To choose the sign of v0, we first recall

that for all n ≥ 1 we map (xn−1, yn−1) ∈ En−1 7→ (xn, yn) ∈ En via (4.13) in such

a way that sn satisfies the criterion (4.14). It can be verified that such criterion is

equivalent to

|un−1 − vn−1| ≤ |un−1 + vn−1| (4.16)

(the situation when this becomes an equality will be explained later). Hence we

choose the sign of v0 so that |u0 − v0| ≤ |u0 + v0|. Next, we define

t0 =

√
x0 − e

(0)
1 if x0 = e

(0)
j for some j = 1, 2, 3,

y0

2u0v0

otherwise.

Note that if P is a 2-torsion point in E0(C), then t0 is determined up to sign. This

will have no effect on our result, since we will obtain half a primitive period of Λ0

in this case. For a non-2-torsion point P , one can easily observe that if we had

chosen the other sign for u0, then v0 would also have been negated, but t0 remains

unchanged. In fact, t0 is where we embed the information on the sign of zP .

4.6. Complex Elliptic Logarithms 81

For n ≥ 1, we define un, vn, tn in a similar way, i.e.,

un =

√
xn − e

(n)
3 , vn =

√
xn − e

(n)
2 , tn =

√
xn − e

(n)
1 =

yn

2unvn

.

We will show that these quantities can be determined by un−1, vn−1, tn−1 obtained

earlier. In (4.13), one can rewrite xn in terms of un to obtain (after some algebra)

un =
un−1 + vn−1

2
.

Note that the sign of un is determined unambiguously. For vn, it is also easy to

check that

vn =

√
xn − e

(n)
2 =

√
u2

n − c2
n,

where c2
n = a2

n− b2
n. Again, we choose the sign of vn so that (4.16) holds. Similarly,

one can show using (4.8) that

tn =
untn−1

vn

.

Recall that if we had chosen the other sign for u0, then by (4.16), v0 would be also

negated, while t0 remains unchanged. From these new formulas, it then follows that

this will also negate both un, vn, while again tn will remain unchanged.

By definition, we have u2
n = xn − e

(n)
3 , v2

n = xn − e
(n)
2 , and t2n = xn − e

(n)
1 . Since

x∞ = limn→∞ xn exists by Proposition 4.6.1, and limn→∞ e
(n)
j exists for all j = 1, 2, 3

(see (4.10)), then each un, vn, tn has a limit as n →∞. Let

U = lim
n→∞

un = lim
n→∞

vn, T = lim
n→∞

tn,

M = M(a0, b0) (where |a0 − b0| ≤ |a0 + b0|).

82 Chapter 4. Period Lattices and Complex Elliptic Logarithms

We finally have

x∞ = (lim
n→∞

un)2 + lim
n→∞

e
(n)
3 = U2 − M2

3

y∞ = 2(lim
n→∞

tn)(lim
n→∞

un)(lim
n→∞

vn) = 2TU2.

(4.17)

It is easy to see that if P = (e
(0)
1 , 0), then tn = 0 for all n ≥ 0, so T = 0.

Consider the limiting curve E∞. Similar to [BM88], we again define t, θ by

X∞ = t2 +
2M2

3
, Y∞ = 2t(t2 + M2), tan θ =

t

M
.

As before, this gives us

dX∞
Y∞

=
dθ

M

and

t =
Y∞

2
(
X∞ + M2

3

) .

Hence we have

P = O ⇐⇒ t = ∞ ⇐⇒ cos θ = 0 ⇐⇒ θ =
(2k + 1)π

2
for some k ∈ Z.

Let tan θ∗ = T/M . Then we have

zP =

∫

C(∞)
P

dX∞
Y∞

=
1

M

∫ θ∗

(2k+1)π
2

dθ =
θ∗ − (2k+1)π

2

M
.

If we choose k differently, then zP will be changed by adding a multiple of w1 = π/M ,

which is a primitive period of Λ0 by Theorem 4.5.1. Thus zP we just obtained is

unique modulo Λ0. By letting k = 0 and using the fact that tan(θ − π/2) =

−1/ tan(θ), we finally have

zP =
θ∗ − π

2

M
=
−1

M
arctan

(
M

T

)
. (4.18)

4.6. Complex Elliptic Logarithms 83

If T = 0 (i.e., x0 = e
(0)
1), then one can use the fact that arctan(x) → π/2 as x →∞

to obtain zP = −π/(2M), which (up to sign) is half of the primitive period w1

obtain by Theorem 4.5.1.

To summarise, we have the following algorithm.

Algorithm 4.6.2 (Elliptic Logarithms of Complex Points). Given an elliptic curve

E0 defined over C and a point P ∈ E0(C), return an elliptic logarithm of P .

Input: An elliptic curve E0 of the form (4.6), and P = (x0, y0) ∈ E0(C).

1. If P = O, return zP = 0.

2. Let a0 =

√
e
(0)
1 − e

(0)
3 and b0 =

√
e
(0)
1 − e

(0)
2 . Choose the sign of b0 so that

|a0 − b0| ≤ |a0 + b0|.

3. Let u0 =

√
x0 − e

(0)
3 and v0 =

√
x0 − e

(0)
2 . Choose the sign of v0 so that

|u0 − v0| ≤ |u0 + v0|.

4. Let

t0 =

√
x0 − e

(0)
1 if x0 = e

(0)
j for some j = 1, 2, 3,

y0

2u0v0

otherwise.

If t0 = 0, return zP = π/(2M(a0, b0)).

5. Set n = 1. Repeat the following:

(a) Let

an =
an−1 + bn−1

2
, bn =

√
an−1bn−1, c2

n = a2
n − b2

n.

Choose the sign of bn so that |an − bn| ≤ |an + bn|.

(b) Let un = (un−1 + vn−1)/2 and vn =
√

u2
n − c2

n. Choose the sign of vn so

that |un − vn| ≤ |un + vn|.

(c) Let tn = untn−1/vn.

(d) n ← n + 1.

84 Chapter 4. Period Lattices and Complex Elliptic Logarithms

until |an−bn| and |un−vn| are sufficiently small. Let M and T be the limiting

values of an and tn respectively.

Output:

zP =
−1

M
arctan

(
M

T

)
.

Remark. If the criterion (4.16) becomes an equality, then we have <(un−1/vn−1) = 0,

or equivalently, xn−1 lies on the straight line joining e
(n−1)
2 and e

(n−1)
3 . To avoid the

ambiguity of the sign of vn−1, one can recover all e
(n−1)
j , xn−1, and rearrange the

roots of En−1 so that the new u′n−1, v
′
n−1 satisfy a strict inequality. Nevertheless,

we will see in Example 4.7.5 that both ±vn−1 are equally good for computing zP .

Moreover, the requirement for sufficiently small |un − vn| as another stopping

criterion in Algorithm 4.6.2 may be omitted in practice, since our experience shows

that both AGM sequences ((an, bn))∞n=0 and ((un, vn))∞n=0 seem to converge roughly

at the same rate.

Finally, note that our formulas shown in Algorithm 4.6.2 are somewhat similar

to the ones in Cohen’s algorithm [Coh93, Algorithm 7.4.8] for computing elliptic

logarithms of real points (where our un is called cn in his algorithm). Using the fact

that U2 = T 2 + M2, we can rewrite zP as

zP =
−1

M
arcsin

(
M

U

)
,

which is similar (up to sign) to the output of Cohen’s algorithm. By writing zP

this way, however, we have an ambiguity of the sign of zP , since this information is

embedded in T . Our formulas remove this ambiguity.

4.7 Examples

Finally, we will illustrate our method for computing period lattices of elliptic curves

over C and elliptic logarithms of complex points via some examples.

4.7. Examples 85

For computational purposes, we have implemented our algorithms in MAGMA

(see Appendix A.1 for the code), including our own function for computing an opti-

mal AGM sequence (since the existing function in MAGMA does not always return

an optimal one). Note that all complex numbers in our examples are computed

correctly up to 100 decimal places, but only the first 20 decimal places are shown.

Example 4.7.1. Let E be the elliptic curve over C given by the Weierstrass equa-

tion Y 2 = 4(X − e1)(X − e2)(X − e3), where

e1 = 3− 2i, e2 = 1 + i, e3 = −4 + i.

Observe that
∑3

j=1 ej = 0. We will compute the period lattice of E using the

method described in Section 4.5.4. To do this, first we let E0 = E and calculate

a0 =
√

e1 − e3, b0 =
√

e1 − e2, c0 =
√

a2
0 − b2

0,

in such a way that the signs of a0, b0, c0 satisfy all conditions in (4.15), i.e.,

|a0 − b0| ≤ |a0 + b0|, |a0 − c0| ≤ |a0 + c0|, |c0 − ib0| ≤ |c0 + ib0|.

In this example, one can verify that such a0, b0, c0 are

a0 = 2.70331029534753078867 . . .− i0.55487525889334275023 . . .

b0 = 1.67414922803554004044 . . .− i0.89597747612983812471 . . .

c0 = 2.23606797749978969640

In fact, all conditions in (4.15) are strictly inequalities in this case, so the period

86 Chapter 4. Period Lattices and Complex Elliptic Logarithms

lattice of E is non-rectangular. By Theorem 4.5.3, we have

w1 = 1.29215151748713051904 . . . + i0.44759218107818896608 . . .

w2 = 1.42661373451784507587 . . .− i0.80963848056301882107 . . .

w3 = −0.13446221703071455682 . . . + i1.25723066164120778715 . . .

and any two of wj form a Z-basis for the period lattice Λ of E. In our computa-

tion, we also have |w1 − w2 − w3| ≈ 10−100, which agrees with the result given by

Proposition 4.5.4. Note that these wj are minimal coset representatives of 2Λ in Λ.

Next, we wish to compute an elliptic logarithm of the point P = (2− i, 8+4i) ∈
E(C) (which has infinite order), i.e., a value zP such that P = (℘Λ(zP), ℘′Λ(zP)).

Using a0, b0 as above, Algorithm 4.6.2 shows that

x∞ = 1.67097624471645689380 . . .− i1.23329436157704253331 . . .

y∞ = 7.78679958972849436041 . . . + i4.93520281519385276354 . . .

and then

zP = −0.72212997914002299126 . . . + i0.01717122412650902249

Let uP = exp(2πizP /w1). One can verify that

∣∣∣∣∣x∞ −
(

2πi

w1

)2 (
uP

(1− uP)2
+

1

12

)∣∣∣∣∣ ≈ 10−100

∣∣∣∣∣y∞ −
(

2πi

w1

)3
u(1 + u)

(1− u)3

∣∣∣∣∣ ≈ 10−100.

which agrees with our result in Proposition 4.6.1.

Note that zP is unique modulo Λ. Depending on a Z-basis {w1, w2} for Λ, it

can be seen that zP we just obtained may not necessarily lie in the fundamental

4.7. Examples 87

parallelogram

Fw1,w2 = {λ1w1 + λ2w2 : 0 ≤ λ1, λ2 < 1}.

In this example, one can check that

zP = (−0.33249952362000772434 . . .)w1 − (0.20502411273191295799 . . .)w2

≡ (0.66750047637999227565 . . .)w1 + (0.79497588726808704200 . . .)w2,

and so zP is not in the fundamental parallelogram spanned by {w1, w2}. Finally,

we verify that

|℘Λ(zP)− x(P)| ≈ 10−99, |℘′Λ(zP)− y(P)| ≈ 10−100.

Moreover, we have

∣∣∣℘Λ

(w1

2

)
− e1

∣∣∣ ≈ 10−99,
∣∣∣℘Λ

(w2

2

)
− e2

∣∣∣ ≈ 10−100,
∣∣∣℘Λ

(w3

2

)
− e3

∣∣∣ ≈ 10−100,

and ℘′Λ(wj/2) ≈ 0 for all j = 1, 2, 3.

Finally, one can verify the above results by the following MAGMA instructions

together with our code given in Appendix A.1 (elog.m) and Appendix A.6.3 (wp.m):

> Attach("elog.m"); // main program for computing AGM and periods

> Attach("wp.m"); // for computing Weierstrass \wp-function and its derivative

> C<i> := ComplexField(100);

> e1 := 3 - 2*i;

> e2 := 1 + i;

> e3 := -e1-e2;

> // SetVerbose("Elog", 1); // enable this line to see more details

> // Find the periods of E

> w1, w2, w3 := Explode(PeriodLattice([e1,e2] : Prec := 95));

> // Verify the linear relation given by Proposition 4.5.4

> // x-coordinates

> Abs(w1-w2-w3);

1.17816443575150054062725524993448403636587562123424388601691323101044034030022\

6132528675450933671261E-100

> // Verify if w1, w2, w3 are correct

> Abs(WeierstrassP([w2, w1], w1/2, 50) - e1);

2.20747531330043896996542943812725847188126730617040279215444803133824417103286\

6144311648981370662044E-99

> Abs(WeierstrassP([w2, w1], w2/2, 50) - e2);

5.39146074176779045544868662827922952875374920561946845403545921692677749128000\

5892434123803155519330E-100

> Abs(WeierstrassP([w2, w1], w3/2, 50) - e3);

7.31869026819967803811375482953644914168443489670665762614998969952898413491169\

4598918797783156020261E-100

88 Chapter 4. Period Lattices and Complex Elliptic Logarithms

> // y-coordinates: these should be approximately zero

> Abs(WeierstrassPDash([w2, w1], w1/2, 50));

2.82876767754734938062989398764171049509529029868803288456734927230913261092665\

4283463886683263971737E-100

> Abs(WeierstrassPDash([w2, w1], w2/2, 50));

4.38561633458687845525097123923260356126641282115988382100951102970680973369649\

1851983769446498162005E-99

> Abs(WeierstrassPDash([w2, w1], w3/2, 50));

5.99971141235607783993827798548907710252418335884779083090787357542560402559964\

8051923838692563910701E-99

> // Compute elliptic logarithm

> P := [2-i, 8+4*i];

> z := EllipticLog([e1,e2], P : Prec := 95);

> // Verify if z is correct

> Abs(WeierstrassP([w2, w1], z, 50) - P[1]); // x-coordinate of P

1.09183717246442593788494967963740510277283315168344063938693650250580317981161\

3117768124118045632460E-99

> Abs(WeierstrassPDash([w2, w1], z, 50) - P[2]); // y-coordinate of P

5.07568772514116893992973135901504904741011653109894737126771076469299791093717\

3608880287799817547263E-99

Example 4.7.2 (Rectangular Lattice). Let E be the elliptic curve over C given by

the Weierstrass equation Y 2 = 4(X − e1)(X − e2)(X − e3), where

e1 = 1 + 3i, e2 = −4− 12i, e3 = 3 + 9i.

Observe that
∑3

j=1 ej = 0 and all ej are collinear. By letting E0 = E and computing

a0, b0, c0 as before, we have

a0 = 1.47046851723128684330 . . .− i2.04016608641756892919 . . .

b0 = −3.22578581905571472955 . . .− i2.32501487101070997214 . . .

c0 = 2.75099469475848456460 . . .− i3.81680125374499001591

This time, however, we have |a0 − b0| = |a0 + b0|, while the other two conditions in

(4.15) are strictly inequalities. Let Λ be the period lattice of E. Then we have two

minimal elements (up to sign) in one coset of 2Λ in Λ, so Λ is rectangular.

To obtain an orthogonal Z-basis for Λ, first we let w,w′ = π/M(a0,±b0). In

this example, we have

w = −0.29920293143872535713 . . . + i1.10940038117892953702 . . .

w′ = 1.14708588706988127437 . . . + i0.06697438037476960963

4.7. Examples 89

One can check that |w| = |w′|. Let w1, w2 = (w ± w′)/2. Then w1, w2 form an

orthogonal Z-basis for Λ, as proved in Lemma 4.3.5. Here, we have

w1 = 0.42394147781557795862 . . . + i0.58818738077684957333 . . .

w2 = −0.72314440925430331575 . . . + i0.52121300040207996369

Note that <(w2/w1) = 0.

Let zP be an elliptic logarithm of the point P = (3+2i, 28−14i) ∈ E(C) (which

has infinite order). Algorithm 4.6.2 shows that

zP = −0.42599662534207481578 . . .− i0.02491254923738153924 . . .

≡ (0.62858224538977667533 . . .)w1 + (0.37134662195976180031 . . .)w2.

Finally, we verify that

|℘Λ(zP)− x(P)| ≈ 10−98, |℘′Λ(zP)− y(P)| ≈ 10−97,

and moreover,

|℘Λ (w1/2)− e2| ≈ 10−99, |℘Λ (w2/2)− e3| ≈ 0, |℘Λ (w/2)− e1| ≈ 10−99,

|℘′Λ(w1/2)| ≈ 10−99, |℘′Λ(w2/2)| ≈ 10−99, |℘′Λ(w/2)| ≈ 10−100.

The following MAGMA instructions show how to obtain an orthogonal Z-basis

for Λ, again using the files elog.m and wp.m. An elliptic logarithm of P can be

verified in a similar way as shown in Example 4.7.1.

> Attach("elog.m"); // main program for computing AGM and periods

> Attach("wp.m"); // for computing Weierstrass \wp-function and its derivative

> C<i> := ComplexField(100);

> // SetVerbose("Elog", 1); // enable this line to see more details

> e1 := 1+3*i;

> e2 := -4-12*i;

> e3 := -e1-e2;

> a := Sqrt(e1-e3);

> a;

1.47046851723128684330254176415932882757934632925063202585257054049178684226400\

90 Chapter 4. Period Lattices and Complex Elliptic Logarithms

1831020031879802582806 - 2.0401660864175689291956325887585436785734507064582131\

37290943291102853999582318510016726755448634758*i

> b;

-3.2257858190557147295516289406182650806557448471050546074243274562891072631871\

62001538411197428191589 - 2.325014871010709972142178001058151104070502895062003\

693010129666408387578241476849515074193271660734*i

> Abs(Abs(a-b)- Abs(a+b)); // verify that |a - b| = |a + b|

4.57194956512909992886313419322136383780763997929119464486050337291053054362695\

2782701792087440688119E-100

> pi := Pi(C);

> w := pi/AGM(a, b : Prec := 95);

> ww := pi/AGM(a, -b : Prec := 95);

> w1 := (w + ww)/2;

> w2 := (w - ww)/2;

> w1;

0.42394147781557795862104108451583325218540296467808645416241553331745683008606\

62127128283559353975721 + 0.588187380776849573332658158493542874116418229902161\

0326163517745228902456925146045970240201987725525*i

> w2;

-0.7231444092543033157523323868910488724744712281993332254624654321404914554803\

399613137210706926560197 + 0.52121300040207996369472283211439558155896679705797\

72970116852535996111823376486101852769042774175303*i

> // Verify if {w1, w2} is an orthogonal basis

> Re(w2/w1);

-7.6352603423015381956954855779163449469554786250994576835812198451328553107125\

07033265598593411221379E-101

> // Verify if w1, w2, w are correct

> // x-coordinates

> Abs(WeierstrassP([w1, w2], w1/2, 50) - e2);

1.64843985859082574350158649425508147196704280044505469963422818407231391472547\

4218257253154816311912E-99

> Abs(WeierstrassP([w1, w2], w2/2, 50) - e3);

0.000\

00000000000000000000000

> Abs(WeierstrassP([w1, w2], w/2, 50) - e1);

1.68081338403849523085419022263205037921338943239522224235841907631395165557588\

7712068183785261110306E-99

> // y-coordinates

> Abs(WeierstrassPDash([w1, w2], w1/2, 50));

6.69272401551455381640554427977041501148285482666808576557724361561660086006328\

1676381838174025125113E-99

> Abs(WeierstrassPDash([w1, w2], w2/2, 50));

1.37087320923631349850694112417327140914523618578899209687300276078802639116200\

9130596388077486470522E-99

> Abs(WeierstrassPDash([w1, w2], w/2, 50));

3.12259514171601361038429329884569956358081514140971787795567528907927420775011\

1710974566400775635803E-99

Example 4.7.3. Let K = Q(θ) where θ is a root of the polynomial x3 − 2. Let E

be the elliptic curve defined over K given by the Weierstrass equation

E : Y 2 = 4(X − θ)(X − 1)(X + 1 + θ).

Note that K has one real embedding and one conjugate pair of complex embeddings.

4.7. Examples 91

Let E1, E2 be the real and complex embedding of E respectively, i.e.,

E1 : Y 2 = 4(X − 3
√

2)(X − 1)(X + 1 +
3
√

2)

E2 : Y 2 = 4(X − ω
3
√

2)(X − 1)(X + 1 + ω
3
√

2)

where ω = exp(2πi/3) is a cube root of unity. Since E1 has three real roots, then

the period lattice of E1 is rectangular. In fact, by letting e
(0)
1 = 3

√
2, e

(0)
2 = 1, e

(0)
3 =

−1− 3
√

2, we can compute a0, b0, c0 satisfying all the conditions in (4.15) as follows:

a0 = 1.87612422291002530767 . . .

b0 = 0.50982452853395859808 . . .

c0 = 1.80552514518487755254

One can then verify that |c0 − ib0| = |c0 + ib0|. As before, we compute

w =
π

M(c0, ib0)
= 2.90130425944817643666 . . .− i1.70677932803214980295 . . .

w′ =
π

M(c0,−ib0)
= w̄,

and let w1, w2 = (w±w′)/2. Then w1, w2 form an orthogonal Z-basis for the period

lattice of E1. In this example, we have w1 = <(w) and w2 = i=(w).

Nevertheless, the period lattice of E2 is non-rectangular, since all roots of E2

are not collinear. In fact, by letting e
(0)
1 = −1 − ω 3

√
2, e

(0)
2 = 1, e

(0)
3 = ω 3

√
2 (note

that we use Proposition 4.5.2 here to ensure that a0, b0, c0 satisfy all the conditions

in (4.15)), we have

a0 = 1.10851094368231305521 . . .− i0.98431471713501219051 . . .

b0 = 0.43669517024285334726 . . .− i1.24929666083200513980 . . .

c0 = 1.34004098848655674756 . . .− i0.40712323180652750769

92 Chapter 4. Period Lattices and Complex Elliptic Logarithms

In fact, one can check that all the conditions in (4.15) are strictly inequalities, hence

this also confirms that the period lattice of E2 is non-rectangular. By Theorem 4.5.3,

we finally obtain

w1 = 1.28194824894788708942 . . . + i1.88277404359595361782 . . .

w2 = 2.36557653380849535471 . . .− i0.03808700290170419307 . . .

w3 = −1.08362828486060826529 . . . + i1.92086104649765781090 . . .

with |w1 − w2 − w3| ≈ 10−100, as claimed by Proposition 4.5.4.

Example 4.7.4. Let E be the elliptic curve over C given by the Weierstrass equa-

tion Y 2 = 4(X − e1)(X − e2)(X − e3), where

e1 = −1− 3i, e2 = 3 + i, e3 = −2 + 2i.

Observe that
∑3

j=1 ej = 0 and |e1− e3| = |e2− e3|. Thus e1, e2, e3 form an isosceles

triangle, as explained in Section 4.5.3. By letting E0 = E and computing a0, b0, c0

satisfying all the conditions in (4.15) as before, we have

a0 = 1.74628455779589152702 . . .− i1.43161089573822132705 . . .

b0 = 0.91017972112445468260 . . .− i2.19736822693561993207 . . .

c0 = 2.24711142509587014360 . . .− i0.22250788030178260411

Hence by Theorem 4.5.3, we obtain

w1 = 0.81646689790312614904 . . . + i1.10773333340066743861 . . .

w2 = 1.36061503191563570645 . . .− i0.20595647167234558716 . . .

w3 = −0.54414813401250955741 . . . + i1.31368980507301302578 . . .

with |w1−w2−w3| ≈ 10−100, as claimed by Proposition 4.5.4. In addition, one can

4.7. Examples 93

check that <(w1/w3) = 1/2 as claimed in Section 4.5.3. Let Λ be the period lattice

of E. We finally verify that |℘Λ(wj/2)− ej| ≈ 10−100 for all j = 1, 2, 3, and

|℘′Λ(w1/2)| ≈ 10−99, |℘′Λ(w2/2)| ≈ 10−100, |℘′Λ(w3/2)| ≈ 10−99.

Example 4.7.5. Let E be the elliptic curve over C given by the Weierstrass equa-

tion Y 2 = 4(X − e1)(X − e2)(X − e3), where

e1 = −2− 2i, e2 = −1 + 6i, e3 = 3− 4i.

By Theorem 4.5.3, the period lattice Λ of E has the following minimal coset repre-

sentatives; two of which form a Z-basis for Λ:

w1 = 1.04665075729832942736 . . . + i0.45525281255263173893 . . .

w2 = 0.67791651620742852409 . . .− i0.77797238161544820221 . . .

w3 = 0.36873424109090090326 . . . + i1.23322519416807994115 . . .

with |w1 − w2 − w3| ≈ 10−101, which again agrees with Proposition 4.5.4.

Now we wish to find an elliptic logarithm of the point

P = (1 + i,
√

12 + 492i) = (1 + i, 15.8768 . . . + i15.4942 . . .) ∈ E(C).

Letting E0 = E and computing u0, v0, we have

u2
0 = x(P)− e

(0)
3 = −2 + 5i, v2

0 = x(P)− e
(0)
2 = 2− 5i = −u2

0.

Thus |u0 − v0| = |u0 + v0|. If we choose

v0 =
√

2− 5i = 1.9216 . . .− i1.3009 . . . ,

94 Chapter 4. Period Lattices and Complex Elliptic Logarithms

then Algorithm 4.6.2 gives

z
(1)
P = −0.52013573443395982317 . . . + i0.13628275717388366013

However, if we choose −v0, then we obtain

z
(2)
P = 0.15778078177346870092 . . .− i0.64168962444156454207

But then z
(2)
P −z

(1)
P = w2. Hence both choices for v0 are equally good for computing

elliptic logarithms. Finally, we verify that

∣∣∣x(P)− ℘Λ0(z
(1)
P)

∣∣∣ ≈ 10−98,
∣∣∣y(P)− ℘′Λ0

(z
(1)
P)

∣∣∣ ≈ 10−98.

In conclusion, we have presented a complete method, based on complex AGM,

for computing period lattices of elliptic curves defined over C, and generalised it

into an algorithm for computing elliptic logarithms of complex points. As we can

see from the above illustrative examples, this work, which is done in collaboration

with Professor John E. Cremona, finally allows one to compute both quantities on

any elliptic curves over C, while such computations in the past were possible only

for elliptic curves over R. For more information on precise running time of complex

AGM, see Dupont’s thesis [Dup06] or his paper [Dup].

In the next chapter, we will bring all the main results we have obtained so

far to illustrate their applications in assisting some essential computations in the

arithmetic of elliptic curves over number fields.

Chapter 5

Applications

In this final chapter, we will illustrate the applications of all the main results we

have obtained so far towards some computations in the arithmetic of elliptic curves

over number fields, whose existing methods experienced some difficulties in the past

due to lack of certain information on elliptic curves.

In this chapter, we will start by showing how to compute a lower bound for the

canonical height (see Chapter 2 and 3) and use it to determine Mordell–Weil bases

for elliptic curves over number fields. Then we will move on to demonstrate an

algorithm of Smart and Stephens [SS97] for computing integral points on elliptic

curves over number fields, which involves determining complex elliptic logarithms

(see Chapter 4) of all generators of Mordell–Weil bases. Finally, we will conclude

this chapter by illustrating some examples of finding all elliptic curves with every-

where good reduction based on the method of Cremona and Lingham [CL07], which

requires integral points on elliptic curves of a certain type over number fields.

5.1 Height Bound III: Examples

In this section, we will show several illustrative examples on how to use Theorem

3.4.1 to determine a positive lower bound for the canonical height on elliptic curves

over number fields. Note that our computation, which also involves real and complex

95

96 Chapter 5. Applications

elliptic logarithms (see Chapter 4), will be more sophisticated if the base number

fields are not totally real. We have implemented our algorithm for computing the

following examples in MAGMA; its source code can be found in Appendix A.3. For

a brief demonstration of how to use our program, see Example 5.1.4.

5.1.1 Case I: Totally Real Number Fields

We will first concentrate on the case when our elliptic curves are defined over totally

real number fields. As we will see, this will require periods of elliptic curves over R

and elliptic logarithms of real points, which can be obtained by Algorithm 4.6.2 or

Cohen’s algorithms [Coh93, Algorithm 7.4.7 and 7.4.8]. For the relevant notations,

the reader should refer to Chapter 2.

Example 5.1.1. Let E = E1, where E1 is the elliptic curve defined over K = Q(
√

2)

given by the Weierstrass equation

E1 : y2 = x3 + x + (1 + 2
√

2).

The discriminant ∆ of E is −3952 − 1728
√

2. Moreover, we have 〈∆〉 = p8
1p

2
2p3,

where

p1 = 〈
√

2〉, p2 = 〈7, 3 +
√

2〉, p3 = 〈769, 636 +
√

2〉,

are prime ideals. Since ordpj
(∆) < 12 for all j, then E is given by a globally minimal

model, and so ME = 1.

As explained in Section 3.4, our algorithm, based on Theorem 3.4.1, will start by

checking whether a given µ > 0 is a lower bound for the canonical height on Egr(K)

by computing Bn(µ) for n = 1, . . . , nmax. If Bn(µ) < 1 for some n, then µ is indeed

a lower bound. Otherwise, we proceed to compute
⋂nmax

n=1 S(v)
n (−Bn(µ), Bn(µ)) for

every real archimedean place v ∈ M r
K (here, we do not have to compute any T (v)

n ,

since K is totally real). If the intersection is empty for some v, then µ is a lower

bound. Note that we obtain no conclusion if none of the intersections is empty.

5.1. Height Bound III: Examples 97

In this example, we define v+, v− to be the real archimedean place of K whose

associated real embedding sends
√

2 7→ ±1.414 . . . respectively. By letting µ = 1

and nmax = 5, we have

B1(µ) = 8.117389, B2(µ) = 8.186971× 102, B3(µ) = 7.213201× 107,

B4(µ) = 5.421641× 1012, B5(µ) = 5.685757× 1021.

Since none of these is less than 1, we have to compute
⋂nmax

n=1 S(v)
n (−Bn(µ), Bn(µ))

for every v ∈ M r
K . Recall from Section 2.5 that S(v)

n (ξ1, ξ2) is defined in terms of

ψv(ξ1), ψv(ξ2), where ψv : E
(v)
0 (R) → [1/2, 1) is the normalised elliptic logarithm of

the “higher” of the two points on E
(v)
0 with the same x-coordinate. For v = v+,

one can check that the corresponding real embedding E(v) has only one real root at

βv = −1.352786. Using Algorithm 4.6.2, we have (after normalisation)

ψv(B1(µ)) = 0.891227,

which yields1 S(v)
1 (−B1(µ), B1(µ)) = [0.108773, 0.891227].

Computing S(v)
n (−Bn(µ), Bn(µ)) for all n = 2, . . . , nmax in a similar way, we will

eventually see that
⋂nmax

n=1 S(v)
n (−Bn(µ), Bn(µ)) 6= ∅. A similar procedure also shows

that another intersection associated to v = v− is non-empty. Hence we fail to show

that µ = 1 is a lower bound on Egr(K), in which case we shall repeat the above

computation with a smaller µ (and/or a larger nmax). On the other hand, if µ is

known to be a lower bound, then we can repeat such process with a larger µ to see

if it is still a lower bound. This refinement can be done repeatedly as required.

After a number of refinements as shown in Table 5.1, our algorithm finally shows

that

ĥ(P) > µ = 0.2415

1Only ψv(B1(µ)) is required in this case, since −B1(µ) < βv < B1(µ).

98 Chapter 5. Applications

Table 5.1: Illustration of the algorithm for Example 5.1.1

Initial Initial Is any Is any intersection Is µ a Next Next
µ nmax Bn(µ) < 1? empty? lower bound? µ nmax

1.0000 5 No No Fail 0.5000 6
0.5000 6 No No Fail 0.2500 7
0.2500 7 No No Fail 0.1250 8
0.1250 8 Yes Skipped Yes 0.1875 8
0.1875 8 No Yes Yes 0.2187 8
0.2187 8 No Yes Yes 0.2343 8
0.2343 8 No Yes Yes 0.2421 8
0.2421 8 No No Fail 0.2382 9
0.2382 9 No Yes Yes 0.2402 9
0.2402 9 No Yes Yes 0.2412 9
0.2412 9 No Yes Yes 0.2416 9
0.2416 9 No No Fail 0.2414 10
0.2414 10 No Yes Yes 0.2415 10
0.2415 10 No No Fail 0.2415 11
0.2415 11 No Yes Yes

for all non-torsion points P ∈ Egr(K). Nevertheless, the lower bound for Egr(K)

derived from Theorem 2.4.2 is not as good as this one. In this example, we have

αv+ = 1.096562, αv− = 1.001830,

and so αv+αv− = 1.098569. We now choose a prime ideal p whose norm is greater

than
√

αv+αv−, and set n = ep. To minimise n, we choose p = 〈√2〉 to obtain

n = ep = 2. Then we have DE(2) = 1.386294, which finally yields the lower bound

µ0 =
DE(n)− log(αv+αv−)

[K : Q]n2
=

1.386294− log(1.098569)

8
= 0.1615.

In order to obtain a lower bound for the canonical height on E(K), we first

note that the Tamagawa indices cv at v = p1, p2, p3 are 4, 2, and 1 respectively.

Moreover, one can easily see that both real embeddings of E have only real root,

so cv+ = cv− = 1. Hence c = lcm{4, 2, 1} = 4. By Lemma 2.1.1, we finally have

ĥ(P) > µ/c2 = 0.2415/42 = 0.0150

for all non-torsion points P ∈ E(K).

5.1. Height Bound III: Examples 99

Table 5.2: Illustration of the algorithm for Example 5.1.2

Initial Initial Is any Is any intersection Is µ a Next Next
µ nmax Bn(µ) < 1? empty? lower bound? µ nmax

1.0000 5 No No Fail 0.5000 6
0.5000 6 No No Fail 0.2500 7
0.2500 7 No No Fail 0.1250 8
0.1250 8 No Yes Yes 0.1875 8
0.1875 8 No No Fail 0.1562 9
0.1562 9 No No Fail 0.1406 10
0.1406 10 No Yes Yes 0.1484 10
0.1484 10 No No Fail 0.1445 11
0.1445 11 No No Fail 0.1425 12
0.1425 12 No No Fail 0.1416 13
0.1416 13 No No Fail 0.1411 14
0.1411 14 No Yes Yes 0.1413 14
0.1413 14 No Yes Yes 0.1414 14
0.1414 14 No Yes Yes 0.1415 14
0.1415 14 No Yes Yes

Example 5.1.2. Let E = E2, where E2 is the elliptic curve defined over K = Q(
√

7)

given by the Weierstrass equation

E2 : y2 + (3 + 3
√

7)xy + y = x3 + (26 + 4
√

7)x2 + x.

The discriminant ∆ of E is −937513− 299394
√

7. Moreover, 〈∆〉 can be factorised

into a product of prime ideals as p1p2p3, where

p1 = 〈4219, 1083 +
√

7〉, p2 = 〈4657, 3544 +
√

7〉, p3 = 〈12799, 5358 +
√

7〉.

Again, since ordpj
(∆) < 12 for all j, E is already given by a globally minimal model,

and thus ME = 1. Our algorithm shows that

ĥ(P) > 0.1415

for all non-torsion points P ∈ Egr(K). This is obtained after a number of refine-

ments as shown in Table 5.2.

Finally, we note that the Tamagawa indices cv at v = p1, p2, p3 are all 1. In

addition, since both real embeddings of E have three real roots, we have cv = 2 for

100 Chapter 5. Applications

both v ∈ M r
K , and so c = 2. Hence by Lemma 2.1.1, we have

ĥ(P) > 0.1415/22 = 0.0353

for all non-torsion points P ∈ E(K).

Example 5.1.3. Let E = E3, where E3 is the elliptic curve defined over K =

Q(
√

10) given by a Weierstrass equation

E3 : y2 = x3 + 125.

Note that K has class number 2. Decomposing the discriminant ∆ of E into prime

ideals, it can be seen that 〈∆〉 = 〈−243356〉 = p12
1 p3

2p
3
3p

8
4, where

p1 = 〈5,
√

10〉, p2 = 〈3, 4 +
√

10〉, p3 = 〈3, 2 +
√

10〉, p4 = 〈2,
√

10〉.

Observe that the model of E is now minimal everywhere except at p1. With the

substitutions

x = (
√

10)2x′, y = (
√

10)3y′,

we have a new elliptic curve E ′ : y′2 = x′3 + 1/8. This time, however, the model

of E ′ is minimal everywhere except at all prime ideals dividing 2. Thus we let

E(p1) = E ′ and E(p) = E for any p 6= p1 in our computation. Our algorithm then

shows that

ĥ(P) > 0.2859

for all non-torsion points P ∈ Egr(K). This is based on a number of refinements as

shown in Table 5.3.

To derive a lower bound on E(K), we first note that the Tamagawa indices cv at

v = p1, p2, p3, p4 are 1, 2, 2, and 1 respectively. Moreover, we have cv = 1 for both

v ∈ M r
K , since both real embeddings of E have only one real root. Hence c = 2,

5.1. Height Bound III: Examples 101

Table 5.3: Illustration of the algorithm for Example 5.1.3

Initial Initial Is any Is any intersection Is µ a Next Next
µ nmax Bn(µ) < 1? empty? lower bound? µ nmax

1.0000 5 No No Fail 0.5000 6
0.5000 6 No No Fail 0.2500 7
0.2500 7 Yes Skipped Yes 0.3750 7
0.3750 7 No No Fail 0.3125 8
0.3125 8 No No Fail 0.2812 9
0.2812 9 Yes Skipped Yes 0.2968 9
0.2968 9 No No Fail 0.2890 10
0.2890 10 No No Fail 0.2851 11
0.2851 11 Yes Skipped Yes 0.2871 11
0.2871 11 No No Fail 0.2861 12
0.2861 12 No No Fail 0.2856 13
0.2856 13 Yes Skipped Yes 0.2858 13
0.2858 13 Yes Skipped Yes 0.2860 13
0.2860 13 No No Fail 0.2859 14
0.2859 14 Yes Skipped Yes

and thus by Lemma 2.1.1,

ĥ(P) > 0.2859/22 = 0.0714

for all non-torsion points P ∈ E(K).

5.1.2 Case II: Number Fields with Complex Embeddings

Next, we will consider the case when our elliptic curves are defined over non-totally

real number fields. The reader should refer to Chapter 3 for the relevant notations.

Let K be a non-totally real number field (i.e., one having non-real complex

embeddings), and let E be an elliptic curve defined over K. It can be seen from

Theorem 3.4.1 that, in order to determine a positive lower bound for the canonical

height on Egr(K), we may have to compute
⋂nmax

n=1 T (v)
n (

√
Bn(µ)) for every complex

archimedean place v ∈ M c
K , in addition to

⋂nmax

n=1 S(v)
n (−Bn(µ), Bn(µ)) for every v ∈

M r
K . To obtain T (v)

n (ξ), we first need to construct the approximate corresponding

region S(v)(ξ). Assume that for each v ∈ M c
K , the associated complex embedding

102 Chapter 5. Applications

E(v) of E is of the form

E(v) : Y 2 = 4X3 + AX + B

for some A, B ∈ C. Then it can be seen from Section 3.1.2 that the definition of

S(v)(ξ) requires the quantity

Uξ = |w1|2
(

ξ +
b2

12

)
,

where b2 is an invariant as defined in Chapter 1 for E(v), and w1 ∈ C is one of the

two vectors forming a Z-basis for the period lattice Λ of E(v), in such a way that

Λ = 〈w1, w2〉 and τ = w2/w1 satisfies (3.1), i.e.,

|τ | ≥ 1, |<(τ)| ≤ 1/2, =(τ) ≥
√

3/2.

One can then use Theorem 4.5.3 (together with some linear transformation if nec-

essary) to obtain Λ = 〈w1, w2〉 whose τ satisfies (3.1).

Furthermore, one can see from Section 3.2.3 that construction of S(v)(ξ) requires

a parallelogram C0 containing an elliptic logarithm of a point P ∈ E(v)(C) with

X(P) = 0. Although one can use Algorithm 4.6.2 to compute an elliptic logarithm

of P , it should be noted that this is rarely required in practice, since C0 is normally

obtained as one of the parallelograms C satisfying I(C) ∩ [0, Uξ] 6= ∅.
We will now illustrate our algorithm for elliptic curves defined over non-totally

real number fields with the following examples. For the rest of this chapter, we

shall let i =
√−1.

Example 5.1.4. Let E = E4, where E4 is the elliptic curve defined over K = Q(i)

given by the Weierstrass equation

E4 : y2 = x3 + (91− 26i)x− (144 + 323i).

5.1. Height Bound III: Examples 103

Table 5.4: Illustration of the algorithm for Example 5.1.4

µ nmax Is any Is any
⋂ T (v)

n Is µ a
Bn(µ) < 1? empty? lower bound?

0.20 4 No No Fail
0.10 4 No Yes Yes
0.15 4 No Yes Yes
0.18 4 No Yes Yes

The discriminant of E can be factorised into a product of prime ideals as p1p2p
8
3,

where

p1 = 〈799 + 1124i〉, p2 = 〈7− 12i〉, p3 = 〈1 + i〉.

Hence the model of E is globally minimal, and so ME = 1. Based on a number of

refinements as shown in Table 5.4, our algorithm shows that

ĥ(P) > 0.18

for all non-torsion P ∈ Egr(K). Note that in this example we only have to compute

T (v)
n (

√
Bn(µ)) but not S(v)

n (−Bn(µ), Bn(µ)), since K has no real embedding. In

addition, we choose S(v) = S(v,4) for v ∈ M c
K .

It can be checked that the Tamagawa indices cv of E at v = p1, p2, p3 are all

1. Moreover, we have cv = 1 where v is the only complex archimedean place of K.

Hence c = 1, and by Lemma 2.1.1,

ĥ(P) > 0.18

for all non-torsion P ∈ E(K). One can verify the above results using our MAGMA

code (note that we require elog.m and every file mentioned in Appendix A.3 on-

wards) together with the following instructions:

> // Note that all of these files are required

> Attach("elog.m");

> Attach("alphas.m");

> Attach("heightbound.m");

> Attach("intersect_real.m");

> Attach("intersect_complex.m");

> Attach("interval_arith.m");

> Attach("interval_wp.m");

104 Chapter 5. Applications

> Attach("wp.m");

> // SetVerbose("Bound", 1); // enable this line to see more details

> // Define elliptic curve E

> _<x> := PolynomialRing(Integers());

> K<i> := NumberField(x^2+1);

> E := EllipticCurve([91-26*i, -144-323*i]);

> // Check if 0.2 is a lower bound on E(K)

> // (to get a lower bound on E_{gr}(K), multiply by a square of lcm of

> // all Tamagawa indices)

> IsLowerBound(E, 0.2 : n_max := 4);

false

> // Fail to show that 0.2 is a lower bound, so try something smaller

> IsLowerBound(E, 0.1 : n_max := 4);

true

> // So 0.15 is a lower bound, try to check a bigger lower bound

> IsLowerBound(E, 0.15 : n_max := 4);

true

> IsLowerBound(E, 0.18 : n_max := 4);

true

On the other hand, the lower bound on Egr(K) (and also E(K) in this case)

obtained by Theorem 2.4.2 is not as good as this one. In this example, we have

αv = 4.715889.

Choose a prime ideal p with N (p) > αv, say, p = 〈5, 2 + i〉, and set n = ep = 5.

Then we have DE(5) = 3.218876, which yields the lower bound

µ0 =
3.218876− 2 log(4.715889)

2 · 52
= 2.34× 10−3.

Finally, one can verify that the lower bound obtained by Hindry and Silverman

[HS88, Theorem 0.3] is

ĥ(P) ≥ 3.0624× 10−25

for all non-torsion P ∈ E(K). We leave it to the reader to compare the results.

Example 5.1.5. The following elliptic curve is from Cremona’s paper [Cre94, Ex-

ample 2]. Let E = E5, where E5 is the elliptic curve defined over K = Q(i) given

by the Weierstrass equation

E5 : y2 + iy = x3 + (1− i)x2 − ix.

5.1. Height Bound III: Examples 105

One can easily observe that P0 = (0, 0) ∈ E(K). Let ∆ be the discriminant of

E. Then we have 〈∆〉 = p, where p = 〈13 + 8i〉 is prime. Moreover, we have the

Tamagawa index cp = 1, and also cv = 1 where v is the only complex archimedean

place of K. Hence c = 1. Using the fact that ĥ(P0) = 0.0230, we set our initial

guess µ to be smaller than 0.0230, say, µ = 0.01. Our algorithm shows that

B5(µ) = 0.7772 < 1.

Thus by Proposition 2.4.1, ĥ(P) > 0.01 for all non-torsion P ∈ Egr(K). Since

c = 1, we also have ĥ(P) > 0.01 for all non-torsion P ∈ E(K) by Lemma 2.1.1.

Example 5.1.6. Let K = Q(θ) where θ is a root of the polynomial x3 − 2. Let

E = E6, where E6 is the elliptic curve defined over K given by the Weierstrass

equation

E6 : y2 = x3 − (θ2 + 3θ)x + θ2.

Let ∆ be the discriminant of E. The prime ideal factorisation of 〈∆〉 is p16
1 p2, where

p1 = 〈2, θ〉, p2 = 〈390433, 218056 + θ〉.

It can be verified that the model of E is globally minimal, and so ME = 1. Our

algorithm shows that

ĥ(P) > 0.25

for all non-torsion P ∈ Egr(K), which is obtained after a number of refinements as

shown in Table 5.5. Recall that if
⋂S(v)

n = ∅ for some v ∈ M r
K , then µ is a lower

bound and so there is no need to compute
⋂ T (v)

n for any v ∈ M c
K .

Finally, we note that the Tamagawa indices cv at v = p1, p2 are 2 and 1 respec-

tively. Moreover, since E has only one real embedding, say, E(v1) with three real

roots, we have cv1 = 2. Denote the only complex archimedean place of K by v2.

106 Chapter 5. Applications

Table 5.5: Illustration of the algorithm for Example 5.1.6

µ nmax Is any Is any
⋂S(v)

n Is any
⋂ T (v)

n Is µ a
Bn(µ) < 1? empty? empty? lower bound?

0.50 3 No No No Fail
0.20 3 No Yes Skipped Yes
0.30 3 No No No Fail
0.25 3 No Yes Skipped Yes

Then again cv2 = 1, and so c = lcm{1, 2} = 2. Thus by Lemma 2.1.1, we have

ĥ(P) > 0.25/22 = 0.0625

for all non-torsion P ∈ E(K). Note that we have obtained no additional information

from the complex place in this specific example; however, there is no reason to

suppose that this would be the case in general.

In the next section, we will explain how to use a lower bound for the canonical

height to derive Mordell–Weil bases for elliptic curves defined over number fields.

This method will be illustrated when we revisit all the examples recently shown.

5.2 Mordell–Weil Bases

Computing Mordell–Weil bases for elliptic curves over number fields is one of the

most difficult computations in the arithmetic of elliptic curves, and so far there is

no known procedure which can determine such a basis in general. In this section, we

will illustrate an application of a lower bound for the canonical height in assisting

such computation. For more background on this section, see Section 1.2.2 or [Cre97,

Section 3.5].

Let E be an elliptic curve defined over a number field K. Recall from Sec-

tion 1.2.2 that, given some non-torsion points P1, . . . , Pr ∈ E(K) whose images in

E(K)/Etors(K) generate a subgroup of finite index of E(K)/Etors(K), it is pos-

sible to “saturate” these points (which are normally obtained by performing an

5.2. Mordell–Weil Bases 107

m-descent for some m ≥ 2) to obtain a full Mordell–Weil basis for E(K). The

saturation process consists of the following steps:

1. Determine an upper bound ` for the index n = [E(K)/Etors(K) : 〈P1, . . . , Pr〉]
using the geometry of numbers (Theorem 1.2.1), which then requires a positive

lower bound for the canonical height on E(K) obtained by Theorem 3.4.1.

2. For each prime p ≤ `, determine whether p | n, or equivalently, whether there

exists a1, . . . , ar ∈ Z, not all divisible by p, such that

r∑
j=1

ajPj = pQ (5.1)

for some Q ∈ E(K). Without loss of generality, we can assume that |aj| ≤ p/2.

3. If there exists a solution to (5.1), let ai be the minimal non-zero coefficient (in

absolute value). If ai = ±1, then we can simply replace Pi by Q; otherwise,

we find a coefficient aj not divisible by ai. Write aj = aiq+b with 0 < b < |ai|.
Observe that

aiPi + ajPj = ai(Pi + qPj) + bPj.

This then allows us to replace the generator Pi by Pi + qPj, replace aj by b,

and replace i by j. This time, the index of the sublattice generated by the

new P1, . . . , Pr in E(K) will be at most `|ai|/p.

4. Repeat the above steps until the index n is not divisible by any primes. The

final set {P1, . . . , Pr} will be a Mordell–Weil basis for E(K) modulo torsion.

Nevertheless, the upper bound ` obtained by Theorem 1.2.1 can be very large

even though the points P1, . . . , Pr may already form a Mordell–Weil basis, and so

there can be too many primes p to consider. Fortunately, it is possible to quickly

eliminate some of p from our consideration before we actually have to solve (5.1).

108 Chapter 5. Applications

5.2.1 Sieving Procedure

This procedure was initially explained in [Sik95, Section 4], and has been described

in full details later by Prickett in his thesis [Pri04]. For convenience, we shall give

a summary here.

For a given prime p ≤ `, let Pr+1, . . . , Pr+s be a basis for Etors(K)/pEtors(K).

Our aim now is to determine the set

Vp = {a ∈ Fr+s
p :

r+s∑
j=1

ajPj ∈ pE(K)}.

It can be seen easily that the index n is divisible by p if and only if Vp 6= {0}. We

choose a prime ideal p such that E is minimal at p, and satisfies the following:

1. E has good reduction at p;

2. #E(kp) is divisible by p, but not p2 (Here, kp is the residue class field).

Write #E(kp) = lp. Clearly, p - l due to the choice of p.

Let π be a uniformiser at p. Now for each Pj, we compute P ′
j ≡ lPj (mod π) for

all j = 1, . . . , r + s. If P ′
j ≡ O (mod π) for every j, then this yields no information,

and so we should start with a new prime p satisfying the above conditions. Oth-

erwise, there exists a point, say, P ′
1 6≡ O (mod π). The condition (2) then ensures

that lE(kp) is a cyclic group of order p. Thus for all j = 1, . . . , r + s, we have

P ′
j ≡ mjP

′
1 (mod π)

for some mj ∈ Z. It then follows that if a ∈ Vp, then a satisfies the relation

r+s∑
j=1

mjaj ≡ 0 (mod p).

By solving all of these r+s relations over Fp, we eventually reduce Vp into a smaller

set. In particular, if such r + s relations are independent, then Vp = {0}, and so

5.2. Mordell–Weil Bases 109

the index n is not divisible by p.

It should be noted, however, that this method may sometimes fail to prove that

a point is p-saturated even though it actually is. For more details on modification

of this method, see [Pri04].

5.2.2 Examples Revisited

We will now revisit all the elliptic curves shown in Section 5.1 and illustrate how

to obtain their Mordell–Weil bases using a lower bound for the canonical height

together with the sieving procedure.

Example 5.2.1. Let K = Q(
√

2) and let E = E1 as defined earlier. In Example

5.1.1, we have obtained from our algorithm that ĥ(P) > 0.0150 for all non-torsion

P ∈ E(K). In fact, one can check that the torsion subgroup of E(K) is trivial. We

now wish to determine whether E(K) = 〈P1〉, where

P1 = (1, 1 +
√

2) ∈ E(K).

Using MAGMA, we know that ĥ(P1) = 0.5033, and the rank of E(K) is at most 1.

Hence E(K) has rank 1. By Theorem 1.2.1, we have

n = [E(K) : 〈P1〉] ≤
√

0.5033/0.0150 = 5.7927.

It therefore remains to check whether the index n is divisible by any primes p ≤
5. Note that this upper bound can be computed using our MAGMA function

UpperBound4Index() in the file heightbound.m (see Appendix A.3) as follows:

> Attach("heightbound.m");

> // Define elliptic curve E

> _<x> := PolynomialRing(Integers());

> K<a> := NumberField(x^2-2);

> E := EllipticCurve([1, 1+2*a]);

> P1 := E![1,1+a];

> // Use 0.0150 as a lower bound for the canonical height on E(K)

> UpperBound4Index([P1], 0.0150);

5.79270969603967816405459250

110 Chapter 5. Applications

In this example, one can easily check using division polynomial that P1 /∈ pE(K)

for all p = 3, 5, so n must be 1, 2, or 4. A simple observation also shows that P1 = 2P

where

P = (1−
√

2, 1− 2
√

2) ∈ E(K),

and P 6= 2Q for any Q ∈ E(K). Hence we have [E(K) : 〈P 〉] = 1, i.e., P generates

E(K).

Example 5.2.2. Let K = Q(
√

7) and let E = E2 as defined earlier. In Example

5.1.2, we have shown that ĥ(P) > 0.0353 for all non-torsion P ∈ E(K). Again, one

can check that the torsion subgroup of E(K) is trivial, and the points

P1 = (0, 0), P2 = (1,
√

7)

are in E(K). We wish to show that E(K) = 〈P1, P2〉.
Using MAGMA, one can see that

ĥ(P1) = 0.8051, ĥ(P2) = 1.4957.

By computing the height pairing matrix, we have

R(P1, P2) = det

〈P1, P1〉 〈P1, P2〉
〈P2, P1〉 〈P2, P2〉

 =

∣∣∣∣∣∣∣
0.8051 −0.1941

−0.1941 1.4957

∣∣∣∣∣∣∣
= 1.1665 6= 0.

Hence P1 and P2 are independent. From MAGMA, we also know that the rank of

E(K) is at most 2. Hence E(K) has rank 2. By Theorem 1.2.1, we finally have

n = [E(K) : 〈P1, P2〉] ≤ 2
√

1.1665

0.0353 · √3
= 35.2450.

Thus we shall apply the sieving procedure for all primes p ≤ 31.

Using a similar argument as in the previous example, we deduce from sieving

5.2. Mordell–Weil Bases 111

Table 5.6: Sieving procedure for the elliptic curve E2

p p #E(kp) l (m1,m2) (a1, a2)
2 〈17〉 318 159 (1, 2) (0, 0), (0, 1)
3 〈3, 1 +

√
7〉 6 2 (1, 2) (0, 0)

〈5〉 24 8 (1, 3)
5 〈2, 1 +

√
7〉 5 1 (1, 3) (0, 0)

〈11〉 115 23 (1, 4)
7 〈19, 8 +

√
7〉 21 3 (1, 7) (0, 0)

〈29, 6 +
√

7〉 35 5 (1, 1)
11 〈47, 30 +

√
7〉 44 4 (1, 5) (0, 0)

〈113, 32 +
√

7〉 99 9 (1, 8)
13 〈√7〉 13 1 (1, 6) (0, 0)

〈103, 78 +
√

7〉 91 7 (1, 8)
17 〈29, 23 +

√
7〉 34 2 (1, 2) (0, 0), (1, 8), (2,−1),

(3, 7), (4,−2), (5, 6),
(6,−3), (7, 5), (8,−4)

19 〈31, 21 +
√

7〉 38 2 (1, 11) (0, 0)
〈37, 9 +

√
7〉 38 2 (1, 7)

23 〈11〉 115 5 (1, 4) (0, 0)
〈337, 119 +

√
7〉 322 14 (1, 17)

29 〈103, 25 +
√

7〉 116 4 (1, 8) (0, 0)
〈149, 56 +

√
7〉 145 5 (1, 25) (0, 0)

31 〈137, 12 +
√

7〉 155 5 (1, 2) (0, 0)
〈139, 110 +

√
7〉 155 5 (1, 5) (0, 0)

that Vp = {0} for every p ≤ 31 except for p = 2, 17. For each p ≤ 31, the

choice of p and their corresponding (m1,m2) is shown in Table 5.6. For p = 2, the

sieving method yields a possible set for V2. To be precise, we have to check whether

(0, 1) ∈ V2, i.e. if there exists a point Q ∈ E(K) such that

P2 = (1,
√

7) = 2Q.

Using 2-division polynomial, it turns out that there is no such x(Q) ∈ K which

satisfies the polynomial. Hence Q does not exist, and so V2 = {0}.
It still remains to find V17. In this case, it suffices to check only one pair of

(a1, a2), say, (a1, a2) = (1, 8). Again, by division polynomial, one can eventually

show that P1 + 8P2 6= 17Q for any Q ∈ E(K). Thus n = 1, i.e., E(K) = 〈P1, P2〉.
For large p, note that the p-division polynomial technique may become very

inefficient due to the difficulty in finding all roots of a polynomial of degree p2.

As suggested in [Sik95, Section 4.2], it is perhaps more practical to solve (5.1) by

112 Chapter 5. Applications

computing elliptic logarithms of all P (v) ∈ E(v), where E(v) is the embedding of E

associated to an archimedean place v ∈ MK , and P (v) is the image of P on E(v).

Example 5.2.3. Let K = Q(
√

10) and let E = E3 as defined earlier. Note that

Etors(K) is a cyclic group of order 2 generated by the point T = (−5, 0) ∈ E(K).

We have shown in Example 5.1.3 that ĥ(P) > 0.0714 for all non-torsion P ∈ E(K).

Let P1 = (5, 5
√

10) ∈ E(K). From MAGMA, we know that ĥ(P1) = 0.6532, and the

rank of E(K) is at most 1. Hence E(K) has rank 1. By Theorem 1.2.1, we have

n = [E(K)/Etors(K) : 〈P1〉] ≤
√

0.6532/0.0714 = 3.0229.

In fact, we verify that P1 /∈ pE(K) for p = 2, 3. Hence n = 1, and so

E(K) = 〈T 〉 × 〈P1〉 ∼= Z/2Z× Z.

Example 5.2.4. Let K = Q(i) and let E = E4 as defined earlier. One can check

that the torsion subgroup of E(K) is trivial. Let

P1 = (1 + 5i, 2− i), P2 =

(−32− 53i

2
,
−663 + 49i

4

)
.

Then we have P1, P2 ∈ E(K). We will show that E(K) = 〈P1, P2〉.
In Example 5.1.4, we have obtained from our algorithm that ĥ(P) > 0.18 for all

non-torsion P ∈ E(K). Moreover, one can check using MAGMA that

ĥ(P1) = 1.2326, ĥ(P2) = 4.2894,

and the rank of E(K) is at most 2. Computing the height pairing matrix, one can

see that

R(P1, P2) = det(〈Pj, Pk〉)1≤j,k≤2 = 3.6050 6= 0,

i.e., P1 and P2 are independent. Thus E(K) has rank 2. It then follows from

5.2. Mordell–Weil Bases 113

Table 5.7: Sieving procedure for the elliptic curve E4

p p #E(kp) l (m1,m2) (a1, a2)
2 〈3〉 10 5 (1, 0) (0, 0)

〈53, 23 + i〉 54 27 (1, 1)
3 〈13, 8 + i〉 21 7 (1, 2) (0, 0)

〈17, 4 + i〉 24 8 (1, 1)
5 〈3〉 10 2 (1, 2) (0, 0)

〈5, 2 + i〉 5 1 (1, 3)
7 〈13, 8 + i〉 21 3 (0, 1) (0, 0)

〈73, 46 + i〉 63 9 (1, 4)
11 〈7〉 44 4 (1, 2) (0, 0)

〈109, 33 + i〉 110 10 (1, 7)

Theorem 1.2.1 that

n = [E(K) : 〈P1, P2〉] ≤ 2
√

3.6050√
3 · 0.18

= 12.1801.

The sieving procedure then shows that n is not divisible by any primes p ≤ 11; see

Table 5.7. Therefore n = 1, and so E(K) = 〈P1, P2〉. In fact, it can be verified

that P1 has the smallest canonical height among non-torsion P ∈ E(K), with

ĥ(P1) = 1.2326. Compare this with our lower bound ĥ(P) > 0.18.

On the other hand, if we had used the lower bound obtained by Theorem 2.4.2

(i.e., ĥ(P) > 2.34× 10−3 for all non-torsion P ∈ E(K)), then it would follow from

Theorem 1.2.1 that n ≤ 936. Finally, we note that the lower bound obtained by

Hindry and Silverman [HS88, Theorem 0.3] (i.e., ĥ(P) > 3.0624 × 10−25 for all

non-torsion P ∈ E(K)) would lead to n ≤ 7.1591 × 1024, which would make it

considerably harder to verify that n = 1.

Example 5.2.5. Let K = Q(i) and let E = E5 as defined earlier. We have already

shown in Example 5.1.5 that ĥ(P) > 0.01 for all non-torsion P ∈ E(K). One can

check that E has trivial torsion subgroup and the point P0 = (0, 0) ∈ E(K). In

Cremona’s paper [Cre94, Example 2], it has been asked whether E(K) = 〈P0〉. We

will show that this is the case.

Using MAGMA, one can check that the rank of E(K) is at most 1. Since P0 is

non-torsion, the rank of E(K) is also at least 1. Hence E(K) has rank 1. Theorem

114 Chapter 5. Applications

1.2.1 then implies that

n = [E(K) : 〈P0〉] ≤
√

0.0230/0.01 = 1.5173 < 2,

i.e., n = 1. Hence E(K) = 〈P0〉.

Example 5.2.6. Let K = Q(θ) where θ is a root of the polynomial x3 − 2, and

let E = E6 as defined earlier. One can verify that the torsion subgroup of E(K) is

trivial, and

P1 = (0, θ), P2 = (1 + θ, 1), P3 = (3− 9θ + 7θ2, 31 + 23θ − 36θ2),

are in E(K). We wish to confirm that E(K) = 〈P1, P2, P3〉.
In Example 5.1.6, we have shown that ĥ(P) > 0.0625 for all non-torsion P ∈

E(K). In addition, one can check using MAGMA that

ĥ(P1) = 0.6303, ĥ(P2) = 0.8045, ĥ(P3) = 2.4430,

and the rank of E(K) is at most 3. Computing the height pairing matrix, we have

R(P1, P2, P3) = det(〈Pj, Pk〉)1≤j,k≤3 = 0.6263 6= 0,

i.e., P1, P2, P3 are independent. Thus E(K) does have rank 3. Then by the geometry

of numbers (Theorem 1.2.1), we obtain

n = [E(K) : 〈P1, P2, P3〉] ≤
√

2(0.6263)/(
√

0.0625)3 = 71.6300.

Using the sieving procedure, we can eventually show (details omitted) that n is not

divisible by any primes p ≤ 71. Therefore n = 1, and so

E(K) = 〈P1, P2, P3〉.

5.2. Mordell–Weil Bases 115

It can be verified that P1 has the smallest canonical height among non-torsion P ∈
E(K), with ĥ(P1) = 0.6303. Compare this with our lower bound ĥ(P) > 0.0625.

5.2.3 Comparison with a Searching Points Method

Let E be an elliptic curve over a number field K. As suggested by a referee of

[Tho10], we shall briefly describe an alternative way, as illustrated in [Sil90], to

derive a Mordell–Weil basis for E(K), and finally compare it with our method.

Suppose we can find a set of points {P1, . . . , Pr} ⊂ E(K) which bijects to a

basis for the group E(K)/mE(K) for some m ≥ 2. Let

C1 = max{ĥ(Q) : Q = n1P1 + · · ·+ nrPr, with 0 ≤ n1, . . . , nr < m}.

Then [Sil90, Proposition 7.2] says that the set S = {R ∈ E(K) : ĥ(R) ≤ C1}
generates E(K). Using a result of [CPS06] or [Sil90], one can compute a constant

C2 satisfying h(P) − ĥ(P) ≤ C2 for all P ∈ E(K), where h(P) denotes the Weil

height of the x-coordinate of P . It then follows that

h(R) ≤ C1 + C2

for all R ∈ S. This, in principle, will allow one to search for R. If there exists

R ∈ S which is not a linear combination of P1, . . . , Pr, then we can replace some Pj

by the linear combination of R. Repeating this process until no such R exists, the

final set of P1, . . . , Pr will eventually be a Mordell–Weil basis for E(K).

The difficulty of this method lies in searching for points. Even though the

x-coordinates have bounded height, this can be a non-trivial task especially if

[K : Q] is large. In contrast, our method completely circumvents this problem.

If P1, . . . , Pr do not yet form a Mordell–Weil basis, we can use the sieving pro-

cedure to derive a new set of candidates. This process, which can be done more

quickly than searching for points, however requires an upper bound for the index

116 Chapter 5. Applications

[E(K)/Etors(K) : 〈P1, . . . , Pr〉], which in turn requires a lower bound for the canon-

ical height on E(K).

5.3 Integral Points on Elliptic Curves

In this section, we will explain how Mordell–Weil bases, periods of elliptic curves,

and complex elliptic logarithms can assist in finding integral points on elliptic curves

over number fields. The method to be described here is a summary of a paper by

Smart and Stephens [SS97] with some modifications. Some illustrative examples,

which are computed by the algorithm based on this method (see Appendix A.2 for

its MAGMA source code), will be also given at the end of this section.

5.3.1 Introduction

Definition. Let E be an elliptic curve defined over a number field K. We say that

a point P = (x, y) ∈ E(K) is an integral point if both x, y ∈ OK , where OK is the

ring of integers of K.

If the rank of E(K) is non-zero, then we have already seen that there are in-

finitely many points in E(K). However, this does not imply that the set of all

integral points is also infinite. In fact, it has been proved by Siegel [Sie26] that

there are only finitely many integral points in E(K).

Suppose {P1, . . . , Pr} is a Mordell–Weil basis for E(K). Then every point P ∈
E(K) can be written as

P = q1P1 + · · ·+ qrPr + T, (5.2)

for some T ∈ Etors(K) and q1, . . . , qr ∈ Z. If P is an integral point, then Siegel’s

Theorem implies that there exists an upper bound on each coefficient |qj|. Let

Q = max
1≤j≤r

{|qj|}.

5.3. Integral Points on Elliptic Curves 117

Provided that an upper bound for Q is known, then we can, in principle, obtain all

integral points in E(K) simply by brute-force search.

Given a Mordell–Weil basis for E(K), Smart and Stephens [SS97] have proposed

a method for computing an upper bound for Q. This method can be roughly

described as follows. For each archimedean place v ∈ M r
K ∪M c

K , we let E(v) be the

associated (real or complex) embedding of E. Then on each E(v), the method will

initially compute a rather large bound Qv, and then repeatedly apply LLL basis

reduction [LLL82] to reduce Qv as much as possible. Finally, we take the maximum

among all Qv to be an upper bound for Q.

5.3.2 Initial Bounds

For each v ∈ M r
K ∪M c

K , let E(v) be the associated (real or complex) embedding of

E. Without loss of generality, we can assume that E(v) is of the form

E(v) : Y 2
v = 4X3

v + AvXv + Bv

for some Av, Bv ∈ C, depending on E and v. Recall from Section 1.3 that there

exists an isomorphism (of complex analytic Lie groups) C/Λv → E(v)(C) for some

lattice Λv, given by the map

z (mod Λv) 7→ (℘Λv(z), ℘′Λv
(z))

0 (mod Λv) 7→ O.

We will denote the inverse of this map, the elliptic logarithm on E(v), by ϕv. For

an integral point P ∈ E(K), let P (v) be its associated image on E(v). Our aim is to

estimate both lower and upper bound for |ϕv(P
(v))|. Combining both bounds then

yields an initial upper bound for Q.

The following lemma gives an upper bound for |ϕv(P
(v))|; see [SS97] for the

detailed proof.

118 Chapter 5. Applications

Lemma 5.3.1. If Q ≥ Q0, then |ϕv(Pv)| ≤ c9 exp(−c10Q
2), for some explicitly

computable constants2 Q0, c9 and c10 depending only on E and v.

Note that the constants Q0, c9, c10 are defined by a number of intermediate

constants, which are well explained in [SS97] and are defined accordingly in our

algorithm (see Appendix A.2 for the code). For now we mention that the following

information is required in order to define these constants.

1. A Mordell–Weil basis for E(K). This is essential for computing height

pairing matrix, whose least eigenvalue is required for defining Q0 and c10.

2. The period lattice Λv of E(v). This can be obtained by Theorem 4.5.3,

and is required for the constant c9. Without loss of generality, we can assume

that Λv = 〈w1, w2〉 with τ = w2/w1 satisfying (3.1), i.e.,

|τ | ≥ 1, |<(τ)| ≤ 1/2, =(τ) ≥
√

3/2.

3. Difference between the Weil (logarithmic) height and the canonical

height on E(K). This result can be found in [Sil90] and more recently in

[CPS06], which is required for computing Q0 and c9.

Since ϕv : E(v)(C) → Λv is a group isomorphism, it then follows from (5.2) that

ϕv(P
(v)) ≡ ϕv(T

(v)) +
r∑

j=1

qjϕv(P
(v)
j) (mod Λv)

= ϕv(T
(v)) +

r∑
j=1

qjϕv(P
(v)
j) + m1w1 + m2w2 (5.3)

for some m1,m2 ∈ Z. Let t = ord(T). Then we have ϕv(T
(v)) = (n1w1 + n2w2)/t,

for some integers 0 ≤ n1, n2 < t. Together with (5.3), this leads to

tϕv(P
(v)) =

r∑
j=1

qjtϕv(P
(v)
j) + (m1t + n1)w1 + (m2t + n2)w2.

2All constants cj are indexed so that they match the ones defined in [SS97].

5.3. Integral Points on Elliptic Curves 119

In our notations, the following theorem yields a lower bound for this linear form

in elliptic logarithms.

Theorem 5.3.2 ([Dav95, Théorème 2.1]). Let Q′ = max{Qt, |m1t+n1|, |m2t+n2|}.
There exist explicitly computable constants3 d8, d9, d10 and hE, such that, if Q′ >

exp(d8), then

log |tϕv(P
(v))| > −d10(log Q′ + log([K : Q]d9))(log log Q′ + hE + log([K : Q]d9))

r+3.

For now we note that determining d8, d9, d10 and hE requires elliptic logarithms

ϕv(P
(v)
j) for all 1 ≤ j ≤ r, which can be computed using Algorithm 4.6.2. For more

details on how to compute these constants, see [Sma98, Appendix A]; these are also

defined accordingly in our algorithm shown in Appendix A.2.

In order to make tϕv(P
(v)) lie in the fundamental parallelogram spanned by

w1, w2, we require that

|mjt + nj| < t

r∑

k=1

|qk| = rQt, for j = 1, 2.

Thus Q′ < rQt ≤ rQetors, where etors is the exponent of Etors(K). Observe that

t | etors. Combining Lemma 5.3.1 and Theorem 5.3.2, the following proposition is

immediate.

Proposition 5.3.3 (Principal Inequality). If Q > max{Q0, exp(d8)}, then

c10Q
2 < d10(log(rQetors)+log([K : Q]d9))(log log(rQetors)+hE+log([K : Q]d9))

r+3

+ log(etorsc9).

This proposition therefore gives us an initial upper bound for Q, that is, ei-

ther the one obtained from the above inequality or max{Q0, exp(d8)}, whichever is

greater. Denote this initial upper bound by Qv.

3The notations are as defined in [Sma98, Appendix A], with cj being replaced by dj .

120 Chapter 5. Applications

5.3.3 Bound Reduction

In general, the initial upper bound Qv we just obtained is considerably too large

for a practical use. The next step in Smart and Stephens’ method is therefore to

reduce Qv as much as possible. This can be achieved using an application of LLL

basis reduction [LLL82].

To use an LLL basis reduction, we first choose a constant C ≈ Q
r+2
2

v . Consider

the r + 2-dimensional lattice generated by the columns of the matrix

L =

1 . . . 0 0 0

0 . . . 0 0 0

...
. . .

...
...

...

0 . . . 1 0 0

[C<(ϕv(P1
(v)))] . . . [C<(ϕv(Pr

(v)))] [C<(w1)] [C<(w2)]

[C=(ϕv(P1
(v)))] . . . [C=(ϕv(Pr

(v)))] [C=(w1)] [C=(w2)]

(see [Sma98, p. 84]), where [·] is the rounding towards 0, i.e.,

[x] =

bxc if x ≥ 0,

dxe if x < 0.

In general, C can be very large, hence one needs to compute the periods w1, w2

and complex elliptic logarithms of the points P
(v)
1 , . . . , P

(v)
r to a very high degree of

precision in order to ensure that their integer parts are correct.

Next, we let

` = L

tq1

...

tqr

m1t + n1

m2t + n2

=

tq1

...

tqr

λ1

λ2

,

5.3. Integral Points on Elliptic Curves 121

where

λ1 = (m1t + n1)[C<(w1)] + (m2t + n2)[C<(w2)] +
r∑

j=1

tqj[C<(ϕv(Pj
(v)))],

λ2 = (m1t + n1)[C=(w1)] + (m2t + n2)[C=(w2)] +
r∑

j=1

tqj[C=(ϕv(Pj
(v)))].

After applying LLL algorithm [LLL82, Proposition (1.11)], one shall obtain another

basis {b1, . . . , br+2} which spans the same lattice as L does. Since ` 6= 0, the LLL

algorithm assures that

‖`‖2 ≥ 2−r−1‖b1‖2.

Recall that |qj| ≤ Qv for all 1 ≤ j ≤ r, and |mjt + nj| < rQvt ≤ rQvetors for

j = 1, 2. This leads to the following proposition.

Proposition 5.3.4. If
√

2−r−1‖b1‖2 − rQ2
ve

2
tors > 3rQvetors/

√
2, then

Q2
v ≤

1

c10

(
log(Cc9etors)− log

(√
2−r−1‖b1‖2 − rQ2

ve
2
tors −

3√
2
rQvetors

))
. (5.4)

Proof. By definition of [·], we have

|λ1 + iλ2 − Ctϕv(P
(v))| ≤

√
2

(
r∑

j=1

t|qj|
2

+
|m1t + n1|

2
+
|m2t + n2|

2

)

≤ 3√
2
rQvetors.

Thus

|λ1 + iλ2| ≤ 3√
2
rQvetors + C|tϕv(P

(v))| ≤ 3√
2
rQvetors + Cc9 exp(−c10Q

2
v).

122 Chapter 5. Applications

Now we have

2−r−1‖b1‖2 ≤ ‖`‖2 = t2
r∑

j=1

q2
j + |λ1 + iλ2|2

≤ rQ2
ve

2
tors +

(
3√
2
rQvetors + Cc9 exp(−c10Q

2
v)

)2

.

Hence √
2−r−1‖b1‖2 − rQ2

ve
2
tors −

3√
2
rQvetors ≤ Cc9 exp(−c10Q

2
v),

and (5.4) then follows after taking logarithms on both sides, which will be well-

defined provided that

√
2−r−1‖b1‖2 − rQ2

ve
2
tors > 3rQvetors/

√
2.

Note that if L does not satisfy the condition in Proposition 5.3.4, we can redefine

L with a larger C until the condition is satisfied. Moreover, once we obtain a smaller

Qv, we can repeat the above process with this new Qv until no further reduction

is possible. Finally, we take the maximum among all reduced Qv to be an upper

bound for Q. Searching for all integral points then becomes an easy task if this

bound is feasible.

5.3.4 Examples

We have implemented Smart and Stephens’ method into an algorithm and use it to

compute the following examples; its MAGMA code can be found in Appendix A.2.

A demonstration of how to use this code will be shown in Example 5.3.6.

Example 5.3.5. We will first verify the result from [SS97, Example 2]. Let E be

5.3. Integral Points on Elliptic Curves 123

the elliptic curve defined over K = Q(
√−2) given by the Weierstrass equation

E : y2 = x3 − 16x + 16.

It can be checked that the torsion subgroup of E(K) is trivial. In [SS97], it is

claimed that E(K) = 〈P1, P2〉, where

P1 = (0, 4), P2 = (2,−2
√−2).

We will first confirm that this is indeed the case. Using our algorithm for computing

a lower bound for the canonical height, we obtain

ĥ(P) > 0.012

for all P ∈ E(K). Then one can see from the height pairing matrix that

R(P1, P2) = det(〈Pj, Pk〉)1≤j,k≤2 = 0.0330 6= 0,

i.e. P1 and P2 are independent. In addition, one can check using MAGMA that the

rank of E(K) is at most 2. Hence E(K) has rank 2. By the geometry of numbers

(Theorem 1.2.1), we have

n = [E(K) : 〈P1, P2〉] ≤ 17.4808.

In fact, one can verify that n = 1 after applying the sieving procedure for all primes

p ≤ 17. Hence E(K) = 〈P1, P2〉.
Next, we wish to compute all integral points P ∈ E(K). As discussed earlier,

this is equivalent to finding an upper bound for Q = max{|q1|, |q2|}, where P =

q1P1 + q2P2. In this example, E has only one complex embedding E(v). Using

124 Chapter 5. Applications

Table 5.8: LLL reduction used in Example 5.3.5

Previous Qv C being chosen New Qv

1061 1.0000× 10244 106
106 1.2625× 108 27
27 5.3144× 105 25
25 3.9062× 105 24

Theorem 4.5.3 to compute the period lattice Λv of E(v), we have Λv = 〈w1, w2〉 with

w1 = −i1.225694 . . . , w2 = 1.496729

Note that w1, w2 are chosen so that τ = w2/w1 satisfies (3.1) as required. Moreover,

one can compute both lower and upper bounds for h(P)− ĥ(P) for all P ∈ E(K)

using, for example, [Sil90, Theorem 1.1]4, and obtain

−5.461894 ≤ h(P)− ĥ(P) ≤ 6.211695.

Using the above quantities, our algorithm shows that

Q0 = 12.2286, c9 = 2106.0087, c10 = 0.0256.

In addition, we obtain the following quantities for David’s constants:

d8 = 31.5690, d9 = 4.7156, d10 = 1.9249× 10110, hE = 11.6136.

This finally yields Qv ≤ 1061 as an initial upper bound for Q. After applying LLL

basis reduction repeatedly until no further reduction is possible (see Table 5.8), we

are finally able to reduce an upper bound for Q to 24. A quick search within this

range then reveals all integral points in E(K), as listed (up to inverse) in Table 5.9.

Note that the quantities Q0, c9, c10 we obtained from our algorithm are slightly

4We use Silverman’s bounds in this example so that our constants can be compared with the
ones shown in [SS97, Example 2] directly. In our algorithm (see Appendix A.2), we will use
[CPS06, Theorem 1] to compute these bounds.

5.3. Integral Points on Elliptic Curves 125

Table 5.9: Integral points on y2 = x3 − 16x + 16 over Q(
√−2)

(q1, q2) P = q1P1 + q2P2

(1, 0) (0, 4)
(2, 0) (4, 4)
(3, 0) (−4,−4)
(4, 0) (8,−20)
(5, 0) (1,−1)
(6, 0) (24, 116)
(0, 1) (2,−2

√−2)
(1, 1) (4

√−2,−12 + 8
√−2)

(1,−1) (−4
√−2,−12− 8

√−2)
(2, 1) (−4 + 4

√−2, 20)
(2,−1) (−4− 4

√−2, 20)
(5, 1) (−10− 4

√−2, 28− 18
√−2)

(5,−1) (−10 + 4
√−2, 28 + 18

√−2)
(3, 2) (60− 40

√−2, 316− 480
√−2)

(3,−2) (60 + 40
√−2, 316 + 480

√−2)

different from the ones shown in [SS97, Example 2] due to some modifications in

the formulas; this, however, has no effect on the final result.

Example 5.3.6. Let K = Q(θ) where θ is a root of the polynomial x3 − 2. In

Example 5.2.6, we have readily verified that the elliptic curve E6/K given by

E6 : y2 = x3 − (θ2 + 3θ)x + θ2

has {P1, P2, P3} as a Z-basis for E(K), where

P1 = (0, θ), P2 = (1 + θ, 1), P3 = (3− 9θ + 7θ2, 31 + 23θ − 36θ2).

Thus any integral point P can be expressed as P = q1P1 + q2P2 + q3P3 for some

q1, q2, q3 ∈ Z. We now wish to find all integral points in E6(K), that is, to find an

upper bound for Q = max{|q1|, |q2|, |q3|}. To ease notation, we shall write E = E6

and let vr, vc be the real and complex archimedean place of K respectively.

In order to determine such an upper bound, we will start by computing some

certain constants associated to E/K. By [CPS06, Theorem 1], we first obtain

−1.196864 ≤ h(P)− ĥ(P) ≤ 0.174492

126 Chapter 5. Applications

for all P ∈ E(K). Moreover, our algorithm shows that hE = 11.9773. The next

step is to compute other constants associated to each real and complex embedding

of E respectively.

Consider the case when v = vr. Using Theorem 4.5.3 and some linear trans-

formation, one can see that a Z-basis {w1, w2} for the period lattice of the real

embedding E(v) is given by

w1 = i1.658105 . . . , w2 = −1.815187

Observe that τ = w2/w1 satisfies (3.1). Combining all information on E/K and

E(v) we have obtained so far, our algorithm shows that

c9 = 19.6306, c10 = 0.2017, Q0 = 2.8967,

and also

d8 = 32.5576, d9 = 5.5533, d10 = 7.9894× 10161.

Hence by Proposition 5.3.3, we obtain Qv = 1087 as an initial upper bound for

Q. After applying LLL basis reduction repeatedly as shown in Table 5.10, one can

finally reduce Qv to 11.

For v = vc, we also obtain from Theorem 4.5.3 that the period lattice of the

complex embedding E(v) is given by Λv = 〈w1, w2〉, where

w1 = 1.106543 . . . + i1.444101 . . . , w2 = −1.838531 . . . + i1.133717

Again, w1, w2 are chosen so that τ = w2/w1 satisfies (3.1). A similar computation

as before also shows that

c9 = 214.9545, c10 = 0.1009, Q0 = 3.3679,

d8 = 32.5576, d9 = 5.7684, d10 = 6.2775× 10161.

5.3. Integral Points on Elliptic Curves 127

Table 5.10: LLL reduction used in Example 5.3.6

v = vr v = vc

Previous Qv C being chosen New Qv Previous Qv C being chosen New Qv

1087 1.0000× 10522 67 1087 1.0000× 10261 60
67 2.7207× 1016 12 60 4.6656× 1010 14
12 5.1598× 109 11 14 7.5295× 106 13

Table 5.11: Integral points on the elliptic curve E6

(q1, q2, q3) P = q1P1 + q2P2 + q3P3

(1, 0, 0) (0, θ)
(0, 1, 0) (1 + θ, 1)
(1,−1, 0) (−θ,−2θ)
(2,−1, 0) (9 + θ,−27− 4θ)
(0, 0, 1) (3− 9θ + 7θ2, 31 + 23θ − 36θ2)
(2,−2,−1) (139 + 111θ + 87θ2, 2837 + 2253θ + 1788θ2)

In consequence, Proposition 5.3.3 yields Qv = 1087 as an initial bound, which is

eventually reduced to 13 after successive LLL reductions as shown in Table 5.10.

Hence we have Q ≤ max{11, 13} = 13. The complete list of all integral points (up

to inverse) in E(K) is shown in Table 5.11; this is computed using our MAGMA

code in Appendix A.2 (intpts.m) together with the following instructions:

> Attach("nfhtbound.m"); // from Cremona - for computing CPS bound

> Attach("intpts.m"); // main program for computing integral points

> Attach("elog.m"); // for computing periods and elliptic logarithms

> SetVerbose("Intpts", 1); // minimal printing

> // Define elliptic curve E

> _<x> := PolynomialRing(Integers());

> K<a> := NumberField(x^3-2);

> E := EllipticCurve([-a^2-3*a, a^2]);

> // Generators for E(K)

> P1 := E![0,a];

> P2 := E![1+a,1];

> P3 := E![3-9*a+7*a^2, 31+23*a-36*a^2];

> L, _ := IntegralPoints(E, [P1,P2,P3]);

Maximum absolute bound on coefficients = 13

Exact arithmetic

[1, 0, 0] ---> (0 : a : 1)

[0, 1, 0] ---> (a + 1 : 1 : 1)

[1, -1, 0] ---> (-a : -2*a : 1)

[2, -1, 0] ---> (a + 9 : -4*a - 27 : 1)

[0, 0, 1] ---> (7*a^2 - 9*a + 3 : -36*a^2 + 23*a + 31 : 1)

[2, -2, -1] ---> (87*a^2 + 111*a + 139 : 1788*a^2 + 2253*a + 2837 : 1)

> L;

[(0 : a : 1), (a + 1 : 1 : 1), (-a : -2*a : 1), (a + 9 : -4*a - 27 : 1), (7*a^2

- 9*a + 3 : -36*a^2 + 23*a + 31 : 1), (87*a^2 + 111*a + 139 : 1788*a^2 +

2253*a + 2837 : 1)]

In conclusion, it should be noted that although Smart and Stephens’ method

[SS97], in principle, allows one to find all integral points on any elliptic curves over

128 Chapter 5. Applications

number fields, it requires a number of certain results on elliptic curves which may

not be obtained easily, especially in the past. For example, lack of an algorithm for

computing period lattices of arbitrary elliptic curves over C would prevent one to

apply the method to most elliptic curves other than the ones having real coefficients.

Our main results on height bound (see Chapter 3), period lattices and complex

elliptic logarithms (see Chapter 4) therefore enhance Smart and Stephens’ method

by minimising its limitations.

5.4 Elliptic Curves with Everywhere Good Re-

duction

We finally come to the last section of this thesis, where we will illustrate an applica-

tion of integral points, whose computation requires all the main results of this thesis,

on finding elliptic curves with everywhere good reduction over some quadratic num-

ber fields. The method for finding this family of elliptic curves is due to Cremona

and Lingham [CL07], which will be explained very briefly in this section.

5.4.1 Cremona–Lingham’s Method: An Overview

Definition. Let K be a number field with ring of integers OK , and let S be a finite

set of prime ideals of OK . We say that x ∈ K is an S-integer if ordp(x) ≥ 0 for all

prime ideals p /∈ S.

It is easy to verify that that the set of all S-integers is a ring, which will be

denoted by OK,S from now on.

For a finite set S of prime ideals of OK and m ∈ Z>0, we define

K(S,m) = {x ∈ K∗/K∗m : ordp(x) ≡ 0 (mod m) for all p /∈ S}.

Here, K∗ = K \ {0}. For convenience, we will also abuse the notation and say that

5.4. Elliptic Curves with Everywhere Good Reduction 129

an element x ∈ K∗ is in K(S,m) if xK∗m ∈ K(S, m). The following proposition

can be proved very easily.

Proposition 5.4.1 ([CL07, Proposition 2.1]). Let m,n be coprime. Then

K(S,mn) ∼= K(S,m)×K(S, n)

via the map w 7→ (w, w), with inverse map (u, v) 7→ vamubn, where am + bn = 1.

For this application, we will see later that we will need to consider K(S,m)

for m = 4, 6, 12, and also the set K(S, 6)12 which is the image of the natural map

K(S, 12) → K(S, 6). By Proposition 5.4.1, it then suffices to compute K(S,m)

only for m = 2, 3, 4. For m = 2, 3, this can be computed easily using the MAGMA

function pSelmerGroup(). A set of MAGMA functions for determining K(S, 4) has

been implemented by Professor John Cremona who kindly supplied me with them.

Let E be an elliptic curve defined over K, given by a Weierstrass equation (1.1)

as before, i.e.,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

Definition. We say that E has good reduction at p if it has a p-integral model (i.e.,

ordp(aj) ≥ 0 for all j) whose discriminant ∆ is a p-unit (i.e., ordp(∆) = 0).

By Shafarevich’s Theorem (see [Sil86, pp. 263–264] for the proof), it is well

known that there are finitely many isomorphism classes of E/K having good re-

duction outside a finite set of primes S. The following proposition shows the connec-

tion between K(S, 6)12 and the set of all elliptic curves over K with good reduction

outside S.

Proposition 5.4.2. Let E be an elliptic curve defined over K with j-invariant

j(E) = j 6= 0, 1728 and good reduction at all primes p /∈ S. Set w = j2(j − 1728)3.

130 Chapter 5. Applications

Then

∆ ∈ K(S, 12), j ∈ OK,S , w ∈ K(S, 6)12.

Conversely, if j ∈ OK,S with w = j2(j − 1728)3 ∈ K(S, 6)12, then the elliptic curve

E : y2 = x3 − 3u2j(j − 1728)x− 2u3j(j − 1728)2

with u ∈ K∗ satisfying (3u)6w ∈ K(S, 12), has j(E) = j and good reduction at all

primes outside the extended set S(6) = S ∪ {p : ordp(6) > 0}.

Proof. See [CL07, Proposition 3.2].

To obtain elliptic curves E with j(E) 6= 0, 1728 and good reduction outside

S, the strategy of Cremona and Lingham’s method is to consider each class w ∈
K(S, 6)12 in turn, and determine all possible j ∈ OK,S satisfying w ≡ j2(j− 1728)3

(mod K∗6). For each of such j, one then obtain an elliptic curve E with good

reduction outside S(6) using the converse of Proposition 5.4.2. If such E also has

good reduction at all primes p | 6, then E has good reduction outside S, and we

discard E otherwise. By [CL07, Proposition 3.4], the complete set of all curves

with j-invariant j and good reduction outside S is obtained by twisting E with

u ∈ K(S, 2).

Definition. Let E be an elliptic curve defined over a number field K, and let S
be a finite set of prime ideals of OK . A point P = (x, y) ∈ E(K) is said to be an

S-integral point if both x, y ∈ OK,S . In addition, if S = ∅ (i.e., OK,S = OK), then

we simply say that P is an integral point.

The next proposition shows that all possible j can arise from S-integral points

on certain elliptic curves over K.

Proposition 5.4.3. Let w ∈ K(S, 6). Each j ∈ OK,S \ {0, 1728} with j2(j −
1728)3 ≡ w (mod K∗6) has the form j = x3/w = 1728 + y2/w, where P = (x, y)

5.4. Elliptic Curves with Everywhere Good Reduction 131

(with xy 6= 0) is an S-integral point on the elliptic curve

Ew : y2 = x3 − 1728w.

Proof. See [CL07, Proposition 3.3].

It should be noted, however, that not all the values j obtained by Proposition

5.4.3 are S-integral. Furthermore, not every S-integral j arising from an S-integral

points on some Ew will necessarily be the j-invariant of a suitable elliptic curve,

unless j is derived from w ∈ K(S, 6)12.

To summarise, in order to find elliptic curves with everywhere good reduction,

we set S = ∅ and apply Cremona and Lingham’s method [CL07]. For those curves

with j-invariant neither 0 nor 1728, the computation proceeds as follows:

1. Compute K(∅, 6) from K(∅, 2) and K(∅, 3), and determine a (finite) represen-

tative set W of w ∈ K(∅, 6)12.

2. For each w ∈ W , find all integral points on the elliptic curve Ew/K such that

j = x3/w ∈ OK .

3. If such j satisfies j2(j − 1728)3 ∈ K(∅, 6)12, then we determine u0 ∈ K∗ such

that (3u0)
6j2(j − 1728)3 ∈ K(∅, 12). Let E be the elliptic curve

E : y2 = x3 − 3u2
0j(j − 1728)x− 2u3

0j(j − 1728)2.

Check if E has good reduction at all primes p dividing 6; discard E if not.

4. Repeat step (3) for each quadratic twist E(u), where u ∈ K(∅, 2).

Since S = ∅, it is immediate from [CL07, Proposition 4.1] that there is no elliptic

curve E/K with j(E) = 0 and everywhere good reduction. For j = 1728, finding

elliptic curves with j-invariant j and everywhere good reduction does not involve

searching for integral points at all; see [CL07, Proposition 4.2] for more details.

132 Chapter 5. Applications

5.4.2 Examples I: Real Quadratic Fields

As we have seen in Section 5.3, the applications of all the main results of this thesis

finally allow one to use Smart and Stephens’ method [SS97] to find all integral points

on elliptic curves over number fields with less restriction. This in turn benefits to the

determination of elliptic curves with everywhere good reduction using Cremona and

Lingham’s algorithm [CL07]. In particular, we are able to settle some inconclusive

cases appearing in Cremona’s compiled list5 on elliptic curves over K = Q(
√

d) with

everywhere good reduction for 2 ≤ d ≤ 100. For more information on imaginary

quadratic fields Q(
√−d) (with 2 ≤ d ≤ 100), see Section 5.4.3.

In this subsection, we will illustrate these new results in full details. Note, how-

ever, that on some real quadratic fields K we may not fully confirm non-existence of

elliptic curves over K with everywhere good reduction, nor that the list of such ellip-

tic curves is complete, owing to the difficulty in searching for non-torsion points on

certain elliptic curves. Furthermore, we carry out our computation for all d ≤ 100

which are inconclusive from Cremona’s table, apart from d = 71, 79, 91 in which

there are too many elliptic curves Ew/K whose Mordell–Weil bases are unknown.

Based on the tables shown later in this subsection (see next page for the de-

scription), we obtain the following conclusion in addition to what we already know

from Cremona’s table.

Proposition 5.4.4. Let 2 ≤ d ≤ 100. Then we have the following:

1. For d = 55, 78, 95, there is no elliptic curve over Q(
√

d) with everywhere good

reduction.

2. For d = 38, 41, 65, we have the complete list of all elliptic curves over Q(
√

d)

with everywhere good reduction.

Proof. For (1), see Table 5.17, 5.22, and 5.24. For (2), see Table 5.12, 5.13, and

5.20.
5Available at http://www.warwick.ac.uk/~masgaj/ecegr/ecegrqf.html (last checked on

November 22, 2010).

5.4. Elliptic Curves with Everywhere Good Reduction 133

Description of Tables

In the following pages, we will illustrate in detail how to find all elliptic curves

over a quadratic number field K with everywhere good reduction using Cremona

and Lingham’s method (see Section 5.4.1). For each K, we give a table whose

columns represent the following information:

Index of each w.

w Each w ∈ W , where W is the set of representatives for K(∅, 6)12; note that this

is unique modulo K∗6. If a fundamental unit ε of OK exists, then w will be

expressed in terms of ε.

Torsion All generators of the torsion subgroup of Ew(K), where Ew is the elliptic

curve y2 = x3−1728w. Each generator is denoted by 〈T, t〉, where T ∈ Ew(K)

is a generator, and t = ord(T). If the torsion subgroup is trivial, we simply

write “O”.

Rank The rank of Ew(K).

Mordell–Weil basis A Mordell–Weil basis for Ew(K). If the rank is 0, we simply

write “–”.

Integral Points The list of all integral points in Ew(K). If no such point exists,

we simply write “–”.

j 6= 0, 1728 The list of all j associated to each integral point in Ew(K). If no j

exists, or the corresponding j is 0 or 1728, we simply write “–” in that entry.

If some information is currently unknown, then we put “?” in that entry.

Recall that not all j shown in the table may yield an elliptic curve over K

with everywhere good reduction. However, if there exists j which gives rise to

such curves, then that j and its associated integral point will be shown in bold.

134 Chapter 5. Applications

Moreover, the details of all curves arising from that j will be shown in the second

table, whose columns are as follows:

j The j-invariant of elliptic curves

Index of each elliptic curve E/K with j-invariant j, having everywhere good

reduction.

a1, a2, a3, a4, a6 The a-invariants of the Weierstrass equation of E.

∆ The discriminant of E. In case ∆ cannot be expressed exactly (for example,

when there is no globally minimal model for the curve), then the ideal 〈∆〉
will be shown instead.

Torsion The torsion subgroup of E(K), represented by the same notation as above.

Rank The rank of E(K).

At the end, a summary line will be given. This can be either a conclusion

(that our list of elliptic curves over K with everywhere good reduction is complete,

or that there is no such curve), or a conjecture (especially when there exists w

which currently cannot be completely settled).

5.4. Elliptic Curves with Everywhere Good Reduction 135

T
ab

le
5.

12
:

F
in

d
in

g
el

li
p
ti

c
cu

rv
es

ov
er
Q

(√
38

)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

(a
=
√ 38

,
ε

=
37

+
6a

,
N

(ε
)

=
1)

#
w

T
or

si
on

R
an

k
M

or
de

ll–
W

ei
l
ba

si
s

In
te

gr
al

po
in

ts
j
6=

0,
17

28
1

1
〈(1

2,
0)

,2
〉

1
(1

1
9
1
8
0

3
1
2

,
6
6
7
1
3
9
2
a

3
1
3

)
(1

2,
0)

–
2

−1
〈(−

12
,0

),
2〉

2
(−

1
0

9
,

1
8
2
a

2
7

) ,(
20

,1
6a

)
(2

0,
16

a
),

−8
00

0,
(−

12
,0

),
–,

(1
01

4,
52

38
a
)

−1
04

25
90

74
4

3
ε3

〈(4
44

+
72

a
,0

),
2〉

2
(9

1
4
2
1
0
8
+

1
4
8
2
5
0
4
a

2
0
2
5

,
3
9
0
6
2
4
9
1
5
5
2
+

6
3
3
6
7
4
1
6
0
0
a

9
1
1
2
5

) ,
(7

40
+

12
0a

,
−

25
20

0
−

40
88

a
),

80
00

,
(7

40
+

12
0a

,−
25

20
0
−

40
88

a
)

(4
44

+
72

a
,0

),
–,

(2
44

2
+

39
6a

,1
70

10
0

+
27

59
4a

)
28

74
96

4
−ε

3
〈(−

44
4
−

72
a
,0

),
2〉

1
(−

29
6
−

48
a
,1

10
96

+
18

00
a
)

(−
29

6
−

48
a
,1

10
96

+
18

00
a
),

51
2,

(−
44

4
−

72
a
,0

),
–,

(3
55

2
+

57
6a

,−
29

95
92
−

48
60

0a
)

−8
84

73
6

5
ε̄2

O
0

–
–

–
6

−ε̄
2

O
1

(−
24

+
4a

,1
52

8
−

24
8a

)
(−

24
+

4a
,1

52
8
−

24
8a

)
−7

68
−

12
8a

7
ε

O
1

(1
2
1
7
6
+

4
4
4
a

2
8
9

,
2
1
8
2
3
2
−

1
1
3
3
1
2
a

4
9
1
3

)
–

–
8

−ε
O

0
–

–
–

9
C

on
ju

ga
te

to
#

5
10

C
on

ju
ga

te
to

#
6

11
C

on
ju

ga
te

to
#

7
12

C
on

ju
ga

te
to

#
8

L
is

t
of

cu
rv

es
a

j
#

a
1

a
2

a
3

a
4

a
6

∆
T
or

si
on

R
an

k
80

00
1

a
1

+
a

1
+

a
15

+
4a

21
+

4a
ε3

〈(−
3 2
,
−

2
+

a
4

) ,2
〉

0
2

a
1
−

a
1

+
a

15
−

5a
21
−

5a
ε̄3

〈(−
3 2
,
−

2
+

a
4

) ,2
〉

0

C
o
n
cl

u
si

o
n
:

A
ll

el
li
p
ti

c
cu

rv
es

ov
er
Q

(√
38

)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

h
av

e
b
ee

n
fo

u
n
d
.

a
T

he
se

cu
rv

es
w

er
e

in
it

ia
lly

fo
un

d
by

C
re

m
on

a;
w

e
co

nfi
rm

th
at

no
ot

he
r

cu
rv

es
ca

n
ar

is
e

fr
om

th
e

re
m

ai
ni

ng
ca

se
s.

N
ot

e
al

so
th

at
,

al
th

ou
gh

th
ei

r
j-

in
va

ri
an

t
is

ra
ti

on
al

,
th

es
e

cu
rv

es
ar

e
no

t
is

om
or

ph
ic

to
an

y
el

lip
ti

c
cu

rv
es

ov
er
Q

.

136 Chapter 5. Applications

T
ab

le
5.13:

F
in

d
in

g
ellip

tic
cu

rves
over

Q
(√

41)
w

ith
every

w
h
ere

go
o
d

red
u
ction

(a
=

1
+ √

4
1

2
,
ε

=
37−

10a
,N

(ε)
=
−

1)

#
w

T
orsion

R
ank

M
ordell–W

eil
basis

Integral
points

j6=
0
,1728

1
1

〈(12,0),2〉
0

–
(12,0)

–
2

−
1

〈(−
12,0),2〉

0
–

(−
12

,0)
–

3
ε̄
3

〈(324
+

120
a
,0),2〉

0
–

(324
+

120
a
,0)

–
4

−
ε̄
3

〈(−
324−

120a
,0),2〉

0
–

(−
324−

120a
,0)

–
5

ε
2

O
1

(593−
160a

,18915−
5110

a)
(593−

160
a
,18915−

5110
a
)

152753−
40800

a
6

−
ε
2

O
1

(177−
48a

,−
3465

+
936

a)
(177−

48
a
,−

3465
+

936
a)

−
3537

+
1296

a
7

ε̄
O

2
(20

+
8
a
,−

48−
16

a),
(20

+
8
a
,−

48−
16

a),
960

+
256

a,
(6

9
1
3

+
2
5
6
0
a
,8

8
5
2
2
1

+
3
2
7
6
7
0
a
)

(6
9
1
3

+
2
5
6
0
a

,
8
8
5
2
2
1

+
3
2
7
6
7
0
a
)

2
9
0
1
3
1
1
5
6
1
1

+
1
0
7
3
9
3
8
4
3
3
0
a

8
−

ε̄
O

2
(700−

120a
,17216−

5760
a),

(700−
120

a
,17216−

5760
a),

39757240000−
10740736000

a,
(17,−

103−
64a)

(17
,−

103−
64

a
),

181781−
49130

a
,

(44
+

8
a
,240

+
128

a)
412608−

113152
a

9
C

onjugate
to

#
5

10
C

onjugate
to

#
6

11
C

onjugate
to

#
8

12
C

onjugate
to

#
7

L
ist

of
cu

rves
a

j
#

a
1

a
2

a
3

a
4

a
6

∆
T
orsion

R
ank

152753−
40800a

1
1

0
0

−
27−

10
a

0
ε̄
4

〈(0,0),2〉,〈 (−
1
4−

5
a

4
,

1
4
+

5
a

8

)
,2〉,

0
111953

+
40800

a
1

1
0

0
−

37
+

10
a

0
ε
4

〈(0,0),2〉,〈 (
1
8−

5
a

4
, −

1
8
+

5
a

8

)
,2〉,

0
29013115611

+
10739384330

a
1

1
0

0
148−

40
a

37−
10

a
−

ε
5

〈 (−
14
,

18)
,2〉

0
39752499941−

10739384330a
1

1
0

0
108

+
40

a
27

+
10

a
−

ε̄
5

〈 (−
14
,

18)
,2〉

0
181781−

49130a
1

1
a

a
3

−
2

−
ε̄

〈(1,1),4〉
0

132651
+

49130
a

1
1

1−
a

1
+

a
3−

a
−

2−
a

−
ε

〈(1,−
3),4〉

0

C
o
n
clu

sio
n
:

A
ll

ellip
tic

cu
rves

over
Q

(√
41)

w
ith

every
w

h
ere

go
o
d

red
u
ction

h
ave

b
een

fou
n
d
.

aT
he

first
tw

o
curves

w
ere

previously
found

by
C

om
alada

[C
om

90,
T

heorem
2];

w
e

com
plete

the
list

by
finding

other
curves.

5.4. Elliptic Curves with Everywhere Good Reduction 137

T
ab

le
5.

14
:

F
in

d
in

g
el

li
p
ti

c
cu

rv
es

ov
er
Q

(√
43

)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

(a
=
√ 43

,
ε

=
34

82
+

53
1a

,
N

(ε
)

=
1)

#
w

T
or

si
on

R
an

k
M

or
de

ll–
W

ei
l
ba

si
s

In
te

gr
al

po
in

ts
j
6=

0,
17

28
1

1
〈(1

2,
0)

,2
〉

1
(6

0
2
8
8
5
5
6

5
4
9
0
8
1

,
7
1
3
4
0
2
1
9
7
7
6
a

4
0
6
8
6
9
0
2
1

)
(1

2,
0)

–
2

−1
〈(−

12
,0

),
2〉

1
(9

60
,4

53
6a

)
(9

60
,4

53
6a

),
(−

12
,0

)
−8

84
73

60
00

,
–

3
ε̄3

〈(4
1
7
8
4
−

6
3
7
2
a
,0

),
2
〉

2
(4

8
3
3
0
1
6
−

7
3
7
0
2
8
a

4
9

,
1
4
4
4
3
4
9
0
1
6
0
−

2
2
0
2
6
1
1
6
0
0
a

3
4
3

) ,
(6

96
40
−

10
62

0a
,2

30
12

36
0
−

35
09

35
2a

),
80

00
,

(6
96

40
−

10
62

0a
,2

30
12

36
0
−

35
09

35
2a

)
(4

17
84
−

63
72

a
,0

),
–,

(2
29

81
2
−

35
04

6a
,−

15
53

33
43

0
+

23
68

81
26

a
)

28
74

96
4

−ε̄
3

〈(−
4
1
7
8
4

+
6
3
7
2
a
,0

),
2
〉

0
–

(−
41

78
4

+
63

72
a
,0

)
–

5a
ε̄2

O
≤

1
?

?
?

6
−ε̄

2
O

1
(3

20
0
−

48
8a

,−
29

40
88

+
44

84
8a

)
(3

20
0
−

48
8a

,−
29

40
88

+
44

84
8a

),
−2

04
8

+
51

2a
(−

94
4

+
14

4a
,−

13
88

08
+

21
16

8a
)

−4
83

32
8
−

73
72

8a
7

ε
O

0
–

–
–

8
−ε

O
0

–
–

–
9

C
on

ju
ga

te
to

#
5

10
C

on
ju

ga
te

to
#

6
11

C
on

ju
ga

te
to

#
7

12
C

on
ju

ga
te

to
#

8

C
o
n
je

ct
u
re

:
N

o
el

li
p
ti

c
cu

rv
e

ov
er
Q

(√
43

)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

ex
is

ts
.

a
W

e
ca

nn
ot

fin
d

a
M

or
de

ll–
W

ei
l
ba

si
s

fo
r

E
w
(Q

(√
43

))
du

e
to

th
e

di
ffi

cu
lt
y

in
se

ar
ch

in
g

fo
r

a
po

in
t

on
th

e
cu

rv
e.

A
ny

el
lip

ti
c

cu
rv

e
w

it
h

ev
er

yw
he

re
go

od
re

du
ct

io
n,

if
ex

is
ts

,
w

ill
ar

is
e

on
ly

fr
om

th
is

ca
se

.

138 Chapter 5. Applications

T
ab

le
5.15:

F
in

d
in

g
ellip

tic
cu

rves
over

Q
(√

46)
w

ith
every

w
h
ere

go
o
d

red
u
ction

(a
=
√

46,
ε

=
24335−

3588a
,N

(ε)
=

1)

#
w

T
o
rsio

n
R

a
n
k

M
o
rd

ell–
W

eil
b
a
sis

In
teg

ra
l
p
o
in

ts
j6=

0
,1

7
2
8

1
1

〈(1
2
,0

),2〉
1

(
5
4
2
3

4
5
0

,
9
3
7
3
a

1
3
5
0
0)

(1
2
,0

)
–

2
−

1
〈(−

1
2
,0

),2〉
0

–
(−

1
2
,0

)
–

3
ε
3

〈(2
9
2
0
2
0−

4
3
0
5
6
a
,0

),2〉
2

(4
8
6
7
0
0−

7
1
7
6
0
a
,4

2
5
1
7
2
3
8
4−

6
2
6
8
8
2
4
8
a
),

(4
8
6
7
0
0−

7
1
7
6
0
a
,4

2
5
1
7
2
3
8
4−

6
2
6
8
8
2
4
8
a
),

8
0
0
0

(
1
2
8
0
2
1
3
3
6−

1
8
8
7
5
7
1
6
a

4
9

,
2
0
4
7
0
8
1
3
9
9
2
4
0−

3
0
1
8
2
5
6
8
5
9
1
2
a

3
4
3

)
(2

9
2
0
2
0−

4
3
0
5
6
a
,0

),
–
,

(1
6
0
6
1
1
0−

2
3
6
8
0
8
a
,2

8
6
9
9
1
3
5
9
2−

4
2
3
1
4
5
6
7
4
a
)

2
8
7
4
9
6

4
−

ε
3

〈(−
2
9
2
0
2
0

+
4
3
0
5
6
a
,0

),2〉
1

(
1
0
4
4
8
2
3
2
2
5−

1
5
4
0
5
0
7
8
0
a

6
0
8
4

,
1
1
6
1
7
7
0
5
0
4
5
8
2
1
7−

1
7
1
2
9
3
7
1
5
7
9
8
6
6
a

4
7
4
5
5
2

)
(−

2
9
2
0
2
0

+
4
3
0
5
6
a
,0

)
–

5
ε̄
2

O
0

–
–

–
6

−
ε̄
2

O
1

(8
6
0
0

+
1
2
6
8
a
,−

1
5
1
5
0
6
4−

2
2
3
3
8
4
a
)

(8
6
0
0

+
1
2
6
8
a
,−

1
5
1
5
0
6
4−

2
2
3
3
8
4
a
)

−
1
2
8
0−

1
2
8
a

7
a

ε
O

≤
1

?
?

?
8

−
ε

O
0

–
–

–
9

C
o
n
ju

g
a
te

to
#

5
1
0

C
o
n
ju

g
a
te

to
#

6
1
1

C
o
n
ju

g
a
te

to
#

7
1
2

C
o
n
ju

g
a
te

to
#

8

C
o
n
je

ctu
re

:
N

o
ellip

tic
cu

rve
over

Q
(√

46)
w

ith
every

w
h
ere

go
o
d

red
u
ction

ex
ists.

aW
e

cannot
find

a
M

ordell–W
eil

basis
for

E
w
(Q

(√
46))

due
to

the
diffi

culty
in

searching
for

a
point

on
the

curve.
A

ny
elliptic

curve
w

ith
everyw

here
good

reduction,
if

exists,
w

ill
arise

only
from

this
case.

5.4. Elliptic Curves with Everywhere Good Reduction 139

T
ab

le
5.

16
:

F
in

d
in

g
el

li
p
ti

c
cu

rv
es

ov
er
Q

(√
51

)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

(a
=
√ 51

,
ε

=
50
−

7a
,
N

(ε
)

=
1)

#
w

T
or

si
on

R
an

k
M

or
de

ll–
W

ei
l
ba

si
s

In
te

gr
al

po
in

ts
j
6=

0,
17

28
1

1
〈(1

2,
0)

,2
〉

0
–

–
–

2
ε3

〈(6
00
−

84
a
,0

),
2〉

1
(1

00
0
−

14
0a

,3
95

92
−

55
44

a
)

(1
00

0
−

14
0a

,3
95

92
−

55
44

a
),

80
00

(6
00
−

84
a
,0

),
–,

(3
30

0
−

46
2a

,−
26

72
46

+
37

42
2a

)
28

74
96

3
−1

〈(−
12

,0
),

2〉
0

–
–

–
4

−ε
3

〈(−
60

0
+

84
a
,0

),
2〉

1
(1

3
5
0
0
0
−

1
8
9
0
0
a

1
7

,
2
8
9
2
4
7
1
1
2
−

4
0
5
0
2
6
1
6
a

2
8
9

)
(−

60
0

+
84

a
,0

)
–

5
ε2

O
0

–
–

–
6

ε̄
O

1
(1

00
0
−

84
a
,2

80
00
−

50
40

a
)

(1
00

0
−

84
a
,2

80
00
−

50
40

a
)

2
0
4
7
3
3
7
6
1
7
2
8
−

2
8
6
6
8
3
7
1
2
0
0
a

7
−ε

2
O

0
–

–
–

8a
−ε̄

O
≤

1
?

?
?

9
C

on
ju

ga
te

to
#

5
10

C
on

ju
ga

te
to

#
6

11
C

on
ju

ga
te

to
#

7
12

C
on

ju
ga

te
to

#
8

C
o
n
je

ct
u
re

:
N

o
el

li
p
ti

c
cu

rv
e

ov
er
Q

(√
51

)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

ex
is

ts
.

a
W

e
ca

nn
ot

fin
d

a
M

or
de

ll–
W

ei
l
ba

si
s

fo
r

E
w
(Q

(√
51

))
du

e
to

th
e

di
ffi

cu
lt
y

in
se

ar
ch

in
g

fo
r

a
po

in
t

on
th

e
cu

rv
e.

A
ny

el
lip

ti
c

cu
rv

e
w

it
h

ev
er

yw
he

re
go

od
re

du
ct

io
n,

if
ex

is
ts

,
w

ill
ar

is
e

on
ly

fr
om

th
is

ca
se

.

140 Chapter 5. Applications

T
ab

le
5.17:

F
in

d
in

g
ellip

tic
cu

rves
over

Q
(√

55)
w

ith
every

w
h
ere

go
o
d

red
u
ction

(a
=
√

55,
ε

=
89

+
12a

,N
(ε)

=
1)

#
w

T
orsion

R
ank

M
ordell–W

eil
basis

Integral
points

j6=
0
,1728

1
1

〈(12,0),2〉
1

(
1
3
1
7
4
8
2
1
1
3
2
6
6
5
9

5
1
2
4
5
6
6
3
2
2
0
0
0

,
4
3
2
1
4
9
2
0
2
1
3
4
6
8
3
8
6
9
0
1
7
a

2
5
9
4
0
0
4
2
2
6
5
3
3
1
8
0
0
0
0
0

)
(12,0)

–
2

ε
3

〈(1068
+

144a
,0),2〉

1
(

1
4
4
7
0
5
1
+

1
9
5
1
0
8
a

1
0
0

,
2
4
6
1
1
2
0
0
4
6
+

3
3
1
8
5
7
4
7
7
a

1
0
0
0

)
(1068

+
144

a
,0)

–
3

−
1

〈(−
12,0),2〉

1
(

8
9
9

8
0

, −
1
2
1
0
3
a

1
6
0
0

)
(−

12
,0)

–
4

−
ε
3

〈(−
1068−

144a
,0),2〉

1
(2848

+
384a

,220528
+

29736
a)

(2848
+

384
a
,220528

+
29736

a),
−

32768,
(−

1068−
144

a
,0)

–
5

ε
2

O
0

–
–

–
6

ε̄
O

0
–

–
–

7
−

ε
2

O
0

–
–

–
8

−
ε̄

O
0

–
–

–
9

C
onjugate

to
#

5
10

C
onjugate

to
#

6
11

C
onjugate

to
#

7
12

C
onjugate

to
#

8

C
o
n
clu

sio
n
:

N
o

ellip
tic

cu
rve

over
Q

(√
55)

w
ith

every
w

h
ere

go
o
d

red
u
ction

ex
ists.

5.4. Elliptic Curves with Everywhere Good Reduction 141

T
ab

le
5.

18
:

F
in

d
in

g
el

li
p
ti

c
cu

rv
es

ov
er
Q

(√
59

)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

(a
=
√ 59

,
ε

=
53

0
+

69
a
,
N

(ε
)

=
1)

#
w

T
o
rs

io
n

R
a
n
k

M
o
rd

el
l–

W
ei

l
b
a
si

s
In

te
g
ra

l
p
o
in

ts

1
1

〈(1
2
,0

),
2
〉

1
(1

7
4
3
0
9
8
9
2
2
6
3
8
9
1
2
3
5
4
4
5
9

1
4
5
2
5
5
6
0
6
3
1
2
8
8
3
4
2
4
4
0
0

,
6
9
9
2
2
7
0
0
5
5
6
9
5
4
3
8
3
5
4
0
3
8
7
1
7
1
6
5
9
a

1
7
5
0
6
5
0
1
0
9
3
6
8
0
8
2
9
4
5
0
9
9
6
5
4
4
7
2
0
0
0

)
(1

2
,0

)

2
−1

〈(−
1
2
,0

),
2
〉

1
(−

1
3
3

1
6

,
−

2
8
3
a

6
4

)
(−

1
2
,0

)

3
ε̄3

〈(6
3
6
0
−

8
2
8
a
,0

),
2
〉

2
(1

0
6
0
0
−

1
3
8
0
a
,1

3
6
6
5
6
8
−

1
7
7
9
1
2
a
),

(1
0
6
0
0
−

1
3
8
0
a
,1

3
6
6
5
6
8
−

1
7
7
9
1
2
a
)

(2
7
7
6
6
7
5
9
5
9
8
7
6
2
5
1
9
2
0
8
1
5
0
1
9
7
5
0
−

3
6
1
4
9
1
7
7
5
9
0
8
4
1
7
7
0
2
8
9
8
5
5
9
1
7
5
a

1
0
2
1
3
2
3
5
4
5
1
8
7
3
8
7
5
7
6
0
7
9
6
8

,
(6

3
6
0
−

8
2
8
a
,0

),
2
9
0
7
4
9
7
1
5
4
8
1
8
0
2
5
0
0
1
3
8
8
5
1
6
5
7
0
8
9
4
7
8
5
0
6
6
3
0
2
8
7
−

3
7
8
5
2
3
8
8
7
6
2
9
9
6
8
9
1
9
1
3
2
1
3
0
6
7
3
7
4
9
0
6
2
0
6
1
3
8
9
2
7
a

4
6
1
5
9
3
8
5
0
0
4
1
2
0
7
6
0
6
0
0
5
0
8
2
2
1
5
3
2
1
4
5
4
0
8

)
(3

4
9
8
0
−

4
5
5
4
a
,−

9
2
2
4
3
3
4

+
1
2
0
0
9
0
6
a
)

4
−ε̄

3
〈(−

6
3
6
0

+
8
2
8
a
,0

),
2
〉

2
(1

8
5
5
0
−

2
4
1
5
a

2
,
5
8
1
0
7
3
3
−

7
5
6
4
9
3
a

4

) ,
(−

6
3
6
0

+
8
2
8
a
,0

)
(5

0
0
0
0
2
0
0
−

6
5
0
9
4
6
0
a

5
9

,
3
8
4
0
5
9
1
6
0
5
1
1
2
−

5
0
0
0
0
2
4
3
7
7
5
2
a

3
4
8
1

)
5

a
ε̄2

O
≤

2
?

?
6

−ε̄
2

O
2

(−
5
5
2

+
7
2
a
,1

2
1
6
8
−

1
5
8
4
a
),

(−
5
5
2

+
7
2
a
,1

2
1
6
8
−

1
5
8
4
a
),

(8
3
0
4
−

1
0
8
0
a
,1

0
6
9
5
6
0
−

1
3
9
2
4
8
a
)

(8
3
0
4
−

1
0
8
0
a
,1

0
6
9
5
6
0
−

1
3
9
2
4
8
a
)

(−
6
1
2

+
8
0
a
,−

4
9
1
2

+
6
4
0
a
)

7
a

ε
O

≤
1

?
?

8
−ε

O
1

(1
3
3
4
8
+

1
7
3
4
a

2
2
5

,
3
1
5
7
6
2
2
+

4
1
0
5
2
6
a

3
3
7
5

)
–

9
C

o
n
ju

g
a
te

to
#

5
1
0

C
o
n
ju

g
a
te

to
#

6
1
1

C
o
n
ju

g
a
te

to
#

7
1
2

C
o
n
ju

g
a
te

to
#

8

#
j
6=

0
,1

7
2
8

1
–

2
–

3
8
0
0
0
,
–
,
2
8
7
4
9
6

4
–

5
?

6
−6

3
5
9
0
4
−

8
2
9
4
4
a
,

−3
3
0
5
8
7
1
3
6
−

4
2
5
0
8
8
0
0
a
,

−8
6
8
9
7
2
8
−

1
1
3
1
5
2
0
a

7
?

8
–

C
o
n
je

ct
u
re

:
N

o
el

li
p
ti

c
cu

rv
e

ov
er
Q

(√
59

)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

ex
is

ts
.

a
W

e
ca

nn
ot

fin
d

M
or

de
ll–

W
ei

lb
as

es
fo

r
bo

th
E

w
(Q

(√
59

))
du

e
to

th
e

di
ffi

cu
lt
y

in
se

ar
ch

in
g

fo
r
a

po
in

t
on

bo
th

cu
rv

es
.

A
ny

el
lip

ti
c

cu
rv

es
w

it
h

ev
er

yw
he

re
go

od
re

du
ct

io
n,

if
ex

is
t,

w
ill

ar
is

e
on

ly
fr

om
th

es
e

tw
o

ca
se

s.

142 Chapter 5. Applications

T
ab

le
5.19:

F
in

d
in

g
ellip

tic
cu

rves
over

Q
(√

62)
w

ith
every

w
h
ere

go
o
d

red
u
ction

(a
=
√

62,
ε

=
63

+
8a

,N
(ε)

=
1)

#
w

T
orsion

R
ank

M
ordell–W

eil
basis

Integral
points

j6=
0
,1728

1
1

〈(12,0),2〉
1

(
3
1
1
2
6
4
3
0

1
0
3
4
2
8
9

,
2
1
3
4
3
9
8
2
8
4
2
a

1
0
5
1
8
7
1
9
1
3

)
(12

,0)
–

2
−

1
〈(−

12,0),2〉
0

–
(−

12
,0)

–
3

−
ε̄
3

〈(−
756

+
96

a
,0),2〉

1
(

3
0
4
9
2−

3
8
7
2
a

2
5

,
8
3
7
7
9
3
6−

1
0
6
4
0
0
0
a

1
2
5

)
(−

756
+

96
a
,0)

–
4

ε̄
3

〈(756−
96

a
,0),2〉

2
(1260−

160a
,−

56000
+

7112
a),

(1260−
160

a
,−

56000
+

7112
a),

8000
(

1
8
9
2
0
4
5
9
8
8−

2
4
0
2
5
9
8
0
8
a

6
8
0
6
2
5

,
1
1
5
2
0
1
7
5
5
6
7
4
7
6
8−

1
4
6
3
0
6
5
2
2
3
2
0
0
0
a

5
6
1
5
1
5
6
2
5

)
(756−

96
a
,0),

–,
(4158−

528
a
,378000−

48006
a)

287496
5

a
ε̄
2

O
≤

1
?

?
?

6
−

ε̄
2

O
0

–
–

–
7

a
−

ε
O

≤
1

?
?

?
8

ε
O

0
–

–
–

9
C

onjugate
to

#
5

10
C

onjugate
to

#
6

11
C

onjugate
to

#
7

12
C

onjugate
to

#
8

C
o
n
je

ctu
re

:
N

o
ellip

tic
cu

rve
over

Q
(√

62)
w

ith
every

w
h
ere

go
o
d

red
u
ction

ex
ists.

aW
e

cannot
find

M
ordell–W

eilbases
for

both
E

w
(Q

(√
62))

due
to

the
diffi

culty
in

searching
for

a
point

on
both

curves.
A

ny
elliptic

curves
w

ith
everyw

here
good

reduction,
if

exist,
w

ill
arise

only
from

these
tw

o
cases.

5.4. Elliptic Curves with Everywhere Good Reduction 143

T
ab

le
5.

20
:

F
in

d
in

g
el

li
p
ti

c
cu

rv
es

ov
er
Q

(√
65

)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

(a
=

1
+
√

6
5

2
,
ε

=
9
−

2a
,
N

(ε
)

=
−1

)

#
w

T
o
rs

io
n

R
a
n
k

M
o
rd

el
l–

W
ei

l
b
a
si

s
In

te
g
ra

l
p
o
in

ts
j
6=

0
,1

7
2
8

1
1

〈(1
2
,0

),
2
〉

2
(2

5
7
,5

1
1
−

1
0
2
2
a
),

(2
5
7
,
5
1
1

−
1
0
2
2
a
),

1
6
9
7
4
5
9
3
,

(1
7
,−

7
+

1
4
a
)

(1
7
,
−

7
+

1
4
a
),

(1
2
,0

)
4
9
1
3
,–

2
ε3

〈(1
0
8
−

2
4
a
,0

),
2
〉

2
(2

1
7
−

4
8
a
,−

3
9
9
7

+
8
8
2
a
),

(2
1
7

−
4
8
a

,
−

3
9
9
7

+
8
8
2
a
),

8
0
4
9

−
1
6
6
6
a

(3
3
5
3
−

7
4
1
a

1
6

,
2
4
0
6
6
7
−

5
3
1
2
3
a

6
4

)
(5

9
6
2
2
5

−
1
3
1
5
8
4
a

,
6
1
4
1
0
1
2
1
5

−
1
3
5
5
2
9
4
0
8
a
),

1
6
1
9
2
3
6
9
4
5
2
5
4
1
7

−
3
5
7
3
5
8
3
9
5
7
2
4
8
2
a
,

(1
0
8
−

2
4
a
,0

)
–

3
−1

〈(−
1
2
,0

),
2
〉

0
–

(−
1
2
,0

)
–

4
−ε

3
〈(−

1
0
8

+
2
4
a
,0

),
2
〉

2
(1

9
3
7

+
4
8
0
a
,1

1
2
8
8
9

+
3
3
2
7
8
a
),

(1
9
3
7

+
4
8
0
a

,
1
1
2
8
8
9

+
3
3
2
7
8
a
),

1
2
6
1
8
7
8
5
4
9
5
2
9
3
5

+
3
5
7
3
5
8
3
9
5
7
2
4
8
2
a

(−
7
1

+
1
6
a
,−

1
2
6
7

+
2
8
0
a
)

(−
7
1

+
1
6
a

,
−

1
2
6
7

+
2
8
0
a
),

6
3
8
3

+
1
6
6
6
a
,

(1
0
8
−

2
4
a
,0

)
–

5
ε̄2

O
1

(2
5
9
6
9
+

6
8
4
3
a

4
4
1

,
5
3
4
6
1
2
7
+

1
4
9
3
3
6
1
a

9
2
6
1

)
–

–

6
ε

O
0

–
–

–
7

−ε̄
2

O
1

(−
1
2
−

3
a
,−

2
8
8
−

8
1
a
),

(−
1
2
−

3
a
,−

2
8
8
−

8
1
a
),

4
3
2
−

8
1
a

8
−ε

O
2

(1
4
8

+
2
4
a
,−

1
5
0
4
−

5
7
6
a
),

(1
4
8

+
2
4
a
,−

1
5
0
4
−

5
7
6
a
),

1
1
9
0
5
5
0
4
0

+
3
3
7
2
0
3
2
0
a
,

(2
0
−

3
a
,−

1
2
8

+
3
1
a
)

(2
0
−

3
a
,−

1
2
8

+
3
1
a
)

8
4
8

+
7
4
5
a

9
C

o
n
ju

g
a
te

to
#

5
1
0

C
o
n
ju

g
a
te

to
#

8
1
1

C
o
n
ju

g
a
te

to
#

7
1
2

C
o
n
ju

g
a
te

to
#

6

L
is

t
of

cu
rv

es
a

b

(p
1

=
〈2

,2
+

a
〉,

p
2

=
〈2

,1
+

a
〉)

j
#

a
1

a
2

a
3

a
4

a
6

〈∆
〉

T
o
rs

io
n

R
a
n
k

1
6
9
7
4
5
9
3

1
0

a
0

−9
6
7
5
−

2
7
4
1
a

−5
6
8
5
0
6
−

1
6
0
9
9
8
a

p
1
2

1
p
1
2

2
〈(−

3
7
−

1
1
a
,0

),
2
〉,
〈(−

3
8
−

1
1
a
,0

),
2
〉

≤
2

2
0

2
a

0
−2

7
2
0

+
6
0
1
a

−6
6
8
8
0

+
1
4
7
4
0
a

p
2
4

1
p
1
2

2
〈(−

2
4

+
4
a
,0

),
2
〉,
〈(4

4
−

1
1
a
,0

),
2
〉

≤
2

4
9
1
3

1
0

a
0

−6
3
5
−

1
8
1
a

−8
5
5
4
−

2
4
2
2
a

p
1
2

1
p
1
2

2
〈(−

1
3
−

4
a
,0

),
2
〉,
〈(−

9
−

3
a
,−

2
8
−

8
a
),

4
〉

≤
2

2
0

2
a

0
−1

6
0

+
4
1
a

−5
7
6

+
1
3
2
a

p
2
4

1
p
1
2

2
〈(1

2
−

3
a
,0

),
2
〉,
〈(−

4
,0

),
2
〉

≤
2

8
0
4
9
−

1
6
6
6
a

1
0

2
+

a
0

2
5

+
7
a

−2
8
−

8
a

p
1
2

1
p
1
2

2
〈(1

,0
),

2
〉

≤
2

2
0

1
+

2
a

0
−4

0
8
5

+
9
0
9
a

1
3
4
7
7
1
−

2
9
7
3
5
a

p
2
4

1
p
1
2

2
〈(6

5
−

1
5
a
,5

4
4
−

1
2
0
a
),

4
〉

≤
2

6
3
8
3

+
1
6
6
6
a

1
0

1
+

2
a

0
−1

4
5
3
6
−

4
1
2
0
a

9
0
7
2
8
0

+
2
5
6
9
4
0
a

p
1
2

1
p
1
2

2
〈(5

5
+

1
5
a
,0

),
2
〉

≤
2

2
0

2
+

a
0

−4
−

4
a

−8
+

4
a

p
2
4

1
p
1
2

2
〈(6

,−
4
a
),

4
〉

≤
2

C
on

ti
nu

e.
..

a
N

ot
e

th
at

K
=
Q

(√
65

)
ha

s
cl

as
s

nu
m

be
r

2,
so

w
e

do
no

t
al

w
ay

s
ha

ve
a

gl
ob

al
ly

m
in

im
al

m
od

el
fo

r
el

lip
ti

c
cu

rv
es

de
fin

ed
ov

er
K

.
In

fa
ct

,
th

er
e

is
no

gl
ob

al
ly

m
in

im
al

m
od

el
fo

r
an

y
el

lip
ti

c
cu

rv
es

w
it

h
ev

er
yw

he
re

go
od

re
du

ct
io

n
gi

ve
n

in
th

is
lis

t.
b
T

he
fir

st
fo

ur
cu

rv
es

w
er

e
al

so
fo

un
d

by
C

om
al

ad
a

[C
om

90
,
T

he
or

em
2]

.

144 Chapter 5. Applications

L
ist

of
cu

rves
(con

tin
u
ed

)

p
1

=
〈2,2

+
a〉,

p
2

=
〈2,1

+
a〉

p
3

=
〈1783,119

+
a〉,

p
4

=
〈73,24

+
a〉

p
5

=
〈1783,1663

+
a〉,

p
6

=
〈73,48

+
a〉.

j
=

161923694525417−
35735839572482

a
C

urve
#

1
C

urve
#

2
a
1

1
0

a
2

2
+

a
2a

a
3

2
+

a
0

a
4

−
21468356714742−

6079026789064a
−

333242682087072
+

73355938366985
a

a
6

−
70962492158002003969−

20096248456507716887a
−

3118188486277753575488
+

688087595049844553252
a

〈∆〉
p
1
2

3
p
1
2

4
p
2
4

1
p
1
2

2
p
1
2

3
p
1
2

4

T
orsion

〈 (
1
4
4
4
2
7
9
1
+

4
1
2
3
0
2
8
a

4
, −

1
4
4
4
2
7
9
9−

4
1
2
3
0
3
2
a

8

)
,2〉

〈(−
7417048

+
1878644

a
,0),2〉

R
ank

≤
2

≤
2

j
=

126187854952935
+

35735839572482
a

C
urve

#
1

C
urve

#
2

a
1

1
0

a
2

2a
2a

a
3

2a
0

a
4

−
27547383503792

+
6079026789066

a
−

98182631945888
+

21018349077737
a

a
6

−
91058615802697592007

+
20096220909124213078

a
−

601557702514531595840
+

132331628833007719364
a

〈∆〉
p
1
2

5
p
1
2

6
p
2
4

1
p
1
2

2
p
1
2

5
p
1
2

6

T
orsion

〈 (
1
8
5
6
5
8
2
3−

4
1
2
3
0
3
2
a

4
, −

1
8
5
6
5
8
2
3
+

4
1
2
3
0
2
4
a

8

)
,2〉

〈(8294824−
2049324

a
,0),2〉

R
ank

≤
2

≤
2

C
o
n
clu

sio
n
:

A
ll

ellip
tic

cu
rves

over
Q

(√
65)

w
ith

every
w

h
ere

go
o
d

red
u
ction

h
ave

b
een

fou
n
d
.

5.4. Elliptic Curves with Everywhere Good Reduction 145

T
ab

le
5.

21
:

F
in

d
in

g
el

li
p
ti

c
cu

rv
es

ov
er
Q

(√
67

)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

(a
=
√ 67

,
ε

=
48

84
2

+
59

67
a
,
N

(ε
)

=
1)

#
w

T
or

si
on

R
an

k
M

or
de

ll–
W

ei
l
ba

si
s

In
te

gr
al

po
in

ts
j
6=

0,
17

28
1

1
〈(1

2,
0)

,2
〉

1
(1

3
0
3
6

4
4
1

,
−

1
7
5
6
4
8
a

9
2
6
1

)
(1

2,
0)

–
2

−1
〈(−

12
,0

),
2〉

1
(−

5
8
4

4
9

,
−

2
4
8
a

3
4
3

)
(5

28
0,

46
87

2a
),

(−
12

,0
)

−1
47

19
79

52
00

0,
–

3a
ε3

〈(5
86

10
4

+
71

60
4a

,0
),

2〉
≤

2
?

?
?

4a
−ε

3
〈(−

58
61

04
−

71
60

4a
,0

),
2〉

≤
2

?
?

?
5a

ε2
O

≤
1

?
?

?
6

−ε
2

O
1

(−
53

04
−

64
8a

,1
95

54
48

+
23

88
96

a
)

(−
53

04
−

64
8a

,1
95

54
48

+
23

88
96

a
)

−6
11

02
08

+
74

64
96

a
7

ε̄
O

0
–

–
–

8
−ε̄

O
0

–
–

–
9

C
on

ju
ga

te
to

#
5

10
C

on
ju

ga
te

to
#

6
11

C
on

ju
ga

te
to

#
7

12
C

on
ju

ga
te

to
#

8

C
o
n
je

ct
u
re

:
N

o
el

li
p
ti

c
cu

rv
e

ov
er
Q

(√
67

)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

ex
is

ts
.

a
W

e
ca

nn
ot

fin
d

M
or

de
ll–

W
ei

l
ba

se
s

fo
r

E
w
(Q

(√
67

))
du

e
to

th
e

di
ffi

cu
lt
y

in
se

ar
ch

in
g

fo
r

a
po

in
t

on
th

es
e

cu
rv

es
.

A
ny

el
lip

ti
c

cu
rv

es
w

it
h

ev
er

yw
he

re
go

od
re

du
ct

io
n,

if
ex

is
t,

w
ill

ar
is

e
on

ly
fr

om
th

es
e

th
re

e
ca

se
s.

146 Chapter 5. Applications

T
ab

le
5.22:

F
in

d
in

g
ellip

tic
cu

rves
over

Q
(√

78)
w

ith
every

w
h
ere

go
o
d

red
u
ction

(a
=
√

78,
ε

=
53

+
6a

,N
(ε)

=
1)

#
w

T
orsion

R
ank

M
ordell–W

eil
basis

Integral
points

j6=
0
,1728

1
1

〈(12,0),2〉
2

(36,24a), (
1
3
5

8
,

2
0
1
a

3
2

)
(36

,24
a),

46656,
(12

,0),
–,

(30,−
18a),

27000,
(3756

,−
26064

a)
52987905216

2
ε̄
3

〈(636−
72

a
,0),2〉

1
(

1
1
5
1
6
9−

1
3
0
3
8
a

5
0

,
7
7
3
3
1
2
5
4−

8
7
5
6
0
5
5
a

5
0
0

)
(636−

72
a
,0)

–
3

−
1

〈(−
12,0),2〉

1
(

1
52
,

2
1
a

4

)
(−

12
,0)

–
4

−
ε̄
3

〈(1272−
144

a
,

2
(−

212
+

24
a
,22256−

2520
a),

(−
212

+
24

a
,22256−

2520
a),

64,
−

68040
+

7704
a),6〉

(−
5
8
3
+

6
6
a

2
,

8
6
2
4
2−

9
7
6
5
a

4

)
(152428−

17256
a
,−

84149936
+

9528120
a)

−
23788477376,

(1272−
144

a
,−

68040
+

7704
a),

−
13824,

(0
,−

22680
+

2568
a),

–,
(22680−

2568
a
,4830408−

546936
a),

−
39191040

+
4437504

a,
(−

636
+

72
a
,0),

–,
(2226−

252a
,−

150228
+

17010
a)

−
74088,

(0,22680−
2568

a),
–,

(216−
24

a
,−

23112
+

2616
a),

−
39191040−

4437504
a,

(1272−
144

a
,68040−

7704
a)

−
13824

5
ε
2

O
0

–
–

–
6

ε̄
O

1
(

3
0
3
0
4−

3
3
5
6
a

1
2
1

,
7
3
2
4
4
0
8−

8
3
1
1
6
8
a

1
3
3
1

)
–

–
7

−
ε
2

O
1

(120
+

12
a
,2808

+
312

a)
(120

+
12

a
,2808

+
312

a)
−

15475968
+

1752192
a

8
−

ε̄
〈(0,216−

24a),3〉
0

–
(0,216−

24a),(0
,−

216
+

24
a)

–,–
9

C
onjugate

to
#

5
10

C
onjugate

to
#

6
11

C
onjugate

to
#

7
12

C
onjugate

to
#

8

C
o
n
clu

sio
n
:

N
o

ellip
tic

cu
rve

over
Q

(√
78)

w
ith

every
w

h
ere

go
o
d

red
u
ction

ex
ists.

5.4. Elliptic Curves with Everywhere Good Reduction 147

T
ab

le
5.

23
:

F
in

d
in

g
el

li
p
ti

c
cu

rv
es

ov
er
Q

(√
87

)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

(a
=
√ 87

,
ε

=
28

+
3a

,
N

(ε
)

=
1)

#
w

T
or

si
on

R
an

k
M

or
de

ll–
W

ei
l
ba

si
s

In
te

gr
al

po
in

ts
j
6=

0,
17

28
1

1
〈(1

2,
0)

,2
〉

0
–

–
–

2
−ε

3
〈(−

33
6
−

36
a
,0

),
2〉

1
(1

68
+

18
a
,9

23
4

+
99

0a
)

(1
68

+
18

a
,9

23
4

+
99

0a
),

−2
16

,
(−

33
6
−

36
a
,0

),
–,

(3
36

+
36

a
,−

12
31

2
−

13
20

a
),

−1
72

8,
(7

72
8

+
82

8a
,9

60
33

6
+

10
29

60
a
)

−2
10

24
57

6
3

−1
〈(−

12
,0

),
2〉

0
–

(−
12

,0
)

–
4

ε3
〈(3

36
+

36
a
,0

),
2〉

1
(7

9
6
4
4
8
4
0
8
0
+

8
5
3
3
3
7
5
8
0
a

9
4
2
2
1

,
5
4
1
0
5
9
5
9
3
2
1
2
2
9
2
0
+

5
8
0
0
7
0
1
5
9
4
9
4
0
5
6
a

1
5
5
7
4
7
3
1
3

)
(3

36
+

36
a
,0

)
–

5
ε2

O
0

–
–

–
6

−ε̄
O

1
(2

1
7
7
7
6
−

2
1
9
2
4
a

6
2
4
1

,
1
5
8
7
4
0
1
2
8
−

1
6
6
8
2
3
0
4
a

4
9
3
0
3
9

)
–

–
7

−ε
2

O
0

–
–

–
8a

ε̄
O

≤
1

?
?

?
9

C
on

ju
ga

te
to

#
5

10
C

on
ju

ga
te

to
#

6
11

C
on

ju
ga

te
to

#
7

12
C

on
ju

ga
te

to
#

8

C
o
n
je

ct
u
re

:
N

o
el

li
p
ti

c
cu

rv
e

ov
er
Q

(√
87

)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

ex
is

ts
.

a
W

e
ca

nn
ot

fin
d

a
M

or
de

ll–
W

ei
l
ba

si
s

fo
r

E
w
(Q

(√
87

))
du

e
to

th
e

di
ffi

cu
lt
y

in
se

ar
ch

in
g

fo
r

a
po

in
t

on
th

e
cu

rv
e.

A
ny

el
lip

ti
c

cu
rv

e
w

it
h

ev
er

yw
he

re
go

od
re

du
ct

io
n,

if
ex

is
ts

,
w

ill
ar

is
e

on
ly

fr
om

th
is

ca
se

.

148 Chapter 5. Applications

T
ab

le
5.24:

F
in

d
in

g
ellip

tic
cu

rves
over

Q
(√

95)
w

ith
every

w
h
ere

go
o
d

red
u
ction

(a
=
√

95,
ε

=
39

+
4a

,N
(ε)

=
1)

#
w

T
orsion

R
ank

M
ordell–W

eil
basis

Integral
points

j6=
0
,1728

1
1

〈(12,0),2〉
1

(
8
2
3
5
1
6

1
7
4
0
5

,
1
7
0
0
4
3
3
2
8
a

5
1
3
4
4
7
5

)
(12,0)

–
2

ε̄
3

〈(468−
48

a
,0),2〉

1
(

9
6
3
6
2
7
6−

9
8
8
3
3
6
a

2
0
2
5

,
4
2
2
7
3
1
0
7
2
9
6−

4
3
3
7
1
4
7
5
8
4
a

9
1
1
2
5

)
(468−

48
a
,0)

–
3

−
1

〈(−
12,0),2〉

1
(

1
5
6
9
6
4

3
6
4
5

,
1
4
4
2
0
2
2
4
a

4
9
2
0
7
5

)
(−

12
,0)

–
4

−
ε̄
3

〈(−
468

+
48

a
,0),2〉

1
(−

312
+

32
a
,12008−

1232
a)

(−
312

+
32

a
,12008−

1232
a),

512,
(−

468
+

48
a
,0),

–,
(3744−

384
a
,−

324216
+

33264
a)

−
884736

5
ε̄
2

O
0

–
–

–
6

ε
O

0
–

–
–

7
−

ε̄
2

O
0

–
–

–
8

−
ε

O
0

–
–

–
9

C
onjugate

to
#

5
10

C
onjugate

to
#

6
11

C
onjugate

to
#

7
12

C
onjugate

to
#

8

C
o
n
clu

sio
n
:

N
o

ellip
tic

cu
rve

over
Q

(√
95)

w
ith

every
w

h
ere

go
o
d

red
u
ction

ex
ists.

5.4. Elliptic Curves with Everywhere Good Reduction 149

5.4.3 Examples II: Imaginary Quadratic Fields

In this subsection, we will illustrate a similar computation on finding elliptic curves

with everywhere good reduction over K = Q(
√−d) for 2 ≤ d ≤ 100. Most cases,

as mentioned in another Cremona’s table6, have been already proved by various

mathematicians, including:

• Kida [Kid01, Theorem 1] has proved non-existence of such curve for d = 35,

37, 51, and 91.

• Setzer has proved non-existence for several d up to 161; see [Set78, Theorem

4(a)] for the complete list. He has also showed existence of elliptic curves with

everywhere good reduction for d = 65 [Set78, Theorem 4(b)].

• Cremona has used his joint method [CL07] to confirm non-existence of such

curve for d = 23.

In general, we also have the following theorem due to Setzer.

Theorem 5.4.5 ([Set78, Theorem 5]). If the class number of K = Q(
√−d) (d > 0)

is prime to 6, then there is no elliptic curve over K with everywhere good reduction.

Using all the main results we have so far to assist in computing Mordell–Weil

bases and integral points, we are eventually able to use Cremona and Lingham’s

method to show non-existence of elliptic curves with everywhere good reduction over

more imaginary quadratic fields in addition to the above results7. To be precise, we

obtain the following conclusion from our tables to be shown in the following pages.

Proposition 5.4.6. For d = 26, 29, 31, 59, 83, 87, there is no elliptic curve defined

over Q(
√−d) with everywhere good reduction.

Proof. See Table 5.25, 5.26, 5.27, 5.30, 5.32, 5.33; note that we cannot use Theorem

5.4.5 since these imaginary quadratic fields have class number not prime to 6.

6Available at http://www.warwick.ac.uk/~masgaj/ecegr/egr imag.txt (last checked on
November 30, 2010).

7Except at d = 89, due to the difficulty in finding Mordell–Weil bases for most Ew(K).

150 Chapter 5. Applications

T
ab

le
5.25:

F
in

d
in

g
ellip

tic
cu

rves
over

Q
(√−

26)
w

ith
every

w
h
ere

go
o
d

red
u
ction

(a
=
√−

26)

#
w

T
orsion

R
ank

M
ordell–W

eil
basis

Integral
points

j6=
0
,1728

1
1

〈(12,0),2〉
2

(4,8a), (
1
12
,

3
1
a

4

)
(4

,8a),(12,0),
64,

–,
(−

2876,30248
a),

−
23788477376,

(−
42

,54
a)

−
74088

2
−

1
〈(−

12,0),2〉
1

(−
2
1
7
3

5
0

,
2
7
7
9
7
a

5
0
0

)
(−

12
,0)

–
3

(1
+

a)
2

O
1

(−
1
5
2
2
0
+

2
8
8
8
a

9
6
1

, −
6
7
1
7
5
6
8
+

1
2
5
5
2
8
a

2
9
7
9
1

)
–

–
4

−
(1

+
a)

2
O

0
–

–
–

5
C

onjugate
to

#
3

6
C

onjugate
to

#
4

C
o
n
clu

sio
n
:

N
o

ellip
tic

cu
rve

over
Q

(√−
26)

w
ith

every
w

h
ere

go
o
d

red
u
ction

ex
ists.

5.4. Elliptic Curves with Everywhere Good Reduction 151

T
ab

le
5.

26
:

F
in

d
in

g
el

li
p
ti

c
cu

rv
es

ov
er
Q

(√
−2

9)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

(a
=
√ −

29
)

#
w

T
or

si
on

R
an

k
M

or
de

ll–
W

ei
l
ba

si
s

In
te

gr
al

po
in

ts
j
6=

0,
17

28
1

1
〈(1

2,
0)

,2
〉

0
–

(1
2,

0)
–

2
−1

〈(−
12

,0
),

2〉
0

–
(−

12
,0

)
–

3
−7

21
+

20
a

O
1

(3
56

+
80

a
,3

28
0

+
23

68
a
)

(3
56

+
80

a
,3

28
0

+
23

68
a
)

22
47

04
−

15
36

0a
4

72
1
−

20
a

O
1

(1
88
−

16
a
,−

21
92

+
35

2a
)

(1
88
−

16
a
,−

21
92

+
35

2a
)

50
56
−

20
48

a
5

C
on

ju
ga

te
to

#
3

6
C

on
ju

ga
te

to
#

4

C
o
n
cl

u
si

o
n
:

N
o

el
li
p
ti

c
cu

rv
e

ov
er
Q

(√
−2

9)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

ex
is

ts
.

152 Chapter 5. Applications

T
ab

le
5.27:

F
in

d
in

g
ellip

tic
cu

rves
over

Q
(√−

31)
w

ith
every

w
h
ere

go
o
d

red
u
ction

(a
=

1
+ √

−
3
1

2
)

#
w

T
orsion

R
ank

M
ordell–W

eil
basis

Integral
points

j6=
0
,1728

1
1

〈(12,0),2〉
1

(−
4
8
4

2
5

, −
2
1
2
8
+

4
2
5
6
a

1
2
5

)
(12

,0)
–

2
−

1
〈(−

12
,0),2〉

1
(−

3
0
0
3
2
4
7
6

6
8
0
6
2
5

, −
2
9
2
6
1
3
0
4
4
6
4
+

5
8
5
2
2
6
0
8
9
2
8
a

5
6
1
5
1
5
6
2
5

)
(−

12,0)
–

3
−

8
+

a
O

0
–

–
–

4
8−

a
O

0
–

–
–

5
C

onjugate
to

#
3

6
C

onjugate
to

#
4

C
o
n
clu

sio
n
:

N
o

ellip
tic

cu
rve

over
Q

(√−
31)

w
ith

every
w

h
ere

go
o
d

red
u
ction

ex
ists.

5.4. Elliptic Curves with Everywhere Good Reduction 153

T
ab

le
5.

28
:

F
in

d
in

g
el

li
p
ti

c
cu

rv
es

ov
er
Q

(√
−3

8)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

(a
=
√ −

38
)

#
w

T
or

si
on

R
an

k
M

or
de

ll–
W

ei
l
ba

si
s

In
te

gr
al

po
in

ts
j
6=

0,
17

28
1

1
〈(1

2,
0)

,2
〉

2
(−

20
,1

6a
),

(−
20

,1
6a

),
−8

00
0,

(1
0 9
,
−

1
8
2
a

2
7

)
(1

2,
0)

,
–,

(−
10

14
,5

23
8a

)
−1

04
25

90
74

4
2

−1
〈(−

12
,0

),
2〉

1
(−

1
1
9
1
8
0

9
6
1

,
6
6
7
1
3
9
2
a

2
9
7
9
1

)
(−

12
,0

)
–

3a
(8
−

2a
)2

O
≤

1
?

?
?

4
−(

8
−

2a
)2

O
0

–
–

–
5

C
on

ju
ga

te
to

#
3

6
C

on
ju

ga
te

to
#

4

C
o
n
je

ct
u
re

:
N

o
el

li
p
ti

c
cu

rv
e

ov
er
Q

(√
−3

8)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

ex
is

ts
.

a
W

e
ca

nn
ot

fin
d

a
M

or
de

ll–
W

ei
l
ba

si
s

fo
r

E
w
(Q

(√
−3

8)
)

du
e

to
th

e
di

ffi
cu

lt
y

in
se

ar
ch

in
g

fo
r

a
po

in
t

on
th

e
cu

rv
e.

A
ny

el
lip

ti
c

cu
rv

e
w

it
h

ev
er

yw
he

re
go

od
re

du
ct

io
n,

if
ex

is
ts

,
w

ill
ar

is
e

on
ly

fr
om

th
is

ca
se

.

154 Chapter 5. Applications

T
ab

le
5.29:

F
in

d
in

g
ellip

tic
cu

rves
over

Q
(√−

53)
w

ith
every

w
h
ere

go
o
d

red
u
ction

(a
=
√−

53)

#
w

T
orsion

R
ank

M
ordell–W

eil
basis

Integral
points

j6=
0
,1728

1
1

〈(12,0),2〉
0

–
(12,0)

–
2

−
1

〈(−
12,0),2〉

0
–

(−
12

,0)
–

3
a

−
208−

8a
O

1
,2

P
1

=
(−

64−
8
a
,−

896
+

32
a),

?
(−

64−
8a

,−
896

+
32

a),
?

−
1088

+
384

a,
?

4
a

208
+

8
a

O
1
,2

P
2

=
(−

16
+

16
a
,−

976
+

112
a),

?
(−

16
+

16
a
,−

976
+

112
a),

?
1024−

1024
a,

?
5

C
onjugate

to
#

3
6

C
onjugate

to
#

4

C
o
n
je

ctu
re

:
N

o
ellip

tic
cu

rve
over

Q
(√−

53)
w

ith
every

w
h
ere

go
o
d

red
u
ction

ex
ists.

aO
ne

can
check

using
M

A
G

M
A

that
the

rank
r

of
each

E
w
(K

)
is

at
m

ost
3.

B
y

applying
2-descent

tw
ice

(using
M

A
G

M
A

code
im

plem
ented

by
N

ils
B

ruin),
currently

w
e

can
show

that
3

out
of

7
non-trivial

elem
ents

of
the

2-Selm
er

group
have

hom
ogeneous

spaces
w

ith
no

rational
points,

hence
r≤

2.
Since

w
e

can
find

a
non-torsion

point,
then

1≤
r≤

2.
N

ote
that

if
the

P
arity

C
onjecture

is
true,

then
r

=
1,

and
each

E
w
(K

)
w

ill
be

generated
by

P
1 ,P

2

respectively.

5.4. Elliptic Curves with Everywhere Good Reduction 155

T
ab

le
5.

30
:

F
in

d
in

g
el

li
p
ti

c
cu

rv
es

ov
er
Q

(√
−5

9)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

(a
=

1
+
√
−5

9
2

)

#
w

T
or

si
on

R
an

k
M

or
de

ll–
W

ei
l
ba

si
s

In
te

gr
al

po
in

ts
j
6=

0,
17

28
1

1
〈(1

2,
0)

,2
〉

1
(2

4
+

4a
,9

6
+

32
a
)

(2
4

+
4a

,9
6

+
32

a
),

−4
41

6
+

71
68

a
(1

2,
0)

,
–,

(2
8
−

4a
,−

12
8

+
32

a
)

27
52
−

71
68

a

2
−1

〈(−
12

,0
),

2〉
1

(8
9
6
8
0
5
6
4
2
6
0
+

9
2
6
4
0
1
9
6
a

1
0
2
1
4
1
3
4
2
2
5

,
−

5
0
6
2
2
5
1
5
7
2
8
6
5
9
8
4
0
−

2
2
0
9
5
0
5
7
3
0
6
7
8
4
a

1
0
3
2
2
9
1
4
7
5
4
4
9
6
2
5

)
(−

12
,0

)
–

3
−6

+
7a

O
2

(2
1

+
13

a
,−

12
3

+
11

2a
),

(2
1

+
13

a
,−

12
3

+
11

2a
),

−6
71

+
17

85
a
,

(−
24
−

8a
,3

12
−

40
a
)

(−
24
−

8a
,3

12
−

40
a
),

−1
53

6
−

51
2a

,
(4

8
+

16
a
,−

12
0
−

18
4a

),
12

28
8

+
40

96
a
,

(1
2
−

8a
,−

96
+

40
a
)

83
2

+
19

2a
4a

6
−

7a
O

0
–

–
–

5
C

on
ju

ga
te

to
#

3
6

C
on

ju
ga

te
to

#
4

C
o
n
cl

u
si

o
n
:

N
o

el
li
p
ti

c
cu

rv
e

ov
er
Q

(√
−5

9)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

ex
is

ts
.

a
O

ne
ca

n
ch

ec
k

us
in

g
M

A
G

M
A

th
at

th
e

ra
nk

r
of

E
w
(K

)
is

at
m

os
t

2.
B

y
ap

pl
yi

ng
2-

de
sc

en
t

tw
ic

e,
w

e
ca

n
sh

ow
th

at
on

ly
on

e
no

n-
tr

iv
ia

l
ca

se
ex

is
ts

,
he

nc
e

r
=

0.

156 Chapter 5. Applications

T
ab

le
5.31:

F
in

d
in

g
ellip

tic
cu

rves
over

Q
(√−

61)
w

ith
every

w
h
ere

go
o
d

red
u
ction

(a
=
√−

61)

#
w

T
orsion

R
ank

M
ordell–W

eil
basis

Integral
points

j6=
0
,1728

1
1

〈(12
,0),2〉

2
(

7
6
4
4

9
6
1

, −
1
3
3
4
8
8
a

2
9
7
9
1

),
(12,0)

–
(

1
3
1

2
5

, −
6
3
7
a

1
2
5

)
2

a
−

1
〈(−

12,0),2〉
≤

2
?

(−
12,0),

?
–,

?
3

a
3−

16a
O

≤
1

?
?

?
4

−
3

+
16

a
O

1
(−

216−
48

a
,−

9000)
(−

216−
48

a
,−

9000)
−

13824−
82944

a
5

C
onjugate

to
#

3
6

C
onjugate

to
#

4

C
o
n
je

ctu
re

:
N

o
ellip

tic
cu

rve
over

Q
(√−

61)
w

ith
every

w
h
ere

go
o
d

red
u
ction

ex
ists.

aW
e

cannot
find

M
ordell–W

eil
bases

for
both

E
w
(Q

(√−
61))

due
to

the
diffi

culty
in

searching
for

a
point

on
both

curves.
A

ny
elliptic

curves
w

ith
everyw

here
good

reduction,
if

exist,
w

ill
arise

only
from

these
tw

o
cases.

5.4. Elliptic Curves with Everywhere Good Reduction 157

T
ab

le
5.

32
:

F
in

d
in

g
el

li
p
ti

c
cu

rv
es

ov
er
Q

(√
−8

3)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

(a
=

1
+
√
−8

3
2

)

#
w

T
or

si
on

R
an

k
M

or
de

ll–
W

ei
l
ba

si
s

In
te

gr
al

po
in

ts
j
6=

0,
17

28
1

1
〈(1

2,
0)

,2
〉

1
(4

a
,−

48
+

16
a
)

(4
a
,−

48
+

16
a
),

(1
2,

0)
,

−1
34

4
−

12
80

a
,
–

(4
−

4a
,3

2
+

16
a
)

−2
62

4
+

12
80

a

2
−1

〈(−
12

,0
),

2〉
1

(6
5
3
5
4
1
6
5
7
7
4
6
0
1
4
2
4
0
−

6
9
4
2
6
5
0
5
2
6
9
3
9
8
4
4
a

7
4
0
3
8
0
4
5
9
3
0
6
4
7
5
6
1

,
(−

12
,0

)
–

−
9
8
9
3
8
6
3
7
1
0
0
8
2
5
1
1
1
5
6
8
4
6
4
7
8
5
6
+

4
4
5
4
5
8
6
1
1
4
5
1
0
5
8
2
3
3
3
4
4
0
9
1
2
a

2
0
1
4
5
7
0
2
7
6
6
2
7
6
4
7
3
7
4
4
8
8
1
6
9
1

)
3

−1
2
−

5a
O

0
–

–
–

4
12

+
5a

O
2

(−
17

40
+

76
a
,1

38
72

+
15

17
6a

),
(−

1
7
4
0

+
7
6
a
,1

3
8
7
2

+
1
5
1
7
6
a
)

−1
4
4
8
0
4
4
8

+
4
2
5
7
4
4
0
0
a

(9
6

+
4a

,9
12

+
56

a
)

(9
6

+
4a

,9
12

+
56

a
)

34
75

2
−

35
20

a
5

C
on

ju
ga

te
to

#
3

6
C

on
ju

ga
te

to
#

4

C
o
n
cl

u
si

o
n
:

N
o

el
li
p
ti

c
cu

rv
e

ov
er
Q

(√
−8

3)
w

it
h

ev
er

y
w

h
er

e
go

o
d

re
d
u
ct

io
n

ex
is

ts
.

158 Chapter 5. Applications

T
ab

le
5.33:

F
in

d
in

g
ellip

tic
cu

rves
over

Q
(√−

87)
w

ith
every

w
h
ere

go
o
d

red
u
ction

(a
=

1
+ √

−
8
7

2
)

#
w

T
orsion

R
ank

M
ordell–W

eil
basis

Integral
points

j6=
0
,1728

1
1

〈(12,0),2〉
0

–
(12,0)

–
2

−
1

〈(−
12,0),2〉

0
–

(−
12

,0)
–

3
a

14
+

13
a

O
0

–
–

–
4
b

−
14−

13a
O

2
P

1
=

(−
66−

3a
,−

138
+

105
a),

(−
66−

3a
,−

138
+

105
a)

4455−
648

a
P

2
=

(−
9
3−

2
1
a

4
,

2
1
5
7
+

2
1
3
a

8

)
5

C
onjugate

to
#

3
6

C
onjugate

to
#

4

C
o
n
clu

sio
n
:

N
o

ellip
tic

cu
rve

over
Q

(√−
87)

w
ith

every
w

h
ere

go
o
d

red
u
ction

ex
ists.

aO
ne

can
check

using
M

A
G

M
A

that
the

rank
r

of
E

w
(K

)
is

at
m

ost
2.

B
y

applying
2-descent

tw
ice,

w
e

can
show

that
only

one
non-trivial

case
exists,

hence
r

=
0.

bN
ote

that
the

sieving
procedure

fails
at

p
=

29;
in

w
hich

case
w

e
prove

that
[E

w
(K

)
:〈P

1 ,P
2 〉]6=

29
by

solving
29-division

polynom
ial

explicitly.

Appendix A

MAGMA Source Code

As mentioned earlier, we have implemented our algorithms based on the main results

of this thesis in MAGMA. For convenience, we shall split our source code into several

files according to their applications.

A.1 Period Lattices and Complex Elliptic Loga-

rithms

We have implemented all necessary functions for computing complex arithmetic-

geometric mean (AGM), period lattices of elliptic curves over C, and elliptic log-

arithms of complex points (see Chapter 4). In the following file, some important

functions include:

AGM() This function computes an AGM of two complex numbers based on a spec-

ified set of all indices for which the pair in the AGM sequence is bad.

PeriodLattice() Given an elliptic curve E/C, this function will compute all three

minimal coset representatives of Λ modulo 2Λ, where Λ is the period lattice

of E. Any two of these minimal coset representatives form a Z-basis for Λ.

159

160 Appendix A. MAGMA Source Code

EllipticLog() Given an elliptic curve E/C and a point P ∈ E(C), this function

computes an elliptic logarithm of P .

For more details on these functions, see the documentation inside the code.

/**

* elog.m

* Computing Complex AGM, Period lattices, and Complex Elliptic Logarithms

* By Thotsaphon Thongjunthug

* Last updated: 02 December 2010

* Any errors should be reported to <nookaussie@yahoo.com>

***/

declare verbose Elog, 1; // 0 = no printing, 1 = print more details

/**

* Main intrinsic functions

***/

/**

* Given a, b, compute AGM(a, b) based on the AGM sequence having (finite

* number of) bad pairs specified by S.

* Input:

* a, b = two complex numbers

* S = the set of all indices at which the pair in the AGM sequence is bad

* Output:

* Complex AGM of a, b, subject to |a_n - b_n| < 10^-Prec

* Parameter:

* Prec = precision used as the stopping criterion

* (should be less than the precision of a, b to avoid infinite loop

**/

intrinsic AGM(a::FldComElt, b::FldComElt, S::SeqEnum : Prec := 25) -> FldComElt

{Compute AGM(a, b) based on the AGM sequence having bad indices specified by S.}

require Precision(a) eq Precision(b): "a, b must have the same precision";

require (Prec ge 0) and (Prec in Integers()):

"Precision must be a non-negative integer";

require Precision(a) gt Prec: "Prec must be less than the precision of a";

n := 0;

Sort(~S); // sort S in increasing order

repeat

n +:= 1;

a1 := (a + b)/2;

b1 := Sqrt(a*b);

// Find the right choice for b1

if Abs(a1-b1) gt Abs(a1+b1) then

b1 := -b1;

elif (Abs(a1-b1) eq Abs(a1+b1)) and (Im(b1/a1) lt 0) then

// Re(b1/a1) = 0, i.e. b1 = a1*i (up to sign)

// Choose b1 so that Im(b1/a1) > 0 (Cox’s convention)

vprintf Elog: "|a_%o-b_%o| = |a_%o+b_%o|: use Cox’s convention\n",

n, n, n, n;

b1 := -b1;

end if;

a := a1;

if (#S ne 0) and (S[1] eq n) then

b := -b1; // bad choice

vprint Elog: "Choose bad choice for AGM at n = ", S[1];

Remove(~S, 1); // remove the first index from the list

else

b := b1; // good choice

end if;

vprintf Elog: "|a_%o-b_%o| = %o\n", n, n, Abs(a-b);

until Abs(a - b) lt (10^-Prec);

vprint Elog: "---";

if #S ne 0 then

vprint Elog: "Some indices still remain in S, need higher precision";

end if;

A.1. Period Lattices and Complex Elliptic Logarithms 161

return a;

end intrinsic;

/**

* Given a, b, compute an optimal AGM(a, b) (i.e. no bad pair allowed in the

* AGM sequence for all n>0)

* Input:

* a, b = two complex numbers

* Output:

* An optimal AGM of a, b, subject to |a_n - b_n| < 10^-Prec

* Parameter:

* Prec = precision used as the stopping criterion

**/

intrinsic AGM(a::FldComElt, b::FldComElt : Prec := 25) -> FldComElt

{Compute an optimal AGM of a, b.}

return AGM(a, b, []: Prec := Prec);

end intrinsic;

/**

* Given an elliptic curve E: Y^2 = 4*(X-e1)*(X-e2)*(X-e3) with e_j distinct

* and e1+e2+e3=0, compute the three minimal coset representatives of

* \Lambda modulo 2*\Lambda, where \Lambda is the period lattice of E.

* Any two of them form a \Z-basis for \Lambda.

*

* Note: Users may need to do an extra work to obtain an orthogonal basis

* in case of a rectangular lattice.

*

* Input:

* E = [e1, e2] = two roots of E (note that e3 = -e1-e2)

* Output:

* [w1, w2, w3] = the three minimal coset representatives

* Parameter:

* Prec = precision used as the stopping criterion when computing AGM

**/

intrinsic PeriodLattice(E::SeqEnum : Prec := 25) -> SeqEnum

{Given E = [e1,e2], compute all three minimal coset representatives; two of which

form a \Z-basis for the period lattice of the ellipic curve Y^2=4*(X-e1)*(X-e2)*(X-e3),

with e1+e2+e3=0.}

require #E eq 2: "E must contain exactly two complex numbers";

require (Prec ge 0) and (Prec in Integers()):

"Precision must be a non-negative integer";

e1, e2 := Explode(E);

require e1 ne e2: "All roots of E must be distinct";

require Precision(e1) eq Precision(e2): "e1,e2 must have the same precision";

e3 := -e1-e2;

C := Parent(e1); i := C!Sqrt(-1);

a := Sqrt(e1-e3);

b := Sqrt(e1-e2);

c := Sqrt(e2-e3);

// Rearrange e1, e2, e3 (and thus redefine a, b, c) if necessary to make

// w1, w2, w3 satisfy the 3-term relation |w1-w2-w3| = 0.

// First, check if there is an equality among a,b,c (can happen at most once)

equality := false;

if Abs(a-b) eq Abs(a+b) then

equality := true;

if Abs(c-i*b) gt Abs(c+i*b) then

b := -b;

end if;

if Abs(a-c) gt Abs(a+c) then

a := -a;

end if;

elif Abs(c-i*b) eq Abs(c+i*b) then

equality := true;

if Abs(a-b) gt Abs(a+b) then

b := -b;

end if;

if Abs(a-c) gt Abs(a+c) then

162 Appendix A. MAGMA Source Code

c := -c;

end if;

elif Abs(a-c) eq Abs(a+c) then

equality := true;

if Abs(a-b) gt Abs(a+b) then

a := -a;

end if;

if Abs(c-i*b) gt Abs(c+i*b) then

c := -c;

end if;

end if;

// No equality from this point, choose the sign of a arbitrarily

// and choose b, c to satisfy other conditions

if not equality then

if Abs(a-b) gt Abs(a+b) then

b := -b;

end if;

if Abs(a-c) gt Abs(a+c) then

c := -c;

end if;

if Abs(c-i*b) gt Abs(c+i*b) then

// Change the order to (e3, e2, e1);

vprint Elog: "Changing the order of e1, e2, e3 ...";

e1 := e3;

vprint Elog: "new e1 = ", e1;

return PeriodLattice([e1, e2] : Prec := Prec);

end if;

end if;

// Now a, b, c are valid, proceed to compute w1, w2, w3

vprintf Elog: "a = %o\nb = %o\nc = %o\n", a, b, c;

pi := Pi(C);

w1 := pi/AGM(a, b : Prec := Prec);

w2 := pi/AGM(c, i*b : Prec := Prec);

w3 := i*pi/AGM(a, c : Prec := Prec);

vprintf Elog: "w1 = %o\nw2 = %o\nw3 = %o\n", w1, w2, w3;

// Test relationship among w1, w2, w3;

disc := Abs(w1-w2-w3);

vprintf Elog: "|w1 - w2 - w3| = %o: ", disc;

if disc lt 10^(-Prec) then

vprint Elog: "OK";

end if;

return [w1,w2,w3];

end intrinsic;

/**

* Given an elliptic curve E by a Weierstrass model over complex numbers,

* compute the three minimal coset representatives of \Lambda modulo

* 2*\Lambda, where \Lambda is the period lattice of E. Any two of them form

* a \Z-basis for \Lambda.

* Input:

* E = an elliptic curve over complex numbers

* Output:

* [w1, w2, w3] = the three minimal coset representatives

* Parameter:

* Prec = precision used as the stopping criterion when computing AGM

**/

intrinsic PeriodLattice(E::CrvEll : Prec := 25) -> SeqEnum

{Given an elliptic curve E by a Weierstrass model defined over complex numbers,

compute all three minimal coset representatives; two of which form a \Z-basis

for the period lattice of E.}

require Type(BaseRing(E)) eq FldCom: "E must be defined over complex numbers";

// Transform E into the form Y^2 = 4*(X-e1)*(X-e2)*(X-e3) with e1+e2+e3=0

e1, e2 := Explode(TransformModel(E));

return PeriodLattice([e1, e2] : Prec := Prec);

end intrinsic

/**

A.1. Period Lattices and Complex Elliptic Logarithms 163

* Compute an elliptic logarithm of complex points on elliptic curves of the

* form Y^2 = 4*(X-e1)*(X-e3)*(X-e3) with e1+e2+e3=0.

* Input:

* E = [e1, e2]

* P = [x,y] = a point on E

* Output:

* an elliptic logarithm of P

* Parameter:

* Prec = precision used as the stopping criterion when computing AGM

**/

intrinsic EllipticLog(E::SeqEnum, P::SeqEnum : Prec := 25) -> FldComElt

{Compute an elliptic logarithm of a point P = [x,y] on an elliptic curve of the

form Y^2 = 4*(X-e1)*(X-e3)*(X-e3) with e1+e2+e3=0.}

// Verify if inputs are valid

require #E eq 2: "E must contain exactly 2 complex numbers";

require #P eq 2: "P must contain exactly 2 complex numbers";

require (Prec ge 0) and (Prec in Integers()):

"Precision must be a non-negative integer";

e1, e2 := Explode(E);

require e1 ne e2: "All roots of E must be distinct";

require Precision(e1) eq Precision(e2): "e1,e2 must have the same precision";

require Precision(e1) gt Prec: "Prec must be less than the precision of E";

e3 := -e1-e2;

x, y := Explode(P);

require Precision(x) eq Precision(y): "x, y must have the same precision";

require Precision(x) eq Precision(e1): "Precision of E and its point must be the same";

if Round(Abs(y^2 / (4*(x-e1)*(x-e2)*(x-e3)))) ne 1 then

error "P is not on E";

end if;

a := Sqrt(e1 - e3); b := Sqrt(e1 - e2);

u := Sqrt(x - e3); v := Sqrt(x - e2);

// Use two strongly optimal sequences - choose both (a,b), (u,v) to be good

// If equality holds, either choice will do

if Abs(a-b) gt Abs(a+b) then

b := -b;

end if;

if Abs(u-v) gt Abs(u+v) then

v := -v;

end if;

// Define t

if x in [e1, e2, e3] then

t := Sqrt(x - e1);

else

t := y/(2*u*v);

end if;

// Special case: t = 0

if t eq 0 then

return Pi(Parent(e1))/(2*AGM(a, b: Prec := Prec));

end if;

n := 0;

repeat

// Compute new a, b

new_a := (a + b) / 2; new_b := Sqrt(a*b);

a := new_a; b := new_b;

// Optimal sequence: choose right choice at every step

if Abs(a-b) gt Abs(a+b) then

b := -b;

end if;

c := Sqrt(a^2 - b^2);

// Compute new u, v, t

u := (u + v)/2; v := Sqrt(u^2 - c^2);

// Optimal sequence: choose right choice at every step

if Abs(u-v) gt Abs(u+v) then

v := -v;

end if;

t := u*t/v;

164 Appendix A. MAGMA Source Code

n := n + 1;

vprintf Elog: "|a_%o-b_%o| = %o\n", n, n, Abs(a-b);

vprintf Elog: "|u_%o-v_%o| = %o\n", n, n, Abs(u-v);

until Abs(a - b) lt (10^-Prec);

// xinf := t^2 + 2/3*(a^2); yinf := 2*t*(t^2 + a^2);

return -Arctan(a/t)/a;

end intrinsic;

/**

* Compute an elliptic logarithm of complex points on elliptic curves

* given by a Weierstrass equation [a1,a2,a3,a4,a6]

* Input:

* E = an elliptic curve in standard Weierstrass form

* P = a point on E

* Output:

* an elliptic logarithm of P

* Parameter:

* Prec = precision used as the stopping criterion when computing AGM

**/

intrinsic EllipticLog(E::CrvEll, P::PtEll : Prec := 25) -> FldComElt

{Compute an elliptic logarithm of a point P on E, where E is an elliptic

curve over C given by a Weierstrass equation.}

if P eq Identity(E) then

return BaseRing(E)!0;

end if;

newE, newP := TransformModel(E, P);

return EllipticLog(newE, newP : Prec := Prec);

end intrinsic;

/**

* Auxiliary intrinsic functions

***/

/**

* Transform an elliptic curve given by a Weierstrass model [a1,a2,a3,a4,a6]

* (defined over C) into the form E’: Y^2 = 4*(X-e1)*(X-e2)*(X-e3) with

* e1+e2+e3=0.

* Input:

* E = an elliptic curve of the form [a1, a2, a3, a4, a6]

* Output:

* [e1, e2]

**/

intrinsic TransformModel(E::CrvEll) -> SeqEnum

{Transform an elliptic curve over C given by a Weierstrass model [a1,a2,a3,a4,a6]

into the form E’: Y^2 = 4*(X-e1)*(X-e2)*(X-e3) with e1+e2+e3=0.}

C := BaseRing(E);

require Type(C) eq FldCom: "E must be defined over complex numbers";

_<t> := PolynomialRing(C);

c4, c6 := Explode(cInvariants(E));

R := Roots(t^3 - (c4/48)*t - c6/864);

e1 := R[1][1]; e2 := R[2][1];

return [e1, e2];

end intrinsic;

/**

* Transform an elliptic curve given by a Weierstrass model [a1,a2,a3,a4,a6]

* (defined over C) into the form E’: Y^2 = 4*(X-e1)*(X-e2)*(X-e3) with

* e1+e2+e3=0, and map a given point P on E to its image on E’

* Input:

* E = an elliptic curve of the form [a1, a2, a3, a4, a6]

* P = a point on E

* Output:

* [e1, e2], [X,Y], where [X,Y] is the image of P on E’

**/

intrinsic TransformModel(E::CrvEll, P::PtEll) -> SeqEnum, SeqEnum

{Transform an elliptic curve over C given by a Weierstrass model [a1,a2,a3,a4,a6]

into the form E’: Y^2 = 4*(X-e1)*(X-e2)*(X-e3) with e1+e2+e3=0, and map a point

P on E to its image on E’.}

A.1. Period Lattices and Complex Elliptic Logarithms 165

require P ne Identity(E): "P must not be the point at infinity";

newE := TransformModel(E);

a1, _, a3, _, _ := Explode(aInvariants(E));

b2 := bInvariants(E)[1];

X := P[1] + b2/12;

Y := 2*P[2] + a1*P[1] + a3;

return newE, [X, Y];

end intrinsic;

/**

* Reduce any given z into the one inside the fundamental parallelogram

* spanned by L = [w1, w2], and return [a, b] such that

* reduced z = z’ = a*w1 + b*w2, with 0 <= a,b < 1

* Input:

* L = [w1, w2] = fundamental parallelogram

* z = the complex number to be reduced

* Output:

* z’ = the reduced version of z inside the paralellogram

* [a, b] = coordinates of new z on the parallelogram

**/

intrinsic Reduce2FP(L::SeqEnum, z::FldComElt) -> FldComElt, SeqEnum

{Reduce z modulo the lattice L}

require #L eq 2: "L must have exactly two numbers";

w1, w2 := Explode(L); tau := w2/w1;

denom := w1;

IsDenomW1 := true;

if Im(tau) eq 0 then

error "w2/w1 must not be real";

elif Im(tau) lt 0 then

tau := 1/tau;

IsDenomW1 := false;

denom := w2;

end if;

// Reduce z into the fundamental parallelogram

z := z/denom;

if IsDenomW1 then

beta := Im(z)/Im(tau);

alpha := Re(z - beta*tau); // already real, just put it to avoid error

z := z - Floor(beta)*tau - Floor(alpha);

else

alpha := Im(z)/Im(tau);

beta := Re(z - alpha*tau); // already real, just put it to avoid error

z := z - Floor(alpha)*tau - Floor(beta);

end if;

beta := beta - Floor(beta);

alpha := alpha - Floor(alpha);

z := z*denom;

return z, [alpha, beta];

end intrinsic;

/**

* Given a period lattice L = <w1,w2>, apply linear transformation in SL(2,\Z)

* so that we obtain a new basis {w1’, w2’} with tau = w2’/w1’ in the

* fundamental domain

* (Based on Algorithm 7.4.2 in Cohen’s "A Course in Computational Algebraic

* Number Theory")

* Input:

* L = [w1, w2]

* Output:

* [w1’, w2’] = a new basis with the above property

* A = transformation matrix where [w2’ w1’]^T = A*[w2 w1]^T

**/

intrinsic TransformLattice(L::SeqEnum) -> SeqEnum, Mtrx

{Apply linear transformation to a basis for a lattice so that the new basis

\{w1’,w2’\} has tau = w2’/w1’ in the fundamental domain of SL(2,\Z)}

w1, w2 := Explode(L);

tau := w2/w1;

166 Appendix A. MAGMA Source Code

require Im(tau) gt 0: "Im(w2/w1) must be positive";

A := Matrix(2, [1,0,0,1]);

while true do

n := Round(Re(tau));

tau -:= n;

A := Matrix(2, [1,-n,0,1]) * A;

if Abs(tau) ge 1 then

break;

end if;

tau := -1/tau;

A := Matrix(2, [0,-1,1,0]) * A;

end while;

new_w2 := A[1,1]*w2 + A[1,2]*w1;

new_w1 := A[2,1]*w2 + A[2,2]*w1;

return [new_w1, new_w2], A;

end intrinsic;

A.2 Integral Points on Elliptic Curves

The following file is our implementation (with some modifications) of Smart and

Stephens’ algorithm [SS97] for finding integral points on elliptic curves over number

fields. The only main function in this file is IntegralPoints(); see the documen-

tation inside the code for more details.

/**

* intpts.m

* Computing all integral points on elliptic curves over number fields

* Based on Smart & Stephens’ paper (Math. Proc. Camb. Phil. Soc. 122 (1997),

* pp. 9-16) with some modifications

*

* By Thotsaphon Thongjunthug

* Last updated: 07 December 2010

* Any errors should be reported to <nookaussie@yahoo.com>

*

* Required packages:

* 1) elog.m - for computing periods and elliptic logarithms

* 2) John Cremona’s "nfhtbound.m" - for Cremona-Prickett-Siksek’s bound

* (available freely on his webpage at

* <http://www.warwick.ac.uk/~masgaj/ftp/progs/magma/index.html>)

***/

/**

* Declare printing verbose

* 0 = return result only, no detail printed

* 1 = minimal amount of details shown

* 2 = all details (e.g. values of all constants) shown (for debugging only)

**/

declare verbose Intpts, 2;

/**

* Auxiliary local functions I:

* computing constants for an upper bound on linear form in logarithm.

* The indices of c are as defined in Smart & Stephens’ paper

***/

/**

* Compute constant c3

* Input:

A.2. Integral Points on Elliptic Curves 167

* L = a sequence of points on elliptic curves over number field

* Output:

* minimum eigenvalue of the height paring matrix

**/

function c3(L)

M := Eigenvalues(HeightPairingMatrix(L));

M := SetToSequence(M);

M := [m[1] : m in M]; // ignore multiplicity

M := Minimum(M); // least eigenvalue

return M;

end function;

/**

* Compute constant c6

* Input:

* E = elliptic curve over real/complex numbers in standard Weierstrass form

* Require:

* elog.m

**/

function c6(E)

R := TransformModel(E);

Append(~R, -R[1]-R[2]);

R := [Abs(r) : r in R];

R := 2*Maximum(R);

return R;

end function;

/**

* Compute constant c8, and the periods w1, w2 of the period lattice of a

* given elliptic curve E (with w2/w1 in the fundamental domain).

* Input:

* E = elliptic curve over real/complex numbers in standard Weierstrass form

* Output:

* L = the constant c8

* [w1, w2] = periods of E

* Parameter:

* Prec = precision for computing periods

* Require:

* elog.m

**/

function c8(E : Prec := 25)

w1, w2, _ := Explode(PeriodLattice(E : Prec := Prec));

if Im(w2/w1) gt 0 then

L := [w1, w2];

else

L := [w2, w1];

end if;

// Apply transformation by SL(2,Z) so that tau = w2/w1 is in the

// fundamental domain

L, _ := TransformLattice(L);

wList := [L[1], L[2], L[1]+L[2]];

wList := [Abs(w) : w in wList];

gamma := Maximum(wList);

return gamma, L;

end function;

/**

* Compute absolute logarithmic height of an element in n-projective space

* over a number field K

* Input:

* X = a sequence of elements in a number field K

**/

function AbsLogHeight(X)

// X cannot be zero vector

if #X eq #[x : x in X | x eq 0] then

error "X cannot be zero vector";

end if;

168 Appendix A. MAGMA Source Code

// Find all prime ideal that divides some denominators of x_i

I := {};

K := Parent(X[1]); // assume each x_i is in the same field

O := RingOfIntegers(K);

for x in X do

den := O ! Denominator(x);

L := Decomposition(den);

L := {l[1] : l in L}; // ignore multiplicity

I := I join L;

end for;

h := 0;

// Non-archimedean contributions

for p in I do

M := [Rationals()|];

for x in X do

if x eq 0 then

Append(~M, 0);

else

Append(~M, Norm(p)^(-Valuation(x, p)));

end if;

end for;

M := Maximum(M);

M := Log(M);

h +:= M;

end for;

// Archimedean contributions

s1, s2 := Signature(K);

// M = [log max(|x_1|_v,..., |x_n|_v) : v in M_K]

M := [];

for x in X do

C := Conjugates(x);

newC := [];

// Real embedding contributions

for i := 1 to s1 do

Append(~newC, Abs(C[i]));

end for;

// Complex embedding contributions

for i := 1 to s2 do

Append(~newC, Abs(C[s1+(2*i-1)])^2);

end for;

if #M eq 0 then

M := newC;

else

for i := 1 to (s1+s2) do

if newC[i] gt M[i] then

M[i] := newC[i];

end if;

end for;

end if;

end for;

M := [Log(m) : m in M];

// Overall absolute logarithmic height

h +:= (&+M);

h /:= Degree(K);

return h;

end function;

/**

* Auxiliary local functions II:

* Computing constants for David’s lower bound on linear form in logarithms.

* Notation used as in Appendix A of Smart’s book

* "The Algorithmic Resolution of Diophantine Equations", with c’s being

* replaced by d’s

***/

/**

A.2. Integral Points on Elliptic Curves 169

* Compute the "height" of elliptic curve

* Input:

* E = elliptic curve over number field in standard Weierstrass form

**/

function h_E(E)

j := jInvariant(E);

C4, C6 := Explode(cInvariants(E));

g2 := C4/12;

g3 := C6/216;

m := Maximum([1, AbsLogHeight([1, g2, g3]), AbsLogHeight([1, j])]);

return m;

end function;

/**

* Compute the list of modified height of a point P in E(K)

* depending on embedding

* Input:

* E = elliptic curve over a number field K in standard Weierstrass form

* P = a point in E(K)

* ElogEmbedP = elliptic logarithm of the image of P in some embedding

* D7 = constant d7 (depending on embedding)

**/

function h_m(E, P, ElogEmbedP, D7)

K := BaseRing(E);

L := [Height(P), h_E(E), D7/Degree(K)*Abs(ElogEmbedP)^2];

L := Maximum(L);

return L;

end function;

/**

* Compute two extra h_m’s based on the two periods

* Similar to h_m, but now ElogEmbedP becomes a period of the fundamental

* parallelogram of some embedding of E

* Input:

* E = elliptic curve over a number field in standard Weierstrass form

* Periods = [w1, w2] = period lattice of some real/complex embedding of E

* D7 = constant d7 (depending on embedding)

**/

function Extra_h_m(E, Periods, D7)

D := Degree(BaseRing(E));

h := h_E(E);

h1 := Maximum([0, h, D7/D*Abs(Periods[1])^2]);

h2 := Maximum([0, h, D7/D*Abs(Periods[2])^2]);

return [h1, h2];

end function;

/**

* Compute constant d8

* Input:

* E = elliptic curve over a number field K in standard Weierstrass form

* L = a sequence of points in E(K) (e.g. Mordell-Weil basis)

* Elog = a sequence of (pre-computed) elliptic logarithms of points in L

* on some fixed embedding

* Periods = [w1, w2] = period lattice of some embedding of E

* D7 = constant d7 (depending on embedding)

**/

function d8(E, L, Elog, Periods, D7)

C := [Exp(1)*h_E(E)];

D := Degree(BaseRing(E));

for i := 1 to #L do

Append(~C, h_m(E, L[i], Elog[i], D7)/D);

end for;

C := C cat [t/D : t in Extra_h_m(E, Periods, D7)];

C := Maximum(C);

return C;

end function;

170 Appendix A. MAGMA Source Code

/**

* Compute constant d9

* Input:

* E = elliptic curve over a number field in standard Weierstrass form

* L = a sequence of points in E(K) (e.g. Mordell-Weil basis)

* Elog = a sequence of (pre-computed) elliptic logarithms of points in L

* on some fixed embedding

* Periods = [w1, w2] = period lattice of some embedding of E

* D7 = constant d7 (depending on embedding)

**/

function d9(E, L, Elog, Periods, D7)

D := Degree(BaseRing(E));

C := [];

for i := 1 to #L do

tmp := Exp(1) * Sqrt(D * h_m(E, L[i], Elog[i], D7) / D7);

tmp /:= Abs(Elog[i]);

C[i] := tmp;

end for;

// Take minimum among extra_h_m

Ehm := Extra_h_m(E, Periods, D7);

tmp1 := Exp(1) * Sqrt(D*Ehm[1]/D7) / Abs(Periods[1]);

tmp2 := Exp(1) * Sqrt(D*Ehm[2]/D7) / Abs(Periods[2]);

C := C cat [tmp1, tmp2];

C := Minimum(C);

return C;

end function;

/**

* Compute constant d10

* Input:

* E = elliptic curve over a number field in standard Weierstrass form

* L = a sequence of points in E(K) (e.g. Mordell-Weil basis)

* Elog = a sequence of (pre-computed) elliptic logarithms of points in L

* on some fixed embedding

* Periods = [w1, w2] = period lattice of some embedding of E

* D7 = constant d7 (depending on embedding)

**/

function d10(E, L, Elog, Periods, D7)

D := Degree(BaseRing(E));

n := #L+2;

scalar := 2 * 10^(8 + 7*n) * (2/Exp(1))^(2*n^2);

scalar *:= (n+1)^(4*n^2 + 10*n) * D^(2*n + 2);

scalar *:= (Log(d9(E, L, Elog, Periods, D7)))^(-2*n-1);

for i := 1 to #L do

scalar *:= h_m(E, L[i], Elog[i], D7);

end for;

scalar *:= &*(Extra_h_m(E, Periods, D7));

return scalar;

end function;

/**

* Compute the right-hand side of the Principal Inequality

* Input:

* D = Degree(K), where K = number field

* r = rank(E(K))

* C9 = constant c9

* C10 = constant c10

* D9 = constant d9

* D10 = constant d10

* h = h_E(E), where E = elliptic curve over K

* Q = initial bound for the coefficients of P_i’s, where P_i’s are points

* in a Mordell-Weil basis for E(K)

* expTors = exponent of the torsion subgroup of E(K)

**/

function RHS(D, r, C9, C10, D9, D10, h, Q, expTors)

bound := (Log(Log(Q*r*expTors)) + h + Log(D*D9))^(r+3);

bound *:= D10*(Log(Q*r*expTors) + Log(D*D9));

bound +:= Log(C9*expTors);

A.2. Integral Points on Elliptic Curves 171

bound /:= C10;

return bound;

end function;

/**

* Approximate initial bound on Q = max_{1 <= i <= r}{|q_i|}

* Input:

* D = Degree(K), where K = number field

* r = rank of E(K)

* Q0 = constant Q0 (in S&S paper, this is called K0)

* C9 = constant c9

* C10 = constant c10

* D8 = constant d8 (from function d8())

* D9 = constant d9 (from function d9())

* D10 = constant d10 (from function d10())

* h = h_E(E)

* expTors = exponent of the torsion subgroup of E(K)

*

* Revised: 05 May 2009

**/

function InitialQ(D, r, Q0, C9, C10, D8, D9, D10, h, expTors)

minQ := Maximum(Q0, Exp(D8));

// Try to approximate Q such that Q^2 = RHS(Q) (i.e. Q makes both sides

// of the Principal Inequality equal)

// Firstly, set a guess for Q, say minQ + 1 (so that Q > minQ)

// For simplicity, let’s round Q up to the nearest power of 10

Q := minQ + 1;

x := Ceiling(Log(10, Q)); // x = log_10(Q)

// Check if Q satisfies the Principal Inequality, i.e. if Q^2 < RHS(Q)

// If so, repeat with the larger Q until we find the first Q that

// violates the Principal Inequality

// N.B. This loop will eventually terminate

exp_OK := 0; // the exponent that satisfies P.I.

exp_fail := 0; // the exponent that fails P.I.

while 10^(2*x) lt RHS(D, r, C9, C10, D9, D10, h, 10^x, expTors) do

exp_OK := x; // Principal Inequality satisfied

x *:= 2; // double x, and retry

end while;

exp_fail := x; // x that fails the Principal Inequality

// So now x = log_10(Q) must lie between exp_OK and exp_fail

// Refine x further using "binary search"

repeat

x := Floor((exp_OK + exp_fail)/2);

if 10^(2*x) ge RHS(D, r, C9, C10, D9, D10, h, 10^x, expTors) then

exp_fail := x;

else

exp_OK := x;

end if;

until (exp_fail - exp_OK) le 1;

return exp_fail; // over-estimate

end function;

/**

* Reduce the bound Q by LLL reduction until no further improvement

* is possible. This function initially requires high precision to

* proceed, although this should be done automatically by now

* Input:

* Pts = sequence of points in E(K)

* j = j-th embedding (based on the index used in Conjugates()

* EmbedL = a sequence of points on EmbedE (e.g. points in a Mordell-Weil

* basis when embedded into EmbedE)

* Elog = a sequence of (pre-computed) elliptic logarithms of points in EmbedL

* C9 = constant c9

* C10 = constant c10

* Periods = [w1, w2] = period lattice of EmbedE

* expTors = exponent of the torsion subgroup of E(K), K = number field

172 Appendix A. MAGMA Source Code

* initQ = initial guess for Q to be reduced by LLL

**/

function ReducedQ(Pts, j, EmbedL, Elog, C9, C10, Periods, expTors,

initQ)

r := #EmbedL;

newQ := initQ;

EmbedE := Curve(EmbedL[1]);

// Repeat LLL reduction until no further reduction is possible

repeat

Q := newQ;

S := r*(Q^2)*(expTors^2);

T := 3*r*Q*expTors/Sqrt(2);

// Create the basis matrix

C := 1;

repeat

C *:= Q^Ceiling((r+2)/2);

L := ZeroMatrix(Integers(), r+2, r+2);

// Elliptic logarithm should have precision "suitable to" C

// e.g. If C = 10^100, then Re(Elog[i]) should be computed

// correctly to at least 100 decimal places

pow10_C := Ceiling(Log(10, C));

if pow10_C gt Precision(Elog[1]) then

vprint Intpts, 2:

"Need higher precision, recompute elliptic logarithm ...";

// Re-compute periods and elliptic logarithms

// to the right precision

// First, re-embed E into higher precision

E := Curve(Pts[1]); // elliptic curve over number field

a1, a2, a3, a4, a6 := Explode(aInvariants(E));

a1 := Conjugate(a1, j : Precision := pow10_C+10);

a2 := Conjugate(a2, j : Precision := pow10_C+10);

a3 := Conjugate(a3, j : Precision := pow10_C+10);

a4 := Conjugate(a4, j : Precision := pow10_C+10);

a6 := Conjugate(a6, j : Precision := pow10_C+10);

EmbedE := EllipticCurve([a1, a2, a3, a4, a6]);

EmbedL := [];

_, Periods := c8(EmbedE : Prec := pow10_C);

X := [Conjugates(P[1] : Precision := pow10_C+10) : P in Pts];

Y := [Conjugates(P[2] : Precision := pow10_C+10) : P in Pts];

for i := 1 to #Pts do

P := Points(EmbedE, X[i][j])[1];

if Abs(P[2] - Y[i][j]) lt 10^(pow10_C/2) then

Append(~EmbedL, P);

else

Append(~EmbedL, -P);

end if;

end for;

Elog := [EllipticLog(EmbedE, P : Prec := pow10_C) :

P in EmbedL];

vprint Intpts, 2: "Elliptic logarithm recomputed";

end if;

w1, w2 := Explode(Periods);

// Assign all non-zero entries

for i := 1 to r do

L[i,i] := 1;

L[r+1, i] := Truncate(C*Re(Elog[i]));

L[r+2, i] := Truncate(C*Im(Elog[i]));

end for;

L[r+1, r+1] := Truncate(C*Re(w1));

L[r+1, r+2] := Truncate(C*Re(w2));

L[r+2, r+1] := Truncate(C*Im(w1));

L[r+2, r+2] := Truncate(C*Im(w2));

L := Transpose(L); // In Magma, basis is spanned by row vector!

// LLL reduction and constants

L := LLL(L);

b1 := L[1]; // 1st row of reduced basis

A.2. Integral Points on Elliptic Curves 173

// Norm(b1) = square of Euclidean norm

lhs := 2^(-r-1)*Norm(b1) - S;

until (lhs ge 0) and (Sqrt(lhs) gt T);

newQ := (Log(C*C9*expTors) - Log(Sqrt(lhs) - T)) / C10;

newQ := Floor(Sqrt(newQ));

pow10 := Floor(Log(10, C));

vprintf Intpts, 2: "Choose C = %.4o x 10^%o. ", 1.*C/10^pow10, pow10;

vprintf Intpts, 2: "After reduction, Q <= %o\n", newQ;

until ((Q - newQ) le 1) or (newQ le 1);

return newQ;

end function;

/**

* Main intrinsic functions

***/

/**

* Search for all integral points on elliptic curves over number fields

* within a given bound

* Input:

* E = elliptic curve over a number field K in standard Weierstrass form

* L = a sequence of points in a Mordell-Weil basis for E(K)

* Q = a maximum for the absolute bound on all coefficients

* in the linear combination of points in L

* Output:

* S1 = sequence of all integral points on E(K) modulo [-1]

* S2 = sequence of tuples representing the points as a linear combination

* of points in L

* Parameter:

* Prec = Precision used for checking integrality of points.

* (Default = 0 - only exact arithmetic will be performed)

**/

intrinsic IntegralPoints(E::CrvEll, L::[PtEll], Q::RngIntElt : Prec := 0) ->

SeqEnum, SeqEnum

{Given an elliptic curve E over a number field, its Mordell-Weil basis L, and

a positive integer Q, return the sequence of all integral points modulo [-1]

of the form P = q_1*L[1] + ... + q_r*L[r] + T with some torsion point T and

|q_i| <= Q, followed by a sequence of tuple sequences representing the points

as a linear combination of points. An optional tolerance may be given to speed

up the computation when checking integrality of points.}

// Check input validity

require IsNumberField(BaseRing(E)):

"Elliptic curve must be defined over a number field";

require (Prec ge 0) and (Prec in Integers()):

"Precision must be a non-negative integer";

require &and[P in E : P in L]: "All points in L must be in E(K)";

// Find the generators of the torsion subgroup of E(K)

Tors, map := TorsionSubgroup(E);

expTors := Exponent(Tors);

G := Generators(Tors);

if (#L eq 0) and (#G eq 0) then

return [], []; // nothing to do

end if;

Tors := [map(g) : g in G]; // each generator of E(K)_tors

OrdG := [Order(g) : g in G]; // order of each generator

// Create all possible (r+#Tors)-tuples

r := #L; // r = rank of E(K)

C := [0 : i in [1..(r + #Tors)]];

ListC := [];

for i := 0 to Q do

C[1] := i;

Append(~ListC, C);

end for;

for i := 2 to r do

174 Appendix A. MAGMA Source Code

tmp := [];

for j := 1 to Q do

for l in ListC do

tup := l;

tup[i] := j;

Append(~tmp, tup);

// Avoid having its negative in the list

// Only use when all previous entries in tuple are zero

for k := 1 to i-1 do

if tup[k] ne 0 then

tup[i] := -j;

Append(~tmp, tup);

break;

end if;

end for;

end for;

end for;

ListC := ListC cat tmp;

end for;

// Add torsion point, if any

if #Tors ne 0 then

for i := 1 to #Tors do

tmp := [];

for j := 1 to (OrdG[i]-1) do

for l in ListC do

tup := l;

tup[r+i] := j;

Append(~tmp, tup);

end for;

end for;

ListC := ListC cat tmp;

end for;

end if;

Remove(~ListC, 1); // remove point at infinity

L := L cat Tors;

vprint Intpts, 2: "Generators = ", L;

PtsList := [];

CoeffList := [];

// Skip the complex arithmetic and only perform exact arithmetic if tol = 0

if Prec eq 0 then

vprint Intpts : "Exact arithmetic";

for l in ListC do

P := &+[l[i]*L[i] : i in [1..#L]];

if IsIntegral(P[1]) and IsIntegral(P[2]) then

vprintf Intpts: "%o ---> %o\n", l, P;

Append(~PtsList, P);

TupList := [<L[i], l[i]> : i in [1..#L] | l[i] ne 0];

Append(~CoeffList, TupList);

end if;

end for;

vprint Intpts: "*"^45;

return PtsList, CoeffList;

end if;

// Suggested by John Cremona

// Point search. This is done via arithmetic on complex points on each

// embedding of E. Exact arithmetic will be carried if the resulting

// complex points are "close" to being integral, subject to some precision

// Embed each generator of the torsion subgroup

basePrec := Maximum([30, Prec+10]);

X := [Conjugates(P[1] : Precision := basePrec) : P in (L cat Tors)];

Y := [Conjugates(P[2] : Precision := basePrec) : P in (L cat Tors)];

// Create all embeddings of E

K := BaseRing(E);

s1, s2 := Signature(K);

A.2. Integral Points on Elliptic Curves 175

a1, a2, a3, a4, a6 := Explode(aInvariants(E));

a1 := Conjugates(a1 : Precision := basePrec);

a2 := Conjugates(a2 : Precision := basePrec);

a3 := Conjugates(a3 : Precision := basePrec);

a4 := Conjugates(a4 : Precision := basePrec);

a6 := Conjugates(a6 : Precision := basePrec);

EmbedEList := [EllipticCurve([a1[j], a2[j], a3[j], a4[j], a6[j]]): j in

[1..(s1+2*s2)]];

// Use precision to decide a possibility of "being integral".

// Note that too large precision may lead to missing some integral points,

// while too small precision may slow the computation.

vprint Intpts: "Precision = ", Prec;

// Create the matrix containing all embeddings of the integral basis of K

// as its columns

IntBasis := IntegralBasis(K);

C := ComplexField(basePrec);

B := Matrix(C, #IntBasis, Degree(K),

[Conjugates(a : Precision := basePrec) : a in IntBasis]);

// Note that B is always invertible, so we can take its inverse

B := B^(-1);

// Modified on 29-30 May 2009

// For each possible tuple representing the coefficients in a linear

// combination of points in L, compute x(P) on each embedding and store

// them. This is to:

// 1) avoid any possible risks of Magma being unable to recognise complex

// points when calling them from a nested sequence, as happen in the

// previous version, and

// 2) maintain the same (or even faster) computational speed.

// Technically, the drawback of this version is that it consumes much more

// memory than the previous one, although this is not really a huge problem

// in practice for most computers these days

x_tuple := [(C!0) : i in [1..Degree(K)]];

x_coord := [x_tuple : i in [1..#ListC]];

for j in ([1..s1] cat [s1+1..s1+2*s2 by 2]) do

// Create the embedding of each point in L (one embedding at a time)

EmbedL := [];

for i := 1 to (r + #Tors) do

P := Points(EmbedEList[j], X[i][j])[1];

// Choose the right sign for the y-coordinate

//if (Y[i][j] ne 0) and (Re(P[2]/Y[i][j]) lt 0) then

if Abs(P[2] - Y[i][j]) lt 10^-(basePrec/2) then

Append(~EmbedL, P);

else

Append(~EmbedL, -P);

end if;

end for;

for n in [1..#ListC] do

l := ListC[n];

P := &+[l[i]*EmbedL[i] : i in [1..#L]];

x_coord[n][j] := P[1];

// For each pair of complex embeddings, we only have to

// compute P on just one embedding in the pair. Another P on

// another embedding is simply the complex conjugate

if j gt s1 then

x_coord[n][j+1] := Conjugate(P[1]);

end if;

end for;

end for;

// Point search

for n in [1..#ListC] do

// Check if the x-coordinate of P is "close to" being integral

// If so, compute P exactly and check if it is integral; skip P otherwise

XofP := Matrix([x_coord[n]]);

// Write x(P) w.r.t. the integral basis of (K)

// Due to the floating arithmetic, some entries in LX may have very tiny

// imaginary part, which can be thought as zero

176 Appendix A. MAGMA Source Code

LX := XofP * B;

LX := [Abs(Re(LX[1,i]) - Round(Re(LX[1,i]))): i in [1..#IntBasis]];

LX := &and[dx lt 10^-Prec : dx in LX];

if not LX then

// x-coordinate of P is not integral, skip P

continue;

end if;

// Now check P by exact arithmetic

// Add P and the list of tuples representing P into the list

// if P is integral

l := ListC[n];

P := &+[l[i]*L[i] : i in [1..#L]];

if IsIntegral(P[1]) and IsIntegral(P[2]) then

vprintf Intpts: "%o ---> %o\n", l, P;

Append(~PtsList, P);

TupList := [<L[i], l[i]> : i in [1..#L] | l[i] ne 0];

Append(~CoeffList, TupList);

end if;

end for;

vprint Intpts: "*"^45;

return PtsList, CoeffList;

end intrinsic;

/**

* Compute all integral points on elliptic curve over a number field.

* This function simply computes a suitable bound Q, and return

* IntegralPoints(E, L, Q : tol := ...).

* Input:

* E = elliptic curve over a number field K in standard Weierstrass form

* L = a sequence of points in the Mordell-Weil basis for E(K)

* Output:

* S1 = sequence of all integral points on E(K) modulo [-1]

* S2 = sequence of tuples representing the points as a linear combination

* of points in L

* Parameter:

* Prec = precision used for checking integrality of points.

* (Default = 0 - only exact arithmetic will be performed)

* Require:

* elog.m - for computing elliptic logarithms

* nfhtbound.m - for computing Cremona-Prickett-Siksek height bounds

**/

intrinsic IntegralPoints(E::CrvEll, L::[PtEll] : Prec := 0) -> SeqEnum, SeqEnum

{Given an elliptic curve over a number field and its Mordell-Weil basis, return

the sequence of all integral points modulo [-1], followed by a sequence of tuple

sequences representing the points as a linear combination of points. An optional

tolerance may be given to speed up the computation when checking integrality of

points. (This function simply computes a suitable Q and call

IntegralPoints(E, L, Q: tol := ...)}

// Check input validity

require IsNumberField(BaseRing(E)):

"Elliptic curve must be defined over a number field";

require (Prec ge 0) and (Prec in Integers()):

"Precision must be a non-negative integer";

require &and[P in E : P in L]: "All points in L must be in E(K)";

if #L eq 0 then

return IntegralPoints(E, [], 0 : Prec := Prec);

end if;

K := BaseRing(E);

s1, s2 := Signature(K);

a1, a2, a3, a4, a6 := Explode(aInvariants(E));

// Set initial precision for computing embeddings, periods, elliptic logs

// N.B. We only require high-precision elliptic logs during LLL process,

// so if our initial precision is already high enough, then we do not need

// to re-compute them again.

initPrec := 300; // this can be changed arbitrarily

A.2. Integral Points on Elliptic Curves 177

// Embed E into various (real/complex) embeddings.

a1 := Conjugates(a1 : Precision := initPrec);

a2 := Conjugates(a2 : Precision := initPrec);

a3 := Conjugates(a3 : Precision := initPrec);

a4 := Conjugates(a4 : Precision := initPrec);

a6 := Conjugates(a6 : Precision := initPrec);

b2 := Conjugates(bInvariants(E)[1] : Precision := initPrec);

pi := Pi(RealField(initPrec));

// Embed generators in the Mordell-Weil basis

X := [Conjugates(P[1] : Precision := initPrec) : P in L];

Y := [Conjugates(P[2] : Precision := initPrec) : P in L];

// Find the generators of the torsion subgroup of E(K)

Tors, map := TorsionSubgroup(E);

expTors := Exponent(Tors);

G := Generators(Tors);

Tors := [map(g) : g in G]; // generators of torsion subgroup

OrdG := [Order(g) : g in G]; // their orders

// Global constants (i.e. do not depend on any embedding of E)

C2 := -CPSLowerHeightBound(E);

C3 := c3(L);

h := h_E(E);

vprint Intpts, 2: "Global constants";

vprintf Intpts, 2: "c2 = %.4o\n", C2;

vprintf Intpts, 2: "c3 = %.4o\n", C3;

vprintf Intpts, 2: "h_E = %.4o\n", h;

vprint Intpts, 2: "-"^45;

Q := [];

// Find the most reduced bound on each embedding of E

// But first let’s adjust the index

for i := 1 to (s1+s2) do

if i le s1 then

j := i;

nv := 1;

vprintf Intpts, 2: "Real embedding #%o\n", j;

else

j := s1 + (2*(i-s1)-1);

nv := 2;

vprintf Intpts, 2: "Complex embedding #%o\n", i-s1;

end if;

// Create complex embedding of E

ee := EllipticCurve([a1[j], a2[j], a3[j], a4[j], a6[j]]);

// Local constants (depending on embedding)

// C9, C10 are used for the upper bound on the linear form in logarithm

C4 := C3 * Degree(K) / (nv*(s1+s2));

vprintf Intpts, 2: "c4 = %.4o\n", C4;

C5 := C2 * Degree(K) / (nv*(s1+s2));

vprintf Intpts, 2: "c5 = %.4o\n", C5;

C6 := c6(ee);

vprintf Intpts, 2: "c6 = %.4o\n", C6;

delta := 1 + (nv-1)*pi;

C8, Periods := c8(ee : Prec := initPrec-10);

vprintf Intpts, 2: "c8 = %.4o\n", C8;

// N.B. Periods w1, w2 are such that w2/w1 is in the fundamental domain

vprintf Intpts, 2: "Periods = %o\n", Periods;

C7 := 8*(delta^2) + (C8^2)*Abs(b2[j])/12;

vprintf Intpts, 2: "c7 = %.4o\n", C7;

C9 := C7*Exp(C5/2);

vprintf Intpts, 2: "c9 = %.4o\n", C9;

C10 := C4/2;

vprintf Intpts, 2: "c10 = %.4o\n", C10;

Q0 := Sqrt((Log(C6+Abs(b2[j])/12) + C5) / C4);

vprintf Intpts, 2: "Q0 = %.4o\n", Q0;

// Constants for David’s lower bound on the linear form in logarithm

w1, w2 := Explode(Periods);

EmbedL := [];

178 Appendix A. MAGMA Source Code

// Find images of all points in a Mordell-Weil basis for E(K) on

// the embedding ee, and then compute complex elliptic logarithms.

for k := 1 to #L do

P := Points(ee, X[k][j])[1];

if Abs(P[2] - Y[k][j]) lt 10^(initPrec/2) then

Append(~EmbedL, P);

else

Append(~EmbedL, -P);

end if;

end for;

//EmbedL := [[X[i][j], Y[i][j]] : i in [1..#L]];

vprintf Intpts, 2: "Computing elliptic logarithms...";

Elog := [EllipticLog(ee, P: Prec := initPrec-10) : P in EmbedL];

vprint Intpts, 2: " : Done";

D7 := 3*pi / ((Abs(w2)^2) * Im(w2/w1));

vprintf Intpts, 2: "d7 = %.4o\n", D7;

D8 := d8(E, L, Elog, Periods, D7);

vprintf Intpts, 2: "d8 = %.4o\n", D8;

D9 := d9(E, L, Elog, Periods, D7);

vprintf Intpts, 2: "d9 = %.4o\n", D9;

D10 := d10(E, L, Elog, Periods, D7);

vprintf Intpts, 2: "d10 = %.4o\n", D10;

// Find the reduced bound for the coefficients in the linear

// logarithmic form

initQ := InitialQ(Degree(K), #L, Q0, C9, C10, D8, D9, D10, h, expTors);

vprintf Intpts, 2: "Initial Q <= 10^%o\n", initQ;

initQ := 10^initQ;

new_Q := ReducedQ(L, j, EmbedL, Elog, C9, C10, Periods, expTors,

initQ);

Append(~Q, new_Q);

vprint Intpts, 2: "-"^45;

end for;

Q := Maximum(Q);

vprintf Intpts: "Maximum absolute bound on coefficients = %o\n", Q;

return IntegralPoints(E, L, Q : Prec := Prec);

end intrinsic;

A.3 Height Bound I: Main Functions

For the rest of this appendix, we will give our own implementation of an algorithm

for determining a positive lower bound for the canonical height on elliptic curves

over number fields, based on Theorem 3.4.1. Although all of the following files

are required for this algorithm, the only function that should be called by users is

IsLowerBound(); see the file below for more details.

/**

* heightbound.m

* Computing a positive lower bound for the canonical height on elliptic

* curves over number fields

* (Based on Thongjunthug’s paper Math. Comp. 79 (2010), pp. 2431-2449)

*

* By Thotsaphon Thongjunthug

* Last updated: 07 December 2010

* Any errors should be reported to <nookaussie@yahoo.com>

*

* Required packages:

* 1) elog.m - for computing periods and elliptic logarithms

A.3. Height Bound I: Main Functions 179

* 2) alphas.m - for computing alpha_v for all archimedean place v

***/

/**

* Declare printing verbose

* 0 = minimal printing,

* 1 = full printing (for debugging purpose only)

**/

declare verbose Bound, 1;

/**

* Auxiliary local functions

***/

/**

* Find all Tamagawa indices at every non-archimedean places of K, and

* also c_v for all real archimedean places v of K (note that c_v = 1 for

* all complex archimedean places v of K). Return their LCM.

* Input:

* E = elliptic curve over a number field K in standard Weierstrass form

* Output:

* A least common multiplier of all Tamagawa indices

**/

function LCMTamagawa(E)

I := LocalInformation(E);

S := [t[4] : t in I]; // Tamagawa index at each bad place

// Real archimidean places

n, _ := Signature(BaseRing(E)); // no. of real embedding

A := aInvariants(E);

A := [Conjugates(a) : a in A];

for i := 1 to n do

_<x> := PolynomialRing(Parent(A[1][i])); // parent = some real field

// Set y = 0 in y^2 + a1*x*y + a3*y ==> 0 = x^3 + a2*x^2 + a4*x + a6

// and check the number of real roots.

f := x^3 + A[2][i]*x^2 + A[4][i]*x + A[5][i];

if #(Roots(f)) eq 1 then

Append(~S, 1);

else

Append(~S, 2);

end if;

end for;

vprint Bound: "Tamagawa indices = ", S;

return LeastCommonMultiple(S);

end function;

/**

* Extra constant in B_n (take care when E is not globally minimal)

* Input:

* E = elliptic curve over number field K in standard Weierstrass form

* P = sequence of prime ideals of O_K

* L = sequence of minimal models at each prime p in P

**/

function ExtraConstant(E, P, L)

discE := Discriminant(E);

n := #P; // should be equal to #L

extraConst := 1;

for i := 1 to n do

discEp := Discriminant(L[i]);

extraConst *:= Norm(P[i])^Valuation(discE/discEp, P[i]);

end for;

extraConst := Log(extraConst)/6;

return extraConst;

end function;

/**

* Find all prime ideals whose norm <= n

* last fixed on 8 Oct 2007

* Input:

* R = ring of integers

180 Appendix A. MAGMA Source Code

* n = an upper bound for norm

**/

function AllPrimeIdeals(R, n)

I := [];

S := [t : t in [1 .. n] | IsPrime(t)];

for x in S do

tmp := Decomposition(R, x);

// Decomposition always return a list (seq) of tuples

// The first element in each tuple is the prime ideal

tmp := [t[1] : t in tmp];

// note that there is always at least 1 elt in tmp

// (really, up to Degree(K) elements)

// check norm of, say, first, prime ideal in tmp

if Norm(tmp[1]) le n then

I:= I cat tmp;

end if;

end for;

return I;

end function;

/**

* Fine local minimal model of E at each non-archimedean place

* N.B. All models must be integral

* Input:

* E = ellliptic curve over number K in standard Weierstrass form

* Output:

* P = sequence of bad primes p

* L = sequence of locally minimal model of E at those p

* dividing the discriminant of E

**/

function LocalMinimalModel(E)

L := []; P := [];

// Decompose the discriminant of E

O := RingOfIntegers(BaseRing(E));

disc := O ! Discriminant(E);

c4, c6 := Explode(cInvariants(E));

c4 := O!c4; c6 := O!c6;

tmp := Decomposition(disc);

// check minimality of each bad place

for D in tmp do

// D[1] = bad place, D[2] = multiplicity in discriminant

// E is minimal at p if ord_p(disc) < 12

// otherwise, minimal at p if ord_p(c4) < 4 or ord_p(c6) < 6

if (D[2] lt 12) or (Valuation(c4, D[1]) lt 4) or

(Valuation(c6, D[1]) lt 6) then

Append(~L, E); // E is already minimal at p

else

// otherwise, find an integral minimal model at p

minModelp := MinimalModel(E, D[1]);

Append(~L, minModelp);

end if;

Append(~P, D[1]);

end for;

return P, L;

end function;

/**

* Given a prime ideal p, calculate e_p (the exponent of the group E_ns(k_p)

* where k_p is residue class field).

* Input:

* E = elliptic curve over number field K in standard Weierstrass form

* Plcs = sequence of all bad prime ideals in E

* L = sequnece of locally minimal elliptic curves at each place in Plcs

* p = a prime ideal of O_K

**/

function FindEp(E, Plcs, L, p)

norm_p := Norm(p);

F, phi := ResidueClassField(p);

A.3. Height Bound I: Main Functions 181

// make sure we’re working on a model that is minimal at p

if p in Plcs then

// p is a bad place (i.e. p | disc(E))

// Get the corresponding minimal model at p

E := L[Index(Plcs, p)];

end if;

pl := Place(p);

// Case 1: Good reduction - E_ns is ell. curve over finite field

if (Valuation(Discriminant(E), pl) eq 0) then

A := phi(Coefficients(E));

E := EllipticCurve(A);

// Need group structors - prod. of (up to) 2 cyclic group

// of finite order

G := Generators(E);

G := [Order(g) : g in G];

// N.B: e_p = exponent = max(d1,d2)

G, _ := Max(G);

return G;

end if;

// Otherwise, E has bad reduction at p

// calculate c4, c6

b2, b4, b6, _ := Explode(bInvariants(E));

c4, c6 := Explode(cInvariants(E));

// Case 2.1: Additive reduction

if Valuation(c4, pl) gt 0 then

// E_ns = k_p+

// if |k_p| is prime, E_ns is cyclic and so e_p = |E_ns| = N(p)

// otherwise, e_p = char(k_p)

if IsPrime(#F) then

return norm_p;

else

return Characteristic(F);

end if;

end if;

// case 1: char(k_p) = 2

if IsZero(norm_p mod 2) then

a1, a2, a3, _, _ := Explode(Coefficients(E));

a1 := phi(a1);

a2 := phi(a2);

a3 := phi(a3);

f := func<x | x^2 + a1*x + (a3/a1 + a2)>;

for r in F do

if f(r) eq 0 then

// a root exist => split mult.

return (norm_p - 1);

end if;

end for;

// otherwise, non-split

return (norm_p + 1);

end if;

// case 2: char(k_p) = 3

if IsZero(norm_p mod 3) then

//print "b2 = ", b2;

b2 := phi(b2);

if IsSquare(b2) then

return (norm_p - 1); // split

else

return (norm_p + 1); // non-split

end if;

end if;

// case 3: char(k_p) != 2,3

//c6 := -b2^3 + 36*b2*b4 - 216*b6;

c4 := phi(c4);

182 Appendix A. MAGMA Source Code

c6 := phi(c6);

if IsSquare(c4 * c6) then

return (norm_p - 1); // split

else

return (norm_p + 1); // non-split

end if;

end function;

/**

* Calculate D_E(n)

* Fixed on 8 Jan 2008

* Input:

* E = elliptic curve over number field in standard Weierstrass form

* n = a positive integer

**/

function D_E(E, n)

K := BaseRing(E);

O := RingOfIntegers(K);

r, _ := Max([2, Degree(K)]);

P := AllPrimeIdeals(O, (n+1)^r);

S := 0;

Plcs, L := LocalMinimalModel(E);

// Choose p such that e_p divides n

for p in P do

e_p := FindEp(E, Plcs, L, p);

if ((n mod e_p) ne 0) then

continue;

end if;

cp, _ := ResidueClassField(p);

cp := Characteristic(cp); // this must be prime number

S +:= 2 * (1 + Valuation(n/e_p, cp)) * Log(Norm(p));

end for;

return S;

end function;

//load "intersect_complex.m";

/**

* Main intrinsic functions

***/

/**

* Decide if a given number \lambda is a positive lower bound for the canonical

* height on an elliptic curve E defined over a number field K.

* Input:

* E = elliptic curve over K

* lambda = initial guess for a lower bound on E(K)

* Output:

* Return true if \lambda is a lower bound.

* If the algorithm FAILS to show that \lambda is a lower bound, return false

* Parameter:

* n_max = maximum number for computing B_n(\mu) (i.e. for 1 <= n <= n_max)

* initRes = initial resolution for region intersection (required only when E

* has complex embeddings.

* Note that if initRes = n, then the grid has 2^n-by-2^n dimension

**/

intrinsic IsLowerBound(E::CrvEll, lambda::FldReElt :

n_max := 5, initRes := 4) -> BoolElt

{Check if \lambda > 0 is a lower bound for the canonical height on an elliptic

curve E defined over number field. If so, return true. If the algorithm fails

to confirm this, false is returned.}

//Pts := [], initRes := 4, showIntersection := false)

K := BaseRing(E);

require Type(K) eq FldNum: "E must be defined over a number field";

require IsIntegralModel(E): "E must be an integral model";

require lambda gt 0: "The number to be checked must be positive";

require (n_max ge 1) and (n_max in Integers()):

"n_max must be a positive integer";

vprintf Bound: "Computing alphas...";

A.3. Height Bound I: Main Functions 183

prodAlphas := &*Alphas(E);

vprint Bound: " : Done";

P, L := LocalMinimalModel(E);

extraConst := ExtraConstant(E, P, L);

// Now we work on E_gr(K)

c := LCMTamagawa(E); mu := lambda*c^2;

vprintf Bound: "Check if mu = %o is a lower bound on E_gr(K)\n", mu;

// Step 1: Compute all B_n(mu) for 1 <= n <= n_max

// If some of them is less than 1, then mu is a lower bound on E_gr,

// and thus we return true.

Bns := [];

for n := 1 to n_max do

Bn:= Exp(Degree(K)*(n^2)*mu - D_E(E, n) + extraConst) * prodAlphas;

vprintf Bound: "B_%o(mu) = %o\n", n, Bn;

if Bn lt 1 then

vprintf Bound: "*** B_%o(mu) < 1, we have a lower bound! ***\n", n;

return true;

end if;

Append(~Bns, Bn);

end for;

// Create s real embeddings and t complex embeddings of E

Es := []; Et := [];

s, t := Signature(K);

A := aInvariants(E);

A := [Conjugates(a) : a in A];

for i := 1 to s do

RR := RealField(Precision(A[1][i]));

// to make sure that curve will be defined over R rather than C

Append(~Es, EllipticCurve([RR| a[i] : a in A]));

end for;

for i := 1 to t do

Append(~Et, EllipticCurve([a[s+(2*i-1)] : a in A]));

end for;

// Step 2: Real Embeddings

// Find intersection of subintervals of [0, 1]

j := 1;

for E in Es do

vprintf Bound: "Real embedding #%o\n", j;

D := FindSn(E, -Bns[1], Bns[1], 1);

vprint Bound: "S_1 is ", D;

if #D eq 0 then

vprint Bound: "*** Empty intersection of intervals ***";

return true;

end if;

for n := 2 to n_max do

tmp := FindSn(E, -Bns[n], Bns[n], n);

vprintf Bound: "S_%o is %o\n", n, tmp;

vprint Bound: "The Intersection now is";

D := Intersection(D, tmp);

vprint Bound: D;

vprint Bound: "-"^40;

// if the intersection is empty, we again have a lower bound

if (#D eq 0) then

vprint Bound: "*** Empty intersection of intervals ***";

return true;

end if;

end for;

vprint Bound: "="^75;

j +:= 1;

end for;

// Step 3: Complex Embeddings

// Find intersection of regions on each fundamental paralellogram

j := 1;

flag := GetVerbose("Bound");

flag := flag eq 1; // convert to true/false

for E in Et do

184 Appendix A. MAGMA Source Code

vprintf Bound: "Complex embedding #%o\n", j;

D := ZRegion(E, Sqrt(Bns[1]), initRes : ShowPlot := flag);

D := GridEntryTransform(D);

oldLevel := 1;

for n := 2 to n_max do

vprint Bound: "n = ", n;

tmp := ZRegion(E, Sqrt(Bns[n]), initRes : ShowPlot := flag);

tmp := GridEntryTransform(tmp);

// If the region is the whole lowe-half fundamental parallelogram,

// then we don’t have to do intersection and manification

if not (&and(tmp)) then

tmp := DivByN(tmp, n); // find T^{(v)}_n(\sqrt{B_n(\mu)})

vprintf Bound: "After division by %o, the size is %o\n",

n, #tmp;

// Apply region’s scaling if necessary before checking

// the intersection.

refineLevel := LCM(n, oldLevel);

D := Magnify(D, Integers() ! (refineLevel/oldLevel));

tmp := Magnify(tmp, Integers() ! (refineLevel/n));

D := IntersectTwoGrids(D, tmp);

oldLevel := refineLevel;

end if;

// If the intersection is empty, we have a lower bound

if not(&or(D)) then

vprint Bound: "*** Empty intersection of regions ***";

return true;

end if;

end for;

vprint Bound: "="^75;

j +:= 1; // move to next complex embedding

end for;

// Otherwise, fail to show that mu is a lower bound on E_gr(K)

return false;

end intrinsic;

/**

* Compute an upper bound for the index n = [E(K)/E_tors(K) : <Pts>], where

* Pts is the set of generators in a Mordell-Weil basis of E(K), using the

* geometry of numbers

* (see Siksek’s "Infinite descent on elliptic curves", Theorem 3.1)

* Input:

* Pts = sequence of points in a Mordell-Weil basis

* lambda = a positive lower bound for the canonical height on E(K)

**/

intrinsic UpperBound4Index(Pts::SeqEnum, lambda::FldReElt) -> FldReElt

{Compute an upper bound for the index [E(K)/E_tors(K) : <P_1,...,P_r>] using

the geometry of numbers.}

E := Curve(Pts[1]);

require &and[P in E : P in Pts]: "All points must be on the same curve";

detR := Determinant(HeightPairingMatrix(Pts));

r := #Pts;

// Here, gamma := [gamma_r^r]

if r lt 9 then

gamma := [1, 4/3, 2, 4, 8, 64/3, 64, 2^8];

gamma := gamma[r];

else

gamma := ((Gamma(1 + r/2))^2) * (4 * Pi(RealField()))^r;

end if;

// calculate the upper bound of n

n := Sqrt(detR * gamma / (lambda^r));

return n;

end intrinsic;

A.4. Height Bound II: Computing αv 185

A.4 Height Bound II: Computing αv

This file computes the quantity αv (see Section 2.2.2 for its definition) for every

archimedean place v, using the method mentioned in [CPS06, Section 7 and 9].

/**

* alphas.m

* Computing alpha_v for all archimedean place v of a number field K

* (Based on Section 7 and 9 of Cremona-Prickett-Siksek’s paper

* J. Number Theory 116 (2006), pp. 42-68).

*

* By Thotsaphon Thongjunthug

* Last updated: 08 December 2010

* Any errors should be reported to <nookaussie@yahoo.com>

***/

forward RefineAlphaBound; // require for this recursive function

/**

* Generic local function: used by both real and complex cases

***/

/**

* Find max{|P(z)|,|Q(z)|} at z}

* Input:

* P, Q = real/complex polynomial in z

* z = a real/complex number

**/

function MaxAbsPQ(P, Q, z)

tmp := [Abs(Evaluate(P, z))];

Append(~tmp, Abs(Evaluate(Q, z)));

tmp, _ := Max(tmp);

return tmp;

end function;

/**

* Auxiliary local functions I:

* Calculate alpha_v, where v is a real archimedean place

***/

/**

* Only return real roots of f lying between a and b, no multiplicity.

* Sort in increasing order.

* Input:

* f = real polynomial

* a, b = two real numbers (with a <= b)

* Output:

* a sequence of roots between a and b

**/

function JustRoots(f, a, b)

if a gt b then

error "a must be < or = b";

end if;

R := Roots(f);

R := [r[1] : r in R];

R := [r : r in R | (r ge a) and (r le b)];

Sort(~R);

return R;

end function;

/**

* Check if a real value t is in a given real interval I

**/

function IsInInterval(I,t)

a := I[1]; b := I[2];

186 Appendix A. MAGMA Source Code

return ((t ge a) and (t le b));

end function;

/**

* Find d = inf{|f(x)|, |g(x)|} where x is real and satisfies

* (this is called e in CPS’ paper!)

* |x| <= 1 and f(x) >= 0.

* Input:

* E = elliptic curve over reals

* f, g = real polynomials in x

* Output:

* A value of d > 0. If such d does not exist (due to the region is empty),

* then -1 is returned.

**/

function Find_d(E, f, g)

local leftPt, rightPt;

// Find the starting point of x in E_0(R)

// i.e. beta = max real root of RHS

_, a2, _, a4, a6 := Explode(aInvariants(E));

_<x> := PolynomialRing(Parent(a2));

rhs := x^3 + a2*x^2 + a4*x + a6;

tmp := Roots(rhs); // real roots

tmp := [t[1] : t in tmp];

beta, _ := Max(tmp);

// Define the domain D = {x:|x|<=1 and f(x)>=0}

if beta gt 1 then

return -1; // D empty

end if;

a, _ := Max([-1., beta]);

b := 1.;

tmp := JustRoots(f, a, b);

R := {@a@};

for i in tmp do

R := R join {@i@};

end for;

R := R join {@b@};

r := #R - 1;

D := [];

includeStatus := false;

for i := 1 to r do

midX := (R[i] + R[i+1])/2;

if Evaluate(f, midX) gt 0 then

// in case the root has multiplicity 2

if (#D eq 0) then

Append(~D, [R[i], R[i+1]]);

leftPt := R[i];

elif (rightPt eq R[i]) then

Prune(~D);

Append(~D, [leftPt, R[i+1]]);

else

Append(~D, [R[i], R[i+1]]);

leftPt := R[i];

end if;

rightPt := R[i+1];

includeStatus := true; // next pivot point is included

continue;

end if;

if (Evaluate(f, R[i]) eq 0) and not includeStatus then

Append(~D, [R[i], R[i]]);

leftPt := R[i];

rightPt := R[i];

end if;

includeStatus := false;

end for;

if (Evaluate(f, R[r+1]) eq 0) and not includeStatus then

Append(~D, [R[r+1], R[r+1]]);

A.4. Height Bound II: Computing αv 187

end if;

if (#D eq 0) then

//print "FindD: Valid region of x is empty";

return -1;

end if;

// list all roots of f+g, f-g, f’, g’

R := JustRoots(f + g, a, b);

R := R cat JustRoots(f - g, a, b);

R := R cat JustRoots(Derivative(f), a, b);

R := R cat JustRoots(Derivative(g), a, b);

//R := [r : r in R | (r ge -1) and (r le 1)];

//Sort(~R);

// here, i is the interval

Vals := [];

for i in D do

Vals := Vals cat [MaxAbsPQ(f,g,i[1]), MaxAbsPQ(f,g,i[2])];

//print "Vals init = ", Vals;

for j in R do

if IsInInterval(i,j) then

Append(~Vals, MaxAbsPQ(f,g,j));

//Exclude(~R,j);

end if;

end for;

//print Vals;

end for;

//if IsZero(#Vals) then

// print "ERROR: Vals is empty";

//end if;

d, _ := Min(Vals);

//print "The infimum is ", d;

return d;

end function;

/**

* Find d’ = inf{|F(x)|, |G(x)|} where x is real and satisfies

* |x|<=1 and F(x)>=0 (this is called e’ in CPS’ paper!)

* Input:

* E = elliptic curve over reals

* F, G = real polynomials in x

* Output:

* a value of d’. If such d does not exist (due to the region

* is empty), then -1 is returned.

**/

function Find_ddash(E, F, G)

local leftPt, rightPt;

// Find the starting point of x in E_0(R)

// i.e. beta = max real root of RHS

_, a2, _, a4, a6 := Explode(Coefficients(E));

P<x> := PolynomialRing(RealField());

a2 := P ! a2;

a4 := P ! a4;

a6 := P ! a6;

rhs := x^3 + a2*x^2 + a4*x + a6;

tmp := Roots(rhs);

tmp := [t[1] : t in tmp];

beta, _ := Max(tmp);

// init the domain D’

if beta le -1 then

DDashInit := [[-1., 1./beta], [0., 1.]];

elif beta le 1 then

DDashInit := [[0., 1.]];

else

DDashInit := [[0, 1./beta]];

end if;

188 Appendix A. MAGMA Source Code

DDash := [];

for I in DDashInit do

a := I[1];

b := I[2];

tmp := JustRoots(F, a, b);

R := {@a@};

for i in tmp do

R := R join {@i@};

end for;

R := R join {@b@};

r := #R - 1;

includeStatus := false;

for i := 1 to r do

midX := (R[i] + R[i+1])/2;

if Evaluate(F, midX) gt 0 then

// In case the root has multiplicity 2

if (#DDash eq 0) then

Append(~DDash, [R[i], R[i+1]]);

leftPt := R[i];

elif (rightPt eq R[i]) then

Prune(~DDash);

Append(~DDash, [leftPt, R[i+1]]);

else

Append(~DDash, [R[i], R[i+1]]);

leftPt := R[i];

end if;

rightPt := R[i+1];

includeStatus := true; // next pivot point is included

continue;

end if;

if (Evaluate(F, R[i]) eq 0) and not includeStatus then

Append(~DDash, [R[i], R[i]]);

leftPt := R[i];

rightPt := R[i];

end if;

includeStatus := false;

end for;

if (Evaluate(F, R[r+1]) eq 0) and not includeStatus then

Append(~DDash, [R[r+1], R[r+1]]);

end if;

end for;

if (#DDash eq 0) then

//print "FindDDash: Valid region of x is empty";

return -1;

end if;

// list all roots of F+G, F-G, F’, G’

R := JustRoots(F + G, -1, 1);

R := R cat JustRoots(F - G, -1, 1);

R := R cat JustRoots(Derivative(F), -1, 1);

R := R cat JustRoots(Derivative(G), -1, 1);

//R := [r : r in R | (r ge -1) and (r le 1)];

//Sort(~R);

// here, I is the interval

Vals := [];

for I in DDash do

Vals := Vals cat [MaxAbsPQ(F,G,I[1]), MaxAbsPQ(F,G,I[2])]; // end points

//print "Vals init = ", Vals;

for j in R do

if IsInInterval(I,j) then

Append(~Vals, MaxAbsPQ(F,G,j));

//Exclude(~R,j);

end if;

end for;

//print Vals;

end for;

A.4. Height Bound II: Computing αv 189

//if IsZero(#Vals) then

// print "ERROR: Vals is empty";

//end if;

d, _ := Min(Vals);

//print "The infimum is ", d;

return d;

end function;

/**

* Calculate the value of alpha of a given elliptic curve over real numbers

* Input:

* E = elliptic curve over reals

**/

function AlphaReal(E)

b2, b4, b6, b8 := Explode(bInvariants(E));

_<x> := PolynomialRing(Parent(b2)); // assume all b have the same precision

f := 4*x^3 + b2*x^2 + 2*b4*x + b6;

g := x^4 - b4*x^2 - 2*b6*x - b8;

F := 4*x + b2*x^2 + 2*b4*x^3 + b6*x^4; // = f(x)/(x^4) and let x := 1/x

G := 1 - b4*x^2 - 2*b6*x^3 - b8*x^4; // similarly

d := Find_d(E, f, g);

d_dash := Find_ddash(E, F, G);

// take care of cases when region of valid x is empty

if (d lt 0) then

if (d_dash ge 0) then

return d_dash^(-1/3);

else

error "Both regions of X are empty (should not happen), please report!";

end if;

elif (d_dash ge 0) then

alpha, _ := Min([d, d_dash]);

return alpha^(-1/3);

else

return d^(-1/3);

end if;

end function;

/**

* Auxiliary local functions II:

* Calculate alpha_v for complex archimedean places v in K

***/

/**

* Calculate min H = min{h((m+ni)/10: m^2 + n^2 <= 100}, m, n integer

* where h = max{|P(z)|, |Q(z)|}.

* Input:

* P, Q = polynomials defined over C

**/

function AlphaInitialGuess(P, Q)

i := BaseRing(P)!Sqrt(-1);

initMin, _ := Max(Abs(Evaluate(P, -1)), Abs(Evaluate(Q, -1)));

for m := -10 to 10 do

boundN := Floor(Sqrt(100 - m^2));

for n := -boundN to boundN do

h := MaxAbsPQ(P, Q, (m + n*i)/10);

if h lt initMin then

initMin := h;

end if;

end for;

end for;

return initMin;

end function;

/**

* Compute BigEpsilon(z, eta)

190 Appendix A. MAGMA Source Code

* Input:

* P, Q = complex polynomials

* z, eta = complex numbers

**/

function BigEpsilon(P, Q, z, eta)

d1 := Degree(P);

d2 := Degree(Q);

sum1 := 0;

sum2 := 0;

for n := 1 to d1 do

P := Derivative(P); // P^(n)

sum1 +:= (eta^n) * Abs(Evaluate(P, z)) / Factorial(n);

end for;

for n := 1 to d2 do

Q := Derivative(Q); // Q^(n)

sum2 +:= (eta^n) * Abs(Evaluate(Q, z)) / Factorial(n);

end for;

eps, _ := Max([sum1, sum2]);

return eps;

end function;

/**

* Approximate alpha_PQ = inf max{|P(z)|, |Q(z)|}, z on unit circle

* using repeated quadrisection method recursively.

* Input:

* P, Q = complex polynomials

* mu = accuracy level (need Exp(-mu) close to 1)

* S = nested sequence representing a square

* alpha = initial alpha to be refined

* level = how many times one wishes to refine alpha

**/

function RefineAlphaBound(P, Q, mu, S, alpha, level)

// Step 1: check if the square S intersects unit circle

// if not, return alpha

a, b := Explode(S[1]);

r := S[2];

// Modified: 25 Mar 2010 (bug found by Robert Bradshaw)

// If [a, b] = [-1, -1], the below trick won’t work.

// But of course the intersection won’t be empty.

if level eq 0 then

level := 1;

S1 := <[a, b], r/2>;

S2 := <[a, b+r/2], r/2>;

S3 := <[a+r/2, b], r/2>;

S4 := <[a+r/2, b+r/2], r/2>;

alpha := RefineAlphaBound(P, Q, mu, S1, alpha, level);

alpha := RefineAlphaBound(P, Q, mu, S2, alpha, level);

alpha := RefineAlphaBound(P, Q, mu, S3, alpha, level);

alpha := RefineAlphaBound(P, Q, mu, S4, alpha, level);

end if;

C := [S[1], [a, b+r], [a+r, b], [a+r, b+r]];

C := [c[1]^2 + c[2]^2 : c in C]; // square of modulus of each corner

C := [(c le 1) : c in C]; // check if each corner is in the circle

if not (true in C) then

return alpha;

end if;

// Step 2:

if (a+r/2)^2 + (b+r/2)^2 le 1 then

u := [a+r/2, b+r/2]; // u = mid-point

eta := r/Sqrt(2);

else

// u = any corner that in unit circle

ind := Index(C, true); // position of the corner in D

if ind eq 1 then

u := [a, b];

elif ind eq 2 then

u := [a, b+r];

A.4. Height Bound II: Computing αv 191

elif ind eq 3 then

u := [a+r, b];

else

u := [a+r, b+r];

end if;

eta := r * Sqrt(2);

end if;

// Step 3 and 4: check condition for minimality

i := BaseRing(P)!Sqrt(-1);

u := u[1] + u[2]*i;

h := MaxAbsPQ(P, Q, u);

epsilon := BigEpsilon(P, Q, u, eta);

if (h - epsilon) gt (alpha * Exp(-mu)) then

return alpha;

else

alpha, _ := Min([alpha, h]);

end if;

// Step 5 and so on: split S into 4 quadrants and recursively apply

// this function to each S_i

level := level + 1;

S1 := <[a, b], r/2>;

S2 := <[a, b+r/2], r/2>;

S3 := <[a+r/2, b], r/2>;

S4 := <[a+r/2, b+r/2], r/2>;

alpha := RefineAlphaBound(P, Q, mu, S1, alpha, level);

alpha := RefineAlphaBound(P, Q, mu, S2, alpha, level);

alpha := RefineAlphaBound(P, Q, mu, S3, alpha, level);

alpha := RefineAlphaBound(P, Q, mu, S4, alpha, level);

return alpha;

end function;

/**

* Find alphas for a given elliptic curve over complex number

* Use repeated quadrisection method from Section 9 of CPS’ paper.

* Input:

* E = elliptic curve over C

* mu = accuracy level (need Exp(-mu) close to 1)

**/

function AlphaComplex(E : mu := 0.005)

b2, b4, b6, b8 := Explode(bInvariants(E));

_<x> := PolynomialRing(Parent(b2));

f := 4*x^3 + b2*x^2 + 2*b4*x + b6;

g := x^4 - b4*x^2 - 2*b6*x - b8;

F := 4*x + b2*x^2 + 2*b4*x^3 + b6*x^4; // = f(x)/(x^4) and let x := 1/x

G := 1 - b4*x^2 - 2*b6*x^3 - b8*x^4; // similarly

// S = square [-1,1] X [-1,1], represents as <[a,b], h, v> where

// [a,b] = lower left corner, r = length (same for all sides)

S := <[-1.,-1.], 2.>;

// Step 1: find inf max{|f(z)|, |g(z)|}, where z on closed unit disc

// Initial guess: alpha_fg = min H = min{h((m+ni)/10: m^2 + n^2 <= 100}

// where h = max{|f(z)|, |g(z)|}

alpha_fg := AlphaInitialGuess(f, g);

alpha_fg := RefineAlphaBound(f, g, mu, S, alpha_fg, 0);

// Step 2: find inf max{|F(z)|, |G(z)|}, where z on closed unit disc

// Initial guess: alpha_FG = min H = min{h((m+ni)/10: m^2 + n^2 <= 100}

// where h = max{|F(z)|, |G(z)|}

alpha_FG := AlphaInitialGuess(F, G);

alpha_FG := RefineAlphaBound(F, G, mu, S, alpha_FG, 0);

// Then alpha^(-3) = Min(alpha_fg, alpha_FG)

// Note that we need alpha

alpha, _ := Min([alpha_fg, alpha_FG]);

alpha := (alpha*Exp(-mu))^(-1/3);

return alpha;

192 Appendix A. MAGMA Source Code

end function;

/**

* Main intrinsic function

***/

/**

* Return the list of alpha_v for all archimedean place v.

* For those alphas from complex embeddings, the returned values are squared

* Input:

* E = elliptic curve over number field K

* Output:

* A sequence of all values of alpha_v

**/

intrinsic Alphas(E::CrvEll) -> SeqEnum

{Given an elliptic curve E over a number field K, compute all alpha_v associated to

E for all archimedean places v of K. If v is a complex place, then the returned

value will be alpha_v^2.}

A:= aInvariants(E);

tmp := [Conjugates(a) : a in A];

s, t := Signature(BaseRing(E));

alphas := [];

// Real embeddings

for j := 1 to s do

Erj := EllipticCurve([RealField() ! a[j] : a in tmp]);

Append(~alphas, AlphaReal(Erj));

end for;

// Complex embeddings

// N.B.: we pick only one conjugate from its conjugacy pair

for j := 1 to t do

Ecj := EllipticCurve([b[s + 2*j - 1] : b in tmp]);

Append(~alphas, (AlphaComplex(Ecj))^2);

end for;

return alphas;

end intrinsic;

A.5 Height Bound III: Intersection of Intervals

This file consists of all necessary functions for compute S(v)
n (ξ1, ξ2) (see Section 2.5

for its definition) for each real archimedean place v. Note that S(v)
n is a disjoint

union of subintervals of [0, 1]. As we have seen in Section 2.5, an algorithm for

computing periods and elliptic logarithms of real points is also required for this

computation; see Appendix A.1 for its implementation.

/**

* intersect_real.m

* Computing S^{(v)}_n(\xi_1, \xi_2) for all real archimedean place v

*

* By Thotsaphon Thongjunthug

* Last updated: 08 December 2010

* Any errors should be reported to <nookaussie@yahoo.com>

*

* Required package:

* elog.m - for computing normalised elliptic logarithms of real points

***/

A.5. Height Bound III: Intersection of Intervals 193

/**

* Auxiliary local functions

***/

/**

* Return the list of real roots of f(x) = 4x^3 + b2*x^2 + 2*b4*x + b6

* in decreasing order

* Input:

* E = elliptic curve defined over real numbers

* Output:

* a sequence of real roots

**/

function RootsF(E)

b2, b4, b6, b8 := Explode(bInvariants(E));

_<t> := PolynomialRing(Parent(b2));

p := 4*t^3 + b2*t^2 + 2*b4*t + b6;

R := Roots(p); // real roots only

R := [e[1] : e in R]; // get rid of multiplicity

Sort(~R);

Reverse(~R); // decreasing order

return R;

end function;

/**

* Find the intersection of two real intervals I1, I2

* Input:

* I1 = [a, b], I2 = [c, d] : real intervals

**/

function IntervalsMeet(I1,I2)

if (#I1 eq 0) or (#I2 eq 0) then

// One interval is empty, nothing to do

return [];

end if;

a := I1[1]; b := I1[2];

c := I2[1]; d := I2[2];

if (b lt c) or (d lt a) then

// Both intervals are disjoint

return [];

elif (a le c) and (d le b) then

return I2; // subset of I1

elif (c le a) and (b le d) then

return I1; // subset of I2

elif (a lt c) and (b lt d) then

return [c,b];

elif (c lt a) and (d lt b) then

return [a,d];

else

// Should not happen, just for checking

error "You miss some case";

end if;

end function;

/**

* Compute a normalised elliptic logarithm of the "higher" point of the two

* having the same x-coordinate.

* Input:

* E = elliptic curve over reals in standard Weierstrass form

* x = a real number for the x-coordinate

**/

function NormalisedElog(E, x)

// First, find a positive period of E

r := Precision(BaseRing(E));

// Warning: PeriodLattice() needs curves over C

prec := Precision(BaseRing(E));

C := ComplexField(prec);

EC := ChangeRing(E, C);

194 Appendix A. MAGMA Source Code

w1, w2, _ := Explode(PeriodLattice(EC : Prec := r-10));

if Im(w2/w1) gt 0 then

L := [w1, w2];

else

L := [w2, w1];

end if;

L, _ := TransformLattice(L);

if Abs(Im(L[1])) lt 10^(-r/2) then

w := Re(L[1]);

else

w := Re(L[2]);

end if;

if w lt 0 then

w := -w; // need positive real period

end if;

//"w = ", w;

// Find the "higher" point

a1, a2, a3, a4, a6 := Explode(aInvariants(E));

_<t> := PolynomialRing(Parent(a1));

f := t^2 + a1*x*t + a3*t - x^3 - a2*x^2 - a4*x - a6;

tmp := Roots(f); // real roots

tmp := [y[1] : y in tmp];

// Chose y such that 2*y + a1*x + a3 >= 0

if (2*tmp[1] + a1*x + a3) ge 0 then

y := tmp[1];

else

y := tmp[2];

end if;

PC := Points(EC, x)[1]; // embed P to E(C)

if Abs(PC[2]-y) gt 10^(-r/2) then

PC := -PC;

end if;

// Compute elliptic logaithm and scale it to [0,1]

elog := EllipticLog(EC, PC : Prec := r-10);

elog := Re(elog/w); // already real, just to make sure

return elog - Floor(elog); // mod 1, and force it to be real

end function;

/**

* Find S^{(v)}(e1, e2)

* Input:

* e1, e2 = two real number with e1 < e2

* Output:

* a nested sequence representing disjoint union of subinterval

**/

function FindS(E, e1, e2)

if (e1 ge e2) then

error "e1 must be less than e2";

end if;

// beta = max real root of f(x) = 4x^3 + ...

beta := (RootsF(E))[1];

if (e2 lt beta) then

return [];

elif (e1 lt beta) then

el2 := NormalisedElog(E, e2);

return [[1 - el2, el2]];

else

el1 := NormalisedElog(E, e1);

el2 := NormalisedElog(E, e2);

if (el1 eq 0.5) then

if (el2 eq 0.5) then

return [[0.5, 0.5]];

else

return [[1 - el2, el2]];

end if;

A.5. Height Bound III: Intersection of Intervals 195

else

return [[1 - el2, 1 - el1], [el1, el2]];

end if;

end if;

end function;

/**

* Main intrinsic functions

***/

/**

* Compute S^{(v)}_n(e1, e2)

* Input:

* E = elliptic curve over reals in standard Weierstrass form

* e1, e2 = two real numbers (with e1 < e2)

* n = a positive integer

* Output:

* a nested sequence representing a disjoint union of subintervals of [0,1]

**/

intrinsic FindSn(E::CrvEll, e1::FldReElt, e2::FldReElt, n::RngIntElt) -> SeqEnum

{Compute S^v_n(e1, e2) for real archimedean place v}

require e1 lt e2 : "e1 must be less than e2";

require n gt 0: "n must be a positive integer";

D := [];

S := FindS(E, e1, e2);

//print "n =", n, "S = ", S;

s := #S;

if s eq 0 then

return [];

end if;

a := (S[1])[1];

b := (S[1])[2];

if s eq 1 then

if (a eq 0) and (b eq 1) then

return [[0., 1.]];

end if;

for t := 0 to (n-1) do

Append(~D, [(t+a)/n, (t+b)/n]);

end for;

return D;

end if;

// s = 2

c := (S[2])[1];

d := (S[2])[2];

if (a eq 0) and (d eq 1) then

D := [[0, b/n]];

for t := 0 to (n-2) do

Append(~D, [(t+c)/n, (t+1+b)/n]);

end for;

Append(~D, [(n-1+c)/n, (n-1+d)/n]);

return D;

end if;

// otherwise, ordinary append will do

for t := 0 to (n-1) do

Append(~D, [(t+a)/n, (t+b)/n]);

Append(~D, [(t+c)/n, (t+d)/n]);

end for;

return D;

end intrinsic;

/**

* Find the intersection of two disjoint unions of intervals

* Input:

* I1, I2 = nested sequences representing disjoint unions of intervals

196 Appendix A. MAGMA Source Code

* Output:

* a nested sequences representing disjoint union of intervals

**/

intrinsic Intersection(I1::SeqEnum , I2::SeqEnum) -> SeqEnum

{Find the intersection of two disjoint unions of intervals}

D:= [];

for I in I1 do

for J in I2 do

tmp := IntervalsMeet(I,J);

if (#tmp ne 0) then

Append(~D, tmp);

end if;

end for;

end for;

return D;

end intrinsic;

A.6 Height Bound IV: Intersection of Regions

The following files provides functions for computing the approximate corresponding

region T (v)
n (see Section 3.3 for the definition) for each complex archimedean place

v. Again, we use our implementation in Appendix A.1 to compute the period lattice

of each complex embedding.

A.6.1 intersect complex.m

This is the main file which does most of the task of computing T (v)
n .

/**

* intersect_complex.m

* Computing T^{(v)}(\xi) and functions to be used for intersecting regions

* on half fundamental parallelograms

*

* By Thotsaphon Thongjunthug

* Last updated: 08 Decemner 2010

* Any errors should be reported to <nookaussie@yahoo.com>

*

* Required packages:

* 1) elog.m - for computing periods of elliptic curve over C

* 2) interval_wp.m - for HasBoundary() function

* 3) wp.m - for computing error term when computing \wp(z) using

* only finite number of terms in the power series expansion.

***/

/**

* Auxiliary local functions/procedures

***/

/**

* Return half fundamental paralelogram discretised into n-by-n block

* Input:

* tau = w2/w1

* n = dimension of the discritisation

* Output

* <dw1, dw2, [<pivot, status>, ...]>

**/

function HFPDiscretise(tau, n)

A.6. Height Bound IV: Intersection of Regions 197

dw1 := 1.;

dw2 := tau/2;

pivot := 0.;

U := car<Parent(tau), Integers()>;

L := [U|];

dw1 := dw1/n;

dw2 := dw2/n;

for i := 1 to n do

for j := 1 to n do

// initial status is set to be ’2’ (uncertain) for all blocks

Append(~L, <pivot, 2>);

pivot +:= dw2;

end for;

pivot := i*dw1;

end for;

return <dw1, dw2, L>;

end function;

/**

* Plot a given brief half fundamental paralellogram into figure

* (for debug only) - outout is rotated-right of the real figure

* Status - 0 = No (cell excluded), else = Yes (included)

* Input:

* L = sequence of digits representing cells in the H.F.P.

**/

procedure GridPlot(L)

// Check dimension = must be square (nxn)

if not IsSquare(#L) then

error "Dimension of L must be square";

else

dim := Integers() ! Sqrt(#L);

end if;

i := 1;

for c in L do

if c eq 0 then

printf "x";

elif c eq 1 then

printf "y";

elif c eq 2 then

printf "f";

else

printf "u";

end if;

if (i mod dim) eq 0 then

printf "\n";

i := 1;

else

i +:= 1;

end if;

end for;

end procedure;

/**

* Main intrinsic functions

***/

/**

* Intersect two (brief version of) regions on half fundamental

* parallelograms (HFP)

* Input:

* L1, L2 = sequence of true/false representing the region (true = in region)

* Output:

* A sequence of true/false representing the intersection

**/

intrinsic IntersectTwoGrids(L1::SeqEnum[BoolElt], L2::SeqEnum[BoolElt])

-> SeqEnum[BoolElt]

{Intersect two regions of the same size}

// Both L1 and L2 must be of identical size.

198 Appendix A. MAGMA Source Code

// All entries in both L1, L2 are booleans.

require #L1 eq #L2: "Both HFPs must be of identical dimension";

n := #L1; // = #L2 as well

L := [];

for i := 1 to n do

Append(~L, L1[i] and L2[i]);

end for;

return L;

end intrinsic;

/**

* Divide a given region L by n. If L has dimention m-by-m, then the new

* divided region has dimention (m*n)-by-(m*n)

* Input:

* L = a sequence of true/false representing a region

* n = a positive integer

* Output:

* a sequence of true/false representing a new region

**/

intrinsic DivByN(L::SeqEnum, n::RngIntElt) -> SeqEnum

{Division of region by n}

// Check dimension of L - must be square

require IsSquare(#L): "Dimension of L must be square";

require n ge 1: "n must be a positive integer";

oldDim := Integers()! Sqrt(#L);

// "shrinked" block: dimension = oldDim x oldDim

// split shrink block into oldDim columns

Cols := [];

for i := 1 to oldDim do

Col := [];

for j := oldDim*(i-1)+1 to oldDim*i do

Append(~Col, L[j]);

end for;

Append(~Cols, Col);

end for;

// Build up each big column.

// Swap method - top of 1st column concats to top of oldDim-th column.

// Count the total entry - stop when # = oldDim * n

BigCol := [];

for i := 1 to oldDim do

BigCol[i] := []; // initialise blank big column

end for;

for i := 1 to oldDim do

ind := 1;

repeat

if (ind mod 2) eq 1 then

// pick entry from i-th column

BigCol[i] := BigCol[i] cat Cols[i];

else

BigCol[i] := BigCol[i] cat Reverse(Cols[oldDim-i+1]);

end if;

ind +:= 1;

until ind gt n;

end for;

// Concat oldDim big columns together, and keep doing this n times.

// Overall dim = (n*oldDim) x (n*oldDim)

LL := [];

for i := 1 to n do

for j := 1 to oldDim do

LL := LL cat BigCol[j];

end for;

end for;

return LL;

end intrinsic;

/**

A.6. Height Bound IV: Intersection of Regions 199

* Magnify a brief half fundamental parallelogram by n folds

* Input:

* L = sequence of true/false representing a region, say, size m-by-m

* n = a positive integer

* Output:

* a new sequence of true/false of size (m*n)-by-(m*n)

**/

intrinsic Magnify(L::SeqEnum, n::RngIntElt) -> SeqEnum

{Magnify a brief half fundamental parallelogram by n folds}

// Check dim of L - must be square

require IsSquare(#L): "Dimension of L must be square";

oldDim := Integers() ! Sqrt(#L);

require n ge 1: "n must be a positive integer";

// initialise BigCol - n of them

BigCol := [];

for i := 1 to n do

BigCol[i] := [];

end for;

LL := [];

// for each cell, discretise it into nxn subcells

// do this by column

for i := 1 to (oldDim^2) do // no. of org. cells

for j := 1 to n do // no. of subcol in each cell

for k := 1 to n do // no. of copies of that org. cell to subcol

Append(~BigCol[j], L[i]);

end for;

end for;

if (i mod oldDim) eq 0 then // 1 old col done

// concat those n subcols and put into LL

for k := 1 to n do

LL := LL cat BigCol[k];

end for;

// clear all n subcols

BigCol := [];

for k := 1 to n do

BigCol[k] := [];

end for;

end if;

end for;

return LL;

end intrinsic;

/**

* Determine a region T^v_n(\xi).

* This is done by simple methods, but still need more subtle way to confirm

* that the pre-excluded cells are indeed excluded.

* Input:

* E = elliptic curve defined over C in standard Weierstrass form

* xi = an upper bound for |X|, where Y^2 = 4*X^3 + A*X + B

* initRes = initial resolution (dimension) for the region

* Output:

* ?

* Parameter:

* ShowPlot = if true, print the region

*

**/

intrinsic ZRegion(E::CrvEll, xi::FldReElt, initRes::RngIntElt :

ShowPlot := false) -> SeqEnum

{Find the region T^v(\xi)}

prec := Precision(BaseRing(E));

w1, w2, _ := Explode(PeriodLattice(E: Prec := prec-10));

if Im(w2/w1) gt 0 then

L := [w1, w2];

else

L := [w2, w1];

end if;

L, _ := TransformLattice(L);

w1, w2 := Explode(L); tau := w2/w1;

200 Appendix A. MAGMA Source Code

b2 := bInvariants(E)[1];

u_xi := (xi + Abs(b2)/12) * Abs(w1)^2; // U_{\xi}

// Create a discritisation of half fundamental paralellogram,

// both full version L and brief version C.

n := 2^initRes; // dimension needs to be a power of 2

// Format: L = <dw1, dw2, [<pivot, status>, ...]>

dw1, dw2, cells := Explode(HFPDiscretise(tau, n));

// initial C

C := [c[2] : c in cells]; // status of each cell (2 = uncertain)

// Stage 1: Four-Corner Test

for ind := 1 to (n^2) do

pivot, _ := (cells[ind])[1];

// Error term:

// Using 23 terms yields accuracy of computing \wp(z)

// within 50 decimal places

err := EstimateWPMaxError(23, 23);

// Temporary excluded the corner containing 0 (mod \Lambda)

if (ind eq 1) or (ind eq (n*(n-1)+1)) then

continue;

// find p(z,tau) where z are the four corners of the cell c

elif Abs(WeierstrassP([1, tau], pivot, 23))+err le u_xi then

C[ind] := 1;

elif Abs(WeierstrassP([1, tau], pivot + dw1, 23))+err le u_xi then

C[ind] := 1;

elif Abs(WeierstrassP([1, tau], pivot + dw2, 23))+err le u_xi then

C[ind] := 1;

elif Abs(WeierstrassP([1, tau], pivot + dw1 + dw2, 23))+err le u_xi then

C[ind] := 1;

end if;

if C[ind] eq 1 then

// Stage 2: Identify "possibly false" boundary

// set it to ’0’ first in order to distinguish the region

// but is still subject to verification

// left cell

if ind gt n then

if C[ind - n] ne 1 then

C[ind - n] := 0;

end if;

end if;

// right cell

if ind le n*(n-1) then

if C[ind + n] ne 1 then

C[ind + n] := 0;

end if;

end if;

// top cell

if (ind mod n) ne 0 then

if C[ind + 1] ne 1 then

C[ind + 1] := 0;

end if;

end if;

// bottom cell

if (ind mod n) ne 1 then

if C[ind - 1] ne 1 then

C[ind - 1] := 0;

end if;

end if;

end if;

end for;

// Stage 3: Confirm "possibly false" boundary that it is indeed excluded

boundaryConfirmed := true;

for ind := 1 to (n^2) do

if C[ind] eq 0 then

// lower horizontal

A.6. Height Bound IV: Intersection of Regions 201

m := 0.; k := Im(pivot);

X := [Re(pivot), Re(pivot)+dw1];

if HasBoundary(X, m, k, u_xi, tau) then

C[ind] := 1;

//printf "C[%o]: lower boundary not confirmed\n", ind;

boundaryConfirmed := false;

//print "==========";

continue;

end if;

// upper horizontal

m := 0.; k := Im(pivot + dw2);

X := [Re(pivot+dw2), Re(pivot+dw1+dw2)];

if HasBoundary(X, m, k, u_xi, tau) then

C[ind] := 1;

//printf "C[%o]: upper boundary not confirmed\n", ind;

boundaryConfirmed := false;

//print "==========";

continue;

end if;

// ADDED: 18 Nov 2010

// left/right vertical (i.e. Re(tau)=0)

if Re(tau) eq 0 then

if HasBoundaryVertical(Re(pivot), Im(pivot), Im(pivot+dw2),

u_xi, tau) then

C[ind] := 1;

//printf "C[%o]: left vertical boundary not confirmed\n", ind;

boundaryConfirmed := false;

//print "==========";

continue;

end if;

if HasBoundaryVertical(Re(pivot+dw1), Im(pivot+dw1), Im(pivot+dw1+dw2),

u_xi, tau) then

C[ind] := 1;

//printf "C[%o]: right vertical boundary not confirmed\n", ind;

boundaryConfirmed := false;

//print "==========";

continue;

end if;

else

// left slant

m := Im(tau)/Re(tau); k := Im(pivot) - m*Re(pivot);

if (m lt 0) then

X := [Re(pivot+dw2), Re(pivot)];

elif (m gt 0) then

X := [Re(pivot), Re(pivot+dw2)];

end if;

if HasBoundary(X, m, k, u_xi, tau) then

C[ind] := 1;

//printf "C[%o]: left boundary not confirmed\n", ind;

boundaryConfirmed := false;

//print "==========";

continue;

end if;

// right slant

m := Im(tau)/Re(tau); k := Im(pivot) - m*Re(pivot+dw1);

if (m lt 0) then

X := [Re(pivot+dw1+dw2), Re(pivot+dw1)];

elif (m gt 0) then

X := [Re(pivot+dw1), Re(pivot+dw1+dw2)];

end if;

if HasBoundary(X, m, k, u_xi, tau) then

C[ind] := 1;

printf "C[%o]: right boundary not confirmed\n", ind;

boundaryConfirmed := false;

//print "==========";

else

// cell can be excluded

C[ind] := 0;

if ShowPlot then

202 Appendix A. MAGMA Source Code

printf "C[%o] = %o\n", ind, C[ind];

end if;

//print "==========";

end if;

end if;

end if;

end for;

// Stage 4: shade region correctly

if boundaryConfirmed then

if ShowPlot then

print "Excluded boundary confirmed! Shading remaining region ...";

end if;

for ind := 1 to (n^2) do

if C[ind] eq 2 then

C[ind] := 0; // 0 = exclude from the region

end if;

end for;

else

if ShowPlot then

print "Excluded boundary not entirely confirmed";

end if;

end if;

if ShowPlot then

GridPlot(C);

printf "\n";

print "Size Z = ", #C;

print "---";

end if;

return C;

end intrinsic;

/**

* Convert grid entry from 0 -> false and from 1 -> true.

* If contains any other number, print error message

* Input:

* C = sequence of binaries

* Output:

* sequence of true/false

**/

intrinsic GridEntryTransform(C::SeqEnum[RngIntElt]) -> SeqEnum[BoolElt]

{Transform all binaries in a grid into true/false entries}

L := [];

for c in C do

if c eq 0 then

Append(~L, false);

elif c eq 1 then

Append(~L, true);

else

error "Grid must only contain 0 and 1";

end if;

end for;

return L;

end intrinsic;

A.6.2 wp.m

This file consists of functions for computing the approximate Weierstrass ℘-function

(i.e., using only finite number of terms in the power series expansion), and the

maximum error caused by such approximation. For more details, see Section 3.2.1.

A.6. Height Bound IV: Intersection of Regions 203

/**

* wp.m

* Computing Weierstrass \wp-function and the error term of using finite

* number of terms in the power series expansion as the approximate for \wp(z)

*

* By Thotsaphon Thongjunthug

* Last updated: 08 December 2010

* Any errors should be reported to <nookaussie@yahoo.com>

***/

/**

* Main intrinsic functions

***/

/**

* Estimate the maximum error of |p(z,tau)-f(u)*(2*pi*i)^2| on the lower-half

* fundamental parallelogram, where u = Exp(2*pi*i*z) and

* f(u) = u/(1-u)^2 + 1/12 + some terms from the right-hand side of the

* expression of p(z,tau) (See Silverman’s paper).

*

* Input:

* n1 = starting index for the infinite sum of terms

* (q^n)u/(1-(q^n)u)^2 + (q^n)(1/u)/(1-(q^n)(1/u))^2

* n2 = starting index for the infinite sum of terms 2*(q^n)/(1-q^n)^2

*

* Output:

* the maximum absolute error

* Parameter:

* q = Exp(2*pi*i*tau), default = Exp(-Sqrt(3)*pi)

* alpha = Im(z)/Im(tau), default = 1/2

* (The default values of q and alpha are ones of the worst case scenario)

**/

intrinsic EstimateWPMaxError(n1::RngIntElt, n2::RngIntElt :

q := Exp(-Sqrt(3)*Pi(RealField())), alpha := 1/2) -> FldReElt

{Estimate the error when using finite number of terms in the power series

expansion as the approximate to the Weierstrass p-function}

require (n1 ge 1) and (n2 ge 1): "n1 and n2 must be positive integers";

pi := Pi(RealField());

err := (q^(n1 + alpha))/(1 - q^(n1 + alpha))^2;

err +:= (q^(n1 - alpha))/(1 - q^(n1 - alpha))^2;

err +:= 2*(q^n2)/(1 - q^n2)^2;

err *:= 4*(pi^2);

err /:= (1 - q);

return err;

end intrinsic;

/**

* Calculate Weierstrass \wp-function p(z) for a given z using

* only finite number of terms in the power series

* (see Proposition 7.4.4 and Algorithm 7.4.5 in Cohen’s book)

* Input:

* L = [w1, w2] with Im(w2/w1) > 0

* z = a complex number

* k = number of terms to be used

**/

intrinsic WeierstrassP(L::SeqEnum, z::FldComElt, k::RngIntElt) -> FldComElt

{Compute Weierstrass p-function of z using up to k terms in the power series

expansion}

require #L eq 2: "L must contain exactly two complex numbers";

w1, w2 := Explode(L);

require Im(w2/w1) gt 0: "Im(w2/w1) must be positive";

L, _ := TransformLattice(L);

w1, w2 := Explode(L);

tau := w2/w1;

// reduce z

z := z/w1;

n := Round(Im(z)/Im(tau));

z := z - n*tau;

z := z - Round(Re(z));

204 Appendix A. MAGMA Source Code

if z eq 0 then

error "z is a lattice point";

end if;

// Compute precision needed, based on the error term

err := EstimateWPMaxError(k, k);

err := Ceiling(-Log(10, err));

C := Parent(tau);

pi := Pi(C); i := C!Sqrt(-1);

q := Exp(2*pi*i*tau);

u := Exp(2*pi*i*z); // since already let z <- z/w1

f := 1/12 + u/(1-u)^2;

// Reset n up to k-1

// (22 term -> max abs. err. = 3.4291 x 10^-52)

// (50 term -> max abs. err. = 2.3251 x 10^-118)

for n := 1 to (k-1) do

tmp := u * (1/(1 - (q^n)*u)^2 + 1/((q^n) - u)^2);

tmp -:= 2/(1 - q^n)^2;

tmp *:= q^n;

f +:= tmp;

end for;

f *:= (2*pi*i/w1)^2;

return f;

end intrinsic;

/**

* Calculate the 1st derivative of the Weierstrass \wp-function p(z)

* for a given z approximately, using Alg 7.4.5, and a finite of terms

* in Prop 7.4.4 in Cohen’s book

* Input:

* L = [w1, w2], the periods of L that E(C) = C/

* z = a complex number that we want to find \wp(z, L)

* k = number of terms in the infinite sum

**/

intrinsic WeierstrassPDash(L::SeqEnum, z::FldComElt, k::RngIntElt)

-> FldComElt

{Compute the value of the first derivative of Weierstrass \\wp-function at z,

where z is given with respect to the fundamental parallelogram spanned by L.

This function uses the first k-1 terms in the infinite sum formula}

require #L eq 2: "L must contain exactly two complex numbers";

w1, w2 := Explode(L);

require Im(w2/w1) gt 0: "Im(w2/w1) must be positive";

L, _ := TransformLattice(L);

w1, w2 := Explode(L);

tau := w2/w1;

// reduce z

z := z/w1;

n := Round(Im(z)/Im(tau));

z := z - n*tau;

z := z - Round(Re(z));

// now compute p(z,tau)

if z eq 0 then

error "z is a lattice point";

end if;

C := Parent(w1);

i := C!Sqrt(-1);

pi := Pi(C);

q := Exp(2*pi*i*tau);

u := Exp(2*pi*i*z); // since already let z <- z/w1

f := (1 + u)/(1 - u)^3;

for n := 1 to (k-1) do

tmp := (1 + (q^n)*u)/(1 - (q^n)*u)^3;

tmp +:= ((q^n) + u)/((q^n) - u)^3;

tmp *:= q^n;

f +:= tmp;

end for;

A.6. Height Bound IV: Intersection of Regions 205

f *:= u * (2*pi*i/w1)^3;

return f;

end intrinsic;

A.6.3 interval wp.m

This file involves computing the interval version of the function f mentioned in

Proposition 3.2.3. Note that this also requires some basic arithmetic operations on

real intervals, which are implemented as shown in the next subsection.

/**

* interval_wp.m

* Computing interval version of the approximate Weierstrass \wp-function

*

* By Thotsaphon Thongjunthug

* Last updated: 08 December 2010

* Any errors should be reported to <nookaussie@yahoo.com>

*

* Required packages:

* 1) interval_arith.m - for basic interval arithmetic

***/

// required for recursive definition

forward HasBoundary;

forward HasBoundaryVertical;

/**

* Auxiliary local functions

***/

/**

* (verified 13 Jul 08)

* Compute the real part of a slant boundary y = m*x + c

* Input:

* L = [x1, x2] = range of x

* m = gradient of the boundary (m = 0 ==> horizontal boundary)

* c = constant

* k = number of terms used in the power series expansion

* tau = represent the fundamental parallelogram {1, tau}

* Output:

* interval containing the range of the real part

**/

function realPartSlant(L, m, c, k, tau)

if #L ne 2 then

error "L must contain exactly two real numbers";

end if;

x1, x2 := Explode(L);

if x1 gt x2 then

error "x1 must be < or = x2";

end if;

pi := Pi(Parent(x1));

y1 := -2*pi*(m*x1 + c);

y2 := -2*pi*(m*x2 + c);

if y1 le y2 then

Y := [y1, y2];

else

Y := [y2, y1];

end if;

orgY := Y;

Y := invExp(Y);

// Re(u/(1-u)^2)

// denominator

206 Appendix A. MAGMA Source Code

denom := invMul([2., 2.], invCos([2*pi*x1, 2*pi*x2]));

denom := invSub(Y, denom);

denom := invMul(Y, denom);

denom := invAdd([1., 1.], denom);

//print "denom 1 = ", denom;

// In case the interval contains negative numbers, try to adjust it

if denom[1] le 0 then

//print "problem here (real part 1)";

//print "Caution at L = ", L;

//print "Y = ", Y;

//print "m = ", m;

//print "denom 1 = ", denom;

// test for existence of local extremum in L

diffden := invPow(Y, 2);

diffden := invSub(invCos([2*pi*x1, 2*pi*x2]), diffden);

diffden := invMul(diffden, [m, m]);

diffden := invAdd(invSin([2*pi*x1, 2*pi*x2]), diffden);

diffden := invMul(diffden, Y);

if (diffden[1] le 0) and (0 le diffden[2]) then

// may have local extremum - should not happen

error "0 is in denominator interval, please report!";

else

// strict behaviour

denx1 := 1 - 2*Exp(y1)*Cos(2*pi*x1) + Exp(2*y1);

denx2 := 1 - 2*Exp(y2)*Cos(2*pi*x2) + Exp(2*y2);

denom := [Min(denx1, denx2), Max(denx1, denx2)];

//print "Denom 1 modified = ", denom; // successfully modified

//print "**********************";

end if;

end if;

// numerator

numer := invAdd([1., 1.], invPow(Y, 2));

numer := invMul(numer, invCos([2*pi*x1, 2*pi*x2]));

numer := invSub(numer, invMul([2., 2.], Y));

numer := invMul(numer, Y);

rp := invDiv(numer, invPow(denom, 2));

rp := invAdd(rp, [1./12, 1./12]);

for n := 1 to (k-1) do

aqn := Exp(-2*pi*Im(tau)*n); // = |q^n|

A := Cos(2*pi*n*Re(tau));

B := Sin(2*pi*n*Re(tau));

qnu := invAdd(orgY, [-2*pi*Im(tau)*n, -2*pi*Im(tau)*n]);

qnu := invExp(qnu);

// Re (q^n*u / (1 - q^n*u)^2)

// denom

denom := invMul([A, A], invCos([2*pi*x1, 2*pi*x2]));

denom := invSub(denom, invMul([B, B], invSin([2*pi*x1, 2*pi*x2])));

denom := invMul(denom, [2., 2.]);

denom := invSub(qnu, denom);

denom := invMul(denom, qnu);

denom := invSub([1., 1.], denom);

//print "denom 2 = ", denom;

// numerator

numer := invMul([A, A], invCos([2*pi*x1, 2*pi*x2]));

numer := invSub(numer, invMul([B, B], invSin([2*pi*x1, 2*pi*x2])));

numer := invMul(numer, invAdd([1., 1.], invPow(qnu, 2)));

numer := invSub(numer, invMul([2., 2.], qnu));

numer := invMul(numer, qnu);

rp := invAdd(rp, invDiv(numer, invPow(denom, 2)));

// Re(q^n*u / (q^n - u)^2)

// denominator

denom := invMul([A, A], invCos([2*pi*x1, 2*pi*x2]));

denom := invAdd(denom, invMul([B, B], invSin([2*pi*x1, 2*pi*x2])));

denom := invMul(denom, qnu);

denom := invMul(denom, [2., 2.]);

denom := invSub([aqn^2, aqn^2], denom);

denom := invAdd(denom, invPow(Y, 2));

A.6. Height Bound IV: Intersection of Regions 207

//print "denom 3 = ", denom;

// numerator

numer := invMul([A, A], invCos([2*pi*x1, 2*pi*x2]));

numer := invAdd(numer, invMul([B, B], invSin([2*pi*x1, 2*pi*x2])));

numer := invMul(numer, invAdd([aqn^2, aqn^2], invPow(Y, 2)));

numer := invSub(numer, invMul([2., 2.], qnu));

numer := invMul(numer, qnu);

//print "real num 3 = ", numer;

rp := invAdd(rp, invDiv(numer, invPow(denom, 2)));

// Constant real part

// denominator

denom := [1 - 2*A*aqn + aqn^2, 1 - 2*A*aqn + aqn^2];

//print "denom 4 = ", denom;

// numerator

numer := [aqn*A*(1+aqn^2) - 2*aqn^2, aqn*A*(1+aqn^2) - 2*aqn^2];

numer := invMul(numer, [2., 2.]);

rp := invSub(rp, invDiv(numer, invPow(denom, 2)));

end for;

rp := invMul(rp, [-4*pi, -4*pi]);

//print "rp = ", rp;

return rp;

end function;

/**

* (verified 13 Jul 08)

* Compute the imaginary part of a slant boundary y = m*x + c

* Input:

* L = [x1, x2] = range of x

* m = gradient of the boundary (m = 0 ==> horizontal boundary)

* c = constant

* k = number of terms used in the power series expansion

* tau = represent the fundamental parallelogram {1, tau}

* Output:

* interval containing the range of the imaginary part

**/

function imPartSlant(L, m, c, k, tau)

if #L ne 2 then

error "L must have exactly 2 real numbers";

end if;

x1, x2 := Explode(L);

if x1 gt x2 then

error "x1 must be <= x2";

end if;

pi := Pi(Parent(x1));

y1 := -2*pi*(m*x1 + c);

y2 := -2*pi*(m*x2 + c);

if y1 le y2 then

Y := [y1, y2];

else

Y := [y2, y1];

end if;

orgY := Y;

Y := invExp(Y);

// Im(u/(1-u)^2)

// denominator

denom := invMul([2., 2.], invCos([2*pi*x1, 2*pi*x2]));

denom := invSub(Y, denom);

denom := invMul(Y, denom);

denom := invAdd([1., 1.], denom);

// In case the interval contains negative numbers, try to adjust it

if denom[1] le 0 then

//print "problem here (Im part 1)";

//print "Caution at L = ", L;

//print "Y = ", Y;

//print "m = ", m;

//print "denom im 1 = ", denom;

// test for existence of local extremum in L

diffden := invPow(Y, 2);

208 Appendix A. MAGMA Source Code

diffden := invSub(invCos([2*pi*x1, 2*pi*x2]), diffden);

diffden := invMul(diffden, [m, m]);

diffden := invAdd(invSin([2*pi*x1, 2*pi*x2]), diffden);

diffden := invMul(diffden, Y);

if (diffden[1] le 0) and (0 le diffden[2]) then

// may have local extremum - should not happen

error "0 is in denominator interval, please report!";

else

// strict behaviour

denx1 := 1 - 2*Exp(y1)*Cos(2*pi*x1) + Exp(2*y1);

denx2 := 1 - 2*Exp(y2)*Cos(2*pi*x2) + Exp(2*y2);

denom := [Min(denx1, denx2), Max(denx1, denx2)];

//print "Denom 1 modified = ", denom; // successfully modified

//print "**********************";

end if;

end if;

// numerator

numer := invSub([1., 1.], invPow(Y, 2));

numer := invMul(numer, Y);

numer := invMul(numer, invSin([2*pi*x1, 2*pi*x2]));

ip := invDiv(numer, invPow(denom, 2));

for n := 1 to (k-1) do

aqn := Exp(-2*pi*Im(tau)*n); // = |q^n|

A := Cos(2*pi*n*Re(tau));

B := Sin(2*pi*n*Re(tau));

qnu := invAdd(orgY, [-2*pi*Im(tau)*n, -2*pi*Im(tau)*n]);

qnu := invExp(qnu);

// Im (q^n*u / (1 - q^n*u)^2)

// denom

denom := invMul([A, A], invCos([2*pi*x1, 2*pi*x2]));

denom := invSub(denom, invMul([B, B], invSin([2*pi*x1, 2*pi*x2])));

denom := invMul(denom, [2., 2.]);

denom := invSub(qnu, denom);

denom := invMul(denom, qnu);

denom := invSub([1., 1.], denom);

//print "denom im 2 = ", denom;

// numerator

numer := invMul([B, B], invCos([2*pi*x1, 2*pi*x2]));

numer := invAdd(numer, invMul([A, A], invSin([2*pi*x1, 2*pi*x2])));

numer := invMul(numer, qnu);

numer := invMul(numer, invSub([1., 1.], invPow(qnu, 2)));

ip := invAdd(ip, invDiv(numer, invPow(denom, 2)));

// Im(q^n*u / (q^n - u)^2)

// denominator

denom := invMul([A, A], invCos([2*pi*x1, 2*pi*x2]));

denom := invAdd(denom, invMul([B, B], invSin([2*pi*x1, 2*pi*x2])));

denom := invMul(denom, qnu);

denom := invMul(denom, [2., 2.]);

denom := invSub([aqn^2, aqn^2], denom);

denom := invAdd(denom, invPow(Y, 2));

//print "denom im 3 = ", denom;

// numerator

numer := invMul([A, A], invSin([2*pi*x1, 2*pi*x2]));

numer := invSub(numer, invMul([B, B], invCos([2*pi*x1, 2*pi*x2])));

numer := invMul(numer, qnu);

numer := invMul(numer, invSub([aqn^2, aqn^2], invPow(Y, 2)));

//print "num im 3 = ", numer;

ip := invAdd(ip, invDiv(numer, invPow(denom, 2)));

// Constant part

// denominator

denom := [1 - 2*A*aqn + aqn^2, 1 - 2*A*aqn + aqn^2];

//print "denom im 4 = ", denom;

// numerator

numer := [aqn*B*(1-aqn^2), aqn*B*(1-aqn^2)];

numer := invMul(numer, [2., 2.]);

ip := invSub(ip, invDiv(numer, invPow(denom, 2)));

end for;

A.6. Height Bound IV: Intersection of Regions 209

ip := invMul(ip, [-4*pi, -4*pi]);

return ip;

end function;

/**

* Added 18 Nov 2010

* Compute the real part for a vertical boundary (rare case)

* Input:

* x = fixed x-coordinate

* c, d = range of y-coordinates (c <= d)

* k = number of terms used in the power series expansion

* tau = the fundamental parallelogram {1, tau} (here, Re(tau) = 0)

* Output:

* a real interval containing the range of the real part.

**/

function realPartVertical(x, c, d, k, tau)

if c gt d then

error "c must be < or = d";

end if;

pi := Pi(Parent(x));

y1 := -2*pi*c; y2 := -2*pi*d;

Y := [y2, y1];

orgY := Y;

Y := invExp(Y);

//print "Y = ", Y;

// Re(u/(1-u)^2)

// denominator

denom := invMul([2., 2.], invCos([2*pi*x, 2*pi*x]));

denom := invSub(Y, denom);

denom := invMul(Y, denom);

denom := invAdd([1., 1.], denom);

//print "denom 1 = ", denom;

// numerator

numer := invAdd([1., 1.], invPow(Y, 2));

numer := invMul(numer, invCos([2*pi*x, 2*pi*x]));

numer := invSub(numer, invMul([2, 2], Y));

numer := invMul(numer, Y);

rp := invDiv(numer, invPow(denom, 2));

rp := invAdd(rp, [1./12, 1./12]);

for n := 1 to (k-1) do

aqn := Exp(-2*pi*Im(tau)*n); // = |q^n|

qnu := invAdd(orgY, [-2*pi*Im(tau)*n, -2*pi*Im(tau)*n]);

qnu := invExp(qnu);

// Re (q^n*u / (1 - q^n*u)^2)

// denom

denom := invCos([2*pi*x, 2*pi*x]);

denom := invMul(denom, [2., 2.]);

denom := invSub(qnu, denom);

denom := invMul(denom, qnu);

denom := invSub([1., 1.], denom);

//print "denom 2 = ", denom;

// numerator

numer := invCos([2*pi*x, 2*pi*x]);

numer := invMul(numer, invAdd([1., 1.], invPow(qnu, 2)));

numer := invSub(numer, invMul([2., 2.], qnu));

numer := invMul(numer, qnu);

rp := invAdd(rp, invDiv(numer, invPow(denom, 2)));

// Re(q^n*u / (q^n - u)^2)

// denominator

denom := invCos([2*pi*x, 2*pi*x]);

denom := invMul(denom, qnu);

denom := invMul(denom, [2., 2.]);

denom := invSub([aqn^2, aqn^2], denom);

denom := invAdd(denom, invPow(Y, 2));

//print "denom 3 = ", denom;

210 Appendix A. MAGMA Source Code

// numerator

numer := invCos([2*pi*x, 2*pi*x]);

numer := invMul(numer, invAdd([aqn^2, aqn^2], invPow(Y, 2)));

numer := invSub(numer, invMul([2., 2.], qnu));

numer := invMul(numer, qnu);

//print "real num 3 = ", numer;

rp := invAdd(rp, invDiv(numer, invPow(denom, 2)));

// Constant real part

// denominator

denom := [1 - 2*aqn + aqn^2, 1 - 2*aqn + aqn^2];

//print "denom 4 = ", denom;

// numerator

numer := [aqn*(1+aqn^2) - 2*aqn^2, aqn*(1+aqn^2) - 2*aqn^2];

numer := invMul(numer, [2., 2.]);

rp := invSub(rp, invDiv(numer, invPow(denom, 2)));

end for;

rp := invMul(rp, [-4*pi, -4*pi]);

//print "rp = ", rp;

return rp;

end function;

/**

* Added 18 Nov 2010

* Compute the imaginary part for a vertical boundary (rare case)

* Input:

* x = fixed x-coordinate

* c, d = range of y-coordinates (c <= d)

* k = number of terms used in the power series expansion

* tau = the fundamental parallelogram {1, tau} (here, Re(tau) = 0)

* Output:

* a real interval containing the range of the imaginary part.

**/

function imPartVertical(x, c, d, k, tau)

if c gt d then

error "c must be < or = d";

end if;

pi := Pi(Parent(x));

y1 := -2*pi*c; y2 := -2*pi*d;

Y := [y2, y1];

orgY := Y;

Y := invExp(Y);

// Im(u/(1-u)^2)

// denominator

denom := invMul([2., 2.], invCos([2*pi*x, 2*pi*x]));

denom := invSub(Y, denom);

denom := invMul(Y, denom);

denom := invAdd([1., 1.], denom);

// numerator

numer := invSub([1., 1.], invPow(Y, 2));

numer := invMul(numer, Y);

numer := invMul(numer, invSin([2*pi*x, 2*pi*x]));

ip := invDiv(numer, invPow(denom, 2));

for n := 1 to (k-1) do

aqn := Exp(-2*pi*Im(tau)*n); // = |q^n|

qnu := invAdd(orgY, [-2*pi*Im(tau)*n, -2*pi*Im(tau)*n]);

qnu := invExp(qnu);

// Im (q^n*u / (1 - q^n*u)^2)

// denom

denom := invCos([2*pi*x, 2*pi*x]);

denom := invMul(denom, [2., 2.]);

denom := invSub(qnu, denom);

denom := invMul(denom, qnu);

denom := invSub([1., 1.], denom);

//print "denom im 2 = ", denom;

// numerator

numer := invAdd(numer, invSin([2*pi*x, 2*pi*x]));

numer := invMul(numer, qnu);

A.6. Height Bound IV: Intersection of Regions 211

numer := invMul(numer, invSub([1., 1.], invPow(qnu, 2)));

ip := invAdd(ip, invDiv(numer, invPow(denom, 2)));

// Im(q^n*u / (q^n - u)^2)

// denominator

denom := invCos([2*pi*x, 2*pi*x]);

denom := invMul(denom, qnu);

denom := invMul(denom, [2., 2.]);

denom := invSub([aqn^2, aqn^2], denom);

denom := invAdd(denom, invPow(Y, 2));

//print "denom im 3 = ", denom;

// numerator

numer := invSin([2*pi*x, 2*pi*x]);

numer := invMul(numer, qnu);

numer := invMul(numer, invSub([aqn^2, aqn^2], invPow(Y, 2)));

//print "num im 3 = ", numer;

ip := invAdd(ip, invDiv(numer, invPow(denom, 2)));

end for;

ip := invMul(ip, [-4*pi, -4*pi]);

return ip;

end function;

/**

* Main intrinsic functions

***/

/**

* Check if there is part of the boundary of the region R^v(\xi) on a given

* (slant or horizontal) boundary y = m*x + c of a parallelogram.

* Input:

* L = [x1, x2] = range of x-coordinates

* m = the gradient of the parallelogram’s boundary

* c = a constant

* B = bound for the function f(X1, X2, X3) (normally is the U_\xi)

* tau = representing the fundamental parallelogram {1, tau}

* Output:

* true if we (suspect) that it may contain part of R^v(\xi); false otherwise

**/

intrinsic HasBoundary(L::SeqEnum, m::FldReElt, c::FldReElt, B::FldReElt,

tau::FldComElt) -> BoolElt

{Check if there is part of the boundary of the region R^v(\xi) on a given slant

(or horizontal) boundary of a parallelogram.}

require #L eq 2: "L must have exactly two real numbers";

x1, x2 := Explode(L);

require x1 le x2: "x1 must be < or = x2";

require B ge 0: "B must be non-negative";

require Im(tau) ge 0: "Im(tau) must be non-negative";

r := realPartSlant(L, m, c, 23, tau);

//if #r eq 1 then

// print "*** Null denominator ***";

// return true;

//end if;

err := EstimateWPMaxError(23, 23);

F := invPow(r, 2);

F := invAdd(F, invPow(imPartSlant(L, m, c, 23, tau), 2));

F := [Sqrt(F[1]), Sqrt(F[2])];

F := invSub(F, [B, B]);

F := [F[1]-err, F[2]+err];

if not ((F[1] le 0) and (0 le F[2])) then

return false;

end if;

// If still not return false, try to bisect the interval and check

midPt := (x1 + x2)/2;

L1 := [x1, midPt];

L2 := [midPt, x2];

l1 := HasBoundary(L1, m, c, B, tau);

l2 := HasBoundary(L2, m, c, B, tau);

if not(l1) and not(l2) then

212 Appendix A. MAGMA Source Code

return false;

else

return true;

end if;

end intrinsic;

/**

* Check if there is part of the boundary of the region R^v(\xi) on a given

* vertical boundary of a parallelogram.

* Input:

* x = a fixed x-coordinate

* c, d = the range of y-coordinates

* B = bound for the function f(X1, X2, X3) (normally is the U_\xi)

* tau = representing the fundamental parallelogram {1, tau}

* Output:

* true if we (suspect) that it may contain part of R^v(\xi); false otherwise

**/

intrinsic HasBoundaryVertical(x::FldReElt, c::FldReElt, d::FldReElt,

B::FldReElt, tau::FldComElt) -> BoolElt

{Check if there is part of the boundary of the region R^v(\xi) on a given

vertical boundary of a parallelogram.}

require c le d: "c must be < or = d";

require B ge 0: "B must be non-negative";

require Im(tau) ge 0: "Im(tau) must be non-negative";

r := realPartVertical(x, c, d, 23, tau);

//if #r eq 1 then

// print "*** Null denominator ***";

// return true;

//end if;

err := EstimateWPMaxError(23, 23);

F := invPow(r, 2);

F := invAdd(F, invPow(imPartVertical(x, c, d, 23, tau), 2));

F := [Sqrt(F[1]), Sqrt(F[2])];

F := invSub(F, [B, B]);

F := [F[1]-err, F[2]+err];

if not ((F[1] le 0) and (0 le F[2])) then

return false;

end if;

// If still not return false, try to bisect the interval and check

l1 := HasBoundaryVertical(x, c, d/2, B, tau);

l2 := HasBoundaryVertical(x, d/2, d, B, tau);

if not(l1) and not(l2) then

return false;

else

return true;

end if;

end intrinsic;

A.7 Height Bound V: Interval Arithmetic

This file provides some basic arithmetic operations on real intervals. For more

information on the subject of interval arithmetic, see, e.g., [Moo66].

/**

* interval_arith.m

* Functions for basis arithmetic on real intervals

*

* By Thotsaphon Thongjunthug

* Last updated: 08 December 2010

* Any errors should be reported to <nookaussie@yahoo.com>

***/

A.7. Height Bound V: Interval Arithmetic 213

/**

* Unary Operations

***/

/**

* Cosine function for the interval [a, b]

* Input:

* L = [a, b] with a <= b

**/

intrinsic invCos(L::SeqEnum[FldReElt]) -> SeqEnum[FldReElt]

{Cosine function for a real interval L = [a, b].}

// Check validity of L = [a, b]

require #L eq 2: "Interval must contain exactly two real numbers";

a, b := Explode(L);

require a le b: "a must be < or = b";

// Check if L contains any multiples of Pi

pi := Pi(Parent(a));

lb := Ceiling(a/pi);

ub := Floor(b/pi);

width := ub - lb;

if ((lb*pi) gt b) or ((ub*pi) lt a) then

// L contains no extremum for cos function

return [Min(Cos(a), Cos(b)), Max(Cos(a), Cos(b))];

elif width gt 0 then

// L contains both even and odd multiples of pi, so return [-1, 1]

return [-1, 1];

elif (lb mod 2) eq 0 then

// lb = ub, and is even, then maximum of cosine = 1

return [Min(Cos(a), Cos(b)), 1];

else

// minimum of cosine = -1

return [-1, Max(Cos(a), Cos(b))];

end if;

end intrinsic;

/**

* Sine function for the interval [a, b]

* Input:

* L = [a, b], with a <= b

**/

intrinsic invSin(L::SeqEnum[FldReElt]) -> SeqEnum[FldReElt]

{Sine function for a real interval L = [a, b].}

// Check validity of L = [a, b]

require #L eq 2: "Interval must contain exactly two real numbers";

a, b := Explode(L);

require a le b: "a must be < or = b";

// Check if L contains any multiples of Pi/2

pi := Pi(Parent(a));

lb := Ceiling(2*a/pi);

ub := Floor(2*b/pi);

// only care the odd multiple of pi/2 - N . 8/7/08

if (lb mod 2) eq 0 then

lb := lb + 1;

end if;

if (ub mod 2) eq 0 then

ub := ub - 1;

end if;

width := (ub - lb)/2;

// Case 1: when L contains no odd multiple of Pi/2

if ((lb*pi/2) gt b) or ((ub*pi/2) lt a) then

return [Min(Sin(a), Sin(b)), Max(Sin(a), Sin(b))];

end if;

// Case 2: width >= 1, so L contains two odd multiples of Pi/2

if width gt 1 then

return [-1, 1];

end if;

214 Appendix A. MAGMA Source Code

// Case 2: width = 0 (so lb = ub)

if (lb mod 4) eq 1 then

// Max of sin = 1

return [Min(Sin(a), Sin(b)), 1];

else

// Mim of sin = -1

return [-1, Max(Sin(a), Sin(b))];

end if;

end intrinsic;

/**

* Exponential function for the interval

* Input:

* L = [a, b], with a <= b

**/

intrinsic invExp(L::SeqEnum[FldReElt]) -> SeqEnum[FldReElt]

{Exponential function for a real interval L = [a, b].}

// Check validity of L = [a, b]

require #L eq 2: "Interval must contain exactly two real numbers";

a, b := Explode(L);

require a le b: "a must be < or = b";

return [Exp(a), Exp(b)];

end intrinsic;

/**

* Let L be an interval, compute L^n = L * ... * L, n times

* Input:

* L = [a, b], with a <= b

* n = a non-negative integer

**/

intrinsic invPow(L::SeqEnum[FldReElt], n::RngIntElt) -> SeqEnum[FldReElt]

{Compute n-th power of a real interval L.}

// Check validity of L = [a, b]

require #L eq 2: "Interval must contain exactly two real numbers";

a, b := Explode(L);

require a le b: "a must be < or = b";

require n ge 0: "n must be a non-negative integer";

if (n mod 2) eq 0 then

// take care when a and b is of different sign

if (a le 0) and (b ge 0) then

return [0, Max(a^n, b^n)];

else

return [Min(a^n, b^n), Max(a^n, b^n)];

end if;

end if;

return [Min(a^n, b^n), Max(a^n, b^n)];

end intrinsic;

/**

* Binary Operations

***/

/**

* Add two real intervals

* Input:

* L, K = real intervals

**/

intrinsic invAdd(L::SeqEnum[FldReElt], K::SeqEnum[FldReElt]) -> SeqEnum[FldReElt]

{Add two real intervals.}

require (#L eq 2) and (#K eq 2):

"Both L, K must contain exactly two real numbers";

a, b := Explode(L);

c, d := Explode(K);

require (a le b) and (c le d): "Check if a <= b and c <= d";

return [a+c, b+d];

end intrinsic;

A.7. Height Bound V: Interval Arithmetic 215

/**

* For real intervals L, K, compute L - K

* Input:

* L, K = real intervals

**/

intrinsic invSub(L::SeqEnum[FldReElt], K::SeqEnum[FldReElt]) -> SeqEnum[FldReElt]

{Subtract two real intervals.}

return invAdd(L, [-K[2], -K[1]]);

end intrinsic;

/**

* For real intervals L, K, compute L*K

* Input:

* L, K = real intervals

**/

intrinsic invMul(L::SeqEnum[FldReElt], K::SeqEnum[FldReElt]) -> SeqEnum[FldReElt]

{Multiply two real intervals.}

require (#L eq 2) and (#K eq 2):

"Both L, K must contain exactly two real numbers";

a, b := Explode(L);

c, d := Explode(K);

require (a le b) and (c le d): "Check if a <= b and c <= d";

lb, _ := Min([a*c, a*d, b*c, b*d]);

ub, _ := Max([a*c, a*d, b*c, b*d]);

return [lb, ub];

end intrinsic;

/**

* For real intervals L, K = [c, d], compute L/K = L*[1/d, 1/c]

* provided that 0 is not in K

* Input:

* L, K = real intervals

**/

intrinsic invDiv(L::SeqEnum[FldReElt], K::SeqEnum[FldReElt]) -> SeqEnum[FldReElt]

{For real intervals L, K (with 0 not in K), compute L/K.}

require (#L eq 2) and (#K eq 2):

"Both L, K must contain exactly two real numbers";

a, b := Explode(L);

c, d := Explode(K);

require (a le b) and (c le d): "Check if a <= b and c <= d";

if (c le 0) and (0 le d) then

error "K must not contain 0";

end if;

return invMul(L, [1/d, 1/c]);

end intrinsic;

Bibliography

[BM88] J.-B. Bost and J.-F. Mestre, Moyenne arithmético-géométrique et périodes

des courbes de genre 1 et 2, Gaz. Math. 38 (1988), 36–64.

[CL07] J. E. Cremona and M. P. Lingham, Finding all elliptic curves with good

reduction outside a given set of primes, Experiment. Math. 16 (2007),

303–312.

[Coh93] H. Cohen, A course in computational algebraic number theory, Grad. Texts

in Math., vol. 138, Springer-Verlag, 1993.

[Coh07] , Number theory volume 1: Tools and Diophantine equations, Grad.

Texts in Math., vol. 239, Springer-Verlag, 2007.

[Com90] S. Comalada, Elliptic curves with trivial conductor over quadratic fields,

Pacific J. Math. 144 (1990), 237–258.

[Cox84] D. A. Cox, The arithmetic-geometric mean of Gauss, Enseign. Math. (2)

30 (1984), 275–330.

[CPS06] J. E. Cremona, M. Prickett, and S. Siksek, Height difference bounds for

elliptic curves over number fields, J. Number Theory 116 (2006), 42–68.

[Cre94] J. E. Cremona, Periods of cusp forms and elliptic curves over imaginary

quadratic fields, CRM Proc. Lecture Notes 4 (1994), 29–44.

[Cre97] , Algorithms for modular elliptic curves, 2 ed., Cambridge Univer-

sity Press, 1997.

216

Bibliography 217

[CS06] J. Cremona and S. Siksek, Computing a lower bound for the canonical

height on elliptic curves over Q, Algorithmic Number Theory, 7th In-

ternational Symposium, ANTS-VII, Berlin, Germany, July 23–28, 2006,

Proceedings (F. Hess, S. Pauli, and M. Pohst, eds.), Lecture Notes in

Comput. Sci., vol. 4076, Springer-Verlag, 2006, pp. 275–286.

[CT] J. E. Cremona and T. Thongjunthug, The complex AGM, periods of el-

liptic curves over C and complex elliptic logarithms, submitted.

[Dav95] S. David, Minorations de formes linéaires de logarithmes elliptiques,

Mémoires de la S. M. F. 2e série 62 (1995), 1–143.

[Dup] R. Dupont, Fast evaluation of modular functions using Newton iterations

and the AGM, to appear in Math. Comp.

[Dup06] , Moyenne arithmético-géométrique, suites de Borchardt et appli-

cations, Ph.D. thesis, École Polytechnique, 2006.

[HS88] M. Hindry and J. H. Silverman, The canonical height and integral points

on elliptic curves, Invent. Math. 93 (1988), 419–450.

[Kid01] M. Kida, Good reduction of elliptic curves over imaginary quadratic fields,

J. Théor. Nombres Bordeaux 13 (2001), 201–209.

[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, Factoring polynomials

with rational coefficients, Math. Ann. 261 (1982), 515–534.

[Mil06] J. S. Milne, Elliptic curves, BookSurge, 2006.

[Moo66] R. E. Moore, Interval analysis, Prentice-Hall, Englewood Cliffs, 1966.

[Pri04] M. Prickett, Saturation of Mordell–Weil groups of elliptic curves over

number fields, Ph.D. thesis, University of Nottingham, 2004.

218 Bibliography

[Set78] B. Setzer, Elliptic curves over complex quadratic fields, Pacific J. Math.

74 (1978), 235–250.

[Sie26] C. L. Siegel, The integer solutions of the equation y2 = axn+bxn−1+· · ·+k,

J. London Math. Soc. 1 (1926), 66–68.

[Sik95] S. Siksek, Infinite descent on elliptic curves, Rocky Mountain J. Math. 25

(1995), 1501–1538.

[Sil86] J. H. Silverman, The arithmetic of elliptic curves, Grad. Texts in Math.,

vol. 106, Springer-Verlag, 1986.

[Sil88] , Computing heights on elliptic curves, Math. Comp. 51 (1988),

339–358.

[Sil90] , The difference between the Weil height and the canonical height

on elliptic curves, Math. Comp. 55 (1990), 723–743.

[Sma98] N. P. Smart, The algorithmic resolution of Diophantine equations, London

Math. Soc. Stud. Texts, vol. 41, Cambridge University Press, 1998.

[SS97] N. P. Smart and N. M. Stephens, Integral points on elliptic curves over

number fields, Math. Proc. Camb. Phil. Soc. 122 (1997), 9–16.

[Tho08] T. Thongjunthug, Computing a lower bound for the canonical height on

elliptic curves over totally real number fields, Algorithmic Number Theory,

8th International Symposium, ANTS-VIII, Banff, Canada, May 17–22,

2008, Proceedings (A. J. van der Poorten and A. Stein, eds.), Lecture

Notes in Comput. Sci., vol. 5011, Springer-Verlag, 2008, pp. 139–152.

[Tho10] , Computing a lower bound for the canonical height on elliptic

curves over number fields, Math. Comp. 79 (2010), 2431–2449.

[Was03] L. C. Washington, Elliptic curves: number theory and cryptography, Chap-

man & Hall/CRC, 2003.

