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Abstract

This thesis addresses issues in discretization and variance reduction methods for

Monte Carlo simulation.

For the discretization methods, we investigate the convergence properties of var-

ious Itô-Taylor schemes and the strong Taylor expansion (Siopacha and Teichmann

[77]) for the LIBOR market model. We also provide an improvement on the strong

Taylor expansion method which produces lower pricing bias.

For the variance reduction methods, we have four contributions. Firstly, we for-

mulate a general stochastic volatility model nesting many existing models in the lit-

erature. Secondly, we construct a correlation control variate for this model. Thirdly,

we apply the model as well as the new control variate to pricing average rate and bar-

rier options. Numerical results demonstrate the improvement over using old control

variates alone. Last but not least, with the help of our model and control variate, we

explore the variations in barrier option pricing consistent with the implied volatility

surface.
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Chapter 1

Introduction

In derivative modelling, the asset process is normally described in the form of a

stochastic differential equation (SDE). The valuation problem is generally in high

dimensions, that is, the derivative values depend on multiple factors such as sev-

eral assets, several points along the sample path or multi-factor stochastic volatiliy

models. Due to this reason, Monte Carlo becomes a universal valuation tool. Two

distinct concerns of financial practitioners are: 1) how to do Monte Carlo with low

pricing bias; and 2) how to make it run faster.

1.1 Accuracy and Speed in Monte Carlo Methods

The first concern (the bias issue) is of the discrete approximation of continuous

SDEs. Very often the underlying SDE does not have an explicit solution; one there-

fore must resort to Itô-Taylor approximations. These approximations introduce

biases in the estimation. We can reduce those biases by increasing the number of

time steps, but not the number of sample paths. The biases are defined in different

aspects with respect to the SDE. An introduction of this material is given by Kloe-

den and Platen [55]. They describe weak and strong approximations of different

orders of convergence.

The second concern (the speed issue) is of the standard error of the result. Monte

Carlo is a way of estimating the expectation of some random variables whose ex-

plicit solutions are unavailable. The estimation is supplied with the standard error

as a measure of convergence. A good estimator achieves a certain level of standard

error with as little time as possible. This is the place where various variance reduc-

tion methods come in. Good introductions on this topic are in Jäckel [47] and also
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Glasserman [36].

In this thesis, we address both issues in different modelling frameworks.

1.2 Summary of Contributions

The contributions of this thesis cover both the discretization and variance reduction

schemes. We summarize them as following.

Discretization schemes (chapter 2):

1. We provide numerical comparisons (section 2.6) of Itô-Taylor methods (re-

viewed in section 2.3) and strong Taylor expansion using the method of Siopacha

and Teichmann [77]) (reviewed in section 2.4) for the LIBOR market model.

2. We propose an improvement on the strong Taylor expansion method. (Section

2.5)

3. We find that the iterative predictor-corrector method by Joshi and Stacey [51]

has the best performance in a single long step simulation. In the multiple

steps case, the order 2 Weak Itô-Taylor scheme produces the lowest pricing

biases. The improved strong Taylor expansion method has lower pricing biases

than the original method in a single step Monte Carlo, but neither of them

converges as the number of time step increases.

Variance reduction methods (chapter 4):

1. We formulate a general stochastic volatility model which nests many existing

models in the literature. (Section 4.2)

2. We construct a new control variate (correlation control variate) for this model.

(Section 4.4 and 4.5)

3. We apply the model and control variate to pricing average rate (section 4.6)

and barrier options (section 4.7).

4. Extensive numerical evaluation is performed in chapter 5 and 6. We find

significant improvements on the efficiency gains by including our new control

variates in Monte Carlo.

2



5. With the help of our new control variates, we explore variations in barrier

option pricing in our models in consistency with the implied volatility surface.

(chapter 7)

The rest of this thesis is organised as following. In chapter 2, we address the issues in

discretizing the LIBOR market model. In chapter 3, we review some basics for one

of the most important variance reduction methods - the control variate method. In

chapter 4, we propose new control variates for a general class of stochastic volatility

models. Chapter 5 and 6 provide thorough numerical results for valuing average rate

and barrier options using our proposed control variates. In chapter 7, we explore

differences in barrier option prices in our calibrated models with the help of new

control variates.

3



Chapter 2

Discretizing the LIBOR Market

Model

2.1 Introduction

Market models are widely used in the market to price interest rate products. One

reason for their popularity lies in their compatiability with market compliant formula

for vanilla interest rate derivatives. The LIBOR market model (LMM) prices caplets

with Black’s [13] caplet formula while the Swap market model (SMM) prices swap-

tions with Black’s swaption formula. A second reason is their ability to calibrate to

the caplet or swaption volatility term structures in the market (see Rebonato [69]).

For detailed and background description of these models, we refer to the papers by

Brace et al. [15], Miltersen et al. [61], Jamshidian [48], et cetera. The book by Brigo

and Mercurio [16] is also an excellent reference on this material.

There are various issues regarding numerical implementation of the LIBOR mar-

ket model. Among others the three most important ones are: (i) pricing caps and

swaptions simultaneously; (ii) tenor mismatch; and (iii) the joint discretization of

forward LIBOR SDEs under a common probability measure. The third issue is cru-

cial to any implementation that involves or requires Monte Carlo simulation and is

the main concern of this chapter.

The dynamics of each forward LIBOR rate in any probability measure has a state

independent diffusion coefficient but generally has a drift term depending on other

forward LIBOR rates (except under its own forward measure). This feature pro-

hibits the use of exact simulation. Most work on this topic (Balland [8], Hunter et
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al. [46], Pietersz et al. [66], et cetera,) focuses on approximating the drift term. An-

other approach by Glasserman and Zhao [40] maps forward LIBOR rates to bonds

which maintain a martingle property in discretization. A full comparison of these

methods can be found in Beveridge et al. [12] (using the spot-LIBOR measure) or

Joshi and Stacey [51] (using the terminal measure for very long step discretization).

In this chapter, we investigate the convergece properties of seven Itô-Taylor schemes

including two new methods based on strong Taylor approximations to perturbed

SDE. For Itô-Taylor approximations we apply results in Kloeden and Platen [55]

tailored to the LIBOR market model. For strong Taylor approximations we review

the framework introduced by Siopacha and Teichmann [77] and propose an improve-

ment on their formulation. We point out that the improved version is just a special

case of order 1.5 strong Itô-Taylor method and does not converge as the number

of time steps increases. We argue that strong Taylor approximations should not

be used for discretization. Instead, we recommend the use of iterative predictor-

corrector method for single step discretization and order 2 weak Itô-Taylor scheme

for multiple steps discretization.

The rest of this chapter is organised as follows. In Section 2.2, we review the basics

of the LIBOR market model and show that forward LIBOR SDEs admit strong solu-

tions. In Section 2.3, we review weak and strong convergence and derive formulae for

various Itô-Taylor approximations. In Section 2.4, we introduce concepts of strong

Taylor approximation to perturbed SDEs and review the original formulation of the

LIBOR market model for drift approximation. An improved formulation is given in

section 2.5. In Section 2.6, we provide numerical results for various discretization

schemes. Section 2.7 concludes.

2.2 The LIBOR Market Model

The LIBOR market model (BGM/LMM) considers the dynamics of term structure

of forward LIBOR rates. For detail derivations of the joint arbitrage free dynamics,

we refer to Brace et al. [15], Miltersen et al. [61] and Jamshidian [48].

Assume we have a trading period T = [0, TN+1] with current time t ∈ T and

reset dates t < T0 < T1 < T2 < · · · < TN+1, where τi = Ti+1 − Ti, i = 0, 1, 2, · · · , N .

Let P (t, T ) be the price at time t 6 T of the zero-coupon bond maturing at time
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T . The forward LIBOR rate at time t over period [Ti, Ti+1] is:

Li
t :=

P (t, Ti) − P (t, Ti+1)

τiP (t, Ti+1)
, i = 0, · · · , N (2.1)

Each forward LIBOR rate has the dynamics

dLi
t = Li

t

[
µi

tdt +
(
σi

t

)′
dWQ

t

]
, (2.2)

where dWt =
(
dW 1

t , · · · , dW n
t

)′
is a n-dimensional Brownian motion driving all for-

ward LIBOR rates under a generic probability measure Q and σi
t =

(
σi1

t , · · · , σin
t

)′

is a vector of factor loadings for Li
t not dependent on Li

t. The covariance between Li
t

and Lj
t is therefore

(
σi

t

)′
σj

t . For calibration purpose, it is convenient to assume func-

tional forms for volatility and correlation seperately. As a result, we may reinterpret

the covariance as
(
σi

t

)′
σj

t = σi
tσ

j
t ρij where σi

t =
∣∣∣∣σi

t

∣∣∣∣ can be a piecewise constant

or deterministic function taking the form suggested by Rebonato [69]. In practice,

the number of factors n is normally chosen to be 2 to 4 by reducing the rank of the

correlation matrix {ρ}ij = ρij ,∀i, j (see, for example, Brigo and Mercurio [16]).

The drift term µi
t depends on the probability measure under which Li

t is modelled.

Let γ(t) = i if Ti−1 6 t < Ti, i = 1, 2, · · · , N . Table 2.1 summarizes the numeraire

Nt and drift µi
t under the terminal measure and spot-LIBOR measure (see also Brigo

and Mercurio [16]).

Measure, Q Numeraire, Nt Drift, µi
t

Terminal P (t, TN+1) =
P
(
t, Tγ(t)

)
∏N

i=γ(t)

(
1 + τiLi

t

) −∑N
j=i+1

τjL
j
t

1 + τjL
j
t

(
σi

t

)′
σj

t

Spot-LIBOR Bt = P
(
t, Tγ(t)

)∏γ(t)−1
i=0

(
1 + τiL

i
Ti

) ∑i
j=γ(t)

τjL
j
t

1 + τjL
j
t

(
σi

t

)′
σj

t

Table 2.1: Summary of Probability Measures

We describe in sections 2.3 and 2.4 some long step Monte Carlo simulation schemes

for LIBOR Market model. All these schemes evolve forward LIBOR, Li
t, from time

S up to T , for 0 6 S < T 6 Ti where Ti is the maturity of Li
t. The interval [S, T ]

can stride over the earlier reset dates, T0, · · · , Ti−1, on which L0
t , · · · , Li−1

t expire.

In order to simulate Li
t using forward rates that are still alive until time T , we evolve

the LIBOR market model in the terminal measure Q(N + 1) because µi
t is then a

6



function of alive rates only. In the terminal measure ln Li
T has the dynamics

d ln Li
t =

(
µi

t −
1

2

∣∣∣∣σi
t

∣∣∣∣2
)

dt +
(
σi

t

)′
dW

Q(N+1)
t , (2.3)

where the drift term µi
t given in Table 2.1 depends only on Lj

t , j > i. None of these

rates expire by time Ti.

Since µi
t depends on other forward LIBOR rates, it is hard to discretize equation

(2.3) analytically. Theorem 2.2.1 ensures that it admits strong solution and therefore

we can write

ln Li
T = ln Li

S +

∫ T

S
µi

tdt − 1

2

∫ T

S

∣∣∣∣σi
t

∣∣∣∣2 dt +

∫ T

S

(
σi

t

)′
dWt. (2.4)

Theorem 2.2.1 (Existence and Uniqueness of Strong Solution (Oksendal [64])).

Suppose a stochastic differential equation has the form

dXt = a(Xt, t)dt + b(Xt, t)dWt, (2.5)

where Xt =
(
X1

t , · · · ,XQ
t

)′
is the Q-dimensional process and Wt =

(
W 1

t , · · · ,W M
t

)′

is the M -dimensional Brownian motion with a: RQ × [0,∞) 7→ RQ and b: RQ ×
[0,∞) 7→ RQ×M . There exists a unique strong solution for Equation (2.5) if: (i)

E
(
||X0||2

)
< ∞; (ii) a and b satisfy Lipschitz condition and linear growth bound.

That is there exists a constant K such that

Lipschitz condition: For all t ∈ [0, T ] and x,y ∈ RQ

||a(x, t) − a(y, t)|| + ||b(x, t) − b(y, t)|| 6 K||x − y||. (2.6)

Linear Growth Bound: For all t ∈ [0, T ] and x ∈ RQ

||a(x, t)|| + ||b(x, t)|| 6 K (1 + ||x||) (2.7)

where || · || denotes the Euclidian norm of a vector or the Frobenius norm of a

matrix. The solution is unique in the sense that if X̃t is another solution, then

P

(
Xt = X̃t,∀t ∈ [0, T ]

)
= 1. The solution satisfies E

(
||Xt||2

)
< ∞ for all t ∈

[0, T ]. �

These conditions place very severe restrictions on drift and diffusion coefficients. For

example, the Lipschitz condition implies that the first derivative of the coefficients
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must be bounded. This condition fails in a large class of process as in finance known

as square root processes (such as CIR [24] and Heston [44]). Fortunately, for the

LIBOR market model, we can show that these conditions are met. The Lipschitz

condition is satisfied because

||µ(t,x) − µ(t,y)|| 6

N∑

i=0

∣∣∣∣∣∣

N∑

j=i+1

(
τjxj

1 + τjxj
− τjyj

1 + τjyj

)(
σi

t

)′
σj

t

∣∣∣∣∣∣
(2.8)

6 NC1

N∑

j=1

∣∣∣∣
τjxj

1 + τjxj
− τjyj

1 + τjyj

∣∣∣∣ (2.9)

6 NC1

N∑

j=1

|xi − yi| 6 N
3
2 C1||x− y|| = C||x− y||, (2.10)

where µ(·, ·) = (µ1
t , · · · , µN

t )′. Equation (2.9) to (2.10) follow from the property of

Lipschitz function
τjx+

1+τjx+
.

We can also check for the linear growth bound condition

∣∣∣∣
∣∣∣∣µ(t,x) − 1

2

(
||σ1

t ||2, · · · , ||σN
t ||2

)′
∣∣∣∣
∣∣∣∣+ ||σt|| 6

N∑

i=0

∣∣∣∣µ
i
t −

1

2

∣∣∣∣σi
t

∣∣∣∣2
∣∣∣∣+ ||σt|| (2.11)

6

N∑

i=0

∣∣∣∣∣∣

N∑

j=i+1

τjxj

1 + τjxj

(
σi

t

)′
σj

t

∣∣∣∣∣∣
+

(
1

2

N∑

i=1

∣∣∣∣σi
t

∣∣∣∣2 + ||σt||
)

(2.12)

6 NC1

∣∣∣∣∣∣

N∑

j=1

xj

1 + τjxj

∣∣∣∣∣∣
+ C2 6 NC1

N∑

j=1

|xj | + C2 (2.13)

6 N
3
2 C1||x|| + C2 6 C (1 + ||x||) , (2.14)

where σt =
(
σ1

t , · · · , σN
t

)′
and C = max

(
N

3
2 C1, C2

)
. The initial condition is satis-

fied automatically as Li
0 is constant.

For the LIBOR market model, the diffusion part is a time changed Brownian motion.

Schemes approximating the
∫ T
S µi

tdt term in equation (2.4) are generally referred to

as drift approximations. Due to the existence of a strong solution, weak and strong

Itô-Taylor approximations apply to the LIBOR SDE. We look at these schemes in

turn.
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2.3 A Review of Itô-Taylor Approximations

We review in sections 2.3.1-2.3.5 six Itô-Taylor schemes for the LIBOR market

model: the Euler, Milstein, predictor-corrector (Hunter et al. [46]), order 2 weak

Itô-Taylor (Glasserman and Merener [38]), order 1.5 strong Itô-Taylor and order 2

predictor-corrector. We include a seventh scheme, a variant of predictor-corrector

method introduced by Joshi and Stacey [51], known as the iterative predictor-

corrector. This scheme applies to the LIBOR market model only in the terminal

measure. We include it here as an improvement to the predictor-corrector method.

These schemes require that the simulated value L̃i
T is a good approximation to con-

tinuous time value Li
T according to some criterion. The most widely used are strong

and weak convergence criteria.

Definition (Strong and Weak Convergence). Suppose we are given a set of dis-

cretized dates t0, t1, · · · , tn, with ti < ti+1 for i = 0, · · · , n − 1, t0 = 0 and tn = T .

Write δi = ti+1 − ti and let δ = maxi{δi} be the mesh size. Given a continuous time

Wiener sample path W = {Wt, t ∈ [0, T ]}, Xδ
ti , i = 0, · · · , N , is a discretization of

Xt with mesh size δ. Xδ
tN

= Xδ
T is said to converge to the exact solution XT with

order β if

Strong Convergence: E
(∣∣Xδ

T − XT

∣∣) 6 Cδβ

Weak Convergence:
∣∣E
[
f
(
Xδ

T

)]
− E [f (XT )]

∣∣ 6 Cδβ for f ∈ C2(β+1) is 2(β + 1)

times differentiable function with polynomial growth,

where C is constant and independent of δ. (See Oksendal [64]) �

In finance the weak approximation is more important because in the risk-neutral

framework the option price is given by v = E [f(XT )] with some numeraire re-based

payoff function f . Unfortunately, option payoff functions are usually not differen-

tiable everywhere and thus fail the conditions for weak convergence. In practice,

however, we sometimes obtain the theoretical weak order of convergence even if f

is not differentiable at some points. We apply both weak and strong Itô-Taylor

approximations to the LIBOR market model.

We consider a single step from time S to time T with ∆t = T − S. If ∆t is in-

tended to be small the scheme is called “short stepping”; if ∆t is large the scheme is

called “long stepping”. Suppose we have a n-dimensional Wiener sample path Wt,

we define the Wiener increment from time S to time T as ∆WS,T = WT − WS .

We use the Wiener increment at each time step.

9



2.3.1 Euler Stepping

In the Euler scheme (or Euler-Maruyama [58] scheme) the state variables in µi
t are

all set to their initial values at the start of the step. For a general SDE like equation

(2.5), it has the form

∆E
S,T (XS) = a (XS , S)∆t + b (XS, S) ∆WS,T . (2.15)

In the LIBOR market model, we apply the scheme to lnLi
t. The discretization is

∆E
S,T

(
ln Li

S

)
= µi

S∆t − 1

2

(
vi

S,T

)′ (
vi

S,T

)
+
(
vi

S,T

)′
∆WS,T , (2.16)

where vi
S,T =

(√∫ T
S

(
σi,1

t

)2
dt, · · · ,

√∫ T
S

(
σi,n

t

)2
dt

)′

. This is the simplest approx-

imation achieving order 1 weak convergence (see Kloeden and Platen [55]). When

S = 0 and T = Ti, this long stepping scheme is also known as “drift freezing”.

Milstein. A Milstein scheme has strong convergence of order 1 (see Kloeden and

Platen [55]). For each dimension Xi
t of SDE (2.5), the scheme is

∆M
(
Xi

S

)
= ∆E

(
Xi

S

)
+
∑

l,m,n

∂bk,l

∂Xn
t

bn,m

∣∣∣∣
t=S

Im,l, (2.17)

where Im,l =
∫ ti+1

ti

∫ t
ti

dW m
s dW l

t . If we set Xi
t = ln Li

t, ∀i, in the LIBOR market

model, then b (Xt, t) =
(
σ1

t , · · · , σn
t

)′
is independent of Xt. Therefore,

∂σi
t

∂Xj
t

≡ 0,

∀i, j, the Milstein scheme for ln Li
t is the same as the Euler scheme in equation (2.16)

and therefore Euler stepping for the LIBOR market model automatically achieves

strong convergence of order 1.

This approximation, however, is too crude for large ∆t (see Jäckel [47]). It is es-

sentially a short-stepping scheme. An improvement on this scheme is the predictor-

corrector scheme.

2.3.2 Order 1 Predictor-Corrector

The predictor-corrector scheme for a general SDE is

∆pc
S,T (XS) = [p · a(T,XT ) + (1 − p) · a (S,XS)]∆t

+ [q · b(T,XT ) + (1 − q) · b(S,XS)] ∆WS,T , (2.18)
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where

XT = XS + a (XS , S) ∆t + b (XS , S)∆WS,T , (2.19)

and

ai = ai − q
∑

j,k

bj,k
∂bi,k

∂Xj
, p, q ∈ (0, 1). (2.20)

The order 1 weak convergence predictor-corrector method is easy to implement when

the derivatives of diffusion coefficients with respect to all state variables are zero

(see Kloeden and Platen [55]). This is the case for the LIBOR market model in

equation (2.3) where σi
t’s are deterministic so that all

∂σi
t

∂Lj
t

= 0. Hunter et al. [46]

apply this scheme to the standard LIBOR market model.

The predictor-corrector scheme is a two-step method. The first step is to obtain

realizations, L̃i+1
T , · · · , L̃N

T , using an Euler scheme (2.16) and ∆WS,T . These real-

izations are called “predictors”. Then the drift term is approximated as

µ̃i =
1

2

(
µi

S + µi
T

)
, (2.21)

where µi
T are calculated using L̃i+1

T , · · · , L̃N
T . The Wiener increment ∆WS,T used

in the first step are then reused to evolve the “corrector”,

ln Li
T = ln Li

S + µ̃i∆t − 1

2

(
vi

S,T

)′ (
vi

S,T

)
+
(
vi

S,T

)′
∆WS,T . (2.22)

Jäckel [47] found this scheme is accurate for very long time steps in the context of

Bermudan swaption valuation. Beveridge et al. [12] compared it with arbitrage-free

discretization (Glasserman and Zhao [40]) in spot-LIBOR measure and claimed it

to be superior.

2.3.3 Iterative Predictor-Corrector

In the terminal measure, Joshi and Stacey [51] improved the predictor-corrector

scheme so that there is no need for a corrector step. Since LN
t has no drift, it can

be discretized analytically. The drift term of LN−1
t depends only on LN

t . Given the

realization L̃N
T we can approximate the drift of LN−1

t in the same way as (2.21). Then

we can evolve to obtain realization, L̃N−1
T , using the approximated drift. All other

rates, LN−2
T , · · · , Li

T , are simulated backwards in turn iteratively. This scheme is

not an Itô-Taylor method in a strict sense because its “predictors” are not obtained

through Itô-Taylor approximations. It is unclear whether this scheme increases

the order of convergence over the predictor-corrector method but it reduces the
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computation cost since “predictors” are obtained from previous iterations without

the need to recompute them in the current one.

2.3.4 Order 2 Weak Itô-Taylor

The second order weak scheme was introduced first by Milstein [60]. It is discussed

in Glasserman [36]. Glasserman and Merener [38] applied it to the jump diffusion

LIBOR market model. This scheme improves upon the first order Milstein scheme

by keeping more terms in the Itô-Taylor expansion. It is equivalent to first obtaining

the SDEs for both a(Xt, t) and b(Xt, t) in equation (2.5) using Itô formula and then

applying the Euler method to them. The one step approximation is given by

∆2w
S,T (XS) =

∫ T

S

[
a(XS , S) + ∆E

S,ta(XS , S)
]
dt +

∫ T

S

[
b(XS , S) + ∆E

S,tb(XS , S)
]
dWt

= ∆E
S,T (XS) +

∫ T

S
∆E

S,ta(XS , S)dt +

∫ T

S
∆E

S,tb(XS , S)dWt, (2.23)

for t ∈ (S, T ). The last two integrals can be expressed in terms of
∫ T
S

∫ t
S dudt,∫ T

S

∫ t
S dWudt,

∫ T
S

∫ t
S dudWt and

∫ T
S

∫ t
S dWu (dWt)

′.

We introduce a quick derivation of the discretization formula based on equation

(2.23). We first define the forward discounted payoff and then base our scheme on

its dynamics.

Forward Discounted Payoff. From Table 2.1 we notice the term
τiLi

t

1+τiLi
t

appears

in µi
t in the forward LIBOR SDE. This term has the intuition of a forward dis-

counted payoff at a reset date. By investing £1 at time Ti, the interest τiL
i
t is paid

at time Ti+1. This is equivalent to receiving
τiLi

t

1+τiLi
t

at time Ti.

Define Xi
t =

τiLi
t

1+τiLi
t

. Xi
t has the dynamics

dXi
t

Xi
t

(
1 − Xi

t

) = −
N∑

j=i

(
σi

t

)′
σj

tX
j
t dt +

(
σi

t

)′
dWt. (2.24)

We can re-write equation (2.4), the strong solution for Li
t, as

ln Li
T = ln Li

S −
N∑

j=i+1

∫ T

S
Xj

t

(
σi

t

)′
σj

tdt − 1

2

∫ T

S

∣∣∣∣σi
t

∣∣∣∣2 dt +

∫ T

S

(
σi

t

)′
dWt. (2.25)
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The dynamics of Xj
t

(
σi

t

)′
σj

t is

d
[
Xj

t

(
σi

t

)′
σj

t

]
= Xj

t

∂

∂t

[(
σi

t

)′
σj

t

]
dt +

(
σi

t

)′
σj

tdXj
t

=Xj
t

∂

∂t

[(
σi

t

)′
σj

t

]
dt + Xj

t

(
1 − Xj

t

) (
σi

t

)′
σj

t


−




N∑

k=j

(
σj

t

)′
σk

t X
k
t dt −

(
σj

t

)′
dWt




 .

(2.26)

The Euler approximation for Xj
t

(
σi

t

)′
σj

t , for t ∈ (S, T ), is then

Xj
t

(
σi

t

)′
σj

t ≈ Xj
S

(
σi

S

)′
σj

S + ∆E
S,t

[
Xj

S

(
σi

S

)′
σj

S

]
(2.27)

= Xj
S

∂

∂u

[(
σi

u

)′
σj

u

]∣∣∣∣
u=S

∫ t

S
du + Xj

S

(
σi

S

)′
σj

S

×


1 − Xj

S

(
1 − Xj

S

)



N∑

k=j

(
σj

S

)′
σk

SXk
S

∫ t

S
du −

(
σj

S

)′ ∫ t

S
dWu




 . (2.28)

The terms in the summation in Equation (2.25) can be approximated as

∫ T

S
Xj

t

(
σi

t

)′
σj

tdt

≈
∫ T

S

{
Xj

S

(
σi

S

)′
σj

S + ∆E
S,t

[
Xj

S

(
σi

S

)′
σj

S

]}
dt

=
∆t2

2
Xi

S

∂

∂u

[(
σi

u

)′
σj

u

]∣∣∣∣
u=S

+ Xi
S

(
σi

S

)′
σj

S

×


∆t −

(
1 − Xj

S

)

∆t2

2

N∑

k=j

(
σj

S

)′
σk

SXk
S −

(
σj

S

)′
I




 , (2.29)

where I =
(
I(1,0), · · · , I(n,0)

)′
with I(i,0) =

∫ T
S

∫ t
S dW i

udt.

We approximate the diffusion term in equation (2.25) by taking a first order Taylor

expansion of σi
t around t = S.

∫ T

S

(
σi

t

)′
dWt ≈

∫ T

S

[(
σi

S

)′
+

∂

∂u

(
σi

u

)′
∣∣∣∣
u=S

∫ t

S
du

]
dWt

=
(
σi

S

)′
∆WS,T +

∂

∂u

(
σi

u

)′
∣∣∣∣
u=S

Ī, (2.30)
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where Ī =
(
I(0,1), · · · , I(0,n)

)′
with I(0,i) =

∫ T
S

∫ t
S dudW i

t . The discretization then

reads

ln Li
T ≈ ln Li

S +
N∑

j=i+1

µ̃i,j
S,T −

1

2

∫ T

S

∣∣∣∣σi
t

∣∣∣∣2 dt+
(
σi

S

)′
∆WS,T +

∂

∂u

(
σi

u

)′
∣∣∣∣
u=S

Ī, (2.31)

where µ̃i,j
S,T denotes the expression on the right hand side of equation (2.29).

Glasserman [36] suggests that weak second order convergence still holds if one re-

places I(i,0) and I(0,i) with their conditional expectation 1
2∆t∆W i

S,T . By doing so,

the second order scheme does not require any additional random numbers to the

Wiener increments ∆WS,T . The second order weak scheme theoretically has con-

vergence of weak order 2 under certain conditions on drift and diffusion coefficients:

both must be six times continuously differentiable, with all derivatives uniformly

bounded, and pairwise products of diffusion coefficients have a linear growth bound

(see Talay [80], Kloeden and Platen [55]).

Order 1.5 Strong Itô-Taylor. The order 1.5 strong scheme for equation (2.5)

adds only an additional term to order 2 weak scheme which involves a triple iterated

Itô integral. For each dimension q,

∆1.5sXq
t = ∆2wXq

t +
M∑

j1,j2,j3=1

Q∑

k,l=1

blj1

(
∂bkj2

∂X l
t

∂bqj3

∂Xk
t

+ bkj2

∂2bqj2

∂Xk
t ∂X l

t

)
I(j1,j2,j3),

(2.32)

where I(j1,j2,j3) =
∫ T
S

∫ t2
S

∫ t1
S dW j1

u dW j2
t1 dW j3

t2 and all the partial derivatives are eval-

uated at t = S (see Kloeden and Platen [55]). Fortunately, since in the LIBOR

market model of equation (2.3)
∂σi

S

∂Lj
t

≡ 0,∀i, j, the coefficients in front of I(j1,j2,j3)

vanish which leaves order 1.5 strong scheme having the same expression as the order

2 weak scheme. The only difference is that I(j,0) and I(0,j), j > i, must be simulated,

rather than being replaced by their conditional expectations. Kloeden and Platen

[55] showed that they can be simulated exactly as

I(i,0) =
1

2
∆t

(
∆W i

S +
1√
3
∆yi

)
, (2.33)

I(0,i) = ∆W i
S∆t − I(i,0), (2.34)

where ∆yi ∼ N(0,∆t).
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2.3.5 Order 2 Predictor-Corrector

The second order predictor-corrector scheme differs from the first order predictor-

corrector in two aspects: 1) it uses order 2 weak scheme to obtain predictors; 2) the

diffusion coefficient b(Xt, t) is approximated by the Euler method instead of a linear

combination of b (XS , S) and b (XT , T ) as is the case of order 1 predictor-corrector

in equation (2.18). Specifically, the discretization form for equation (2.5) reads (see

Kloeden and Platen [55])

∆2pc
S,T (XS) =

1

2

[
a (XS , S) + a

(
XS + ∆2w

S,TXS , T
)]

∆t

+

∫ T

S

[
b (XS , S) + ∆E

S,tb (XS , S)
]
dWt

=
1

2

[
a (XS , S) + a

(
XS + ∆2w

S,TXS , T
)]

∆t

+ b (XS , S) ∆WS,T +

∫ T

S
∆E

S,tb (XS , S)dWt (2.35)

For LIBOR market model of equation (2.3) in each dimension,

ln Li
T ≈ ln Li

S +
1

2

(
µi

S + µ̃i
T

)
− 1

2

∫ T

S

∣∣∣∣σi
u

∣∣∣∣2 dt +
(
σi

S

)′
∆WS +

∂

∂u

(
σi

u

)′
∣∣∣∣
u=S

Ī,

(2.36)

where µ̃i
T are evaluated at the predictors L̃j

T ’s which are obtained through second

order weak Taylor scheme given by Equation (2.31). I(i,0) can be approximated by
1
2∆t∆W i

S as before.

2.4 A Review of Strong Taylor Expansion

In this section, we introduce two new schemes for drift approximation. They both

adopt the same technique of strong Taylor approximation for perturbed stochastic

processes, but with different formulations. The difference with previous schemes is

that they introduce new SDEs which are very close to the LIBOR market model

but easier to implement.

Strong Taylor approximation is a recent scheme based on expansion of a perturbed

SDE around a point where the explicit solution is known. It was first introduced by

Siopacha and Teichmann [77]. Papapantoleon and Siopacha [65] derived formulas

for simulating more general Lévy LIBOR model. The main contributions of their

methods are: 1) using Taylor expansion for each perturbed forward LIBOR SDE
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and 2) providing a new framework for drift approximation. However, we notice

that the original formulation introduces two sources of error and is far away from a

satisfactory discretization scheme. An improvement on this formulation is proposed

which turns the strong Taylor approximation into a practical implementable method.

Our method differs from theirs in that we consider the perturbation of the for-

ward discounted payoff, rather than Li
t, ∀i, and apply strong Taylor approximation

to it. By doing so, we are able to simulate forward LIBOR rates in a single long

step and introduce only one source of error. Nevertheless, we shall see that the

strong Taylor approximation methods do not converge towards the continuous time

solution of the standard LIBOR market model as the number of time steps increases.

We first introduce the concepts of strong Taylor approximation.

Strong Taylor Approximation. We adopt the definition from Siopacha and

Teichmann [77]. Given a set of smooth functions Fǫ: R 7→ R with Fǫ ∈ L2(Ω, R)

square integrable. Set

Tn
ǫ (Fǫ) =

n∑

i=0

ǫi

i!

∂iFǫ

∂ǫi

∣∣∣∣
ǫ=0

. (2.37)

Fǫ is a strong Taylor approximation of order n if

E [|Fǫ − Tn
ǫ (Fǫ)|] = o(ǫn). (2.38)

When ǫ → 0, Tn
ǫ (Fǫ) → Fǫ in the strong sense. We refer to the error coming from

truncating at level n as truncation error.

The application of the Taylor expansion to the perturbed LIBOR market model

was introduced by Siopacha and Teichmann [77]. They applied the perturbation to

the forward LIBOR rate.1 The perturbed version of Li
t is

dL̂
(i,ǫ)
t

L̂
(i,ǫ)
t

= ǫ


−

N∑

j=i+1

τjL̂
(j,ǫ)
t

(
σi

t

)′
σj

t

1 + τjL̂
(j,ǫ)
t

dt +
(
σi

t

)′
dWt


 . (2.39)

The first order strong Taylor approximation for L̂
(i,ǫ)
t around ǫ = 0 is given by

L̂
(i,ǫ)
t ≈ T1

ǫ

(
L̂

(i,ǫ)
t

)
= Li

0 + ǫ
∂L̂

(i,ǫ)
t

∂ǫ

∣∣∣∣∣
ǫ=0

, (2.40)

1It could be better to apply perturbation to lnLi
t though.
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where

∂L̂
(i,ǫ)
t

∂ǫ

∣∣∣∣∣
ǫ=0

= Li
0


−

N∑

j=i+1

(
τjL

j
0

1 + τjL
j
0

∫ t

0

(
σi

t

)′
σj

tdt

)
+

∫ t

0

(
σi

s

)′
dWs


 . (2.41)

The stochastic process

dL
(i,ǫ)
t

L
(i,ǫ)
t

= −
N∑

j=i+1

τjL̂
(j,ǫ)
t

(
σi

t

)′
σj

t

1 + τjL̂
(j,ǫ)
t

dt +
(
σi

t

)′
dWt (2.42)

returns to the standard LIBOR market model when ǫ = 1 and is the frozen drift

approximation when ǫ = 0. By replacing L̂
(j,ǫ)
t with

(
T1

ǫ

(
L̂

(i,ǫ)
t

))
+
, the SDE for

simulation is

d ln L
(i,ǫ)
t =


−

N∑

j=i+1

τj

(
T1

ǫ

(
L̂

(i,ǫ)
t

))
+

(
σi

t

)′
σj

t

1 + τj

(
T1

ǫ

(
L̂

(i,ǫ)
t

))
+

− 1

2

∣∣∣∣σi
t

∣∣∣∣2

 dt +

(
σi

t

)′
dWt, (2.43)

or in integrated form

ln L
(i,ǫ)
T =ln L

(i,ǫ)
S −

N∑

j=i+1

∫ T

S

τj

(
T1

ǫ

(
L̂

(i,ǫ)
t

))
+

(
σi

t

)′
σj

t

1 + τj

(
T1

ǫ

(
L̂

(i,ǫ)
t

))
+

dt

− 1

2

∫ T

S

∣∣∣∣σi
t

∣∣∣∣2 dt +

∫ T

S

(
σi

t

)′
dWt, (2.44)

where T1
ǫ

(
L̂

(i,ǫ)
t

)
is a function of t and

∫ T
S

(
σi

t

)′
dWt.

To apply the discretization we choose ǫ = 1 as Li,1
t has the dynamics of the standard

LIBOR market model. The problem with Equation (2.44) is that the drift integral

is not capable of being evaluated analytically. One needs to resort to the trapezium

method to evaluate this integral using discrete points on the sample path of L
(i,ǫ)
t .

This introduces an additional source of error which we refer to as discretization er-

ror. This can be reduced only when ∆t → 0. Together with the truncation error

from the strong Taylor approximation, this formulation is subject to two source of

errors.

In Section 2.5, we propose another formulation which only incurs one type of error,

the truncation error.
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2.5 An Improvement on Strong Taylor Expansion

Instead of applying a perturbation to lnLi
t, we apply it to the forward discounted

payoff Xi
t , obtaining

dX̂
(i,ǫ)
t

X̂
(i,ǫ)
t

(
1 − X̂

(i,ǫ)
t

) = ǫ


−

N∑

j=i

(
σi

t

)′
σj

t X̂
(j,ǫ)
t dt +

(
σi

t

)′
dWt


 , (2.45)

where ǫ ∈ R. If ǫ = 0, X̂
(i,ǫ)
t ≡ Xi

0. If ǫ = 1 we obtain the unperturbed version of

forward discounted payoff, X̂
(i,ǫ)
t = Xi

t . It is not difficult to prove that for ǫ > 0,

E

[
X̂

(i,ǫ)
t

]2
< ∞, that is, X̂

(i,ǫ)
t ∈ L2(Ω,ℜ), so that Tn

ǫ

(
X̂

(i,ǫ)
t

)
→ X̂

(i,ǫ)
t as ǫ ↓ 0.

Taylor Expansion. The first order strong Taylor approximation for X̂
(i,ǫ)
t is

X̂
(i,ǫ)
t ≈ T1

ǫ

(
X̂

(i,ǫ)
t

)
= Xi

0 + ǫ
∂X̂

(i,ǫ)
t

∂ǫ

∣∣∣∣∣
ǫ=0

:= Xi
0 + ǫY i

t . (2.46)

where

Y i
t = Y i

S + Xi
0

(
1 − Xi

0

)

−

N∑

j=i

Xj
0

∫ t

S

(
σi

s

)′
σj

sds +

∫ t

S

(
σi

s

)′
dWs


 . (2.47)

with Y i
0 = 0. Now we formulate the LIBOR market model in terms of the parameter

ǫ.

ln L
(i,ǫ)
T = ln L

(i,ǫ)
S −

N∑

j=i+1

∫ T

S
X̂

(j,ǫ)
t

(
σi

t

)′
σj

tdt − 1

2

∫ T

S

∣∣∣∣σi
t

∣∣∣∣2 dt +

∫ T

S

(
σi

t

)′
dWt.

(2.48)

If ǫ = 0 Equation (2.48) is the same as the frozen drift forward LIBOR SDE. If

ǫ = 1 it is the standard LIBOR market model. Using the first order strong Taylor

approximation for X̂
(i,ǫ)
t , we derive another drift approximation formula.

Drift Approximation. We replace X̂
(j,ǫ)
t in

∫ Ti

0 X̂
(j,ǫ)
t

(
σi

t

)′
σj

tdt, j > i, with its

first order strong Taylor approximation.

∫ T

S
X̂

(j,ǫ)
t

(
σi

t

)′
σj

tdt =

∫ T

S
X̂

(j,ǫ)
t dIi,j

S,t ≈
[∫ T

S
T1

ǫ

(
X̂

(j,ǫ)
t

)
dIi,j

S,t

]

+

=

[
Xj

0Ii,j
S,T + ǫ

∫ T

S
Y j

t dIi,j
S,t

]

+

, (2.49)
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where Ii,j
S,t =

∫ t
S

(
σi

s

)′
σj

sds.

Truncation Error. We estimate the error term from using the strong Taylor

approximation. Denote the approximated forward LIBOR SDE using Equation

(2.49) by L̂
(i,ǫ)
t . The absolute error is given by

∣∣∣ln L̂
(i,ǫ)
Ti

− ln L
(i,ǫ)
Ti

∣∣∣ =

∣∣∣∣
∑N

j=i+1

([∫ Ti

0 T1
ǫ

(
X̂

(j,ǫ)
t

)
dIi,j

t

]
+
−
∫ Ti

0 X̂
(i,ǫ)
t dIi,j

t

)∣∣∣∣

6

N∑

j=i+1

∫ Ti

0

∣∣∣T1
ǫ

(
X̂

(j,ǫ)
t

)
− X̂

(i,ǫ)
t

∣∣∣ dIi,j
t

=
N∑

j=i+1

∫ Ti

0

∣∣∣T1
ǫ

(
X̂

(j,ǫ)
t

)
− X̂

(i,ǫ)
t

∣∣∣
(
σi

t

)′
σj

tdt

6 M

N∑

j=i+1

∫ Ti

0

∣∣∣T1
ǫ

(
X̂

(j,ǫ)
t

)
− X̂

(i,ǫ)
t

∣∣∣ dt, (2.50)

where M = max06t6Ti,∀i,j

((
σi

t

)′
σj

t

)
<< 1.

Expression for
∫ T
S Y j

t dIi,j
S,t. We define Ai

S,t and Zi
S,t as

Ai
S,t :=

N∑

j=i

Xj
0

∫ t

S

(
σi

s

)′
σj

sds =
N∑

j=i

Xj
0Ii,j

S,t, Zi
S,t :=

∫ T

S

(
σi

t

)′
dWt, (t > S)

(2.51)

Ai
S,t is deterministic and Zi

S,t ∼ N
(
0,
∫ t
0

∣∣∣∣σi
t

∣∣∣∣2 ds
)
. We re-express Y i

t in terms of

Ai
S,t and Zi

S,t as

Y i
t = Y i

S + Xi
0

(
1 − Xi

0

) (
−Ai

S,t + Zi
S,t

)
. (2.52)

The integral term on the right hand side of Equation (2.49) becomes

∫ T

S
Y j

t dIi,j
S,t =Y j

S Ii,j
S,T + Xj

0

(
1 − Xj

0

)(
−
∫ T

S
Aj

S,tdIi,j
S,t +

∫ T

S
Zj

S,tdIi,j
S,t

)

=Y j
S Ii,j

S,T + Xj
0

(
1 − Xj

0

)(
−
∫ T

S
Aj

S,t

(
σi

t

)′
σj

tdt +

∫ T

S
Zj

S,tdIi,j
S,t

)
.

(2.53)

The first integral on the right hand side of Equation (2.53) is deterministic and can

be pre-computed before the simulation. Applying integration by parts to the second

integral, we have ∫ T

S
Zj

S,tdIi,j
S,t = Ii,j

S,TZj
S,T −

∫ T

S
Ii,j
S,tdZ

j
S,t. (2.54)
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To simulate L
(i,ǫ)
T | L

(i,ǫ)
S we need 2(N − i) + 1 correlated normal random variables,

Z =

(
Zi

S,T , Zi+1
S,T , · · · , ZN

S,T ,

∫ T

S
Ii,i+1
S,t dZi+1

S,t , · · · ,

∫ T

S
Ii,N
S,t dZN

S,t

)′
. (2.55)

We have the following proposition for the variance covariance matrix of Z.

Theorem 2.5.1 The variance covariance matrix of Z is given by

C := Var Z =

(
Φ Σ′

Σ Ω

)
, (2.56)

where

Φjk = Cov(Zj
S,T , Zk

S,T ) =

∫ T

S

(
σj

t

)′
σk

t dt, (2.57)

Σjk = Cov

(
Zj

S,T ,

∫ T

S
Ii,k
S,tdZ

k
S,t

)
=

∫ T

S
Ii,k
S,t

(
σj

t

)′
σk

t dt, (2.58)

Ωjk = Cov

(∫ T

S
Ii,j
S,tdZ

j
t ,

∫ T

S
Ii,k
S,tdZ

k
S,t

)
=

∫ T

S
Ii,j
S,tI

i,k
S,t

(
σj

t

)′
σk

t dt. (2.59)

Proof We first look at the matrix Φ. By applying Itô’s formula to Zj
t Z

k
t , we have

d(Zj
S,tZ

k
S,t) = Zj

S,tdZ
k
S,t + Zk

S,tdZ
j
S,t + dZj

S,tdZ
k
S,t. (2.60)

Taking the expectation of both sides, we get

E

[
d(Zj

S,tZ
k
S,t)
]

= E

(
dZj

S,tdZ
k
S,t

)
=
(
σj

t

)′
σk

t dt. (2.61)

Dynkin’s formula (see Klebaner [54]) gives us

Φjk = Cov
(
Zj

S,T , Zj
S,T

)
= E

(
Zj

S,T Zj
S,T

)
=

∫ T

S

(
σj

t

)′
σk

t dt. (2.62)

Using the same techniques, we derive for other two matrices

Σjk = Cov

(
Zj

S,T ,

∫ T

S
Ii,k
S,tdZ

k
S,t

)
= E

(
Zj

S,T

∫ T

S
Ii,k
S,tdZ

k
S,t

)
=

∫ T

S
Ii,k
S,t

(
σj

t

)′
σk

t dt,

(2.63)

Ωjk = Cov

(∫ T

S
Ii,j
S,tdZ

j
S,t,

∫ T

S
Ii,k
S,tdZ

k
S,t

)
= E

(∫ T

S
Ii,j
S,tdZ

j
S,t

∫ T

S
Ii,k
S,tdZ

k
S,t

)

=

∫ T

S
Ii,j
S,tI

i,k
S,t

(
σj

t

)′
σk

t dt. (2.64)
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There is no discretization error in equatation (2.48) since the drift integral approx-

imated by Equation (2.49) can be evaluated explicitly. The only source of error

is the truncation error which can be estimated by Equation (2.50) and reduced by

increasing the terms in the Taylor expansion (2.37).

Although the new formulation removes the discretization error, it still involves trun-

cation error. This cannot be reduced by increasing the number of time steps unless

one adds more terms to the strong Taylor approximation. But this requires knowl-

edge of higher order derivatives which are not as straightforward as the first order

one. This is an undesirable feature. We can also see that Equation (2.49) for the

strong Taylor approximation is a special case of Equation (2.29) when one uses only

one single step and the volatilities are constant.

In Table 2.2 we give a brief summary of the orders of error for each scheme we

have so far investigated.

Scheme Error Source Reference

Euler (Milstein) Weak O(∆t) Maruyama [58]

Order 1 PC Weak O(∆t) Hunter et al. [46]

IPC Weak O(∆t) Joshi and Stacey [51]

Order 1.5 Strong Strong O
(
∆t

3
2

)
Kloeden and Platen [55]

Order 2 Weak Weak O(∆t2) Glasserman and Merener [38]

Order 2 PC Weak O(∆t2) Kloeden and Platen [55]

ST1
Weak O(∆t),

Siopacha and Teichmann [77]
Strong O(ǫ)

ST2 Strong O(ǫ) Proposed

Table 2.2: Schemes Summary

2.6 Numerical Results

We use two vanilla instruments, caplet and swaption, in our example. A caplet is a

European call option on a single LIBOR rate. A swaption is an option to enter into
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a swap contract and its payoff depends on more than one forward LIBOR rate.

ith Caplet Payoff: VTi
=

τi(L
i
Ti

− K)+

1 + τiL
i
Ti

(2.65)

i × l Swaption Payoff: VTi
= Y i,i+l

Ti
(Si,i+l

Ti
− K)+ (2.66)

where K is the strike, Y a,b
t =

∑b
i=a+1 τiP (t, Ti) and Sa,b

t = P (t,Ta)−P (t,Tb)∑b
i=a+1 τiP (t,Ti)

. Notice

that we use the caplet payoff discounted to Ti. The actual payoff τi(L
i
Ti
−K)+ takes

place at Ti+1. Using the formula for any contingent claim under the no-arbitrage

assumption, we have

Vt = P (t, TN+1)E

[
VTi

P (Ti, TN+1)

]
(2.67)

where Vt is the value of caplet or swaption.

Parameters Specifications. We use a flat initial term structure of 20 forward

LIBOR rates Li
0 = 0.06 with tenor τi ≡ τ = 1, for i = 0, 1, · · · , 19, and T0 = 1.

Each forward LIBOR rate has the same constant volatility σi
t ≡ σ = 0.3, ∀i. Li

t

and Lj
t have the instantaneous correlation ρi,j, ∀i, j. We use the correlation form

introduced by Rebonato [69].

ρi,j = ρ∞ + (1 − ρ∞)e−β|i−j|, (2.68)

where ρ∞ = 0.2 and β = 0.5. Such a choice makes ρi,j decrease rapidly as they

move away from the diagonal, but stay relatively flat at ρ∞ when |i − j| > 10.

As a result,
(
σi

t

)′
σi

t = σi
tσ

j
t ρi,j = σ2ρi,j ≈ σ2ρ∞ when |i − j| > 10. The drift

term µi
t can be viewed as a weighted sum of Xj

t =
τjLj

t

1+τjLj
t

with weights equal to
(
σi

t

)′
σi

t ≈ σ2ρ∞. Therefore, each term Xj
t has an equal contribution towards to µi

t.

The drift term reflects the biases in all realised Xj
t , j > i, instead of only a few.

This gives a clearer picture of approximation errors in all the discretization methods.

We price two vanilla instruments, caplets and swaptions. The caplets pay off against

Li
Ti

with maturities Ti, i = 0, · · · , 19, and each with strike K = 0.06 (ATM),

K = 0.04 (ITM) and K = 0.08 (OTM). We considered swaptions with maturity

dates T0, T1, · · · , T9, all terminating at T20, and each with strike K = 0.06. These

swaptions are also known as co-terminal swaptions.

For reasons of clarity, we first define some abbreviations of methods in Table 2.3.
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Abbreviation Method

PC Predictor-corrector
IPC Iterative predictor-corrector
ST1 Strong Taylor expansion in equation (2.44)
ST2 Strong Taylor expansion in equation (2.48)

Table 2.3: Abbreviations of Methods

2.6.1 Caplets

We use the caplet as a benchmark case since its value under the LIBOR market

model can be obtained in closed-form (Black’s formula [13]). The pricing error is

defined as

Err = |CMC − CB|, (2.69)

where CMC and CB denote the Monte Carlo and Black’s caplet prices. We simulate

each Li
t from 0 up to Ti using a single long step. We compare the pricing errors and

computation time for ATM caplets using various methods. Since the volatilities are

constant, in a single step discretization ST1 is the same as Euler method. We do not

list both schemes as the pricing errors are too large compared with other methods.

ST2 is the same as order 1.5 strong Itô-Taylor approximation so that we only give

the results for the latter.

The number of sample paths is 107 so that the standard errors are below 1 basis

point. For the ATM case, we fill up the Wiener sample path using normal random

numbers in order to obtain estimates of standard errors. For the ITM and OTM

cases, we plot only the pricing errors against different caplet maturities. We do

not report the standard errors since they are much smaller than the pricing errors

for most caplets. We use inverse transform of Sobol numbers to generate normal

variables for both the ITM and OTM cases.

Single Step Pricing Errors. The single step pricing errors for various methods

are given in Tabel 2.4 (page 24). The caplets have maturities from 1 year to 20

years. Explicit caplet values are given by the Black’s formula. The computation

time (CPU) is the simulation time only. The platform was a Dell D620 lattitude.

The pricing errors from every method are first increasing and then decreasing with

maturity. When the maturity is short (first few caplets) the time step is not long

enough for the drift term to cause large pricing errors. When the maturity is long
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Order 1 PC IPC

Maturity Explicit Err SE CPU Err SE CPU

1 63.671 0.002 (0.041) 154.5 0.002 (0.041) 103.5
2 84.632 0.048 (0.063) 147.1 0.018 (0.063) 99.6
3 97.422 0.201 (0.084) 134.2 0.104 (0.084) 90.6
4 105.732 0.424 (0.103) 127.6 0.206 (0.103) 87.3
5 111.109 0.620 (0.122) 116.1 0.215 (0.123) 80.2
6 114.402 1.011 (0.141) 112.5 0.361 (0.144) 78.5
7 116.146 1.768 (0.156) 98.0 0.832 (0.162) 70.2
8 116.708 2.215 (0.167) 92.5 0.956 (0.175) 66.3
9 116.355 2.732 (0.180) 81.7 1.131 (0.192) 58.6
10 115.285 3.116 (0.192) 77.3 1.193 (0.209) 56.4
11 113.655 3.742 (0.211) 67.3 1.531 (0.235) 49.4
12 111.584 4.206 (0.209) 62.4 1.795 (0.234) 46.6
13 109.171 4.465 (0.225) 53.7 1.931 (0.265) 40.7
14 106.496 4.648 (0.233) 49.2 2.127 (0.274) 38.2
15 103.621 4.407 (0.211) 40.5 2.048 (0.236) 32.0
16 100.601 4.009 (0.235) 37.0 1.976 (0.256) 30.2
17 97.479 3.205 (0.251) 29.1 1.729 (0.266) 24.2
18 94.292 2.106 (0.218) 25.7 1.375 (0.223) 22.7
19 91.069 0.870 (0.163) 18.9 0.870 (0.163) 16.7
20 87.835 0.115 (0.118) 15.6 0.115 (0.118) 14.7

Order 1.5 Strong Order 2 Weak Order 2 PC

Err SE CPU Err SE CPU Err SE CPU

0.091 (0.041) 180.3 0.013 (0.041) 123.3 0.002 (0.041) 215.5
0.012 (0.064) 171.4 0.051 (0.064) 114.5 0.019 (0.063) 201.5
0.137 (0.085) 160.5 0.100 (0.085) 103.4 0.112 (0.084) 185.0
0.376 (0.107) 143.6 0.233 (0.106) 97.7 0.230 (0.103) 171.4
0.545 (0.128) 133.4 0.591 (0.131) 87.1 0.270 (0.123) 151.9
0.945 (0.155) 121.4 0.924 (0.160) 82.6 0.463 (0.143) 140.4
1.482 (0.213) 111.1 0.993 (0.194) 74.4 0.994 (0.160) 126.2
1.662 (0.199) 100.4 1.550 (0.222) 69.1 1.193 (0.172) 114.6
2.032 (0.263) 90.6 2.132 (0.256) 61.0 1.456 (0.187) 100.4
2.202 (0.309) 81.1 2.874 (0.305) 57.1 1.611 (0.201) 91.8
3.037 (0.439) 72.2 3.413 (0.421) 49.3 2.044 (0.223) 78.8
4.142 (0.537) 63.6 3.853 (0.414) 45.9 2.380 (0.221) 70.9
4.427 (0.396) 55.8 4.850 (0.703) 38.3 2.584 (0.242) 59.3
4.365 (0.366) 48.2 5.286 (0.780) 35.8 2.810 (0.250) 53.3
4.857 (0.468) 41.2 5.228 (0.465) 28.9 2.717 (0.222) 43.0
5.292 (0.505) 34.3 5.506 (0.505) 27.1 2.590 (0.244) 37.7
5.137 (0.438) 28.0 5.312 (0.592) 21.0 2.203 (0.257) 28.7
4.302 (0.406) 22.2 4.203 (0.367) 18.9 1.625 (0.220) 24.8
2.636 (0.198) 16.3 2.397 (0.196) 13.1 0.870 (0.163) 17.2
0.157 (0.118) 10.8 0.115 (0.118) 11.3 0.115 (0.118) 13.8

Table 2.4: Absolute Pricing Errors (in Basis Points), CPU (in Seconds), for ATM
Caplets, 107 Paths 24



(the last few caplets) there are very few stochastic terms in the drift summation

(LN
t is driftless) so that the error caused by the drift term is not significant.

The simple iterative predictor-corrector method (IPC) outperforms all the other

methods in terms of both caplet pricing errors and computation time. The only

method which is close to IPC in terms of the pricing error is order 2 predictor-

corrector (Order 2 PC). Their standard errors (SE) are more or less the same. How-

ever, the computation time required by Order 2 PC is staggering for the first several

caplets (almost twice as much as that for IPC) because of the path re-evolution and

updating of state variables required at each time step. This discrepancy in compu-

tation time narrows as the caplet maturity increases.

The pricing errors for order 2 weak and order 1.5 strong Itô-Taylor approxima-

tions are close to each other. This is reasonable because the only difference between

them is whether or not the double Wiener integrals, I(0,j) and I(j,0), are simulated.

The number of normal random variables needed for order 1.5 strong is twice as many

as needed by the IPC method but unfortunately the former method performs much

worse than IPC in this single step case in terms of pricing error, standard error and

computation time.

The order 1 predictor-corrector method (Order 1 PC) produces higher pricing errors

for the frist several caplets, but lower pricing errors later on, compared to both Or-

der 2 Weak and Order 1.5 Strong. The compuation time needed for Order 1 PC is

about 1.5 times that needed for IPC but it seems the standard errors of the former

method are slightly lower.

The computation time and standard errors in the ITM and OTM cases are sim-

ilar to those in the ATM case. We plot the pricing errors only for ITM and OTM

caplets in Figure 2.1 and 2.2. They are obtained using the same set of Sobol num-

bers. The results are consistent with the ATM case except that in Order 1.5 Strong

pricing errors for caplets on L14
t and L15

t are much higher than those in Order 2

Weak.

2.6.2 Co-Terminal Swaptions

Co-terminal swaptions are options on swap contracts with different starting dates

but all terminating on the same final date. That means in Equation (2.66) l =

N + 1 − i for all i. Co-terminal swaps are fundamental rates in the swap market
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Figure 2.1: Pricing Errors (in Basis Points), ITM (K = 0.04) Caplets, 107 Paths
with Inverse Transform of Sobol Sequence
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model. The concept was introduced by Jamshidian [48]. Co-terminal swaptions are

important components of a Bermudan swaption whose holder has the right to enter

into swap contracts on a set of pre-determined reset dates. On each of these dates,

the holder either receives a co-terminal swaption payoff or keeps the continuation

value of the Bermudan swaption.

Since the swaption value in the LIBOR market model is not known in the closed-

form, we obtain benchmark results using iterative predictor-corrector method with

two steps each year (as we will see in Section 2.6.3 that this prices caplets with

bias less than 0.1 basis points). Co-terminal swaption values are given in Table 2.5.

Forward LIBOR rates (and therefore the swap rates) are simulated in a single long

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

907.84 998.78 1016.35 1000.31 966.26 922.10 872.19 818.81 764.55 709.61

Table 2.5: Benchmark Results for Co-Terminal Swaptions (in Basis Points)

step from time 0 to the starting date of the underlying swap using every method

with 107 paths and Sobol numbers.

For the same reason in the caplet case, neither ST1 nor ST2 is included in the

result. Pricing error is defined as

Err = |CMC − C0| , (2.70)

where C0 is given in Table 2.5. The pricing errors for swaptions are displayed in

Figure 2.3. As in the caplet case, IPC outperforms all other methods. It is followed

by Order 2 PC. Order 2 Weak is better than Order 1.5 Strong. Both are much

better than Order 1 PC for all the first ten co-terminal swaptions.

So far, we have investigated the single step discretization errors. In practice, people

are also interested in how various method perform with short step discretization.

We therefore look at how they converge with an increasing number of time steps.

2.6.3 Weak Order of Convergence

We compare the weak order of convergence for each method. Weak convergence

is defined with respect to the expectation of some function. It is important for a

method to converge to the theoretical expectation as quickly as possible. In finance,

the function is normally chosen to be the option payoff. However, option payoff
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functions often fail the conditions under which the theoretical order of weak con-

vergence occurs. In practice, Webber [83] finds that convergence sometimes occurs

despite technical disqualifications, with rates lower than (at least not higher than)

the theoretical rates of convergence.

If we plot log2(Err) against log2(∆t), the theoretical slope is -1 for Euler and PC,

-2 for Order 1.5 Strong, Order 2 Weak and Order 2 PC. IPC is not Itô-Taylor in the

strict sense and thus its theoretical order of weak convergence is unclear. Pricing

errors for ST1 come from both ∆t and ǫ. ST2 has error only from ǫ so its pricing

error does not decrease with ∆t.

We choose the function in the weak criteria as the numeraire re-based payoff func-

tion of the ATM caplet on L13
t so simulation is up to T13 = 14. Its theoretical

expectation is known. The methods considered are ST1, ST2 and all the Itô-Taylor

approximations considered in previous sections including Euler. We fill up the whole

Wiener sample path using a Brownian bridge. Each draw in the Brownian bridge

construction is an inverse transform of one dimension in the Sobol sequence. We

then back out the Wiener increments from the Wiener sample path. Although this

Wiener path construction makes convergence faster, Webber [83] finds that there is
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bias in this method. This bias is small compared to the pricing errors and therefore

does not have significant effect in our analysis. We do not discuss this effect further.

We vary the number of time steps from 1 to 32 from time 0 up to T13 so that

∆t decreases each time by half from 14 to 0.4375. The error curves for all methods

are displayed in Figure 2.4. The Euler method has slope equal to -1. ST1 is equiv-
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Figure 2.4: Convergence with Steps, 107 Paths with Inverse Transform of Sobol
Sequence

alent to Euler if one uses only one time step (in fact this is drift freezing method).

However, as ∆t decreases only the discretization error of ST1 will be corrected but

not the truncation error. It is converging to the same level of the ST2 whose dynam-

ics can be discretized analytically in a single long step. Because there is no error

coming from ∆t in ST2, increasing the number of time steps does not reduce the

pricing error and therefore the error curve stays flat. Both ST1 and ST2 produce

pricing errors much larger than other method in the multiple steps case and there-

fore neither should be used in practice.

The curves of three predictor-corrector methods, Order 1 PC, IPC and Order 2

PC, are relatively close to each other. This is reasonable because when the volatili-

ties are constant the only difference among those three is how the “predictors” are

obtained. The IPC method has the best performance in the multiple steps dis-

cretization among those three. The Order 2 Weak has the best performance in this

case. Its pricing errors are lower than those in all the other methods when the
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number of time steps is more than one. It nevertheless has a “kink” in the error

curve and does not achieve the expected order 2 weak convergence.

The error curve for Order 1.5 Strong is rather erratic. It has similar performance

to Order 2 Weak up to 4 time steps but the errors “bounce” back above predictor-

corrector methods afterwards.

2.7 Conclusion

We investigated various numerical discretization schemes for the LIBOR market

models. The methods we compared are Itô-Taylor approximations and strong Tay-

lor approximations to the perturbed SDE. We conclude that the latter methods,

even the improved formulation, should not be used for drift approximation in the

LIBOR market model. Iterative predictor-corrector method outperforms all the

other methods in terms of single step pricing error and computation time. It is

simple and recommended for long step discretizations. The order 2 weak Itô-Taylor

scheme has an edge over IPC in the multiple steps case with only trivial additional

cost. The order 2 predictor-corrector has performance closest to IPC in terms of

pricing errors but is costly. These findings pose an interesting question of which

the best discretization scheme is in other probability measure where IPC cannot be

applied.

Apart from discretization schemes, another important technique in Monte Carlo

is the variance reduction method. Having chosen a certain discretization scheme for

an SDE, we want to reduce standard errors with as little additional effort as possi-

ble. In the next two chapters, we discuss variance reduction schemes, in particular,

the control variate method.
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Chapter 3

A Review of Control Variate

Methods

3.1 Introduction

A bank’s option book contains thousands of options which, to reduce computation

time, practitioners want to price all at once. The payoffs of some options depends

on the whole discrete sample path. Examples are average rate options, barrier op-

tions, lookback options, et cetera. In many cases, however, these instruments do not

have explicit solutions, and the natural choice of valuation method is Monte Carlo

simulation. The problem is how to make the result converges as fast as possible

without loss of accuracy.

By convergence, we mean the level of standard error.1 One can reduce the standard

error simply by increasing the number of sample paths, but this comes at the cost of

a significant increase in computation time. Suppose we want to reduce the standard

error by a factor of a tenth. In a plain Monte Carlo method we would need to use 100

times the number of sample paths. If we assume each sample path takes roughly the

same amount of time to simulate, the computation time is then 100 times greater

than before. In a time crucial application in a bank, this is certainly not acceptable.

A good Monte Carlo method gets the same standard error as plain method with as

little computation time as possible. This is where variance reduction methods come

in.

There are many different variance reduction methods. Three standard methods

1Bias is also important but we are here concerned chiefly with variance reduction.
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are antithetic sampling, stratified sampling and low discrepancy sampling. They

improve the construction of a set of Wiener sample paths. A fourth method is

importance sampling. This method values derivatives by simulating a modified pro-

cess (by virtual of the Girsanov theorem (see for example Shreve [76])). By doing

so appropriately, one can obtain a standard error lower than if valuing derivatives

in the original model. The value then needs to be adjusted back to the result in the

original process. The crucial thing is the Randon-Nikodým derivative must be able

to be computed explicitly.

The final method is to use a control variate. When valuing a derivative which

has no explict value in a particular model, it is possible that there is some other

quantity, similar to the value of the derivative instrument we are interested in, that

can be evaluated explicitly. The control variate method computes simultaneously

the value of the instument we are interested in and that of the quantity whose value

is known explicitly. Then the errors in the known quantity are used to correct the

errors in the unknown instrument. In practice, the control variate method is a very

efficient technique of variance reduction. A good introduction on this topic is in the

book by Glasserman [36] (see also Webber [83]). We will review standard control

variate approaches in this chapter.

The rest of this chapter is organised as follows. In section 3.2, we discuss the

amount of variance reduction that can be achived by control variates. In section

3.3, we introduce the concept of an efficiency measure. In section 3.4, we review

three different ways of constructing control variates. In section 3.5, we discuss three

standard control variates. In section 3.6, we focus on tailored control variates for

average rate and barrier options.

These are the preliminaries for our contributions in chapter 4. We start by dis-

cussing the amount of variance reduction given by control variates.

3.2 The Achievable Degree of Variance Reduction

The common feature of all control variates is to have a theoretical expectation

equal to zero. Suppose we want to compute a derivative value C and we find

a quantity CV . For each sample path i, i = 1, · · · ,M , we compute the term

Z(i) = C(i)−β ·CV (i) where the superscript (i) denotes a value computed on the ith

sample path, and β is a constant coefficient chosen to achieve the highest amount
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of variance reduction. Since by choice E
[
CV (i)

]
= 0, we have

E

[
Z(i)

]
= E

[
C(i)

]
− βE

[
CV (i)

]
= E

[
C(i)

]
= C. (3.1)

The control variate does not introduce bias into the theoretical mean. However, the

variance of Z(i) is

Var
[
Z(i)

]
= Var

[
C(i)

]
+ β2 Var

[
CV (i)

]
− 2β Cov

[
C(i), CV (i)

]
. (3.2)

Var
[
Z(i)

]
is minimized by setting β =

Cov[C(i),CV (i)]
Var[CV (i)]

. With the value of β, the

minimum variance achieved is

Var
[
Z(i)

]
= Var

[
C(i)

] (
1 − ρ2

C,CV

)
6 Var

[
C(i)

]
, (3.3)

where ρC,CV is the correlation between C and CV . The higher the correlation is,

the greater the variance reduction achieved.

In practice, the optimal value of β is usually not available in explicit form. When

implementing a control variate method, one may estimate β by regression. Given

the pairs
{(

C(i), CV (i)
)}

i=1,··· ,M , we regress C(i) against CV (i) and obtain

C(i) = a + b · CV (i) + ǫi, (3.4)

where the coefficient

b =

∑M
i=1 C(i)CV (i) − 1

M

∑M
i=1 C(i)

∑M
j=1 CV (j)

∑M
i=1

(
CV (i)

)2 − 1
M

(∑M
i=1 C(i)

)2 (3.5)

is an estimator of β and E(ǫi) = 0. From equation (3.1), the intercept a is the

estimator of the derivative value.

A problem arises when we use b to replace β in equation (3.4) as it depends on

C(i) and CV (i). This dependence can be ignored when M is large. But care must

be taken for small samples. The small-sample issues are discussed at great length

in Glasserman [36]. We do not elaborate on this any further.

If one wishes to use multiple control variates, they can just be added in to the

regression. Suppose we have l control variates CV1, · · · , CVl. Then the regression
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reads

C(i) = a +
l∑

j=1

bj · CV
(i)
j + ǫi, (3.6)

and a is the estimation of the derivative value.

The amount of variance reduction must justify the additional time taken to use

the control variate. We measure the benefits obtained from the control variate by

computing the efficiency gain.

3.3 The Efficiency Measure

We adopt the definitions from Webber [83]. Suppose we use two Monte Carlo

methods to value the same derivative. The first one gives a standard error estimate

se1 in time τ1 and the second a standard error se2 in time τ2. The relative efficiency

gain (or loss) E = E1,2 of the second method over the first one is

E =
se2

2τ2

se2
1τ1

. (3.7)

E is the multiple of the time taken by the first method over the second one needed

to achieve the same standard error. In this sense, speed-up is a better term than

variance reduction to describe the benefit of a method.

The efficiency gain is related to the correlation between the CV and option. By

equation (3.3), we see the theoretical variance of the CV estimator is a fraction
1

1−ρ2
C,CV

of the plain estimator. Taking into account the computation time,

E =
τ2

τ1

1

1 − ρ2
C,CV

. (3.8)

If τ1
τ2

≈ 5, ρC,CV ≈ 0.99 gives E ≈ 10 and ρC,CV ≈ 0.999 gives E ≈ 100.

There are many ways that we can construct a CV such that it has mean zero.

3.4 Different Control Variate Approaches

The control variate can be chosen in different ways. A control variate (CV) can

be: 1) a different instrument (auxiliary instrument) priced in the same model; 2)

the same instrument priced in a different model (auxiliary model); or 3) a different
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instrument priced in a different model (auxiliary instrument and auxiliary model).

In each way, one needs to be able to compute the value of the auxiliary instrument

explicitly, or at least by a quick and accurate numerical procedure, in order to use

it as a control variate.

We discuss these three approaches in turn.

Auxiliary instrument CV. Suppose we have an instrument such that: 1) its

value p is known explicitly in the pricing model: and 2) along each sample path

i, its payoff p(i) is highly correlated with that of the option C(i) we want to value.

Then

CV (i) = p(i) − p (3.9)

is an auxiliary instrument CV.

Auxiliary model CV. We write M for the pricing model. Suppose we have an

auxiliary model M̃ such that: 1) M̃ is similar to M; 2) the same set of Wiener

sample paths can be used for both M and M̃; and 3) the option C has an explicit

value C̃ in M̃. Write C̃(i) for the discounted payoff of the option on sample path i

in the auxiliary model M̃. Then

CV (i) = C̃(i) − C̃ (3.10)

is an auxiliary model CV.

Auxiliary instrument and auxiliary model CV. This type of CV is a combi-

nation of the previous two. Suppose we have an auxiliary model M̃ and an auxiliary

instrument whose value is known explicitly as p̃ in M̃. Write p̃(i) for the payoff of

the auxiliary instrument along sample path i in M̃. Then

CV (i) = p̃(i) − p̃ (3.11)

is an auxiliary instrument and auxiliary model CV.

The underlying asset, a European call or put option and a discretely rebalanced

delta hedging portfolio are standard auxiliary instruments. They have universal

application to most options we want to value. Other control variates are tailored to

specific instruments. A classical example is the geometric average rate option con-

trol variate for the arithmetic one in the Black-Scholes model (Kemma and Vorst
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[53]). We first look at those standard auxiliary instruments.

3.5 Standard Auxiliary Instruments

Define a set of equally spaced discretization dates 0 = t0 < t1 < · · · < tN = T

with ti − ti−1 = ∆t, i = 1, · · · , N , where T is the option maturity. These are the

dates where the state variables in a model are sampled with a chosen discretization

scheme. We borrow the following sections from Webber [83].

3.5.1 The Underlying Asset Control Variate

In any arbitrage-free model, the discounted expectation of the asset value at any

future point Stj is equal to the current asset price S0. This gives us a number of

control variates

CV
(i)
j = e−rT S

(i)
tj

− S0, j = 1, · · · , N. (3.12)

In addition, given a set of weights w = {wj}j=1,··· ,N ,

CV (i)
w =

N∑

j=1

wjCV
(i)
j (3.13)

is also a CV candidate. A proper choice of w can yield a higher correlation with the

option payoff.

3.5.2 The European Call Control Variate

The derivative instrument we are interested in is often more complicated than the

European call option. But it may happen that there is an explicit solution for the

European call option in the pricing model, for example, the Heston model. When

the instrument also has a call-type payoff, the European call option can be a CV

candidate. If we denote St as the stock price, r the risk free interest rate and K the

strike, then the European call CV along sample path i reads,

CV (i) = e−rT
(
S

(i)
T − K

)+
− E

[
e−rT

(
S

(i)
T − K

)+
]

, (3.14)

where we assume the expectation is explicitly available.
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3.5.3 The Delta Control Variate

The delta CV is a discretely rebalanced delta hedging portfolio for the instrument.

We write ∆t = ∂Ct

∂St
for the delta of the instrument at time t. Suppose at t0 we hedge

by buying ∆t0 units of stock and rebalance the portfolio at t1, · · · , tN−1. At tN we

close the position by selling ∆tN units of stock. The present value of the sum of the

discounted cash flows at t1, · · · , tN−1 is

CV (i) = ∆
(i)
t0 S

(i)
t0 +

N−1∑

j=1

e−rtj
(
∆

(i)
tj−1

− ∆
(i)
tj

)
S

(i)
tj

− e−rtN ∆
(i)
tN

S
(i)
tN

=
N−1∑

j=0

e−rtj∆
(i)
tj

(
S

(i)
tj

− e−r∆tS
(i)
tj+1

)

=

N−1∑

j=0

e−rtj+1∆
(i)
tj

(
er∆tS

(i)
tj

− S
(i)
tj+1

)
. (3.15)

Since E
(
er∆tS

(i)
tj

− S
(i)
tj+1

)
= ertj+1S

(i)
0 − ertj+1S

(i)
0 = 0, E

[
CV (i)

]
= 0 so it is a CV

candidate. We can re-arrange equation (3.15) as

CV (i) =
N−1∑

j=0

e−rtj+1∆
(i)
tj

(
er∆tS

(i)
tj

− S
(i)
tj+1

)

=

N−1∑

j=0

e−rtj+1∆
(i)
tj

(
ertj+1S

(i)
0 − S

(i)
tj+1

)
+

N−1∑

j=0

e−rtj+1∆
(i)
tj

(
er∆tS

(i)
tj

− ertj+1S
(i)
0

)

=

N−1∑

j=0

∆
(i)
tj

(
CV

(i)
j − CV

(i)
j+1

)

=

N−1∑

j=1

(
∆

(i)
tj

− ∆
(i)
tj−1

)
CV

(i)
j − ∆

(i)
tN−1

CV
(i)
N , (3.16)

where CV
(i)
j is given in equation (3.12). Equation (3.16) is a special case of equation

(3.13) if we set wj = ∆
(i)
tj

− ∆
(i)
tj−1

, j = 1, · · · , N − 1, and wN = −∆
(i)
tN−1

.

If the portfolio is rebalanced frequently, we expect the delta CV to be highly cor-

related with the option. In practice, however, the cost of computing the delta at

each discrete date along each sample path is non-trivial and one must take this into

account.

The underlying CV, European call/put CV and the delta CV are applicable to
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most options. For specific types of instruments, such as arithmetic average rate

options and barrier options, we can use tailored CVs which may be much more cor-

related to the option than the standard CVs. In the following sections, we discuss

these CVs for arithmetic average rate and barrier options.

3.6 Instrument Specific Control Variates

We discuss control variates for two instruments, the arithmetic average rate and

barrier option. The standard control variates can also apply but with detailed

implementations tailored to instrument being priced. There are also CVs limited to

specific instruments that outperform the standard CVs. We introduce both types

for each instrument.

3.6.1 Average Rate Options

We start with some useful definitions for arithmetic average rate options. Define an

index vector ι = (ι1, · · · , ιn) representing the indexes of reset dates, where n is the

total number of reset dates, and δ = ιi − ιi−1, i = 1, · · · , n with ι0 = 0 and ιn = N .

The asset values along a sample path are then averaged at dates tιi , i = 1, · · · , n.

We can apply standard CVs which we introduced in section 3.5.

Tailored Standard Control Variates for Average Rate Options

We discuss the underlying asset CV, call CV and delta CV for arithmetic average

rate options in turn.

Underlying asset CV. Webber [83] applies the underlying asset CV to average

rate option. He sets

wi =





1
nerti , i = ι1, · · · , ιn,

0, otherwise.
(3.17)

in equation (3.13), we have

CV (i)
w =

n∑

j=1

1

n
ertιj CV (i)

ιj =
1

n

n∑

j=1

(
S

(i)
tιj

− ertιj S0

)
=

1

n

n∑

j=1

S
(i)
tιj

− S0

n

n∑

j=1

ertιj .

(3.18)

CV
(i)
w should have decent correlation with the arithmetic average rate option because

the first term is the path statistics that the option pays off against.
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Call CV. The payoff of the arithmetic average rate option

(
1

n

n∑

i=1

Stιi
− K

)+

→ (ST − K)+, (3.19)

as n → 1. We therefore expect the call CV to work better for options with few reset

dates.

Delta CV. When we apply the delta CV, a question is how do we know the delta

of an instrument if its value is unknown? We address this problem by using the

delta in an auxiliary model. Since the delta of the geometric average rate option is

known in the GBM process (see Webber [83]), we use it as an approximation.

The classical choice of tailored control variate for the arithmetic average rate option

is its geometric counterpart whose explicit value is available in the Black-Scholes

model (Kemma and Vorst [53]).

The Geometric Average Rate Option Control Variate

The CV has the form

CV (i) = e−rT







n∏

j=1

S
(i)
tιj




1
n

− K




+

− E





e−rT







n∏

j=1

S
(i)
tιj




1
n

− K




+


, (3.20)

where the expectation can be computed explicitly if the asset price follows a GBM

process (Kemma and Vorst [53]). Denote by CBS(K,T, S0, y, r, σ) the Black-Scholes

call formula with strike K, time to maturity T , initial asset price S0, dividend yield

y, riskless rate r and volatility σ. The value of the geometric average rate option

has the following form

E





e−rT







n∏

j=1

S
(i)
tιj




1
n

− K




+


= er(T̄−T )CBS(K,T, S0, y, r, σ), (3.21)

where

T̄ =
1

n

n∑

i=1

tιi , σ̄ =
σ2

n2T̄

n∑

i=1

(n − i)tιn−i
, y =

1

2

(
σ2 − σ̄2

)
. (3.22)

We refer to this control variate in our numerical examples in chapter 5 as the GBM

auxiliary CV.
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In the next section, we first discuss some valuation problems in barrier options.

A GBM auxiliary model and instrument CV is then introduced.

3.6.2 Barrier Options

Barrier options are derivative securities whose payoffs depend on the whole sample

path. Two types of barrier options are knock-in options and knock-out options.

The knock-in option gets a vanilla option payoff if the asset price ever reaches a

certain region before maturity, usually below or above a barrier, or a zero rebate

otherwise. The knock-out option, on the other hand, has a vanilla option payoff

if the asset price never goes in to the region and zero payoff otherwise. The value

of a knock-in or knock-out option is lower than the vanilla option since they have

the same payoff only when a certain condition is met. In the GBM model, there is

an explicit solution for knock-in or knock-out options with a single and continuous

barrier. In other cases, for example, stochastic volatility models, double barriers or

if the barrier is discrete, one often has to resort to Monte Carlo simulation.

There are two main issues in valuing barrier options with Monte Carlo: 1) How

to deal with the problem of knocking out between two discretization dates at which

both sampled asset prices are below the barrier (for the up and out barrier option);

and 2) How to improve the efficiency of the Monte Carlo method?

The first issue arises only when the barrier is continuous. If one checks the bar-

rier condition only at discretization dates, one ends up with a high-bias estimate of

the barrier option price because there is a possibility of knocking out between reset

dates. This is called barrier discretization bias. Fortunately, Beaglehole et al. [11]

and El Babsiri and Noel [29] designed a method to eliminate the bias if the asset

price follows a GBM process. In fact, their method applies to any case where each

one-step evolution follows a GBM process, even if each step has a different constant

volatility. But in the stochastic volatility model barrier discretization bias remains

an issue. One needs to use a large number of time step to approximate the payoff of

a continuous barrier option. In this section, we only look at discrete barrier options.

The second issue is not for barrier options per se. But certain variance reduc-

tion methods, for example, control variates, are very much tailored to instruments.

The barrier option differs from the vanilla option in that it has an additional uncer-

tainty as the hitting time distribution, that is, the time when the option knocks out.
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Glasserman and Staum [39] propose an importance sampling method to remove this

uncertainty. They force each sample path to survive until maturity. We focus on

control variate methods for barrier options. Since the continuous barrier options

in the GBM model has an explicit value, it is a CV candidate. We illustrate this

specific CV for up and out barrier options. The arguments are analogous for other

types of barrier options with an explicit solution in the GBM model.

The Up and Out Barrier Call Option

Define T as the maturity of the option. The barrier U is monitored discretely at

T = {t0, t1, · · · , tN} where t0 = 0, tN = T and ∆t = ti+1 − ti, i = 0, 1, · · · , N − 1.

The value of the discrete barrier option is

v = e−rT E [h (St, t ∈ T )] , (3.23)

where

h (St, t ∈ T ) =





(ST − K)+ maxt∈T {St} 6 U,

0 otherwise.
(3.24)

Its continuous counterpart is

H (St, t 6 T ) =





(ST − K)+ maxt6T {St} 6 U,

0 otherwise.
(3.25)

If the number of reset dates N is large, the continuous barrier option price should be

close to the discrete price. In addition, the value of the former option is analytically

available in the Black-Scholes model. This gives us a candidate for a control variate.

The Continuous Barrier Option Control Variate

We use the continuous barrier option in the GBM model as a CV. One must be

very careful when evaluating the payoff H. Because we have only a discrete path{
S̃t0 , · · · , S̃tN

}
, it is possible that S̃t > U for t ∈ (ti, ti+1) even if S̃ti 6 U and

S̃ti+1 6 U . Therefore the result has a high bias because the probability of knocking

out in continuous time is higher. Beaglehole et al. [11] and El Babsiri and Noel [29]

introduce a method to eliminate the bias if St follows a GBM. If we know the survival

probabilities pi = P
(
St 6 U,∀t ∈ [ti, ti+1] | Sti 6 U,Sti+1 6 U

)
, i = 0, · · · , N , the
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unbiased evaluation of H is

H ′ (St, t ∈ T ) =





(ST − K)+
∏N−1

i=0 pi, maxt∈T {St} 6 U,

0, Otherwise.
(3.26)

The CV then has the form

CV (i) = H ′
(
S

(i)
t , t ∈ T

)
− E

[
H
(
S

(i)
t , t 6 T

)]
, (3.27)

where the expectation is explicit in the GBM model.

The GBM auxiliary CV has a constant volatility. In many pricing models, how-

ever, the volatility follows a separate stochastic process. Webber [83] finds that

stochastic volatility makes the GBM auxiliary CV less efficient when valuing arith-

metic average rate options. This leads us to think whether we can do better than

the GBM auxiliary CV under stochastic volatility. In the next chapter, we propose

CVs for a fairly general class of stochastic volatility models.
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Chapter 4

Control Variates for Stochastic

Volatility Models

4.1 Introduction

Control variates, as we discussed in chapter 3, make use of the analytical tractability

of auxiliary instruments or auxiliary models to reduce the standard error. In sophis-

ticated modelling frameworks, such as stochastic volatility models, we may need to

use both in combination. How to find good auxiliary models and instruments under

stochastic volatility is the main question we want to answer. In this chapter, we

make the following contributions:

1. We formulate a very general class of stochastic volatility models which nest

many existing models in the literature.

2. We construct new control variates for this class of models.

3. We apply the model as well as our new control variates to price average rate

and barrier options.

There are papers on variance reduction methods in the stochastic volatility environ-

ment. Fouque and Tullie [33] introduce a method based on importance sampling in

a two-factor stochastic volatility model. Fouque and Han [30] extend the method

to apply importance sampling in two-factor stochastic volatility models. They also

explore variance reduction methods for continuous average rate options. Fouque

and Han [31] propose a control variate method for European option pricing in a

multi-factor stochastic volatility models and find that it is more stable and efficient

than the importance sampling method of their earlier paper. Fouque and Han [32]
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introduce a generic control variate, which they refer to as a martingale control vari-

ate, under stochastic volatility. They consider the pricing problem of European,

barrier and American options. Han and Lai [42] investigate further the martingale

control variate method for the average rate options by means of an option price

approximation.

In this chapter, we propose new control variates, which we refer to as correlation

control variates, in a general class of stochastic volatility models. The correlation

control variates are constructed for two instruments, the arithmetic average rate

option and barrier option.

The rest of this chapter is organized as follows. In section 4.2, we formulate a

general class of stochastic volatility models which our methods apply to. In section

4.3, we provide an overview of our correlation CVs. In section 4.4, we construct

auxiliary models for instruments with linear path statistics. In section 4.5, we pro-

pose auxiliary models for instruments with particular non-linear path statistics, the

maximum or minimum functions. Auxiliary instruments for two examples of linear

and non-linear path statistics, the average rate and barrier option, are discussed in

section 4.6 and 4.7. Section 4.8 concludes. Numerical results and analysis are given

in chapter 5 for average rate option and in chapter 6 for barrier options.

We start by formulating a family of stochastic volatility model in order to nest

as many existing stochastic volatility models as possible. Our correlation control

variates are introduced in this context.

4.2 A Class of Stochastic Volatility Models

We consider a general class of two dimensional stochastic volatility model. Let

(S)t>0 be an asset process and (V )t>0 be a volatility process. Their joint SDE is

dSt = rStdt + σf(Vt)S
β
t dW S

t , (4.1)

dVt = α(µ − Vt)dt + ηV γ
t dW V

t , (4.2)

dW X
t dW V

t = ρdt, (4.3)

where f(v) = vξ and

ξ, β > 0 determine the structure of volatility for St,
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γ > 0 determines the process for Vt,

γ > 0 when ξ 6= Z,

σ > 0 is included for generality,

α, µ ∈ R are not required to be positive.

When ξ /∈ Z, Vt is required to remain positive. When ξ ∈ Z, Vt is permitted to be

negative. We discuss a few characteristics of the processes.

4.2.1 Characteristics of the Processes

The parameter β determines the type of the process for St:

β = 0: St is an absolute diffusion process with stochastic volatility.

β ∈ (0, 1): St is a CEV process with stochastic volatility.

β = 1: St is a GBM process with stochastic volatility.

The parameter ξ controls the process for Vt:

ξ = 0: St is a GBM process with deterministic volatility.

ξ = 1
2 : Vt is a variance process.

ξ = 1: Vt is a volatility process.

When ξ = 1, we do not require Vt to remain positive. When β < 1
2 , one needs

to impose an absorbing boundary at 0 so that SDE (4.1) has a unique solution

(Andersen and Andreasen [3]). Our model nests many existing stochastic volatility

models in the literature.

4.2.2 Nested Stochastic Volatility Models

Two nested and widely used stochastic volatility models are Heston [44] and SABR

(Hagan et al. [41]). The Heston model (β = 1, ξ = γ = 1
2) has been widely used

because it allows the option price to have an implied volatility smile. In addition,

there is an explicit formula for European option value. The SABR model is another

widely used stochastic volatility model. Its popularity is due both to the existence

of a closed-form approximation of the European option implied volatility, and its

consistency with the dynamics of market implied volatility smile. The latter char-

acteristic renders an advantage over local volatility models in the context of trading
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and hedging. To nest the SABR model, we require some manipulations of the orig-

inal process.

Let Ft be the forward price on asset St and let σt be the volatility. The SABR

model has the dynamics

dFt = σtF
β
t dW S

t , (4.4)

dσt = ησtdW V
t , (4.5)

E
(
dW S

t dW V
t

)
= ρdt. (4.6)

Since Ft = er(T−t)St, we can express the SABR dynamics in terms of St and σt.

dSt = rStdt + σte
(β−1)r(T−t)Sβ

t dW S
t . (4.7)

Fixing T , we set Vt = σte
(β−1)r(T−t) so that, for t 6 T

dVt = r(1 − β)Vtdt + ηVtdW V
t . (4.8)

We arrive at alternative dynamics for the SABR model in terms of St and Vt

dSt = rStdt + VtS
β
t dW S

t , (4.9)

dVt = r(1 − β)Vtdt + ηVtdW V
t . (4.10)

This has the form of our stochastic volatility model which ξ = 1, γ = 1, µ = 0,

α = r(β − 1) and V0 = σ0e
(β−1)rT .

Another useful model is the GARCH diffusion model (Nelson [63]). It has the

parameters β = 1, ξ = 1
2 and γ = 1. We list other nested stochastic volatility

models in the literature in Table 4.1.

β = 0 β ∈ (0, 1) β = 1

Model ξ γ Model ξ γ Model ξ γ

1 1 SABR 1 1 H&W 1 1
Absolute 1 1

2 SABR- 1 1
2 J&S 1 1

2
diffusion 1 0 like 1 0 S&Z, S&S 1 0
models 1

2 1
LKD

1
2 1 GARCH 1

2 1
1
2

1
2

1
2

1
2 Heston 1

2
1
2

n/a 1
2 0 n/a 1

2 0 n/a 1
2 0

Table 4.1: Nested Stochastic Volatility Models
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where (β, ξ, γ) =

(β, 1, γ): Johnson and Shanno [50] (J&S).

(β, 1, 1): Hagan et al. [41] (SABR).

(
β, 1

2 , γ
)
: Lord, Koekkoek and Dijk [57] (LKD).

(1, 1, 1): Wiggins [84]; Hull and White [45] (H&W) (µ = 0, ρ = 0).

(1, 1, 0): Stein and Stein [78] (ρ = 0) (S&S); Schöbel and Zhu [71] (ρ 6= 0) (S&Z).

(
1, 1

2 , 1
)
: Nelson [63] (GARCH); Barone-Adesi et al. [9]; (and H&W, as µ = 0).

(
1, 1

2 , 1
2

)
: Heston [44]; Ball and Roma [7].

(
1, 1

2 , γ
)
: Andersen and Piterbarg [6]; Lewis [56]; Ait-Sahalia and Kimmel [1].

(1, 2, 0): Sbai and Jourdain [70] (special case).

There are also models, however, not nested in our class. There is an exponential

volatility model where (β, ξ, γ) = (1, 1, 0) with f(v) = exp
(
vξ
)

by Scott [72], Ches-

ney and Scott [22] and Melino and Turnbull [59], jump diffusion models such as

Bates [10], general Lévy models (VG, NIG, CGMY, et cetera) and stochastic inter-

est rate and higher factor models (Haastrecht et al. [82], et cetera). There are also

papers which propose more general specifications, for example, Sbai and Jourdain

[70] with (β, f(v), g(v)) and Bourgade and Croissant [14] with (h(S), ξ, γ).

In general, there is no explicit solution to option values in the model (4.1)-(4.3). To

value derivatives, we always resort to numerical methods. PDE and lattice methods

are difficult to get prices out quickly when there are more than two factors. In Monte

Carlo, there are also issues with bias and convergence. The square-root process, in

particular, is likely to be problematical. The CIR process, for example, admits no

strong solution. If it is used to model the asset variance as in the Heston model,

zero is accessible when the model is calibrated to equity options. Although exact

simulation is possible (Scott [73]), it is expensive to use.

Simulation of the Heston model has been studied extensively both from the the-

oretical and practical point of view (Lord et al. [57], et cetera). Despite that,

effective valuation of derivatives whose payoffs depend on the whole sample path

remains a challenging research question. Exact simulation methods (Broadie and

Kaya [17], Glasserman and Kim [37], et cetera) are expensive. These methods are
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plausible for long-step Monte Carlo but infeasible to do short stepping. Approxi-

mate solutions are poor particularly when zero is accessible for Vt (Webber [83]).

Therefore, fast simulation methods are necessary for the Heston model.

We propose new control variates, which we refer to as correlation CVs, in our model.

The idea is to circumvent the explicit solutions for the CV candidates as they are

usually unavailable other than under the simple geometric Brownian motion. To fix

the idea, we first give an overview of our correlation CV method.

4.3 Overview of Correlation Control Variates

We introduced the concept of auxiliary instrument and auxiliary model CVs in

section 3.4. In this section, we propose a variation of it for the class of stochastic

volatility models that we have formulated. Not only do we allow the payoff of the

auxiliary instrument to vary for each sample path, but also allow the auxiliary model

to change so that it reflects the variation in the stochastic volatility.

4.3.1 Path-dependent Auxiliary Model Control Variate

We write M̃(i) for the auxiliary model along sample path i. The auxiliary instrument

has payoff p̃(i) and explicit value p̃
(i)
e in M̃(i). Then

CV (i) = p̃(i) − p̃(i)
e (4.11)

is a path-dependent auxiliary model CV. For this CV to work, we require that

E
[
p̃(i)
]

= E

[
p̃
(i)
e

]
so that E

[
CV (i)

]
= 0. This is true if we choose M̃(i) to be

conditioned on a realisation of the ith sample path of the volatility Ṽ
(i)
t . The explicit

value of the auxiliary instrument in M̃(i) is

p̃(i)
e = E

[
p̃(i)
∣∣∣ Ṽ (i)

t

]
. (4.12)

By iterated expectation,

E

[
p̃(i)

e

]
= E

[
E

[
p̃(i)
∣∣∣ Ṽ (i)

t

]]
= E

[
p̃(i)
]
. (4.13)

Good control variates are often tailored to specific instruments. Auxiliary processes

should allow CVs to have explicit solutions. As a result, it is practically impossible

that we can use the same auxiliary model for all instruments. However, many

instruments have common features. One important part of instruments’ payoffs is
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the path statistics, or in other words, which quantities that the instruments pays

off against. We put them into two groups, linear path statistics and non-linear path

statistics.

Linear path statistics: the path statistics is a linear function of observations

made along the sample path. Examples are European options (final value),

arithmetic average rate options (average), caps, swaps, et cetera.

Non-linear path statistics: the path statistics is a non-linear function of observa-

tions made along the sample path. We are particularly interested in maximum

and minimum functions. Many instruments’ payoffs depend jointly on them

and the final value along the sample path. Examples are barrier options,

lookback options, et cetera.

We propose auxiliary process for each category so that it applies to any instrument

within this category. Relating to the path-dependent auxiliary model CV, the ques-

tion is how to find M̃(i). To answer it, it is crucial to first re-write our model with

two dimensional Brownian motion.

4.3.2 Preliminary Re-write

Set ρ̃ =
√

1 − ρ2. We write processes (4.1) - (4.3) in the following form.

dSt = rSt + V ξ
t Sβ

t

(
ρdW 1

t + ρ̃dW 2
t

)
, (4.14)

dVt = α(µ − Vt)dt + ηV γ
t dW 1

t , (4.15)

dW 1
t dW 2

t = 0, (4.16)

where W S
t = ρW 1

t + ρ̃W 2
t and σ has been absorbed into Vt. We develop our auxiliary

models for both categories with this formulation.

4.4 An Auxiliary Model for Linear Path Statistics

We first transform the SDE of St to make the volatility independent of St. The

transformations are different for β = 1 and β ∈ (0, 1).

The β = 1 case. Set Yt = ln St, then

dYt =

(
r − 1

2
V 2ξ

t

)
dt + V ξ

t

(
ρdW 1

t + ρ̃dW 2
t

)
. (4.17)
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The β ∈ (0, 1) case. Set Yt = 1
1−β S1−β

t , then

dYt =

[
r(1 − β)Yt −

β

2(1 − β)Yt
V 2ξ

t

]
dt + V ξ

t

(
ρdW 1

t + ρ̃dW 2
t

)
. (4.18)

Our auxiliary processes essentially depend on the discretization of the transformed

processes, Yt.

4.4.1 Discretization

The typical way of discretizing the asset process in the stochastic volatility models,

for example the Heston model, is to discretize Yt as if Vt were piecewise constant

over the intervals [ti−1, ti), i = 1, · · · , N (Gatheral [35]). Therefore, it is convenient

to define the piecewise-constant approximation Ṽt to Vt as

Ṽt ≡ Ṽti , t ∈ [ti, ti+1), i = 0, · · · , N − 1, (4.19)

where Ṽti is determined by some discretization scheme. One should take care that

discretization of Vt must not allow Ṽti to be negative because otherwise Ṽ ξ
ti

is not

in general well-defined. Conditional on Ṽt, we then discretize Yt with some ap-

proximation Ỹt. For reasons of clarity, we often write Ỹi = Ỹti , Ṽi = Ṽti and

Ṽ = (Ṽ0, · · · , ṼN ). In the auxiliary model, discretization bias is not so important as

in the pricing model. However, we want to chooose a approximation such that aux-

iliary instruments are more likely to have explicit solutions. To our best knowledge,

the normal approximation is a tractable option.

The one-step discretization for Yt is

Ỹi+1 = Ỹi + µY
(
Ỹi, Ṽi

)
+ σY

(
Ỹi, Ṽi

)
ǫY
i , ǫY

i ∼ N(0, 1), (4.20)

where µY and σY are formed below for specific cases. This discretization determines

our auxiliary model M̃(j) along each sample path j. Conditional on Ṽt, Ỹi has

normal increments and therefore is more likely that the auxiliary instruments have

an explicit solution in M̃(j).
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4.4.2 The Auxiliary Process

It is convenient to start with some definitions. Define

Ii =

∫ ti+1

ti

V 2ξ
s ds, (4.21)

Ji =

∫ ti+1

ti

V ξ−γ
s

[
α(µ − Vs) +

1

2
(ξ − γ)η2V 2γ−1

s

]
ds. (4.22)

Ii and Ji depend only on Vt. They are determined by the pricing models. Table 4.2

lists their forms, obtained by plugging in values of ξ, γ, α and µ, in four specific

models. These forms are needed for applying our CVs to these four models in

Model Ii Ji

Heston
∫ ti+1

ti
Vsds α(µ∆t − Ii)

GARCH
∫ ti+1

ti
Vsds

∫ ti+1

ti
V

− 1
2

s

[
α (µ − Vs) − 1

4η2Vs

]
ds

SABR
∫ ti+1

ti
V 2

s ds αµ∆t − α
∫ ti+1

ti
Vsds

J&S
(
β, 1, 1

2

) ∫ ti+1

ti
V 2

s ds 1
4η2∆t +

∫ ti+1

ti
V

1
2

s α(µ − Vs)ds

Table 4.2: Forms of Ii and Ji

chapter 5. We denote the realisations of them as Ĩi and J̃i. In this chapter, we

approximate them by a single-step trapezium rule, for example,

∫ ti+1

ti

V 2
s ds ≈ 1

2

(
Ṽ 2

i + Ṽ 2
i+1

)
∆t. (4.23)

We discuss the auxiliary model separately for β = 1 and β ∈ (0, 1) cases.

The β = 1 Case

We integrate equation (4.17) to obtain

Yti+1 = Yti + r∆t − 1

2

∫ ti+1

ti

V 2ξ
s ds + ρ̃

∫ ti+1

ti

V ξ
s dW 2

s

+
ρ

η

{
V ξ−γ+1

ti+1
− V ξ−γ+1

ti

ξ − γ + 1
−
∫ ti+1

ti

V ξ−γ
s

[
α(µ − Vs) +

1

2
(ξ − γ)η2V 2γ−1

s

]
ds

}
.

(4.24)

Using the definitions of Ii and Ji, we have

Yti+1 = Yti + r∆t +
ρ

η

{
V ξ−γ+1

ti+1
− V ξ−γ+1

ti

ξ − γ + 1
− Ji

}
− 1

2
Ii + ρ̃

√
Iiǫ

Y
i . (4.25)
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Hence we have

µY
(
Ỹi, Ṽi

)
= r∆t +

ρ

η

{
Ṽ ξ−γ+1

i+1 − Ṽ ξ−γ+1
i

ξ − γ + 1
− J̃i

}
− 1

2
Ĩi, (4.26)

σY
(
Ỹi, Ṽi

)
= ρ̃

√
Ĩi (4.27)

in equation (4.20).

The β ∈ (0, 1) Case

We integrate equation (4.18) to get

Yti+1 = Yti + θ(1 − β)

∫ ti+1

ti

Ysds − β

2(1 − β)

∫ ti+1

ti

V 2ξ
s

Ys
ds + ρ̃

∫ ti+1

ti

V ξ
s dW 2

s

+
ρ

η

{
V ξ−γ+1

ti+1
− V ξ−γ+1

ti

ξ − γ + 1
−
∫ ti+1

ti

V ξ−γ
s

[
α(µ − Vs) +

1

2
(ξ − γ)η2V 2γ−1

s

]
ds

}
.

(4.28)

Discretizing Yt requires more approximations than in the β = 1 case. Equation

(4.28) is untractable because of the appearance of Ys in the integrals. One may

want to fix Ys to its value at time ti and arrive at a normal approximation of the

form (4.20). If we do so, we will have both Ỹi and 1
Ỹi

in µY
(
Ỹi, Ṽi

)
. This is an unde-

sirable feature because we will have problems in determining the mean and variance

of the distribution of any linear function in Ỹi, for example, the arithmetic average.

The knowledge of the path statistics’ distribution is crucial in constructing our CVs.

We may approximation Yt in such a way that µY
(
Ỹi, Ṽi

)
and σY

(
Ỹi, Ṽi

)
do not

depend on Ỹi and this makes our life easier when we derive the distribution of a

linear path statistics. There are two alternatives we can think of, approximating Ys

by Y0 (freezing), or by Ei = E

(
Ỹi

∣∣∣ Ṽ , Ĩ, J̃
)
.

Freeze Ys. If we freeze Ys to its initial value Y0, then equation (4.28) becomes

Ỹi+1 = Ỹi + r(1− β)Y0∆t− β

2(1 − β)Y0
Ĩi +

ρ

η

(
Ṽ ξ−γ+1

i+1 − Ṽ ξ−γ+1
i

ξ − γ + 1
− J̃i

)
+ ρ̃

√
Ĩiǫ

Y
i ,

(4.29)
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so that

µY
(
Ỹi, Ṽi

)
= r(1 − β)Y0∆t − β

2(1 − β)Y0
Ĩi +

ρ

η

(
Ṽ ξ−γ+1

i+1 − Ṽ ξ−γ+1
i

ξ − γ + 1
− J̃i

)
,

(4.30)

σY
(
Ỹi, Ṽi

)
= ρ̃

√
Ĩi. (4.31)

Note that µY
(
Ỹi, Ṽi

)
and σY

(
Ỹi, Ṽi

)
do not depend on Ỹi.

Approximate Ys by its expectation. The Euler discretization for equation

(4.28) is

Ỹi+1 − Ỹi = θ(1 − β)Ỹi∆t − β

2(1 − β)Ỹi

Ĩi +
ρ

η

(
Ṽ ξ−γ+1

i+1 − Ṽ ξ−γ+1
i

ξ − γ + 1
− J̃i

)
+ ρ̃

√
Ĩiǫ

Y
i .

(4.32)

Taking the expectation E

(
·
∣∣∣Ṽ , Ĩ , J̃

)
on both sides of equation (4.32),

E

(
Ỹi+1

∣∣∣Ṽ , Ĩ , J̃
)

= E

(
Ỹi

∣∣∣Ṽ , Ĩ , J̃
)

[1 + θ(1 − β)∆t]

− βĨi

2(1 − β)
E

(
1

Ỹi

∣∣∣∣ Ṽ , Ĩ, J̃

)
+

ρ

η

(
Ṽ ξ−γ+1

i+1 − Ṽ ξ−γ+1
i

ξ − γ + 1
− J̃i

)
.

(4.33)

The expectation E

(
1
Ỹi

∣∣∣ Ṽ , Ĩ , J̃
)

does not exist because Ỹi can be zero. One approx-

imation (see for example Qiao et al. [68]) is

E

(
1

Ỹi

∣∣∣∣ Ṽ , Ĩ , J̃

)
≈ 1

E

(
Ỹi

∣∣∣Ṽ , Ĩ , J̃
) . (4.34)

Set Ei = E

(
Ỹi

∣∣∣ Ṽ , Ĩ , J̃
)
. From equation (4.33) and (4.34), Ei can be computed

approximately by the following recursion.

Ei+1 ≈ Ei + θ(1 − β)Ei∆t − β

2(1 − β)Ei
Ĩi +

ρ

η

(
Ṽ ξ−γ+1

i+1 − Ṽ ξ−γ+1
i

ξ − γ + 1
− J̃i

)
, (4.35)
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where E0 = Ỹ0. We then replace Ỹi on the right hand side of equation (4.32) by Ei

and obtain

Ỹi+1 = Ỹi + θ(1− β)Ei∆t− β

2(1 − β)Ei
Ĩi +

ρ

η

(
Ṽ ξ−γ+1

i+1 − Ṽ ξ−γ+1
i

ξ − γ + 1
− J̃i

)
+ ρ̃

√
Ĩiǫ

Y
i .

(4.36)

Hence we have

µY
(
Ỹi, Ṽi

)
= r(1 − β)Ei∆t − β

2(1 − β)Ei
Ĩi +

ρ

η

(
Ṽ ξ−γ+1

i+1 − Ṽ ξ−γ+1
i

ξ − γ + 1
− J̃i

)
,

(4.37)

σY
(
Ỹi, Ṽi

)
= ρ̃

√
Ĩi. (4.38)

We provide a comparison between using equation (4.29) versus equation (4.36) as

the auxiliary process in section 5.6 and find that their empirical correlations are very

similar. There is no clear advantage of using equation (4.36) over equation (4.29).

We therefore use equation (4.29) throughout other numerical examples.

In the next section, we introduce auxiliary models for instruments with non-linear

path statistics. Payoffs of these instruments often depend on the maximum or min-

imum along each sample path. Examples of these instruments are barrier options,

lookback options, et cetera.

4.5 An Auxiliary Model for Non-linear Path Statistics

Many instruments’ payoffs depend jointly on the maximum (minimum) value and

the final value along each sample path. The auxiliary instruments, which have

similar payoffs, must have explicit solutions in the auxiliary model. Due to this

requirement, any auxiliary model should have an explicit joint distribution of the

maximum (minimum) value and final value. To our best knowledge, we can derive

it only when β = 1 and therefore must restrict the pricing model to β = 1 case.

Hence this auxiliary process does not apply to CEV-type models such as the SABR

model.

4.5.1 The Auxiliary Process

Obtaining the auxiliary process requires more manipulation than in the linear path

statistics case. Firstly, we only consider the zero-correlation case, that is ρ = 0 in the
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auxiliary model. Secondly, the drift term in the asset process is chosen deliberately

as a function of the volatility. We first look at the process.

dZt = λV 2ξ
t Ztdt + V ξ

t ZtdW S
t , (4.39)

dVt = α(µ − Vt)dt + ηV γ
t dW V

t , (4.40)

dW S
t dW V

t = 0. (4.41)

Later in this section we discuss the choice of λ so that it makes the auxiliary process

as close to the pricing model as possible. To see why we manipulate the auxiliary

model in such a way, we first state the following lemma.

Lemma 4.5.1 Suppose σt is some deterministic function. Define Bt =
∫ t
0 σsdWs,

B̂t = Bt + a
∫ t
0 σ2

sds for some constant a and M̂t = maxs∈[0,t] B̂s. Then we have the

joint density function of B̂t and M̂t as

f
B̂T ,M̂T

(b,m) =
2(2m − b)

T
√

2πT
exp

[
ab − 1

2
a2T − 1

2T
(2m − b)2

]
, (4.42)

where T =
∫ T
0 σ2

t dt.

See proof in Appendix A.1 (page 207). �

This is a simple extension of the result from standard Brownian motion (Karatzas

and Shreve [52]) to the case with a deterministic time change. Zt | Vt is a GBM pro-

cess with deterministic volatility. Lemma 4.5.1 opens up the possibility of deriving

analytical joint distribution of maxt6T (Zt | Vt) and ZT | Vt6T .

4.5.2 The Joint Distribution

Define the transformation Yt = ln Zt.

dYt =

(
λ − 1

2

)
V 2ξ

t dt + V ξ
t dW S

t . (4.43)

Integrating equation (4.43), we get

YT = Y0 +

(
λ − 1

2

)∫ T

0
V 2ξ

s ds +

∫ T

0
V ξ

s dW S
s

= Y0 +

(
λ − 1

2

)∫ T

0
V 2ξ

s ds + BT

= Y0 + B̂T , (4.44)
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where BT =
∫ T
0 V ξ

s dW S
s and B̂T =

(
λ − 1

2

) ∫ T
0 V 2ξ

s ds + BT . Then

P

(
ZT 6 z,max

t6T
Zt 6 m

)
= P

(
YT 6 ln z,max

t6T
Yt 6 lnm

)

=P

(
B̂T 6 ln z − Y0,max

t6T
B̂T 6 ln m − Y0

)
. (4.45)

If we assume in equation (4.44) that Vt is deterministic, the joint cumulative proba-

bility (4.45) can be computed explicitly by Lemma 4.5.1. As a result, any instrument

depending on the joint distribution is more likely to be valued in closed form.

Our final task is to choose the parameter value λ in the auxiliary process (4.39).

Choice of λ. We want equation (4.39) to be as close to the pricing model as possi-

ble. This means we need to choose λ in such a way that λV 2ξ
t is around the constant

value r throughout the path. Vt is always reverting to the long term mean µ and

we may also have V0 ≈ µ. Vt is then roughly around µ. We set λV 2ξ
t ≈ λµ2ξ = r

and therefore λ = r
µ2ξ .

We have constructed auxiliary processes for instruments with linear and non-linear

path statistics. The auxiliary instruments, however, are tailored. In section 4.6, we

discuss the auxiliary instruments for arithmetic average rate options as an exam-

ple of linear path statistics. In section 4.7, we discuss the auxiliary instrument for

barrier options as an example of instruments with non-linear path statistics.

4.6 Auxiliary Instruments for Average Rate Options

Instruments with linear path statistics can share a common auxiliary model. How-

ever, good auxiliary instruments are always tailored and resemble those we want to

price. In addition, we want the auxiliary instrument to have an explicit solution

p̃
(j)
e in the auxiliary model M̃(j) along sample path j. In this section, we propose

auxiliary instruments for an important instrument with linear path statistics, the

arithmetic average rate option. We adopt all notation from section 3.6.1.

The arithmetic average rate option has the discounted payoff along sample path

j

C(j) = e−rT
(
A(j)

a − K
)+

, (4.46)
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where A
(j)
a is the arithmetic average of asset values at reset dates along the jth

sample path

A(j)
a =

1

n

n∑

i=1

S
(j)
tιi

(4.47)

We use separate auxiliary instruments for the β = 1 and β ∈ (0, 1) cases.

For the β = 1 case, we use the option on discrete geometric average, Ag,

Ag =

(
n∏

i=1

Stιi

) 1
n

. (4.48)

The discounted payoff is p̃(j) = e−rT
(
A

(j)
g − K

)+
.

For the β ∈ (0, 1) case, we use the option on the discrete β-average, Aβ,

Aβ =

(
1

n

n∑

i=1

S1−β
tιi

) 1
1−β

(4.49)

The discounted payoff is p̃(j) = e−rT
(
A

(j)
β − K

)+
.

In both cases, we need to compute p̃
(j)
e . We discuss the two cases separately.

4.6.1 Auxiliary Instrument for β = 1 Case

From equation (4.25), we have

Yti = Y0 + rti +
ρ

η


V ξ−γ+1

ti
− V ξ−γ+1

0

ξ − γ + 1
−

i−1∑

j=0

Jj


− 1

2

i−1∑

j=0

Ij + ρ̃

i−1∑

j=0

ǫY
j

√
Ij . (4.50)

Define g = 1
n

∑n
i=1 Ỹιi so that Ag = eg.

g = Y0 +
r

n

n∑

i=1

tιi −
1

2
H1 + ε

√
H2, ε ∼ N(0, 1), (4.51)
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where

H1 =
1

n

n−1∑

i=0

(n − i)

ιi+1−1∑

j=ιi

Ĩj −
2ρ

nη



∑n

i=1 Ṽ ξ−γ+1
ιi − nṼ ξ−γ+1

0

ξ − γ + 1
−

n−1∑

i=0

(n − i)

ιi+1−1∑

j=ιi

J̃j


 ,

(4.52)

H2 =
ρ̃2

n2

n−1∑

i=0

(n − i)2
ιi+1−1∑

j=ιi

Ĩj . (4.53)

Write Ĩ = (Ĩ0, · · · , ĨN−1) and J̃ = (J̃0, · · · , J̃N−1). The value of the geometric

average rate option conditional on Ṽ , Ĩ and J̃ is given by

p̃(j)
e = E

[
e−rT (Ag − K)+

∣∣∣Ṽ (j), Ĩ(j), J̃ (j)
]

= E

[
e−rT (eg − K)+

∣∣∣Ṽ (j), Ĩ(j), J̃ (j)
]

= er(T̄−T )CBS(K, T̄ , S0, y, r, σ̄), (4.54)

where

T̄ =
1

n

n∑

i=1

tιi , σ̄2 =
H2

T̄
, y =

1

2T̄
(H1 − H2). (4.55)

The control variate for each sample path j is then chosen as

CV (j) = e−rT
(
A(j)

g − K
)+

− p̃(j)
e . (4.56)

We now propose an auxiliary instrument for the β ∈ (0, 1) case.

4.6.2 Auxiliary Instrument for β ∈ (0, 1) Case

Each Ỹi in equation (4.29) can be simulated as

Ỹi =Ỹ0 + r(1 − β)Ỹ0ti +
ρ

η


 Ṽ ξ−γ+1

i − Ṽ ξ−γ+1
0

ξ − γ + 1
−

i−1∑

j=0

J̃j


− β

2(1 − β)Ỹ0

i−1∑

j=0

Ĩj

+ ρ̃

i−1∑

j=0

ǫY
j

√
Ĩj. (4.57)

We notice that Ỹi has a positive probability of becoming negative. Since this is not

in pricing model, we do not impose an absorbing or reflection boundary. Define

gβ = 1−β
n

∑n
i=1 Ỹιi . From equation (4.57), gβ is normal

gβ = (1 − β)(m + sε), ε ∼ N(0, 1), (4.58)
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where

m =Ỹ0 +
r(1 − β)Ỹ0

n

n∑

i=1

tιi +
ρ

nη



∑n

i=1 Ṽ ξ−γ+1
ιi − nṼ ξ−γ+1

0

ξ − γ + 1
−

n−1∑

i=0

(n − i)

ιi+1−1∑

j=ιi

J̃j




− β

2n(1 − β)Ỹ0

n−1∑

i=0

(n − i)

ιi+1−1∑

j=ιi

Ĩj , (4.59)

s2 =
ρ̃2

n2

n−1∑

i=0

(n − i)2
ιi+1−1∑

j=ιi

Ĩj . (4.60)

By definition, Aβ =
(

1−β
n

∑n
i=1 Ytιi

) 1
1−β ≈

(
g+
β

) 1
1−β

where we apply a zero trunca-

tion to gβ because it has a normal distribution and is likely to be negative. Since

gβ is normal, we can compute

p̃(j)
e = e−rT E

[((
g+
β

) 1
1−β − K

)+
∣∣∣∣∣ Ṽ

(j), Ĩ(j), J̃ (j)

]
. (4.61)

We derive an accurate approximation to the conditional expectation above in terms

of a series expansion.

The conditional expectation. For brievity, we suppress the terms Ṽ (i), Ĩ(i), J̃ (i)

in the expectation. All the expectations are actually conditional on them. Define

λ = 1 − β and K ′ = Kλ > 0. We have

E

[((
g+
β

) 1
1−β − K

)+
]

= E

(
g

1
λ

β − K

∣∣∣∣ gβ > K ′
)
· P
(
gβ > K ′)

=

[
E

(
g

1
λ

β

∣∣∣∣ gβ > K ′
)
− K

]
· P
(
gβ > K ′) . (4.62)

If we define z ∼ N(m, s2), gβ = λz. Then

E

(
g

1
λ

β

∣∣∣∣ gβ > κ

)
= E

[
(λz)

1
λ

∣∣∣ z > κ
]
, (4.63)

where κ = K ′

λ . We state two lemmas for equation (4.63).

Lemma 4.6.1 Suppose Y ∼ N
(
m, s2

)
. For λ, κ > 0, define X = (λY +)

1
λ and
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b = κ−m
s . We have

E (X |Y > κ) = (λm)
1
λ +

∞∑

i=1

1

i!
(λm)

1
λ
−i siE(Zi

∣∣Z > b)
i−1∏

j=0

(1 − jλ), Z ∼ N(0, 1).

(4.64)

See proof in Appendix A.2 (page 208). �

The following lemma gives moments of truncated normal distribution.

Lemma 4.6.2 Suppose Z ∼ N(0, 1) and define Mi = E
(
Zi
∣∣Z > b

)
. Let φ

(
y,m, s2

∣∣ y > κ
)

denote the density function of normal distribution N(m, s2) truncated at κ. Mi has

the following recursive representation

Mi = bi−1φ(b, 0, 1|Z > b) + (i − 1)Mi−2, (4.65)

with the initial conditions

M0 =

∫ +∞

b
z0φ(z, 0, 1|z > b)dz = 1, (4.66)

M1 =

∫ +∞

b
zφ(z, 0, 1|z > b)dz = φ(b, 0, 1|z > b) =

φ(b)

1 − Φ(b)
, (4.67)

where φ(·) and Φ(·) denote the probability and cumulative density functions of stan-

dard normal distribution respectively. See Dhrymes [28]. �

Define the double factorial n!! =
∏

i∈Z,062i<n(n−2i). We have the general expression

for Mi,

Mi =





[
1 + φ(b, 0, 1|z > b)

∑n
j=1

b2j−1

(2j − 1)!!

]
· (2n)!! if i = 2n

φ(b, 0, 1|z > b)

[
1 +

∑n
j=1

b2j−1

(2j)!!

]
· (2n + 1)!! if i = 2n + 1

(4.68)

where n ∈ Z+.

From the computational point of view, we are still in favour of using the recursive

representation (4.65) to compute Mi as our priority is to compute the expectations

quickly.

With lemmas 4.6.1 and 4.6.2, equation (4.63) can be approximated accurately

(within a tolerance level ǫ) by truncating the infinite sum (4.64) at a certain level
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Nmax so that

∣∣∣Ẽ (X|Y > κ) − E (X|Y > κ)
∣∣∣ =

∣∣∣∣∣∣

∞∑

i=Nmax

1

i!
(λm)

1
λ
−i siE(Zi|Z > b)

i−1∏

j=0

(1 − jλ)

∣∣∣∣∣∣
< ǫ,

(4.69)

where Ẽ (X|Y > κ) is the truncated expectation. In practice, however, the truncated

sum can blow up when Nmax is too large due to the numerical instability caused

by the data representation in any programming language, for example, when the

number is too large or small.

Numerical stability. Let Ai = 1
i! (λm)

1
λ
−i siE(Zi|Z > b)

∏i−1
j=0(1− jλ). {Ai} has

alternating signs. According to the Leibniz rule, if {|Ai|} is monotone decreasing

and has zero limit at infinity, then
∑∞

i=1 Ai converges. For |Ai| to be decreasing, we

need ∣∣∣∣
Ai

Ai−1

∣∣∣∣ =
sE
(
Zi
∣∣Z > b

)

iλmE (Zi−1|Z > b)
|1 − (i − 1)λ| < 1. (4.70)

It is difficult to determine the conditions from inequality (4.70) for parameters s,

λ and m to satisfy. There are occassions when it is violated and Ai oscillates in

increasing amplitude. As a result,
∑∞

i=1 Ai blows up. We can see this numerically

in Figure 4.1. In the case of instability,
∣∣∣ Ai

Ai−1

∣∣∣ > 1 when Nmax > 20. In fact, we
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Figure 4.1: Convergence Analysis

find that usually the truncated sum has already converged to an acceptable level

(6-7 decimal places) when Nmax = 10 in which case the numerical instability does

not happen in our numerical example. In our implementation we use Nmax = 10.
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In β ∈ (0, 1) case, we choose the control variate to be

CV (j) = e−rT

[(
g
+(j)
β

) 1
1−β − K

]+

− p̃(j)
e (4.71)

along the jth sample path.

The derivations of CVs so far take into account the correlation ρ between St and

Vt. We refer to them as correlation CVs (SV (ρ 6= 0)). Our CVs are sensitive to the

correlation between Xt and Vt because of the way they are constructed. We expect

them to achieve high variance reduction in low correlation cases. We explain the

reason in the next section.

4.6.3 The Effect of Correlation between St and Vt

We show that our methods reduce only the variance coming from the Wiener path

driving the asset process which we assume accounts for a large part of the standard

error. By computing the CV along each sample path conditional on the variance

process, we effectively ignore the randomness coming from the variance path. If it is

highly correlated with the asset path, making it deterministic also makes the asset

path close to deterministic and loses the advantage of our methods. We explain the

reason more carefully as follows.

The Wiener paths driving the auxiliary process are

W S
t = ρW 1

t + ρ̃W 2
t , W V

t = W 1
t , (4.72)

or equivalently we can write

W S
t = ρW V

t + ρ̃W 2
t . (4.73)

By conditioning on Vt, we equivalently assume W V
t to be a deterministic process.

When |ρ| → 1 (and therefore ρ̃ → 0), W S
t ≈ W V

t . W S
t

∣∣ W V
t is then also close to

deterministic and our methods barely have any advantage in this case. In chapter

5, we examine the performance of correlation CVs for highly positive and negative

correlation in individual models.

The issue of correlation CVs motivates us to consider a special case of our cor-
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relation CV. By setting ρ = 0 in the auxiliary process, we may obtain another

auxiliary model M̃
(j)
0 . We refer to it as zero-correlation CV (SV (ρ = 0)).

4.6.4 Special Case: Zero-correlation Control Variate

There are two reasons for us to consider this special CV. Firstly, it is cheaper to

compute because there is no Ji, i = 0, · · · , N − 1 in M̃
(j)
0 . Secondly, it can also be

used when f(v) = ev in our model (4.1). The most important reason is it may yield

higher empirical correlations between the option and CV.

In the zero-correlation CV, the driving Wiener processes are

W S
t = W 1

t , W V
t = W 2

t . (4.74)

Unlike in the correlation CVs, when |ρ| → 1, W S
t

∣∣ W V
t remains highly random

although the auxiliary process becomes less related to the pricing model by setting

ρ = 0. This makes the zero-correlation CV to be an effective CV. The formulas can

be easily obtained by setting ρ = 0 in the correlation CV.

The β = 1 case. Set ρ = 0 in equation (4.50), (4.51), (4.52) and (4.53).

Ỹi = Ỹ0 + rti −
1

2
·

i−1∑

j=0

Ĩj +

i−1∑

j=0

ǫY
j

√
Ĩj, ǫj ∼ N(0, 1), (4.75)

and

g = Y0 + rT − 1

2
· h1 + ε

√
h2, ε ∼ N(0, 1), (4.76)

where

h1 =
1

n

n−1∑

i=0

(n − i)

ιi+1−1∑

j=ιi

Ĩj , h2 =
1

n2

n−1∑

i=0

(n − i)2
ιi+1−1∑

j=ιi

Ĩj. (4.77)

g is normally distributed and

p(j)
e = e−rT E

[
(eg − K)+

∣∣∣Ĩ
]

= er(T̄−T )CBS(K, T̄ , S0, y, r, σ̄), (4.78)

where

σ2 =
h1

T̄
, σ̄2 =

h2

T̄
, y =

1

2
(σ2 − σ̄2). (4.79)
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The β ∈ (0, 1) case. Set ρ = 0 in equation (4.59) and (4.60). Then

m =Y0 + r(1 − β)Y0T − β

2n(1 − β)Y0

n−1∑

i=0

(n − i)

ιi+1−1∑

j=ιi

Ĩj, (4.80)

s2 =
1

n2

n−1∑

i=0

(n − i)2
ιi+1−1∑

j=ιi

Ĩj . (4.81)

The formula for p
(j)
e follows from equation (4.64) as before.

There is a subtlety, however, in implementing SV (ρ = 0). In the pricing model, we

set

W S
t = W 1

t , W V
t = ρW 1

t + ρ̃W 2
t , (4.82)

so that we keep W S
t to be the same in both the pricing and auxiliary model. We

shall see in chapter 5 that SV (ρ = 0) has high efficiency gains in most cases.

4.7 An Auxiliary Instrument for Barrier Options

Very few papers address the issue of valuing barrier options with Monte Carlo sim-

ulations in the stochastic volatility model. Heath and Platen [43] investigate this

issue in the Heston model [44]. They use the continuous barrier option in the

GBM model as a control variate. Although they claim their method to be fast

and accurate, they did not fully examine the real speed-ups of the control variate.

Glasserman and Staum [39] propose an importance sampling method for barrier

options. It achieves a certain degree of variance reduction with unusual parameter

values. However, we find in chapter 6 that their method barely has any speed-up

with any reasonable parameter values.

In this section, we propose a new control variate method for barrier options in

our stochastic volatility models. We claim that our method is much more efficient

than the importance sampling method and also has higher efficiency gains than

standard control variate methods in most cases.

Our CV is a path-dependent auxiliary model CV. The auxiliary model M̃ (j) is

given as equation (4.39) but conditional on Ṽt. We derive the explicit value p̃
(j)
e

of our auxiliary instrument, the continuous barrier option, in the auxiliary model.

To illustrate the idea, we use up and out barrier call option as an example. The
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arguments apply equally well to up and in, down and out and down and in calls and

puts. We adopt all definitions from section 3.6.2.

Idea. We are interested in the value of equation (3.23). A control variate estimator

for the barrier option price is

ṽ = e−rT 1

M

M∑

j=1

h
(
S̃

(j)
t , t ∈ T

)
+ b · CV (j). (4.83)

We use the continuous barrier option in the auxiliary model as a control variate. If

Zt is given by SDE (4.39), we construct our CV as

CV (j) = e−rT H ′
(
Z

(j)
t , t ∈ T

)
− p̃(j)

e , (4.84)

where

p̃(j)
e = e−rT E

[
H (Zt, t 6 T )

∣∣∣V (j)
t

]
. (4.85)

H (Zt, t 6 T ) depends on maxt6T Zt and ZT . We have seen in section 4.5 that their

joint distribution is available by conditioning on Vt. It is therefore straightforward

to derive the explicit form of p̃
(j)
e . We supply the following lemma for the explicit

value of our CV.

Lemma 4.7.1 Suppose Zt has the following dynamics.

dZt = λσ2
t Ztdt + σtZtdWt, (4.86)

where λ is some constant and σt is some deterministic function. Then

E [H (Zt, t 6 T )] = Z0(I1 − I3) − K(I2 − I4), (4.87)
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where

I1 = eλT

[
Φ

(
d+

(
T ,

Z0

K

))
− Φ

(
d+

(
T ,

Z0

U

))]
, (4.88)

I2 = Φ

(
d−

(
T ,

Z0

K

))
− Φ

(
d−

(
T ,

Z0

U

))
, (4.89)

I3 = eλT

(
U

Z0

)2λ+1 [
Φ

(
d+

(
T ,

U2

KZ0

))
− Φ

(
d+

(
T ,

U

Z0

))]
, (4.90)

I4 =

(
U

Z0

)2λ−1 [
Φ

(
d−

(
T ,

U2

KZ0

))
− Φ

(
d−

(
T ,

U

Z0

))]
, (4.91)

d±(τ, x) =
1√
τ

[
ln x +

(
λ ± 1

2

)
τ

]
, (4.92)

T =

∫ T

0
σ2

sds, (4.93)

and Φ(·) is the cumulative density function of standard normal distribution.

See proof in Appendix A.3 (page 209). �

This is a simple extension of the result from the Black-Scholes model with constant

volatility (Shreve [76]) to the case with a deterministic volatility. We see from

Lemma 4.7.1 that we can have the explicit value of the barrier option in the auxiliary

model by setting σt = V ξ
t . By piece-wise constant approximation to Vt, equation

(4.86) has the discrete form

dZ̃t = λṼ 2ξ
ti

Z̃tdt + Ṽ ξ
ti
Z̃tdW S

t , t ∈ [ti, ti+1). (4.94)

with T given by

T =

∫ T

0
Ṽ 2ξ

t dt =
N−1∑

i=0

Ṽ 2ξ
ti

∆t. (4.95)

We have E

[
H
(
Z̃t, t 6 T

) ∣∣∣Ṽ (j)
t

]
available. But we are not yet done. The final thing

left in equation (4.84) is H ′
(
Z̃

(j)
t , t ∈ T

)
. This requires knowledge of the survival

probabilities.

The Survival Probabilities

In order to correct for simulation bias from the discrete sample path, we also need

to know the survival probabilities pi between discrete points on the path of Z̃t. We

state the following lemma.
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Lemma 4.7.2 Define MT = maxt6s6T

{
Ŵs

∣∣∣ŴT

}
as the maximum of the bridge

distribution over the interval [t, T ] where Ŵt = Wt + at is a Brownian motion with

some constant drift a. Then

P

(
MT 6 m|ŴT

)
= 1 − exp

[
− 2

T
m
(
m − ŴT

)]
, m > max

{
0, ŴT

}
. (4.96)

(See Karatzas and Shreve [52]). �

Note that the result does not depend on a.

We apply a logarithmic transformation to equation (4.94).

d ln Z̃t =

(
λ − 1

2

)
Ṽ 2ξ

ti
dt + Ṽ ξ

ti
dW S

t = Ṽ ξ
ti
dŴ S

t , t ∈ [ti, ti+1). (4.97)

This SDE has constant drift and diffusion coefficient over the interval t ∈ [ti, ti+1).

The survival probability can be easily computed as

pi = P

(
max

t∈[ti,ti+1]

{
Z̃t

}
6 U

∣∣∣ Z̃ti 6 U, Z̃ti+1 6 U

)

= P

(
max

t∈[ti,ti+1]

{
ln Z̃t − ln Z̃ti

Ṽ ξ
ti

}
6

lnU − ln Z̃ti

Ṽ ξ
ti

∣∣∣∣∣ Z̃ti 6 U, Z̃ti+1 6 U

)

= P

(
M∆t 6

ln U − ln Z̃ti

Ṽ ξ
ti

∣∣∣∣∣Ŵ∆t 6
ln U − ln Z̃ti

Ṽ ξ
ti

)

= 1 − exp


−

2
(
ln U − ln Z̃ti

)(
ln U − ln Z̃ti+1

)

∆tṼ 2ξ
ti


 . (4.98)

where the last equality is a direct application of Lemma 4.7.2. The values of pi

are then substituted into H ′
(
Z̃

(j)
t , t ∈ T

)
to complete the computation of equation

(4.84).

4.8 Conclusion

We constructed CVs for a general stochastic volatility models. The instruments are

divided into two broad categories, those with linear and non-linear path statistics.

We proposed auxiliary models in each category. We discussed the tailored auxil-

iary instruments for the arithmetic average rate and barrier option as examples in

both categories. What we have not done is the auxiliary model for non-linear path

statistics when β ∈ (0, 1) due to our inability to derive the joint distribution of path
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statistics. We leave the discovery of efficient CVs in that case as a future research

topic.

The new CVs buy us more than efficient valuation of instruments. In fact, they

also make the model calibration faster. They help us to investigate the variations in

barrier option pricing in various stochastic volatility models calibrated to the same

vanilla option prices. In chapter 5 and 6, we provide numerical results for average

rate and barrier options. Performances of various CVs are compared. In chapter 7,

we discuss the variations in barrier option pricing under stochastic volatility.
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Chapter 5

Numerical Results for Average

Rate Options

5.1 Introduction

We provide comparisons of various control variates for arithmetic average rate op-

tions in different models. The result for each Monte Carlo valuation is often given

in the following form. 


v

se

τ

E




=




3.98

(0.048)

[7.15]

5.3




(5.1)

The top entry is the Monte Carlo estimate of the option value. The second entry

in the round bracket is the standard error. The third entry in the square bracket

is the computation time. The bottom entry in bold is the efficiency gain that we

defined in section 3.3.

We compare five CVs in our numerical examples. These are three standard CVs,

namely, the European call CV (if applicable), the GBM auxiliary CV and the GBM

delta CV, plus the two correlation CVs, SV (ρ = 0) and SV (ρ 6= 0), that we in-

troduced in section 4.6. We use them to price three arithmetic average rate options

with 4, 16, and 64 reset dates up to the maturity T = 1.

The GBM auxiliary process has a constant volatility σ∗. A subtle question is how

to choose σ to make the auxiliary model as close to the pricing model as possible.
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If we compare the diffusion terms in both models, we have

σ∗St = V ξ
t Sβ

t ≈ V ξ
0 Sβ−1

0 St ⇒ σ∗ ≈ V ξ
0 Sβ−1

0 . (5.2)

We use this σ∗ for the GBM auxiliary CV. For the delta CV, we can do even better.

The delta in the GBM process at ti is a function of the current stock price Sti and

the volatility σ∗
ti which we allow to change at each time step ti. By equating diffusion

terms,

σ∗
t St = V ξ

t Sβ
t ⇒ σ∗

t = V ξ
t Sβ−1

t . (5.3)

Then at each time ti, set σ∗
ti = V ξ

ti
Sβ−1

ti
.

We apply CVs with four different models listed in Table 5.1. These are Heston,

β ξ γ

Heston 1 1
2

1
2

SABR (0, 1) 1 1
GARCH 1 1

2 1
J&S (0, 1) 1 1

2

Table 5.1: Stochastic Volatility Models

SABR, GARCH and a special case of Johnson and Shanno [50] (J&S). Our selected

models include cases where β = 1, 0 < β < 1, ξ = γ and ξ 6= γ. Note that the Eu-

ropean call CV can be applied only to the Heston and SABR model. In the Heston

model, we compute the explicit CV value using the formula given by Albrecher et

al. [2]. We refer to it as Heston call later. In the SABR model, we use the approxi-

mation for the implied volatility in Hagan et al. [41]. We refer to it as SABR call.

We use a large number of sample paths (M = 106) for the plain Monte Carlo

method (without any variance reduction method) to obtain a low standard error.

This is a the sanity check to ensure that the CVs do not introduce pricing bias. The

number of sample paths we use for Monte Carlo methods with CVs is M = 10000.

There is no stratification applied to the random numbers. The code is written in

VBA 6.5 and run on a Dell desktop with Duo core processor.

The rest of this chapter is organised as following. In sections 5.2-5.5, we present

empirical correlations as well as efficiency gains for various CVs for the four models

that are listed in Table 5.1. A guideline for choosing the best CVs is provided at

the end of each section. In section 5.6, we compare the efficiency gains under the
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two alternative auxiliary processes for β ∈ (0, 1) that we discussed in section 4.4. In

section 5.7, we investigate the efficiency of correlation CVs under different values of

β. In section 5.8, we summarize the improvements of using our new CVs over using

the existing ones alone. Section 5.9 concludes.

We find that including our new CVs always gives extra efficiency gains to using

standard CVs only.

5.2 Valuation in the Heston Model

We describe our discretization method in the pricing model.

Discretization. To discretize Vt, we apply a log-normal approximation suggested

by Andersen and Brotherton-Ratcliffe [5]. Given the conditional mean and variance

of Vt

m = E
(
Vti+1 |Vti

)
= µ + (Vti − µ)e−α∆t, (5.4)

s2 = Var
(
Vti+1 |Vti

)
=

Vtiη
2e−α∆t

α

(
1 − e−α∆t

)
+

µη2

2α

(
1 − e−α∆t

)2
, (5.5)

the value of Vti+1 can be approximated with a log-normal variable

Ṽi+1 = m exp

(
−1

2
Λ2

i + Λizi

)
, zi ∼ N(0, 1), (5.6)

where Λi = ln
(
1 + s2

m2

)
so that Ṽi+1 matches the conditional mean and variance.

Although there are exact simulation methods, for example, Broadie and Kaya [17],

Glasserman and Kim [37], et cetera, they are relatively slow. They can be used in

a single step Monte Carlo simulation. But in the case of average rate option whose

valuation by Monte Carlo requires many points on a sample path the computation

cost of exact simulation is considerable. We therefore apply the following one-step

discretization for St

S̃i+1 = S̃i exp

[(
r − 1

2
Ṽ 2ξ

i

)
∆t + Ṽ ξ

i ∆W S
i

]
. (5.7)

Parameters. We use the following two parameter sets for the Heston model as

the base parameter setting, corresponding to the cases when the Feller condition

d = 2αµ/η2 < 1 (Case 1) and d > 1 (Case 2). In Case 1, we use the parameters

in the paper by Albrecher et al. [2]. In Case 2, parameter values are taken from
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Webber [83]. Webber [83] found the efficiency gain from using standard CVs when

Case 1 Case 2

S0 = 100 100
r = 0.0250 0.05

V0 = 0.0175 0.04
α = 1.5768 0.20
µ = 0.0398 0.05
η = 0.5751 0.10
ρ = -0.5711 -0.50
d = 0.3795 2

Table 5.2: Heston Parameters

d < 1 is much lower than when d > 1. We show in our results that our proposed

CVs have significant improvements in both cases, particularly Case 2. We consider

the ATM options, ITM options, OTM options and the cases of highly positive and

negative correlations and high volatility.

The ATM Options

We start by comparing the empirical correlations ρ̂ between various CVs and the

discounted payoff of arithmetic average rate options.

Empirical correlations. Table 5.3 lists the empirical correlations (in absolute

values) achieved by all CVs. We recall that when computation times are identical

Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.73 0.72 0.72 0.991 0.990 0.988
Delta 0.96 0.96 0.93 0.998 0.996 0.98

Heston Call 0.83 0.85 0.89 0.84 0.85 0.89

SV
(ρ = 0) 0.89 0.89 0.87 0.997 0.997 0.997
(ρ 6= 0) 0.96 0.96 0.96 0.91 0.91 0.92

Table 5.3: Correlations ρ̂: CVs with Discounted Option Payoffs (ATM) in the Heston
Model

a correlation ρ̂ gives a variance reduction of 1
1−ρ̂2 so that ρ̂ = 0.9 has a variance

reduction of 5 and ρ̂ = 0.99 of 20. Two CVs achieve a correlation larger than 0.9 in

both cases: the GBM delta CV and non-zero correlation CV. In Case 1, the non-zero

correlation CV even has a ρ̂ slightly higher than GBM delta CV and significantly

higher than the other CVs. The zero correlation CV is comparable to (or slightly
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better than) the Heston European call CV.

In Case 2, the empirical correlations are in general much higher than in Case 1

with the only exception being the non-zero correlation CV, which is unexpected.

The top two performers in terms of ρ̂ in this case are the GBM delta CV and zero

correlation CV, followed by the GBM auxiliary CV.

Looking at the empirical correlation, the GBM delta CV achieves the highest overall

performance. However, it is not the whole picture. The additional work required

by the GBM delta CV largely offsets the gain from variance reduction. We see next

the efficiency gains of the various CVs.

Efficiency gains. Table 5.36 (page 101) gives the efficiency gains of all CVs con-

sidered in both Case 1 and Case 2. The second column corresponds to the plain

Monte Carlo simulation (with no variance reduction technique). Column 2 to 6 are

results for individual CVs. The final column is the result of using our two correlation

CVs together. We first look at individual CVs. We notice that although the GBM

delta CV significantly reduces the standard error, the computation time required is

more than triple that needed for the plain Monte Carlo. This is reflected in the low

efficiency gain in Case 1. In this case, our non-zero correlation CV has an efficiency

gain at least double the other CVs while the zero correlation CV has a performance

similar to the others.

In Case 2 the efficiency gain from using the GBM delta CV is very sensitive to

the number of reset dates n. When n = 64, it has an efficiency gain of 64.8 and

outperforms the GBM auxiliary CV by approximately 10. The efficiency gains of

the GBM delta CV decreases significantly as the number of reset dates gets smaller.

When n = 4, it only has an efficiency gain of 8.1. Although both the GBM auxiliary

CV and the delta CV achieve high efficiency gains, their efficiency gains are only

half of those of the zero correlation CV. It is considerably better than any other CV

while the non-zero correlation CV is not as good as expected. Their complementary

performances in Case 1 and Case 2 leads us to use both our new CVs in combination

in order to come up with a method which applies well in both cases. This indeed

works well, particularly in Case 2, we see some extra 30-50 efficiency gains to using

SV (ρ = 0) alone. Although in Case 1 the efficiency gains are not as large as in

Case 2, this still gives a speed-up which is almost five times as standard CVs can do.
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ITM and OTM Options

We also look at the ITM (K = 80) and OTM (K = 120) cases. Table 5.4 and 5.5

display the empirical correlations. In the ITM case, the delta CV has the highest

empirical correlations in Case 1. In Case 2, its correlation decreases as the num-

ber of reset dates increases. For options with n 6 16, SV (ρ = 0) has the highest

correlations. In the OTM case, SV (ρ 6= 0) works well in Case 1 while other CVs

have very low empirical correlations, especially the GBM auxiliary CV. In Case 2,

SV (ρ = 0) has the highest correlations.

Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.83 0.83 0.82 0.994 0.993 0.992
Delta 0.9986 0.997 0.98 0.9996 0.9986 0.986

Heston Call 0.84 0.86 0.89 0.86 0.87 0.91

SV
(ρ = 0) 0.94 0.94 0.93 0.9990 0.9989 0.9986
(ρ 6= 0) 0.84 0.85 0.85 0.87 0.87 0.88

Table 5.4: Correlations ρ̂: CVs with Discounted Option Payoffs (ITM) in the Heston
Model

Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.02 0.18 0.10 0.96 0.96 0.95
Delta 0.79 0.89 0.76 0.987 0.98 0.93

Heston Call 0.56 0.54 0.72 0.68 0.69 0.81

SV
(ρ = 0) 0.67 0.74 0.70 0.996 0.996 0.995
(ρ 6= 0) 0.991 0.990 0.990 0.98 0.98 0.98

Table 5.5: Correlations ρ̂: CVs with Discounted Option Payoffs (OTM) in the
Heston Model

Table 5.37 (page 102) gives efficiency gains for ITM options. In the ITM case in

Case 1, our proposed CVs are much worse than the delta CV but comparable to

other CVs. The more reset dates, the more efficient the delta CV is. With 64 reset

dates, its efficiency gain is over 100 while our proposed CVs only achieve efficiency

gains of 3-7. This pattern of the delta CV is somewhat repeated in the ITM case in

Case 2 although our proposed CVs are much more efficient than in Case 1. With

4 and 16 reset dates, SV (ρ = 0) largely outperforms the delta CV, though using

both SV (ρ = 0) and (ρ 6= 0) gives only marginal improvement to using SV (ρ = 0)

along. With 64 reset dates, the delta CV overtakes SV (ρ = 0) but its edge is not big.
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Table 5.38 (page 103) presents the results for OTM options. The OTM case is

similar to the ATM case. In Case 1, SV (ρ 6= 0) is much better than the standard

CVs. The delta CV this time proves to be too costly. It is barely more effcient than

the plain Monte Carlo method. With 4 reset dates, its efficiency gain is only 0.8. In

Case 2, SV (ρ = 0) is significantly better than other CVs and it combines well with

SV (ρ 6= 0). When using SV (ρ = 0) and (ρ 6= 0) together, we see efficiency gains

around 130.

Highly Positive and Negative ρ

We now let the correlation ρ to be 0.9 or −0.9 in both Case 1 and Case 2. Our

intention is to examine our methods in the extreme correlation cases in which our

methods are expected to be less efficient. The empirical correlations are given in

Table 5.6 and 5.7. In both extreme correlation cases, the delta CV provides much

Case 1 (ρ = 0.9) Case 2 (ρ = 0.9)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.72 0.83 0.82 0.992 0.992 0.991
Delta 0.993 0.991 0.97 0.999 0.997 0.98

Heston Call 0.82 0.82 0.90 0.84 0.85 0.90

SV
(ρ = 0) 0.80 0.80 0.79 0.990 0.991 0.990
(ρ 6= 0) 0.43 0.39 0.37 0.48 0.46 0.44

Table 5.6: Correlations ρ̂: CVs with Discounted Option Payoffs (ρ = 0.9) in the
Heston Model

Case 1 (ρ = −0.9) Case 2 (ρ = −0.9)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.73 0.74 0.73 0.991 0.992 0.990
Delta 0.97 0.97 0.94 0.998 0.997 0.98

Heston Call 0.82 0.84 0.89 0.84 0.85 0.89

SV
(ρ = 0) 0.74 0.73 0.72 0.991 0.992 0.989
(ρ 6= 0) 0.67 0.67 0.67 0.51 0.52 0.51

Table 5.7: Correlations ρ̂: CVs with Discounted Option Payoffs (ρ = −0.9) in the
Heston Model

higher empirical correlations than other CVs. In Case 2, all correlations are in gen-

eral higher than Case 1 (except for those of SV (ρ 6= 0)). The delta CV still has

the highest correlations while SV (ρ = 0) and the GBM auxiliary CV give high and

similar correlations.
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The efficiency gains for ρ = 0.9 and ρ = −0.9 are presented in Table 5.39 (page

104) and 5.40 (page 105). No CV has significant efficiency gains in Case 1. In Case

2, the delta CV has very high efficiency gains when the number of reset dates is

above 16. SV (ρ 6= 0) barely has any advantage over the standard CVs as we have

explained in section 4.6.3. However, SV (ρ = 0) has good performance although

it is not as good as the delta CV in the case of 16 and 64 reset dates. It greatly

reduces the variance from the Wiener process driving the asset process even though

the auxiliary process is less related to the pricing model than for SV (ρ 6= 0).

High Volatility

We test our methods when volatility is high. In both Case 1 and Case 2, we set

V0 = µ = 0.25. Since d increases with µ (from 0.38 to 2.38 in Case 1 and from 2 to

10 in Case 2), it is no longer less than one in Case 1.

The empirical correlations are displayed in Table 5.8. They are generally higher

Case 1 (V0 = µ = 0.25) Case 2 (V0 = µ = 0.25)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.95 0.96 0.95 0.996 0.996 0.996
Delta 0.994 0.992 0.97 0.997 0.995 0.98

Heston Call 0.84 0.86 0.90 0.84 0.85 0.89

SV
(ρ = 0) 0.985 0.98 0.98 0.998 0.998 0.998
(ρ 6= 0) 0.91 0.91 0.91 0.91 0.91 0.91

Table 5.8: Correlations ρ̂: CVs with Discounted Option Payoffs (V0 = µ = 0.25) in
the Heston Model

than those for the ATM case with lower volatilities in Table 5.3. The empirical

correlation of the delta CV is decreasing with the number of reset dates, as is seen

in all other cases. SV (ρ = 0) has the highest correlations in Case 2 and for options

with n = 4 in Case 1. In other places, the delta CV gives the highest empirical

correlations.

The efficiency gains are shown in Table 5.41 (page 106). As is seen in the ATM case

in Table 5.36 (page 101), when d is high the GBM auxiliary CV and SV (ρ = 0)

work well while SV (ρ 6= 0) is less efficient. SV (ρ = 0) is more efficient than the

GBM auxiliary CV in all options. The efficiency gain of the delta CV increases with

the number of resets in both cases.
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Practitioners in a quant group are interested in how to automate the Monte Carlo

valuation system so that it can choose suitable CVs without needing them to be

specified. In Table 5.9, we summarise the best individual CVs in the Heston model

in different cases. In the table, “both” refers to SV (ρ = 0)+SV (ρ 6= 0), “GBM”

stands for the GBM auxiliary CV. We have considered only individual CVs. Using

d < 1 d > 1

Reset dates n 6 16 n > 16 n 6 16 n > 16

ATM both

ITM delta both delta

OTM SV (ρ = 0) both

High |ρ| delta GBM delta

High Vol both SV (ρ = 0)

Table 5.9: Best Individual CVs in the Heston Model

CVs together may provide additional efficiency gains. We discuss combination in

the next section.

Combinations of Correlation CVs with Standard Ones

The results for ATM options are given in Table 5.42 (page 107). In Case 1, using

all CVs together enhances the performance, beating the highest efficiency gains in

Table 5.36 (page 101). Using the auxiliary CV with the other CVs is not too much

different from using each CV individually. In Case 2, combining CVs with each

other is not significantly more efficient than using them individually.

Table 5.43 (page 108) presents the results in the ITM case. In Case 1, our pro-

posed CVs do not perform well on their own. However, using them with the delta

CV gives great efficiency gains. The largest improvement on individual CVs reaches

a factor over 20. When using all CVs together, the efficiency gains are even higher.

The situation is even better in Case 2 where our proposed CVs work well on their

own. There is a very impressive efficnency gain of 897.4 for average rate option with

64 reset dates when using all CVs together.

The results for the OTM case are given in Table 5.44 (page 109). In the OTM

case, our proposed CVs by themselves outperform standard CVs, while using them

with the delta CV makes things worse and using them with other standard CVs

does not make too much difference.
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The results when ρ = 0.9 are displayed in Table 5.45 (page 110). As we have

explained in section 4.6.3, our proposed CVs do not have an advantage over stan-

dard CVs in this case. However, combining them with all the other standard CVs

makes a big difference. This is the case in both Case 1 and Case 2. Efficiency gains

for ρ = −0.9 in Table 5.46 (page 111) are very similar to when ρ = 0.9.

The results for high volatility are presented in Table 5.47 (page 112). In Case

1, combining the delta CV with SV (ρ = 0) and (ρ 6= 0) slightly enhances the per-

formance, and using all CVs together is even better. In case 2, on the other hand,

using delta CV with our proposed ones reduces the efficiency gain.

In summary, we find that in Case 1, except for the OTM case, the combination

of all CVs has the top performance. In the OTM case, the best combinations are

the GBM auxiliary CV plus SV (ρ 6= 0) in Case 1 and the GBM auxiliary CV with

SV (ρ = 0) and (ρ 6= 0) in Case 2. They both include SV (ρ 6= 0) which has high

efficiency gains individually. Due to the low efficiency gains of the delta CV in the

OTM case, it does not combine well with any other CV.

In Case 2, we suggest using the GBM auxiliary CV with SV (ρ = 0) and (ρ 6= 0) for

options with small number of reset dates (4 or 16). For options with 64 reset dates,

the best CV depends on the model parameters. It can either be the combination of

all CVs or just the GBM auxiliary CV with SV (ρ = 0).

5.3 Valuation in the SABR Model

Unlike in the Heston model where the variance follows a mean-reverting process,

the SABR model considers volatility itself as log-normal.

Discretization. To discretize the SABR model, we first use the transformation

Yt = 1
1−β F 1−β

t and vt = ln Vt.

dYt = − β

2(1 − β)Yt
e2vtdt + evtdW S

t , (5.8)

dvt = −1

2
η2dt + ηdW V

t , dW S
t dW V

t = ρ (5.9)

We then apply the Euler scheme to the two dimensional process (Yt, vt)
′. The

discretization of the transformed process (5.8) can result in Yt attaining zero or

negative values. In fact, the CEV-type process has an attainable boundary at zero
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for 0 < β < 1. We fix the Euler scheme for (5.8) by assigning an absorbing boudary

at zero. Jäckel [47] claims this yields a good approximation of the probability

of absorption at zero for the CEV process for β < 1
2 . Finally, we recover F̃t =

[
(1 − β) Ỹt

] 1
1−β

and S̃t = F̃te
r(t−T ).

Parameters. We use the following parameters for the SABR model as our base

case. The initial stock price S0 = 100, risk free interest rate r = 0.05, initial volatil-

ity V0 = 2, the correlation between asset and variance processes is ρ = −0.5, the

volatility of volatility η = 0.4. Since 0.5 is the critical value of β below which the

solution to the CEV process is not unique unless a boundary condition at zero is

specified, we consider two cases, β = 0.4 (Case 1) and β = 0.6 (Case 2). The im-

plied volatilities from these two cases can be computed using the expansion given

by Hagan et al. [41]. Figure 5.1 shows the implied volatility skews for both cases.

In Case 1, the level of the implied volatility is around 0.15. It is seen in foreign
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Figure 5.1: Implied Volatility Skews in the SABR Model

exchange options. Case 2 has an implied volatility around 0.3. This can be seen in

equity options.

We compare five CVs, namely, the GBM auxiliary CV, the GBM delta CV, the

SABR call CV and SV (ρ = 0) and SV (ρ 6= 0).

The ATM Options

As before, we first compare the empirical correlations ρ̂ between the CVs and dis-

counted option payoffs. Table 5.10 contains the empirical correlations of the CVs

with different option payoffs in the SABR model. Unlike in the Heston model, re-

sults are fairly consistent between the different sets of parameters. In both Cases,
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Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.98 0.98 0.97 0.97 0.97 0.96
Delta 0.995 0.994 0.98 0.994 0.992 0.98

SABR Call 0.84 0.85 0.89 0.84 0.84 0.89

SV
(ρ = 0) 0.993 0.993 0.992 0.992 0.992 0.990
(ρ 6= 0) 0.92 0.92 0.92 0.93 0.93 0.93

Table 5.10: Correlations ρ̂: CVs with Discounted Option Payoffs in the SABR Model
(ATM)

the delta CV and SV (ρ = 0) have very high empirical correlations. Those of SV

(ρ = 0) are roughly at the same level for options with different number of reset dates

while those of the delta CV increase with the number of reset dates, particularly

from 4 to 16 reset dates. The GBM auxiliary CV also has very high correlations but

not as high as those of the delta CV and SV (ρ = 0). The possible reason why the

empirical correlations of SV (ρ 6= 0) are not as high as those of SV (ρ = 0) is that

the way the β-average rate option is priced only reduces the standard error coming

from the Wiener path driving the asset process, W S
t , as we have explained in section

4.6.3. Building in correlation between the asset and variance processes reduces the

proportion of the option price explained by W S
t along.

Table 5.48 (page 113) lists the efficiency gains from using different CVs. We see

that SV (ρ = 0) performs much better than the other CVs by at least a factor of 2

and it combines well with SV (ρ 6= 0). Using them together gains an extra amount

of efficiency of around 20. The GBM auxiliary CV comes second because it has high

empirical correlations and is cheap to use. The delta CV has good efficiency gains

for options with high reset frequency but is not so good for options with 4 reset

dates.

ITM and OTM Options

We then look at the performance of the CVs in the ITM (K = 80) and OTM

(K = 120) cases. Empirical correlations are listed in Table 5.11 and 5.12. In

the ITM case, the delta CV has the highest empirical correlations, followed by SV

(ρ = 0). The auxiliary CV has all empirical correlations around 0.98 which is con-

sistent with the ATM case in Table 5.10. SV (ρ 6= 0) has similar performance to the

SABR call CV. Their correlations are all around 0.9. In the OTM case, SV (ρ 6= 0)

has much higher correlations than the other CVs in Case 1, but in Case 2 has lower
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Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.98 0.98 0.98 0.98 0.98 0.98
Delta 0.9997 0.9988 0.987 0.998 0.997 0.98

SABR Call 0.86 0.88 0.91 0.85 0.87 0.90

SV
(ρ = 0) 0.995 0.996 0.995 0.997 0.996 0.994
(ρ 6= 0) 0.86 0.87 0.87 0.89 0.89 0.89

Table 5.11: Correlations ρ̂: CVs with Discounted Option Payoffs in the SABR Model
(ITM)

Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.60 0.53 0.72 0.93 0.93 0.93
Delta 0.95 0.95 0.79 0.98 0.98 0.94

SABR Call 0.37 0.39 0.59 0.74 0.77 0.84

SV
(ρ = 0) 0.92 0.95 0.97 0.989 0.988 0.987
(ρ 6= 0) 0.997 0.998 0.997 0.98 0.97 0.97

Table 5.12: Correlations ρ̂: CVs with Discounted Option Payoffs in the SABR Model
(OTM)

correlations than SV (ρ = 0) and similar ones to those of the delta CV. Gains for

the auxiliary CV and SABR call CV are very low in Case 1, although pick up in

Case 2.

Efficiency gains for the ITM options are given in Table 5.49 (page 114). In the

ITM case, the efficiency gain of the delta CV increases sharply with the number

of reset dates. It reaches over 450 for options with 64 reset dates in Case 1 and is

more than 5 times as high as that of the second performer, SV (ρ = 0). However,

for options with 4 reset dates, the efficiency gain of the delta CV is only 1/7 of that

of SV (ρ = 0). In Case 2, SV (ρ = 0) has higher performance than all other CVs

for all options. In both cases, the auxiliary CV has efficiency gains all around 20.

Combining SV (ρ = 0) with SV (ρ 6= 0) does not give higher efficiency gains than

using SV (ρ = 0) along.

Efficiency gains for OTM options are presented in Table 5.50 (page 115). In Case 1

of the OTM case, SV (ρ 6= 0) obtains efficiency gains over 100 and is much better

than the other CVs. This is consistent with the OTM options in the Heston model

in Table 5.38. SV (ρ = 0) is better than standard CVs although not as good as

SV (ρ 6= 0). In Case 2, SV (ρ = 0) performs better than SV (ρ 6= 0) and both are
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much better than standard CVs. In both Case 1 and 2, using them together gains

an additional efficiency of over 30 and is very worthwhile. The delta CV, unlike in

the ITM case, does not have high efficiency gains. All its gains are below 10.

Highly Positive and Negative ρ

Table 5.13 and 5.14 display the empirical correlations in the cases when ρ = 0.9

and ρ = −0.9. Recall that in both cases, our proposed methods are not expected

to work well. In both tables, the delta CV gives the highest empirical correlation.

Case 1 (ρ = 0.9) Case 2 (ρ = 0.9)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.98 0.986 0.98 0.98 0.98 0.98
Delta 0.9987 0.998 0.98 0.997 0.996 0.98

SABR Call 0.84 0.87 0.90 0.83 0.84 0.89

SV
(ρ = 0) 0.98 0.98 0.98 0.97 0.97 0.97
(ρ 6= 0) 0.45 0.45 0.42 0.46 0.44 0.45

Table 5.13: Correlations ρ̂: CVs with Discounted Option Payoffs in the SABR Model
(ρ = 0.9)

Case 1 (ρ = −0.9) Case 2 (ρ = −0.9)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.98 0.98 0.98 0.97 0.97 0.97
Delta 0.997 0.996 0.98 0.997 0.995 0.98

SABR Call 0.85 0.85 0.89 0.84 0.85 0.89

SV
(ρ = 0) 0.98 0.98 0.98 0.98 0.98 0.97
(ρ 6= 0) 0.50 0.52 0.51 0.53 0.55 0.53

Table 5.14: Correlations ρ̂: CVs with Discounted Option Payoffs in the SABR Model
(ρ = −0.9)

SV (ρ = 0) is similar to the auxiliary CV. Both have high correlations. SV (ρ 6= 0)

performs badly. None of its empirical correlations are above 0.5 (for the reason we

explained in section 4.6.3).

Efficiency gains are listed in Table 5.51 (page 116) for ρ = 0.9 and Table 5.52

(page 117) for ρ = −0.9. In both tables, the delta CV performs better as the num-

ber of option reset dates increases, which is consistent with all previous cases. It

has higher efficiency gains than the other CVs in all cases except for options with

4 reset dates. SV (ρ = 0) has very similar performance to the auxiliary CV. This is

because they have similar empirical correlations and have similar computation cost.

82



SV (ρ 6= 0), however, barely has any variance reduction effect as its efficiency gains

are all around 1.0 (the same as the plain Monte Carlo method). Combining them

drags down the performance of SV (ρ = 0) slightly.

High Volatility

We set V0 = 8 in Case 1 and V0 = 3 in Case 2. This gives a model implied volatility

of around 0.5 both cases. In practice, it is very rare that the volatility is as high as

0.5 but we include this case for completeness. To avoid numerical instability caused

by too many terms in the series expansion, we set the number of terms equal to 10.

This does not affect the result as we find that the numerical value has converged at

this level. Empirical correlations are given in Table 5.15. The empirical correlations

Case 1 (V0 = 8) Case 2 (V0 = 3)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.95 0.95 0.95 0.96 0.96 0.95
Delta 0.993 0.991 0.97 0.993 0.992 0.97

SABR Call 0.84 0.85 0.89 0.84 0.85 0.89

SV
(ρ = 0) 0.991 0.991 0.990 0.991 0.991 0.989
(ρ 6= 0) 0.93 0.93 0.93 0.93 0.93 0.93

Table 5.15: Correlations ρ̂: CVs with Discounted Option Payoffs in the SABR Model
(High Volatility)

of the delta CV are close to those of SV (ρ = 0) except that the former are lower

for options with 4 reset dates. Both the delta CV and SV (ρ = 0) have much higher

than the correlations of the other CVs.

Efficiency gains are given in Table 5.53 (page 118). Those of SV (ρ = 0) are much

higher than the other CVs. Although the delta CV has similar empirical correla-

tions to SV (ρ = 0), its benefit is offset by its high computation cost. Combining

SV (ρ = 0) and (ρ 6= 0) gives a further efficiency gain to more than 10.

In Table 5.16, we give a summary of best CVs individually for different cases in

the SABR model.

We next look at the combination of our proposed CVs with standard ones.

Combinations of Correlation CVs with Standard Ones

Table 5.54 (page 119) gives the results for the base case (ATM). Using the auxiliary

CV with SV (ρ = 0) and (ρ 6= 0) slightly increases the efficiency gains in Case 1 from
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β < 0.5 β > 0.5

Reset dates n < 16 n > 16 n < 16 n > 16

ATM both

ITM SV (ρ = 0) delta SV (ρ = 0) both

OTM both

High |ρ| GBM delta GBM delta

High Vol both

Table 5.16: Best Individual CVs in the SABR Model

Table 5.48 but does not change those in Case 2 too much. Although SV (ρ = 0) does

not perform as well as SV (ρ = 0) in the individual case, it combines better with the

delta CV than SV (ρ = 0) does for options with high reset frequency (n > 16) in

which case the best combination is all CVs together. For options with the number

of reset dates less than 4, the best combination is the auxiliary CV with SV (ρ = 0)

and (ρ 6= 0).

Table 5.55 (page 120) displays results for the ITM options. For options with more

than 16 reset dates, the delta CV combines much better with the other CVs than the

auxiliary CV. For those with 4 reset dates, the best combinations are the auxiliary

CV with SV (ρ = 0) in Case 1 and that with SV (ρ = 0) and (ρ 6= 0) in Case 2. For

options with 16 or 64 reset dates, the highest efficiency gains come from using all

CVs together. Efficiency gain of over 1000 is seen.

Table 5.56 (page 121) lists the efficiency gains of different combinations in the OTM

case. The best combination is the auxiliary CV plus SV (ρ = 0) and (ρ 6= 0). But

efficiency gains are not very much different from (if not higher than) those of SV

(ρ = 0) and (ρ 6= 0) together (in Table 5.50 (page 115)). Adding the auxiliary CV

makes little difference. The delta CV does not combine as well with other CVs as

the auxiliary CV does.

Table 5.57 (page 122) gives the results for highly positive correlation. Combin-

ing the auxiliary CV with the new CVs does not give a significant improvement to

the efficiency gains. However, in combination with the SABR call CV it provides

efficiency gains higher than if using either of them along. For options with high reset

frequency (n > 16), the highest efficiency gains are obtained by combining all CVs

together. This phenomenon is consistent with the ATM and ITM cases in Table

5.54 (page 119) and 5.55 (page 120). The reason is that the main computation cost

of the combination comes from the delta CV. It does very well in options with many
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reset dates, and enhances the overall performance, but it does poorly in options

with few reset dates and drags down the efficiency. In the cases of few reset dates,

using the auxiliary CV and SABR call CV together gives the highest efficiency gains

when ρ = 0.9.

The results of highly negative correlations are provided in Table 5.58 (page 123). In

this case, results are very similar to the case when ρ = 0.9 although the efficiency

gains are slightly lower in general.

Table 5.59 (page 124) gives efficiency gains for the cases with high volatility. The

best combination overall is the auxiliary CV with SV (ρ = 0) and (ρ 6= 0). However,

the efficiency gains are not very different from those of SV (ρ = 0)+(ρ 6= 0) in Table

5.53 (page 118) in Case 1. Using all CVs together has a slight edge over the combi-

nation of the auxiliary CV with SV (ρ = 0) and (ρ 6= 0) but this is likely to be due

to the noise in different simulations. But the combination of all CVs performs much

worse than the auxiliary CV+SV (ρ = 0)+SV (ρ 6= 0) for options with 4 reset dates.

In Table 5.17, we summarise the best CV combinations for the SABR model. In the

table, “all” stands for the combination of all CVs, “call” stands for the SABR call

CV.

Reset Dates n < 16 n > 16

ATM GBM+both all

ITM GBM+SV (ρ = 0) all

OTM GBM+both

High |ρ| GBM+call all

High Vol GBM+both all

Table 5.17: Best CV Combinations for the SABR Model

5.4 Valuation in the GARCH Diffusion Model

The GARCH diffusion process ensures that the variance is always positive.

Discretization. We discretize the GARCH process with a Milstein scheme (Kloe-

den and Platen [55]). The simple Euler method for the GARCH diffusion process

is

Ṽi+1 = Ṽi + α
(
µ − Ṽi

)
∆t + ηṼi

√
∆tzi, zi ∼ N(0, 1). (5.10)
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The Euler discretization, however, can yield a negative variance. This happens when

Ṽi is close to zero and zi is highly negative. We argue that a Milstein scheme can

eliminate the negative variance. The Milstein discretization is

Ṽi+1 = Ṽi + α
(
µ − Ṽi

)
∆t + ηṼi

√
∆tzi +

1

2
η2∆tṼi

(
z2
i − 1

)

= Ṽi

[
1

2

(
1 + η

√
∆tZi

)2
+

1

2
− ∆t

(
α +

1

2
η2

)]
. (5.11)

When Ṽi is small (but positive), as long as ∆t
(
2α + η2

)
< 1, the positivity of Ṽi+1

is guaranteed. This condition holds in our parameter specifications. We notice that

Barone-Adesi et al. [9] also use Milstein method for Vt in the GARCH diffusion

model.

Parameters. We use two parameter specifications for α, µ and η, from Lewis

[56], given in Table 5.18. The values of S0, r and V0 are the same as those used in

Case 1 and 2 in the Heston example. Implied volatility skews are computed from the

Case 1 Case 2

S0 = 100 100
r = 0.025 0.05

V0 = 0.0175 0.04
α = 4 2
µ = 0.0225 0.09
η = 1.2 0.8
ρ = -0.5 -0.5

Table 5.18: GARCH Parameters

European call option prices estimated by Monte Carlo simulation. The purpose is to

justify that the parameter choices are reasonable in practice. The implied volatility

skews are plotted in Figure 5.2. As in the SABR example, Case 1 (the lower implied

volatility case) features the implied volatility of foreign exchange options and Case

2 (the higher implied volatility case) of equity options. Since there is no explicit

European option value in the GARCH model, the call CV is not used. We use

a large number of sample paths (M = 106) for the plain Monte Carlo method to

obtain a benchmark result. For the CVs, M = 10000. In the base case we price

average rate options with strike K = 100.

The ATM Options

Empirical correlations are given in Table 5.19. The auxiliary CV, SV (ρ = 0) and
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Figure 5.2: Implied Volatility Skews in the GARCH Diffusion Model

Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.98 0.98 0.98 0.98 0.98 0.98
Delta 0.997 0.995 0.98 0.997 0.995 0.97

SV
(ρ = 0) 0.994 0.994 0.994 0.997 0.997 0.996
(ρ 6= 0) 0.92 0.92 0.92 0.91 0.91 0.91

Table 5.19: Correlations ρ̂: CVs with Discounted Option Payoffs (ATM) in the
GARCH Model

the delta CV all have high correlations. SV (ρ = 0), in particular, has all correla-

tions above 0.99.

Table 5.60 (page 125) lists efficiency gains for the different CVs. SV (ρ = 0) gives

the highest efficiency gain. The auxiliary CV also has good performance but not as

good as SV (ρ = 0). Using SV (ρ = 0) and (ρ 6= 0) is very much the same with

using SV (ρ = 0) alone, though there are slight improvements in options with 16

and 64 reset dates.

ITM and OTM Options

The empirical correlations for ITM options (K = 80) and OTM options (K = 120)

are given in Table 5.20 and 5.21. In the ITM case, we notice that both the delta CV

and SV (ρ = 0) have extremely high correlations. With 64 reset dates, the delta CV

has empirical correlations above 0.999. SV (ρ 6= 0) does not have very outstanding

performance. Its empirical correlations are below 0.9. In the OTM case, SV (ρ = 0)

and SV (ρ 6= 0) are both highly correlated with the option payoffs. The former

performs better in Case 1 while the latter does better in Case 2.
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Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.987 0.986 0.986 0.987 0.987 0.986
Delta 0.9997 0.9989 0.986 0.9990 0.998 0.98

SV
(ρ = 0) 0.997 0.997 0.997 0.9988 0.9987 0.998
(ρ 6= 0) 0.86 0.87 0.87 0.87 0.87 0.88

Table 5.20: Correlations ρ̂: CVs with Discounted Option Payoffs (ITM) in the
GARCH Model

Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.84 0.85 0.88 0.92 0.94 0.94
Delta 0.97 0.95 0.85 0.99 0.98 0.93

SV
(ρ = 0) 0.98 0.98 0.98 0.994 0.994 0.994
(ρ 6= 0) 0.991 0.990 0.990 0.97 0.97 0.96

Table 5.21: Correlations ρ̂: CVs with Discounted Option Payoffs (OTM) in the
GARCH Model

Efficiency gains for ITM options are listed in Table 5.61 (page 126). In the ITM

case, one extraordinarily high efficiency gain (above 500) appears in the delta CV

for the option with 64 reset dates in Case 1. Except for that, SV (ρ = 0) is the best

CV. This is consistent with the cases of ρ = 0.9 and ρ = −0.9 where the delta CV

has higher efficiency gains as option reset dates increase. SV (ρ = 0) plus (ρ 6= 0) is

worse than SV (ρ = 0) alone because of the not-so-good individual performance of

SV (ρ 6= 0).

The efficiency gains for OTM options are given in Table 5.62 (page 127). In the

OTM case, both SV (ρ = 0) and SV (ρ 6= 0) have high efficiency gains. Using both

together gives a big boost in Case 1 and a slight improvements in Case 2 (except

for the option with 16 reset dates). The delta CV, however, is less efficient than in

the ITM case. The only place that its efficiency gain exceeds 10 is the option with

64 reset dates in Case 2.

Highly Positive and Negative ρ

Table 5.22 and 5.23 give empirical correlations when ρ is set to 0.9 and −0.9. In

both cases, SV (ρ 6= 0) has very low empirical correlations (around 0.5). This means

it almost has no variance reduction effect. SV (ρ = 0) has similar correlations to

the GBM auxiliary CV. However, they both have lower correlations than the delta
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Case 1 (ρ = 0.9) Case 2 (ρ = 0.9)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.97 0.98 0.98 0.97 0.97 0.96
Delta 0.998 0.997 0.98 0.997 0.995 0.97

SV
(ρ = 0) 0.98 0.98 0.98 0.98 0.98 0.98
(ρ 6= 0) 0.47 0.47 0.47 0.44 0.46 0.45

Table 5.22: Correlations ρ̂: CVs with Discounted Option Payoffs (ρ = 0.9) in the
GARCH Model

Case 1 (ρ = −0.9) Case 2 (ρ = −0.9)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.987 0.987 0.986 0.989 0.988 0.988
Delta 0.998 0.996 0.98 0.998 0.996 0.98

SV
(ρ = 0) 0.98 0.98 0.98 0.990 0.989 0.989
(ρ 6= 0) 0.53 0.52 0.51 0.51 0.50 0.52

Table 5.23: Correlations ρ̂: CVs with Discounted Option Payoffs (ρ = −0.9) in the
GARCH Model

CV.

Efficiency gains are displayed in Table 5.63 (page 128) for ρ = 0.9 and Table 5.64

(page 129) for ρ = −0.9. When ρ = 0.9, the delta CV has the highest efficiency

gains when there are 16 and 64 reset dates. SV (ρ = 0) also has good performance

and is better than the GBM auxiliary CV, while the latter is better when ρ = −0.9.

However, in none of the cases does SV (ρ 6= 0) achieve an efficiency gain above 1,

which indicates it does not work when ρ is highly positive or negative.

High Volatility

As in the Heston example, we set V0 = µ = 0.25 in both cases. This gives values

of the volatility path at around 0.5. The empirical correlations are in Table 5.24.

SV (ρ = 0) has all empirical correlations above 0.99. Those of the delta CV is very

similar to SV (ρ = 0) for options with 64 and 16 reset dates but lower in the case

of 4 reset dates.

Efficiency gains are listed in Table 5.65 (page 130). The best CV is SV (ρ = 0).

It outperforms the delta CV by more than 30 points of efficiency gain. Using SV

(ρ = 0) and (ρ 6= 0) is almost the same as using SV (ρ = 0) alone.
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Case 1 (V0 = µ = 0.25) Case 2 (V0 = µ = 0.25)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.98 0.98 0.98 0.98 0.98 0.98
Delta 0.995 0.994 0.97 0.996 0.995 0.98

SV
(ρ = 0) 0.993 0.993 0.991 0.995 0.995 0.994
(ρ 6= 0) 0.92 0.92 0.93 0.92 0.93 0.92

Table 5.24: Correlations ρ̂: CVs with Discounted Option Payoffs (V0 = µ = 0.25)
in the GARCH Model

In Table 5.25, we summarise the best individual CVs in the GARCH model.

Case 1 Case 2

Reset dates n = 4 n = 16 n = 64 n = 4 n = 16 n = 64

ATM both

ITM SV (ρ = 0) delta SV (ρ = 0)

OTM both

High |ρ| GBM delta SV (ρ = 0) delta

High Vol both

Table 5.25: Best Individual CVs in the GARCH Model

Combinations of Correlation CVs with Standard CVs

We examine the various CVs in combination. Table 5.66 (page 131) gives results

for the ATM case. The best combination is the auxiliary CV with SV (ρ = 0) and

(ρ 6= 0). It increases the efficiency gains from the best CV in Table 5.60 (page 125),

SV (ρ = 0)+ (ρ 6= 0), by about 10, except for the option with 16 reset dates in Case

2. Using the delta CV with SV (ρ = 0) and (ρ 6= 0) decreases the efficiency gains in

many cases.

The results for the ITM options are given in Table 5.67 (page 132). The auxil-

iary CV combines well with SV (ρ = 0). The improvement on SV (ρ = 0) by the

auxiliary CV in Case 2 is more than 50. When combining the delta CV with SV

(ρ = 0), the results for the option with 64 reset dates in Case 1 are extremely good.

The efficiency gain is over 850 whenever both of them are in the combination.

Table 5.68 (page 133) displays the results for the OTM options. Using the aux-

iliary CV with SV (ρ = 0) and (ρ 6= 0) produces high efficiency gain. This is higher

than combining SV (ρ = 0) and (ρ 6= 0). The delta CV gives no additional gain

when it combines with other CVs.
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Efficiency gains for ρ = 0.9 and ρ = −0.9 are given in Table 5.69 (page 134) and

5.70 (page 135). In both cases, the auxiliary CV adds a couple of points of efficiency

gain to SV (ρ = 0). Apart from that, combining different types of CVs has no big

advantage over using individual CVs.

Table 5.71 (page 136) displays efficiency gains when the volatility is high. The best

combination in this table is the auxiliary CV used with SV (ρ = 0) and (ρ 6= 0).

It improves on SV (ρ = 0) and (ρ 6= 0) by 5 to 15 points of efficiency gain except

for the option with 16 reset dates in Case 2. Combining the delta CV reduces the

efficiency gains from the SV (ρ = 0) alone, but is more efficient than either the delta

CV or SV (ρ 6= 0) along when using them together.

In summary, we find that combining the CVs with good performances in the in-

dividual cases usually produces higher efficiency, that is, higher than using either

of those CVs individually. One CV that always performs well is SV (ρ = 0). The

performances of the others vary from case to case. In Table 5.26, we summarise the

best CV combinations for the GARCH model.

Case 1 Case 2

Reset dates n < 16 n > 16 n < 16 n > 16

ATM GBM+both

ITM GBM+SV (ρ = 0) delta+SV (ρ = 0) GBM+SV (ρ = 0)

OTM GBM+both

High |ρ| all GBM+SV (ρ = 0) all GBM+SV (ρ = 0)

High Vol GBM+both

Table 5.26: Best CV Combinations in the GARCH Model

5.5 Valuation in the Johnson and Shanno Model

Finally We value arithmetic average rate options in the special case of the Johnson

and Shanno model where 0 < β < 1, ξ = 1 and γ = 1
2 .

Discretization. We apply the transformation Yt = 1
1−β S1−β

t .

dYt =

[
r(1 − β)Yt −

β

2(1 − β)Yt
V 2ξ

t

]
dt + V ξ

t dW S
t . (5.12)
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We also impose an absorbing boundary at zero as in the SABR model. The volatility

follows a CIR process. We use the same log-normal moment-matched approximation

(5.6) for Vt as in the Heston model. Asset values are then recovered by setting

S̃t =
[
(1 − β) Ỹt

] 1
1−β

.

Parameters. We set S0 = 100, r = 0.05, V0 = 2, α = 2, µ = 2, η = 0.1 and

ρ = −0.5. In Case 1 we take β = 0.4 and in Case 2, β = 0.6. This parameter setting

is consistent with the SABR example in that the volatilities V ξ
t Sβ

t in both examples

are roughly at the same level (about 12 in Case 1 and 30 in Case 2). Instead of

having the forward price with a CEV process as in the SABR model, this model uses

the stock price. Since the volatility of volatility η is low in our setting, the volatility

process is almost deterministic. Therefore, the results are likely to be good.

We test 4 CVs: the GBM auxiliary CV, the delta CV, SV (ρ = 0) and SV (ρ 6= 0).

We price 3 average rate options with 4, 16 and 64 reset dates up to the maturity

T = 1. The number of sample paths for the plain Monte Carlo method is 106 and

for the Monte Carlo with CVs is 10000.

The ATM Options

The empirical correlations are listed in Table 5.27. We have seen very exciting re-

Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.9988 0.9987 0.9985 0.997 0.997 0.996
Delta 0.9991 0.998 0.98 0.998 0.997 0.98

SV
(ρ = 0) 0.99991 0.99990 0.99989 0.9997 0.9997 0.9997
(ρ 6= 0) 0.89 0.89 0.89 0.90 0.90 0.90

Table 5.27: Empirical Correlations ρ̂: CVs with Discounted Option Payoffs in John-
son and Shanno Model (ATM)

sults. The empirical correlations of SV (ρ = 0) are extraordinarily high (more than

0.999). It stands out from other CV candidates as a big winner. The delta CV

is similar to the auxiliary CV. Their correlations are also very high. SV (ρ 6= 0),

however, is far behind the above three CVs as its correlations are all around 0.9 only.

Efficiency gains for the ATM options are given in Table 5.72 (page 137). Those

for SV (ρ = 0) are not of the same order of magnitude as those of the standard

CVs. They are much better. The efficiency gains for SV (ρ = 0) are over 3400
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in Case 1 and 1200 in Case 2. This level of efficiency gain is not even seen when

using geometric average rate option CV for its arithmetic counterpart in the GBM

model (Webber [83]). Adding SV (ρ 6= 0) to SV (ρ = 0) does not further improve

the efficiency gain. This is because SV (ρ 6= 0) is not even nearly as strong as SV

(ρ = 0). The auxiliary CV also has very high efficiency gains (over 300 in Case

1 and 130 in Case 2). But they are only 1/10 of those of SV (ρ = 0). Although

the delta CV has similar empirical correlations to the auxiliary CV, its benifits are

partly offset by its high computation cost. Its efficiency gains are increasing with

the number of option reset dates which is also the case in the other models.

ITM and OTM Options

The empirical correlations for the ITM (K = 80) and OTM (K = 120) cases are

given in Table 5.28 and 5.29. In the ITM case, the results are rather consistent

Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.9990 0.9989 0.9987 0.9985 0.998 0.998
Delta 0.9998 0.9990 0.988 0.9991 0.998 0.98

SV
(ρ = 0) 0.99996 0.99995 0.99994 0.99988 0.99988 0.99985
(ρ 6= 0) 0.87 0.86 0.87 0.88 0.87 0.88

Table 5.28: Empirical Correlations ρ̂: CVs with Discounted Option Payoffs in John-
son and Shanno Model (ITM)

Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.993 0.988 0.994 0.996 0.996 0.996
Delta 0.98 0.97 0.81 0.995 0.991 0.96

SV
(ρ = 0) 0.9994 0.9995 0.9995 0.9990 0.9990 0.9991
(ρ 6= 0) 0.98 0.98 0.97 0.94 0.94 0.93

Table 5.29: Empirical Correlations ρ̂: CVs with Discounted Option Payoffs in John-
son and Shanno Model (OTM)

with the ATM case. Again we have seen very high empirical correlations for SV

(ρ = 0) and they are even higher than in the ATM case. In the OTM case, the

empirical correlations for SV (ρ = 0) are a bit lower than those in the ITM case

but still much higher than those of other CVs. SV (ρ 6= 0) has higher correlations

than in the ATM and ITM options in Case 1, which is consistent with those in the

Heston model (Table 5.5), the SABR model (Table 5.12) and the GARCH model

93



(Table 5.21). The correlations of the auxiliary CV are higher than those of the delta

CV.

Table 5.73 (page 138) displays efficiency gain for ITM options. In the ITM case,

the efficiency gains of SV (ρ = 0) are almost twice as high as those in the ATM

case (Table 5.72). Those of the delta CV increases sharply with the number of reset

dates. They reach above 800 for options with 64 reset dates in Case 1 but are still

less than a tenth of that of SV (ρ = 0). For options with n 6 16, the auxiliary CV

is more efficient than the delta CV by a factor of more than two.

Table 5.74 (page 139) gives efficiency gains for OTM options. In the OTM case,

the efficiency gains of SV (ρ = 0) are lower than those in the ITM case by a factor

of more than 5. The delta CV is not as efficient as in the ITM case. Although SV

(ρ 6= 0) has decent efficiency gains, combining it with SV (ρ = 0) does not produce

higher efficiency gains than using SV (ρ = 0) by itself.

Highly Positive and Negative ρ

We set ρ equal to 0.9 and −0.9. The empirical correlations are presented in Tables

5.30 and 5.31. In both tables, the auxiliary CV, the delta CV and SV (ρ = 0)

Case 1 (ρ = 0.9) Case 2 (ρ = 0.9)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.9997 0.9997 0.9996 0.9987 0.9987 0.998
Delta 0.9992 0.998 0.98 0.998 0.997 0.98

SV
(ρ = 0) 0.9996 0.9996 0.9996 0.9992 0.9992 0.9992
(ρ 6= 0) 0.44 0.47 0.46 0.48 0.49 0.49

Table 5.30: Empirical Correlations ρ̂: CVs with Discounted Option Payoffs in John-
son and Shanno Model (ρ = 0.9)

Case 1 (ρ = 0.9) Case 2 (ρ = 0.9)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.9986 0.9986 0.998 0.997 0.996 0.996
Delta 0.9991 0.998 0.98 0.998 0.997 0.98

SV
(ρ = 0) 0.9997 0.9997 0.9996 0.9995 0.9995 0.9994
(ρ 6= 0) 0.48 0.48 0.48 0.49 0.50 0.50

Table 5.31: Empirical Correlations ρ̂: CVs with Discounted Option Payoffs in John-
son and Shanno Model (ρ = −0.9)
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all have very high empirical correlations. In Table 5.30, those of the auxiliary CV

are higher than those of SV (ρ = 0) in Case 1. This is not seen in other cases. SV

(ρ 6= 0) has very low correlations (below 0.5) in both tables. This is expected (see

section 4.6.3) and consistent with the Heston model (Table 5.6 and 5.7), the SABR

model (Table 5.13 and 5.14) and the GARCH model (Table 5.22 and 5.23).

Table 5.75 (page 140) presents efficiency gains for ρ = 0.9. When ρ = 0.9, the

efficiency gains of the auxiliary CVs are the highest in Case 1 (over 1200), higher

than those of SV (ρ = 0) by more than 300. But in Case 2 SV (ρ = 0) is still the

top performer as in the ATM, ITM, OTM cases. SV (ρ 6= 0) has efficiency gains all

below 1, because of low empirical correlations, and drags down the efficiency gains

a lot when used along with SV (ρ = 0).

Table 5.76 (page 141) lists efficiency gains for ρ = −0.9. When ρ = −0.9, the

results are similar to when ρ = 0.9 except that the efficiency gains of SV (ρ = 0)

are much higher than those of the auxiliary CV in both cases.

High Volatility

We set V0 = µ = 8 in Case 1 and V0 = µ = 3 in Case 2 to keep the same level of

volatility VtS
β
t in the high volatility case of the SABR example (roughly 47 in Case

1 and 50 in Case 2). The empirical correlations are given in Table 5.32. Those of

Case 1 (V0 = µ = 8) Case 2 (V0 = µ = 3)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

GBM
Auxiliary 0.988 0.988 0.985 0.994 0.994 0.993
Delta 0.997 0.996 0.98 0.998 0.996 0.98

SV
(ρ = 0) 0.9998 0.9998 0.9998 0.9996 0.9996 0.9995
(ρ 6= 0) 0.90 0.90 0.90 0.91 0.90 0.90

Table 5.32: Empirical Correlations ρ̂: CVs with Discounted Option Payoffs in John-
son and Shanno Model (High Volatility)

SV (ρ = 0) remain high and are the highest. The correlations of SV (ρ 6= 0) are all

around 0.9, which is similar to the ATM and ITM cases in Table 5.27 (page 92) and

5.28 (page 93).

Efficiency gains are listed in Table 5.77 (page 142). The situation is not very differ-

ent from the ATM, ITM and OTM cases in Tables 5.72 (page 137), 5.73 (page 138)

and 5.74 (page 139). SV (ρ = 0) is much better than the other CVs. The auxiliary
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CV and the delta CV also give decent efficiency gains.

In summary, throughout all cases SV (ρ = 0) achieves extremely high efficiency

gains (except for the highly positive correlation case where the auxiliary CV of-

fers higher efficiency gains than SV (ρ = 0)). This is an example of modelling the

stock price as CEV process to complement the SABR example which models the

forward price. The results have shown great variance reduction using SV (ρ = 0) in

both examples, especially the former. Efficiency gains of several thousand are truly

exciting.

Combinations of Correlation CVs with Standard Ones

We look at CVs in combinations. Results for the ATM case are presented in Ta-

ble 5.78 (page 143). Compared with the individual CVs (Table 5.72 on page 137),

adding the auxiliary CV with SV (ρ = 0) increases the efficiency gains by roughtly

600, which offers the highest efficiency gains among all combinations.

The results for the ITM case are given in Table 5.79 (page 144). The highest effi-

ciency gains come from the combination of the GBM auxiliary CV and SV (ρ = 0).

It increases the efficiency gains from Table 5.73 (page 138) by more than 600 in Case

1. However, gains are slightly lower in Case 2 by 100-200. The delta CV combines

well with the auxiliary CV for options with 64 reset dates. The efficiency gains are

higher than those of each in the individual case. But they do not combine well for

options with lower number of reset dates. The auxiliary CV always gives a boost to

any other CV used with it.

The results for the OTM options are listed in Table 5.80 (page 145). The com-

bination of the auxiliary CV with SV (ρ = 0) increases the highest efficiency gains

from Table 5.74 (page 139) by around 700 in Case 1 and 50 in Case 2. In fact, the

auxiliary CV combines well with SV (ρ 6= 0) and SV (ρ = 0) + (ρ 6= 0) too. Those

efficiency gains are all higher than in the individual case.

Efficiency gains when ρ = 0.9 are presented in Table 5.81 (page 146). The combina-

tion of the auxiliary CV with SV (ρ = 0) offers the highest efficiency gains as in the

ATM, ITM and OTM cases. Compared with Table 5.75 (page 140), they increase

by more than 1500 in Case 1 and 250 in Case 2.

Efficiency gains when ρ = −0.9 are displayed in Table 5.82 (page 147). The highest
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efficiency gains come from using the auxiliary CV with SV (ρ = 0), as when ρ = 0.9.

However, the efficiency gain for the option with 64 reset dates in Case 1 is slightly

lower than that of SV (ρ = 0) in Table 5.76. In other cases, the combination im-

proves the efficiency gains but the improvement is not as much as when ρ = 0.9.

Finally, we look at the efficiency gains for the high volatility case (Table 5.83).

The best combination is the auxiliary CV with SV (ρ = 0) as in all other cases. The

efficiency gains are around 200 more in Case 1 and 50 more in Case 2 than the best

of those in Table 5.75 (page 140).

In conclusion, the rule of choosing the best CV in this model is quite simple, that

is, to use the combination of the auxiliary CV with SV (ρ = 0) for all options and

parameter settings.

When β ∈ (0, 1), the auxiliary model in section 4.4 has two alternative processes.

In the next section, we provide a comparison of them.

5.6 The Alternative Auxiliary Process for β ∈ (0, 1)

We compare two alternative auxiliary processes (equation (4.29) and (4.36)) for

β ∈ (0, 1). The instrument we price is the ATM average rate option with 64 reset

dates. Table 5.33 displays the empirical correlations in both auxiliary processes for

the SABR and Johnson and Shanno model whose parameters are given in section

5.3 and 5.5. In each individual case, the empirical correlations for both SV (ρ = 0)

ρ̂
SABR Johnson and Shanno

SV (ρ = 0) SV (ρ 6= 0) SV (ρ = 0) SV (ρ 6= 0)
Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

Ỹ0

ITM 0.87 0.9998 0.87 0.87 0.99995 0.99989 0.87 0.87
ATM 0.91 0.9994 0.89 0.90 0.99990 0.9997 0.89 0.90
OTM 0.94 0.9986 0.987 0.95 0.9994 0.9990 0.98 0.94

E

(
Ỹi

) ITM 0.87 0.9998 0.86 0.87 0.99995 0.99989 0.86 0.88
ATM 0.90 0.9994 0.90 0.89 0.99992 0.9997 0.89 0.90
OTM 0.95 0.9985 0.987 0.94 0.9995 0.9990 0.988 0.94

Table 5.33: Empirical Correlations in the Two Alternative Auxiliary Processes

and (ρ 6= 0) are very similar under the auxiliary processes (4.29) and (4.36). Due

to the slight additional complexity involved in computing Ei in order to simulate

equation (4.36), we prefer using the drift freezing auxiliary process (4.29).
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In the next section, we investigate how β can affect the amount of variance re-

duction from our CVs.

5.7 The β Effect

Our methods apply for all 0 < β < 1. But we find the amount of variance reduction

varies for different β. We expect that the smaller β is, the higher the empirical

correlation is between the option payoff and our CV. When β → 0 the β-average

g
1/(1−β)
β → g0 = 1

n

∑n
i=1 Sιi which is the arithmetic average. This means when β

approaches zero our CV (the payoff on the β-average) gets closer to the payoff of an

arithmetic average rate option. When β = 0, both our CVs and the option have the

same payoff but with slightly different underlying asset process. We shall see below

that this difference is very small and SV (ρ = 0) has very high empirical correlations

for small β.

We consider a series of models with ξ = 1, γ = 1
2 but β = 0, 0.1, 0.2, · · · , 0.9.

In order to keep the volatility roughly at the same level, we vary V0 = µ accordingly

(because Vt will always revert to µ) such that V ξ
t Sβ

t ≈ V0S
β
0 ≈ 20. We take S0 = 100

and r = 0.05. Figure 5.3 displays the relationship between V0 and β.
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Figure 5.3: Relationship between V0 and β

Table 5.34 gives the empirical correlation between the payoff of the option with 64

reset dates and SV (ρ = 0) and (ρ 6= 0). We have seen very high empirical correla-

tions from SV (ρ = 0) and they are decreasing with β. However, for SV (ρ 6= 0), the

empirical correlations are shown increasing with β. This is a bit unexpected but it

seems that increasing β also increases the closeness of the process for SV (ρ 6= 0)
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β = 0 0.1 0.2 0.3 0.4

SV (ρ = 0) 0.99997 0.99998 0.99997 0.99995 0.99992

SV (ρ 6= 0) 0.888 0.890 0.893 0.893 0.893

β = 0.5 0.6 0.7 0.8 0.9

SV (ρ = 0) 0.99987 0.99979 0.99967 0.9995 0.9992

SV (ρ 6= 0) 0.895 0.894 0.899 0.902 0.900

Table 5.34: Relationship Between β and Empirical Correlations

to the pricing model and this increment overtakes the difference between the option

and CV payoffs.

Our final task is to investigate the improvement over existing methods by including

our correlation CVs to them.

5.8 Relative Improvement over Existing Methods

We define the relative performance (RP) of our correlation methods as the ratio

of the best efficiency gain by including correlation CVs to that with standard CVs

alone. Table 5.35 summarises the results from our four examples in all cases. Any

value over 1 is a success for the new CVs. For ITM, ATM and OTM options with

RP
Heston GARCH SABR J&S

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

ITM 1.7 2.4 1.7 2.7 1.9 2.7 6.3 9.4
ATM 6.9 2.5 2.3 2.9 3.1 2.8 11 10
OTM 34 10.7 14 5.8 92 8.4 26 3.6
ρ = 0.9 1.2 1.2 1.0 1.0 1.3 1.2 1.9 2.1
ρ = −0.9 3.1 1.4 1.3 1.2 1.6 1.7 3.8 6.6
High Vol 2.4 1.6 2.1 2.3 3.5 3.0 30 11

Table 5.35: Relative Performances over Existing Methods

ordinary parameter values, our correlation CVs enhance performances by sizable fac-

tor. The improvement is particularly large (tens) in Case 1 of OTM options. These

are the cases where zero is accessible in the pricing models and the existing meth-

ods perform poorly. Generally, as options go OTM, the relative improvements are

larger. In the extreme correlation cases, correlation CVs perform less well but still

give mild speed-ups. In the extreme volatility cases, the speed-ups are comparable

to those in the ATM case with ordinary parameter values.
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5.9 Conclusion

Our numerical results show that the CV with zero correlation provides significant

efficiency gains for arithmetic average rate options in most cases, especially in spe-

cial case with a stock price process of CEV type where efficiency gains of several

thousand are seen. The CV with non-zero correlation is worth using for the OTM

options with some particular parameters. Using it in combination with the other

CVs also provides improvement. We have also looked at how the correlation control

variates combine with standard ones and offered suggestions on how to choose the

right control variates in different situations.

In the next chapter, we present numerical results for barrier options.
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Tables

Average Rate Options, Case 1

Resets Plain
GBM Heston SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

4.69 4.70 4.67 4.70 4.67 4.70 4.70
(0.006) (0.039) (0.020) (0.025) (0.027) (0.016) (0.012)
[736.8] [7.7] [24.9] [7.8] [10.5] [8.0] [11.0]

- 2.0 2.4 4.7 3.0 11.4 14.1

16

4.07 4.09 4.07 4.11 4.07 4.07 4.08
(0.005) (0.034) (0.014) (0.026) (0.023) (0.014) (0.011)
[741.0] [7.7] [24.7] [7.8] [10.6] [8.0] [10.9]

- 2.0 3.4 3.3 3.3 11.4 14.5

64

3.93 3.86 3.91 3.91 3.93 3.93 3.92
(0.005) (0.032) (0.014) (0.027) (0.022) (0.013) (0.010)
[738.8] [7.7] [24.7] [7.8] [10.7] [8.1] [11.2]

- 2.1 3.6 2.9 3.3 11.2 14.4

Average Rate Options, Case 2

Resets Plain
GBM Heston SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

7.00 7.02 6.99 7.01 6.99 7.00 7.00
(0.009) (0.014) (0.018) (0.041) (0.007) (0.038) (0.006)
[733.8] [7.7] [24.8] [7.8] [10.6] [7.9] [11.5]

- 41.4 8.1 4.7 104.2 5.5 135.3

16

6.10 6.10 6.09 6.14 6.09 6.10 6.09
(0.008) (0.011) (0.007) (0.042) (0.006) (0.033) (0.005)
[728.3] [7.7] [24.6] [7.8] [10.6] [8.0] [10.9]

- 46.8 40.7 3.4 123.7 5.4 171.8

64

5.87 5.89 5.88 5.93 5.88 5.91 5.87
(0.008) (0.010) (0.005) (0.042) (0.006) (0.032) (0.005)
[732.3] [7.8] [25.7] [7.9] [10.6] [8.1] [11.1]

- 55.3 64.8 3.2 128.7 5.3 171.4

Table 5.36: Efficiency Gains in the Heston Model: Average Rate Options (ATM)
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Average Rate Options, Case 1

Resets Plain
GBM Heston SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

21.34 21.43 21.33 21.37 21.29 21.34 21.32
(0.009) (0.054) (0.018) (0.041) (0.034) (0.049) (0.029)
[734.1] [7.6] [21.9] [7.7] [10.8] [7.9] [11.0]

- 2.9 9.1 4.9 5.1 3.3 6.9

16

21.00 20.99 20.99 20.94 20.99 21.09 21.01
(0.008) (0.047) (0.006) (0.043) (0.030) (0.043) (0.025)
[735.3] [7.7] [21.9] [7.8] [10.7] [8.1] [11.0]

- 3.0 64.7 3.6 5.4 3.3 7.5

64

20.91 20.85 20.91 20.98 20.89 20.89 20.88
(0.008) (0.045) (0.004) (0.043) (0.028) (0.043) (0.025)
[736.9] [7.7] [21.9] [7.7] [10.7] [8.1] [11.2]

- 3.0 116.9 3.3 5.6 3.1 7.1

Average Rate Options, Case 2

Resets Plain
GBM Heston SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

22.26 22.27 22.28 22.30 22.27 22.30 22.27
(0.013) (0.016) (0.022) (0.055) (0.007) (0.064) (0.007)
[736.8] [7.7] [22.8] [7.7] [10.8] [8.0] [11.0]

- 63.3 11.8 5.5 241.8 3.9 245.8

16

21.69 21.70 21.71 21.74 21.70 21.75 21.71
(0.012) (0.013) (0.006) (0.056) (0.006) (0.058) (0.005)
[735.4] [7.7] [22.8] [7.8] [10.7] [8.0] [10.9]

- 71.3 114.0 4.0 303.4 3.7 313.5

64

21.57 21.55 21.57 21.64 21.57 21.53 21.57
(0.011) (0.013) (0.003) (0.057) (0.005) (0.056) (0.005)
[734.0] [7.8] [22.7] [7.7] [10.7] [8.1] [11.2]

- 74.1 361.5 3.6 336.9 3.7 328.9

Table 5.37: Efficiency Gains in the Heston Model: Average Rate Options (ITM)

102



Average Rate Options, Case 1

Resets Plain
GBM Heston SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

0.102 0.097 0.103 0.096 0.110 0.099 0.101
(0.0010) (0.0098) (0.0064) (0.0075) (0.0072) (0.0014) (0.0016)
[729.8] [7.8] [22.3] [7.8] [11.4] [7.9] [11.1]

- 1.1 0.8 1.8 1.3 47.1 28.9

16

0.046 0.047 0.050 0.039 0.045 0.046 0.046
(0.0006) (0.0059) (0.0038) (0.0045) (0.0044) (0.0010) (0.0009)
[751.1] [7.8] [22.5] [7.8] [11.8] [8.1] [11.1]

- 1.1 1.0 2.0 1.4 39.7 38.7

64

0.039 0.036 0.031 0.043 0.037 0.036 0.038
(0.0006) (0.0054) (0.0030) (0.0058) (0.0046) (0.0008) (0.0008)
[737.0] [7.8] [22.6] [7.8] [11.0] [8.2] [11.4]

- 1.2 1.3 1.0 1.2 47.8 37.6

Average Rate Options, Case 2

Resets Plain
GBM Heston SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

0.871 0.879 0.877 0.876 0.877 0.879 0.872
(0.0033) (0.0101) (0.0120) (0.0186) (0.0033) (0.0075) (0.0024)
[732.6] [7.8] [22.8] [7.8] [10.7] [8.0] [11.1]

- 9.9 2.4 2.9 66.7 17.3 118.4

16

0.524 0.517 0.512 0.517 0.523 0.524 0.523
(0.0023) (0.0065) (0.0045) (0.0174) (0.0021) (0.0049) (0.0016)
[732.4] [7.8] [22.7] [7.8] [10.8] [8.1] [11.1]

- 12.1 8.9 1.7 81.4 20.9 142.9

64

0.446 0.457 0.448 0.439 0.447 0.444 0.452
(0.0021) (0.0066) (0.0033) (0.0149) (0.0019) (0.0043) (0.0014)
[737.7] [7.8] [22.7] [7.8] [11.0] [8.3] [11.3]

- 9.6 13.6 1.9 81.5 21.5 143.8

Table 5.38: Efficiency Gains in the Heston Model: Average Rate Options (OTM)
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Average Rate Options, Case 1 (ρ = 0.9)

Resets Plain
GBM Heston SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

4.37 4.34 4.37 4.32 4.37 4.36 4.29
(0.011) (0.058) (0.027) (0.047) (0.064) (0.096) (0.060)
[742.5] [7.8] [21.9] [7.9] [10.6] [8.0] [10.9]

- 3.2 5.2 4.8 1.9 1.1 2.2

16

3.79 3.78 3.80 3.73 3.71 3.84 3.73
(0.009) (0.049) (0.012) (0.049) (0.053) (0.086) (0.052)
[742.2] [7.8] [23.5] [7.8] [10.7] [8.1] [11.0]

- 3.3 18.2 3.3 2.1 1.0 2.1

64

3.65 3.63 3.65 3.65 3.59 3.65 3.64
(0.009) (0.062) (0.011) (0.050) (0.050) (0.080) (0.049)
[746.6] [7.8] [22.1] [7.9] [10.8] [8.2] [11.2]

- 1.9 21.6 2.9 2.1 1.1 2.1

Average Rate Options, Case 2 (ρ = 0.9)

Resets Plain
GBM Heston SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

6.91 6.89 6.89 6.76 6.87 6.81 6.87
(0.011) (0.014) (0.021) (0.046) (0.015) (0.094) (0.015)
[739.8] [7.8] [21.9] [7.8] [10.6] [8.1] [11.0]

- 51.4 8.9 5.0 35.8 1.2 35.2

16

5.99 6.01 6.02 6.04 5.99 6.05 6.02
(0.009) (0.012) (0.007) (0.048) (0.012) (0.081) (0.013)
[742.6] [7.8] [24.7] [7.8] [10.6] [8.1] [11.0]

- 59.2 51.3 3.5 37.9 1.2 35.9

64

5.79 5.80 5.80 5.81 5.78 5.69 5.77
(0.009) (0.011) (0.005) (0.049) (0.012) (0.076) (0.012)
[743.5] [7.8] [22.3] [7.8] [10.7] [8.1] [11.3]

- 60.1 113.1 3.1 36.0 1.2 37.2

Table 5.39: Efficiency Gains in the Heston Model: Average Rate Options (ρ = 0.9)
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Average Rate Options, Case 1 (ρ = −0.9)

Resets Plain
GBM Heston SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

4.63 4.60 4.63 4.67 4.63 4.64 4.61
(0.004) (0.030) (0.015) (0.020) (0.031) (0.032) (0.025)
[742.1] [7.8] [22.0] [7.8] [10.7] [8.0] [11.2]

- 2.0 2.8 4.6 1.4 1.7 2.0

16

4.03 4.05 4.03 4.02 4.02 3.98 4.05
(0.004) (0.026) (0.010) (0.021) (0.026) (0.028) (0.022)
[742.6] [7.7] [21.9] [7.8] [10.6] [8.0] [11.0]

- 2.1 5.2 3.2 1.5 1.7 2.1

64

3.88 3.88 3.89 3.87 3.85 3.85 3.86
(0.004) (0.025) (0.009) (0.021) (0.025) (0.027) (0.021)
[741.5] [7.8] [22.3] [7.8] [10.8] [8.1] [11.2]

- 2.0 5.4 2.9 1.5 1.7 2.1

Average Rate Options, Case 2 (ρ = −0.9)

Resets Plain
GBM Heston SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

7.01 7.02 7.01 6.97 7.02 7.18 6.97
(0.009) (0.012) (0.016) (0.039) (0.013) (0.076) (0.013)
[738.2] [7.8] [22.1] [7.7] [10.6] [8.0] [10.9]

- 48.9 9.4 4.7 33.6 1.2 29.5

16

6.12 6.12 6.12 6.11 6.11 6.12 6.13
(0.008) (0.010) (0.006) (0.040) (0.010) (0.066) (0.010)
[745.7] [7.8] [22.1] [7.7] [10.6] [8.0] [11.0]

- 59.4 57.7 3.6 42.7 1.3 42.5

64

5.89 5.89 5.89 6.00 5.89 5.97 5.89
(0.007) (0.010) (0.004) (0.040) (0.010) (0.065) (0.009)
[740.9] [7.8] [22.1] [7.7] [10.7] [8.2] [11.3]

- 55.3 108.9 3.3 40.6 1.2 40.3

Table 5.40: Efficiency Gains in the Heston Model: Average Rate Options (ρ = −0.9)
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Average Rate Options, Case 1 (V0 = µ = 0.25)

Resets Plain
GBM Heston SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

13.75 13.88 13.74 13.70 13.79 13.65 13.69
(0.022) (0.065) (0.049) (0.096) (0.042) (0.092) (0.036)
[736.8] [7.7] [22.0] [7.8] [10.7] [8.1] [11.0]

- 10.8 6.6 5.0 18.8 5.2 25.0

16

12.13 12.12 12.17 12.07 12.11 12.07 12.09
(0.019) (0.057) (0.024) (0.099) (0.033) (0.081) (0.028)
[731.3] [7.9] [22.0] [7.8] [10.7] [8.2] [11.0]

- 10.5 20.8 3.5 22.3 5.0 31.8

64

11.73 11.71 11.71 11.58 11.75 11.79 11.79
(0.019) (0.056) (0.020) (0.100) (0.032) (0.079) (0.026)
[735.5] [7.8] [22.0] [7.8] [10.8] [8.2] [11.3]

- 10.2 27.9 3.2 22.8 4.9 34.4

Average Rate Options, Case 2 (V0 = µ = 0.25)

Resets Plain
GBM Heston SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

14.62 14.68 14.66 14.84 14.66 14.71 14.69
(0.025) (0.023) (0.053) (0.112) (0.017) (0.103) (0.017)
[729.1] [7.7] [21.8] [7.8] [10.6] [8.0] [11.0]

- 113.3 7.3 4.6 149.3 5.4 135.3

16

12.95 12.90 12.89 12.96 12.88 12.91 12.90
(0.022) (0.018) (0.020) (0.114) (0.013) (0.091) (0.013)
[734.5] [7.7] [22.0] [7.8] [10.7] [8.0] [11.1]

- 133.3 38.7 3.4 183.1 5.2 183.5

64

12.44 12.48 12.44 12.32 12.44 12.46 12.47
(0.021) (0.019) (0.016) (0.115) (0.013) (0.087) (0.013)
[740.0] [7.7] [22.1] [7.7] [10.7] [8.2] [11.3]

- 118.3 56.8 3.2 188.6 5.2 162.5

Table 5.41: Efficiency Gains in the Heston Model: Average Rate Options (V0 = µ =
0.25)
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Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
3.92 4.07 4.69 5.87 6.10 7.00

(0.005) (0.005) (0.006) (0.008) (0.008) (0.009)
[738.8] [741.0] [736.8] [732.3] [728.3] [733.8]

Auxiliary

+SV (ρ = 0)

3.95 4.08 4.74 5.88 6.08 6.98
(0.022) (0.023) (0.027) (0.006) (0.006) (0.007)
[10.8] [10.8] [11.0] [11.0] [10.7] [11.0]
3.2 3.2 2.9 128.7 121.3 107.6

+SV (ρ 6= 0)

3.91 4.07 4.65 5.88 6.08 6.98
(0.012) (0.012) (0.014) (0.009) (0.010) (0.011)
[8.3] [8.2] [8.1] [8.4] [8.2] [8.1]
14.2 14.3 14.2 62.7 61.7 58.0
3.94 4.09 4.70 5.88 6.09 6.99

+SV (ρ = 0) (0.010) (0.010) (0.012) (0.005) (0.005) (0.006)
+SV (ρ 6= 0) [11.7] [11.1] [11.0] [11.4] [11.1] [11.1]

14.3 14.8 14.2 181.5 168.0 143.2

+Call

3.96 4.05 4.67 5.87 6.10 6.99
(0.032) (0.033) (0.039) (0.010) (0.011) (0.013)
[8.3] [7.9] [7.9] [8.0] [8.0] [7.9]
1.9 2.1 1.9 50.5 52.1 48.5

Delta

+Auxiliary

3.94 4.09 4.71 5.88 6.10 6.96
(0.014) (0.014) (0.020) (0.005) (0.006) (0.011)
[22.1] [22.0] [22.0] [22.1] [22.2] [22.0]
4.0 3.8 2.6 74.9 50.5 22.4

+Call

3.92 4.10 4.69 5.87 6.10 6.97
(0.012) (0.012) (0.014) (0.005) (0.006) (0.012)
[24.6] [25.9] [24.7] [24.9] [24.8] [24.9]
4.7 4.5 5.0 77.5 61.9 17.4

+SV (ρ = 0)

3.92 4.08 4.70 5.88 6.08 6.99
(0.013) (0.014) (0.019) (0.005) (0.005) (0.007)
[25.2] [24.9] [25.8] [25.4] [25.0] [24.9]
3.7 3.6 2.5 84.5 73.1 46.0

+SV (ρ 6= 0)

3.92 4.08 4.68 5.88 6.10 7.00
(0.005) (0.006) (0.009) (0.004) (0.006) (0.015)
[22.4] [22.4] [23.0] [22.4] [22.5] [22.8]
25.1 23.0 11.4 121.0 65.6 11.7
3.92 4.07 4.69 5.87 6.09 6.99

+SV (ρ = 0) (0.005) (0.006) (0.009) (0.003) (0.004) (0.006)
+SV (ρ 6= 0) [25.5] [25.2] [25.1] [25.6] [25.3] [25.3]

23.2 20.3 11.1 158.9 107.3 66.5

All

3.92 4.08 4.67 5.88 6.09 6.98
(0.005) (0.005) (0.008) (0.003) (0.003) (0.005)
[25.6] [25.4] [25.3] [25.7] [25.5] [25.4]
25.1 24.1 15.5 187.1 154.0 83.2

Table 5.42: CVs in Combinations in the Heston Model: Average Rate Options
(ATM)
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Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
20.91 21.00 21.34 21.57 21.69 22.26

(0.008) (0.008) (0.009) (0.011) (0.012) (0.013)
[736.9] [735.3] [734.1] [734.0] [735.4] [736.8]

Auxiliary

+SV (ρ = 0)

20.92 21.05 21.34 21.58 21.70 22.26
(0.027) (0.028) (0.032) (0.005) (0.005) (0.007)
[10.8] [10.7] [10.7] [11.1] [11.0] [10.9]
5.9 6.1 5.7 390.0 327.6 235.3

+SV (ρ 6= 0)

20.87 21.00 21.36 21.60 21.72 22.27
(0.033) (0.034) (0.038) (0.012) (0.013) (0.015)
[8.5] [8.0] [8.0] [8.2] [8.0] [8.0]
5.2 5.4 5.4 75.1 74.7 66.1

20.92 21.02 21.40 21.57 21.71 22.27
+SV (ρ = 0) (0.023) (0.024) (0.027) (0.005) (0.005) (0.007)
+SV (ρ 6= 0) [11.3] [11.1] [11.1] [11.2] [11.0] [10.9]

7.7 8.2 7.9 372.0 334.6 253.1

+Call

20.95 20.97 21.35 21.57 21.70 22.26
(0.033) (0.033) (0.034) (0.012) (0.013) (0.015)
[7.8] [7.8] [7.7] [7.8] [7.8] [7.8]
5.6 6.0 7.3 77.8 72.4 69.1

Delta

+Auxiliary

20.91 20.99 21.32 21.58 21.70 22.28
(0.004) (0.006) (0.018) (0.003) (0.006) (0.013)
[21.9] [21.8] [21.8] [22.6] [22.6] [22.4]
120.5 61.9 9.0 372.5 144.3 32.7

+Call

20.91 20.99 21.32 21.57 21.71 22.27
(0.004) (0.005) (0.012) (0.003) (0.005) (0.014)
[21.9] [21.8] [21.8] [22.7] [22.5] [22.6]
127.6 103.0 20.7 515.7 217.5 27.6

+SV (ρ = 0)

20.91 20.99 21.33 21.57 21.71 22.27
(0.004) (0.006) (0.016) (0.002) (0.004) (0.006)
[25.0] [25.9] [24.6] [25.9] [25.6] [25.6]
117.4 58.4 10.5 693.3 312.7 121.0

+SV (ρ 6= 0)

20.90 21.00 21.34 21.57 21.70 22.28
(0.004) (0.006) (0.016) (0.003) (0.006) (0.020)
[22.2] [22.1] [22.1] [23.8] [24.2] [22.7]
163.8 69.9 11.3 353.1 116.0 13.3
20.91 20.99 21.32 21.58 21.71 22.27

+SV (ρ = 0) (0.003) (0.005) (0.014) (0.002) (0.004) (0.006)
+SV (ρ 6= 0) [25.4] [25.1] [24.9] [26.1] [25.9] [25.7]

161.6 76.2 12.7 702.2 307.2 119.7

All

20.91 20.99 21.35 21.58 21.71 22.27
(0.003) (0.004) (0.010) (0.002) (0.003) (0.006)
[25.9] [25.2] [25.0] [26.1] [26.3] [25.8]
197.2 123.5 23.2 897.4 428.2 153.1

Table 5.43: CVs in Combinations in the Heston Model: Average Rate Options
(ITM)
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Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
0.039 0.046 0.102 0.446 0.524 0.871

(0.0006) (0.0006) (0.0010) (0.0021) (0.0023) (0.0033)
[737.0] [751.1] [729.8] [737.7] [732.4] [732.6]

Auxiliary

+SV (ρ = 0)

0.037 0.049 0.122 0.444 0.524 0.877
(0.0038) (0.0046) (0.0073) (0.0018) (0.0021) (0.0031)
[10.8] [10.6] [10.6] [10.9] [10.8] [10.7]
1.7 1.4 1.4 96.1 86.0 75.2

+SV (ρ 6= 0)

0.038 0.047 0.097 0.451 0.521 0.868
(0.0008) (0.0010) (0.0015) (0.0034) (0.0036) (0.0051)

[9.8] [9.8] [9.8] [8.3] [8.2] [8.2]
38.2 34.1 37.4 35.2 38.5 36.5
0.038 0.048 0.098 0.449 0.523 0.878

+SV (ρ = 0) (0.0009) (0.0010) (0.0015) (0.0013) (0.0015) (0.0023)
+SV (ρ 6= 0) [11.2] [11.0] [10.9] [11.5] [11.3] [11.2]

28.2 27.9 33.9 161.8 152.7 131.3

+Call

0.037 0.049 0.117 0.449 0.528 0.873
(0.0056) (0.0051) (0.0084) (0.0063) (0.0065) (0.0088)

[7.8] [7.8] [7.8] [7.9] [7.8] [7.8]
1.1 1.6 1.4 10.4 12.1 13.0

Delta

+Auxiliary

0.037 0.048 0.098 0.450 0.519 0.883
(0.0029) (0.0036) (0.0062) (0.0034) (0.0041) (0.0086)
[22.5] [22.5] [22.4] [22.8] [23.0] [22.9]
1.4 1.1 0.9 12.8 10.4 4.6

+Call

0.041 0.046 0.098 0.449 0.527 0.883
(0.0031) (0.0034) (0.0062) (0.0032) (0.0039) (0.0086)
[22.4] [22.4] [22.4] [23.0] [23.0] [22.9]
1.2 1.2 1.4 14.1 11.7 4.3

+SV (ρ = 0)

0.044 0.048 0.103 0.447 0.522 0.878
(0.0034) (0.0035) (0.0058) (0.0018) (0.0021) (0.0032)
[25.3] [25.2] [25.2] [25.6] [25.5] [26.0]
0.9 1.0 0.9 40.4 34.9 29.3

+SV (ρ 6= 0)

0.036 0.046 0.099 0.448 0.519 0.875
(0.0008) (0.0009) (0.0015) (0.0024) (0.0032) (0.0066)
[22.9] [22.9] [22.7] [23.2] [23.0] [23.0]
17.8 17.8 15.6 25.6 17.0 7.8
0.038 0.045 0.102 0.447 0.523 0.877

+SV (ρ = 0) (0.0010) (0.0009) (0.0017) (0.0014) (0.0015) (0.0021)
+SV (ρ 6= 0) [25.7] [26.0] [25.5] [26.2] [25.9] [25.8]

9.7 16.6 10.2 66.5 66.6 69.7

All

0.038 0.045 0.102 0.448 0.522 0.879
(0.0008) (0.0010) (0.0014) (0.0012) (0.0013) (0.0019)
[25.9] [25.7] [25.6] [26.1] [26.0] [25.9]
17.2 12.6 15.1 90.1 86.7 81.3

Table 5.44: CVs in Combinations in the Heston Model: Average Rate Options
(OTM)
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Case 1 (ρ = 0.9) Case 2 (ρ = 0.9)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
3.65 3.79 4.37 5.79 5.99 6.91

(0.009) (0.009) (0.011) (0.009) (0.009) (0.011)
[746.6] [742.2] [742.5] [743.5] [742.6] [739.8]

Auxiliary

+SV (ρ = 0)

3.64 3.84 4.43 5.79 6.01 6.88
(0.041) (0.048) (0.058) (0.010) (0.011) (0.013)
[10.8] [10.6] [10.6] [10.8] [10.8] [10.8]
3.1 2.5 2.4 49.4 49.6 45.7

+SV (ρ 6= 0)

3.61 3.83 4.40 5.79 6.03 6.90
(0.045) (0.058) (0.060) (0.011) (0.013) (0.014)
[8.2] [8.3] [8.1] [8.7] [8.5] [8.5]
3.4 2.2 2.9 54.5 46.3 47.3
3.65 3.78 4.35 5.79 6.02 6.88

+SV (ρ = 0) (0.042) (0.049) (0.052) (0.011) (0.012) (0.012)
+SV (ρ 6= 0) [11.2] [10.9] [11.0] [11.2] [11.1] [10.9]

2.9 2.4 2.9 46.0 42.6 50.1

+Call

3.60 3.84 4.37 5.80 5.98 6.88
(0.035) (0.038) (0.038) (0.011) (0.010) (0.012)
[7.9] [7.8] [7.8] [8.3] [8.2] [8.2]
5.8 5.6 7.6 61.7 70.7 70.4

Delta

+Auxiliary

3.66 3.81 4.34 5.80 6.01 6.87
(0.010) (0.012) (0.024) (0.005) (0.007) (0.013)
[22.1] [22.2] [22.1] [23.3] [23.3] [22.3]
24.2 18.4 6.5 111.7 61.8 21.6

+Call

3.67 3.81 4.36 5.80 6.01 6.92
(0.012) (0.012) (0.016) (0.004) (0.007) (0.013)
[22.0] [22.2] [22.1] [21.9] [23.3] [21.9]
18.9 26.1 14.4 135.7 106.8 21.9

+SV (ρ = 0)

3.64 3.78 4.37 5.80 6.02 6.87
(0.011) (0.012) (0.024) (0.005) (0.007) (0.014)
[24.9] [24.8] [24.7] [24.9] [24.7] [24.8]
20.0 15.9 6.0 100.2 58.5 18.3

+SV (ρ 6= 0)

3.63 3.79 4.33 5.80 6.02 6.92
(0.009) (0.011) (0.024) (0.004) (0.007) (0.021)
[22.5] [22.4] [23.3] [22.3] [22.2] [22.1]
28.4 22.6 6.3 132.3 62.6 8.5
3.66 3.79 4.37 5.81 6.02 6.88

+SV (ρ = 0) (0.010) (0.011) (0.025) (0.005) (0.007) (0.013)
+SV (ρ 6= 0) [25.2] [25.1] [25.1] [25.5] [25.4] [25.3]

21.6 18.9 5.3 106.2 56.6 18.6

All

3.64 3.80 4.38 5.79 6.01 6.89
(0.009) (0.010) (0.015) (0.004) (0.005) (0.009)
[25.4] [25.2] [25.0] [25.6] [25.4] [25.5]
28.9 23.5 14.9 153.1 101.0 39.1

Table 5.45: CVs in Combinations in the Heston Model: Average Rate Options
(ρ = 0.9)
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Case 1 (ρ = −0.9) Case 2 (ρ = −0.9)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
3.88 4.03 4.63 5.89 6.12 7.01

(0.004) (0.004) (0.004) (0.007) (0.008) (0.009)
[741.5] [742.6] [742.1] [740.9] [745.7] [738.2]

Auxiliary

+SV (ρ = 0)

3.88 3.99 4.57 5.89 6.13 7.00
(0.024) (0.024) (0.028) (0.008) (0.009) (0.011)
[10.9] [10.7] [10.7] [10.8] [10.6] [10.6]
1.7 1.8 1.7 54.2 53.9 42.4

+SV (ρ 6= 0)

3.89 4.02 4.66 5.90 6.12 6.99
(0.019) (0.020) (0.024) (0.009) (0.009) (0.012)
[8.2] [8.1] [8.0] [8.2] [8.2] [8.0]
3.3 3.3 3.2 63.2 59.7 50.9
3.86 4.02 4.67 5.90 6.11 7.00

+SV (ρ = 0) (0.019) (0.019) (0.023) (0.008) (0.009) (0.010)
+SV (ρ 6= 0) [11.3] [11.1] [11.1] [11.2] [11.0] [10.9]

2.5 2.6 2.5 55.1 52.2 47.0

+Call

3.87 4.03 4.63 5.90 6.12 7.02
(0.017) (0.017) (0.017) (0.009) (0.010) (0.012)
[7.8] [7.7] [7.7] [7.8] [7.8] [7.7]
4.6 4.9 6.1 64.2 57.5 53.2

Delta

+Auxiliary

3.87 4.04 4.65 5.90 6.12 7.02
(0.009) (0.010) (0.015) (0.004) (0.005) (0.010)
[21.9] [21.9] [21.8] [22.0] [22.0] [22.2]
5.5 5.0 3.0 125.0 78.8 24.9

+Call

3.89 4.03 4.63 5.90 6.11 6.99
(0.008) (0.009) (0.010) (0.004) (0.005) (0.011)
[21.9] [21.9] [21.9] [22.0] [22.0] [22.0]
6.6 6.8 6.0 130.6 93.5 19.7

+SV (ρ = 0)

3.88 4.03 4.64 5.89 6.12 7.03
(0.009) (0.010) (0.014) (0.004) (0.005) (0.010)
[25.0] [24.9] [24.8] [24.9] [24.9] [24.8]
5.0 4.6 2.8 120.9 74.7 23.0

+SV (ρ 6= 0)

3.88 4.03 4.64 5.89 6.12 7.01
(0.005) (0.006) (0.011) (0.004) (0.006) (0.016)
[22.2] [22.1] [22.0] [22.5] [22.3] [22.4]
17.0 14.5 5.6 123.4 63.7 9.8
3.88 4.03 4.63 5.90 6.12 7.02

+SV (ρ = 0) (0.005) (0.006) (0.011) (0.003) (0.005) (0.010)
+SV (ρ 6= 0) [25.3] [25.1] [25.0] [25.3] [25.1] [25.0]

15.7 13.0 5.0 138.0 78.8 23.4

All

3.87 4.04 4.65 5.89 6.13 7.02
(0.005) (0.005) (0.008) (0.003) (0.004) (0.008)
[25.5] [25.1] [25.2] [25.4] [25.2] [25.1]
17.1 16.4 8.7 178.8 128.1 38.8

Table 5.46: CVs in Combinations in the Heston Model: Average Rate Options
(ρ = −0.9)
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Case 1 (V0 = µ = 0.25) Case 2 (V0 = µ = 0.25)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
11.73 12.13 13.75 12.44 12.95 14.62

(0.019) (0.019) (0.022) (0.021) (0.022) (0.025)
[735.5] [731.3] [736.8] [740.0] [734.5] [729.1]

Auxiliary

+SV (ρ = 0)

11.71 12.08 13.77 12.45 12.89 14.70
(0.032) (0.035) (0.041) (0.012) (0.014) (0.017)
[10.8] [10.6] [10.6] [10.9] [10.8] [10.6]
22.9 20.6 20.2 189.8 170.3 144.4

+SV (ρ 6= 0)

11.69 12.06 13.79 12.44 12.88 14.67
(0.040) (0.041) (0.051) (0.017) (0.018) (0.021)
[8.3] [8.0] [8.0] [8.2] [8.0] [8.0]
19.3 19.9 17.1 142.9 133.4 127.7
11.79 12.16 13.75 12.45 12.91 14.70

+SV (ρ = 0) (0.027) (0.028) (0.036) (0.013) (0.013) (0.017)
+SV (ρ 6= 0) [11.2] [11.0] [10.9] [11.3] [11.0] [11.1]

30.2 31.3 25.5 181.7 178.9 145.5

+Call

11.75 12.15 13.77 12.43 12.91 14.67
(0.047) (0.051) (0.057) (0.015) (0.016) (0.020)
[7.8] [7.7] [7.8] [7.8] [7.7] [7.7]
14.6 13.4 14.2 177.7 169.7 147.7

Delta

+Auxiliary

11.75 12.16 13.78 12.44 12.85 14.70
(0.021) (0.024) (0.044) (0.015) (0.016) (0.021)
[21.9] [21.9] [21.8] [21.9] [21.8] [21.8]
26.2 20.7 8.3 65.0 58.7 45.1

+Call

11.75 12.17 13.79 12.44 12.91 14.68
(0.019) (0.020) (0.032) (0.014) (0.015) (0.032)
[21.8] [21.9] [21.8] [21.8] [21.8] [22.1]
33.5 31.8 16.0 79.8 68.6 20.0

+SV (ρ = 0)

11.77 12.14 13.69 12.44 12.89 14.69
(0.019) (0.022) (0.034) (0.012) (0.013) (0.017)
[25.0] [24.8] [24.7] [25.0] [24.9] [25.0]
28.6 23.2 12.4 83.1 77.5 60.6

+SV (ρ 6= 0)

11.75 12.17 13.74 12.45 12.91 14.70
(0.015) (0.019) (0.039) (0.015) (0.021) (0.048)
[22.2] [22.1] [22.1] [22.3] [22.3] [22.1]
49.3 33.7 10.4 60.6 37.1 8.8
11.71 12.14 13.80 12.46 12.91 14.70

+SV (ρ = 0) (0.014) (0.016) (0.027) (0.013) (0.013) (0.017)
+SV (ρ 6= 0) [25.4] [25.1] [25.0] [25.5] [25.2] [25.2]

53.9 41.5 18.7 77.4 76.5 60.0

All

11.75 12.15 13.76 12.45 12.88 14.66
(0.012) (0.013) (0.021) (0.011) (0.011) (0.013)
[25.6] [25.2] [25.2] [25.6] [25.2] [25.3]
66.3 61.5 32.2 106.1 107.7 103.5

Table 5.47: CVs in Combinations in the Heston Model: Average Rate Options
(V0 = µ = 0.25)
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Average Rate Options, Case 1

Resets Plain
GBM SABR SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

5.10 5.13 5.11 5.13 5.12 5.13 5.12
(0.006) (0.013) (0.011) (0.025) (0.007) (0.022) (0.005)
[601.1] [6.6] [22.3] [6.4] [7.6] [8.1] [9.8]

- 17.5 6.6 4.7 50.0 4.7 64.5

16

4.44 4.41 4.43 4.41 4.43 4.45 4.43
(0.005) (0.011) (0.005) (0.026) (0.006) (0.020) (0.005)
[601.2] [6.6] [22.0] [6.4] [7.6] [8.1] [9.8]

- 19.0 24.0 3.5 56.8 4.7 71.7

64

4.27 4.26 4.26 4.24 4.26 4.26 4.26
(0.005) (0.010) (0.004) (0.026) (0.006) (0.019) (0.004)
[603.3] [6.6] [22.0] [6.4] [7.7] [8.2] [10.0]

- 18.9 31.1 3.2 55.2 4.6 74.4

Average Rate Options, Case 2

Resets Plain
GBM SABR SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

9.95 9.99 9.97 10.03 9.96 9.92 9.97
(0.013) (0.037) (0.030) (0.061) (0.019) (0.049) (0.014)
[603.6] [6.5] [22.4] [6.4] [7.6] [8.1] [9.8]

- 12.0 5.5 4.6 39.6 5.5 57.5

16

8.70 8.75 8.72 8.64 8.71 8.73 8.71
(0.012) (0.029) (0.014) (0.063) (0.015) (0.044) (0.011)
[604.2] [6.6] [22.0] [6.4] [7.6] [8.1] [9.8]

- 14.6 18.0 3.3 45.5 5.3 64.1

64

8.39 8.40 8.40 8.32 8.39 8.41 8.41
(0.011) (0.027) (0.012) (0.061) (0.015) (0.042) (0.011)
[602.7] [6.6] [22.0] [6.4] [7.7] [8.2] [10.0]

- 15.4 23.8 3.2 47.2 5.2 63.1

Table 5.48: Efficiency Gains in the SABR Model: Average Rate Options (ATM)
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Average Rate Options, Case 1

Resets Plain
GBM SABR SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

22.08 22.09 22.10 22.09 22.09 22.08 22.09
(0.008) (0.018) (0.014) (0.034) (0.008) (0.041) (0.008)
[608.4] [6.6] [22.3] [6.4] [8.0] [8.0] [9.7]

- 19.4 10.2 5.5 73.1 3.1 66.2

16

21.61 21.63 21.62 21.57 21.63 21.58 21.62
(0.007) (0.015) (0.004) (0.035) (0.007) (0.037) (0.007)
[607.9] [6.6] [22.3] [6.4] [8.0] [8.1] [9.7]

- 21.8 115.1 4.0 88.7 3.0 70.8

64

21.48 21.50 21.49 21.50 21.50 21.50 21.50
(0.007) (0.014) (0.002) (0.035) (0.007) (0.035) (0.007)
[610.4] [6.6] [22.3] [6.4] [8.1] [8.2] [9.9]

- 22.9 453.7 3.8 84.1 3.0 70.0

Average Rate Options, Case 2

Resets Plain
GBM SABR SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

23.63 23.68 23.62 23.76 23.60 23.69 23.63
(0.018) (0.041) (0.034) (0.079) (0.021) (0.084) (0.016)
[612.7] [6.6] [22.5] [6.4] [8.0] [8.0] [9.7]

- 18.5 7.9 5.2 60.2 3.7 79.1

16

22.70 22.67 22.71 22.72 22.72 22.57 22.73
(0.017) (0.034) (0.013) (0.084) (0.014) (0.077) (0.013)
[609.8] [6.6] [22.5] [6.4] [8.0] [8.1] [9.7]

- 21.9 46.0 3.7 104.2 3.5 103.1

64

22.46 22.45 22.48 22.59 22.49 22.42 22.46
(0.016) (0.032) (0.009) (0.083) (0.013) (0.075) (0.015)
[611.7] [6.6] [22.5] [6.4] [8.1] [8.2] [9.9]

- 23.7 82.3 3.6 109.7 3.5 73.3

Table 5.49: Efficiency Gains in the SABR Model: Average Rate Options (ITM)
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Average Rate Options, Case 1

Resets Plain
GBM SABR SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

0.056 0.052 0.052 0.057 0.056 0.055 0.055
(0.0005) (0.0034) (0.0031) (0.0045) (0.0013) (0.0004) (0.0003)
[608.1] [6.6] [22.4] [6.5] [7.6] [8.2] [9.8]

- 2.3 0.8 1.3 14.0 122.8 166.9

16

0.018 0.021 0.016 0.016 0.018 0.017 0.017
(0.0003) (0.0027) (0.0010) (0.0024) (0.0009) (0.0002) (0.0001)
[608.8] [6.6] [22.9] [6.5] [7.6] [8.3] [9.8]

- 1.0 2.1 1.2 7.7 172.1 259.9

64

0.012 0.013 0.012 0.010 0.012 0.012 0.012
(0.0002) (0.0018) (0.0007) (0.0019) (0.0007) (0.0001) (0.0001)
[607.3] [6.6] [22.5] [6.6] [7.7] [8.4] [10.0]

- 1.3 2.5 1.3 7.5 203.6 251.5

Average Rate Options, Case 2

Resets Plain
GBM SABR SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

2.69 2.68 2.72 2.69 2.70 2.67 2.69
(0.007) (0.025) (0.024) (0.038) (0.012) (0.017) (0.007)
[608.1] [6.6] [22.4] [6.5] [7.6] [8.2] [9.8]

- 7.1 2.4 3.1 29.4 12.9 56.9

16

1.87 1.90 1.89 1.85 1.89 1.88 1.89
(0.005) (0.021) (0.011) (0.035) (0.008) (0.012) (0.005)
[605.4] [6.6] [22.5] [6.5] [7.6] [8.3] [9.8]

- 6.5 6.5 2.3 32.9 14.1 65.6

64

1.70 1.70 1.70 1.63 1.69 1.70 1.70
(0.005) (0.019) (0.010) (0.033) (0.008) (0.011) (0.005)
[605.0] [6.6] [22.4] [6.5] [7.7] [8.3] [10.0]

- 6.8 7.6 2.1 35.2 14.4 64.1

Table 5.50: Efficiency Gains in the SABR Model: Average Rate Options (OTM)
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Average Rate Options, Case 1 (ρ = 0.9)

Resets Plain
GBM SABR SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

4.87 4.85 4.88 4.90 4.85 4.87 4.83
(0.007) (0.012) (0.013) (0.030) (0.014) (0.061) (0.014)
[606.6] [6.6] [22.0] [6.5] [7.5] [8.1] [9.7]

- 28.0 7.7 4.9 18.5 0.9 14.2

16

4.21 4.22 4.23 4.25 4.25 4.33 4.21
(0.006) (0.010) (0.004) (0.030) (0.012) (0.054) (0.012)
[607.6] [6.6] [22.0] [6.5] [7.6] [8.1] [9.8]

- 33.7 57.9 3.6 19.5 0.9 15.9

64

4.07 4.07 4.07 4.07 4.07 3.95 4.07
(0.006) (0.010) (0.003) (0.031) (0.011) (0.050) (0.011)
[607.3] [6.6] [22.0] [6.5] [7.7] [8.3] [10.0]

- 29.4 106.5 3.2 19.3 0.9 16.4

Average Rate Options, Case 2 (ρ = 0.9)

Resets Plain
GBM SABR SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

9.75 9.82 9.78 9.71 9.78 10.00 9.69
(0.017) (0.037) (0.037) (0.077) (0.042) (0.161) (0.039)
[604.8] [6.6] [22.0] [6.5] [7.6] [8.1] [9.7]

- 20.1 5.9 4.7 13.3 0.9 11.9

16

8.54 8.57 8.55 8.54 8.53 8.37 8.51
(0.015) (0.026) (0.014) (0.079) (0.033) (0.131) (0.031)
[604.6] [6.6] [21.9] [6.5] [7.6] [8.1] [9.8]

- 29.5 30.3 3.3 15.7 0.9 13.9

64

8.24 8.26 8.26 8.33 8.21 8.21 8.28
(0.014) (0.027) (0.012) (0.080) (0.032) (0.127) (0.030)
[608.5] [6.7] [22.0] [6.5] [7.7] [8.2] [10.0]

- 26.1 41.6 3.0 15.6 0.9 13.4

Table 5.51: Efficiency Gains in the SABR Model: Average Rate Options (ρ = 0.9)
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Average Rate Options, Case 1 (ρ = −0.9)

Resets Plain
GBM SABR SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

5.14 5.16 5.13 5.14 5.14 5.07 5.15
(0.005) (0.011) (0.010) (0.024) (0.011) (0.045) (0.010)
[606.5] [6.6] [22.5] [6.5] [7.6] [8.1] [9.7]

- 19.6 7.1 4.5 18.0 1.0 15.8

16

4.47 4.45 4.46 4.48 4.46 4.41 4.46
(0.005) (0.010) (0.004) (0.024) (0.009) (0.039) (0.009)
[601.1] [6.6] [22.1] [6.5] [7.6] [8.2] [9.7]

- 21.3 35.0 3.3 19.7 1.0 16.3

64

4.29 4.30 4.29 4.29 4.30 4.30 4.29
(0.004) (0.009) (0.003) (0.024) (0.009) (0.038) (0.009)
[606.2] [6.6] [22.1] [6.5] [7.7] [8.3] [9.9]

- 24.3 52.7 3.2 21.5 1.0 16.6

Average Rate Options, Case 2 (ρ = −0.9)

Resets Plain
GBM SABR SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

9.94 9.95 9.94 9.97 9.94 9.94 9.89
(0.012) (0.032) (0.025) (0.056) (0.029) (0.103) (0.029)
[605.8] [6.6] [23.1] [6.4] [7.6] [8.1] [9.7]

- 13.7 6.2 4.5 14.8 1.1 11.4

16

8.70 8.67 8.68 8.80 8.71 8.69 8.66
(0.011) (0.027) (0.011) (0.057) (0.024) (0.091) (0.024)
[604.2] [6.6] [22.7] [6.5] [7.6] [8.2] [9.7]

- 14.9 27.9 3.4 16.8 1.0 13.0

64

8.40 8.36 8.38 8.40 8.36 8.29 8.39
(0.010) (0.025) (0.008) (0.057) (0.022) (0.087) (0.021)
[604.7] [6.6] [22.7] [6.5] [7.7] [8.3] [9.9]

- 15.6 40.4 3.1 17.2 1.1 14.7

Table 5.52: Efficiency Gains in the SABR Model: Average Rate Options (ρ = −0.9)
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Average Rate Options, Case 1 (V0 = 8)

Resets Plain
GBM SABR SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

14.69 14.69 14.76 14.82 14.75 14.73 14.75
(0.020) (0.067) (0.047) (0.092) (0.029) (0.075) (0.023)
[603.0] [6.6] [22.4] [6.4] [7.6] [8.1] [9.7]

- 8.6 5.0 4.6 39.8 5.4 51.1

16

12.94 12.87 12.91 12.84 12.88 12.85 12.88
(0.018) (0.056) (0.024) (0.095) (0.023) (0.066) (0.018)
[601.2] [6.6] [22.8] [6.4] [7.6] [8.2] [9.8]

- 9.4 14.1 3.3 46.8 5.5 59.4

64

12.45 12.46 12.46 12.34 12.50 12.44 12.45
(0.017) (0.054) (0.021) (0.095) (0.023) (0.063) (0.017)
[606.0] [6.6] [23.0] [6.5] [7.7] [8.3] [10.0]

- 9.5 18.1 3.1 45.4 5.4 63.0

Average Rate Options, Case 2 (V0 = 3)

Resets Plain
GBM SABR SV

Auxiliary Delta Call (ρ = 0) (ρ 6= 0) Both

4

14.00 14.01 13.98 14.13 14.04 14.03 13.99
(0.020) (0.061) (0.045) (0.091) (0.029) (0.073) (0.022)
[603.8] [6.6] [22.5] [6.4] [7.7] [8.1] [9.7]

- 9.8 5.3 4.5 36.6 5.6 49.7

16

12.30 12.26 12.29 12.32 12.28 12.21 12.23
(0.018) (0.050) (0.023) (0.090) (0.024) (0.065) (0.018)
[601.7] [6.6] [22.5] [6.4] [7.7] [8.2] [9.7]

- 11.2 16.1 3.6 42.2 5.4 57.3

64

11.84 11.79 11.87 11.90 11.86 11.90 11.84
(0.017) (0.045) (0.020) (0.092) (0.022) (0.063) (0.018)
[605.5] [6.7] [22.6] [6.5] [7.8] [8.3] [9.9]

- 12.7 19.6 3.2 44.9 5.3 55.7

Table 5.53: Efficiency Gains in the SABR Model: Average Rate Options (High
Volatility)
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Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
4.27 4.44 5.10 8.39 8.70 9.95

(0.005) (0.005) (0.006) (0.011) (0.012) (0.013)
[603.3] [601.2] [601.1] [602.7] [604.2] [603.6]

Auxiliary

+SV (ρ = 0)

4.26 4.44 5.11 8.37 8.69 9.93
(0.005) (0.006) (0.007) (0.014) (0.015) (0.019)
[8.3] [8.2] [8.3] [8.3] [8.2] [8.1]
54.2 53.7 46.9 44.5 42.6 36.8

+SV (ρ 6= 0)

4.27 4.42 5.11 8.41 8.70 9.92
(0.008) (0.008) (0.010) (0.021) (0.022) (0.026)
[8.4] [8.2] [8.2] [8.4] [8.3] [8.2]
26.9 27.4 24.8 21.4 21.5 19.9
4.25 4.43 5.11 8.39 8.72 9.92

+SV (ρ = 0) (0.004) (0.004) (0.005) (0.011) (0.011) (0.015)
+SV (ρ 6= 0) [10.0] [9.9] [9.8] [10.0] [9.8] [9.8]

76.0 80.5 70.2 64.4 65.6 48.8

+Call

4.25 4.43 5.12 8.38 8.67 9.95
(0.009) (0.010) (0.011) (0.026) (0.026) (0.031)
[6.6] [6.5] [6.5] [6.6] [6.6] [6.5]
22.8 22.8 22.7 17.1 18.0 16.6

Delta

+Auxiliary

4.26 4.43 5.10 8.40 8.73 9.95
(0.004) (0.005) (0.010) (0.012) (0.014) (0.025)
[22.1] [22.0] [22.1] [22.0] [22.3] [22.1]
30.6 24.3 9.3 24.1 18.3 7.8

+Call

4.26 4.42 5.11 8.38 8.72 9.98
(0.004) (0.005) (0.008) (0.011) (0.012) (0.020)
[22.0] [22.3] [22.0] [22.2] [21.9] [22.3]
35.9 32.0 13.2 30.0 27.2 12.5

+SV (ρ = 0)

4.27 4.43 5.11 8.41 8.71 9.96
(0.004) (0.005) (0.007) (0.011) (0.012) (0.017)
[24.2] [23.8] [24.1] [24.1] [24.2] [23.8]
32.8 29.3 18.5 26.5 23.2 15.9

+SV (ρ 6= 0)

4.26 4.44 5.12 8.40 8.71 9.95
(0.003) (0.004) (0.009) (0.008) (0.010) (0.022)
[23.8] [23.7] [24.0] [23.9] [23.8] [23.7]
73.7 48.8 10.2 53.1 35.6 9.2
4.26 4.43 5.11 8.39 8.71 9.95

+SV (ρ = 0) (0.002) (0.003) (0.005) (0.007) (0.008) (0.012)
+SV (ρ 6= 0) [26.2] [25.4] [25.5] [25.5] [25.4] [25.3]

86.2 66.2 32.2 65.3 51.9 27.1

All

4.26 4.43 5.11 8.40 8.72 9.96
(0.002) (0.003) (0.004) (0.006) (0.007) (0.011)
[26.2] [25.9] [25.9] [25.6] [25.6] [25.4]
96.9 79.7 39.6 73.9 67.0 35.6

Table 5.54: CVs in Combinations in the SABR Model: Average Rate Options
(ATM)
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Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
21.48 21.61 22.08 22.46 22.70 23.63

(0.007) (0.007) (0.008) (0.016) (0.017) (0.018)
[610.4] [607.9] [608.4] [611.7] [609.8] [612.7]

Auxiliary

+SV (ρ = 0)

21.50 21.62 22.10 22.47 22.71 23.65
(0.007) (0.007) (0.008) (0.013) (0.014) (0.018)
[8.3] [8.2] [8.3] [8.3] [8.2] [8.1]
85.3 86.0 74.9 108.6 104.7 77.7

+SV (ρ 6= 0)

21.48 21.62 22.06 22.51 22.75 23.71
(0.014) (0.014) (0.017) (0.028) (0.029) (0.034)
[8.3] [8.2] [8.2] [8.3] [8.2] [8.2]
19.9 19.9 17.5 23.8 23.4 21.8
21.48 21.62 22.11 22.49 22.70 23.65

+SV (ρ = 0) (0.007) (0.007) (0.008) (0.012) (0.013) (0.016)
+SV (ρ 6= 0) [10.2] [9.8] [9.9] [10.0] [10.2] [9.8]

66.7 74.4 66.3 106.1 95.4 81.5

+Call

21.50 21.57 22.08 22.48 22.69 23.59
(0.014) (0.014) (0.016) (0.031) (0.032) (0.036)
[6.7] [6.6] [6.8] [6.6] [6.7] [6.5]
24.4 24.9 24.6 25.4 24.8 24.1

Delta

+Auxiliary

21.50 21.61 22.10 22.48 22.69 23.68
(0.002) (0.003) (0.011) (0.009) (0.012) (0.027)
[22.5] [22.6] [22.5] [22.7] [23.4] [22.6]
529.6 122.5 15.1 80.9 50.2 13.1

+Call

21.50 21.61 22.10 22.50 22.70 23.65
(0.002) (0.003) (0.009) (0.008) (0.010) (0.022)
[22.8] [22.4] [22.9] [22.6] [22.9] [22.9]
564.0 211.9 23.3 105.5 78.8 18.9

+SV (ρ = 0)

21.50 21.61 22.10 22.48 22.71 23.66
(0.001) (0.003) (0.007) (0.007) (0.008) (0.014)
[24.5] [24.2] [24.2] [24.4] [24.3] [24.8]
813.4 178.8 36.7 135.8 97.4 40.1

+SV (ρ 6= 0)

21.49 21.62 22.09 22.48 22.69 23.63
(0.002) (0.003) (0.013) (0.008) (0.011) (0.030)
[24.7] [24.1] [24.1] [24.6] [24.3] [24.2]
433.7 110.5 10.6 94.6 53.9 9.4
21.49 21.61 22.08 22.48 22.70 23.65

+SV (ρ = 0) (0.001) (0.003) (0.007) (0.006) (0.007) (0.013)
+SV (ρ 6= 0) [26.0] [25.7] [26.1] [26.0] [25.9] [26.4]

767.2 175.8 34.9 193.2 126.6 48.1

All

21.50 21.61 22.09 22.49 22.72 23.64
(0.001) (0.002) (0.006) (0.005) (0.006) (0.012)
[26.2] [25.8] [26.0] [26.2] [26.2] [26.1]

1014.1 287.3 47.5 222.0 175.2 59.7

Table 5.55: CVs in Combinations in the SABR Model: Average Rate Options (ITM)
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Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
0.012 0.018 0.056 1.70 1.87 2.69

(0.0002) (0.0003) (0.0005) (0.005) (0.005) (0.007)
[607.3] [608.8] [608.1] [605.0] [605.4] [608.1]

Auxiliary

+SV (ρ = 0)

0.012 0.019 0.054 1.70 1.87 2.70
(0.0007) (0.0009) (0.0013) (0.008) (0.008) (0.012)

[8.3] [8.2] [8.1] [8.3] [8.1] [8.1]
6.7 6.6 11.9 30.4 31.0 25.7

+SV (ρ 6= 0)

0.012 0.018 0.056 1.71 1.88 2.70
(0.0002) (0.0002) (0.0004) (0.009) (0.009) (0.013)

[8.4] [8.2] [8.2] [8.4] [8.2] [8.2]
150.1 174.4 129.4 22.9 25.1 23.3
0.012 0.017 0.055 1.68 1.88 2.69

+SV (ρ = 0) (0.0001) (0.0001) (0.0003) (0.005) (0.005) (0.007)
+SV (ρ 6= 0) [10.1] [9.9] [9.8] [10.3] [9.8] [10.0]

238.2 253.7 171.9 62.5 66.5 56.9

+Call

0.014 0.017 0.064 1.70 1.91 2.71
(0.0016) (0.0018) (0.0038) (0.017) (0.018) (0.021)

[6.6] [6.6] [6.8] [6.7] [6.6] [6.7]
1.6 2.2 1.8 7.7 8.5 10.2

Delta

+Auxiliary

0.013 0.017 0.053 1.69 1.89 2.70
(0.0007) (0.0010) (0.0028) (0.010) (0.011) (0.020)
[22.8] [22.7] [22.8] [22.4] [22.7] [22.9]
2.6 2.2 1.0 7.6 6.2 3.1

+Call

0.011 0.018 0.055 1.68 1.88 2.69
(0.0007) (0.0010) (0.0029) (0.009) (0.010) (0.016)
[22.5] [22.5] [22.4] [22.4] [22.3] [22.5]
2.5 2.2 0.9 8.7 8.6 5.2

+SV (ρ = 0)

0.013 0.017 0.053 1.69 1.87 2.70
(0.0006) (0.0007) (0.0012) (0.007) (0.008) (0.012)
[24.0] [24.0] [24.5] [24.0] [24.1] [24.3]
3.8 4.1 4.7 11.7 10.6 8.8

+SV (ρ 6= 0)

0.012 0.018 0.056 1.70 1.88 2.68
(0.0001) (0.0002) (0.0004) (0.006) (0.007) (0.012)
[24.2] [24.0] [24.3] [24.5] [23.9] [23.9]
56.3 56.7 44.5 20.7 16.8 8.1
0.012 0.017 0.055 1.70 1.88 2.70

+SV (ρ = 0) (0.0001) (0.0001) (0.0003) (0.005) (0.005) (0.007)
+SV (ρ 6= 0) [26.2] [26.3] [26.1] [26.2] [25.9] [26.3]

90.4 93.8 59.1 28.2 25.9 20.5

All

0.012 0.017 0.055 1.69 1.88 2.70
(0.0001) (0.0001) (0.0003) (0.004) (0.005) (0.007)
[26.5] [26.1] [26.1] [26.3] [26.3] [26.1]
122.3 102.4 66.3 37.1 32.7 27.2

Table 5.56: CVs in Combinations in the SABR Model: Average Rate Options
(OTM)
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Case 1 (ρ = 0.9) Case 2 (ρ = 0.9)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
4.07 4.21 4.87 8.24 8.54 9.75

(0.006) (0.006) (0.007) (0.014) (0.015) (0.017)
[607.3] [607.6] [606.6] [608.5] [604.6] [604.8]

Auxiliary

+SV (ρ = 0)

4.07 4.23 4.86 8.23 8.56 9.70
(0.009) (0.010) (0.011) (0.023) (0.026) (0.029)
[8.3] [8.2] [8.1] [8.3] [8.1] [8.1]
30.6 27.5 30.2 29.0 24.5 25.4

+SV (ρ 6= 0)

4.08 4.23 4.87 8.17 8.55 9.80
(0.010) (0.010) (0.012) (0.024) (0.027) (0.032)
[8.4] [8.2] [8.2] [8.4] [8.2] [8.2]
22.7 25.6 23.0 26.2 22.6 21.0
4.06 4.22 4.86 8.28 8.57 9.82

+SV (ρ = 0) (0.008) (0.009) (0.011) (0.026) (0.027) (0.032)
+SV (ρ 6= 0) [10.0] [9.8] [9.8] [10.0] [10.0] [9.8]

27.6 26.5 25.3 18.7 18.1 17.7

+Call

4.08 4.23 4.87 8.26 8.57 9.76
(0.009) (0.009) (0.011) (0.024) (0.025) (0.028)
[6.6] [6.6] [6.6] [6.8] [6.6] [6.6]
36.4 39.0 36.6 31.2 33.4 34.1

Delta

+Auxiliary

4.07 4.23 4.86 8.25 8.57 9.77
(0.003) (0.004) (0.010) (0.011) (0.015) (0.029)
[22.6] [22.3] [22.6] [22.4] [22.4] [22.6]
104.8 56.8 13.6 46.6 27.0 9.6

+Call

4.07 4.23 4.85 8.26 8.55 9.81
(0.003) (0.003) (0.008) (0.010) (0.011) (0.023)
[22.7] [22.3] [22.4] [22.2] [22.5] [22.3]
119.2 84.7 18.9 57.5 52.0 15.3

+SV (ρ = 0)

4.07 4.23 4.87 8.25 8.54 9.76
(0.003) (0.004) (0.010) (0.011) (0.014) (0.032)
[24.3] [23.8] [24.0] [23.8] [24.2] [24.0]
104.2 55.0 11.6 45.9 26.2 7.2

+SV (ρ 6= 0)

4.07 4.22 4.87 8.26 8.56 9.80
(0.003) (0.004) (0.013) (0.010) (0.013) (0.038)
[24.1] [24.1] [23.8] [24.1] [23.8] [23.8]
120.0 55.9 7.3 46.9 31.6 5.2
4.07 4.23 4.85 8.26 8.54 9.80

+SV (ρ = 0) (0.003) (0.004) (0.010) (0.011) (0.013) (0.035)
+SV (ρ 6= 0) [26.0] [26.1] [25.8] [26.1] [25.4] [25.7]

108.3 54.5 11.2 40.8 29.1 5.8

All

4.07 4.23 4.86 8.25 8.56 9.77
(0.002) (0.003) (0.007) (0.009) (0.010) (0.019)
[26.1] [25.8] [25.7] [25.9] [25.4] [25.8]
135.4 89.1 24.5 57.9 51.6 19.2

Table 5.57: CVs in Combinations in the SABR Model: Average Rate Options (ρ =
0.9)

122



Case 1 (ρ = −0.9) Case 2 (ρ = −0.9)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
4.29 4.47 5.14 8.40 8.70 9.94

(0.004) (0.005) (0.005) (0.010) (0.011) (0.012)
[606.2] [601.1] [606.5] [604.7] [604.2] [605.8]

Auxiliary

+SV (ρ = 0)

4.30 4.44 5.15 8.37 8.74 9.99
(0.007) (0.008) (0.010) (0.021) (0.022) (0.026)
[8.3] [8.1] [8.1] [8.4] [8.2] [8.1]
26.3 24.0 21.9 18.1 17.9 16.9

+SV (ρ 6= 0)

4.30 4.46 5.16 8.41 8.71 9.96
(0.008) (0.009) (0.011) (0.023) (0.025) (0.030)
[8.3] [8.2] [8.3] [8.4] [8.2] [8.2]
21.1 20.2 17.6 14.5 13.9 12.1
4.27 4.44 5.15 8.38 8.70 9.87

+SV (ρ = 0) (0.007) (0.008) (0.010) (0.020) (0.021) (0.026)
+SV (ρ 6= 0) [10.2] [9.9] [9.8] [10.0] [10.0] [9.8]

21.0 21.5 18.8 16.0 16.2 13.9

+Call

4.30 4.47 5.16 8.36 8.69 9.93
(0.008) (0.009) (0.010) (0.023) (0.024) (0.029)
[6.8] [6.7] [6.6] [6.6] [6.6] [6.6]
25.6 23.6 23.5 18.1 18.7 16.8

Delta

+Auxiliary

4.29 4.46 5.14 8.38 8.69 9.96
(0.003) (0.004) (0.008) (0.008) (0.010) (0.020)
[22.4] [22.1] [22.4] [22.3] [22.3] [22.3]
61.0 42.2 11.9 46.0 33.3 10.0

+Call

4.29 4.46 5.16 8.38 8.68 9.96
(0.003) (0.003) (0.007) (0.008) (0.009) (0.017)
[22.4] [22.4] [22.1] [22.4] [22.4] [22.2]
60.6 48.4 14.5 48.5 41.1 13.8

+SV (ρ = 0)

4.28 4.46 5.16 8.38 8.69 9.93
(0.003) (0.004) (0.007) (0.008) (0.009) (0.018)
[23.9] [24.0] [24.0] [23.9] [23.5] [23.5]
59.4 41.6 12.5 47.4 34.8 11.8

+SV (ρ 6= 0)

4.29 4.46 5.15 8.38 8.68 9.97
(0.003) (0.004) (0.010) (0.007) (0.009) (0.024)
[24.3] [23.7] [24.1] [24.0] [23.6] [23.6]
65.8 41.2 7.5 51.8 34.1 6.8
4.29 4.45 5.13 8.38 8.70 9.96

+SV (ρ = 0) (0.002) (0.003) (0.007) (0.007) (0.008) (0.018)
+SV (ρ 6= 0) [25.5] [25.3] [25.8] [25.7] [25.2] [25.7]

77.8 48.6 12.1 57.9 40.7 11.4

All

4.29 4.46 5.14 8.38 8.69 9.96
(0.002) (0.003) (0.006) (0.006) (0.007) (0.014)
[25.8] [25.4] [26.5] [25.6] [25.5] [25.5]
100.4 74.2 20.7 77.8 62.2 19.1

Table 5.58: CVs in Combinations in the SABR Model: Average Rate Options (ρ =
−0.9)
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Case 1 (V0 = 8) Case 2 (V0 = 3)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
12.45 12.94 14.69 11.84 12.30 14.00

(0.017) (0.018) (0.020) (0.017) (0.018) (0.020)
[606.0] [601.2] [603.0] [605.5] [601.7] [603.8]

Auxiliary

+SV (ρ = 0)

12.48 12.87 14.69 11.82 12.24 14.04
(0.022) (0.023) (0.028) (0.022) (0.023) (0.029)
[8.2] [8.1] [8.1] [8.2] [8.1] [8.1]
44.3 44.6 38.7 44.5 42.8 34.9

+SV (ρ 6= 0)

12.50 12.93 14.71 11.90 12.30 13.97
(0.038) (0.038) (0.046) (0.034) (0.036) (0.042)
[8.3] [8.2] [8.2] [8.3] [8.4] [8.2]
15.4 16.0 14.4 18.5 17.6 16.7
12.44 12.91 14.67 11.81 12.28 14.03

+SV (ρ = 0) (0.017) (0.018) (0.022) (0.017) (0.019) (0.023)
+SV (ρ 6= 0) [10.0] [9.8] [9.7] [10.1] [10.0] [9.7]

66.3 61.1 53.6 56.3 54.1 48.5

+Call

12.43 12.91 14.71 11.84 12.25 13.97
(0.045) (0.048) (0.054) (0.042) (0.044) (0.050)
[6.6] [6.6] [6.7] [6.8] [6.6] [6.7]
13.5 12.8 12.9 14.7 14.8 14.2

Delta

+Auxiliary

12.42 12.90 14.71 11.83 12.29 14.06
(0.020) (0.024) (0.043) (0.019) (0.022) (0.040)
[22.7] [22.3] [22.7] [22.7] [22.3] [22.5]
19.2 15.7 6.0 21.3 17.6 6.6

+Call

12.45 12.92 14.73 11.84 12.33 14.00
(0.018) (0.019) (0.031) (0.017) (0.018) (0.029)
[22.2] [22.6] [22.5] [22.3] [22.3] [22.3]
24.1 23.3 11.8 27.8 25.7 12.7

+SV (ρ = 0)

12.44 12.90 14.70 11.84 12.26 13.98
(0.018) (0.019) (0.026) (0.017) (0.019) (0.026)
[23.9] [23.8] [23.8] [23.9] [23.9] [24.0]
24.4 22.6 15.6 25.7 22.2 15.1

+SV (ρ 6= 0)

12.43 12.91 14.77 11.87 12.28 14.00
(0.014) (0.017) (0.035) (0.013) (0.016) (0.034)
[24.2] [24.3] [24.0] [24.4] [24.5] [24.2]
40.3 27.2 8.7 39.3 29.8 8.7
12.44 12.91 14.70 11.84 12.29 13.95

+SV (ρ = 0) (0.011) (0.013) (0.019) (0.011) (0.013) (0.019)
+SV (ρ 6= 0) [25.6] [25.6] [25.4] [26.0] [25.5] [25.4]

55.4 44.5 27.7 51.4 43.7 25.3

All

12.43 12.90 14.71 11.85 12.28 13.97
(0.010) (0.011) (0.022) (0.010) (0.011) (0.017)
[25.7] [25.5] [25.9] [26.1] [25.6] [26.0]
64.7 61.6 19.4 63.2 62.9 33.4

Table 5.59: CVs in Combinations in the SABR Model: Average Rate Options (High
Volatility)
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Average Rate Options, Case 1

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

4.64 4.64 4.64 4.65 4.63 4.64
(0.006) (0.012) (0.013) (0.007) (0.025) (0.006)
[599.0] [6.5] [20.9] [7.6] [8.0] [9.6]

- 24.7 6.5 66.7 4.7 68.9

16

4.06 4.03 4.04 4.05 4.06 4.05
(0.005) (0.010) (0.005) (0.006) (0.021) (0.005)
[598.4] [6.5] [20.9] [7.6] [8.0] [9.7]

- 26.5 29.2 68.8 4.8 77.9

64

3.90 3.91 3.91 3.90 3.91 3.90
(0.005) (0.010) (0.004) (0.005) (0.021) (0.004)
[610.8] [6.6] [21.0] [7.7] [8.3] [10.0]

- 26.0 42.7 70.7 4.7 83.5

Average Rate Options, Case 2

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

8.04 8.06 8.06 8.04 8.04 8.07
(0.011) (0.021) (0.025) (0.010) (0.045) (0.009)
[602.1] [6.5] [21.0] [7.6] [8.1] [9.6]

- 26.7 5.8 106.8 4.5 105.5

16

6.96 7.02 6.97 6.98 7.06 6.97
(0.010) (0.018) (0.009) (0.008) (0.039) (0.007)
[598.0] [6.5] [21.0] [7.6] [8.1] [9.7]

- 27.2 30.0 112.4 4.4 123.5

64

6.70 6.74 6.69 6.71 6.68 6.70
(0.009) (0.017) (0.007) (0.008) (0.037) (0.007)
[601.0] [6.6] [21.0] [7.7] [8.3] [10.0]

- 26.9 48.1 115.2 4.4 120.5

Table 5.60: Efficiency Gains in the GARCH Model: Average Rate Options (ATM)
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Average Rate Options, Case 1

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

21.10 21.11 21.09 21.10 21.12 21.10
(0.009) (0.016) (0.016) (0.007) (0.047) (0.007)
[604.0] [6.5] [22.2] [7.5] [8.0] [9.6]

- 32.5 9.8 133.4 3.1 101.5

16

20.83 20.86 20.84 20.83 20.85 20.83
(0.008) (0.014) (0.004) (0.006) (0.041) (0.006)
[599.6] [6.5] [21.7] [7.6] [8.1] [9.7]

- 34.4 124.7 135.6 3.1 107.0

64

20.76 20.75 20.77 20.78 20.76 20.78
(0.008) (0.013) (0.002) (0.006) (0.041) (0.006)
[601.3] [6.6] [21.7] [7.8] [8.3] [10.0]

- 34.0 521.0 141.9 2.9 111.5

Average Rate Options, Case 2

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

22.51 22.54 22.60 22.54 22.61 22.54
(0.015) (0.026) (0.030) (0.009) (0.074) (0.008)
[599.7] [6.5] [21.8] [7.6] [8.0] [9.6]

- 33.8 7.5 237.3 3.3 210.3

16

21.91 21.89 21.87 21.89 21.87 21.87
(0.014) (0.022) (0.009) (0.007) (0.066) (0.006)
[597.5] [6.6] [21.8] [7.8] [8.1] [9.7]

- 36.0 62.9 309.0 3.1 273.5

64

21.72 21.72 21.72 21.71 21.73 21.71
(0.013) (0.021) (0.006) (0.006) (0.064) (0.006)
[600.9] [6.6] [22.0] [7.7] [8.3] [10.0]

- 36.7 144.5 337.5 3.1 280.4

Table 5.61: Efficiency Gains in the GARCH Model: Average Rate Options (ITM)
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Average Rate Options, Case 1

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

0.13 0.12 0.12 0.13 0.13 0.13
(0.001) (0.004) (0.005) (0.002) (0.001) (0.001)
[600.0] [6.5] [21.6] [7.6] [8.0] [9.7]

- 4.5 1.0 26.7 39.2 70.1

16

0.05 0.05 0.05 0.05 0.05 0.05
(0.001) (0.003) (0.002) (0.001) (0.001) (0.001)
[601.8] [6.5] [21.6] [7.6] [8.1] [9.9]

- 3.7 3.3 23.7 42.7 67.6

64

0.039 0.046 0.042 0.040 0.040 0.039
(0.0005) (0.0027) (0.0012) (0.0010) (0.0006) (0.0004)
[602.0] [6.5] [21.8] [7.7] [8.3] [10.0]

- 2.7 4.3 18.7 44.9 66.1

Average Rate Options, Case 2

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

1.61 1.61 1.61 1.61 1.59 1.60
(0.005) (0.018) (0.019) (0.006) (0.014) (0.005)
[610.8] [6.5] [21.6] [7.6] [8.0] [9.7]

- 8.0 2.1 60.9 10.6 65.8

16

1.01 1.01 1.00 1.02 1.03 1.02
(0.004) (0.013) (0.007) (0.004) (0.010) (0.004)
[605.6] [6.5] [21.9] [7.7] [8.1] [9.8]

- 7.3 7.7 64.1 11.3 61.7

64

0.88 0.88 0.89 0.89 0.90 0.88
(0.003) (0.013) (0.005) (0.004) (0.009) (0.003)
[601.5] [6.6] [21.9] [7.7] [8.3] [10.1]

- 6.6 11.3 62.2 11.2 67.7

Table 5.62: Efficiency Gains in the GARCH Model: Average Rate Options (OTM)
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Average Rate Options, Case 1 (ρ = 0.9)

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

4.59 4.60 4.58 4.56 4.50 4.56
(0.007) (0.016) (0.014) (0.016) (0.065) (0.015)
[599.6] [6.5] [21.0] [7.5] [8.0] [9.8]

- 19.0 7.8 17.3 1.0 13.9

16

3.98 3.97 3.99 3.97 3.98 3.99
(0.006) (0.014) (0.005) (0.013) (0.057) (0.013)
[600.5] [6.5] [20.9] [7.6] [8.0] [9.9]

- 19.7 45.7 19.9 0.9 13.9

64

3.83 3.82 3.84 3.85 3.82 3.83
(0.006) (0.014) (0.004) (0.012) (0.055) (0.013)
[604.1] [6.5] [20.9] [7.7] [8.2] [10.0]

- 17.5 79.9 19.1 0.9 13.8

Average Rate Options, Case 2 (ρ = 0.9)

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

7.96 7.97 7.92 7.94 8.10 7.96
(0.013) (0.035) (0.029) (0.023) (0.117) (0.025)
[598.7] [6.5] [21.0] [7.6] [8.0] [9.7]

- 13.0 6.0 24.7 0.9 16.4

16

6.91 6.88 6.89 6.90 6.84 6.92
(0.011) (0.028) (0.011) (0.022) (0.100) (0.021)
[598.5] [6.5] [20.9] [7.6] [8.0] [9.8]

- 14.9 31.5 20.0 1.0 17.1

64

6.64 6.65 6.63 6.65 6.60 6.64
(0.011) (0.027) (0.009) (0.023) (0.096) (0.020)
[602.3] [6.6] [21.3] [7.7] [8.2] [10.1]

- 14.6 45.6 17.0 0.9 18.0

Table 5.63: Efficiency Gains in the GARCH Model: Average Rate Options (ρ = 0.9)
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Average Rate Options, Case 1 (ρ = −0.9)

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

4.65 4.60 4.63 4.63 4.66 4.62
(0.006) (0.010) (0.012) (0.011) (0.051) (0.011)
[605.8] [6.5] [20.9] [7.6] [8.0] [9.7]

- 33.0 6.9 21.9 1.0 17.6

16

4.03 4.04 4.04 4.04 4.05 4.03
(0.005) (0.008) (0.004) (0.009) (0.043) (0.010)
[600.6] [6.5] [20.9] [7.6] [8.0] [9.7]

- 36.1 37.8 24.7 1.0 17.4

64

3.88 3.90 3.89 3.89 3.90 3.91
(0.005) (0.008) (0.003) (0.009) (0.042) (0.009)
[597.1] [6.5] [21.1] [7.7] [8.3] [10.0]

- 34.7 61.7 23.7 1.0 17.7

Average Rate Options, Case 2 (ρ = −0.9)

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

8.03 8.06 8.04 8.06 8.04 8.04
(0.011) (0.017) (0.023) (0.016) (0.091) (0.017)
[598.3] [6.5] [20.9] [7.5] [8.0] [9.6]

- 37.6 5.9 35.3 1.0 25.2

16

6.94 6.95 6.97 6.96 6.92 6.97
(0.009) (0.014) (0.008) (0.014) (0.079) (0.013)
[600.1] [6.5] [20.9] [7.6] [8.0] [9.7]

- 37.7 35.3 36.4 1.0 29.8

64

6.70 6.73 6.70 6.68 6.66 6.70
(0.009) (0.013) (0.006) (0.013) (0.076) (0.013)
[598.9] [6.5] [20.9] [7.6] [8.3] [10.0]

- 41.1 63.8 36.4 1.0 29.2

Table 5.64: Efficiency Gains in the GARCH Model: Average Rate Options (ρ =
−0.9)
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Average Rate Options, Case 1 (V0 = µ = 0.25)

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

13.85 13.89 13.91 13.86 13.89 13.82
(0.023) (0.049) (0.052) (0.032) (0.088) (0.028)
[600.5] [6.5] [20.9] [7.6] [8.0] [9.6]

- 20.4 5.7 42.8 5.3 43.1

16

12.19 12.24 12.20 12.25 12.20 12.22
(0.020) (0.042) (0.023) (0.025) (0.077) (0.022)
[602.7] [6.5] [21.0] [7.6] [8.0] [9.7]

- 21.4 22.5 53.3 5.2 54.5

64

11.83 11.80 11.80 11.85 11.88 11.82
(0.019) (0.040) (0.019) (0.022) (0.075) (0.020)
[600.2] [6.6] [21.0] [7.7] [8.2] [10.0]

- 21.7 30.6 59.5 5.0 57.9

Average Rate Options, Case 2 (V0 = µ = 0.25)

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

14.54 14.52 14.48 14.56 14.61 14.54
(0.024) (0.045) (0.052) (0.026) (0.092) (0.025)
[600.6] [6.5] [21.0] [7.6] [8.0] [9.6]

- 25.5 5.9 65.3 5.0 54.8

16

12.78 12.76 12.76 12.78 12.65 12.78
(0.021) (0.039) (0.022) (0.021) (0.079) (0.018)
[601.7] [6.5] [21.0] [7.6] [8.0] [9.7]

- 25.4 25.9 80.2 5.2 80.0

64

12.33 12.40 12.34 12.31 12.26 12.35
(0.020) (0.035) (0.018) (0.019) (0.077) (0.017)
[605.2] [6.6] [21.0] [7.7] [8.2] [10.0]

- 29.8 35.9 81.7 4.8 78.4

Table 5.65: Efficiency Gains in the GARCH Model: Average Rate Options (V0 =
µ = 0.25)
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Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
3.90 4.06 4.64 6.70 6.96 8.04

(0.005) (0.005) (0.006) (0.009) (0.010) (0.011)
[610.8] [598.4] [599.0] [601.0] [598.0] [602.1]

Auxiliary

+SV (ρ = 0)

3.89 4.05 4.63 6.70 6.97 8.06
(0.005) (0.005) (0.006) (0.007) (0.008) (0.009)
[8.3] [8.2] [8.1] [8.5] [8.2] [8.2]
74.1 71.7 69.0 118.0 115.9 104.5

+SV (ρ 6= 0)

3.89 4.04 4.63 6.69 6.95 8.03
(0.008) (0.008) (0.009) (0.014) (0.015) (0.017)
[8.3] [8.1] [8.0] [8.3] [8.1] [8.0]
34.6 32.8 32.3 31.8 31.1 31.6
3.90 4.04 4.65 6.71 6.97 8.05

+SV (ρ = 0) (0.004) (0.004) (0.005) (0.006) (0.007) (0.008)
+SV (ρ 6= 0) [10.1] [9.8] [9.7] [10.1] [9.8] [9.7]

92.3 89.9 85.6 140.7 120.5 128.0

Delta

+Auxiliary

3.90 4.05 4.63 6.69 6.98 8.03
(0.004) (0.005) (0.010) (0.007) (0.010) (0.019)
[21.0] [21.2] [21.0] [21.3] [21.0] [21.1]
43.2 30.7 11.4 49.0 27.1 9.6

+SV (ρ = 0)

3.90 4.05 4.64 6.70 6.97 8.05
(0.004) (0.004) (0.006) (0.006) (0.007) (0.010)
[22.8] [22.7] [22.5] [22.8] [22.7] [22.8]
47.9 39.2 23.9 60.7 50.0 33.9

+SV (ρ 6= 0)

3.91 4.05 4.65 6.71 6.95 8.06
(0.003) (0.004) (0.010) (0.006) (0.008) (0.021)
[22.7] [22.6] [22.7] [22.7] [22.5] [22.5]
83.3 48.4 9.4 67.0 37.9 7.4
3.90 4.05 4.63 6.70 6.97 8.05

+SV (ρ = 0) (0.003) (0.003) (0.005) (0.005) (0.006) (0.008)
+SV (ρ 6= 0) [24.5] [24.5] [24.1] [24.4] [24.2] [24.1]

101.0 67.0 33.2 88.9 66.8 45.1

All

3.90 4.05 4.64 6.70 6.97 8.06
(0.003) (0.003) (0.005) (0.005) (0.006) (0.008)
[24.5] [24.2] [24.1] [24.7] [24.2] [24.2]
97.5 66.6 34.8 88.8 69.2 48.9

Table 5.66: CVs in Combinations in the GARCH Model: Average Rate Options
(ATM)
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Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
20.76 20.83 21.10 21.72 21.91 22.51

(0.008) (0.008) (0.009) (0.013) (0.014) (0.015)
[601.3] [599.6] [604.0] [600.9] [597.5] [599.7]

Auxiliary

+SV (ρ = 0)

20.77 20.84 21.08 21.72 21.87 22.55
(0.006) (0.006) (0.007) (0.006) (0.006) (0.008)
[8.3] [8.2] [8.2] [8.4] [8.2] [8.2]

149.1 143.1 127.8 401.0 376.7 288.4

+SV (ρ 6= 0)

20.75 20.83 21.08 21.73 21.86 22.53
(0.013) (0.013) (0.015) (0.019) (0.020) (0.023)
[8.4] [8.1] [8.1] [8.4] [8.2] [8.4]
30.0 29.6 29.4 33.7 32.9 31.9
20.77 20.84 21.10 21.72 21.87 22.54

+SV (ρ = 0) (0.006) (0.006) (0.007) (0.005) (0.006) (0.008)
+SV (ρ 6= 0) [10.3] [9.8] [9.7] [10.1] [9.8] [9.7]

119.2 127.2 116.1 350.1 306.6 237.2

Delta

+Auxiliary

20.77 20.83 21.11 21.72 21.88 22.47
(0.002) (0.004) (0.012) (0.006) (0.009) (0.023)
[22.0] [21.5] [21.5] [21.8] [21.7] [21.7]
526.5 130.3 18.3 151.4 59.7 12.0

+SV (ρ = 0)

20.77 20.84 21.09 21.71 21.87 22.54
(0.001) (0.003) (0.007) (0.004) (0.005) (0.008)
[23.4] [23.1] [23.1] [23.6] [23.3] [23.4]
884.9 215.6 55.5 350.6 199.8 88.7

+SV (ρ 6= 0)

20.77 20.84 21.09 21.72 21.87 22.55
(0.002) (0.004) (0.015) (0.006) (0.009) (0.028)
[23.3] [23.4] [23.2] [23.5] [23.3] [23.4]
494.5 115.0 10.8 139.2 58.4 8.0
20.77 20.83 21.10 21.71 21.88 22.54

+SV (ρ = 0) (0.001) (0.003) (0.006) (0.004) (0.005) (0.008)
+SV (ρ 6= 0) [25.2] [24.8] [24.7] [25.4] [25.4] [25.2]

854.9 193.6 52.9 336.6 193.3 88.8

All

20.77 20.83 21.09 21.72 21.87 22.55
(0.001) (0.003) (0.006) (0.003) (0.005) (0.007)
[25.1] [24.8] [24.7] [25.6] [25.1] [24.9]
870.3 203.2 54.4 351.6 200.7 108.5

Table 5.67: CVs in Combinations in the GARCH Model: Average Rate Options
(ITM)
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Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
0.039 0.053 0.128 0.88 1.01 1.61

(0.0005) (0.0006) (0.0010) (0.003) (0.004) (0.005)
[602.0] [601.8] [600.0] [601.5] [605.6] [610.8]

Auxiliary

+SV (ρ = 0)

0.040 0.052 0.128 0.89 1.02 1.62
(0.0009) (0.0009) (0.0014) (0.004) (0.004) (0.006)

[8.3] [8.1] [8.1] [8.3] [8.1] [8.1]
20.0 29.8 33.2 62.4 61.7 56.0

+SV (ρ 6= 0)

0.039 0.051 0.125 0.87 1.01 1.59
(0.0006) (0.0007) (0.0012) (0.007) (0.008) (0.011)

[8.3] [8.1] [8.0] [8.3] [8.1] [8.0]
39.4 50.1 46.2 16.5 16.3 17.3
0.039 0.051 0.127 0.88 1.01 1.61

+SV (ρ = 0) (0.0004) (0.0005) (0.0009) (0.003) (0.003) (0.005)
+SV (ρ 6= 0) [10.1] [9.8] [9.7] [10.1] [9.8] [9.7]

82.1 84.8 74.0 69.2 76.9 74.7

Delta

+Auxiliary

0.039 0.052 0.127 0.89 1.01 1.61
(0.0010) (0.0014) (0.0035) (0.005) (0.007) (0.016)
[21.7] [21.7] [21.7] [22.0] [21.9] [21.8]
5.9 4.3 2.2 11.9 7.4 2.8

+SV (ρ = 0)

0.039 0.050 0.126 0.88 1.01 1.61
(0.0008) (0.0008) (0.0015) (0.004) (0.004) (0.005)
[23.7] [23.3] [23.7] [23.7] [23.8] [23.7]
9.9 12.1 10.1 20.1 20.6 23.7

+SV (ρ 6= 0)

0.039 0.051 0.127 0.88 1.00 1.61
(0.0006) (0.0007) (0.0014) (0.004) (0.006) (0.012)
[23.6] [23.2] [23.3] [24.0] [23.3] [23.2]
17.0 17.6 12.8 16.6 10.8 4.8
0.040 0.052 0.125 0.89 1.02 1.60

+SV (ρ = 0) (0.0004) (0.0005) (0.0009) (0.003) (0.004) (0.004)
+SV (ρ 6= 0) [25.7] [25.0] [24.8] [25.2] [24.9] [25.0]

31.1 27.6 25.6 24.3 25.9 33.5

All

0.040 0.051 0.126 0.89 1.02 1.60
(0.0004) (0.0005) (0.0009) (0.003) (0.003) (0.004)
[25.5] [25.0] [24.8] [25.3] [25.2] [24.8]
40.2 30.4 30.8 27.9 28.9 34.2

Table 5.68: CVs in Combinations in the GARCH Model: Average Rate Options
(OTM)
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Case 1 (ρ = 0.9) Case 2 (ρ = 0.9)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
3.83 3.98 4.59 6.64 6.91 7.96

(0.006) (0.006) (0.007) (0.011) (0.011) (0.013)
[604.1] [600.5] [599.6] [602.3] [598.5] [598.7]

Auxiliary

+SV (ρ = 0)

3.83 3.96 4.54 6.64 6.90 7.99
(0.011) (0.012) (0.013) (0.019) (0.018) (0.025)
[8.3] [8.2] [8.2] [8.3] [8.2] [8.2]
21.3 20.2 21.8 22.9 27.2 20.4

+SV (ρ 6= 0)

3.82 3.98 4.59 6.70 6.90 7.98
(0.013) (0.013) (0.016) (0.028) (0.028) (0.033)
[8.5] [8.2] [8.1] [8.4] [8.1] [8.1]
15.2 16.4 15.2 10.4 12.2 11.8
3.82 3.97 4.56 6.64 6.92 7.97

+SV (ρ = 0) (0.011) (0.012) (0.014) (0.019) (0.020) (0.025)
+SV (ρ 6= 0) [10.1] [9.8] [9.8] [10.2] [9.8] [9.8]

18.5 17.5 16.3 19.6 18.8 17.2

Delta

+Auxiliary

3.83 3.99 4.58 6.62 6.90 7.95
(0.004) (0.005) (0.012) (0.008) (0.012) (0.027)
[21.0] [21.3] [21.1] [21.2] [21.3] [21.0]
84.2 45.6 10.6 55.2 25.4 6.7

+SV (ρ = 0)

3.83 3.99 4.58 6.62 6.88 7.94
(0.004) (0.005) (0.011) (0.007) (0.010) (0.020)
[22.8] [22.7] [22.6] [22.7] [22.9] [22.8]
79.4 41.7 11.2 56.0 30.2 11.4

+SV (ρ 6= 0)

3.84 3.98 4.58 6.62 6.90 7.98
(0.003) (0.005) (0.014) (0.007) (0.012) (0.029)
[22.9] [22.6] [22.5] [22.8] [22.6] [22.6]
85.7 46.9 7.1 56.4 25.0 5.5
3.84 3.98 4.56 6.64 6.88 7.97

+SV (ρ = 0) (0.003) (0.005) (0.012) (0.008) (0.012) (0.022)
+SV (ρ 6= 0) [24.8] [24.5] [24.2] [24.6] [24.4] [24.3]

82.6 45.6 10.0 49.3 23.4 8.4

All

3.83 3.97 4.56 6.64 6.88 7.98
(0.003) (0.005) (0.011) (0.007) (0.010) (0.020)
[24.6] [24.3] [24.2] [24.6] [24.3] [24.5]
88.1 45.5 10.6 53.8 33.6 10.2

Table 5.69: CVs in Combinations in the GARCH Model: Average Rate Options
(ρ = 0.9)
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Case 1 (ρ = −0.9) Case 2 (ρ = −0.9)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
3.88 4.03 4.65 6.70 6.94 8.03

(0.005) (0.005) (0.006) (0.009) (0.009) (0.011)
[597.1] [600.6] [605.8] [598.9] [600.1] [598.3]

Auxiliary

+SV (ρ = 0)

3.89 4.03 4.64 6.69 6.94 8.07
(0.007) (0.007) (0.009) (0.010) (0.011) (0.013)
[8.2] [8.1] [8.0] [8.2] [8.1] [8.1]
36.7 36.0 34.8 54.0 54.0 51.9

+SV (ρ 6= 0)

3.90 4.03 4.63 6.68 6.97 8.04
(0.008) (0.008) (0.009) (0.013) (0.013) (0.016)
[9.8] [9.5] [9.5] [9.9] [9.6] [9.5]
25.7 27.1 24.8 28.1 29.1 28.5
3.89 4.03 4.63 6.71 6.96 8.07

+SV (ρ = 0) (0.007) (0.007) (0.009) (0.010) (0.010) (0.012)
+SV (ρ 6= 0) [10.0] [9.7] [9.6] [10.0] [9.7] [9.6]

30.4 30.6 29.9 47.5 48.0 45.7

Delta

+Auxiliary

3.89 4.04 4.63 6.69 6.97 8.05
(0.003) (0.004) (0.008) (0.006) (0.008) (0.016)
[22.5] [22.4] [22.5] [22.7] [22.5] [22.6]
61.4 39.6 13.0 60.8 32.6 11.2

+SV (ρ = 0)

3.89 4.04 4.62 6.70 6.96 8.05
(0.003) (0.004) (0.009) (0.005) (0.007) (0.013)
[22.6] [22.5] [22.5] [22.6] [22.5] [22.6]
66.2 43.0 12.7 75.4 44.9 16.9

+SV (ρ 6= 0)

3.89 4.04 4.63 6.69 6.93 8.04
(0.003) (0.004) (0.012) (0.006) (0.008) (0.023)
[24.2] [24.0] [24.0] [24.3] [24.2] [24.0]
65.7 38.7 6.3 62.9 33.6 5.4
3.89 4.04 4.62 6.70 6.95 8.04

+SV (ρ = 0) (0.003) (0.004) (0.009) (0.005) (0.007) (0.013)
+SV (ρ 6= 0) [24.5] [24.6] [24.2] [24.7] [24.7] [24.0]

73.0 43.6 11.4 74.8 43.1 15.4

All

3.89 4.04 4.63 6.69 6.95 8.04
(0.003) (0.004) (0.007) (0.005) (0.007) (0.012)
[25.0] [24.3] [24.1] [24.5] [24.2] [24.3]
76.8 45.3 16.1 77.6 43.7 18.8

Table 5.70: CVs in Combinations in the GARCH Model: Average Rate Options
(ρ = −0.9)
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Case 1 (V0 = µ = 0.25) Case 2 (V0 = µ = 0.25)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
11.83 12.19 13.85 12.33 12.78 14.54

(0.019) (0.020) (0.023) (0.020) (0.021) (0.024)
[600.2] [602.7] [600.5] [605.2] [601.7] [600.6]

Auxiliary

+SV (ρ = 0)

11.82 12.24 13.89 12.33 12.79 14.55
(0.022) (0.024) (0.028) (0.019) (0.020) (0.025)
[8.4] [8.2] [8.1] [8.3] [8.1] [8.1]
57.6 51.3 50.7 81.9 81.8 65.4

+SV (ρ 6= 0)

11.85 12.23 13.83 12.34 12.78 14.51
(0.032) (0.033) (0.040) (0.029) (0.031) (0.037)
[8.3] [8.2] [8.0] [8.4] [8.2] [8.0]
26.8 28.0 25.0 33.9 33.7 30.8
11.81 12.21 13.86 12.35 12.78 14.56

+SV (ρ = 0) (0.019) (0.020) (0.025) (0.017) (0.019) (0.023)
+SV (ρ 6= 0) [10.0] [9.8] [9.7] [10.1] [9.7] [9.6]

64.0 62.6 54.3 84.2 75.6 68.0

Delta

+Auxiliary

11.81 12.25 13.87 12.33 12.78 14.54
(0.019) (0.023) (0.040) (0.018) (0.022) (0.037)
[21.1] [21.0] [21.1] [21.3] [21.0] [21.0]
30.5 22.0 9.6 34.6 24.7 11.8

+SV (ρ = 0)

11.85 12.23 13.87 12.33 12.76 14.55
(0.017) (0.019) (0.028) (0.015) (0.017) (0.025)
[23.0] [23.0] [22.6] [22.9] [23.0] [22.6]
34.6 30.1 18.8 45.1 37.1 24.6

+SV (ρ 6= 0)

11.80 12.23 13.93 12.30 12.76 14.54
(0.015) (0.019) (0.042) (0.015) (0.019) (0.043)
[22.9] [22.7] [22.6] [23.0] [22.8] [22.8]
42.7 30.1 8.1 49.1 32.9 8.0
11.82 12.25 13.92 12.35 12.76 14.53

+SV (ρ = 0) (0.014) (0.016) (0.024) (0.013) (0.016) (0.022)
+SV (ρ 6= 0) [24.4] [24.3] [24.0] [24.5] [24.1] [24.0]

49.9 38.2 23.5 53.5 43.7 28.6

All

11.85 12.24 13.83 12.34 12.76 14.56
(0.014) (0.016) (0.023) (0.014) (0.015) (0.022)
[24.6] [24.6] [24.4] [24.5] [24.3] [24.3]
47.2 38.8 25.3 52.4 44.9 28.1

Table 5.71: CVs in Combinations in the GARCH Model: Average Rate Options
(V0 = µ = 0.25)
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Average Rate Options, Case 1

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

5.09 5.09 5.09 5.08 5.07 5.08
(0.006) (0.003) (0.011) (0.001) (0.027) (0.001)
[699.0] [7.5] [22.3] [9.1] [10.8] [12.8]

- 306.9 9.7 3460.1 3.1 3164.9

16

4.42 4.41 4.42 4.42 4.40 4.42
(0.005) (0.003) (0.003) (0.001) (0.024) (0.001)
[699.7] [7.5] [22.4] [9.1] [10.8] [12.9]

- 366.3 74.8 3941.1 3.1 3496.2

64

4.25 4.25 4.25 4.25 4.27 4.25
(0.005) (0.002) (0.002) (0.001) (0.023) (0.001)
[706.5] [7.5] [22.5] [9.3] [11.1] [13.3]

- 390.5 171.9 4102.9 3.0 3682.2

Average Rate Options, Case 2

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

10.00 9.99 10.03 9.99 10.04 9.99
(0.014) (0.012) (0.028) (0.004) (0.063) (0.003)
[714.2] [7.5] [22.3] [9.1] [10.8] [13.0]

- 131.2 8.6 1215.8 3.4 944.2

16

8.75 8.75 8.74 8.75 8.82 8.75
(0.013) (0.010) (0.010) (0.003) (0.054) (0.003)
[708.8] [7.5] [22.3] [9.2] [10.8] [13.0]

- 153.6 53.7 1421.8 3.5 1071.4

64

8.43 8.43 8.43 8.44 8.44 8.44
(0.012) (0.009) (0.007) (0.003) (0.053) (0.003)
[706.8] [7.5] [22.3] [9.3] [11.1] [13.5]

- 155.2 96.3 1464.5 3.4 1087.0

Table 5.72: Efficiency Gains in Johnson and Shanno Model: Average Rate Options
(ATM)

137



Average Rate Options, Case 1

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

22.05 22.07 22.06 22.06 22.04 22.06
(0.008) (0.004) (0.013) (0.001) (0.042) (0.001)
[700.0] [7.6] [22.7] [9.1] [10.6] [12.8]

- 378.7 12.9 6160.0 2.6 4297.0

16

21.58 21.60 21.60 21.60 21.64 21.60
(0.007) (0.003) (0.003) (0.001) (0.037) (0.001)
[700.8] [7.7] [22.7] [9.1] [10.7] [12.8]

- 425.4 156.5 7875.8 2.6 5848.0

64

21.49 21.48 21.48 21.48 21.44 21.48
(0.007) (0.003) (0.001) (0.001) (0.036) (0.001)
[707.3] [7.6] [22.8] [9.2] [11.0] [13.2]

- 447.5 803.1 8983.6 2.6 6581.9

Average Rate Options, Case 2

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

23.35 23.37 23.33 23.37 23.25 23.36
(0.019) (0.013) (0.034) (0.003) (0.093) (0.003)
[701.2] [7.6] [23.1] [9.1] [10.7] [12.9]

- 197.2 9.8 2617.8 2.9 1889.5

16

22.44 22.47 22.50 22.48 22.43 22.48
(0.017) (0.010) (0.011) (0.003) (0.085) (0.003)
[699.5] [7.6] [23.1] [9.1] [10.8] [12.8]

- 274.2 77.1 3184.7 2.7 2462.7

64

22.25 22.26 22.27 22.27 22.23 22.26
(0.017) (0.009) (0.007) (0.003) (0.082) (0.002)
[703.9] [7.6] [22.9] [9.2] [11.0] [13.2]

- 305.3 175.4 3313.6 2.7 2567.1

Table 5.73: Efficiency Gains in Johnson and Shanno Model: Average Rate Options
(ITM)
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Average Rate Options, Case 1

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

0.105 0.105 0.109 0.104 0.108 0.104
(0.0008) (0.0009) (0.0045) (0.0003) (0.0018) (0.0003)
[706.0] [7.5] [23.3] [9.2] [10.8] [12.9]

- 74.2 1.0 696.6 12.9 436.1

16

0.040 0.040 0.040 0.040 0.039 0.040
(0.0004) (0.0006) (0.0012) (0.0001) (0.0008) (0.0002)
[707.9] [7.5] [23.0] [9.2] [10.8] [13.0]

- 55.4 4.5 712.8 20.6 410.4

64

0.030 0.031 0.030 0.030 0.030 0.030
(0.0004) (0.0005) (0.0007) (0.0001) (0.0007) (0.0001)
[704.4] [7.6] [23.1] [9.3] [11.1] [13.3]

- 53.1 10.0 641.2 21.3 508.5

Average Rate Options, Case 2

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

3.04 3.06 3.06 3.05 3.05 3.05
(0.008) (0.007) (0.022) (0.004) (0.029) (0.003)
[714.0] [7.5] [22.9] [9.2] [10.8] [12.9]

- 112.9 4.1 413.0 5.2 310.3

16

2.19 2.20 2.20 2.20 2.18 2.20
(0.006) (0.006) (0.008) (0.003) (0.023) (0.003)
[708.1] [7.5] [22.8] [9.2] [11.0] [13.0]

- 110.4 18.9 362.6 5.1 274.3

64

2.00 1.99 1.99 1.99 1.99 2.00
(0.006) (0.005) (0.006) (0.003) (0.020) (0.003)
[707.4] [7.6] [22.9] [9.3] [11.1] [13.6]

- 110.9 31.4 373.0 5.6 239.1

Table 5.74: Efficiency Gains in Johnson and Shanno Model: Average Rate Options
(OTM)
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Average Rate Options, Case 1 (ρ = 0.9)

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

5.05 5.05 5.08 5.06 5.08 5.06
(0.006) (0.002) (0.011) (0.002) (0.054) (0.002)
[702.0] [7.6] [22.6] [9.2] [10.8] [12.9]

- 1256.1 9.7 913.4 0.8 599.5

16

4.39 4.40 4.39 4.39 4.41 4.39
(0.005) (0.001) (0.003) (0.001) (0.048) (0.002)
[704.0] [7.6] [22.7] [9.2] [10.8] [13.0]

- 1553.5 77.5 1000.9 0.8 684.9

64

4.23 4.23 4.23 4.23 4.15 4.23
(0.005) (0.001) (0.002) (0.001) (0.045) (0.001)
[705.3] [7.6] [22.8] [9.3] [11.1] [13.3]

- 1734.4 184.7 957.0 0.8 650.4

Average Rate Options, Case 2 (ρ = 0.9)

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

10.00 9.97 9.99 9.97 10.16 9.97
(0.015) (0.008) (0.028) (0.006) (0.130) (0.006)
[705.5] [7.6] [22.5] [9.2] [10.8] [13.0]

- 295.5 8.6 504.6 0.8 340.6

16

8.74 8.72 8.73 8.73 8.72 8.73
(0.013) (0.007) (0.010) (0.005) (0.112) (0.005)
[707.3] [7.6] [22.6] [9.2] [10.8] [13.0]

- 352.4 52.6 503.3 0.9 357.4

64

8.46 8.42 8.42 8.43 8.57 8.42
(0.012) (0.006) (0.007) (0.005) (0.110) (0.005)
[707.8] [7.7] [22.8] [9.3] [11.1] [13.5]

- 360.9 97.8 471.2 0.8 319.1

Table 5.75: Efficiency Gains in Johnson and Shanno Model: Average Rate Options
(ρ = 0.9)

140



Average Rate Options, Case 1 (ρ = −0.9)

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

5.08 5.08 5.09 5.09 5.06 5.09
(0.006) (0.004) (0.011) (0.002) (0.052) (0.002)
[706.7] [7.6] [22.2] [9.2] [10.8] [12.9]

- 261.4 9.5 1086.5 0.9 791.1

16

4.43 4.43 4.42 4.42 4.42 4.42
(0.005) (0.003) (0.003) (0.001) (0.046) (0.001)
[709.5] [7.6] [22.3] [9.2] [10.8] [13.0]

- 334.2 76.7 1180.4 0.8 828.7

64

4.25 4.25 4.26 4.26 4.22 4.26
(0.005) (0.003) (0.002) (0.001) (0.044) (0.001)
[702.1] [7.6] [22.5] [9.3] [11.1] [13.5]

- 320.3 171.6 1241.4 0.8 842.2

Average Rate Options, Case 2 (ρ = −0.9)

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

9.99 9.97 10.02 9.99 10.18 10.00
(0.014) (0.013) (0.027) (0.005) (0.125) (0.005)
[704.5] [7.6] [22.3] [9.2] [10.8] [12.9]

- 105.2 8.5 648.6 0.8 492.5

16

8.76 8.75 8.76 8.75 8.66 8.75
(0.012) (0.010) (0.010) (0.004) (0.106) (0.004)
[705.4] [7.6] [22.1] [9.2] [10.8] [13.0]

- 130.6 52.9 782.0 0.9 567.7

64

8.44 8.43 8.43 8.45 8.43 8.44
(0.012) (0.010) (0.007) (0.004) (0.105) (0.004)
[706.0] [7.6] [22.4] [9.5] [11.1] [13.4]

- 135.9 103.1 816.9 0.8 574.0

Table 5.76: Efficiency Gains in Johnson and Shanno Model: Average Rate Options
(ρ = −0.9)
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Average Rate Options, Case 1 (V0 = µ = 8)

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

14.86 14.90 14.83 14.89 14.95 14.90
(0.022) (0.038) (0.046) (0.005) (0.096) (0.005)
[702.1] [7.5] [23.0] [9.0] [10.6] [12.7]

- 32.1 7.0 1751.9 3.5 1281.6

16

13.08 13.09 13.10 13.08 13.00 13.08
(0.019) (0.030) (0.018) (0.004) (0.085) (0.004)
[700.2] [7.5] [23.0] [9.1] [10.7] [12.7]

- 39.5 34.6 2113.3 3.4 1485.0

64

12.61 12.56 12.62 12.62 12.69 12.62
(0.019) (0.030) (0.014) (0.003) (0.082) (0.003)
[702.6] [7.6] [23.0] [9.2] [10.9] [13.1]

- 36.8 58.8 2226.2 3.4 1569.5

Average Rate Options, Case 2 (V0 = µ = 3)

Resets Plain
GBM SV

Auxiliary Delta (ρ = 0) (ρ 6= 0) Both

4

14.12 14.08 14.15 14.12 14.17 14.11
(0.022) (0.026) (0.045) (0.007) (0.095) (0.007)
[704.2] [7.5] [23.4] [9.1] [10.6] [12.7]

- 65.4 7.1 745.1 3.4 537.0

16

12.38 12.39 12.34 12.39 12.24 12.39
(0.019) (0.022) (0.017) (0.006) (0.081) (0.006)
[703.3] [7.5] [23.2] [9.1] [10.7] [12.7]

- 71.8 38.0 849.1 3.6 605.4

64

11.99 11.95 11.97 11.95 11.80 11.95
(0.018) (0.020) (0.013) (0.005) (0.078) (0.005)
[703.3] [7.5] [23.0] [9.2] [11.0] [13.1]

- 81.6 63.3 930.4 3.5 694.3

Table 5.77: Efficiency Gains in Johnson and Shanno Model: Average Rate Options
(High Volatility)
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Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
4.25 4.42 5.09 8.43 8.75 10.00

(0.005) (0.005) (0.006) (0.012) (0.013) (0.014)
[706.5] [699.7] [699.0] [706.8] [708.8] [714.2]

Auxiliary

+SV (ρ = 0)

4.25 4.42 5.08 8.43 8.74 9.98
(0.001) (0.001) (0.001) (0.003) (0.003) (0.003)
[9.9] [9.7] [9.7] [9.8] [9.9] [9.6]

4413.4 4407.1 3907.6 1616.6 1643.1 1513.1

+SV (ρ 6= 0)

4.25 4.41 5.08 8.45 8.74 9.98
(0.002) (0.003) (0.003) (0.009) (0.010) (0.012)
[11.8] [11.3] [11.3] [12.0] [11.3] [11.5]
256.8 247.9 217.0 101.8 99.9 81.9
4.25 4.42 5.08 8.44 8.75 9.99

+SV (ρ = 0) (0.001) (0.001) (0.001) (0.002) (0.002) (0.003)
+SV (ρ 6= 0) [13.9] [13.5] [13.4] [13.9] [13.8] [13.4]

4342.5 4206.3 3775.9 1277.4 1345.5 1158.8

Delta

+Auxiliary

4.25 4.42 5.08 8.44 8.75 9.98
(0.002) (0.002) (0.003) (0.006) (0.007) (0.012)
[22.7] [22.9] [22.8] [23.2] [22.6] [22.8]
309.8 196.6 114.5 137.7 94.7 44.2

+SV (ρ = 0)

4.25 4.42 5.09 8.44 8.75 9.99
(0.001) (0.001) (0.001) (0.003) (0.003) (0.004)
[24.9] [24.8] [24.8] [25.4] [24.7] [25.2]

1587.2 1438.5 1248.9 534.7 552.3 451.3

+SV (ρ 6= 0)

4.25 4.42 5.09 8.44 8.75 9.98
(0.002) (0.003) (0.010) (0.007) (0.010) (0.025)
[26.9] [26.9] [26.8] [26.5] [26.5] [26.6]
150.4 65.7 9.1 88.2 46.3 8.8
4.25 4.42 5.08 8.43 8.75 9.98

+SV (ρ = 0) (0.001) (0.001) (0.001) (0.003) (0.003) (0.003)
+SV (ρ 6= 0) [29.3] [28.8] [28.9] [29.3] [28.7] [28.6]

1665.4 1620.0 1370.8 533.4 509.6 419.5

All

4.25 4.42 5.08 8.44 8.75 9.99
(0.001) (0.001) (0.001) (0.002) (0.002) (0.003)
[29.1] [29.0] [28.8] [29.1] [29.0] [28.8]

2198.1 2048.6 1869.6 686.3 693.4 554.5

Table 5.78: CVs in Combinations in Johnson and Shanno Model: Average Rate
Options (ATM)
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Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
21.49 21.58 22.05 22.25 22.44 23.35

(0.007) (0.007) (0.008) (0.017) (0.017) (0.019)
[707.3] [700.8] [700.0] [703.9] [699.5] [701.2]

Auxiliary

+SV (ρ = 0)

21.48 21.60 22.06 22.26 22.48 23.36
(0.001) (0.001) (0.001) (0.003) (0.003) (0.003)
[9.8] [9.7] [9.9] [9.8] [9.7] [9.6]

9524.3 8548.0 6984.6 3133.7 3193.4 2541.1

+SV (ρ 6= 0)

21.48 21.60 22.06 22.27 22.48 23.35
(0.003) (0.003) (0.004) (0.009) (0.010) (0.012)
[11.9] [11.3] [11.5] [11.7] [11.6] [11.4]
288.5 297.6 241.2 218.0 194.4 148.1
21.48 21.60 22.06 22.26 22.48 23.36

+SV (ρ = 0) (0.001) (0.001) (0.001) (0.002) (0.003) (0.003)
+SV (ρ 6= 0) [14.2] [13.5] [13.4] [14.2] [13.9] [13.5]

6388.7 6477.9 5198.3 2298.5 2181.0 1851.8

Delta

+Auxiliary

21.48 21.60 22.06 22.26 22.49 23.37
(0.001) (0.002) (0.004) (0.005) (0.006) (0.011)
[22.8] [22.7] [22.9] [23.0] [23.1] [23.3]

1531.6 382.8 140.0 347.6 223.6 92.9

+SV (ρ = 0)

21.48 21.60 22.06 22.26 22.48 23.36
(0.0005) (0.001) (0.001) (0.002) (0.003) (0.003)
[24.9] [24.8] [24.8] [26.2] [25.1] [24.9]

6039.9 3572.8 2404.7 1382.1 1239.9 967.1

+SV (ρ 6= 0)

21.48 21.60 22.06 22.26 22.47 23.38
(0.001) (0.003) (0.013) (0.007) (0.011) (0.032)
[27.3] [26.5] [26.9] [26.9] [27.3] [26.6]
663.7 132.5 11.4 158.9 69.4 9.6
21.48 21.60 22.06 22.27 22.48 23.36

+SV (ρ = 0) (0.0005) (0.001) (0.001) (0.002) (0.003) (0.003)
+SV (ρ 6= 0) [29.4] [28.7] [28.6] [29.1] [28.8] [28.8]

5076.8 3117.7 2038.4 1258.4 1004.5 844.8

All

21.48 21.60 22.06 22.26 22.48 23.36
(0.0005) (0.001) (0.001) (0.002) (0.003) (0.003)
[29.2] [28.8] [28.7] [29.6] [29.1] [28.7]

5321.4 3457.6 2753.4 1220.7 1099.1 884.7

Table 5.79: CVs in Combinations in Johnson and Shanno Model: Average Rate
Options (ITM)
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Case 1 Case 2

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
0.030 0.040 0.105 2.00 2.19 3.04

(0.0004) (0.0004) (0.0008) (0.006) (0.006) (0.008)
[704.4] [707.9] [706.0] [707.4] [708.1] [714.0]

Auxiliary

+SV (ρ = 0)

0.030 0.040 0.105 1.99 2.20 3.05
(0.0001) (0.0001) (0.0002) (0.003) (0.003) (0.003)

[9.8] [9.7] [9.6] [9.8] [9.7] [9.6]
1371.4 1405.6 1503.6 393.0 401.0 504.3

+SV (ρ 6= 0)

0.029 0.040 0.104 1.99 2.19 3.06
(0.0003) (0.0004) (0.0006) (0.005) (0.005) (0.007)
[12.1] [11.8] [11.5] [12.3] [11.6] [11.6]
79.1 91.8 102.4 75.8 83.0 83.0
0.030 0.040 0.105 2.00 2.19 3.05

+SV (ρ = 0) (0.0001) (0.0001) (0.0002) (0.003) (0.003) (0.003)
+SV (ρ 6= 0) [13.8] [13.5] [13.3] [13.8] [13.4] [13.5]

1215.8 1359.5 1009.3 258.2 322.5 363.3

Delta

+Auxiliary

0.030 0.040 0.106 1.99 2.19 3.08
(0.0003) (0.0004) (0.0008) (0.005) (0.005) (0.008)
[23.7] [23.4] [23.4] [23.4] [23.5] [23.6]
36.4 31.3 29.1 48.5 42.9 32.1

+SV (ρ = 0)

0.030 0.040 0.105 2.00 2.20 3.05
(0.0001) (0.0001) (0.0002) (0.003) (0.003) (0.003)
[25.4] [25.3] [25.6] [25.6] [25.1] [25.1]
346.6 367.7 284.2 125.1 165.1 206.2

+SV (ρ 6= 0)

0.029 0.039 0.105 2.00 2.19 3.05
(0.0005) (0.0007) (0.0017) (0.006) (0.008) (0.019)
[27.9] [27.2] [27.2] [27.6] [26.8] [26.7]
14.3 9.5 6.0 28.9 17.4 5.0
0.030 0.040 0.104 2.00 2.20 3.06

+SV (ρ = 0) (0.0001) (0.0001) (0.0002) (0.003) (0.003) (0.003)
+SV (ρ 6= 0) [29.5] [29.3] [29.2] [29.4] [29.1] [28.8]

262.9 254.7 273.0 109.8 142.7 184.1

All

0.030 0.040 0.105 2.00 2.19 3.06
(0.0001) (0.0001) (0.0002) (0.003) (0.002) (0.003)
[29.7] [29.0] [29.2] [29.5] [29.0] [29.1]
513.3 721.5 662.8 131.8 169.1 185.6

Table 5.80: CVs in Combinations in Johnson and Shanno Model: Average Rate
Options (OTM)
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Case 1 (ρ = 0.9) Case 2 (ρ = 0.9)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
4.23 4.39 5.05 8.46 8.74 10.00

(0.005) (0.005) (0.006) (0.012) (0.013) (0.015)
[705.3] [704.0] [702.0] [707.8] [707.3] [705.5]

Auxiliary

+SV (ρ = 0)

4.23 4.40 5.06 8.43 8.73 9.97
(0.001) (0.001) (0.001) (0.004) (0.004) (0.005)
[9.7] [9.5] [9.5] [9.7] [9.5] [9.7]

3329.3 3103.6 2949.0 755.2 808.2 748.5

+SV (ρ 6= 0)

4.23 4.40 5.06 8.43 8.73 9.97
(0.001) (0.001) (0.002) (0.006) (0.007) (0.008)
[11.8] [11.5] [11.2] [11.6] [11.3] [11.3]

1183.3 1148.6 905.3 255.7 227.2 198.1
4.23 4.40 5.06 8.42 8.73 9.97

+SV (ρ = 0) (0.001) (0.001) (0.001) (0.004) (0.004) (0.005)
+SV (ρ 6= 0) [14.0] [13.4] [13.2] [13.7] [13.3] [13.4]

2383.6 2530.6 2141.0 542.7 547.2 490.6

Delta

+Auxiliary

4.23 4.39 5.06 8.42 8.73 9.97
(0.001) (0.001) (0.002) (0.005) (0.006) (0.009)
[23.2] [23.3] [23.2] [23.2] [22.9] [22.8]
669.2 558.8 441.0 163.4 139.5 90.1

+SV (ρ = 0)

4.23 4.39 5.06 8.42 8.74 9.98
(0.001) (0.001) (0.002) (0.005) (0.005) (0.006)
[25.0] [25.3] [24.8] [25.2] [25.4] [25.0]
436.9 383.5 355.1 188.2 172.1 147.5

+SV (ρ 6= 0)

4.23 4.40 5.06 8.43 8.73 10.01
(0.002) (0.003) (0.011) (0.007) (0.010) (0.029)
[26.8] [26.5] [26.6] [26.7] [26.8] [26.4]
160.3 68.1 8.0 82.2 44.4 7.0
4.23 4.40 5.06 8.43 8.74 9.97

+SV (ρ = 0) (0.001) (0.001) (0.002) (0.005) (0.005) (0.006)
+SV (ρ 6= 0) [29.1] [28.5] [28.7] [29.0] [28.5] [28.7]

394.8 374.4 298.3 151.6 152.6 164.1

All

4.23 4.40 5.06 8.43 8.74 9.98
(0.001) (0.001) (0.001) (0.004) (0.004) (0.005)
[29.1] [28.8] [28.6] [29.3] [28.6] [29.0]

1176.5 1113.7 981.9 263.8 270.2 233.7

Table 5.81: CVs in Combinations in Johnson and Shanno Model: Average Rate
Options (ρ = 0.9)
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Case 1 (ρ = −0.9) Case 2 (ρ = −0.9)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
4.25 4.43 5.08 8.44 8.76 9.99

(0.005) (0.005) (0.006) (0.012) (0.012) (0.014)
[702.1] [709.5] [706.7] [706.0] [705.4] [704.5]

Auxiliary

+SV (ρ = 0)

4.26 4.42 5.09 8.44 8.75 9.99
(0.001) (0.001) (0.002) (0.003) (0.003) (0.004)
[9.9] [9.6] [9.5] [9.7] [9.5] [9.5]

1210.4 1214.7 1119.4 929.0 977.1 820.8

+SV (ρ 6= 0)

4.26 4.42 5.10 8.46 8.76 10.00
(0.003) (0.003) (0.003) (0.009) (0.010) (0.013)
[11.7] [11.2] [11.2] [11.5] [11.2] [11.1]
222.2 230.3 188.1 99.1 94.7 74.9
4.26 4.42 5.09 8.44 8.75 9.99

+SV (ρ = 0) (0.001) (0.001) (0.002) (0.003) (0.003) (0.004)
+SV (ρ 6= 0) [13.7] [13.5] [13.2] [13.8] [13.2] [13.4]

841.7 868.6 817.9 688.1 673.3 615.9

Delta

+Auxiliary

4.26 4.42 5.09 8.44 8.76 9.99
(0.002) (0.002) (0.003) (0.006) (0.007) (0.012)
[22.8] [22.9] [22.6] [22.8] [22.8] [22.7]
318.4 190.2 102.2 140.3 94.6 43.3

+SV (ρ = 0)

4.26 4.42 5.09 8.44 8.75 9.99
(0.001) (0.001) (0.002) (0.003) (0.004) (0.005)
[24.8] [25.0] [24.8] [25.0] [24.8] [24.6]
657.0 545.8 418.4 347.6 321.4 255.3

+SV (ρ 6= 0)

4.25 4.42 5.10 8.44 8.74 10.02
(0.002) (0.003) (0.011) (0.007) (0.010) (0.028)
[26.4] [26.5] [26.4] [26.3] [26.6] [26.3]
150.7 67.2 8.5 83.5 42.8 7.0
4.26 4.42 5.09 8.44 8.75 9.99

+SV (ρ = 0) (0.001) (0.001) (0.002) (0.003) (0.004) (0.005)
+SV (ρ 6= 0) [28.7] [28.5] [28.4] [28.9] [28.4] [28.3]

591.9 474.4 380.7 297.6 274.7 218.5

All

4.25 4.42 5.09 8.44 8.75 9.99
(0.001) (0.001) (0.002) (0.003) (0.003) (0.004)
[28.6] [28.2] [28.4] [28.7] [28.7] [28.1]
580.4 498.7 383.7 332.1 319.2 265.5

Table 5.82: CVs in Combinations in Johnson and Shanno Model: Average Rate
Options (ρ = −0.9)
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Case 1 (V0 = µ = 8) Case 2 (V0 = µ = 3)

CV Type Av, 64 Av, 16 Av, 4 Av, 64 Av, 16 Av, 4

No CV (Plain)
12.61 13.08 14.86 11.99 12.38 14.12

(0.019) (0.019) (0.022) (0.018) (0.019) (0.022)
[702.6] [700.2] [702.1] [703.3] [703.3] [704.2]

Auxiliary

+SV (ρ = 0)

12.62 13.08 14.90 11.94 12.38 14.11
(0.003) (0.003) (0.004) (0.005) (0.005) (0.007)
[9.6] [9.5] [9.5] [9.6] [9.5] [9.5]

2411.0 2381.1 1992.9 981.4 923.2 808.6

+SV (ρ 6= 0)

12.63 13.07 14.90 11.98 12.39 14.06
(0.028) (0.028) (0.036) (0.019) (0.020) (0.026)
[11.5] [11.2] [11.1] [11.6] [11.4] [11.1]
28.3 29.4 23.9 56.4 54.0 44.5
12.63 13.08 14.89 11.96 12.38 14.11

+SV (ρ = 0) (0.003) (0.003) (0.004) (0.005) (0.005) (0.006)
+SV (ρ 6= 0) [13.7] [13.2] [13.1] [13.8] [13.4] [13.1]

1674.5 1801.5 1661.1 706.0 738.0 653.8

Delta

+Auxiliary

12.64 13.08 14.94 11.95 12.39 14.17
(0.012) (0.015) (0.027) (0.011) (0.014) (0.022)
[22.8] [23.0] [22.7] [22.7] [22.5] [22.4]
78.5 52.5 20.2 86.9 60.3 31.1

+SV (ρ = 0)

12.62 13.08 14.90 11.95 12.39 14.11
(0.003) (0.004) (0.005) (0.005) (0.006) (0.007)
[24.5] [24.7] [24.4] [24.5] [24.8] [25.0]
952.8 870.9 666.1 381.2 335.9 266.1

+SV (ρ 6= 0)

12.63 13.08 14.99 11.96 12.40 14.17
(0.013) (0.017) (0.042) (0.013) (0.016) (0.040)
[26.9] [26.1] [26.1] [26.8] [26.1] [26.2]
53.3 33.2 7.6 55.2 36.2 7.9
12.62 13.08 14.89 11.96 12.39 14.11

+SV (ρ = 0) (0.003) (0.004) (0.005) (0.005) (0.005) (0.007)
+SV (ρ 6= 0) [28.9] [28.5] [28.6] [29.0] [28.6] [28.5]

827.5 711.7 571.4 327.7 297.8 253.0

All

12.62 13.07 14.90 11.95 12.38 14.10
(0.003) (0.003) (0.004) (0.004) (0.005) (0.006)
[28.8] [28.5] [28.1] [28.9] [28.4] [28.3]

1150.0 1041.0 682.2 407.3 415.8 310.9

Table 5.83: CVs in Combinations in Johnson and Shanno Model: Average Rate
Options (High Volatility)
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Chapter 6

Numerical Results for Barrier

Options

6.1 Introduction

We provide comparisons of using control variates, including our new CVs, for barrier

options in different models. We consider ATM, ITM and OTM options with differ-

ent barrier levels, representing medium, high and low hitting probabilities p. Table

6.1 lists the option parameters. Note that the barrier levels for the OTM options

K = 100 K = 80 K = 120
(ATM) (ITM) (OTM)

U
p Medium 120 120 140
p High 105 105 130
p Low 150 150 150

Table 6.1: Barrier Option Parameters

are different from other cases because the option payoff is always zero if K > U .

For all options, we fix the time to maturity T = 1.

We use a large number of sample paths (M = 106) for the plain Monte Carlo

method (without any variance reduction method) to obtain a low standard error.

This as a the sanity check to ensure that the CVs do not introduce pricing bias. The

number of sample paths we use for Monte Carlo methods with CVs is M = 10000.

There is no stratification applied to the random numbers. The number of steps

N = 256. The code is written in VBA 6.5 and run on a Dell desktop with Duo core

processor.
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We compare the performances of CVs in the Heston and GARCH diffusion model.

We do not do comparisons in the SABR and the Johnson and Shanno model because

our method do not apply to the case where β ∈ (0, 1).

Model parameters. The common feature of the Heston and GARCH diffusion

model is that ξ = 1
2 . We use four parameter sets in total, two for each model. Table

6.2 displays the values of the parameters. These parameters are the same as in

Heston GARCH
Case 1 Case 2 Case 3 Case 4

S0 = 100 100 100 100
r = 0.025 0.05 0.025 0.05

V0 = 0.0175 0.04 0.0175 0.04
α = 1.5768 0.2 4 2
µ = 0.0398 0.05 0.0225 0.09
η = 0.5751 0.1 1.2 0.8

ξ = 0.5 0.5 0.5 0.5
γ = 0.5 0.5 1 1

ρ = -0.5711 -0.5 -0.5 -0.5

Table 6.2: The Heston and GARCH Parameters

chapter 5.

We provide results for standard and digital barrier options. The standard bar-

rier option has the payoff of the form (3.24). The digital barrier option pays off 1

if ST > K, unless it knocks out before time T . The reason we include the digital

barrier option is that Glasserman and Staum [39] claim their importance sampling

method works well in the case of high hitting probability. We compare our CV

methods with their results.

The rest of this chapter is organised as following. In section 6.2, we review the

importance sampling method of Glasserman and Staum [39]. In section 6.3, we pro-

vide results for standard barrier options. In section 6.4, we give results for digital

barrier options. In section 6.5, we benchmark the importance sampling method with

the results in Glasserman and Staum [39]. In section 6.6, we examine the perfor-

mance of CVs for barrier options with different number of reset dates. Section 6.7

concludes.

150



We find that our new CV has a slightly higher efficiency gain than the GBM aux-

iliary CV. However, efficiency gains in barrier option pricing are never as high as

those in average rate option pricing in chapter 5.

6.2 The Importance Sampling Method

One of the main sources of randomness in barrier option pricing is the hitting time

distribution. Glasserman and Staum [39] design a method which forces all sam-

ple paths to survive up to maturity so that the randomness in the hitting time is

removed. Their method is set in the model with β = 1 is based on the following

discretization of the model.

S̃ti+1 = S̃ti exp

[(
r − 1

2
Ṽ 2ξ

ti

)
∆t + Ṽ ξ

ti

√
∆tΦ−1

(
u1

i

)]
, (6.1)

Ṽti+1 = f
(
Ṽti , ρΦ−1

(
u1

i

)
+ ρ̃Φ−1

(
u2

i

))
, (6.2)

where ρ̃ =
√

1 − ρ2, u1
i , u

2
i ∼ U(0, 1) and f(·) is any discretization of Vt which

depends only on Ṽti and ∆W V
i . The one-step survival probability is

πi = P
(
S̃ti+1 6 U | S̃ti

)
= Φ




ln U
S̃ti

−
(
r − 1

2 Ṽ 2ξ
ti

)
∆t

Ṽ ξ
ti

√
∆t


 . (6.3)

To prevent the path from knocking out, we sample from the region where S̃ti+1 6 U ,

that is u1
i ∼ U(0, πi). Equivalently, we can simulate u1

i and u2
i as

u1
i = πiv

1
i , v1

i ∼ U(0, 1), (6.4)

u2
i = v2

i , v2
i ∼ U(0, 1). (6.5)

By doing so, no path knocks out and we get a payoff of vanilla call option at maturity

but scaled by the product of all one-step survival probabilities

H
(
S̃t, t ∈ T

)
=
(
S̃tN − K

)+
N−1∏

i=0

πi. (6.6)

Glasserman and Staum proved that this estimator is unbiased.

We point out the advantage and disadvantage of their method compared to using

CVs:
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Advantage:

1. Can apply not only to single barrier options but also to double or partial

barrier options.

Disadvantage:

1. Can only take the discretization of the form (6.1).

2. Requires an evaluation of Φ(·) at each time step.

3. Must simulate the whole path until maturity.

We apply the importance sampling method (IS) in both the medium and high hitting

probability cases where their method is likely to make a contribution. We compare

it with three candidate CVs. They are the GBM European call CV (for options

with low probability of hitting barrier only), the GBM up and out call CV (UOC

CV) and the correlation CV that we proposed in section 3.6.2 (SV CV). When we

present our results, in additional to the four ourputs in equation (5.1), we add the

empirical correlation of the CV as a fifth entry in curly brackets.

6.3 Standard Barrier Options

We start by comparing the empirical correlations of different CVs. The efficiency

gains of all individual CVs, CVs in combinations and the importance sampling

method (IS) are reported later in section 6.3.2.

6.3.1 Empirical Correlations

It is useful to first look at how empirical correlations between CVs and option pay-

offs change when the barrier level varies. We use the ATM option and vary the

barrier level from 105 to 150. The empirical correlations of three CVs in 4 cases are

plotted in Figure 6.1. We see that the empirical correlation generally increases with

the barrier level for all three CVs. A lower barrier level means higher probability

of knocking out. We know that the random hitting time accounts for a large part

of the variance in the simulation. Because it is difficult for the auxiliary process to

track all the random hitting time in the original process, the UOC CV and SV CV

are not highly correlated with the option payoff. The call CV does not even take

into account the hitting time so it is not surprising that it is virtually uncorrelated

with the option payoff for low U . When U is high, knocking out becomes an un-

likely event. In these cases, the advantage of UOC CV or SV CV over the call CV
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Figure 6.1: Empirical Correlations (Standard Barrier Options, ATM)

is reduced as the barrier option is more like a European option.

In all 4 cases, we can see that our proposed CV generally has higher empirical

correlations with the option payoffs than the other CVs, especially in Case 4 where

its gap with UOC CV is almost constant at about 0.2. This is evidence that our

CV auxiliary process is closer to the original than the GBM model.

We are, however, more interested in the efficiency gains since the amount of re-

duction in the standard error needs to justify the additional time taken to use the

CV.

6.3.2 Efficiency Gains

We price the options listed in Table 6.1. We use UOC CV and SV CV for all

options and only use the call CV for options with low p (when it is likely to make

a contribution). We discuss ATM, ITM and OTM options separately. In each case,

we list the results for medium, high and low hitting probability p.

ATM options. Table 6.5 (page 163) displays the results for ATM options with

medium hitting probability. Our proposed CV (SV CV) has higher empirical corre-
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lations than the UOC CV at the cost of an additional 30% of the computational time

of UOC CV. The efficiency gains of SV CV are higher than those of the UOC CV,

although not too much. But considering the difficulty of achieving high variance re-

duction for barrier options, our proposed CV provides an improvement. Using both

CVs together gives slightly higher efficiency gains than using them individually.

The importance sampling method, however, has very poor performance. It takes

most computation time because it requires at each time step one evaluation of the

cumulative normal density function. But this additional cost is not justified by the

variance reduction it provides. In fact, all of its standard errors are higher than

those of other CVs. As a result, its efficiency gains are all below one.

We notice that in Case 1 the empirical correlations are much lower than those

in other cases. Recall that Case 1 corresponds to the Heston model with d < 1. The

relatively low efficiencies in this case are also seen in other options such as arithmetic

average rate options (see Webber [83]).

Table 6.6 (page 164) lists the results for ATM options with high barrier hitting

probability. This is a case where all CVs perform poorly. Due to the low empirical

correlation in all cases, the efficiency gains are never significantly different from 1,

which means in this case we would rather not use any CV at all. The reason for

the poor performance is that the randomness of the hitting time forms a large part

of the variance in the simulation. The payoff varies only between 0 to 5 while a

large number of the sample paths hit the barrier before maturity. When a path gets

close to the barrier, the payoff of the option is very sensitive to fluctuations in the

path. Since the asset price is close to the barrier at the very beginning, it is very

difficult for our auxiliary processes to capture this sensitivity locally even if they can

track the original process globally. The importance sampling method provides lower

standard error in Cases 1 and 4 as its performance is slightly enhanced relative to

other methods in the case of high p. The efficiency gains are slightly higher than

those in the case of medium p in Table 6.5 (page 163) but still below one.

Table 6.7 (page 165) presents the results for ATM options with low p. In this

case, the options are very much like vanilla European options. Therefore, the Eu-

ropean call option becomes a useable CV candidate. The empirical correlations of

three CVs are close to each other in Cases 1 and 3 as is seen in Figure 6.1. In

both cases, we would rather use the standard CVs (UOC and Call CV) since our
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proposed CV has greater computation time and therefore is less efficient than them.

We also find that the best combination in Cases 1 and 3 is UOC with the Call CV.

In Cases 2 and 4, however, SV CV has higher efficiency gains, especially in Case 4

where its efficiency gains are more than twice of those of others.

ITM options. Table 6.8 (page 166) displays results for ITM options with medium

hitting probability. SV CV has higher empirical correlations and efficiency gains

than UOC CV. The efficiency gains in Case 1 are lower than those in other cases.

This is consistent with the ATM cases with medium and high p in Table 6.5 (page

163) and 6.6 (page 164). The importance sampling method has efficiency gains all

around 0.6 as in the ATM case in Table 6.5 (page 163).

Table 6.9 (page 167) gives results for ITM options with high p. In Case 1 and

2, the efficiency gains of both CVs are very similar while in Case 3 and 4 SV CV

has higher efficiency gains than UOC CV. Their combination does not have much

improvement to the individual ones. The importance sampling method has low ef-

ficiency gains as in the ATM case.

Table 6.10 (page 168) presents results for ITM options with low p. SV CV per-

forms better than standard CVs in Cases 2 and 4 but worse in Cases 1 and 3. This

is consistent with the results for ATM options in Table 6.7 (page 165).

OTM options. The results for OTM options with medium p are given in Ta-

ble 6.11 (page 169). Note that the barrier levels are different from those in the

ATM and ITM cases. In Cases 2 and 4, the empirical correlations of SV CV are

much higher than those of UOC CV. This leads to higher efficiency gains of SV

CV. Case 1 remains difficult as both empirical correlations are very low, as is seen

in all other examples. In Case 3, the correlation of SV CV is slightly lower than

that of UOC CV. This causes a lower efficiency gains from our proposed CV. The

importance sampling method has efficiency gains all below one as in other examples.

Table 6.12 (page 170) displays results for OTM options with high p. In all cases, the

efficiency gains of both CVs are very similar, though SV CV has higher empirical

correlations. The efficiency gains never exceed 2. The importance sampling method

still has very poor efficiency gains.

Table 6.13 (page 171) presents results for OTM options with low p. SV CV provides
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more significant efficiency gain than other CVs only in Case 4. In other cases, its

efficiency gains are not as high as those of other CVs due to their similar empirical

correlations, as seen in Figure 6.1.

In summary, SV CV is more worthwhile to use than standard CVs in the case of

medium hitting probability, which is seen from both the higher empirical correlations

and efficiency gains. In the case of high hitting probability, SV CV performs better

in the ITM and OTM cases but worse in the ATM case than the UOC CV. When

the hitting probability is low, our method generally performs better in Cases 2 and

4 than standard CVs but not so good in Cases 1 and 3. The importance sampling

method has very low efficiency gains in all cases and therefore is not recommended

for standard barrier options.

6.4 Digital Barrier Options

The application of our CV is straightforward in the digital option as its conditional

value is also explicitly available in the auxiliary process. As in the standard barrier

option case, we start investigating the empirical correlations of different CVs as the

barrier level changes.

6.4.1 Empirical Correlations

We plot the empirical correlations for ATM options with different barrier levels in

Figire 6.2. In Cases 1, 3 and 4, SV CV has higher empirical correlations than the

other CVs. In Case 2, SV CV has similar correlations to UOC CV. This is different

from the standard barrier option case in Figure 6.2.

6.4.2 Efficiency Gains

We report efficiency gains for different CVs. In addition, in the case of medium and

high p, we include the importance sampling method in our comparisons because it

is only likely to make a difference in these two cases.

ATM options. Table 6.14 (page 172) displays results for ATM options with

medium p. SV CV has very similar efficiency gains with UOC CV. Combining

them has no significant improvement. The importance sampling method, however,

has very poor performance. It is the most expensive but still has higher standard

errors than those of the CVs. Its efficiency gains are all less than one. It is definitely

not worth using.
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Figure 6.2: Empirical Correlations (Digital Barrier Options, ATM)

Table 6.15 (page 173) presents the results for ATM options with high p. Neither

SV CV nor UOC CV produces significant efficiency gains. Especially in Case 1, the

empirical correlations of both CVs are less than 0.1. It remains a difficult case for

variance reduction methods. The importance sampling method gives slightly lower

standard errors than the CVs do. But due to much larger computational cost (at

least about 40% more time) than the CVs, its efficiency gains never exceed those of

the CVs.

Table 6.16 (page 174) lists results for ATM options with low p. SV CV has lower

efficiency gains than UOC CV and Call CV except in Case 4. The latter two has

very similar efficiency gains. This is because they have similar empirical correlations

(as seen in Figure 6.2) and have roughly the same computational cost.

ITM options. Table 6.17 (page 175) shows results for ITM options with medium

p. SV CV performs much better than UOC CV in Cases 2, 3 and 4, both in terms

of the empirical correlations and efficiency gains. The importance sampling method

has very poor performance as in the case of ATM options in Table 6.17 (page 175).
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Table 6.18 (page 176) presents results for ITM options with high p. The situation is

very similar as in the case of medium p in Table 6.17 (page 175). Our proposed CV

provides higher efficiency gains than UOC CV. The importance sampling method is

still inefficient.

Table 6.19 (page 177) displays results for ITM options with low p. The efficiency

gains of the Call CV and UOC CV are very similar, but lower than those of SV CV

in Cases 2, 3 and 4, as is in the case of medium and high p. High efficiency gains

in Case 1 are hard to achieve with CVs. Using CV makes no difference to the plain

Monte Carlo method.

OTM options. Table 6.20 (page 178) gives results for OTM options with medium

p. Except in Case 1, the efficiency gains of SV CV are slightly higher than those of

UOC CV. Combining both further increases the efficiency gains in Cases 2 and 3.

Gains for the importance sampling method remain poor.

Table 6.21 (page 179) presents results for OTM options with high p. The situa-

tion is similar to Table 6.20 (page 178), but the efficiency gains are in general lower

than those in the case of medium p.

Table 6.22 (page 180) lists results for OTM options with low p. The efficiency

gains of SV CV are slightly lower than UOC CV and Call CV in Case 1 and 2 (the

Heston model) but higher in Case 3 and 4 (the GARCH model).

In summary, SV CV provides higher efficiency gains for ITM and OTM options

than standard CVs. Using it is worthwhile. For ATM options, the efficiency gains

of SV CV are similar to (or slightly lower than) those of the standard CVs. We also

find that in Case 1 (the Heston model with d < 1) it is very hard to get high efficiency

gains with any method. Using CVs in combinations has no significant improvement

on the efficiency gains of individual CVs. Finally, the importance sampling method

has very poor performance in all cases. One should use CVs instead of importance

sampling method for barrier options.

6.5 Benchmark with Glasserman and Staum [39]

The idea of importance sampling method is promising because it removes the ran-

domness from the hitting time distribution by forcing all paths to survive until

158



maturity. However, we have seen that in section 6.3 and 6.4 it has poor results. In

order to be fully confident that we implement their method correctly, we want to

replicate the results reported in their paper. We choose Example 1C (page 933).

Note that they use a different measure of efficiency gain to equation (3.7).

The efficiency measure. To price a knock-out barrier option with plain Monte

Carlo method, it is not necessary to simulate the whole path until maturity. We can

stop the evolution and return a zero payoff as soon as the barrier is crossed. Due to

the natural of their importance sampling method, however, one must simulate each

path until maturity. Denote the average number of time steps taken by the plain

Monte Carlo method by N1 so N1 6 N and that taken by the importance sampling

method by N2 = N . Glasserman and Staum measure the efficiency gain as

Ê1,2 =
N1 · se2

1

N2 · se2
2

. (6.7)

This is supposed to represent the multiple of cost required by the plain Monte

Carlo method in order to achieve the same level of standard error as the impor-

tance sampling method.1 This measure, however, is not equivalent to the standard

definition (3.7) as it assumes the same cost of each step in the plain Monte Carlo

method and the importance sampling method. This is obviously not true because

the importance sampling method requires at each step one additional evaluation

of the cumulative normal density function which is expensive. For benchmark and

comparison purposes, we include their measure in the results in this section.

Parameters specifications. The underlying asset has a GBM process. The ini-

tial stock price S0 = 100. The interest rate r = 0. There is a single down barrier at

level D and it is always equal to the strike K. We list in Table 6.3 parameter values

of all five scenarios in their paper. σ is the volatility of the GBM process and n is

Scenario σ T D n

1 30.0% 0.25 94.30 3
2 73.7% 0.25 94.30 3
3 30.0% 1.50 94.30 3
4 30.0% 0.25 98.62 3
5 30.0% 0.25 94.30 63

Table 6.3: The Parameters and Results in Glasserman and Staum [39]

1Note that Glasserman and Staum report 1/Ê1,2 in their paper. We use Ê1,2 as it is comparable
with E1,2 in equation (3.7).
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the number of reset dates.

Table 6.4 displays the results from our implementation. The numbers in angle

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Standard

Plain

8.12 14.06 14.85 5.33 6.42
(0.116) (0.279) (0.296) (0.098) (0.114)
[0.03] [0.05] [0.03] [0.03] [0.33]
〈2.3〉 〈2.0〉 〈2.0〉 〈2.0〉 〈33.8〉

IS

8.04 14.12 14.19 5.25 6.15
(0.075) (0.156) (0.160) (0.051) (0.101)
[0.11] [0.09] [0.09] [0.09] [2.00]
0.7 1.6 1.1 1.2 0.2
〈3.0〉 〈3.0〉 〈3.0〉 〈3.0〉 〈63.0〉
1.8 2.1 2.3 2.5 0.7

GS 1.7 2.1 2.1 2.4 0.6

Digital

Plain

0.50 0.34 0.33 0.34 0.33
(0.005) (0.005) (0.005) (0.005) (0.005)
[0.05] [0.03] [0.05] [0.05] [0.33]
〈2.3〉 〈2.0〉 〈2.0〉 〈2.0〉 〈33.9〉

IS

0.50 0.34 0.34 0.34 0.32
(0.002) (0.001) (0.001) (0.001) (0.004)
[0.09] [0.09] [0.09] [0.09] [2.00]
5.5 5.5 8.3 9.7 0.2
〈3.0〉 〈3.0〉 〈3.0〉 〈3.0〉 〈63.0〉
8.5 10.9 10.9 12.6 0.8

GS 8.3 11.1 11.1 12.5 0.8

Table 6.4: Benchmark with results in Glasserman and Staum [39]

brackets 〈·〉 are the actual number of time steps N1 and N2. Those in italic are Ê

computed with Glasserman and Staum’s measure (6.7). “GS” stands for the equiv-

alent results in Glasserman and Staum [39]. They serve as benchmarks of Ê in our

implementation.

We see that our results, for both standard and digital barrier options, benchmark

very closely to the results reported by Glasserman and Staum. However, they are

considerably and consistently greater than than the standard measures reported in

bold, suggesting their measure over-estimates the real speed-ups.

The efficiency gains for digital barrier options are much higher than those for stan-

dard ones. In those scenarios with very few reset dates, the importance sampling
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method performs very well, especially for digital barrier options. However, when n

is high, its real efficiency gains are very low.

6.6 Varying the Number of Reset Dates

We price barrier options with 4, 16 and 64 reset dates up to one year. The param-

eters are the same as in Table 6.2. We only look at the case of medium p for ATM

standard barrier options.

The importance sampling method is difficult to implement in this example. The rea-

son is the following. Suppose the barrier resets at ti but not at ti−1 and S̃ti−1 >> U .

In this case, the conditional probability P

(
S̃ti 6 U | S̃ti−1

)
is so small such that VBA

regards it as equal to zero. In other words, there is no way to force S̃ti 6 U . There-

fore, we use only CVs in this example and not the importance sampling method.

Note that our CVs are all continuous barrier options. We expect the empirical cor-

relations and efficiency gains to be lower than those in section 6.3. However, as the

number of reset dates increases, the efficiency gains should also go up.

Table 6.23 (page 181) presents results for options with 4 reset dates. SV CV has

higher empirical correlations than UOC CV in Case 1 and 2 but similar in Case 3

and 4. The efficiency gains of SV CV are all slightly lower than UOC CV.

Table 6.24 (page 182) displays results for options with 16 reset dates. The em-

pirical correlations and efficiency gains of both CVs are higher than those in Table

6.23. But the efficiency gains of SV CV are lower than those of UOC CV. We also

see that the option prices are lower than those with 4 reset dates because the the

probability of knocking out is higher.

Table 6.25 (page 183) gives results for options with 64 reset dates. There are sig-

nificant increases in empirical correlations from Table 6.24 except for Case 1. In

fact, they are close to the correlations in the case of 256 reset dates in Table 6.5.

The efficiency gains of SV CV are higher than those of UOC CV. Using them in

combination provides additional efficiency gains.

In summary, we have compared the efficiency gains of CVs and the importance

sampling method for standard and digital barrier options with medium, high and

low hitting probability and different number of reset dates. We have also bench-
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marked our implementation of the importance sampling method by Glasserman and

Staum [39]. We find that our proposed CV, SV CV, has higher empirical correlations

as well as efficiency gains in general. But we should point out that their efficiency

gains are not significant. The importance sampling method works well in the GBM

process with high hitting probability and few reset dates. But it fails in the our

general class of stochastic volatility models.

We list all the work we have done for barrier option pricing.

1. We compared empirical correlations and efficiency gains of the CVs and the

importance sampling method for both standard and digital barrier options.

2. We benchmarked our results with those reported in Glasserman and Staum

[39].

3. We compared empirical correlations and efficiency gains of the CVs for stan-

dard barrier options with 4, 16 and 64 reset dates.

6.7 Conclusion

We have compared the performance of our method with standard CVs and the im-

portance sampling method across different models, parameters for barrier options.

Our proposed CV provides slightly higher efficiency gains than GBM auxiliary CVs

and the importance sampling method in many cases. But in general none of the

methods has significant efficiency gains in the barrier option valuation. The im-

portance sampling method, in particular, has very poor performance and is not

recommended to use. We have also benchmarked with the results in Glasserman

and Staum [39] to ensure that our implementation of their method is correct. The

efficiency measure in their paper is non-standard as it does not take into account

the computation time.

We have seen in chapter 5 and 6 that our correlation CVs generally perform better

than old CVs. With the help of them, we investigate the variations in barrier option

pricing under our class of stochastic volatility models in chapter 7. By applying

the best combinations of CVs, it is faster to calibrate our class of models and to

distinguish the barrier option prices under different stochastic volatility models.
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Tables

Standard Barrier Options (ATM, Medium p)

Plain
GBM Auxiliary SV Auxiliary Combinations

IS
UOC SV UOC+SV

Case 1

4.14 4.15 4.12 4.10 4.07
(0.005) (0.051) (0.043) (0.042) (0.051)
[575.4] [7.0] [9.0] [9.7] [11.0]

-
0.9 1.0 1.0 0.6

{0.33} {0.61} - -

Case 2

1.56 1.56 1.55 1.53 1.54
(0.004) (0.024) (0.019) (0.017) (0.033)
[587.0] [6.8] [9.0] [9.7] [11.8]

-
2.1 2.4 2.9 0.6

{0.76} {0.84} - -

Case 3

2.68 2.68 2.66 2.68 2.68
(0.005) (0.028) (0.020) (0.019) (0.043)
[567.3] [7.0] [9.1] [9.9] [11.8]

-
2.2 3.4 3.4 0.6

{0.80} {0.90} - -

Case 4

0.86 0.87 0.86 0.85 0.83
(0.003) (0.022) (0.016) (0.015) (0.024)
[568.6] [6.9] [9.0] [9.8] [12.0]

-
1.4 2.0 2.1 0.7

{0.63} {0.84} - -

Table 6.5: Efficiency Gains for Standard Barrier Options (ATM, Medium p)
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Standard Barrier Options (ATM, High p)

Plain
GBM Auxiliary SV Auxiliary Combinations

IS
UOC SV UOC+SV

Case 1

0.100 0.102 0.102 0.107 0.094
(0.0005) (0.0054) (0.0053) (0.0055) (0.0043)
[582.0] [7.0] [8.8] [9.3] [11.5]

-
0.8 0.7 0.6 0.8

{0.10} {0.08} - -

Case 2

0.016 0.017 0.016 0.017 0.019
(0.0002) (0.0019) (0.0019) (0.0016) (0.0017)
[585.8] [6.7] [8.8] [9.3] [11.8]

-
1.0 0.7 1.0 0.7

{0.42} {0.40} - -

Case 3

0.041 0.038 0.039 0.044 0.040
(0.0003) (0.0029) (0.0025) (0.0024) (0.0026)
[593.5] [6.8] [9.0] [9.4] [11.8]

-
1.1 1.1 1.1 0.8

{0.43} {0.59} - -

Case 4

0.008 0.009 0.010 0.009 0.010
(0.0001) (0.0016) (0.0015) (0.0013) (0.0012)
[593.6] [6.7] [8.9] [9.3] [11.8]

-
0.8 0.6 0.8 0.8

{0.36} {0.48} - -

Table 6.6: Efficiency Gains for Standard Barrier Options (ATM, High p)
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Standard Barrier Options (ATM, Low p)

Plain
GBM Auxiliary SV Auxiliary Combinations
UOC Call SV UOC+Call UOC+SV All

Case 1

7.08 7.14 7.00 7.16 7.06 6.99 7.06
(0.008) (0.063) (0.062) (0.062) (0.061) (0.053) (0.054)
[567.7] [7.0] [6.2] [9.1] [6.4] [9.9] [9.9]

-
1.4 1.7 1.1 1.7 1.4 1.4

{0.66} {0.67} {0.68} - - -

Case 2

8.66 8.78 8.61 8.65 8.73 8.69 8.67
(0.011) (0.063) (0.082) (0.051) (0.055) (0.049) (0.044)
[566.3] [7.0] [6.3] [9.1] [6.4] [9.9] [10.0]

-
2.6 1.8 3.1 3.7 3.1 3.7

{0.84} {0.69} {0.90} - - -

Case 3

6.91 6.91 6.94 6.87 6.93 6.94 6.91
(0.009) (0.028) (0.030) (0.030) (0.024) (0.023) (0.020)
[566.1] [7.0] [6.3] [9.2] [6.5] [10.2] [10.1]

-
8.9 8.5 5.8 13.1 9.0 12.1

{0.95} {0.95} {0.94} - - -

Case 4

7.37 7.37 7.28 7.37 7.30 7.30 7.40
(0.011) (0.078) (0.102) (0.043) (0.077) (0.039) (0.040)
[573.2] [7.1] [6.3] [9.2] [6.5] [10.0] [10.0]

-
1.7 1.1 4.2 1.9 4.9 4.4

{0.73} {0.41} {0.92} - - -

Table 6.7: Efficiency Gains for Standard Barrier Options (ATM, Low p)

165



Standard Barrier Options (ITM, Medium p)

Plain
GBM Auxiliary SV Auxiliary Combinations

IS
UOC SV UOC+SV

Case 1

17.10 17.00 17.11 17.11 16.99
(0.012) (0.116) (0.100) (0.099) (0.117)
[566.9] [6.6] [8.6] [9.6] [10.9]

-
1.0 1.0 0.9 0.6

{0.33} {0.59} - -

Case 2

8.58 8.50 8.53 8.52 8.45
(0.011) (0.060) (0.046) (0.042) (0.099)
[574.9] [6.4] [8.6] [9.4] [11.7]

-
2.9 3.8 4.0 0.6

{0.83} {0.91} - -

Case 3

14.00 14.02 14.05 13.97 13.98
(0.012) (0.064) (0.050) (0.044) (0.108)
[574.5] [6.6] [8.8] [9.8] [11.6]

-
2.8 3.4 4.0 0.6

{0.83} {0.90} - -

Case 4

5.37 5.41 5.36 5.34 5.32
(0.009) (0.061) (0.036) (0.038) (0.082)
[568.9] [6.5] [8.5] [9.4] [11.7]

-
2.0 4.2 3.6 0.6

{0.75} {0.92} - -

Table 6.8: Efficiency Gains for Standard Barrier Options (ITM, Medium p)
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Standard Barrier Options (ITM, High p)

Plain
GBM Auxiliary SV Auxiliary Combinations

IS
UOC SV UOC+SV

Case 1

2.74 2.73 2.66 2.70 2.78
(0.006) (0.058) (0.052) (0.052) (0.056)
[571.9] [6.4] [8.4] [9.3] [11.5]

-
1.1 1.0 0.9 0.6

{0.37} {0.54} - -

Case 2

1.11 1.12 1.13 1.13 1.11
(0.004) (0.021) (0.018) (0.016) (0.031)
[570.2] [6.3] [8.3] [8.9] [11.8]

-
2.9 2.9 3.4 0.7

{0.83} {0.88} - -

Case 3

2.42 2.42 2.42 2.45 2.36
(0.005) (0.031) (0.023) (0.022) (0.047)
[574.7] [6.5] [8.5] [9.2] [11.7]

-
2.7 3.9 3.7 0.7

{0.82} {0.91} - -

Case 4

0.64 0.64 0.62 0.63 0.63
(0.003) (0.017) (0.013) (0.012) (0.023)
[572.1] [6.4] [8.4] [9.0] [11.9]

-
2.5 3.2 3.4 0.7

{0.78} {0.88} - -

Table 6.9: Efficiency Gains for Standard Barrier Options (ITM, High p)
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Standard Barrier Options (ITM, Low p)

Plain
GBM Auxiliary SV Auxiliary Combinations
UOC Call SV UOC+Call UOC+SV All

Case 1

22.73 22.78 22.61 22.81 22.76 22.71 22.63
(0.013) (0.084) (0.084) (0.087) (0.083) (0.072) (0.069)
[562.2] [6.8] [6.1] [8.7] [6.7] [9.8] [9.8]

-
2.0 2.2 1.4 2.1 1.9 2.0

{0.77} {0.76} {0.74} - - -

Case 2

22.24 22.41 22.33 22.21 22.07 22.37 22.18
(0.017) (0.094) (0.116) (0.075) (0.079) (0.074) (0.064)
[561.5] [6.6] [6.1] [8.8] [6.6] [10.0] [9.8]

-
2.7 1.9 3.1 3.8 2.9 3.8

{0.83} {0.71} {0.89} - - -

Case 3

22.16 22.08 22.14 22.24 22.19 22.21 22.22
(0.014) (0.037) (0.042) (0.052) (0.033) (0.032) (0.028)
[567.9] [6.7] [6.1] [8.9] [6.8] [9.9] [10.0]

-
11.7 9.6 4.4 14.6 10.1 13.1
{0.96} {0.95} {0.93} - - -

Case 4

18.48 18.40 18.51 18.56 18.47 18.50 18.38
(0.018) (0.116) (0.160) (0.065) (0.114) (0.060) (0.057)
[567.4] [6.7] [6.1] [8.8] [6.7] [10.0] [9.8]

-
2.0 1.1 4.8 2.0 5.0 5.5

{0.75} {0.43} {0.93} - - -

Table 6.10: Efficiency Gains for Standard Barrier Options (ITM, Low p)
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Standard Barrier Options (OTM, Medium p)

Plain
GBM Auxiliary SV Auxiliary Combinations

IS
UOC SV UOC+SV

Case 1

0.45 0.40 0.43 0.42 0.42
(0.002) (0.018) (0.018) (0.018) (0.019)
[572.5] [6.1] [8.3] [8.8] [10.3]

-
1.1 0.9 0.8 0.6

{0.22} {0.33} - -

Case 2

0.96 0.94 0.96 1.00 0.98
(0.003) (0.021) (0.015) (0.015) (0.027)
[572.8] [6.3] [8.3] [9.0] [11.7]

-
1.7 2.7 2.3 0.6

{0.67} {0.86} - -

Case 3

0.63 0.62 0.63 0.63 0.61
(0.002) (0.014) (0.015) (0.012) (0.022)
[576.7] [6.2] [8.4] [9.0] [10.3]

-
2.6 1.8 2.4 0.6

{0.80} {0.78} - -

Case 4

0.72 0.74 0.72 0.72 0.72
(0.003) (0.024) (0.013) (0.013) (0.023)
[584.5] [6.2] [8.4] [9.0] [11.7]

-
1.1 2.8 2.7 0.6

{0.41} {0.87} - -

Table 6.11: Efficiency Gains for Standard Barrier Options (OTM, Medium p)
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Standard Barrier Options (OTM, High p)

Plain
GBM Auxiliary SV Auxiliary Combinations

IS
UOC SV UOC+SV

Case 1

0.20 0.20 0.20 0.19 0.20
(0.001) (0.010) (0.010) (0.010) (0.009)
[579.1] [6.1] [8.3] [8.8] [10.8]

-
1.0 0.7 0.7 0.6

{0.09} {0.23} - -

Case 2

0.21 0.22 0.21 0.22 0.21
(0.001) (0.009) (0.006) (0.006) (0.009)
[595.0] [6.1] [8.3] [8.8] [11.8]

-
1.3 1.8 1.9 0.7

{0.51} {0.78} - -

Case 3

0.22 0.22 0.22 0.23 0.22
(0.001) (0.008) (0.007) (0.007) (0.010)
[586.2] [6.2] [8.4] [9.1] [11.2]

-
1.4 1.5 1.4 0.6

{0.62} {0.74} - -

Case 4

0.13 0.11 0.12 0.14 0.11
(0.001) (0.007) (0.006) (0.006) (0.006)
[587.6] [6.2] [8.4] [8.9] [12.0]

-
1.2 1.3 1.3 0.9

{0.23} {0.64} - -

Table 6.12: Efficiency Gains for Standard Barrier Options (OTM, High p)
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Standard Barrier Options (OTM, Low p)

Plain
GBM Auxiliary SV Auxiliary Combinations
UOC Call SV UOC+Call UOC+SV All

Case 1

0.58 0.52 0.57 0.60 0.62 0.60 0.54
(0.003) (0.023) (0.024) (0.025) (0.026) (0.024) (0.022)
[572.7] [6.1] [6.1] [8.5] [6.2] [9.0] [8.9]

-
1.2 1.0 0.7 0.9 0.7 0.9

{0.24} {0.26} {0.35} - - -

Case 2

1.81 1.76 1.75 1.80 1.81 1.80 1.85
(0.005) (0.031) (0.039) (0.026) (0.029) (0.024) (0.025)
[577.3] [6.2] [6.1] [8.5] [6.3] [9.2] [9.0]

-
2.2 1.4 2.2 2.5 2.5 2.3

{0.74} {0.54} {0.83} - - -

Case 3

0.83 0.85 0.82 0.85 0.83 0.85 0.83
(0.003) (0.015) (0.018) (0.017) (0.013) (0.013) (0.012)
[574.7] [6.2] [6.1] [8.6] [6.2] [9.1] [9.0]

-
3.8 2.6 2.1 5.0 3.7 4.4

{0.87} {0.81} {0.82} - - -

Case 4

1.69 1.72 1.66 1.70 1.65 1.67 1.70
(0.005) (0.040) (0.045) (0.022) (0.039) (0.020) (0.021)
[587.8] [6.3] [6.1] [8.6] [6.3] [9.2] [9.1]

-
1.3 1.0 3.2 1.4 3.7 3.2

{0.56} {0.23} {0.89} - - -

Table 6.13: Efficiency Gains for Standard Barrier Options (OTM, Low p)
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Digital Barrier Options (ATM, Medium p)

Plain
GBM Auxiliary SV Auxiliary Combinations

IS
UOC SV UOC+SV

Case 1

0.485 0.477 0.486 0.484 0.476
(0.0005) (0.0046) (0.0042) (0.0040) (0.0048)
[572.8] [6.4] [8.4] [9.2] [10.9]

-
1.0 0.9 0.9 0.6

{0.36} {0.52} - -

Case 2

0.204 0.204 0.205 0.200 0.212
(0.0004) (0.0023) (0.0022) (0.0019) (0.0037)
[570.9] [6.3] [8.4] [9.1] [11.8]

-
2.6 2.2 2.7 0.5

{0.80} {0.83} - -

Case 3

0.352 0.352 0.346 0.352 0.358
(0.0005) (0.0027) (0.0021) (0.0020) (0.0045)
[569.9] [6.4] [8.6] [9.5] [11.6]

-
2.7 3.2 3.3 0.5

{0.82} {0.89} - -

Case 1

0.118 0.121 0.119 0.118 0.122
(0.0003) (0.0022) (0.0019) (0.0018) (0.0029)
[569.5] [6.3] [8.4] [9.1] [11.8]

-
1.9 1.9 2.0 0.6

{0.73} {0.80} - -

Table 6.14: Efficiency Gains for Digital Barrier Options (ATM, Medium p)
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Digital Barrier Options (ATM, High p)

Plain
GBM Auxiliary SV Auxiliary Combinations

IS
UOC SV UOC+SV

Case 1

0.046 0.049 0.049 0.044 0.046
(0.0002) (0.0021) (0.0021) (0.0020) (0.0018)
[565.3] [6.3] [8.3] [8.8] [11.6]

-
0.9 0.6 0.7 0.6

{0.09} {0.08} - -

Case 2

0.009 0.009 0.008 0.008 0.009
(0.0001) (0.0008) (0.0008) (0.0007) (0.0007)
[564.5] [6.3] [8.3] [8.9] [11.7]

-
1.2 0.9 1.1 0.8

{0.53} {0.44} - -

Case 3

0.022 0.020 0.021 0.022 0.021
(0.0001) (0.0012) (0.0011) (0.0010) (0.0012)
[570.7] [6.3] [8.4] [8.9] [11.9]

-
1.3 1.2 1.2 0.7

{0.52} {0.67} - -

Case 4

0.004 0.004 0.004 0.004 0.004
(0.0001) (0.0006) (0.0005) (0.0005) (0.0005)
[569.9] [6.3] [8.4] [8.9] [11.9]

-
1.2 1.0 1.1 0.8

{0.38} {0.41} - -

Table 6.15: Efficiency Gains for Digital Barrier Options (ATM, High p)
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Digital Barrier Options (ATM, Low p)

Plain
GBM Auxiliary SV Auxiliary Combinations
UOC Call SV UOC+Call UOC+SV All

Case 1

0.616 0.610 0.612 0.606 0.611 0.615 0.615
(0.0005) (0.0036) (0.0036) (0.0035) (0.0036) (0.0032) (0.0032)
[568.4] [6.4] [6.1] [8.5] [6.6] [9.3] [9.4]

-
1.5 1.6 1.2 1.5 1.3 1.3

{0.64} {0.64} {0.68} - - -

Case 2

0.517 0.518 0.522 0.517 0.518 0.516 0.516
(0.0005) (0.0022) (0.0025) (0.0022) (0.0021) (0.0019) (0.0019)
[556.9] [6.4] [6.1] [8.6] [6.5] [9.4] [9.6]

-
4.0 3.4 2.9 4.5 3.6 3.7

{0.89} {0.86} {0.88} - - -

Case 3

0.545 0.547 0.543 0.546 0.545 0.546 0.548
(0.0005) (0.0021) (0.0021) (0.0019) (0.0020) (0.0016) (0.0017)
[568.5] [6.6] [6.1] [8.7] [6.5] [9.5] [9.5]

-
4.8 5.1 4.4 5.1 5.4 4.8

{0.91} {0.90} {0.92} - - -

Case 4

0.419 0.417 0.420 0.423 0.416 0.415 0.420
(0.0005) (0.0027) (0.0032) (0.0022) (0.0027) (0.0019) (0.0019)
[565.8] [6.5] [6.2] [8.6] [6.5] [9.4] [9.7]

-
2.7 2.0 2.9 2.7 3.9 3.6

{0.83} {0.74} {0.88} - - -

Table 6.16: Efficiency Gains for Digital Barrier Options (ATM, Low p)
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Digital Barrier Options (ITM, Medium p)

Plain
GBM Auxiliary SV Auxiliary Combinations

IS
UOC SV UOC+SV

Case 1

0.749 0.753 0.748 0.752 0.745
(0.0004) (0.0039) (0.0035) (0.0035) (0.0040)
[567.6] [6.6] [8.6] [9.6] [11.0]

-
0.9 0.9 0.8 0.6

{0.29} {0.53} - -

Case 2

0.475 0.477 0.475 0.475 0.469
(0.0005) (0.0024) (0.0016) (0.0016) (0.0045)
[566.3] [6.5] [8.6] [9.4] [11.9]

-
3.5 6.0 5.5 0.5

{0.87} {0.94} - -

Case 3

0.717 0.720 0.714 0.721 0.714
(0.0004) (0.0025) (0.0018) (0.0017) (0.0041)
[574.7] [6.7] [8.8] [9.8] [11.7]

-
2.6 3.8 3.7 0.5

{0.82} {0.91} - -

Case 4

0.331 0.331 0.332 0.329 0.334
(0.0005) (0.0030) (0.0017) (0.0017) (0.0042)
[576.7] [6.5] [8.6] [9.4] [12.1]

-
2.0 4.8 4.4 0.5

{0.75} {0.93} - -

Table 6.17: Efficiency Gains for Digital Barrier Options (ITM, Medium p)
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Digital Barrier Options (ITM, High p)

Plain
GBM Auxiliary SV Auxiliary Combinations

IS
UOC SV UOC+SV

Case 1

0.190 0.190 0.194 0.191 0.191
(0.0004) (0.0034) (0.0030) (0.0029) (0.0035)
[559.0] [6.4] [8.5] [9.1] [11.5]

-
1.1 1.1 1.1 0.6

{0.47} {0.65} - -

Case 2

0.108 0.109 0.106 0.108 0.108
(0.0003) (0.0017) (0.0012) (0.0012) (0.0026)
[559.1] [6.4] [8.4] [9.0] [11.8]

-
2.9 3.9 4.0 0.6

{0.83} {0.91} - -

Case 3

0.207 0.204 0.208 0.207 0.206
(0.0004) (0.0021) (0.0015) (0.0014) (0.0036)
[582.3] [6.5] [8.5] [9.2] [11.8]

-
3.1 4.7 5.2 0.6

{0.84} {0.93} - -

Case 4

0.067 0.063 0.069 0.069 0.068
(0.0002) (0.0016) (0.0011) (0.0011) (0.0021)
[563.6] [6.4] [8.4] [9.0] [11.8]

-
1.9 3.2 3.2 0.7

{0.71} {0.90} - -

Table 6.18: Efficiency Gains for Digital Barrier Options (ITM, High p)

176



Digital Barrier Options (ITM, Low p)

Plain
GBM Auxiliary SV Auxiliary Combinations
UOC Call SV UOC+Call UOC+SV All

Case 1

0.887 0.887 0.885 0.889 0.888 0.884 0.892
(0.0003) (0.0025) (0.0025) (0.0023) (0.0025) (0.0022) (0.0020)
[567.6] [6.8] [6.2] [8.8] [6.8] [9.9] [10.0]

-
1.0 1.2 1.0 1.1 1.0 1.1

{0.45} {0.47} {0.59} - - -

Case 2

0.810 0.806 0.811 0.813 0.810 0.807 0.810
(0.0003) (0.0021) (0.0023) (0.0015) (0.0019) (0.0013) (0.0013)
[563.1] [6.8] [6.2] [8.9] [6.8] [9.9] [9.9]

-
2.2 2.0 3.3 2.7 3.7 3.8

{0.80} {0.74} {0.90} - - -

Case 3

0.914 0.916 0.913 0.914 0.913 0.915 0.915
(0.0002) (0.0016) (0.0017) (0.0011) (0.0016) (0.0012) (0.0011)
[566.4] [6.8] [6.2] [9.0] [6.9] [10.4] [10.3]

-
1.9 1.8 2.7 1.7 2.1 2.6

{0.74} {0.72} {0.88} - - -

Case 4

0.683 0.682 0.681 0.685 0.683 0.686 0.682
(0.0004) (0.0031) (0.0036) (0.0017) (0.0031) (0.0016) (0.0015)
[566.2] [6.8] [6.3] [9.0] [6.8] [9.9] [10.2]

-
1.6 1.3 4.2 1.6 4.0 4.3

{0.69} {0.54} {0.92} - - -

Table 6.19: Efficiency Gains for Digital Barrier Options (ITM, Low p)
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Digital Barrier Options (OTM, Medium p)

Plain
GBM Auxiliary SV Auxiliary Combinations

IS
UOC SV UOC+SV

Case 1

0.080 0.072 0.083 0.082 0.077
(0.0003) (0.0025) (0.0024) (0.0024) (0.0026)
[564.1] [6.2] [8.2] [8.7] [10.1]

-
1.1 0.9 0.8 0.6

{0.26} {0.49} - -

Case 2

0.137 0.134 0.137 0.137 0.137
(0.0003) (0.0022) (0.0019) (0.0016) (0.0032)
[567.0] [6.2] [8.3] [8.8] [11.5]

-
2.2 2.2 2.6 0.5

{0.75} {0.83} - -

Case 3

0.102 0.102 0.104 0.102 0.100
(0.0003) (0.0018) (0.0015) (0.0013) (0.0029)
[567.0] [6.2] [8.3] [8.9] [10.3]

-
2.5 2.7 3.5 0.6

{0.80} {0.87} - -

Case 4

0.101 0.107 0.099 0.097 0.103
(0.0003) (0.0026) (0.0017) (0.0017) (0.0028)
[567.4] [6.2] [8.3] [8.9] [11.8]

-
1.2 2.0 2.0 0.5

{0.51} {0.81} - -

Table 6.20: Efficiency Gains for Digital Barrier Options (OTM, Medium p)
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Digital Barrier Options (OTM, High p)

Plain
GBM Auxiliary SV Auxiliary Combinations

IS
UOC SV UOC+SV

Case 1

0.057 0.057 0.055 0.058 0.062
(0.0002) (0.0022) (0.0021) (0.0022) (0.0023)
[577.2] [6.2] [8.2] [8.8] [10.5]

-
1.0 0.8 0.7 0.5

{0.19} {0.33} - -

Case 2

0.057 0.056 0.057 0.057 0.059
(0.0002) (0.0019) (0.0015) (0.0014) (0.0021)
[579.0] [6.2] [8.3] [8.8] [11.6]

-
1.4 1.5 1.8 0.6

{0.57} {0.75} - -

Case 3

0.062 0.061 0.061 0.062 0.064
(0.0002) (0.0018) (0.0015) (0.0013) (0.0023)
[583.3] [6.2] [8.4] [9.3] [11.1]

-
1.6 1.8 2.0 0.6

{0.64} {0.80} - -

Case 4

0.035 0.037 0.035 0.035 0.035
(0.0002) (0.0018) (0.0014) (0.0014) (0.0016)
[583.3] [6.2] [8.4] [8.8] [11.7]

-
0.9 1.2 1.1 0.7

{0.26} {0.64} - -

Table 6.21: Efficiency Gains for Digital Barrier Options (OTM, High p)
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Digital Barrier Options (OTM, Low p)

Plain
GBM Auxiliary SV Auxiliary Combinations
UOC Call SV UOC+Call UOC+SV All

Case 1

0.088 0.091 0.087 0.085 0.085 0.084 0.088
(0.0003) (0.0026) (0.0026) (0.0024) (0.0026) (0.0023) (0.0023)
[580.6] [6.1] [6.0] [8.2] [6.1] [8.7] [8.8]

-
1.1 1.1 1.0 1.1 1.0 1.0

{0.35} {0.34} {0.51} - - -

Case 2

0.185 0.185 0.183 0.185 0.183 0.184 0.186
(0.0004) (0.0021) (0.0022) (0.0019) (0.0020) (0.0016) (0.0016)
[581.4] [6.2] [6.0] [8.3] [6.4] [8.9] [8.9]

-
3.1 2.8 2.7 3.4 3.4 3.7

{0.83} {0.80} {0.85} - - -

Case 3

0.113 0.113 0.116 0.115 0.112 0.116 0.113
(0.0003) (0.0017) (0.0018) (0.0012) (0.0017) (0.0012) (0.0011)
[585.7] [6.2] [6.1] [8.3] [6.2] [8.9] [8.8]

-
3.1 3.1 4.7 3.3 4.8 5.6

{0.84} {0.83} {0.92} - - -

Case 4

0.162 0.161 0.158 0.162 0.162 0.159 0.162
(0.0004) (0.0027) (0.0030) (0.0019) (0.0027) (0.0018) (0.0018)
[583.9] [6.3] [6.1] [8.3] [6.3] [9.0] [9.1]

-
1.6 1.4 2.6 1.6 2.6 2.4

{0.64} {0.52} {0.85} - - -

Table 6.22: Efficiency Gains for Digital Barrier Options (OTM, Low p)
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Standard Barrier Options (4 Resets)

Plain
GBM Auxiliary SV Auxiliary Combinations

UOC SV UOC+SV

Case 1

4.60 4.62 4.53 4.59
(0.006) (0.054) (0.046) (0.046)
[566.6] [6.3] [8.3] [9.4]

-
1.0 1.0 0.9

{0.33} {0.58} -

Case 2

2.53 2.48 2.55 2.54
(0.005) (0.039) (0.036) (0.035)
[575.6] [6.2] [8.3] [9.0]

-
1.5 1.3 1.2

{0.60} {0.68} -

Case 3

3.48 3.47 3.45 3.46
(0.005) (0.037) (0.037) (0.035)
[564.5] [6.4] [8.5] [9.4]

-
1.8 1.4 1.4

{0.71} {0.71} -

Case 4

1.75 1.77 1.80 1.74
(0.004) (0.032) (0.034) (0.031)
[565.5] [6.2] [8.5] [9.3]

-
1.5 1.0 1.2

{0.64} {0.61} -

Table 6.23: Efficiency Gains for Standard Barrier Options (4 Resets)
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Standard Barrier Options (16 Resets)

Plain
GBM Auxiliary SV Auxiliary Combinations

UOC SV UOC+SV

Case 1

4.38 4.37 4.28 4.30
(0.006) (0.052) (0.044) (0.043)
[566.1] [6.3] [8.4] [9.1]

-
1.0 1.1 1.0

{0.33} {0.62} -

Case 2

2.00 2.05 1.99 1.98
(0.004) (0.032) (0.026) (0.024)
[575.2] [6.3] [8.3] [9.0]

-
1.7 1.9 2.0

{0.68} {0.80} -

Case 3

3.08 3.06 3.09 3.10
(0.005) (0.031) (0.029) (0.026)
[569.6] [6.4] [8.5] [9.5]

-
2.4 2.0 2.2

{0.79} {0.81} -

Case 4

1.25 1.26 1.23 1.26
(0.004) (0.025) (0.023) (0.021)
[566.0] [6.4] [8.5] [9.2]

-
1.7 1.6 1.7

{0.69} {0.76} -

Table 6.24: Efficiency Gains for Standard Barrier Options (16 Resets)
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Standard Barrier Options (64 Resets)

Plain
GBM Auxiliary SV Auxiliary Combinations

UOC SV UOC+SV

Case 1

4.22 4.22 4.30 4.22
(0.005) (0.051) (0.044) (0.043)
[560.6] [6.3] [8.6] [9.1]

-
1.0 1.0 1.0

{0.33} {0.60} -

Case 2

1.70 1.70 1.72 1.66
(0.004) (0.026) (0.023) (0.018)
[571.9] [6.2] [8.3] [9.0]

-
2.0 2.0 3.1

{0.74} {0.82} -

Case 3

2.83 2.77 2.82 2.84
(0.005) (0.029) (0.024) (0.021)
[568.5] [6.4] [8.5] [9.3]

-
2.5 2.7 3.0

{0.80} {0.87} -

Case 4

0.98 1.02 1.02 1.00
(0.003) (0.023) (0.018) (0.017)
[569.4] [6.3] [8.3] [9.1]

-
1.6 2.1 2.0

{0.67} {0.83} -

Table 6.25: Efficiency Gains for Standard Barrier Options (64 Resets)
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Chapter 7

Exploring Variations in Barrier

Option Pricing

7.1 Introduction

In chapter 4 we discussed efficient Monte Carlo method for valuing certain instru-

ments in a general class of stochastic volatility models. In addition to pricing,

another primary concern of a financial institution is how to hedge their option book

effectively. For effective hedging, there are two issues one needs to address:

1. How to recover prices of hedging instruments?

2. How to model evolution of prices of hedging instruments closely, that is, to

match deltas and gammas as closely as possible?

In order to address the first issue, we need to fit our stochastic volatility models to

the market implied volatility surface. To do the second, we fit our models to in-

struments whose values are path-dependent. Calibration to market prices of vanilla

options is necessary since any candidate model should price the hedging instruments

correctly. Doing only this, however, is insufficient. Vanilla options are priced off the

asset density at their maturity time. Their payoffs do not depend on other points

along the asset sample path. Even if two stochastic volatility models calibrate to the

same market vanilla option prices, they can still misprice other exotic instruments

whose payoffs depend on the full sample path. Examples of these instruments are

barrier options, average rate options, American or Bermudan options, et cetera.

In this chapter, what we are interested in is the discrepancy in the barrier op-

tion prices between the Heston model and other models if they all calibrate to the
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same vanilla option implied volatility surface. This shows the model has sufficient

flexibility to match a variety of barrier option prices, and may give better pricing

under issue 2 even if it cannot match delta and gamma exactly.

There are several books and papers discussing the valuation of barrier option in

the presence of volatility smiles. Taleb [81] finds the volatility smile has a signifi-

cant effect on barrier option price. Wilmott [85] observes that barrier option prices

are very sensitive to the volatility level.

In order to incorporate the volatility smile into pricing, people propose fast valua-

tion or approximation methods in different modelling frameworks. In local volatility

models, Sepp [74] and Zhu [86] compare prices of barrier options in the local volatility

model with those in the Black-Scholes model. In these models, Decamps et al. [25]

provide accurate approximation to the barrier option value. In the stochastic volatil-

ity world, Heath and Platen [43] compare the differences of barrier option prices in

the Heston and Black-Scholes models. Chiarella et al. [23] develop a method of lines

approach to evaluate the price as well as delta and gamma of barrier options in the

Heston model. Tahani [79] and Shiraya et al. [75] propose approximation methods

for barrier option prices in a general stochastic volatility model.

Another area in the literature focuses on the static hedging of barrier options. This

strand of research is pioneered by Bowie and Carr [18] and Derman et al. [26].

Carr and Chou [19] and Carr et al. [20] use a simple claim whose payoff, as well as

continuous values before maturity, are the same as those of the barrier option. But

their result holds only in the Black-Scholes model and it is not clear how to generlize

it. Andersen et al. [4] and Poulsen [67] present theories of static hedging allowing

for the volatility to be a function of time and current asset value (local volatility).

Nalholm and Poulsen [62] investigate how sensitive static hedging portfolios are to

different pricing models.

On the empirical side, Jessen and Poulsen [49] investigate prediction errors for five

models in pricing barrier option while they are calibrated to the vanilla option prices.

Gatheral [35] elaborates on how values of certain type of barrier options are highly

dependent on pricing models.

Our motivation is to show that even though different combinations of parameter

values in our class of models yield roughly the same vanilla option prices, they can
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still produce different barrier option prices. This provides us with additional flexibil-

ity of fitting our models to barrier as well as vanilla option prices. If we assume the

market implied volatility surface is generated by the Heston model, we investigate

answers to two questions in the following sections:

1. How to calibrate our class of models to the market implied volatility surface?

2. How the calibrated models price barrier options differently?

With the help of the correlation control variates we proposed in chapter 4, the model

calibration is faster and the differences in barrier option prices are discernible in less

computation time.

The rest of this chapter is organised as following. In section 7.2, we describe a

method of calibrating our models to vanilla option prices. In section 7.3, we ex-

amine calibration errors under a variety of models and investigate the variations

in barrier option pricing in the models with low calibration errors. Section 7.4

concludes.

7.2 Model Calibration

The standard calibration method makes use of a model’s analytical tractability. This

means the model needs to have analytical solutions for vanilla option prices or at

least prices that can be obtained by a quick numerical procedure. By virtue of Carr

and Madan [21], we can value a book of options with different strike prices using

fast Fourier transform (FFT). However, the pre-requisite is having an explicit form

for the characteristic function of xt = ln St. We explore the tractibility of E
(
eiφxt

)
.

7.2.1 The Characteristic Function

We first transform equation (4.1) into xt = ln St.

dxt =

[
r − 1

2
V 2ξ

t e2(β−1)xt

]
dt + V ξ

t e(β−1)xtdW X
t . (7.1)

We apply the solution technique in the orginal Heston paper [44] to derive the

characteristic function. Define the twice-differentiable function f(x, v, t) such that

f(x, v, t) = E [g (xT , VT ) |xt = x, Vt = v] , (7.2)
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where g is some other function of xT and VT . Applying the Itô-formula to f ,

df =

[
∂f

∂t
+

∂f

∂x

(
r − 1

2
v2ξe2(β−1)x

)
+

∂f

∂v
α(µ − v) +

1

2

∂2f

∂x2
v2ξe2(β−1)x

+
1

2

∂2f

∂v2
η2v2γ +

∂2f

∂x∂v
ηρvξ+γe(β−1)x

]
dt +

∂f

∂x
vξe(β−1)xdW X

t +
∂f

∂v
ηvγdW V

t .

(7.3)

From equation (7.1), f(x, v, t) is a martingale and therefore must have zero drift.

From equation (7.3), it yields the following PDE.

∂f

∂t
+

∂f

∂x

(
r − 1

2
v2ξe2(β−1)x

)
+

∂f

∂v
α(µ − v) +

1

2

∂2f

∂x2
v2ξe2(β−1)x

+
1

2

∂2f

∂v2
η2v2γ +

∂2f

∂x∂v
ηρvξ+γe(β−1)x = 0. (7.4)

If the terminal condition is g(xT , VT ) = eiuxT , the solution to the PDE (7.4) is the

characteristic function of xT .

Equation (7.4) is highly untractable, due to its non-linear coefficients, unless β = 1

and ξ = γ = 1
2 in which case equation (4.1) to (4.3) reduce to the Heston model. In

other cases, the characteristic function is not known analytically and therefore the

FFT technique fails to apply to our class of stochastic volatility models. However,

equation (7.4) can give us some intuition on what combinations of parameter values

give roughly the same solutions and also the option prices and implied volatility

surface.

We describe a calibration method based on the coefficients of equation (7.4).

7.2.2 Calibration Procedure

We can make the following observation from equation (7.4). The coefficients are

made up of the following individual terms: vξe(β−1)x, αµ, αv, ηvγ , r and ρ. Note

that r and ρ are stand-alone and constant. If αµ, αv, ηvγ and vξe(β−1)x satisfy the

following rules:

1. αv ≈ αµ = αV0 ≡ C1 for some constant C1,

2. ηvγ ≈ ηµγ = ηV γ
0 ≡ C2 for some constant C2,

3. vξe(β−1)x = vξXβ−1
t ≈ µξXβ−1

0 = V ξ
0 Xβ−1

0 ≡ C3 for some constant C3,
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we argue that the solutions to PDE (7.4) are close to each other. The first two

rules involve only one approximation v ≈ µ = V0. Since v is reverting to the long

term mean µ, if we set V0 = µ, v is around the level µ. The third rule involves an

additional approximation, Xt ≈ X0 (unless β = 1). This is less accurate because Xt

has a drift term r and therefore its mean level at time t is X0e
rt. But if we price

options with short maturity then ert ≈ 1.

We can calibrate our class of stochastic volatility models to the market implied

volatility surface by changing parameters γ, ξ and β in such a way that C1, C2 and

C3 have the same values as in the Heston model. We assume that if we vary the

parameters according to the above rules, the models will produce roughly the same

implied volatility surfaces. We verify our assumption and then price barrier options

with these different parameter sets in section 7.3.

7.3 Numerical Results

We use the Heston model as the base model (Model 0). We choose V0 = µ = 0.0225

so that the volatility is around 15%, a relatively high rate of mean reversion α = 4 so

that Vt stays roughly at the same level (which makes the approximation Vt ≈ µ more

accurate), η = 0.1333 to make the diffusion term ηV γ
t ≈ C2 = 0.02, and ρ = −0.5

which is the choice in most of our numerical examples in chapter 5 and 6. These

setting correspond to C1 = 0.09, C2 = 0.02 and C3 = 0.15. In all models, the initial

stock price S0 = 100 and the interest rate r = 0.05. The price of the vanilla option is

explicit in the Heston model. We value vanilla call options with K = 80, 85, · · · , 120

and T = 0.25, 0.5, 0.75, 1. The option prices and implied volatilities are displayed

in Figure 7.1 with values in the plot given in Table 7.19 (page 204) and Table 7.20

(page 204). These prices and implied volatilities are computed explicitly. We see

that the implied volatility decreases as the strike increases. As the time to maturity

increases, the skew becomes flatter. This is observed in the real market implied

volatility surface.

We examine calibration errors in section 7.3.1. Call option prices are obtained

by Monte Carlo simulation with a combination of three control variates described

in chapter 4, namely, SV (ρ = 0), SV (ρ 6= 0), and the GBM call CV. We use the

Milstein method on Vt and Euler method on ln Xt. The number of time steps is

N = 256 up to one year. The number of sample paths is M = 50000. If we denote

the option price estimate by ĉ and standard error by se, we invert ĉ, ĉl = ĉ − se
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Figure 7.1: Call Option Prices and Implied Volatilities in the Heston Model

and ĉh = ĉ + se to get their implied volatilities in the Black-Scholes model as σ̂, σ̂l

and σ̂h. We use σ̂l and σ̂h as error bounds for σ̂. The calibration error is defined as

ǫ = σ̂−σ0 where σ0 is the Black-Scholes volatility implied by the Heston model. The

lower and upper bound for the calibration error are ǫl = σ̂l − σ0 and ǫh = σ̂h − σ0.

The bound width is ǫb = ǫh − ǫl. We report the root mean square of ǫ and ǫb,

RMS(ǫ) and RMS (ǫb), for all options.

7.3.1 Calibration Errors

There are a number of ways we can calibrate to the implied volatility surface pro-

duced by the Heston model according to the rules in section 7.2.2. We vary the

parameters in three different ways: 1) fix ξ and β, change γ and η; 2) fix γ and β,

change ξ and so µ, α, V0 and η; and 3) fix ξ and γ, change β and so µ, α, V0 and

η. We expect calibration in the third way to be less accurate than those in the first

and the second for the reason we explained in section 7.2.2.

1. Fix ξ and β, Change γ and η

We fix ξ = 1
2 and β = 1 as in the Heston model. γ takes the values 0.4, 0.6, 0.8

and 1 whereas γ = 1
2 in the Heston model. η is adapted so that C2 = ηV γ = 0.02.

C1 = αµ = 0.09 and C3 = V ξ
0 Xβ−1

0 = 0.15 remain the same since α, µ, V0, X0, ξ

and β do not change. Table 7.1 lists the parameters of five different models. We
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Model 0 Model 1 Model 2 Model 3 Model 4

S0 = 100 100 100 100 100
r = 0.05 0.05 0.05 0.05 0.05

V0 = 0.0225 0.0225 0.0225 0.0225 0.0225
α = 4 4 4 4 4
µ = 0.0225 0.0225 0.0225 0.0225 0.0225
η = 0.1333 0.0912 0.1949 0.4162 0.8889

β = 1 1 1 1 1
ξ = 0.5 0.5 0.5 0.5 0.5
γ = 0.5 0.4 0.6 0.8 1

ρ = -0.5 -0.5 -0.5 -0.5 -0.5

Table 7.1: Model Parameters, Fix ξ and β, Change γ and η

plot the lower and upper bounds for the calibration errors in Figure 7.2. We see
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Figure 7.2: Calibration Errors in Model 1-4

that for options deep in the money and close to maturity the calibration errors are

highest and the error bounds are widest. As options move towards OTM and time

to maturity increases, ǫl and ǫh are very close to each other. Table 7.2 presents

RMS(ǫ) and RMS (ǫb) for Models 1-4. In Models 1-3, RMS(ǫ) << RMS (ǫb). In

Model 4, both are roughly at the same level. It means that their implied volatility

surfaces are not significantly different from that of the Heston model. In general,

RMS(ǫ) in all models are lower than 1% of the implied volatilities in the Heston

model.
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Model 1 Model 2 Model 3 Model 4

RMS(ǫ) 8.33E-04 3.21E-04 5.67E-04 1.53E-03
RMS (ǫb) 1.56E-03 1.80E-03 2.16E-03 1.32E-03

Table 7.2: The Root Mean Square Errors for Models 1-4

2. Fix γ and β, Change ξ, µ, α, V0 and η

We set γ = 1
2 and β = 1 to be the same as in the Heston model and let ξ take the

values of 0.4, 0.6, 0.8 and 1.0, compared to ξ = 1
2 in the Heston model. In order to

keep C3 = 0.02 we need adapt V0 and µ accordingly. In order to keep C1 = 0.09 and

C2 = 0.02, we also need to adjust α and η since both C1 and C2 depend on V0 and µ.

Table 7.3 lists the parameters in the models. Figure 7.3 shows the calibration errors.

Model 0 Model 5 Model 6 Model 7 Model 8

S0 = 100 100 100 100 100
r = 0.05 0.05 0.05 0.05 0.05

V0 = 0.0225 0.0087 0.0423 0.0933 0.15
α = 4 10.3280 2.1253 0.9641 0.6
µ = 0.0225 0.0087 0.0423 0.0933 0.15
η = 0.1333 0.2142 0.0972 0.0655 0.0516

β = 1 1 1 1 1
ξ = 0.5 0.4 0.6 0.8 1
γ = 0.5 0.5 0.5 0.5 0.5

ρ = -0.5 -0.5 -0.5 -0.5 -0.5

Table 7.3: Model Parameters, Fix γ and β, Change ξ, µ, α, V0 and η

Table 7.4 displays RMS(ǫ) and RMS (ǫb) for the resulting Models 5-8. RMS(ǫ) in

Model 5 Model 6 Model 7 Model 8

RMS(ǫ) 2.33E-03 2.95E-03 3.19E-03 3.90E-03
RMS (ǫb) 2.22E-03 2.97E-03 1.20E-03 1.01E-03

Table 7.4: The Root Mean Square Errors for Models 5-8

Models 5-8 are all higher than those in Models 1-4. In Models 5 and 6, RMS(ǫ) are

at the same level with RMS (ǫb) but in Models 7 and 8 RMS(ǫ) are significantly

higher RMS (ǫb). It means that the implied volatility surfaces produced by Models

7 and 8 differ significantly from that in the Heston model. The RMS(ǫ) are all

below 3% of the implied volatilities in the Heston model so the differences are not

too great.
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Figure 7.3: Calibration Errors in Model 5-8

3. Fix ξ and γ, Change β, µ, α, V0 and η

We fix ξ = γ = 1
2 as in the Heston model and set β = 0.2, 0.4, 0.6 and 0.8, compared

with β = 1 in the Heston model. Since C3 depends on β, we need to adapt µ and

V0 to fix C3 = 0.15. This will cause changes in α and η in order to keep C1 = 0.09

and C2 = 0.02.

Table 7.5 lists the parameters of the models. Figure 7.4 shows the calibration errors

Model 0 Model 9 Model 10 Model 11 Model 12

S0 = 100 100 100 100 100
r = 0.05 0.05 0.05 0.05 0.05

V0 = 0.0225 35.6601 5.6517 0.8957 0.1420
α = 4 0.0025 0.0159 0.1005 0.6340
µ = 0.0225 35.6601 5.6517 0.8957 0.1420
η = 0.1333 0.0033 0.0084 0.0211 0.0531

β = 1 0.2 0.4 0.6 0.8
ξ = 0.5 0.5 0.5 0.5 0.5
γ = 0.5 0.5 0.5 0.5 0.5

ρ = -0.5 -0.5 -0.5 -0.5 -0.5

Table 7.5: Model Parameters, Fix ξ and γ, Change β, µ, α, V0 and η

for the resulting Models 9-12. We see that the surfaces are not as flat at zero level as
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Figure 7.4: Calibration Errors in Models 9-12

those in Figures 7.2 and 7.3 but the error bounds are much narrower. This is due to

the high efficiency gains of our proposed control variates when 0 < β < 1 as we find

in chapter 4. Table 7.6 displays RMS(ǫ) and RMS (ǫb) for Models 9-12. RMS(ǫ)

Model 9 Model 10 Model 11 Model 12

RMS(ǫ) 2.10E-03 2.82E-03 4.09E-03 4.29E-03
RMS (ǫb) 1.47E-04 1.32E-04 1.18E-04 7.10E-04

Table 7.6: The Root Mean Square Errors for Models 9-12

are comparable to those in Table 7.4 but significantly greater than RMS (ǫb). How-

ever, they are all below 3% of the implied volatilities in the Heston model.

In summary, we find that in Models 1-6 RMS(ǫ) are less than or around the same

level as RMS (ǫb). In Models 6-12, RMS(ǫ) are much higher than RMS (ǫb). Al-

though RMS(ǫ) for all 12 models are less than 3% of the market implied volatilities

(produced by the Heston model), Models 6-12 produce significantly different im-

plied volatilities with those in the Heston model. In the next section, we explore

the difference with the Heston model with respect to barrier option prices in Models

1-6.

193



7.3.2 Variations of Barrier Option Prices

Models 1-6 are calibrated to the market implied volatilities produced by the Heston

model. We are interested in how different barrier option prices are in Models 1-6

to those in the Heston model. We consider up and out call options (UOC) with

strkes K = 80, 85, · · · , 120 and maturities T = 0.25, 0.5, 0.75, 1 as for the vanilla call

options. We use two barrier levels, U = 110 and U = 130, corresponding to high

and low hitting probabilities. Note that when U = 110, options with K > 110 have

zero payoffs because they have to knock out to be in the money.

The number of time steps is N = 256 up to one year and the barrier condition

is only checked at the discrete points on the sample path. Given the large number

of time steps, the discrete barrier option price should be very close to the continu-

ously monitored case.

Non-existence of Black-Scholes Implied Volatility

Unlike for vanilla option where there is always a Black-Scholes volatility implied

from each of our models, an implied volatility from barrier option prices never ex-

ists. We illustrate this problem in Figure 7.5. The solid curve represents the prices
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Figure 7.5: UOC Prices with Different Black-Scholes Volatilities

of UOC in the Black-Scholes model with different volatility levels on the horizontal

axis. These prices are computed explicitly. The dashed and dash-dotted lines are
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lower and upper bounds (±2se) of the UOC price in the Heston model with param-

eters in Table 7.1 or 7.3. We see that the UOC price in the Black-Scholes model first

increases and then decreases with the volatility. It reaches its maximum at some

σ∗ ∈ (0.2, 0.3). However, its value is far below the lower bound of the UOC price in

the Heston model which means that no σ in the Black-Scholes model can produce

the same price of UOC in the Heston model. We have the same findings if we repeat

the exercise for options with different strikes or maturities. In fact, Derman et al.

[27] also report that no Black-Scholes volatility can reproduce the price of UOC in

their local volatility model.

Since barrier option prices in the stochastic volatility model are out of the scope

of the Black-Scholes model, we cannot use Black-Scholes implied volatilities to dif-

ferentiate the barrier option prices in various stochastic volatility models as in the

case of vanilla options. We instead report the difference between the barrier option

prices in our calibrated models and those in the Heston model.

Differences in Barrier Option Prices

We do not have explicit values for barrier options in the Heston model or any model

in our class. In order to investigate the differences of barrier option prices between

models, we compute the difference path-wise. Suppose ci is the value of the barrier

option in Model i, for i = 0, 1, · · · , 6. We estimate the difference with the Heston

model (Model 0) as

db
i = cb

i − cb
0 ≈ 1

M

M∑

j=1

cb
i

(
ω(j)

)
− cb

0

(
ω(j)

)
, (7.5)

where ci

(
ω(j)

)
denotes the barrier option price in Model i evaluated on the jth

Wiener sample path ω(j). We report the bias T b
i =

d̂b
i

sei
where d̂b

i is the Monte Carlo

estimation of db
i and seb

i is the standard error of d̂b
i . This measures how far away

the difference is from zero. Since the calibration to the vanilla option values is not

a perfect match, we also report the bias T v
i for vanilla option prices in all models.

dv
i = cv

i − cv
0 ≈ 1

M

M∑

j=1

cv
i

(
ω(j)

)
− cv

0, (7.6)

where cv
0 is the explicit Heston call price. A positive (negative) T b

i or T v
i indicates

that Model i gives higher (lower) barrier or vanilla option price than the Heston
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model. If we find that |T b
i | is much higher than |T v

i |, we can conclude that Model

i and the Heston model give very different barrier option prices even though they

produce similar vanilla option prices.

We use two types of barrier options in our analysis, low versus high hitting proba-

bilities (U = 130 and U = 110). We look at options with T = 0.25, 0.5, 0.75, 1. We

use options with K = 80, 85, · · · , 120 when U = 130 while when U = 110 we only

use options with K = 80, 85, · · · , 105 because those with K > 110 have zero payoffs.

We present results in the table form. Each entry in the table has two numbers.

The top one is T b
i and the bottom one is T v

i . That entry represents both the barrier

and vanilla option with the same strike and maturity. It shows the difference in the

barrier option compared with that in the vanilla option.

Barrier options with low hitting probabilities. Table 7.7 displays T b
1 and

T v
1 for options with U = 130. For options with T = 0.25, |T b

1 | are all higher than

K = 80 85 90 95 100 105 110 115 120

T = 0.25
-2.6 -1.7 -0.2 1.7 3.5 4.3 3.9 2.5 0.8
1.0 0.9 0.7 1.6 2.8 2.8 2.2 1.0 0.2

T = 0.5
-2.7 -2.1 -1.3 -0.3 0.7 1.4 1.4 1.0 0.1
1.0 1.6 1.7 2.3 3.1 2.7 2.3 1.7 0.1

T = 0.75
-1.6 -1.3 -0.9 -0.3 0.2 0.6 0.7 0.5 -0.04
0.9 1.1 1.1 1.4 1.8 2.1 2.0 1.5 0.5

T = 1
-0.3 -0.2 -0.04 0.2 0.5 0.7 0.6 0.4 -0.1
0.4 0.2 0.04 0.2 0.4 1.0 0.7 1.2 0.9

Table 7.7: T b
1 and T v

1 , U = 130

|T v
1 | except for the option with K = 90. For options with T = 0.5 and 0.75, |T b

1 |
are larger than |T v

1 | only when the options are deep in the money (K = 80 and

85). When T = 1, |T b
1 | are generally lower than |T v

1 | but they are all lower than 1.

It means in that case the differences between Model 1 and the Heston model are

not significant. We can also see that T b
1 becomes more negative when the option

moves deeper in the money. That means Model 1 under prices the deep ITM options.

Table 7.8 presents T b
2 and T v

2 . For options with K = 100, 105 and 110 for all

maturities, |T b
2 | are significantly higher than |T v

2 |. For options with longer matu-

rities (T = 0.75 and 1), neither |T b
2 | nor |T v

2 | is very high. This is very similar to

Model 1 in Table 7.7. Unlike in the Model 1, T b
2 are most negative at K = 105 and
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K = 80 85 90 95 100 105 110 115 120

T = 0.25
1.3 0.5 -0.7 -2.3 -3.7 -4.4 -4.0 -3.0 -1.7
0.1 0.5 0.9 1.1 0.4 1.7 3.6 4.4 4.0

T = 0.5
1.5 1.0 0.2 -0.7 -1.5 -2.1 -2.1 -1.7 -1.1
0.7 1.0 0.6 0.2 0.5 0.5 0.1 1.7 2.7

T = 0.75
0.6 0.3 -0.1 -0.6 -1.1 -1.4 -1.4 -1.2 -0.8
1.3 1.0 1.1 0.6 0.4 0.01 0.6 0.8 1.9

T = 1
-0.6 -0.7 -0.9 -1.1 -1.3 -1.5 -1.4 -1.1 -0.7
1.6 1.5 1.4 1.2 1.0 0.5 0.4 0.6 0.6

Table 7.8: T b
2 and T v

2 , U = 130

|T b
2 | becomes smaller as the option moves in either direction of OTM or ITM. It

shows Model 2 produces highest biases when the option is close to the money.

Table 7.9 lists T b
3 and T v

3 . When T = 0.25, |T b
3 | are much higher than |T v

3 | for

K = 80 85 90 95 100 105 110 115 120

T = 0.25
1.7 0.4 -1.7 -4.5 -7.2 -8.7 -8.3 -6.7 -4.5
0.6 0.4 0.2 1.3 1.9 0.1 3.3 4.5 5.4

T = 0.5
2.1 1.2 -0.1 -1.7 -3.2 -4.4 -4.6 -4.1 -3.1
0.2 0.4 0.5 1.6 2.6 2.2 0.1 2.5 3.8

T = 0.75
0.6 0.1 -0.6 -1.5 -2.4 -3.1 -3.2 -2.9 -2.4
0.7 0.6 0.03 1.0 1.4 1.9 1.6 0.05 1.0

T = 1
-1.5 -1.7 -2.0 -2.4 -2.8 -3.1 -3.0 -2.7 -2.2
0.8 0.5 0.3 0.4 1.1 1.2 0.9 0.7 0.4

Table 7.9: T b
3 and T v

3 , U = 130

those options close to the money (95 6 K 6 110). When it goes deep in or out

of the money, the difference becomes smaller. When T = 0.5, |T b
3 | is significantly

higher than |T v
3 | for deep in the money options (K 6 85) and options not too far out

of the money (K = 105 and 110). When T = 0.75, barrier options with K > 100

have significantly lower values from those in the Heston model. When T = 1, |T b
3 |

are higher than |T v
3 | for all options and T b

3 are all negative.

Table 7.10 shows the results for Model 4. For options with T = 0.25, |T b
4 | are

much higher than |T v
4 | for options with 95 6 K 6 105. In those case, |T v

4 | are

all below 1 which means the vanilla option prices are very close but T b
4 are highly

negative so the barrier option prices are significantly lower than those in the Heston

model. When T > 0.25 and 95 6 K 6 105, |T b
4 | are also higher than |T v

4 |, but the
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K = 80 85 90 95 100 105 110 115 120

T = 0.25
2.8 1.0 -1.9 -5.7 -9.3 -11.2 -10.7 -8.5 -5.8
2.0 2.6 2.6 0.3 0.6 1.0 5.7 8.2 7.0

T = 0.5
3.3 2.1 0.3 -1.8 -4.0 -5.5 -5.8 -5.2 -4.0
1.8 1.9 0.8 1.0 2.4 2.3 0.5 3.5 5.6

T = 0.75
1.3 0.6 -0.4 -1.6 -2.8 -3.8 -4.0 -3.8 -3.1
1.9 1.9 0.9 0.9 2.1 1.9 0.9 0.3 3.2

T = 1
-1.6 -1.8 -2.2 -2.8 -3.5 -3.9 -3.8 -3.5 -2.8
2.6 2.2 0.9 0.6 1.2 1.7 1.3 0.6 0.7

Table 7.10: T b
4 and T v

4 , U = 130

differences are not as big as when T = 0.25. It shows that in Model 4 disagrees with

the Heston model in short maturity barrier option prices even though they produce

similar vanilla option prices.

Table 7.11 displays the results for Model 5. We notice that ITM vanilla options

K = 80 85 90 95 100 105 110 115 120

T = 0.25
0.7 2.3 5.0 8.9 12.3 13.7 12.8 9.7 6.1
1.0 3.1 6.4 2.2 14.9 42.1 75.7 83.9 112.0

T = 0.5
-0.2 0.6 1.8 3.4 4.8 5.5 5.7 4.7 3.3
1.2 0.6 1.1 5.5 11.3 20.1 29.1 36.5 39.2

T = 0.75
2.7 2.8 2.8 3.1 3.2 3.0 3.0 2.4 1.8
0.5 1.8 4.1 6.9 10.3 13.7 16.0 18.0 19.7

T = 1
6.7 6.2 5.5 4.9 4.1 3.2 2.8 2.0 1.3
1.9 3.7 5.9 8.3 10.3 12.5 13.3 13.5 13.0

Table 7.11: T b
5 and T v

5 , U = 130

have very high |T v
5 |, much higher than |T b

5 |. It indicates that the vanilla option

prices in Model 5 are very different from those in the Heston model. There is hardly

any conclusion we can draw on how differently they produce barrier option prices.

Table 7.12 presents the results in Model 6. As in Model 5, the vanilla option prices

are significantly different from those in the Heston model. We cannot draw any

conclusion in Model 6.

In summary, when U = 130 those models which produce close vanilla option prices

(Model 1-4) give different values for barrier options with short maturity (T = 0.25).

But the difference gets lower for higher maturities. The differences are higher for
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K = 80 85 90 95 100 105 110 115 120

T = 0.25
-3.3 -4.6 -6.5 -9.0 -10.9 -11.6 -10.2 -7.9 -4.9
2.7 7.3 14.7 15.1 3.1 34.2 75.2 58.8 34.5

T = 0.5
-2.9 -3.6 -4.6 -5.7 -6.4 -6.6 -5.9 -4.8 -3.2
4.7 7.4 9.3 6.3 2.8 15.1 30.6 48.9 51.2

T = 0.75
-4.6 -4.9 -5.3 -5.5 -5.4 -5.1 -4.3 -3.5 -2.2
3.2 4.4 4.1 1.8 2.8 9.4 16.7 24.5 32.0

T = 1
-6.8 -6.8 -6.8 -6.5 -5.9 -5.2 -4.2 -3.2 -2.0
1.1 1.2 0.6 0.7 3.3 5.9 9.0 12.4 16.2

Table 7.12: T b
6 and T v

6 , U = 130

ATM and not-too-deep-ITM options (100 6 K 6 110) are higher than those options

with other strikes. In most cases where the our models calibrate well to the vanilla

option prices (low |T b
i |), they under-price the barrier options.

Barrier options with high hitting probabilities. Table 7.13 shows T b
1 and T v

1

when U = 110. For options with T = 0.25 and K 6 90, |T b
1 | are much higher than

K = 80 85 90 95 100 105

T = 0.25
5.9 5.6 4.8 3.3 1.3 -0.5
1.0 0.9 0.7 1.6 2.8 2.8

T = 0.5
2.4 2.2 1.7 1.0 0.2 -0.5
1.0 1.6 1.7 2.3 3.1 2.7

T = 0.75
0.2 0.1 -0.01 -0.1 -0.2 -0.5
0.9 1.1 1.1 1.4 1.8 2.1

T = 1
-1.2 -1.1 -0.9 -0.7 -0.4 -0.4
0.4 0.2 0.04 0.2 0.4 1.0

Table 7.13: T b
1 and T v

1 , U = 110

|T v
1 | and T b

1 are all positive. It indicates that in those cases Model 1 over-prices the

barrier options. When T = 0.75 and 1, all |T b
1 | and |T v

1 | are low, which means that

Model 1 gives similar vanilla as well as barrier option prices to the Heston model.

This is also seen in the high hitting probability case in Table 7.7.

Table 7.14 gives results in Model 2 when U = 110. When T = 0.25 and K 6 90,

|T b
2 | are significantly higher |T v

2 | as in Model 1 in Table 7.13 but T b
1 are all nega-

tive. It shows Model 3 gives lower values for those barrier options. When T = 1,

|T b
2 | are about twice as high as |T v

2 | while |T v
2 | are all below 2. It shows that even

though there are differences (but not too significant) in the vanilla options, they
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K = 80 85 90 95 100 105

T = 0.25
-3.3 -3.2 -2.6 -1.5 -0.01 -0.2
0.1 0.5 0.9 1.1 0.4 1.7

T = 0.5
-1.5 -1.2 -0.7 0.01 0.9 0.7
0.7 1.0 0.6 0.2 0.5 0.5

T = 0.75
0.8 1.0 1.3 1.5 1.6 1.1
1.3 1.0 1.1 0.6 0.4 0.01

T = 1
3.0 3.0 2.9 2.6 2.1 1.3
1.6 1.5 1.4 1.2 1.0 0.5

Table 7.14: T b
2 and T v

2 , U = 110

are lower than thoses in the barrier option price when T = 1. For T = 0.5 and

0.75, neither |T b
2 | nor |T v

2 | is high so that Model 1 and the Heston model produce

roughly the same vanilla option price as well as the barrier option price in both cases.

Table 7.15 displays the results for Model 3. We find similar patterns as in Model 2

K = 80 85 90 95 100 105

T = 0.25
-4.6 -4.7 -4.4 -3.5 -1.2 -0.5
0.6 0.4 0.2 1.3 1.9 0.1

T = 0.5
-1.5 -1.4 -1.1 -0.7 0.3 0.3
0.2 0.4 0.5 1.6 2.6 2.2

T = 0.75
1.2 1.3 1.2 1.1 1.2 0.6
0.7 0.6 0.03 1.0 1.4 1.9

T = 1
3.3 3.2 2.8 2.2 1.7 0.7
0.8 0.5 0.3 0.4 1.1 1.2

Table 7.15: T b
3 and T v

3 , U = 110

in Table 7.14. The Heston model and Model 3 produce similar prices vanilla options

while disagree on the barrier option prices for T = 0.25 and 1.

Table 7.16 presents the results for Model 4. For T = 0.25 and 0.5, especially for

T = 0.25, the discrepancies in the barrier option prices are much larger than those in

the vanilla option prices. Model 4 significantly under-prices the barrier options with

all strikes. When T = 0.75 and 1, |T b
4 | are either low or not significantly higher than

|T v
4 |. In both cases, Model 4 and the Heston model give similar barrier option prices.

Table 7.17 displays the results for Model 5. When T = 0.25 and 0.5, |T b
5 | are

much higher than |T v
5 | for options with K 6 90. Model 5 completely disagrees with
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K = 80 85 90 95 100 105

T = 0.25
-15.8 -16.4 -15.8 -13.5 -8.8 -3.5

2.0 2.6 2.6 0.3 0.6 1.0

T = 0.5
-6.7 -6.6 -6.0 -5.0 -3.2 -1.4
1.8 1.9 0.8 1.0 2.4 2.3

T = 0.75
-0.6 -0.6 -0.6 -0.7 -0.5 -0.5
1.9 1.9 0.9 0.9 2.1 1.9

T = 1
3.5 3.3 2.7 1.8 0.9 -0.1
2.6 2.2 0.9 0.6 1.2 1.7

Table 7.16: T b
4 and T v

4 , U = 110

K = 80 85 90 95 100 105

T = 0.25
-41.2 -39.2 -35.1 -27.2 -16.6 -4.2

1.0 3.1 6.4 2.2 14.9 42.1

T = 0.5
-15.4 -14.0 -11.7 -8.1 -4.0 0.1

1.2 0.6 1.1 5.5 11.3 20.1

T = 0.75
-1.3 -0.7 0.1 1.1 2.0 2.2
0.5 1.8 4.1 6.9 10.3 13.7

T = 1
7.1 7.0 6.7 6.2 5.3 3.4
1.9 3.7 5.9 8.3 10.3 12.5

Table 7.17: T b
5 and T v

5 , U = 110
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the Heston model about the barrier option prices. T b
5 are very negative in those

cases so that in Model 5 the barrier option prices are much lower than those in the

Heston model. For options deep ITM (K > 100), |T b
5 | < |T v

5 | while |T v
5 | are usually

large. We cannot draw a conclusion about the difference in the barrier option prices

because the vanilla option prices are very different.

Table 7.18 presents the results for Model 6. We see |T b
6 | are much higher than

K = 80 85 90 95 100 105

T = 0.25
32.4 30.7 26.9 20.5 11.6 2.2
2.7 7.3 14.7 15.1 3.1 34.2

T = 0.5
12.1 10.8 8.5 5.6 2.2 -1.0
4.7 7.4 9.3 6.3 2.8 15.1

T = 0.75
0.9 0.1 -0.8 -1.8 -2.4 -2.7
3.2 4.4 4.1 1.8 2.8 9.4

T = 1
-5.2 -5.6 -5.8 -5.6 -4.8 -3.7
1.1 1.2 0.6 0.7 3.3 5.9

Table 7.18: T b
6 and T v

6 , U = 110

|T v
6 | for T = 0.25 except for the option with K = 105. But |T v

6 | are also high for

K = 90 and 95. It means that differences in vanilla option prices are high, but not

as high as those differences in barrier option prices. In those cases, Model 6 over-

prices both barrier and vanilla options (positive T b
6 and T v

6 ). When T = 1, |T v
6 | are

low for ITM options and much lower than |T b
6 |. In these cases, Model 6 agrees with

the Heston model on the vanilla option prices but gives significantly lower prices

of barrier options. For options with K = 105, |T v
6 | > |T b

6 | and we cannot draw

conclusion in these cases.

In summary, for barrier options with high hitting probabilities, the discrepancies

in barrier option prices are large, much larger than the low hitting probability case,

even though the model and the Heston model produce close vanilla option prices

(at least not different to the extent as in the barrier option prices). There are, how-

ever, cases in Model 5 and 6 where we cannot comment on the differences in barrier

option prices because the vanilla option prices are significantly different to those

in the Heston model. Generally speaking, our class of stochastic volatility models

generates a variety of barrier option prices even though they roughly agree on the

vanilla option prices.
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7.4 Conclusion

We have examined the variations in barrier option prices in the class of models that

we formulate in chapter 4. A calibration method is proposed so that the models

can produce roughly the same market implied volatility surface which is assumed

to be generated by the Heston stochastic volatility model. We have considered, in

total, twelve different models by varying one of γ, ξ and β and fixing the other two

as in the Heston model. The calibration errors in vanilla options are large if β 6= 1.

We choose six models whose calibration errors are lowest as our candidate models

for barrier option pricing. The differences in barrier versus vanilla option prices are

reported. Thanks to the low standard errors ensured by our control variate methods,

we find that in many cases the variations in barrier option prices are higher than

those in vanilla option prices, especially when varying ξ and fixing γ and β. In

some cases, however, the models give significantly different vanilla option prices.

We cannot compare the barrier option prices in those cases. A better calibration

method in those models will be an interesting future research topic.
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Tables of Values in the Plot

Table 7.19 and 7.20 lists the option values and implied volatilities in Figure 7.1.

K = 80 85 90 95 100 105 110 115 120

T = 0.25 21.00 16.10 11.35 7.04 3.64 1.48 0.45 0.10 0.02
T = 0.5 22.04 17.32 12.84 8.84 5.54 3.11 1.54 0.67 0.25
T = 0.75 23.10 18.54 14.26 10.41 7.16 4.60 2.75 1.52 0.78
T = 1 24.16 19.73 15.59 11.85 8.63 5.99 3.96 2.48 1.48

Table 7.19: Vanilla Option Values in the Heston Model

K = 80 85 90 95 100 105 110 115 120

T = 0.25 0.169 0.164 0.159 0.155 0.150 0.146 0.143 0.140 0.137
T = 0.5 0.165 0.161 0.157 0.154 0.150 0.147 0.145 0.142 0.140
T = 0.75 0.163 0.159 0.156 0.153 0.151 0.148 0.146 0.144 0.142
T = 1 0.161 0.158 0.156 0.153 0.151 0.149 0.147 0.145 0.144

Table 7.20: Implied Volatilities in the Heston Model
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Chapter 8

Conclusion

We addressed issues in discretization and variance reduction methods for Monte

Carlo simulation in derivative modelling.

For discretization schemes, we investigated the convergence properties of six Itô-

Taylor approximations, the Euler method, the order 1 predictor-corrector, the iter-

ative predictor-corrector, the order 2 weak Itô- Taylor and the order 2 predictor-

corrector, for the deterministic volatility LIBOR market model. We also included a

seventh method, the strong Taylor expansion, by Siopacha and Teichmann [77]. An

improvement on their method was provided.

We compared pricing errors for caplets and swaptions using the various discretiza-

tion schemes. We find that in a single step Monte Carlo simulation, the iterative

predictor-corrector has the lowest pricing error and requires the least computation

time. The scheme is simple to implement and is recommended for long step dis-

cretization. In a multiple steps case, the order 2 weak Itô-Taylor scheme has lower

pricing error than the iterative predictor-corrector scheme with only very little ad-

ditional cost. The order 2 predictor-corrector has roughly the same pricing errors as

the iterative predictor-corrector method, but is costly. We suggest using the order

2 weak Itô-Taylor scheme for multiple steps Monte Carlo.

The strong Taylor expansion by Siopacha and Teichmann [77] has the highest pricing

errors. In addition, this scheme does not converge to the explicit value as the num-

ber of time steps increases. Although we provided an improvement on the strong

Taylor expansion method, its pricing errors cannot be reduced by increasing the

number of time steps. One should not use these two methods for discretization.
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For variance reduction methods, we investigated control variate methods in stochas-

tic volatility models. We formulated a general stochastic volatility model. This

model nests many existing models in the literature. We proposed control variates

for this model. The auxiliary processes were constructed for two types of instru-

ments, those with linear path statistics and those with non-linear path statistics.

We gave examples for both types. For linear path statistics, we proposed auxiliary

instruments for arithmetic average rate options. For non-linear path statistics, we

proposed auxiliary instruments for discretely monitored barrier options. Extensive

numerical results demonstrate the improvement over using only old control variates.

The improvement is large for arithmetic average rate options. Although for barrier

options our methods do not have efficiency gains as high as those in the average

option case, they still outperform the old methods in most cases.

With the help of our new control variates, we explored variations in barrier op-

tion pricing in our model, consistent with the implied volatility surface. Thanks to

low standard errors ensured by our control variate methods, we find that in most

cases the variations in barrier option prices are higher than those in vanilla option

prices with the same strikes and maturities. Our stochastic volatility model is ca-

pable of generating a richer set of barrier option prices than the Heston model.

There are future research topics. Firstly, the iterative predictor-corrector scheme

cannot be applied in the spot-LIBOR measure. It is interesting to compare Itô-

Taylor schemes for the LIBOR market model in this measure. Secondly, it is worth

finding an auxiliary model for non-linear path statistics when β ∈ (0, 1). Finally, it

is important to pursue the possibility of having a better variance reduction method

for barrier option pricing.
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Appendix A

Proof of Lemmas

A.1 Proof of Lemma 4.5.1.

Define measure P under which Bt has a zero drift and measure P̂ under which B̂t

has a zero drift. B̂t is a symmetric process under P̂. By reflection principal

P̂

(
M̂T > m, B̂T 6 b

)
= P̂

(
B̂T > 2m − b

)
. (A.1)

Define the joint density of B̂T and M̂T under P̂ as f̂
B̂T ,M̂T

(x, y).

P̂

(
M̂T > m, B̂T 6 b

)
=

∫ +∞

m

∫ b

−∞
f̂

B̂T ,M̂T
(x, y)dxdy, (A.2)

P̂

(
B̂T > 2m − b

)
=

1√
2πT

∫ +∞

2m−b
e−

z2

2T dz. (A.3)

By equation (A.1),

∫ +∞

m

∫ b

−∞
f̂

B̂T ,M̂T
(x, y)dxdy =

1√
2πT

∫ +∞

2m−b
e−

z2

2T dz. (A.4)

Differentiating equation (A.4) twice on both sides, first with respect to m and then

with respect to b, gives us

f̂
B̂T ,M̂T

(x, y) =
2(2m − b)

T
√

2πT
e−

(2m−b)2

2T . (A.5)

By definition

dB̂t = σtdŴt = dBt + aσ2
t dt = σtdWt + aσ2

t dt ⇒ dŴt = dWt + aσtdt. (A.6)
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By Girsanov Theorem,

Zt =
dP̂

dP
= exp

(
−a

∫ t

0
σsdWs −

a2

2

∫ t

0
σ2

sds

)

= exp

(
−aBt −

a2

2

∫ t

0
σ2

sds

)
= exp

(
−aB̂t +

a2

2

∫ t

0
σ2

sds

)
. (A.7)

We can use it to work out the joint density of B̂T and M̂T under measure P,

f
B̂T ,M̂T

(x, y).

P

(
B̂T 6 b, M̂T 6 m

)
= E

(
I{B̂T 6b,M̂T 6m}

)

= Ê

(
1

ZT
I{B̂T 6b,M̂T 6m}

)

= Ê

[
exp

(
aB̂T − a2

2
T

)
I{B̂T 6b,M̂T 6m}

]

=

∫ m

−∞

∫ b

−∞
exp

(
ax − a2

2
T

)
f̂

B̂T ,M̂T
(x, y)dxdy (A.8)

The joint density is then computed as

f
B̂T ,M̂T

(b,m) =
∂2

∂b∂m
P

(
B̂T 6 b, M̂T 6 m

)

= exp

(
ab − a2

2
T

)
f̂

B̂T ,M̂T
(b,m)

=
2(2m − b)

T
√

2πT
exp

[
ab − 1

2
a2T − 1

2T
(2m − b)2

]
. (A.9)

End of proof. �

A.2 Proof of Lemma 4.6.1

We proof this lemma by using the Taylor series expansion method. Note this the

method is used before for the moments of Power Normal distribution (see Freeman

and Modarres [34])

E (X|Y > κ) =

∫ +∞

κ
(λy)

1
λ φ
(
y, µ, σ2|y > κ

)
dy. (A.10)
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Define S(y) = (λy)
1
λ . By Taylor-expansion around the point y = µ, we have

S(y) =
∞∑

i=0

1

i!
S(i)(µ)(y − µ)i, (A.11)

where

S(i)(y) =

{
S(y) if i = 0

(λy)
1
λ
−i∏i−1

j=0(1 − jλ) otherwise
(A.12)

is the ith order derivative of S(y). Therefore, equation (A.10) becomes

∫ +∞

κ
(λy)

1
λ φ
(
y, µ, σ2|y > κ

)
dy

=
∞∑

i=0

1

i!
S(i)(µ)

∫ +∞

κ
(y − µ)iφ

(
y, µ, σ2|y > κ

)
dy

=

∞∑

i=0

1

i!
S(i)(µ)σi

∫ ∞

κ−µ
σ

ziφ

(
z, 0, 1|z >

κ − µ

σ

)
dz

(
by transformation z =

y − µ

σ

)

= (λµ)
1
λ +

∞∑

i=1

1

i!
(λµ)

1
λ
−i σiE(Zi|Z > b)

i−1∏

j=0

(1 − jλ), Z ∼ N(0, 1), (A.13)

where b = κ−µ
σ .

End of proof. �

A.3 Proof of Lemma 4.7.1.

Zt =Z0 exp

[(
λ − 1

2

)∫ t

0
σ2

sds +

∫ t

0
σsdWs

]

=Z0 exp

[(
λ − 1

2

)∫ t

0
σ2

sds + Bt

]
= Z0 exp

(
B̂t

)
, (A.14)

where B̂t = a
∫ t
0 σ2

sds + Bt and a = λ − 1
2 .

E [H (Zt, t 6 T )] = E

[
(ZT − K)+I{ZT >K,maxt6T Zt6U}

]

= E
[
(ZT − K)+I{B̂T >k,M̂T 6u}

]
, (A.15)
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where

k = ln

(
K

Z0

)
, u = ln

(
U

Z0

)
. (A.16)

From Lemma 4.5.1 we know the joint density of B̂T and M̂T under P. Equation

(A.15) can be computed as

E

[
(ZT − K)+I{B̂T >k,M̂T 6u}

]
=

∫ u

k

∫ u

x+

(Z0e
x − K) f

B̂T ,M̂T
(x, y)dydx

=

∫ u

k

∫ u

x+

(Z0e
x − K)

2(2y − x)

T
√

2πT
exp

[
ax − 1

2
a2T − 1

2T
(2y − x)2

]
dydx

= −
∫ u

k
(Z0e

x − K)
1√
2πT

exp

[
ax − 1

2
a2T − 1

2T
(2y − x)2

]∣∣∣∣
y=u

y=x+

dx

=
1√
2πT

∫ u

k
(Z0e

x − K) exp

(
ax − 1

2
a2T − 1

2T
x2

)
dx

− 1√
2πT

∫ u

k
(Z0e

x − K) exp

[
ax − 1

2
a2T − 1

2T
(2u − x)2

]
dx

=Z0(I1 − I3) − K(I2 − I4), (A.17)

where

I1 =
1√
2πT

∫ u

k
exp

[
(a + 1)x − 1

2
a2T − 1

2T
x2

]
dx, (A.18)

I2 =
1√
2πT

∫ u

k
exp

(
ax − 1

2
a2T − 1

2T
x2

)
dx, (A.19)

I3 =
1√
2πT

∫ u

k
exp

[
(a + 1)x − 1

2
a2T − 1

2T
(2u − x)2

]
dx, (A.20)

I4 =
1√
2πT

∫ u

k
exp

[
ax − 1

2
a2T − 1

2T
(2u − x)2

]
dx. (A.21)

Each one is of the form

1√
2πT

∫ u

k
ec1+c2x− 1

2T
x2

dx

=e
1
2
c22T+c1

∫ 1√
T
(u−c2T)

1√
T
(k−c2T)

e−
z2

2 dz

=e
1
2
c22T+c1

[
Φ

(
u − c2T√

T

)
− Φ

(
k − c2T√

T

)]

=e
1
2
c22T+c1


Φ




ln
(

U
Z0

)
− c2T

√
T


− Φ




ln
(

K
Z0

)
− c2T

√
T




 . (A.22)
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For I1, c1 = −1
2a2T = −1

2

(
λ − 1

2

)2
T and c2 = a + 1 = λ + 1

2 .

I1 = eλT


Φ




ln
(

U
Z0

)
−
(
λ + 1

2

)
T

√
T


− Φ




ln
(

K
Z0

)
−
(
λ + 1

2

)
T

√
T






= eλT

[
Φ

(
ln
(

Z0
K

)
+
(
λ + 1

2

)
T√

T

)
− Φ

(
ln
(

Z0
U

)
+
(
λ + 1

2

)
T√

T

)]
. (A.23)

For I2, c1 = −1
2a2T = −1

2

(
λ − 1

2

)2
T and c2 = a = λ − 1

2 .

I2 = Φ




ln
(

U
Z0

)
−
(
λ − 1

2

)
T

√
T


− Φ




ln
(

K
Z0

)
−
(
λ − 1

2

)
T

√
T




= Φ

(
ln
(

Z0
U

)
+
(
λ − 1

2

)
T√

T

)
− Φ

(
ln
(

Z0
K

)
+
(
λ − 1

2

)
T√

T

)
(A.24)

For I3, c1 = −1
2a2T − 2u2

T
= −1

2(λ − 1
2)2T − 2u2

T
and c2 = a + 1 + 2u

T
= λ + 1

2 + 2u
T

.

I3 = eλT

(
U

Z0

)2λ+1

Φ




ln
(

U2

KZ0

)
+
(
λ + 1

2

)
T

√
T


− Φ




ln
(

U
Z0

)
+
(
λ + 1

2

)
T

√
T




 .

(A.25)

For I4, c1 = −1
2a2T − 2u2

T
= −1

2(λ − 1
2)2T − 2u2

T
and c2 = a + 2u

T
= λ − 1

2 + 2u
T

.

I4 =

(
U

Z0

)2λ−1

Φ




ln
(

U2

KZ0

)
+
(
λ − 1

2

)
T

√
T


− Φ




ln
(

U
Z0

)
+
(
λ − 1

2

)
T

√
T






(A.26)

End of proof. �
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