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Applications of Granger Causality to Biological Data 

Abstract 

In computational biology, one often faces the problem of deriving the 

causal relationship among different elements such as genes, proteins, metabo-

lites, neurons and so on, based upon multi-dimensional temporal data. In litera-

ture, there are several well-established reverse-engineering approaches to ex-

plore causal relationships in a dynamic network, such as ordinary differential 

equations (ODE), Bayesian networks, information theory and Granger Causal-

ity. To apply the four different approaches to the same problem, a key issue is 

to choose which approach is used to tackle the data, in particular when they 

give rise to contradictory results. 

In this thesis, I provided an answer by focusing on a systematic and 

computationally intensive comparison between the two common approaches 

which are dynamic Bayesian network inference and Granger causality. The 

comparison was carried out on both synthesized and experimental data. It is 

concluded that the dynamic Bayesian network inference performs better than 
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the Granger causality approach, when the data size is short; otherwise the 

Granger causality approach is better. 

Since the Granger causality approach is able to detect weak interactions 

when the time series are long enough, I then focused on applying Granger cau-

sality approach on real experimental data both in the time and frequency do-

main and in local and global networks. For a small gene network, Granger cau-

sality outperformed all the other three approaches mentioned above. A global 

protein network of 812 proteins was reconstructed, using a novel approach. The 

obtained results fitted well with known experimental findings and predicted 

many experimentally testable results. In addition to interactions in the time do-

main, interactions in the frequency domain were also recovered. 

In addition to gene and protein data, Granger causality approach was 

also applied on Local Field Potential (LFP) data. Here we have combined mul-

tiarray electrophysiological recordings of local field potentials in both right in-

ferior temporal (rIT) and left IT (lIT) and right anterior cingulate (rAC) cortices 

in sheep with Granger causality to investigate how anaesthesia alters processing 

during resting state and exposure to pictures of faces. Results from both the 

time and frequency domain analyses show that loss of consciousness during 

anaesthesia is associated with a  reduction/disruption of feed forward open-loop 

cortico-cortical connections and a corresponding increase in shorter-distance 

closed loop ones. 
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Chapter 1 

Introduction 

Currently, biological measurement techniques produce massive quanti-

ties of data from genes, proteins, metabolites, neurons, brain areas and so on. It 

is a key issue to analyse the pattern of element interactions based upon multi-

dimensional spatial and temporal data. It has been recognized that most interac-

tions in biology are directional. To be able to assess the directionality of inter-

actions, there are several widely used reverse-engineering approaches such as 

Granger causality, Bayesian network inference and so on. Firstly, this thesis 

seeks to find the best reverse-engineering approaches, which is shown to be 

Granger causality, by focusing on a systematic and computationally intensive 

comparison. Secondly, a novel approach called global Granger causality is in-

troduced for deriving large network and its applications to gene and protein data. 

Finally, some interesting results are derived by using a Granger causality ap-

proach for local field potential data recorded from sheep brain. 
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1.1 Review 

1.1.1 Networks describe biological principles and mechanisms. 

In a topological sense, a network is a set of nodes and a set of directed 

or undirected edges between the nodes. There exist many complex and large 

biological networks, such as protein-protein interactions, transcription factor-

binding networks, metabolic networks, neural connections. The study of these 

biological networks has been rapidly expanding over the last decade. More and 

more large-scale networks have been identified. Some unexpected functions of 

individual components have also been revealed. Biological networks are widely 

found not only as descriptions of complex interactions, but as key determinants 

of function, mechanisms and principles in systems biology. The relationships 

can be observed at different scales: global scale and local scale. For example, 

the scale-free network (degree distribution follows a power law [Mason, 2007]) 

and small-world structure (most nodes can be reached from every other by 

small steps [Kleinberg, 2000]) are some new paradigms of networks on the 

global scale. On the other hand, the importance of modularity, motifs (fre-

quently occurred patterns [Alon, 2007]) and hubs (high-degree node [Elena, 

2008]) is observed at the local scale. It is still a key issue in systems biology to 
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find out how biological function is related to the structure and dynamics of bio-

logical networks. 

These biological networks are significantly different from random net-

works and commonly observed to exhibit different properties in terms of their 

structure and architecture. In the literature, it is often reported that the place-

ment of an element is related to its biological characteristics. For example, hubs 

or high-degree nodes in a protein interaction network which usually has the 

scale-free or small-world property have high probability to be essential [Elena, 

2008; Nizar 2006]. In other words, most of the hubs are related to the cell fate: 

knockout of the corresponding hubs would cause the organism death. It has also 

been found that the network motifs, which recur within a network much more 

often than expected in a random network, can be considered as simple building 

blocks from the composed network. The functions associated with common 

network motifs in transcription networks have been well studied both theoreti-

cally and experimentally [Alon, 2006].  

 

1.1.2 Biological network inference 

With the development of biological measurement techniques and 

equipments, the great bulk of high-throughput biological data, such as microar-
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ray data, can be collected from various biology sources in laboratories. It is in-

creasingly recognized that theoretical methods are required to understand and 

make biological predictions of these multi-dimensional spatial and temporal 

biological data [Albert, 2007]. These theoretical methods can be classified into 

three systems biology topics:  

 Statistical network inference (i.e. reconstructing the network of 

interactions among a set of biology entities)  

 Network analysis (i.e. mining the information content of the 

network) 

 Dynamic modelling (connecting the interactive network to the 

dynamic behaviour of the system).  

In this thesis, one focused on the network inference and the network 

analysis was also carried out in Chapter 4 and Chapter 5. For the network in-

ference topic, although there are many types of biological networks, few of 

them are known in anything approaching their complete structures, even for the 

simplest cells. Therefore it is still a big challenge for scientists and biologists to 

reliably and accurately reconstruct biological network structures.  
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Correlation networks 

As of 2007, correlation-based algorithms were the most fruitful network 

inference methods used in biological application for microarray data [Friston, 

1994; Basso et al., 2005; Faith et al., 2007]. Clustering or some form of statisti-

cal classification is typically employed to perform an initial organization of the 

high-throughput data. Defining the interactions between each node more pre-

cisely can be done by using background literature or information in public data-

bases, combined with clustering results. It can also be done by using correla-

tion-based algorithms. In the analysis of neuroimaging time-series data, tempo-

ral correlations between spatially remote neurophysiological events are com-

monly calculated for deriving functional connectivity and checking if two ele-

ments are co-expressed across the data set. Co-expression can also be measured 

by mutual information [Bansal et al., 2007]. Normally, such methods can be 

only applied to derive undirected networks; it cannot be used to reveal a causal 

(or directed) relationship between entities. Another problem is that basic corre-

lations can result from the confounding effects of stimulus-locked transients 

evoked by common afferent inputs [Friston, 1994] although the partial Granger 

causality could deal with this problem in some cases. To precisely understand 

the relationships between the nodes (e.g. genes), that is often required to find 

the underlying directed influence of each node on the others.  
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Causal networks 

It has been the philosophers’ dream to learn causal relations from raw 

data since the time of Hume (1711-1776), but the big problem is what the defi-

nition of causal relationships is. In neuroimaging, the causal (or effective) con-

nectivity can be defined as the influence one neural system exerts over another 

[Friston, 1994]. Unfortunately, unlike functional connectivity, the definition of 

effective connectivity is not operational since the definition of ‘influence’ is 

hard to present in mathematics. The possible solution arose when the mathe-

matical relationships between graphs and probabilistic dependencies came into 

light. Probabilities encode degrees of belief about events in the world and data 

are used to strengthen, update, or weaken those degrees of belief. The interpre-

tation of causation can then be translated by using probability theory: A causes 

B if the occurrence of A increases the probability of B. This probability theory 

is currently the most common mathematical language of most disciplines that 

use causal modelling. In addition, scientists are also concerned with the relative 

strength of those connections and with ways of inferring those connections 

from noisy observations [Pearl, 2000]. To derive directional relationships, sev-

eral well defined network inference approaches have been successfully applied 

in the literature. These approaches include ordinary differential equations 

(ODE), Bayesian network inference and Granger causality approach.  
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ODEs relate changes in nodes to each other and also to an external per-

turbation. The model consists of a differential equation for each of the node in 

the network, describing the changing rate of the node as a function of the other 

nodes and of the perturbation. The parameters of the equations have to be in-

ferred from the expression data. [Della Gatta et al., 2008; Gardner et al., 2003]  

A Bayesian network is a special case of a diagrammatic representation 

of probability distributions, called probabilistic graphical models. The Bayesian 

network graph model comprises nodes (also called vertices) connected by di-

rected links (also called edges or arcs) without cycles (i.e. a node cannot di-

rectly or indirectly regulate itself). To learn the structure and the parameters for 

the Bayesian networks from a set of data, we should search the space of all pos-

sible graph representations, and find out which structure is most likely to have 

produced our data. [Jensen, 1996; Bach et al., 2004; Buntine, 1994; Friedman, 

2004; di Bernardo et al., 2005] 

The Granger causality concept was firstly derived in econometrics 

[Granger, 1980 & 1969] and is slowly moving into other fields, like systems 

biology [Guo 2008]. Granger causality is focused on measurement taken over 

time, and how they may influence one another. The directional concept of 

Granger causality comes from the relationship between past, present and future: 

the present and past influence future developments but not the other way around. 
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Thus an event taking place in the future cannot cause another event in the past 

or present. According to Granger causality, we can determine a causal influence 

if the past values of one time series contain information that helps predict an-

other one above and beyond the information already contained in its past values. 

This idea was applied in a mathematical formulation based on linear regression 

modelling of stochastic processes [Granger, 1969]. The improvement of the 

prediction is measured by the variance of the error term. Due to the temporal 

ordering idea applied in Granger causality, it is obvious that Granger causality 

can only predict functional causal relationships for which cause and influence 

are sufficiently separated in time [Schelter, 2006]. In general, it is impossible to 

derive influences in a unique direction between variables at the same time point. 

Since the concept does not rely on a specification of a causal model, although 

Auto Regressive (AR) models are commonly used in literature it is particularly 

suited for empirical investigations of causal interactions.  

 

1.2 Research topics of interest 

1.2.1 Reverse-engineering approaches  

Generally, methodologies based on ODEs reconstruct networks by esti-

mating the parameters in a differential equation model. In contrast, Bayesian 
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network inference methods use the idea of probabilistic graphical models to un-

cover the network structure. Information theory approaches (e.g. mutual infor-

mation) extract the network structure based on the probability that a pair of 

elements are co-expressed across a data set. Granger causality approaches de-

rive the connective networks based on the improvement of prediction by incor-

porating additional past knowledge. Each of these approaches has its own bene-

fits and disadvantages. For instance, ODE-based methods have advantages in 

cases where known biological perturbations are used in the experiments and 

information theoretic approaches are quite effective for learning large networks 

by using a relatively small amount of data. Given various types of methods for 

network reconstruction, it is quite important to evaluate the relative strengths, 

weaknesses and reliabilities of these methods through some comparative studies. 

These are described in the extensive literature on network inference [e.g. see 

Bonneau, 2008; Smet, 2010]. In addition, workshops and special events, such as 

DREAM (Dialogue for Reverse Engineering Assessments and Methods), have 

been organized to reveal the relative strengths of different approaches by pre-

senting reverse-engineering challenges [Prill, 2001]. Currently, we still lack ac-

curate and fair benchmarks or comparison standards to access and validate the 

diversity of reverse engineering approaches for both in silico and in vivo net-

works.  
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During the first year of my PhD, I performed a comparative study be-

tween the two most common approaches: Granger causality vs. dynamic Bayes-

ian network inference. The comparative study was carried out by focusing on a 

systematic and computationally intensive comparison (more than 100 com-

puters over a few weeks) between them on both synthesized and experimental 

data in the linear and nonlinear model (as described in Chapter 3.2.1). The re-

sults indicated that for a data set with a long enough sampling length the 

Granger causality approach produced more accurate results. This result was fur-

ther confirmed by applying Granger causality in an in vivo gold standard (a 

known small synthetic gene network) proposed in a recent Cell paper [Camacho, 

2009; Cantone, 2009]. Hence we could reasonably expect that the Granger cau-

sality approach is the best among the four approaches. These comparative stud-

ies provided us useful information on systematically understanding these re-

verse-engineering approaches and thus help us choose the proper one to apply 

to the experimental data in practice.  

The conventional Granger causality is general, simple and can be easily 

applied to other types of temporal data. Furthermore, the advantage of the 

Granger causality over the other three approaches is the frequency decomposi-

tion, which is usually informative when we deal with temporal data. For exam-

ple, in neurophysiology data, the brain employs different frequency bands to 

communicate between neurons and brain areas [Wu, 2007; Zhan, 2006]. How-
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ever, there are still some limitations for the biological applications of Granger 

causality. For example, Granger causality is generally applied in a linear model. 

Although extensions to nonlinear cases now exist, these extensions can be more 

difficult to use in practice and their statistical properties are less known. In fact, 

the conventional Granger concept has been rapidly extended and improved in 

the last few years. The initial pair-wised Granger causality [Geweke, 1982] has 

now been extended to conditional Granger causality [Geweke, 1984], partial 

Granger causality [Guo, 2008], complex Granger causality [Ladroue, 2009] and 

global Granger causality (Described in Chapter 4.2.2) for dealing with differ-

ent problems of network reconstruction.  

 

1.2.2 Development of networks reconstruction methods 

Hidden exogenous inputs 

Although the number of elements that can be simultaneously recorded is 

rapidly increasing with the progress of biological measurement equipment, only 

a subset of all the relevant variables is able to be recorded. Moreover, due to the 

limitation of computational technology, normally only a subset of elements is 

selected for detailed analysis according to the classification results derived by 

some statistical clustering methods. Such a recorded subset of all the related 



Chapter 1: Introduction 
 
 

12 
 

multi-variable time series normally contains some common environmental (or 

external) inputs. Attempting to identify causal interaction in such multi-variable 

biological time series can be under-determined and misleading by using con-

ventional reverse-engineering such as conditional Granger causality when the 

confounding influence of exogenous input is strong enough. Hence eliminating 

the exogenous inputs is a critical issue while applying reverse-engineering ap-

proaches to any experimental data.  

Some novel approaches have been developed for dealing with such ex-

ogenous inputs and latent variable problem, such as the partial Granger causal-

ity [Guo, 2008]. The idea of partial Granger causality was inspired by the defi-

nition of partial correlation. Assuming a small subset of variables receiving 

common inputs, the partial Granger causality allows us to reveal the underlying 

interactions among element in a network by eliminating the effect of exogenous 

inputs. During my three years’ PhD research, partial Granger causality ap-

proach was tested in various types of experimental data (including genes, pro-

teins, neurons etc.), my results further proved that Partial Granger causality per-

formed better than conventional conditional Granger causality in most cases.  
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Large network reconstruction 

Due to the complexity of biological processes, in order to capture the 

dynamics of complex systems and investigate the functions of genes and neu-

rons in detail, it is much better to treat the network as a whole instead of analyz-

ing a very limited portion of it [Basso, 2005]. Until now, most of the analysis 

tools currently used for the whole network are based on clustering algorithms. 

These algorithms attempt to locate groups of genes that have similar expression 

patterns over a set of experiments. Such analysis has proven to be useful in dis-

covering genes that are co-regulated and/or have similar function [Cantone, 

2009; Gatta 2008; Smet, 2010]. A more ambitious goal for analysis is revealing 

the structure of the transcriptional regulation process, for example, for a given 

transcription factor, could we find all its upstream and downstream transcrip-

tion factors? This is clearly a challenging and fascinating problem. In this thesis, 

one proposed a novel approach to solve such problem (as described in Chapter 

4.2.2). 

Most popular approaches, such as Granger causality, are powerful in 

cases where the length of the time series is much larger than the number of 

variables, which is exactly the reverse of the situation commonly found in mi-

croarray experiments, for which relatively short time series are measured over 

tens of thousands of genes or proteins. The real difficulty comes from the fact 
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that when the dimension is larger than the length of time series, the design ma-

trix of predictors is rectangular, having more columns than rows; in such case, 

the model is under-determined and cannot be uniquely fitted. Bayesian network 

is a graph-based model of joint multivariate probability distributions that cap-

tures properties of conditional independence between variables, but as it re-

quires a large number of parameters and assumptions upon the variable distri-

bution, it also quickly becomes intractable for large networks. Keeping these 

limitations in mind, it is still an important task to develop methodologies that 

are both statistically sound and computationally tractable to make a full use of 

the wealth of data now at our disposal. In this thesis, we proposed a novel ap-

proach called Global Granger Causality (GGC) to solve this problem. The ad-

vantage of such an approach is that it provides a less biased structure of the 

network by explicitly taking more sources into account. 

 

1.2.3 Biological network analysis  

The question of how biological function is related to the structure and 

dynamics of biological regulatory networks is central to computational biology 

research. Given biological interactions, networks may be analysed with respect 

to their structure and dynamical pattern, which are associated with phenotypes 

of interest. More and more biological circuits and their underlying biological 
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functions have been well studied. For example, Alon and his group proposed 

the new idea of motif: small circuits can be considered as simple building 

blocks from which the network is composed [Alon, 2006]. Both statistical and 

experimental works have been devoted to understanding various types of net-

work motifs in gene regulatory networks and also other types of biological net-

works such as neuronal networks and protein interaction networks. In plant bi-

ology, the first large-scale Arabidopsis protein interaction network was derived 

from the knowledge of interacting Arabidopsis protein orthologs in Saccharo-

myces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and 

Homo sapiens [Geisler-Lee, 2007]. However, it is still not very clear how bio-

logical phenomena relate to the interactions between molecules in most organ-

isms.  

During my PhD research, some interesting circuits and networks associ-

ated with the corresponding biological phenomena have been recovered. For 

example, a well-known circadian circuit of 7 genes in Arabidopsis Leaf was re-

constructed. Interestingly, we found the plant rewired its circadian circuit after 

infection. By assigning a dynamics to the network and trying to decipher the 

implications of the rewiring, one found that a critical gene was recruited to save 

the whole network (as described in Chapter 3.3.2 and Chapter 3.4.5). All 

these works revealed the correlation between molecule interactions and the sur-

prisingly complex biological functions they created.  
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1.3 Original work 

1.3.1 Granger causality vs. dynamic Bayesian network infer-

ence: a comparative study 

Although comparative studies have been described in the extensive lit-

erature on network inference methods, until now, no one tried to compare be-

tween two common network inference approaches: dynamic Bayesian network 

inference and Granger causality. In this thesis, I carried out a comparative study 

between the two approaches using both synthesized and experimental data. The 

aim was to find the performance differences, reliabilities and sensitivities be-

tween these two approaches. For synthesized data, a critical point of the data 

length was found: the Granger causality approach outperforms the dynamic 

Bayesian network inference when the data length is long enough, and vice versa. 

The Granger causality approach was more reliable for detecting weak interac-

tions, but it also had over-fitting problems when the data length was too short. 
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1.3.2 Identifying interactions in the time and frequency do-

mains in local and global networks – A Granger causality ap-

proach  

Reverse-engineering approaches such as Bayesian network inference, 

ordinary differential equations (ODEs) and information theory are widely ap-

plied to deriving causal relationships among different molecules. These ap-

proaches have difficulty in cases where the length of the time series is smaller 

than the number variables, which is a common situation found in microarray 

experiments. In this thesis, we proposed a novel approach called Global 

Granger Causality for dealing with large network re-construction problem. By 

taking iterative steps, all indirect links will be removed from the initial network 

(including both direct and indirect links) derived by bivariate pair-wise Granger 

causality.  It provides a less biased structure of the network due to hidden vari-

ables than in a small network by explicitly taking more sources. It also provides 

information on the ancestors and descendents of key elements. The results can 

then guide experimentalists to investigate the properties of a small subset of 

specific proteins. 
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1.3.3 Loss of consciousness due to anaesthesia is associated with 

decreased long and increased short-distance functional connec-

tivity in the cortex  

In the literature, it has been reported that loss of consciousness with an-

aesthesia, sleep or vegetative states may involve reduced functional cortical 

connectivity by disruption of long feed forward connections [Mashour, 2006; 

Akire et al., 2008]. Here we have combined multi-array array recordings of lo-

cal field potentials in three different cortices in sheep with Granger causality to 

investigate how anaesthesia alters neural processing during resting state and 

visual stimulation. Some interesting phenomena for connections changing due 

to anaesthesia were observed. These results showed good agreements with pre-

vious results and reported in the literature [Ge, 2009; Ladroue, 2009]. In addi-

tional to the previously reported findings, our results illustrated that loss of con-

sciousness during anaesthesia is associated with reductions in extrinsic long-

distance open-loop cortico-cortical connections, and loss of their unidirectional 

flow, coupled with an increase in the strength of shorter-distance intrinsic 

closed loop connections. 
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1.4 Summary 

The major contributions of this PhD study are the investigation and ap-

plication of reverse-engineering approaches especially the Granger causality 

approach. The work includes a comparative study between Granger causality 

and dynamic Bayesian network inference, the proposal of a novel approach for 

dealing with large network re-construction problem, and the applications of 

Granger causality to sheep data to investigate the effect of anaesthesia.  

Chapter 2 presents detailed background knowledge of the reverse-

engineering approaches, Granger causality and Bayesian network inference. 

Chapters 3, 4 and 5 provide the main results from my three year PhD study. 

Chapter 3 shows a comparative study between Granger causality and Bayesian 

network inference, including results derived from both synthesized and experi-

mental data. Chapter 4 proposes a novel approach based on the Granger causal-

ity approach for identifying interactions in the time and frequency domains in 

local and global networks. Chapter 5 studies the effect of anaesthesia to the 

connectivity network among cortices in sheep by using a Granger causality ap-

proach. The conclusion and further extensions are discussed in the last chapter. 
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Chapter 2 

Background 

In this chapter, one focus on two common approaches used for reverse-

engineering task. One is the Granger causality approach, and the other is the 

dynamic Bayesian network inference approach. In this chapter, I would like to 

give detailed and systematic descriptions of these two common reverse-

engineering approaches. For Granger causality approach, the development and 

evolution of Granger causality will be introduced. It includes methods of pair-

wise Granger causality, conditional Granger causality, partial Granger causality 

and also the corresponding frequency domain analysis. A background descrip-

tion and implementation of Bayesian network inference will also be expressed 

in Chapter 2.2.  
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2.1 Granger causality 

In order to evaluate the statistical interdependence among signals, we 

normally calculate the cross-correlation functions in the time domain and ordi-

nary coherence functions in the frequency domain. However, in many situations, 

symmetric measures are not completely satisfactory, and further dissection of 

the directed interaction patterns among the recorded signals is often required. 

Recent work has begun to consider the causal influence from one element to 

another. The basic idea can be traced back to Wiener who conceived the notion 

that, if the prediction of one time series could be improved by incorporating the 

knowledge of a second one, then the second series is said to have a causal influ-

ence on the first [Granger, 1969]. This idea lacks the machinery for practical 

implementation. Granger later formalized the prediction idea in the context of 

linear autoregression (AR) models. The AR model is one of a group of linear 

prediction formulas that attempt to predict an output of a system based on the 

previous outputs [Ding, 1999]. In the AR model, the variance of the prediction 

error is used to test the prediction improvement. 
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2.1.1 Pair-wise Granger causality  

For simplicity, we introduced the pair-wise Granger causality analysis 

for two time series. This framework can also be generalized to two sets of time 

series. 

 

Time Domain Analysis 

Assuming two stochastic processes tX  and tY , that are jointly station-

ary (i.e. the joint probability distribution does not change when shifted in time).  

Each process can be auto-regressively represented by using their past knowl-

edge separately. 

 
1 1 1 1

1

1 1 1 1
1

, var( )

, var( )

t i t i t t
i

t i t i t t
i

X a X

Y b Y

ε ε

η η

∞

−
=

∞

−
=

⎧ = + = Σ⎪⎪
⎨
⎪ = + = Γ
⎪⎩

∑

∑
 (2.1.1) 

Jointly, they can be represented as 

 
2 2 2

1 1

2 2 2
1 1

t i t i i t i t
i i

t i t i i t i t
i i

X a X b Y

Y c X d Y

ε

η

∞ ∞

− −
= =

∞ ∞

− −
= =

⎧
= + +⎪⎪

⎨
⎪ = + +
⎪⎩

∑ ∑

∑ ∑
 (2.1.2) 
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And the noise covariance matrix for the system can be represented as 

 2 2 2 2 2
2

2 2 2 2 2

var( ) cov( , )
cov( , ) var( )

t t t

t t t

ε ε η
η ε η

Σ ϒ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ϒ Γ⎣ ⎦⎣ ⎦

S  (2.1.3) 

In Equations (2.1.2) and (2.1.3), the value of 1Σ  measures the accuracy of the 

autoregressive prediction of tX  based on its previous values, whereas the value 

of 2Σ  represents the accuracy of prediction of tX  based on the previous values 

of both tX and tY . According to Wiener [Wiener, 1956] and Granger [Granger, 

1969], if 2Σ  is less than 1Σ , then tY  is said to have a causal influence on tX . 

We quantify this causal influence by 

 1

2

lnY XF →
Σ

=
Σ

 (2.1.4) 

It is clear that the coefficients 2ib  are uniformly zero if there is no causal influ-

ence from Y  to X , thus we can get 1 2Σ = Σ . We then can deduce 0Y XF → = . 

For 1 2Σ > Σ and 0Y XF → > , we can say that there is a direct influence from Y to 

X . 
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Frequency domain analysis 

We firstly define the lag operator L  to be 1t tLX X −= . Rewrite Equa-

tion (2.1.2) in terms of the lag operator 

 22 2

22 2

( ) ( )
( ) ( )

t t

t t

Xa L b L
Yc L d L

ε
η

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 (2.1.5) 

By taking Fourier transform on both sides of Equation (2.1.5), it leads to 

 2 2

2 2

( )( ) ( ) ( )
( )( ) ( ) ( )

x

y

Ea b X
Ec d Y

ωω ω ω
ωω ω ω

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 (2.1.6) 

Where the components of the coefficient matrix ( )ωA  are 

 
2 2 2 2

1 1

2 2 2 2
1 1

( ) 1 , ( )

( ) , ( ) 1

iwj iwj
j j

j j

iwj iwj
j j

j j

a a e b b e

c c e d d e

ω ω

ω ω

∞ ∞
− −

= =

∞ ∞
− −

= =

= − = −

= − = −

∑ ∑

∑ ∑
 (2.1.7) 

For normalization, we left multiply 

 2

2

1 0

1

⎛ ⎞
⎜ ⎟= ϒ⎜ ⎟−⎜ ⎟Σ⎝ ⎠

P  (2.1.8) 

On both sides of Equation (2.1.6). The result is 
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 2 2

3 3

( )( ) ( ) ( )
( )( ) ( ) ( )

x

y

Ea b X
Ec d Y

ωω ω ω
ωω ω ω

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
%  (2.1.9) 

Where 2
3 2 2

2

( ) ( ) ( )c c aω ω ωϒ
= −

Σ
, 2

3 2 2
2

( ) ( ) ( )d d bω ω ωϒ
= −

Σ
, ( ) ( )y yE Eω ω= −%  

2

2

( )xE ωϒ
Σ

. Reformat Equation (2.1.9) into the transfer function format, we ob-

tain 

 
( ) ( ) ( )( )
( ) ( ) ( )( )

xx xy x

yx yy y

H H EX
H H EY

ω ω ωω
ω ω ωω

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
%  (2.1.10) 

Where the transfer function is 1( ) ( )ω ω−=H A  (-1 represents matrix inverse) 

whose components are 

 

2
2 2 2

2

2
2 2 2

2

1 1 1( ) ( ) , ( )
det det det

1 1 1( ) ( ) , ( )
det det det

xx xy

yx yy

H d b H b

H c d H a

ω ω ω

ω ω ω

ϒ ⎛ ⎞= + − = −⎜ ⎟Σ ⎝ ⎠
ϒ ⎛ ⎞= − + =⎜ ⎟Σ ⎝ ⎠

A A A

A A A

 (2.1.11) 

From Equation (2.1.10), the spectrum of tX  is found to be 

 * *
2 2( ) ( ) ( ) ( ) ( )xx xx xx xy xyS H H H Hω ω ω ω ω= Σ + Γ%  (2.1.12) 
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Here the first term is interpreted as the intrinsic power and the second term as 

the causal power of tX due to tY . Based on this interpretation we define the 

causal influence from tY  to tX  at frequency ω  as 

 *
2

( )( ) ln
( ) ( )

xx
Y X

xx xx

Sf
H H

ωω
ω ω→ =
Σ

 (2.1.13) 

This definition of causal influence is expressed in terms of the intrinsic power 

rather than the causal power. It is expressed in this way so that the causal influ-

ence is zero when the intrinsic power equals the total power.  

 

2.1.2 Conditional Granger causality 

For three or more time series, one can perform a pairwise analysis and 

thus reduce the problem to a bivariate problem. This approach has some inher-

ent limitations and could induce misleading results of indirect edges. Here we 

define conditional Granger causality which has the ability to resolve if the in-

teraction between two time series is direct or is mediated by another recorded 

time series. The method is introduced for three time series [Ding, 1999]. The 

framework can be generalized to three sets of time series. 
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Time Domain Analysis 

Consider three time series tX , tY  and tZ . The joint autoregressive rep-

resentation of tX  and tZ is formalised as 

 
4 4 4

1 1

4 4 4
1 1

t i t i i t i t
i i

t i t i i t i t
i i

X a X b Z

Z c X d Z

ε
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∞ ∞
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= =

∞ ∞

− −
= =

⎧ = + +⎪⎪
⎨
⎪ = + +
⎪⎩

∑ ∑

∑ ∑
 (2.1.14) 

Where the covariance matrix of the noise terms is 

 4 4 4
4

4 4 4

var( ) var( , )
var( , ) var( )

t t t xx xz

t t t zx zz

S S
S S

ε ε γ
γ ε γ
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S  (2.1.15) 

The joint autoregressive representation of all the three time series is 
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 (2.1.16) 

Where the covariance matrix of the noise term is 
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5 5 5 5 5

5 5 5 5 5 5

5 5 5 5 5
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 (2.1.17) 

From above two sets of equations, the conditional Granger causality from Y to 

X conditional on Z  can be defined as 

 | ln xx
Y X Z

xx

SF →

⎛ ⎞
= ⎜ ⎟Σ⎝ ⎠

 (2.1.18) 

When the causal influence from Y  to X  is entirely mediated by Z , the coef-

ficients of 5ib  are zero, and the two autoregression models for two time series 

and three time series will be exactly same, thus we can get xx xxS = Σ . We then 

deduce | 0Y X ZF → = , which means Y  cannot further improve the prediction of 

X  including past measurements of Y  conditional on Z .  
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Frequency domain analysis 

To derive the spectral decomposition of the time domain conditional 

Granger causality we carry out a normalization procedure like that for the 

bivariate case. For Equation (2.1.14), the normalized equations are 

 
*

11 12
*

21 22

( ) ( )
( ) ( )

t t

t t

XD L D L X
ZD L D L Z

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 (2.1.19) 

Where * *cov( , ) 0t tX Z =  and *var( )t xxX S= . For Equation (2.1.16), the normali-

zation process involves left-multiplying both sides by the matrix 

 2 1P P P= ×  (2.1.20) 

where 

 1
1

1

1 0 0
1 0
0 1

yx xx

zx xx

P −

−

⎛ ⎞
⎜ ⎟= −Σ Σ⎜ ⎟
⎜ ⎟−Σ Σ⎝ ⎠

 (2.1.21) 

and 

 2
1 1 1

1 0 0
0 1 0
0 ( - )( ) 1zy zx xx xy yy yx xx xy

P
− − −

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟− Σ Σ Σ Σ Σ −Σ Σ Σ⎝ ⎠

 (2.1.22) 

The normalised equation can be represented as 
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 (2.1.23) 

The Fourier transform of Equations (2.1.19) and (2.1.23) gives 

 
*
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And 
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 (2.1.25) 

As [Geweke, 1984] demonstrated the important relation: 

 * *| ( ) ( )Y X Z YZ X
F Fω ω→ →

=  (2.1.26) 

We combined Equations (2.1.24) and (2.1.25) to get the spectrum of *
tX  
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 (2.1.27) 

The power spectrum of *
tX  is then obtained as 
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*
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Then the Granger causality is obtained as 
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Qω ω
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 (2.1.29) 

 

2.1.3 Partial Granger causality 

There is one problem for the conditional Granger causality: it cannot 

deal with data sets which contain an unobserved common input. In order to 
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solve this common issue in computational biology, partial Granger causality 

approach is introduced [Guo, 2008].  

 

Time domain analysis 

Suppose we have two time series which could be generated as 

 
6 6 6 6

1 1
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1 1
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 (2.1.30) 

Where the 6tC  is an unobserved external input. The noise covariance matrix for 

this model can be represented as 
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The vector autoregressive representation for a system involving three time se-

ries can be generated as 
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 (2.1.32) 

The noise covariance matrix for the model can be represented as 
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 (2.1.33) 

In order to measure the accuracy of the autoregressive prediction without the 

influence of the common exogenous inputs, the notion of partial correlation is 

implied. Then the partial Granger causality equation can be obtained as 

 
6 6 6 1 6

| 7 7 7 1 7

( )
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 (2.1.34) 
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Frequency domain analysis 

The spectral decomposition of the partial Granger causality is very simi-

lar to conditional Granger causality. To eliminate the effect of common inputs, 

we only need to change the normalization multiplier in Equations (2.1.8) as 

 
6 6 11 ( )

0 1
xz zzS S −⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

P  (2.1.35) 

Change Equations (2.1.21) and (2.1.22) as following 
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1
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xz zz

yz zzP

−

−

⎛ ⎞−Σ Σ
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 (2.1.36) 

And 

 7 7 7 1 7 7 7 7 1 7 1
2

1 0 0
( - ( ) )( ( ) ) 1 0
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⎝ ⎠

 (2.1.37) 

 

2.2 Bayesian network inference 

 Bayesian networks are probabilistic graphical models initially intro-

duced by [Kim & Pearl, 1987]. A Bayesian network is a specific type of graphi-
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cal model, which are called directed acyclic graph [Bishop, 1995 & 2006]. Each 

arc in the model is directed and there is no way to start from any node and 

travel along a set of directed edges and get back to the initial node. The set of 

nodes represent a set of random variables 1 2[ , , , ]nX X X=X L , and the arcs 

express statistical dependence between the downstream variables and the up-

stream variables. The upstream variables are also called the parent variables of 

the downstream variables. Bayesian network inference yields the most concise 

model, automatically excluding arcs based on dependencies already explained 

by the model, which means the arcs in the network can be interpreted as condi-

tional causality. The edges in the Bayesian network encode a particular factori-

zation of the joint distribution. The joint probability distribution can be decom-

posed as following: 

 1 2
1

P( , , , ) P( | ( ))
n

n i i
i

X X X X parents X
=

=∏L  (2.2.1) 

That is, the joint probability distribution is the product of the local distributions 

of each node and its parents. If a node has no parents, its local probability dis-

tribution is said to be unconditional, otherwise it is conditional. This decompo-

sition is useful for the Bayesian networks inference algorithm to deal with the 

uncertain situation and incomplete data. 
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To learn the parameter of the Bayesian network is to essentially estimate 

two kinds of probability distributions: the probability P( )X  and the condi-

tional probability P( | )X Y . There are two kinds of approaches to density es-

timation: the nonparametric method and the parametric method. The easiest es-

timation for the nonparametric method is to use the histogram approach. The 

distribution can then be a tabular conditional probability distribution, which is 

represented as a table. However this approach requires a much larger sample 

size to give an accurate estimation, which is not suitable for general experimen-

tal data. For the parametric method, one needs to make some assumptions about 

the form of the probability distribution, such as the widely used Gaussian dis-

tribution. For a D-dimensional vector X , the multi-variate Gaussian distribu-

tion is in the form 

 T 1
1

2 2

1 1 1( | , ) exp ( ) ( )
2

(2 )
D

π

−⎧ ⎫Ν = − − −⎨ ⎬
⎩ ⎭

X μ Σ X μ Σ X μ
Σ

 (2.2.2) 

where μ  is a D-dimensional mean vector, Σ  is a 
 
covariance matrix, 

and Σ  denotes the determinant of Σ . The distribution X  on a node can be 

defined as following: 

 : P( ) ~ N( | , )without parents− X X μ σ   (2.2.3) 
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 T
|- : P( | ) ~ N( | , )x|y x ywith parents = +X Y y X μ W y σ  (2.2.4) 

where T is matrix transposition. W  is the connection weight vector between 

node X  and its parents Y .  

 

2.2.1 Parameter learning for linear Gaussian model 

 To estimate the parameters |x yμ , |x yσ  and W  in the equation (2.2.4), 

one partitions X  into two disjoint subsets aX  and bX  with dimensions p  

and q , and we have p q D+ = , such that 

 a

b

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

X
X

X
 (2.2.5) 

We also define mean vector μ  and the covariance matrix Σ  given by 

 a aa ab

b ba bb

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

μ Σ Σ
μ Σ

μ Σ Σ
 (2.2.6) 

Considering the quadratic form in the exponent of the Gaussian distribution, we 

can get the following equation by a transformation [Bishop, 2006] 
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T 1

1

T T

T 1 1 T 1 1 T 1

T 1 T 1 1

T

1 ( ) ( )
2

1 [( ) ,( ) ]
2
1 {( ) [ ( ) ]
2
( ) 2( ) [ ( ) ]

( ) ( ) [

a aaa ab
a a b b

b bab bb

a a aa aa ab bb ab aa ab ab aa

a a a a aa ab bb ab aa ab

b b b b

−

−

− − − − −

− − −

− − −

−⎡ ⎤ ⎡ ⎤
= − − − ⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

= − − + −

× − − − −

× − + −

X μ Σ X μ

X μΣ Σ
X μ X μ

X μΣ Σ

X μ Σ Σ Σ Σ Σ Σ Σ Σ Σ

X μ X μ Σ Σ Σ Σ Σ Σ

X μ X μ T 1 1

T 1 T

1 T

T 1 1 1 T

( ) ]( )}
1{( ) ( )
2
[( ) ( )]

( ) [( ) ( )]

bb ab aa ab b b

a a aa a a

b b aa ab a a

bb ab aa ab b b aa ab a a

− −

−

−

− − −

− −

= − − −

+ − − −

× − − − −

Σ Σ Σ Σ X μ

X μ Σ X μ

X μ Σ Σ X μ

Σ Σ Σ Σ X μ Σ Σ X μ

 (2.2.7) 

The last equal sign is due to the following equations for any vectors u , v  and a 

symmetric matrix TA A=  

 

T T T T T T T

T T T T

T

2
( ) ( ) ( ) ( )

( ) ( )

u Au u Av v Av u Au u Av u Av v Av
u A u v u v Av u A u v v A u v
u v A u v

− + = − − +

= − − − = − − −

= − −

 (2.2.8) 

Now the joint distribution can be written as: 
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T 1
1

2 2

11
T 12 2 22

T 1 T

1 T

T 1 1 1 T

1 1 1( | , ) exp ( ) ( )
2

(2 )
1

(2 ) (2 ) ( )

1exp ( ) ( )
2

[( ) ( )]
exp

( ) [( ) ( )]

D

p q

aa bb ab aa ab

a a aa a a

b b aa ab a a

bb ab aa ab b b aa ab a a

π

π π

−

−

−

−

− − −

⎧ ⎫Ν = − − −⎨ ⎬
⎩ ⎭

=
−

⎡ ⎤× − − −⎢ ⎥⎣ ⎦
⎧ − − −⎪× ⎨
× − − − −⎩

X μ Σ X μ Σ X μ
Σ

Σ Σ Σ Σ Σ

X μ Σ X μ

X μ Σ Σ X μ

Σ Σ Σ Σ X μ Σ Σ X μ
1 T 1N( | , )N( , ( ), )a a aa b b aa ab a a bb ab aa ab

− −

⎫⎪
⎬

⎪ ⎪⎭
= + − −X μ Σ X μ Σ Σ X μ Σ Σ Σ Σ

 (2.2.9) 

Then we can get the conditional distribution of bX  given aX  is 

1T
| | |1

2 2
|

P( , )P( | )
P( )

1 1exp ( ) ( )
2

(2 )

a b
b a

a

b b a b a b b aq

baπ

−

=

⎡ ⎤= − − −⎢ ⎥⎣ ⎦

X XX X
X

X μ Σ X μ
Σ

 (2.2.10) 

in which 

 1
| ( )b a b aa ab a a

−= + −μ μ Σ Σ X μ  (2.2.11) 

 T 1
|ba bb ab aa ab

−= −Σ Σ Σ Σ Σ  (2.2.12) 
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Thus the conditional probability parameters in the Bayesian network can be 

learned from the above two equations by using joint probability distribution. 

 

2.2.2 Structure learning 

There are two very different approaches for structure learning: one is 

constraint-based and the other is search and score algorithm. For the constraint-

based algorithm, we start with a fully connected network and then remove the 

arcs, which the connected nodes are conditional independent to each other. This 

has the disadvantage that repeated independence tests lose statistical power. For 

the latter algorithm, we perform a search on all possible graphs and select one 

graph which best describes the statistical dependence relationship in the ob-

served data [Friedman, 2004]. 

Unfortunately, the number of possible graphs increases exponentially 

with the number of nodes, so some search algorithms are required for overcom-

ing this kind of complex problem rather than doing an exhaustive search in the 

space. There are several search algorithms that can be applied; such as anneal-

ing search [Kirkpatrick, 1983], genetic algorithm search [Goldberg, 1989]. The 

question could become easier if we know the total order to the nodes. The K2 

algorithm allows us to find the best structure by selecting the best set of parents 
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for each node independently [Murphy, 2001]. In the dynamic Bayesian net-

works, the order of nodes can be interpreted as the sequence of time lags repre-

sented for each node. The K2 algorithm tests parent insertion according to the 

order. The first node cannot have any parent, for other nodes, we can only 

choose the parent nodes which are behind it in this order. Then the scoring 

function can be applied to determine the best parent set, i.e. the one which gives 

the highest score.  

Initially, each variable can be interpreted as a sequence of nodes which 

represents as the different time lags. Suppose we observed a set of independent 

and identically distributed time series data 1 2[ , , , ]NY Y Y=Y L , which has 

N  dimensions. Every node in dynamic Bayesian network represents a specific 

time lag for a specific variable. For instance, time series 

{ | [1,2, , ]}jY j N∈ L  can be represented by using a series of nodes in the 

order of 3 2 1[ , , , , ]j j j j
t t t tY Y Y Y− − −L . Hence, the total order of the nodes can then 

be 3 2 1[ , , , , ]t t t t− − −Y Y Y YL . Since we are only concerned with the causal rela-

tion between different time lags, the order of various variables for the same 

time lags can be randomly selected. Then the potential parent set for every node 

can then be determined according to the total order, which contains all the 

nodes before it. Finally, we can apply the K2 algorithm to select the set of best 

parents from the set of potential parents for every node independently.  
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In addition to the search algorithm, a scoring function must be defined 

in order to decide which structure is the best (a high scoring network). There 

are two popular choices. One is the Bayesian score metric which is the marginal 

likelihood of the model, and the other is BIC (Bayesian Information Criterion) 

which can be defined as [Murphy, 2001]: 

 ( | ) ( )
2
dLogP Data Log Nθ −  (2.2.13) 

Where Data  is the observed data, θ  is the estimated value of the parameters, 

d  is the number of parameters and N  is the number of data cases. The term of 

( )
2
d Log N  is regarded as a penalty term in order to balance both simple and 

accurate structure representation. 

Suppose we observed a set of independent and identically distributed 

1 2{ , , , }NData Y Y Y= K , each of which represented a time series (can also 

be a case of vector). Then the log likelihood of the data set can be defined as: 

 

1

1

1

( | ) log ( | )

log ( | ( ), )

log ( | ( ), )

N
i

i

N
i i i

t j t j j
i j

N
i i i

t j t j j
i j

LogP Data P Y

P Y Pa Y

P Y Pa Y

θ θ

θ

θ

=

− −
=

− −
=

=

=

=

∑

∑ ∏

∑∑

 (2.2.14) 
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Where ,i j  represent the different time lags of different nodes or variables in 

the Bayesian network, ( )i
t jpa Y −  is the set of parents of node i

t jY − , and i
jθ  are 

the parameters that define the conditional probability of  i
t jY −  given its parents.  

Generally, the Bayesian networks inference can then be approached by 

following procedure: initially, K2 algorithm (as described in Chapter 2.2) is 

applied to search the space of possible graphs. For each possible structure, we 

can use the parameter learning algorithm (as described in Chapter 2.1) to esti-

mate the parameters of the networks. The BIC scoring function assigns a corre-

sponding score through the estimated parameters and observed data set. The 

best network we can get is the highest score structures among all the possible 

graphs. This procedure is described as following pseudo code for a specific 

node j
tY . 

 

Step 1. Calculate initialScore: the initial BIC score for node j
tY  (initially no 

parents are selected) by using Equation (2.2.13). 

Step 2. Test each node in the set of potential parents S to be the parent node of 

j
tY , for each node, calculate the BIC score. 
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Step 3. Select the best parent node (bestNode) which gives the highest score: 

newScore. 

Step 4. Compare newScore to the initialScore, if smaller then stop, else add a 

arc from bestNode to the node j
tY . 

Step 5. Change initialScore to newScore. 

Step 6. Remove bestNode from set S. 

Step 7. Go back to step 2. 

 

2.3 Summary 

This chapter described the network inference methods for both Granger causal-

ity and dynamic Bayesian network inference, which are widely used in litera-

ture. In the following chapter, In order to test the performance, reliability and 

sensitivity, one is going to carry out a comparative study between these two 

methods. The application of Granger causality is also described in Chapter 4 

and Chapter 5. 
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Chapter 3 

A comparative study between 

Granger causality and dynamic 

Bayesian network inference 

In this chapter, we carried out a comparative study between the two 

commonly used reverse-engineering approaches: Granger causality and dy-

namic Bayesian network inference. We focused on a systematic and computa-

tionally intensive comparison on both synthesized and experimental data. For 

synthesized data, a critical point of the data length was found: the dynamic 

Bayesian network outperformed the Granger causality approach when the data 

length was short, and vice versa. We then tested our results in experimental data 

of short length which was a common scenario in current biological experiments: 

it was again confirmed that the dynamic Bayesian network worked better. In
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conclusion, when the data size is short, the dynamic Bayesian network infer-

ence performs better than the Granger causality approach; otherwise the 

Granger causality approach is better for detecting weak interactions if the data 

length is long enough.  
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3.1 Introduction 

Based upon high throughput data, to reliably and accurately explore the 

network structure of elements (genes, proteins, metabolites, neurons etc.) is one 

of the most important issues in computational biology [Klipp, et al., 2005; Feng, 

et al., 2007; Alon, 2007; Tong, et al., 2004; Tsai, et al., 2008; Lee, et al., 2002]. 

Currently, there are two main approaches which are often used to infer causal 

relationships [Pearl, 2000] or interactions among a set of elements [Albo, 2004; 

Horton, 2005]. One is the Granger causality approach [Guo, 2008; Wu, 2008], 

and the other is the Bayesian network inference approach [Jansen, 2003; Saches, 

2005]. The latter is often applied to static data. However, one can employ dy-

namic Bayesian networks to deal with time series data for which the Granger 

causality has been solely developed. Granger causality has the advantage of 

having a corresponding frequency domain decomposition so that one can 

clearly find at which frequencies two elements interact with each other.  

Given a multi-variable time series dataset, the Granger causality and 

dynamic Bayesian networks [Ghahramani, 2004] can both be applied. The 

Granger causality notation, which was firstly introduced by Wiener and 

Granger [Geweke, 1982 & 1984], proposed that we can determine a causal in-

fluence of one time series on another: the prediction of one time series can be 

improved by incorporating the knowledge of the second one. On the other hand, 
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the Bayesian network [Jensen, 1996] is a special case of a diagrammatic repre-

sentation of probability distributions, called probabilistic graphical models 

[Bache, 2004; Buntine, 1994; Friedman, 2004]. The Bayesian network graph 

model comprises nodes (also called vertices) connected by directed links (also 

called edges or arcs) and there is no cycle in the graph. To learn the structure 

and the parameters for the Bayesian networks from a set of data, we should 

search the space(s) of all possible graph representations, and find out which 

structure is most likely to produce our data. If we have a scoring function (or 

likelihood function) which can determine the structure and parameter likelihood 

from the data, then the problem is to find the highest score (maximum likeli-

hood) structure among all the possible representations. 

The causal relationship derived from these two approaches could be dif-

ferent, in particular when we face the data obtained from experiments. There-

fore it is of vital importance to compare these two causal inferring approaches 

before we can confidently apply them to biological data. By doing the compari-

son, one expects to find the advantages, performances and stabilities for each 

technique.  

Adopting the most common existing methods to find the coefficients of 

the time series in both approaches in the literature, we compare the dynamic 

Bayesian network with the Granger causality both in the linear (as described in 
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Chapter 2) and nonlinear model (described in Chapter 3.2). Interestingly, a 

critical point of the data length is found. When the data length is shorter than 

the critical point, the dynamic Bayesian network approach outperforms the 

Granger causality approach. But when the data length is longer, the Granger 

causality is more reliable. The conclusion is obtained via intensive computa-

tions (more than 100 computers over a few weeks). A biological data set of 

gene microarray is analyzed using both approaches, which indicates that for a 

data set with a short sampling length the dynamic Bayesian network produces 

more reliable results. In summary, we would argue that the dynamic Bayesian 

network is more suitable for dealing with experimental data. 

 

3.2 Methods 

3.2.1 Granger causality 

As described in the previous chapter, we can determine a causal influ-

ence of one time series on another, if the predication of one time series can be 

improved by incorporating the knowledge of the second one. Granger applied 

this notation by using the context of linear vector auto-regression (VAR) model 

of stochastic processes [Beamish, 1981; Morettin, 1984; Morf, 1978; Ancona, 

2004]. A VAR model describes the evolution of a set of k variables (comparing 
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to univariate AR models) as a linear function of only their past evolution. In the 

AR model, the variance of the prediction error is used to test the prediction im-

provement. For instance, assume two time series; if the variance of the autore-

gressive prediction error of the first time series at the present time is reduced by 

inclusion of past measurements from the second time series, then one can con-

clude that the second time series has a causal influence on the first one. Geweke 

[Geweke, 1982 & 1984] decomposed the VAR process into the frequency do-

main, it converted the causality measurement into a spectral representation and 

made the interpretation more appealing. The detailed description of pair-wise 

Granger causality was introduced in Chapter 2. 

The pairwise analysis can only be applied to bivairate time series. For 

more than two time series, a time series can have a direct or indirect causal in-

fluence to other time series. In this case, pairwise analysis is not sufficient or 

misleading for revealing whether the causal interaction between a pair is direct 

or indirect. In order to distinguish the direct and indirect causal affect, one in-

troduces the conditional causality which takes account of the other time series’ 

effect in a multivariate time series. In this chapter, we used conditional causal-

ity to compare with the Bayesian network inference introduced before. For the 

linear conditional Granger causality, its detailed description was introduced in 

the Chapter 2. Here, I extended the linear conditional Granger causality to a 

non-linear model. 
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Non-linear conditional Granger causality 

We extended Granger causality to a non-linear model by using a series 

kernel functions [Chen, 2004; Ancona, 2004] . Let X , Y  and Z  be three time 

series, which are assumed to be stationary. We are supposed to quantify how 

much Y  causes X  conditional on Z . This model can be generalized to three 

sets of time series. The expression for the nonlinear model of two time series 

X  and Z  is: 

 
1 2 8

3 4 8

( ) ( )

( ) ( )

t j j t j j j t j t
j j

t j j t j j j t j t
j j

X w X w Z

Z w X w Z

ε

γ

− −

− −

⎧ = Φ + Φ +
⎪
⎨

= Φ + Φ +⎪
⎩

∑ ∑

∑ ∑
 (3.2.1) 

Function Φ  can be selected as the kernel function of X  and Z  which has the 

following expression: 

 
2 2( ) exp( / 2 )j j XX X X σΦ = − −  (3.2.2) 

 
2 2( ) exp( / 2 )j j ZZ Z Z σΦ = − −  (3.2.3) 

Where X , Z  are centers (or means) of X  and Z , 2
Xσ , 2

Zσ  are variances of  

X  and Z . The covariance matrix of prediction error can be expressed as 
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S
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 (3.2.4) 

A joint autoregressive representation for three time series has the following ex-

pression: 
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(3.2.5)  

The covariance matrix of prediction error can be expressed as 
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 (3.2.6) 

Similarly, we can define the conditional causality for non-linear model as 

 
8

| 9ln XX
Y X Z

XX

SF →

⎛ ⎞
= ⎜ ⎟Σ⎝ ⎠

 (3.2.7) 
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3.2.2 Dynamic Bayesian network 

A detailed method description of parameter learning and structure learn-

ing for linear dynamic Bayesian network inference in time domain was intro-

duced in Chapter 2.2. Here, an extended dynamic Bayesian network inference 

for non-linear model will be explained in this section. As introduced in the 

Chapter 2.1, Granger causality approach has advantages in deriving the causal-

ity in frequency domain by using a frequency decomposition method. Here, I 

also extended the dynamic Bayesian network inference in frequency domain by 

using the similar approach for Granger causality. 

 

Parameter learning for non-linear Gaussian model 

We also extended our linear model to a non-linear model as in the 

Granger causality case. Suppose we have two variables which can be expressed 

as in Equation (3.2.1). The kernel function was also chosen as described in 

Equations (3.2.2) and (3.2.3). 

In the non-linear model, the probability distribution for tX  was no 

longer a Gaussian distribution. From the expression in Equation (3.2.1), we 

found that the probability distribution for tX  was a combined distribution of 

kernel function distribution for the past measured values of X  and Z , and a 
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Gaussian distribution for the noise term. The kernel distribution was very diffi-

cult to derive, so one used a mixture of Gaussian models to approximate the 

real distribution. The mixture Gaussian model is in the form: 

 
1

P( ) N( | , )
K

k k k
k

X Xπ μ
=

= Σ∑  (3.2.8) 

Each Gaussian density N( | , )k kX μ Σ  is called a component of the mixture 

and has its own mean kμ  and covariance kΣ . The parameter kπ  are called 

mixing coefficients which satisfy: 

 
1

1
K

k
k

π
=

=∑  (3.2.9) 

The conditional probability distribution for tX  conditional on the past observa-

tion of X  and Z  in the nonlinear model is still a Gaussian distribution which 

can be easily obtained as following: 

 P( | ) N( | ( ), )i i
i

X X w zμ σ= + Φ∑Z = z  (3.2.10) 

where iw  are the connection weights between node X  and its parents. They 

can be estimated by using the simple linear regression method. The structure 

learning for non-linear Bayesian network inference is same as linear one, which 

has been introduced in Chapter 2.2. 



Chapter 3: A comparative study 
 
 

55 
 

Dynamic Bayesian network inference in frequency domain 

To extend our Bayesian network inference approach to a frequency do-

main, we applied a similar spectral decomposition procedure like that for the 

conditional Granger causality case. Suppose we have three variables tX , tY  

and tZ , then we can transfer our learned Bayesian Network parameters and 

structure to the polynomial equations. First, the joint autoregressive representa-

tion of  tX  and tZ  can be represented as Equation (2.1.14), where 4ia , 

4ib  , 4ic  and 4id  are the connection weights between two nodes in the dynamic 

Bayesian network. These connection weights can be estimated by using Equa-

tion (2.2.11) in the parameter learning method section. If there is no arc be-

tween two nodes, then the corresponding connection weight equals zero. The 

covariance matrix of the noise term is shown in Equation (2.1.15). This covari-

ance matrix can also be estimated in our parameter learning method by using 

Equation (2.2.12).  Next we consider the joint autoregressive representation by 

adding the variable tY  into the system shown in Equation (2.1.16), where the 

covariance matrix of the noise term is represented in Equation (2.1.17). To de-

rive the spectral decomposition of the time domain Bayesian network, we can 

apply the same procedure as the conditional Granger causality described by us-

ing Equations (2.1.19) to (2.1.29).  
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3.3 Results 

To illustrate and compare the differences between the dynamic Bayesian 

network inference and the conditional Granger causality, a simple multivariate 

model with fixed coefficients, which has been discussed in many papers to test 

the Granger causality, was tested first. We then extended our comparisons to 

the more general case of the model with random coefficients, which required 

considerable computational resources. More than 100 networked computers 

were used to perform the comparisons for more than a week. Both the Granger 

causality and the dynamic Bayesian network were applied to nonlinear models. 

Finally, we tested our approach on a set of microarray data recently acquired 

from a comparison of mock and infected Arabidopsis leaf. 

 

3.3.1 Synthesized data: linear case 

Example 1 Suppose we have 5 simultaneously recorded time series generated 

according to the equations (one popular toy model for test causal relation, also 

see in [Ding, 2006]): 
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ε
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⎧ = − − − +
⎪

= − +⎪
⎪ = − − +⎨
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 (3.3.1) 

where n  is the time, and [ ]1 2 3 4 5, , , ,ε ε ε ε ε  are independent Gaussian 

white noise processes with zero means and unit variances. From the equations, 

we see that 1( )X n  is a cause of 2 ( )X n , 3( )X n  and 4 ( )X n , and 4 ( )X n  and 

5( )X n  share a feedback loop with each other, as depicted in Figure 3.1_B. 

Figure 3.1_A shows an example of the time trace of 5 time series. For the 

Granger causality approach, we simulated the fitted vector autoregressive (VAR) 

model to generate a data set of 100 realizations of 1000 time points, and applied 

the bootstrap approach to construct the 95% confidence intervals (Figure 

3.1_C). For Granger causality, we assume the causality value is Gaussian dis-

tributed. Then the confidence intervals can be obtained by calculating the mean 

and standard derivation values [Guo, 2008; Chen, 2004; Wehrens, 2006]. Ac-

cording to the confidence intervals, one derived the network structure as shown 

in Figure 3.1_B which correctly recovered the pattern of the connectivity in our 

toy model. For the dynamic Bayesian network inference approach, we inferred 

a network structure (Figure 3.2_A) for each realization of 1000 time points. 

The final resulting causal network model was inferred with high-confidence 
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causal arcs (the arcs occur more than 95% of the time in the whole population) 

between various variables [Sachs, 2005]. This network contained the informa-

tion of different time-lags for each variable. It fitted exactly the pattern of con-

nectivity in our VAR model. In order to compare it with the Granger causality 

approach, we further simplified the network by only keeping the current status 

of variables and their parents, and hiding the information of time-lags.  Thus we 

inferred exactly the same structure as the Granger causality approach (Figure 

3.2_D). From this simple example, we found that both approaches could reveal 

correct network structures for the data with a large sample size (1000 here).  

Most, if not all, experimental data has a very limited time step due to 

various experimental restrictions. Hence one of the key quantities to test the 

reliability of an approach is the data length (sample size). In the next setup, we 

reduced the sample size to a smaller value and checked its impact. The mini-

mum sample size 20 was chosen since both approaches failed to detect any 

links under sample size 20. In order to find out the reliability changes with dif-

ferent sample size, we simply increased 20 time points for each step from 
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Figure 3.1 Granger causality applied on a simple linear toy model. (A) Five time series are simultaneously 

generated, and the length of each time series is 1000. 2 3 4, ,X X X and 5X  are shifted upward for visualization 

purpose. (B) The network structure inferred from Granger causality approach. (C) The 95% confidence in-

tervals graph for all the possible directed connections. For visualization purpose, all directed edges (causali-

ties) are sorted and enumerated into the table. The total number of edges is 20 for this case of 5 variables. 
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Figure 3.2 Dynamic Bayesian network inference results for the linear synthesized data. (A) The complete 

causal network structure derived by using dynamic Bayesian network inference method. Each variable is 

represented by 4 nodes (determined by the order of the model we chose) with different time-lags, thus we 

have a total of 20 nodes. (B) The simplified network structure: since we are only concerned the causality to 

the current time status, we can remove all the other edges and nodes that have no connection to the nodes 16 

to 20 (five variables with current time status). Thus only nodes 16 to 20 and their parents are left. (C) For 

visualization purpose, all nodes are sorted and enumerated into the table. (D) We can further simplify the 

network structure derived by dynamic Bayesian network by removing the information of time lags.  
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minimum sample size 20. Figure 3.3_A shows the case of the sample size of 80: 

we found both approaches start failing to detect some interactions (false nega-

tive). By reducing the sample size to 20 (Figure 3.3_C), we found that the 

Bayesian network inference could derive more true positive connections than 

the Granger causality. This is certainly an interesting phenomenon and we in-

tend to explore whether it is true for a more general case. 

Example 2 we considered a more general toy model; the coefficients in the 

equations (3.3.1) of Example 1 were randomly generated. This toy model aimed 

to test the causality sensitivity for the two approaches. Suppose 5 simultane-

ously generated time series according to the equations: 

 

1 1 1 2 1 1

2 3 1 2

3 4 1 3

4 5 1 6 4 7 5 4

5 8 4 9 5 5

( ) ( 1) ( 2)
( ) ( 2)
( ) ( 3)
( ) ( 1) ( 1) ( 1)
( ) ( 1) ( 1)

X n w X n w X n
X n w X n
X n w X n
X n w X n w X n w X n
X n w X n w X n

ε
ε
ε

ε
ε

= − + − +⎧
⎪ = − +⎪⎪ = − +⎨
⎪ = − + − + − +
⎪

= − + − +⎪⎩

 (3.3.2) 

where 1 2 9[ , , , ]w w wL  are uniformly distributed random variables in the in-

terval [-1,1]. The randomly generated coefficients are also required to make the 

system stable. The stability can be tested by using the z-plane pole-zero method, 

which states if the outermost poles of the z-transfer function describing the time 
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series are inside the unit circle on the z-plane pole-zero plots, then the system is 

stable [Michael, 2005]. 

The above toy model was then used to test the two different causality 

approaches: Bayesian network inference and Granger causality. They were ap-

plied with different sample sizes. For each sample size, we randomly generated 

100 different coefficient vectors 1 2 9[ , , , ]w w wL , which corresponded to 

100 different toy models in Example 1. For each different coefficient vector 

model, we applied the same approach as in Example 1, using Monte Carlo 

method to construct 95% confidence intervals for the Granger causality ap-

proach and choosing high-confidence arcs (appearing in at least 95% of all 

samplings) for the Bayesian network inference approach. The total number of 

arcs (or causalities) was 500 (5 interactions for each realization) for each sam-

ple size. However we could not expect to detect the maximum number of arcs 

in our system, since the coefficients were randomly generated and could be 

relatively small. 

Figure 3.4_A shows the comparison result of the percentage of true 

positive connections derived from these two methods. In general, the Granger 

causality approach can infer slightly more true positive causalities compared to 

the Bayesian network inference approach when the data length is long. It is in-

teresting to see that there is a critical point at around 30 in Figure 3.4_A. If the 
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Figure 3.4 Granger causality and dynamic Bayesian network inference applied on a stochastic coefficients 

toy model. The parameters in polynomial equation are randomly generated in the interval [-1, 1]. For each 

randomly generated coefficient vector, we applied the same approach as example 1: bootstrapping method 

and 95% confidence interval were chosen for Granger causality approach; 95% high-confidence arcs are 

chosen from Bayesian network inference. (A) Both approaches were applied on different sample size (from 

20 to 900). For each sample size, we generated 100 realizations with different coefficient vectors. The per-

centage of detected true positive causalities for both approaches is plot. (B) The total execution time cost for 

Granger causality and dynamic Bayesian network. 
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sample size is larger than 30, then the Bayesian network recovers less positive 

connections. However, if the sample size is smaller than 30, the Bayesian net-

work performs better. From Figure 3.4_B, we see that computing time for the 

Bayesian network inference is much larger than the Granger causality. 

Now we are in the position to find out why the dynamic Bayesian net-

work is better than Granger causality when the data length is short, and vice 

versa. In Figure 3.5_A, we compared the performances on different coeffi-

cients (strength of interaction) for a fixed sample size of 900 (super-critical 

case). The x-axis shows the absolute value of coefficients, and y shows the cor-

responding causality (1 indicates positive causality and 0 indicates no causality). 

For visualization purposes, the figure for the Granger causality is shifted up-

ward. From the five graphs, we can see that there is no difference between these 

two approaches if the coefficients are significant large (strong interactions with 

an absolute value of coefficients being greater than 0.15): both approaches can 

infer the correct connections. For most cases, the Granger causality approach 

performs with more stability when the coefficients are larger than 0.15, and the 

Bayesian network inference approach shows slightly more oscillations around 

this point. Hence we conclude that the Granger causality is less sensitive to the 

small value of the connection when the data length is large (see also the nonlin-

ear case below).  
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We then compared the fitting accuracy of the two approaches, as shown 

in Figure 3.5_B. We used the average mean-square error as a measurement of 

the fitting. Not surprisingly, the dynamic Bayesian network approach consid-

erably outperformed the simple fitting algorithm in the Granger approach [Ge-

weke, 1982 & 1984], in particular when the data length was short.  

In conclusion, when the data is a reasonable fit to the original model, 

Granger causality works better. This is due to the fact that the Granger causality 

approach is more sensitive to a small value of the interactions. When the data 

length is short, the Bayesian approach can fit the data much more reliably and it 

outperforms the Granger approach. 

 

3.3.2 Synthesized data: non-linear case 

In real situations, all data should be nonlinear and a linear relationship 

as described above is only an approximation. To address the nonlinear issue, we 

turn our attention to kernel models. As we know, any nonlinear relationship can 

be approximated by a series of kernel functions [Marinazzo, 2008].  
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Figure 3.5 Sensitivity test for Granger causality and dynamic Bayesian inference applied on the stochastic 

coefficients toy model. (A) For sample size 900, the derived causality (1 represents positive causality and 0 

represents negative) is plotted with the absolute value of corresponding coefficients. For visualization pur-

pose, the figure for Granger causality is shifted upward. (B) Linear model fitting comparison for both 

Granger causality and dynamic Bayesian network inference. Using a number of training data points to fit 

both linear models, one can calculate the corresponding predicted mean-square error by appling a set of test 

data. It demonstrated that the Bayesian network inference method worked much better than the Granger cau-

sality approach when the sample size is significant small (around 100). When the sample size is significant 

large, both approach converge the standard error which exactly fits the noise term in the toy model. 
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Example 3 we modify the model in example 1 to a series of nonlinear equa-

tions as follows: 
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(3.3.3) 

In this example, the centre and variance of each time series was chosen as the 

centre and variance in the kernel function. We used the fuzzy c-mean method 

[Chuai-aree, 2001] to find the centre of each time series and then applied the 

same approach as in Example 1. In Fuzzy clustering, each point has a degree of 

belonging to clusters rather than completely belonging to just one cluster. For 

the Granger causality approach, we simulated the fitted VAR model to generate 

a data set of 100 realizations of 1000 time points (Figure 3.6_A), and applied 

the bootstrap approach to construct the 95% confidence intervals (Figure 

3.6_C). According to the confidence interval, one derived the network structure 

(Figure 3.6_D) which correctly recovered the pattern of connectivity in our 
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non-linear model. For the Bayesian network inference approach, we inferred a 

network structure (Figure 3.7_A) for each realization of 1000 time points. We 

then obtained a simplified network structure (Figure 3.7_C and Figure 3.7_D).  

For a small sample size (see Figure 3.8), worse results were obtained 

for both approaches comparing to the previous linear model. Both approaches 

started to miss interactions when the sample size was smaller than 300. When 

the sample size was 150, the Bayesian network inference approach could detect 

one more true positive interaction than the Granger causality. However, when 

the sample size was 50, both approaches failed to detect all the interactions.  

In the next step, we extended our non-linear model to a more general 

setting in which the coefficients in the equations were randomly generated. 

Figure 3.9_A shows the comparison result of the percentage of true positive 

connections derived from these two methods. It is very interesting to see that a 

critical point around 500 exists in the non-linear model, similar to the linear 

model before. From Figure 3.9_B, the computing time required for the Bayes-

ian network inference is still much larger than the Granger causality. In Figure 

3.9_C, we compared the performances on different coefficients (strength of in-

teraction) for a fixed sample size of 900. From the five graphs, we can see that 

in general the Granger approach is more sensitive to a small value of the coeffi-

cients for non-linear case (see Figure 3.9_C. 5 4X X→  and 4 5X X→ ).  
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Figure 3.6 Granger causality applied on the simple non-linear toy model. (A) Five time series are simulta-

neously generated, and the length of each time series is 1000. They are assumed to be stationary. (B) Five 

histogram graphs show the probability distribution for these five time series. (C) Assuming no knowledge of 

the toy model we generated, Granger causality approach was applied. Bootstrapping approach was used to 

construct the 95% confidence intervals. The fitted MVAR model was then used to simulate a data set of 100 

realizations of 1000 time points. For visualization purpose, all directed edges (causalities) are sorted and 

enumerated into the table. (D) The network structure derived from the Granger causality method correctly 

recovers the pattern of connectivity in the toy model. 
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Figure 3.7 Dynamic Bayesian network inference applied on a simple non-linear toy model. (A) Assuming 

no knowledge of the MVAR toy model used for generating the sample data, the complete directed network 

structure (including the time lag information) inferred by dynamic Bayesian network method for one realiza-

tion of 1000 time points. (B) A simplified network structure by removing all the edges and nodes that have 

no connection to the current status (nodes 6 to 10). (C) For visualization purpose, all nodes are sorted and 

enumerated into the table. (D) A further simplified network by hiding the information of time lags. 
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Therefore, all conclusions in the linear case were confirmed in the nonlinear 

model. In the literature [Marinazzo, 2008], the results they obtained are similar   

as we did here, which found that the Granger causality performed better than 

the dynamic Bayesian network inference concerning a nonlinear kernel model 

of genetic regulatory pathways and for a sufficiently large sample size (2000 

data points). 

 

3.3.2 Experimental data 

Finally we carried out a study on experimental data of microarray ex-

periments. The gene data were collected from two cases of Arabidopsis leaf: the 

mock (normal) case and the infected case with the plant pathogen Botrytis cine-

rea. A total of 31,000 genes were measured with a time interval of two hours, 

with a total of 24 sampling points (two days) and four replicates. We tested the 

Granger causality approach and dynamic Bayesian network inference approach 

on a well-known circadian circuit. This circuit contains 7 genes: PRR7, GI, 

PRR9, ELF4, LHY, CCA1 and TOC1. Figure 3.10_A shows the time traces of 

the 7 genes. From the time traces figure, it is clear to see that they exhibit a 24 

hour rhythm. Note that the total number of time points is only 24. Compared to 

our previous toy model case, this sample size is quite small. We therefore ex-

pected the Bayesian network inference to be more reliable.  
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Figure 3.9 Granger causality and dynamic Bayesian network inference applied on a stochastic coefficients 

non-linear model. The parameters in polynomial equations are randomly generated in the interval [-2,2]. 

Both approaches were applied on different sample size (from 300 to 900). (A) The percentage of detected 

true positive causalities for both approaches. (B) Time cost comparison between both approaches. (C) Sensi-

tive test for sample size 900, the derived causalities (1 represents positive causality and 0 represents negative) 

is plotted with the absolute value of corresponding coefficients. For visualization purpose, the figure for 

Granger causality was shifted upward. 
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We first applied the dynamic Bayesian network inference approach on 

these two data sets. The two network structures for the two cases are shown in 

Figure 3.10_B and Figure 3.10_C. In the next step, the conditional Granger 

causality approach was applied. By using the bootstrapping method, we con-

structed 95% confidence intervals as shown in Figure 3.11_C. Finally, we 

could also obtain two network structures for two different cases shown in Fig-

ure 3.11_A and Figure 3.11_B. It is clearly seen that the global patterns for the 

mock case and the infected case are different.  

From the literature, there are three well known connections among the 

whole structure for the mock case. (1) It is known that GI alone is independent 

of the remaining six genes in the circuit. There should be no connection to and 

from the GI node (node 2 in the Figure 3.10 and Figure 3.11) in our derived 

network. From Figure 3.10_B and Figure 3.11_A, we found that the dynamic 

Bayesian network inference method clearly picked this up, but the conditional 

Granger causality approach failed to detect this property. The Granger causality 

approach derived two false positive arcs which were connected to a GI node as 

shown in Figure 3.11_A. (2) It is known that PRR7 and LHY share a feedback 

loop. In other words, there should be two directed arcs connected from node 1 

(PRR7) to node 5 (LHY) and from node 5 to node 1. The network structures 

derived from both approaches are in agreement with this known relationship. (3) 

It is known that ELF4 has some interactions with both LHY and CCA1. There 
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should be some connections between node 4 (ELF4) to node 5 (LHY), and be-

tween node 4 (ELF4) and node 6 (CCA1). From our derived structures, both 

approaches can detect these connections, which are in agreement with the 

known structure in the literature [Locke, 2006; Ueda, 2006]. 

According these three known relationships in the structure, we found 

that the Bayesian network structure was in agreement with all three rules, but 

the network structure derived from the conditional Granger causality was not: 

two more false positive interactions were found. Again for a small sample size, 

the Bayesian network inference approach could be more reliable than the condi-

tional Granger causality approach.  
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Figure 3.10 Dynamic Bayesian network inference method applied on experimental data (small sample size). 

The experiment measures the intensity of 7 genes in two causes of Arabidopsis leaf: mock (normal) and in-

fected. (A) The time traces of 7 genes are plotted. There are 4 repeats of 24 time points. The time interval is 

2 hours. (B) The network structures derived for mock case by using dynamic Bayesian network inference. 

(C) The network structures derived for infected case. All the genes are numbered into a table. The results 

illustrated that the network structure after infection was changed. 
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Figure 3.11 Granger causality approach applied on experimental data of 7 genes in two cases of Arabidopsis 

Leaf. (A) The network structures derived for mock case by using Granger causality approach. (B) The net-

work structures derived for infected case. (C) Using bootstrapping method to construct 95% confidence in-

tervals. For visualization purpose, all the directed edges are numbered and enumerate them into the table. 
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3.4 Discussion 

3.4.1 A fair comparison 

In our results presented here, one of the key issues which is the cause of 

the critical point of the sampling size between the dynamic Bayesian approach 

and the Granger causality lies in the fact that a batch fitting approach is used in 

the Granger causality approach. One might argue that we could use the sequen-

tial fitting approach as in the Bayesian network to improve the performance of 

the Granger causality approach. This is certainly the case. However, due to the 

many publications in both topics [ISI Web of Knowledge, 2008], we simply 

adopted the most common approaches in the dynamic Bayesian network ap-

proach and the Granger causality. Developing one of the approaches, for exam-

ple the Granger causality, so that it could always outperform the other is an in-

teresting future research topic.  

 

3.4.2 How long is long enough? 

Although we have found the critical point of the two approaches, in 

practical applications, we have no certainty where the critical point is. Hence, 

we still have to choose one of them to tackle the data. In molecular biology, we 
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have to deal with a very limited data size; but in physiology, for example, neu-

rophysiology, the data we record is usually very long. Hence one could argue 

that we use the dynamic Bayesian network in gene, protein or metabolite data, 

and apply the Granger causality to physiology data. The dynamic Bayesian 

network is more often reported in molecular biology, but the Granger causality 

has been very successfully applied in neurophysiological data [Wang, 2007] 

and fMRI. The result we chose to use was always chosen through experimental 

validation, as we did here for the plant data. 

 

3.4.3 Frequency decomposition 

As we emphasized in Chapter 2.1, the advantage of the Granger causal-

ity over the dynamic Bayesian network is the frequency decomposition, which 

is usually informative when we deal with temporal data. For example, in neuro-

physiology data, we know the brain employs different frequency bands to 

communicate between neurons and brain areas [Wu, 2007; Zhan, 2006]. We 

would expect a similar situation to arise in genes, proteins and metabolites, al-

though we lack a detailed analysis due to the limited data length. To this end, 

we have also presented frequency decomposition results for the dynamic Bayes-

ian network.  
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3.4.4 False positive  

In our synthesized data, for both approaches, we did not find any false 

positive links in our experiments. However, there were a few false positive 

links found when we applied the conditional Granger causality and also partial 

Granger causality [Guo, 2008] on the gene data. One might ask why this is the 

case; there are several different reasons. Firstly, the experimental data is not 

strictly stationary: it is a natural process and evolves with time. As a first ap-

proximation, we treat it as stationary. Of course, we could use ARIMA rather 

than ARMA model to fit the data in the Granger causality. Secondly, the seven 

gene network is only a small network embedded in complete and large network, 

so there are latent variables. Using the partial Granger causality [Guo, 2008] 

which was originally developed for eliminating latent variables, gene GI still 

has links with the other six genes. Whether the dynamic Bayesian network 

could do a better job in the presence of latent variables is another research topic.     

 

3.4.5 The meaning of the found motifs    

Two circuits are found: one with the mock plant and one with the in-

fected plant. The plant rewires its circadian circuit after infection. Ignoring the 

issue of identifying the molecular mechanisms which control circuit rewiring, 
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which is itself an interesting and challenging problem, we intend to discuss the 

functional meaning of the two circuits. To this end, we could assign a dynamics 

to the network and try to decipher the implications of the rewiring. Interestingly, 

we found that GI is recruited to save the network: if we leave GI as it is in the 

mock case, the whole network will rapidly converge to a fixed point state (a 

dead state).  

 

3.4.6 Reasons for short size data 

In our synthesized data, we test both short and long data samples and 

come to the conclusion that there is a critical size, at which the two approaches 

behave differently. In our experimental data, we only tested it for the short data 

set. Of course, as we mentioned above, in neurophysiological data, we have re-

cordings of long time traces and the Granger causality is widely used there. 

However, we have to realize that all in vivo recordings are very dynamic and 

stationarity of data will become a key issue once we apply both approaches to a 

long dataset. Furthermore, when the dataset is long, both approaches could do 

well and it is more difficult to find the difference between the two. Hence we 

have only compared the results for short data length in the experimental setup.  
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3.4.7 Reasons for small size of variables 

In our synthesized data, we only used 5 variables to simulate a small in-

teracting network; the number of variables could affect the result we derived. 

As expected, see also [Marinazzo, 2008], the estimation of the Granger causal-

ity becomes unfeasible when the number of variables is large and the amount of 

the data sets is small. Hence, all results in the literature on estimating Granger 

causality are exclusive for small networks (around the order of 10), as we con-

sidered here. This is more or less true for dynamic Bayesian network inference 

as well. Extending the Granger causality and the dynamic Bayesian network 

inference to large networks is a challenging problem, even before we carry out 

the same comparison study on these two approaches as we did here. 

 

3.5 Final Remark 

In this chapter, we carried out a systematic and computationally inten-

sive comparison between the two network structures derived from two common 

approaches: the dynamic Bayesian network inference and the Granger causality. 

These two approaches are applied on both synthesized and experimental data. 

For synthesized data (both linear model and non-linear model), a critical point 

of the data length was found: the Granger causality approach performed better 



Chapter 3: A comparative study 
 
 

84 
 

than the dynamic Bayesian network inference approach, when the data length 

was long enough, and vice versa. And the result was further confirmed in ex-

perimental data. This result leads us to focus on Granger causality on real ex-

perimental data when data length is relative large. However, there is a limitation 

for Granger causality as mentioned in this chapter. We have parameters estima-

tion problem if the number of variables is larger than the length of the data, 

which is a common situation for deriving global (large) networks with thou-

sands of genes, proteins and so on. This leads to our study in the next chapter-

Identifying interactions in the time and frequency domains in local and global 

networks. 
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Chapter 4 

Identifying interactions in the 

time and frequency domains in lo-

cal and global networks 

There are several well-established reverse-engineering approaches to 

explore causal relationships in a dynamic network, such as ordinary differential 

equations (ODE), Bayesian networks, information theory and Granger Causal-

ity, based upon multi-dimensional spatial and temporal data. In this chapter, one 

focus on Granger causality both in the time and frequency domain and in local 

and global networks, and apply our approach to experimental data (genes and 

proteins). For a small gene network, Granger causality outperformed all the 

other three approaches mentioned above. For large network reconstruction, a 

global protein network of 812 proteins was reconstructed, using a novel ap-

proach. The obtained results fitted well with known experimental findings and
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predicted many experimentally testable results. In addition to interactions in the 

time domain, interactions in the frequency domain were also recovered. The 

results on the proteomic data and gene data confirm that Granger causality is a 

simple and accurate approach to recover the network structure. Our approach is 

general and can be easily applied to other types of temporal data.  
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4.1 Introduction 

One of the most fundamental issues in computational biology is to relia-

bly and accurately uncover the network structure of elements (genes, proteins, 

metabolites, neurons and brain areas etc.), based upon high throughput data 

[Alon, 2007; Klip, 2005]. There are several well-established reverse-

engineering approaches to explore causal relationships in a dynamic network, 

such as ordinary differential equations (ODE), Bayesian networks, information 

theory and Granger Causality.  

The notion of Granger causality, which was first introduced by Wiener 

and Granger [Wiener, 1956; Granger, 1969; Granger 1980], proposed that there 

is a causal influence from one time series to another if the prediction of one 

time series is improved with the knowledge of the second one. The prediction is 

made in terms of an auto-regressive model. In addition, Granger causality has 

the advantage of having a corresponding frequency domain decomposition so 

that one can clearly find at which frequencies two elements interact with each 

other. Granger’s conception of causality has been widely and successfully ap-

plied in the econometrics literature and recently in the biological literature 

[Chen, 2004 & 2006; Feng, 2009; Guo, 2008; Ge, 2009; Marinazzo, 2008].  
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Considering the four different approaches to the same problem, a natural 

question is to investigate which should be preferred. In the previous chapter, we 

presented a comparison study of Granger causality and dynamic Bayesian net-

work inference approaches. The result showed that Granger causality outper-

formed the dynamic Bayesian network inference when the time series were 

long enough because the Granger causality was then able to detect weak inter-

actions. In a recent Cell paper [Camacho, 2009; Cantone, 2009], the authors 

carried out a systematic comparison between the ODE, Bayesian and informa-

tion theoretic approaches for a small synthesized gene network in the yeast 

(Saccharomyces cerevisiae). The authors concluded that the ODE was the best 

approaches amongst those three. We have applied our conventional Granger 

causality approach on the same recorded time-series and found that the results 

derived by it were better than all the other three approaches’ in the original pa-

per. A small network of seven previously investigated proteins [Cohen, 2008] 

was also re-constructed. Interestingly, the two important proteins DDX5 and 

RFC1 found in experiments were at the top of the re-constructed network. Fre-

quency domain results were analyzed and they indicated that DDX5 and BAG2 

interacted at a frequency of one cycle per three hours.  

In order to tackle the problem of large network reconstruction men-

tioned in Chapter 1, we propose a new framework: Global Granger Causality 

(GGC) This framework builds on the use of partial Granger causality which 
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was illustrated in [Guo, 2008]. We first construct an initial sparse network by 

considering all possible links by computing bivariate pair-wise Granger causal-

ity (described in Chapter 2.1.1). Once we identify such a network structure, 

there is uncertainty about the true causal structure; we need to check whether 

the links appearing in pairwise causality are direct or indirect. We do so by 

computing GGC step by step. If a link is found to be an indirect relationship in 

the sense of GGC, we delete such a link from the initial network. Theoretically, 

iterating the procedure will remove all indirect links and only direct connec-

tions will remain. The advantage of such an approach is obvious. By explicitly 

taking more sources into account, it provides a less biased structure of the net-

work due to latent variables than in a small network as described above. It also 

provides information on the ancestors and descendents of key elements such as 

DDX and RFC1 in our network. The results can then guide experimentalists to 

investigate the properties of a small subset of specific proteins.   

The rest of this chapter is divided in two sections. First, in the Chapter 

4.2, we extended our Granger causality based on Autoregressive moving aver-

age) ARMA model to an Autoregressive integrated moving average (ARIMA) 

in details, as well as its formulation in the frequency domain. We also describe 

global Granger causality, the new procedure for applying Granger causality to 

large networks. Next, in the result section, we apply our method on small (local) 

and large (global) networks. In both cases, simulations and actual biological 
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data (gene and protein time-series) are used and results discussed. And we also 

provide a theoretical proof of its reliability. 

 

4.2 Methods 

In this section, we presented an analysis on how to define the condi-

tional Granger causality on an ARIMA (autoregressive integrated moving aver-

age) model [Mills, 1990]. ARIMA is a generalization of an ARMA model spe-

cially used for dealing with non-stationary data, where an initial differencing 

step (corresponding to the "integrated" part of the model) can be applied to 

remove the non-stationarity. The model is generally referred to as an 

ARIMA(p,d,q) model where p, d, and q natural numbers and refer to the order 

of the model. Given a time series of data Xt , an ARIMA(p,d,q) model is given 

by: 

 
1 1

(1 )(1 ) X (1 )
p q

i d i
i t i t

i i

L L Lα θ ε
= =

− − = +∑ ∑  (4.2.1) 

Where L is the lag operator, and the error term tε  has normal distribution with 

0 mean.  
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4.2.1 Conditional Granger Causality (ARIMA model) 

Time domain Analysis 

Giving two time series tX and tZ  (can be represented vectors here) 

and their kth and mth order differences k
tΔ X and 

m
tΔ Z  (without loss of gener-

ality, we assume that m=k from now on), the joint autoregressive representation 

for k
tΔ X  and m

tΔ Z  (as described in Equation 4.2.1) by using the knowledge 

of their past measurement can be expressed as 

 
1 1 1

1 1

1 1 2
1 1

k k k
t i t i i t i t

i i

k k k
t i t i i t i t

i i

a c

b d

∞ ∞

− −
= =

∞ ∞

− −
= =

⎧Δ = Δ + Δ + Δ⎪⎪
⎨
⎪Δ = Δ + Δ + Δ
⎪⎩

∑ ∑

∑ ∑

X X Z ε

Z Z X γ
 (4.2.2) 

The noise covariance matrix for the system can be represented as 

 1 1 2

1 1 1

var( ) cov( , )
cov( , ) var( )

t t t

t t t

Δ Δ Δ Δ Δ⎡ ⎤ ⎡ ⎤
Δ = =⎢ ⎥ ⎢ ⎥Δ Δ Δ Δ Δ⎣ ⎦⎣ ⎦

xx xz

zx zz

ε ε γ S S
S

γ ε γ S S
 (4.2.3) 

where var and cov represent variance and co-variance respectively. Incorporat-

ing the knowledge of the third time series, the vector autoregressive mode in-

volving the three time series 
k

tΔ X ，
k

tΔ Y  and k
tΔ Z  can be represented as  
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2 2 2 2
1 1 1

2 2 2 2
1 1 1

2 2 2 2
1 1 1

k k k k
t i t i i t i i t i t

i i i

k k k k
t i t i i t i i t i t

i i i

k k k k
t i t i i t i i t i t

i i i

a b c

d e f

g h k

∞ ∞ ∞

− − −
= = =

∞ ∞ ∞

− − −
= = =

∞ ∞ ∞

− − −
= = =

⎧
Δ = Δ + Δ + Δ + Δ⎪

⎪
⎪
Δ = Δ + Δ + Δ + Δ⎨

⎪
⎪
Δ = Δ + Δ + Δ + Δ⎪
⎩

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

X X Y Z ε

Y X Y Z η

Z X Y Z γ

 (4.2.4) 

And the noise covariance matrix for the above system is 

 

2 2 2 2 2

2 2 2 2 2

2 2 2 2 5

var( ) cov( , ) cov( , )
cov( , ) var( ) cov( , )
cov( , ) cov( , ) var( )

t t t t t

t t t t t

t t t t t

⎡ ⎤
⎢ ⎥Δ = ⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤Δ Δ Δ
⎢ ⎥= Δ Δ Δ⎢ ⎥
⎢ ⎥Δ Δ Δ⎣ ⎦

xx xy xz

yx yy yz

zx zy zz

ε ε η ε γ
Σ η ε η η γ

γ ε γ η γ

Σ Σ Σ
Σ Σ Σ
Σ Σ Σ

 (4.2.5) 

where , 1,2, ,5it i =ε L  are the prediction errors, which are uncorrelated over 

time. If we rewrite Equations  (4.2.2) and (4.2.4)  in terms of X , Y  and Z  

themselves, we see that whether a coefficient vanishes or not is almost un-

changed. Hence it is safe to say that the conditional Granger causality form Y  

to X  conditional on Z  can be defined as (see [Ding, 2006] for the classical 

definition) 

 | lnF →

⎛ ⎞Δ
= ⎜ ⎟⎜ ⎟Δ⎝ ⎠

xx
Y X Z

xx

S
Σ

 (4.2.6) 
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When the causal influence from Y  to X  is entirely mediated by Z , the coef-

ficient 2ib  is uniformly zero, and the two auto-regressive models for two or 

three time series will be exactly same, thus we can get )var()var( 31 tt εε = . We 

then have | 0F → =Y X Z , which means Y  cannot further improve the prediction 

of X  including past measurements of Y  conditional on Z . In other words, Y  

don’t have an influence on X . For Δ > Δxx xxS Σ  , 0| >→ ZXYF  and therefore 

there is a direct influence from Y  to X , conditional on the past measurements 

of Z . 

 

Frequency domain analysis 

To derive the spectral decomposition of the time domain conditional 

Granger causality, we multiply the normalization matrix 

 1 1

0I
P

I−

⎛ ⎞
= ⎜ ⎟−Δ Δ⎝ ⎠YX XXS S

 (4.2.7) 

to both side of Equation (4.2.2) and rewrite it in terms of the lag operator L. I  

is the identity matrix. The normalized equations are represented as: 
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*

11 12
*

21 22

( ) ( )
( ) ( )

k k
t t

k k
t t

D L D L
D L D L

⎛ ⎞ ⎛ ⎞Δ Δ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ Δ Δ⎝ ⎠⎝ ⎠ ⎝ ⎠

X X
Z Z

 (4.2.8) 

Then we can apply the same normalization procedure to Equation (4.2.4) by 

multiplying with the matrix 

 3 2P P P= ⋅  (4.2.9) 

Where 

 1
2

1

0 0
0

0

I
P I

I

−

−

⎛ ⎞
⎜ ⎟= −Δ Δ⎜ ⎟
⎜ ⎟−Δ Δ⎝ ⎠

yx xx

zx xx

Σ Σ
Σ Σ

 (4.2.10) 

And 

3
1 1 1

0 0
0 0
0 ( )( )

I
P I

I− − −

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟− Δ − Δ Δ Δ Δ − Δ Δ Δ⎝ ⎠zy zx xx xy yy yx xx xyΣ Σ Σ Σ Σ Σ Σ Σ

 (4.2.11) 

to both sides of Equation (4.2.4) and rewrite it in terms of the lag operator 

 
11 12 13

21 22 23

31 32 33

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

k
t xt

k
t yt

k
t zt

B L B L B L
B L B L B L
B L B L B L

⎛ ⎞Δ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟Δ =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟Δ⎝ ⎠ ⎝ ⎠⎝ ⎠

X ε
Y ε
Z ε

 (4.2.12) 
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After Fourier transforming Equation (4.2.8) and (4.2.12), we can rewrite them 

in the following representations 

 
*

*

( ) ( )( ) ( )
( , ) ( , )

( ) ( )( ) ( )
G G

k k
G G

λ λλ λ
λ λ

λ λλ λ
⎛ ⎞⎛ ⎞⎛ ⎞

Δ = Δ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

xx xz

zx zz

X X
Z Z

 (4.2.13) 

( ) ( ) ( ) ( ) ( )
( ) ( , ) ( ) ( ) ( ) ( ) ( , )
( ) ( ) ( ) ( ) ( )

H H H
k H H H k

H H H

λ λ λ λ λ
λ λ λ λ λ λ λ
λ λ λ λ λ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟Δ = Δ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

xx xy xz x

yx yy yz y

zx zy zz z

X E
Y E
Z E

(4.2.14) 

where Δ(λ,k) is the Fourier transform of the difference operator Δk. Therefore, 

for ARIMA and ARMA models in the frequency domain, their causality is 

identical. This is in agreement with our conclusions in the time domain causal-

ity and in general the Kolmogorov identity holds true, that is: integrating the 

frequency-domain Granger causality over all frequencies yields the time do-

main Granger causality. Thus we can calculate the Granger causality in the fre-

quency domain by using the similar Equations from (2.1.26) to (2.1.29). 

 

4.2.2 Global Granger Causality 

Partial Granger causality (PGC) provides an accurate description of the 

internal dynamics of the system when the number of nodes is much smaller 

than the length of recorded time series. However, when the number of nodes 
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increases, especially when they are larger than the length of time series, a prob-

lem of parameter fitting immediately arises, it is a situation for which usual 

methods break down.  

Here we propose the following Global Granger Causality (GGC) algo-

rithm to tackle this problem. The general idea is as follows: if we could find all 

ancestors of a given target T, the whole network could be reconstructed. Hence 

for a given target T, we want to find all directed ancestors (parents of target T). 

For illustration, a small subset of the whole network, which contains target T 

and all its ancestors, is shown in the Figure 4.1_A. We assume that each nodes 

from {X1, …, Xn} has only a single pathway to target T, and each nodes from 

{Y1, …, Yn} has two distinct pathways to target T. From Figure 4.1_A, we can 

find the parents of target T are T1, T2, T3.  

The detailed algorithm is illustrated as follows: 

First, apply the bivariate pair-wise Granger causality to find all of the 

ancestors of the target T. This set is denoted A0(T). In theory, we can detect all 

possible Granger-causal links in this procedure, both direct and indirect. In Fig-

ure 4.1_A, A0(T)={T1, T2, T3, X1, …, Xn , Y1, …, Yn}.  

Secondly, we identify whether the links detected in step 1 are direct or indirect. 

For such a purpose, we carry out the following iterative procedures. 
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(Ⅰ) For each node in A0(T), compute the partial Granger causalities condi-

tioned on all other single nodes in the A0(T). If the relationship vanishes, 

delete this node from the initial network and obtain the 1-stage network. 

After this procedure, all indirect links conditioned on one single node 

have been removed. In Figure 4.1_A, {X1, …, Xn} are deleted from 

A0(T), denoting the remaining set as A1(T) ={T1, T2, T3, Y1, …, Yn}. 

This is proved in Lemma 1 of Discussion section. 

(Ⅱ) For each node in A1(T), compute the partial Granger causalities condi-

tioned on all possible pairs in A1(T). We obtain the 2-stage network in 

which all indirect links conditioned on a pair of nodes have been re-

moved. In Figure 4.1_B, {Y1, …, Yn} is further deleted from A1(T), de-

noting the remaining set as A2(T)  ={T1, T2, T3}. 

(Ⅲ) Continue the procedure above until we can not remove any nodes from     

Ak(T). The effect of choosing a different parameter k will be discussed 

in Chapter 4.4  

The rationale is as follows: if the usual Granger causality from Y → X 

is large but significantly decreases to 0 when conditioned on a third signal Z 

(FY→X|Z = 0), then the connection Y→X is only indirect and should be discarded. 

We use this principle to find the direct ancestors (signals acting on a target X 
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with no intermediate) of each nodes. At step 0, we search for all signals Y such 

that FY→X is large (a threshold is chosen, e.g. significantly large than 0). We call 

A0 this collection of candidate ancestors. At step 1, we filter this set further by 

keeping the signals Y∈A0 such that FY→X|Z is still large for all Z∈A0. We call 

A1 this new set and carry on the procedure by conditioning on groups of 2, then 

3 etc. signals from the previous set until such an operation is not possible (the 

size of Ai decreases or stabilizes at each iteration). The result is a list of direct 

ancestors for each node, which we aggregate to produce the global network. 
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Figure 4.1 Global Granger causality approach. (A) Ancestors of target node T, A0(T) = {T1, T2, T3, X1, …, 

Xn, Y1, …, Yn }. T1,T2,T3 are direct ancestors to target T. {X1, …, Xn} connect to T through a single pathway, 

thus, {X1, …, Xn}  are not direct ancestors to target T. {Y1, …, Yn} connect to T through two distinctive 

pathways (B) {X1, …, Xn} can be removed by Granger-conditioning on a single node, A1(T)={ T1, T2, T3, 

Y1, …, Yn}. 
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4.3 Results 

4.3.1 Local Network: Synthesized Data 

The results for the conditional Granger causality approach in time do-

main has been given in the previous chapter. To illustrate the conditional 

Granger causality approach in frequency domains, a simple multivariate model 

with fixed coefficients which has been discussed in previous chapter is tested 

first. Suppose we have 5 simultaneously recorded time series generated accord-

ing to the Equations (3.3.1). We applied the conditional Granger causality ap-

proach on frequency domain as shown in Figure 4.2. The causal relationships 

from 1X  to 2X , 3X  and 4X  show strong interactions at around 25 Hz.  

 

Figure 4.2 Conditional Granger causality approach applied on a simple linear 
toy model in frequency domain. The red line indicated the significant Granger 
causality derived by our method. 
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4.3.2 Local Network: A yeast synthetic network of five genes 

A recent Cell paper [Cantone 2009] assessed systems biology ap-

proaches for reverse-engineering and modeling (see also [Camacho, 2009]). To 

recover a regulatory interaction network, the authors used three well-established 

reverse-engineering approaches: ordinary differential equations (ODEs), Bayes-

ian networks and information theory. A gene synthetic network in the yeast 

consisting of 5 genes with 8 known interactions was investigated. From the re-

sults, the authors found ODEs and Bayesian networks could correctly infer 

most regulatory interactions from the experimental data with best values of 

PPV=0.75 [Positive Predictive Value = TP/(TP+FP)] and Se=0.5 [Sensitivity = 

TP/(TP+FN)]. In order to validate our approach, we applied conditional 

Granger causality (as described in Chapter 2.1.2) to the same experimental 

data. From our results, we found that the conditional Granger causality ap-

proach could also correctly infer most regulatory interactions and outperformed 

all the other three approaches reported in [Cantone, 2009] with the best values 

of PPV=0.83 and Se=0.83. Hence the Granger causality approach, although 

simple, can be successfully applied to recover the network structure from tem-

poral data and it could play a significant role in systems biology.  

Initially, we applied conditional Granger causality to the switch-off time 

series (culturing cells in galactose) which contained more time points than 
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switch-on time series (culturing cells in glucose). The switch-off experiment 

data consisted of 4 replicates. Since a shift from galactose-raffinose- to glucose-

containing medium caused a large initial decay, we simply removed the first 

two time points for 2 replicates. The time series were not stationary as shown in 

the [Cantone, 2009]. The gene expression level decreased with time because of 

the inhibition effect of galactose-raffinose-containing medium. In order to apply 

conditional Granger causality, we were required to use ARIMA (Auto-

Regressive Integrated Moving Average) rather than ARMA model to fit the 

non-stationary data. The level of difference for ARIMA was chosen to be 1 to 

avoid losing too many data points.  

Firstly, we used the conditional Granger causality approach to infer 

regulatory interactions for 5 genes. By using the bootstrapping method, we con-

structed 95% confidence intervals as shown in Figure 4.3_C. From this figure, 

we then constructed the causal network, which is displayed in Figure 4.3_A. 

Only the 5 most significant edges are shown in this graph. From this causal 

network, there are 4 true-positive edges and 1 false-positive edge. Our approach 

performs better: the PPV is 0.8, instead of 0.6 and the Se is 0.5, instead of 0.38.  

We then grouped Gal4 and Gal80 as a single node as they form a com-

plex [Cantone, 2009], and then applied conditional Granger causality approach. 

Figure 4.3_D. shows 95% confidence intervals for the causality. From this fig-
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ure, we can then recover a simplified causal network as shown in Figure 4.3_B. 

It shows the 6 most significant edges. There are 4 true-positive edges and 1 

false-positive edge. By comparing our PPV (0.83) and Se (0.83) values with the 

original paper (PPV=0.75, Se=0.5), it is further confirmed that the performance 

of our algorithm is much better. The reason why Granger causality outperforms 

the other approaches is clear from the detailed analysis in the previous chapter 

where we have reported that the Granger causality is sensitive to detect weak 

interactions (this experimental data recorded 80 time points). The Bayesian ap-

proach is similar to the ODE approach as claimed in previous chapter as well. 

Hence we could reasonably expect that the Granger approach is the best among 

the four approaches. 
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Figure 4.3 Conditional Granger causality approach applied to experimental gene data. The experiment 

measured the expression level of 5 genes after a shift from galactose-raffinose- to glucose-containing me-

dium. The regulatory network was re-constructed. Solid gray lines represent inferred interactions that are not 

present in the real network, or that have the wrong direction (FP false positive). PPV [Positive Predictive 

Value = TP/(TP+FP)] and Se [Sensitivity = TP/(TP+FN)] values show the performance of the algorithm for 

an unsigned directed graph. TP, true positive; FN, false negative. (A) The network structure of 5 genes de-

rived by conditional Granger causality. (B) Gal4 and Gal80 were grouped as a single node, so that only tran-

scriptional regulation interactions are represented. (C) The 95% confidence intervals of conditional Granger 

causality results for 5 genes. (D) Conditional Granger causality results for a grouped genes (Gal4 and Gal80 

are grouped). The 95% confidence intervals graph is plotted. 
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4.3.3 Local Network: A Local Circuit of Seven Proteins 

After testing our approach in the gene circuit, we applied conditional 

Granger causality approach on dynamic proteomics of individual cancer cells in 

response to a drug treatment [Cohen 2008; Sigal, 2006]. In the experiment, an 

anticancer drug, camptothecin (CPT), with a well-characterized target and 

mechanism of action was used to affect the cell state. The drug is a topoisom-

erase-1 (TOP1) poison with no other target, which can eventually cause cell 

death. To follow the response to the drug, 812 different proteins in individual 

living cells were measured with a time interval of 20 minutes. A total number 

of 141 sample points (more than 40 hours) were collected. This dataset, much 

larger than the gene data reported above, gives us the opportunity to construct 

both local and global networks. In [Cohen, 2008], seven proteins were investi-

gated in more details, including two proteins (DDX5 and RFC1) that were re-

ported to be essential. Figure 4.4_A shows the time traces of the seven proteins, 

denoted as X. They clearly are not stationary, a property that is required for 

Granger Causality. To overcome this, the model used to fit the time series is 

changed from ARMA (Autoregressive moving average model) to ARIMA 

(Autoregressive integrated moving average). Crucially, this transformation does 

not impact on the true connections between elements. Figure 4.4_B shows the 

transformed data, obtained after differencing the original data term by term 3 
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times. The reason to choose order 3 is because the time series is significantly 

decrease with time, a large order 3 (comparing to order 1 used in the yeast data) 

is applied here to make the time series stationary. 

Figure 4.5_C shows the Granger causality found for all possible pairs 

of proteins, together with their 95% confidence intervals calculated though a 

bootstrap. From the figure, we can then construct the causal protein-interaction 

network, which is displayed in Figure 4.5_A. Only the 12 most significant 

edges (according to the strength ranking derived by Granger causality) are 

shown in this graph. In the literature, it has been reported that the protein DDX5 

was significantly correlated with the cell fate (with a p-value 1310p −< ). It has 

been further proved that it plays a functional role in the response to the drug: a 

doubling in the death rate was observed during the first 40 hours when DDX5 

was knocked-down [Cohen, 2008]. Protein RFC1 also showed a significant cor-

relation with cell fate (with a p-value 610p −< ). Our derived network is in 

good agreement with these two biological characteristics. Protein DDX5, which 

is the most significantly correlated with the cell fate, is on the top level of the 

network. Protein RFC1 is in a lower level comparing to DDX5, since the causal 

relation is from DDX5 to RFC1. Therefore, the results on the proteomic data 

and gene data confirm that Granger causality is a simple and accurate algorithm 

to recover the network structure.  
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Figure 4.4 Conditional Granger causality approach applied on experimental protein data by using ARIMA 

model. The experiment measured the levels of 7 endogenously tagged proteins in individual living cells in 

response to a drug. (A) The time traces of 7 proteins are plotted. There are 141 time points. The time interval 

is 20 minutes. (B) ARIMA model is used to fit the data. We applied term-by-term differencing 3 times to the 

data.
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Figure 4.5 Conditional Granger causality results derived by using experimental protein data. (A) The net-

work structure for 7 proteins derived by using conditional Granger causality approach. (B) For visualization 

purpose, all directed edges (causalities) are sorted and enumerated into the table. (C) Conditional Granger 

causality results. The 95% confidence intervals graph, which is constructed by using method bootstrap, is 

plotted.
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In Figure 4.6, it shows the same analysis in the frequency domain. From 

the result, we find that there are strong interactions from D (DDX5) to C (BAG2) 

at around 0.006 cycle/min or one cycle every three hours. From the power spec-

trum result for D and C, we can also find an energy peak at this frequency. In 

addition, there is a strong chain interaction from D to G (RFC1) via C and F 

(SPCS1). This chain contains the 3 strongest interactions. Each element in the 

chain affects its downstream element at a similar frequency. 

 
Figure 4.6 Conditional Granger causality analysis in frequency domain for experimental data. Conditional 
Granger causality was applied to experimental data in the frequency domain and power spectrum density 
analysis for 7 proteins (the most left column in black line). The significant causalities are shown in red lines 
in the figure.  
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4.3.4 Global Network: Synthesized Data 

To measure the performance of the Global Granger Causality (GGC) al-

gorithm introduced in this thesis, we first consider some toy models. The first 

toy model is a high-dimensional time series. We also compare the result of 

GGC with that of  Partial Granger Causality (PGC). 

 

Example 1 Suppose that 12 simultaneously generated time series were gener-

ated by the equations (The coefficients are randomly generated): 

 

1 1 1 1

2 1 2

3 1 2 3

4 3 4

1 4

5 4 6 5

6 4

( ) 0.95 2 ( 1) 0.9025 ( 2) ( )
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 (4.3.1) 
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where 1 12, ,ω ωL  are zero-mean uncorrelated process with identical variance. 

We generated time series of 80 points. The true network structure is depicted in 

Figure 4.7_A, there are 21 actual links. We first applied PGC to the data di-

rectly and used a bootstrap method to construct the network structure. More 

specifically, we simulated the fitted VAR model to generate a dataset of 1000 

realizations of 80 time point, and used 3σ  (around 99% confidence intervals by 

using same bootstrapping method described in Chapter 3.3) as the confidence 

interval. If the lower limit of the confidence interval was greater than zero, we 

considered there was a relationship between two units. The network structure is 

depicted in Figure 4.7_B. The network structure we obtained from PGC was 

misleading. The reason is that since the order of the model is 4, the number of 

total parameters we should estimate in this model is 12 12 4× × , the estimator is 

unreliable with such little data. 

Secondly, we used GGC to investigate the network structure. Figure 

4.7C shows the results we obtained after applying pairwise Granger causality. 

There are 33 links in total. We computed partial Granger causality conditioned 

on any intermediate node to identify whether the links appearing in Figure 

4.7_C are direct or indirect. If the lower limit of the confidence interval of par-

tial Granger causality is less than zero, then the link is regarded to be indirect 

and is deleted from Figure 4.7_C (dashed arrows). Figure 4.7D is the final 
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structure we get from GGC; it is consistent with the actual structure Figure 

4.7_A. 

 

Example 2: Random network 

Next we present a validation of our method with a series of experiments on ran-

dom networks for which the true structure is known. We built an Erdös-Rényi 

random graph [Bollobás, 2001] with N = 200 nodes and M N log(N) 1060= × =  

edges. From the network structure, we generated N time series with an auto-

regressive model of order 1 whose transition matrix was the transpose of the 

adjacency matrix of the network, with its largest eigenvalue normalized to 0.99 

to obtain a stable system. Each time series was 200 time-points long and normal 

noise of unit variance was added throughout. The algorithm was applied to each 

single node to get a list of their guessed ancestors. We then compared the true 

network with our derived ancestors. One should expect that the connection be-

tween two nodes is difficult to uncover if the corresponding coefficient in the 

linear model is small. To factor this out, we first considered the case where the 

non-zero coefficients of the transition matrix were all equal and maximized 

(Constant coefficients). We then applied the method on the case where the 

non-zero coefficients were randomly distributed (Random coefficients). 
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Figure 4.7 Global Granger Causality (GGC) algorithm applied on a simple toy model. (A) The actual net-

work structure used in toy model of global network. (B) Network structure inferred from PGC. (C) Network 

structure inferred from pair-wise Granger causality (solid and dashed links). By using partial Granger cau-

sality among three units, we can delete some of them (dashed links). (D) The final network structure from 

GGC, it is consistent with the actual relationship. 
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Random network with constant coefficients 

The data were generated by an auto-regressive model described above 

with transition matrix A (200×200). A is a scaled version of the transpose of the 

true adjacency matrix. The scaling factor was chosen so as to be maximal while 

leading to a largest eigenvalue for A of less than 1 (or the model degenerates). 

In this particular case, it was found to be 0.1736 (the corresponding coefficients 

for direct links and coefficients = 0 for disconnected nodes). The procedure has 

one parameter τ, the threshold at which a Granger-causality is deemed signifi-

cant. By varying this parameter from 0 to 0.1, we obtained different large net-

works which we compared to the truth. The accuracy of each network was 

summarized by its true positive and false positive rates. Figure 4.8_A shows 

the resulting receiver operating characteristic (ROC) curve that is the graph ob-

tained by plotting the false positive rate against the true positive rate. The per-

formance of the method was extremely good, with an area under the curve close 

to 1. Crucially for biological applications, the false positive rate is always very 

small. 
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Random network with random coefficients 

In this setup, the non-zero coefficients of the transition matrix were randomly 

distributed (normally distributed with mean 3 and multiplied by -1 with prob-

ability 1/2). The matrix was then scaled in the same manner as before. Figure 

4.8_B shows the performance of the method on this harder problem. The 

method is not as accurate as before, with a maximum true positive rate just over 

0.5. However, the false positive rate is still very low: the method doesn’t guess 

as many ancestors as before but its guesses are rarely wrong. The fact that more 

connections are now missed out is not surprising: the non-zeros coefficients are 

randomly distributed and can be very small. Figure 4.8_C shows how the true 

positive rate varies with the magnitude of the coefficients; the true positive rate 

goes to zero with small coefficients. 

 

4.3.5 Global Network: A Global Circuit of 812 Proteins 

We then applied our GGC approach on the whole dataset of 812 pro-

teins on dynamic proteomics of individual cancer cells in response to a drug 

treatment [Cohen 2008; Sigal, 2006]. Figure 4.9_A shows the direct ancestors 

of protein DDX5, known to be at the top level of the circuit, as shown in the 

previous section. Our result suggests that controlling for either BC037836,
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Figure 4.8 The performance analysis for Global Granger Causality (GGC) algorithm applied on toy models 

for both constant and random coefficients. (A) ROC curve summarizing the performance of the procedure 

on a random network with maximum non-zero coefficients. (B) ROC curve summarizing the performance of 

the algorithm on a random network with random non-zero coefficients. (C) True positive rate as a function 

of the magnitude of the non-zero coefficient. 
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Figure 4.9 Global Granger Causality algorithm applied on experimental data of 812 recorded proteins for 

global network re-construction. (A) Direct ancestors of the protein DDX5: BC037836, C2ORF25, HMG2L1, 

MAPK1, RPL24 and RPS23. (B) Direct ancestors of RFC1, as well as their own direct ancestors. The causal 

link from DDX5 to RFC1 is now completely identified: an intermediate protein (SLBP) connects them. For 

visualization purpose, the proteins are enumerated into the table. 
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C2ORF25, HMG2L1, MAPK1, RPL24 or RPS23 will have an effect on DDX5 

and thus on the whole circuit. These ancestors of DDX 5 prediced by GGC can 

be experimentally tested in the future by using knockout techniques. A similar 

figure for RFC1 is shown in the Figure 4.9_B. 

Setting the same threshold (lower bound > 0.1) as the one used to obtain 

the small circuit, a large, sparse network is obtained: 768 nodes remain (dis-

carding those with no connections) and 2972 edges were found, which repre-

sented only 0.5% of all the possible edges. The complete structure is displayed 

in Figure 4.10_A. The overall mean clustering coefficient is shown in Figure 

4.10_B. It is an order of magnitude larger than the one of a random network 

(0.022 instead of 1/768=0.0013). But the network is not modular: the mean 

clustering coefficient with respect to degree is more or less constant. Figure 

4.10_C shows the distributions of in-, out- and total degree of the nodes. All 

three distributions are exponential, precluding the possibility of a scale-free 

network. Each node has an average in-degree and out-degree of 3.8, indicating a 

well-connected network. This is confirmed by the characteristic path length 

(average of the shortest path between all pairs of nodes). Considered undirected, 

the graph has a characteristic path length of 3.8, in line with those of previously 

reported biological networks (see [Mason, 2007] and references within), includ-

ing protein-protein interaction networks, although it should be noted that the 

present study is concerned with the dynamics of the proteins (i.e. [Sachs, 2005]) 
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and not their physical interactions (in which case the network is undirected by 

construction). The directed graph also has a small characteristic path length of 

5.7 nodes and a small diameter (largest shortest path) of 12 nodes. Such con-

nectedness indicates that the network is a small world [Kleinberg, 2000; Wang, 

2003]. However, it is not particularly modular: while its mean clustering coeffi-

cient is an order of magnitude (17 times) higher than one of a random network, 

the clustering coefficient is almost constant with respect to the node’s degree. 

In other words, the same level of clustering is found everywhere regardless of 

the node’s degree. 

The previous small network in Figure 4.5 was obtained by using the 

conditional Granger causality. It can be misled by common influence: if both 

nodes are subjected to an unknown common source, it can have an effect on 

their connections. Partial Granger causality – another extension of Granger cau-

sality [Guo, 2008; Ladroue, 2009;] – can address this issue by considering an 

unseen external input in the linear model and working out its effect on the con-

nection. For example, the partial Granger causality between DDX5 and RFC1 is 

very small, even though the conditional Granger causality between them is high 

(Figure 4.5) and there exists a short path (1 intermediate) from DDX5 to RFC1 

in the large network. This suggests the connection is affected by a common un-

seen source.  
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Figure 4.10 Global Granger Causality algorithm applied on experimental data for global network re-

construction. (A) The whole re-contructed network of 812 proteins. (B) The overall mean clustering coeffi-

cient (the probability of neighbours being inter-connected) (C) In-, out- and total degree distributions of the 

large network calculated from the whole dataset. 
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In order to identify which proteins have an influence on the connections 

between the 7 proteins of interest (AKAP8L, PSMB6, BAG2, DDX5, 

DKFZP434, SPCS1, and RFC1), we first extracted them as well as the proteins 

belonging to the shortest paths between them, resulting in a subset of 118 pro-

teins. We then applied a filtering process on each of the 12 connections uncov-

ered in the previous section. The rationale of the algorithm is that if removing 

the (explicit) influence of a protein makes the connection between two nodes 

change, then this protein should be kept as a potential influence on the connec-

tions – if Z is independent of X and Y, then z does not affect the Granger cau-

sality and |F FX Y Z X Y→ →= . After filtering for those that have an influence, we 

then considered their pairs and build a new subset, then triplets etc.. The end-

result is a set of proteins which have a substantial influence on the connection. 

Figure 4.11 shows the small network of 7 proteins with the now-

identified external influences. Note that those proteins do not necessarily be-

long to the path from one node to the other, but rather they have some substan-

tial influence on the connection as a whole, for example on some members of 

the path. 
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Figure 4.11 External influences identified by the second iterative procedure, in 

ovals. For visualization purpose, the proteins are enumerated into the table. The 

proteins A-G are enumerated into the table of Figure 4.5_A. 
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4.4 Discussion 

How reliable is Global Granger Causality? 

In theory, we can recover all possible links from the pairwise Granger 

causality procedure and have to apply conditional Granger causality on all 

combinations of the nodes in the system to remove an indirect connection. 

However, it is an NP-hard problem and we will stop at a stage k, i.e., we only 

need to apply conditional Granger causality on the combinations of up to k 

nodes. Therefore, the analysis on how to choose k and the probability of cor-

rectly uncovering the true relationship of the whole network when we stop at 

stage k is of vital importance. In this section, we will provide some simulation 

and theoretic results on these questions. 

Consider a network with N nodes { 1 NX , ,XL } with a connection prob-

ability p. There are N (N 1) p× − ×  direct links on average in the whole system. 

We intend to estimate how many indirect connections are left when we stop at 

stage k. Here we focus on a pair X to T, where X, T are in { 1 NX , ,XL }. If 

there exist only one single path from X to T, this link can be discarded by ap-

plying conditional Granger causality on a single intermediate node in the path. 

If there are more than one path from X to T, in theory, this link should be dis-

carded by Granger-conditioning on all the other nodes.  
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Definition 1 (bottleneck). Assume that there are m distinctive directed 

paths from S 1{X , ,X }n∈ L  to T and p(S,T) be the set of all distinctive directed 

paths from S to T. A set of nodes 1 m{Z , , Z }L  is called a section from S to T if 

there is no directed path from S to T in the graph 1 N 1 m{X , ,X } {Z , , Z }−L L . A 

section which minimizes its total number of elements of the section is called a 

bottleneck. 

For example, in Figure 4.12_A both {B1,B2} and {B3} are sections 

from S to T, but {B3} is the bottleneck..  

Lemma 1. Assume that the set 1 m{B , ,B }L  is the bottleneck from S to T, 

we have 

 
1|{ } 0

mS T B BF → =L  (4.4.1) 

Proof. We only check two cases here. The first case is that there is a single se-

rial connection from S to T. For example, we have 

1 2 nS B B B T→ → → →L where every single node {Bi} is a bottleneck of the 

path. If we condition on one of the single node Bi in the path, we need to show 

 |{ } 0
iS T BF → =  (4.4.2) 

According to the definition, we need to find the autoregression expression: 
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 ( ) ( ) iT C T D B ξ= Γ + Γ +  (4.4.3) 

where Γ  is the delay operator and C, D are polynomials, ξ  is the noise term. 

From the assumption of the path structure, we conclude 
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Therefore  

 
1 1 1

1 1

1

( ) ( )
( ) ( ) ( )
( ) ( )

n n n n

n i i

n i

T C T D y
C T E y F y
C T G y

ξ
ξ

ξ

+ + +

+ +

+

= Γ + Γ +
′= Γ + Γ + Γ +

′′= Γ + Γ +
 (4.4.5) 

where E,F,G are polynomials, and ,ξ ξ′ ′′  are system noises. From the equation 

above, we see that for any node Bi, we have |{ } 0
iS T BF → = . Intuitively, in a serial 

path 1 2 nS B B B T→ → → →L , the information cannot be transmitted from S 

to T if Bi is removed. In conclusion, for a single path, the Granger causality is 

zero whenever we condition on one of its nodes in the path. It is not necessary 

to condition on the whole path to remove the causality.  
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The second case is as depicted in Figure 4.12_A. There are two differ-

ent paths from S to T, B1 and B2 converge to a common bottleneck B3. It is easy 

to see that information can not be transmitted from S to T if B3 is removed, then 

we can easily see that 

 
3|{ } 0S T BF → =  (4.4.6) 

Combining the above two cases completes the proof of the lemma.  

Lemma 1 tells us that if there are m distinctive paths from S to T, i.e., 

the number of the bottleneck is m, then the causality between S and T will van-

ish when we take into account the partial Granger causality on {X1,...,Xm}. 

There may exist other common drives to the observed nodes S and T such as 

Figure 4.12_B. We assume the partial Granger causality can delete the influ-

ence of such drive and exclude such case in our analysis. 

The exact formula of the number of bottlenecks seems to be fairly com-

plicated but we can have a first look at the empirical distribution of it. For a va-

riety of connection probability p, we generate 500 random networks when 

N=100. For each network, we randomly select two nodes and compute the 

number of the bottleneck between them. Figure 4.12_C shows the histograms 

when p=0.015, 0.02, 0.03 and 0.05, respectively. From these figures, it can be 

easily seen that the sparser the network is, the quicker we can detect the true 
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structure from global Granger causality. When p=0.015, it is very likely for any 

two nodes to be unconnected or directly connected, then almost all the true rela-

tionships can be uncovered at stage 1. When p=0.02, all the true relationships 

can be uncovered at stage 2. When p=0.03, the probability of uncovering the 

true relationship is 90.8% at stage 2 and 98.6% at stage 3. When p=0.05, the 

probability of uncovering the true relationship is 82.2% at stage 4 and 97.8% at 

stage 6. It is not until stage 9 that all indirect links can be discarded. 



 

128 
 

 

Figure 4.12 reliability of Global Granger causality approach.  (A) S is connected to T through two different 

paths, both {B1,B2} and {B3} are sections from S to T, but {B3} is the bottleneck. (B) There may exist other 

common drives to the observed nodes X and T, we assume the partial Granger causality can delete the influ-

ence of such drive and exclude such case in our analysis. (C) Histograms of the number of bottleneck for a 

variety of connection probability p for N=100 and 500 simulations.  
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4.5 Final Remarks 

In this chapter, I focused on the Granger causality approach in both the 

time and frequency domains in local and global networks. For a local gene cir-

cuit, a recent Cell paper [Cantone, 2009] assessed systems biology approaches 

for reverse-engineering and modeling by investigating a gene synthetic network 

in the yeast consisting of 5 genes with 8 interactions. From our results, we 

found that our conditional Granger approach could also correctly infer most 

regulatory interactions and outperform the three approaches reported in the 

[Cantone, 2009]. For a local protein-interaction network, our derived network is 

in good agreement with biological characteristics. Therefore, the results on the 

proteomic data and gene data confirm that the Granger causality is a simple and 

accurate approach to recover the network structure. For a global network, our 

novel approach called global Granger causality was successfully used to build a 

large network from all the recorded 812 proteins. Since Granger causality is a 

very useful tool to investigate the connectivity among elements, we apply 

Granger causality to local field potential data and study the connectivity change 

due to the effect of anaesthesia. Some interesting results for brain connectivity 

are described in the next chapter. 
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Chapter 5 

Loss of consciousness due to an-

aesthesia is associated with altered 

functional cortical connectivity 

Loss of consciousness with anaesthesia, sleep or vegetative states may 

involve reduced functional cortical connectivity in a form of “cognitive unbind-

ing” caused by disruption of long feed forward connections [Mashour,2006; 

Akire, 2008] and synchronization [Imas, 2005; John, 2005].  In this chapter, we 

have combined multiarray array recordings of local field potentials (LFP) in 

right (rIT) and left (lIT) inferotemporal and right anterior cingulate (rAC) corti-

ces in sheep with Granger causality to investigate how anaesthesia alters neural 

processing during resting state and visual stimulation.  
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Results from both time and frequency (1-70Hz) domain analyses show 

that when animals view face images a predominantly unidirectional flow of di-

rect (between ITs) (which was also shown in previous results [Ge 2009; La-

droue 2009]) and indirect (via rAC) causal connections from left to right IT oc-

curs. Under resting state conditions information flow is in the opposite direction. 

Anaesthesia abolishes direct inter-hemispheric connections and indirect ones 

either change direction or became bidirectional. Patterns and synchronicity of 

visual evoked potentials are also altered.  By contrast, short-distance causal 

connections within brain regions actually increase their frequency under anaes-

thesia.  Loss of consciousness during anaesthesia is therefore associated with 

reductions in extrinsic long-distance open-loop cortico-cortical connections, 

and loss of their unidirectional flow, coupled with an increase in the strength of 

shorter-distance intrinsic closed loop connections.  

In addition, we have also tested conditional Granger causality for syn-

thesized data of neurodynamical model. The task of this synthesized network 

was designed to make a decision between two possible alternatives, according 

to the characteristics of a sensory input. Assuming there was no knowledge of 

the network structure, we investigated conditional Granger causality by using 

three types (LFP, firing rate and spiking intervals) of data generated by the 

model. Our results indicated that conditional Granger causality could correctly 
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deriving most direct connections and LFP data provided most reliable results 

comparing to the other two types of data. 
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5.1 Introduction 

Based upon simultaneously multi-site physiological recording data 

(spikes, firing rates and local field potentials, EEG and MEG etc.), to reliably 

and accurately explore the directed network structure among different areas, is 

one of the most import tasks in computational biology [Klipp, 2005; Feng, 2007; 

Tong, 2004; Guo, 2008]. In this chapter, we applied Granger causality approach 

to both synthesized and experimental data. 

  In the previous chapters, we have investigated and compared Granger 

causality with other reverse-engineering approaches. Our results concluded 

Granger causality outperformed all other methods in some specific condition 

(e.g. long data length).  In computational biology, various types of time series 

data can be collected in advanced laboratories for the same organisms. A natu-

ral question is which type of data is more reliable to use for reverse-engineering 

task by applying Granger causality approach. Here, we provided an answer by 

using synthesized data generated by a well-known neural model. We tested 

conditional Granger causality approach for three types of data (LFP, Firing Rate 

and  Spiking Intervals data) generated by using a neurophysiological model. 

This model was firstly proposed by [Wang, 2002] and extensively explored by 

[Deco, 2006]. It is an integrate-and-fire attractor model of the decision-related 

activity of ventral premotor cortex (VPC) neurons during a vibrotactile fre-
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quency comparison task. Our results illustrated that Granger causality could 

reliably recover most interactions correctly, especially by using the LFP data.  

For experimental data, we have combined multiarray array recordings of 

local field potentials in three different cortices in sheep with Granger causality 

to investigate how anaesthesia alters neural connectivity during resting state and 

visual stimulation. In 21st century, one of the most important scientific and phi-

losophical questions is the nature and mechanism of human consciousness. To 

investigate this question, the mechanisms of general anaesthesia have also been 

studied together with the mechanism of consciousness. In the literature, it is re-

ported that loss of consciousness with anaesthesia may involve reduced func-

tional cortical connectivity caused by disruption of long feed forward connec-

tions [Mashour, 2006; Akire, 2008] and synchronization [Imas, 2005; John, 

2005].   

In conscious state, our results show that lIT has either directly or indi-

rectly causal influence via the rAC on the rIT with face picture stimuli (see also 

in [Ladroue, 2009]). It is consistent with the hypothesis that in the left brain 

hemisphere, which is thought to employ more localised processing in the con-

text of analysing detail and organisation and control of action. By contrast, dur-

ing resting state conditions the flow of causal connections was reversed from 

rIT to lIT both directly and indirectly via the rAC. It also showed a very good 
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agreement with the hypothesis that the right brain hemisphere is thought to play 

a key role in spatial information processing involving a more global type of 

processing.  

With anaesthesia applied in sheep, it abolished direct causal connection 

between the hemispheres in both conditions. Numerous causal connections 

within brain regions were found in both conditions and their frequency was sig-

nificantly increased by anaesthesia. In addition, patterns and synchronicity of 

visual evoked potentials were also altered. Thus, our results conclude that loss 

of consciousness during anaesthesia is therefore associated with a reduc-

tion/disruption of long-distance open-loop cortico-cortical connections and a 

corresponding increase in shorter-distance closed loop ones.  

 

5.2 Methods 

The detailed description of conditional Granger causality in time and 

frequency domain was introduced in Chapter 2. In this section, we introduce the 

architecture of neurodynamical model for generating the synthesized data. 

Since the network structure of this neural model is known, we can then test the 

reliability of our conditional Granger causality approach based on different 

types of data (LFP, firing rate and spiking intervals). For experimental data, we 
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give the detailed information and procedure for measuring the LFP data from 

sheep under different conditions. 

 

5.2.1 Neurodynamical model used for synthesized data 

The basic architecture of neurodynamical model was proposed by 

[Wang, 2002] and extensively explored by [Deco, 2006]. For our model, we 

used different parameters to describe the inhibitory neurons. The task of this 

network is to take a decision between two possible alternatives, according to the 

characteristics of a sensory input, by reaching one of two predetermined firing 

states. A typical task is to compare two different stimuli, for instance, vibrotac-

tile stimulation frequency.  

A single neuron in our neuron model is the leaky integrate and fire 

model, defined by the equation  

 m L L syn
d ( ) g ( ( ) ) ( )

d
V tC V t V I t

t
= − − −  (5.2.1) 

where ( )V t  is the membrane potential of the neuron, mC  is the membrane ca-

pacitance, syn ( )I t  is the synaptic input received by the neuron, and Lg  is the 

leak current conductance. When no input is present, the membrane potential 
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drifts to the rest value LV  (-70 mV); if the membrane potential reaches a thresh-

old thrV (-50 mV), the neuron is said to have spiked and the potential is reset to a 

reset value resetV (-55 mV). The potential is then clamped to the reset value for a 

brief refractory time refτ . 

When a neuron spikes, it generates excitatory (driving towards 0 mV) or 

inhibitory (driving towards -70 mV) outputs to all the other neurons. Excitatory 

neurons generate fast AMPA-mediated current spikes and slower NMDA-

mediated spikes, while inhibitory neurons generate GABA-mediated currents, 

and the synaptic input for a single neuron is the sum of these currents:  

 syn AMPA,ext AMPA,rec NMDA,rec GABA( ) ( ) ( ) ( ) ( )I t I t I t I t I t= + + +  (5.2.2) 

The currents are defined by: 

 
ext

AMPA,ext
AMPA,ext AMPA,ext E

1

( ) g ( ( ) ) ( )
N

j
j

I t V t V s t
=

= − ∑  (5.2.3)  
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E
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j j
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−
= ×
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I

GABA
GABA GABA I

1

( ) g ( ( ) ) ( )
N

j
j

I t V t V s t
=

= − ∑  (5.2.6) 

Where EV  and IV  are the reversal potentials for AMPA and GABA currents. jw  

are the synaptic weights, each receptor has its own fraction js  of open channels, 

and its own synaptic conductance g . Every neuron receives inputs in the form 

of excitatory AMPA current spikes, following a Poisson distribution, from extN  

independent external connections. In absence of any input, the frequency is 3Hz 

for all the neurons in the network. The fractions of open channels are described 

by: 
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The values of all these parameters are displayed in Table 1 and were 

taken from [Broadbent, 1975], in which they were calculated with a mean field 

analysis in order to obtain a network with stable decision states. The sums over 

k represent a sum over spikes formulated as -Peaks [ ( )]tδ δ  emitted by pre-

synaptic neuron j at time k
jt . In our modified version of the network, we have 

two different populations of inhibitory neurons: a fraction S of the inhibitory 

neurons has a GABA spike decay time constant of GABA,slow 100 msτ = . To keep 

the constant amount of inhibition in the network we scale the GABA conduc-

tance for all neurons by a compensating factor f . To keep constant the average 

amount of inhibition in the network means to choose f  so that the average 

charge transferred by a GABA spike remains constant, i.e. 

    I GABA GABA I GABA GABA,slow I GABA GABA(1 )j j jN w g SN w fg S N w fgτ τ τ= + −  (5.2.12) 

Solving the equation, we can get f  

 GABA

GABA,slow GABA(1 )
f

S S
τ

τ τ
=

+ −
 (5.2.13) 

which can be read as f  being the ratio between the original GABAτ  value and 

the new average time constant of the inhibitory neurons.  
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Table 1: Model Parameters [Broadbent, 1975] 

All Neurons Excitatory neurons Network Parameters 

 

LV = -70 mV 

thrV = -50 mV 

resetV = -55 mV 

EV = 0 mV 

IV = -70 mV 

refτ = 2 ms 

AMPAτ = 2 ms 

NMDA,riseτ = 2 ms 

NMDA,decayτ = 100 ms 

GABAτ = 10 ms 

α = 0.5 ms-1 

mC = 0.5 nF 

mg =25 nS 

AMPA,extg = 2.08 nS 

AMPA,recg = 0.104 nS 

NMDAg = 0.327 nS 

GABAg =1.287 nS 

w+ = 2.2 

w− = -0.8444 

iw =1.015 

mediumw = 1 

extN = 800 

‘2 pools’ model only 

Inhibitory neurons GABA,slowτ = 100 ms 

S = 0.25 

f = 0.3077 

mC = 0.2 nF 

mg = 20 nS 

AMPA,extg = 1.62 nS 

AMPA,recg = 0.081 nS 

NMDAg = 0.258 nS 

GABAg = 1.002 nS 

‘Slow’ model only 

GABAτ = 32.5 ms 

f = 0.3077 
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5.2.2 Experimental procedure 

All animal experiments were performed in strict accordance with the 

UK 1986 Animals Scientific Procedures Act (including approval by the Babra-

ham Institute Animal Welfare and Ethics Committee) and during the animals 

were housed inside individual pens and able to see and communicate with each 

other. Food and water were available ad libitum. Post-surgery all animals re-

ceived both post-operative analgesia treatment to minimise discomfort and an-

tibiotic treatment to prevent any possibility of infection.   

Following a 2 week period of initial behavioral training, sheep were ha-

bituated to being placed in a trolley and viewing life-sized images of sheep 

faces back projected on a screen 1 metre in front of them. They were then sur-

gically implanted under general anesthesia (30-35 ml propafol i.v. and closed-

circuit isoflurane 3-5%) and full aseptic conditions with three planar 32-

electrode arrays (epoxylite coated, etched, tungsten wires with 250µm spacing – 

total array area ~1mm x 1mm, electrode impedance ~0.2MΏ, tip diameter ~ 

1μm, tip exposure length ~100um) aimed at the lIT, rIT and rAC. Animals were 

also given an anti-inflammatory (1.75ml carprofen i.m. just before surgery to 

reduced help reduce post-operative swelling, and immediately following sur-

gery received a broad spectrum antibiotic (7ml Terramycin i.m.) and analgesic 

(1 ml Vetergesic, i.m.). The electrode lengths varied by ~1mm and so this com-
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bined with the tip exposure electrodes would have been recording activity 

across all cortical layers.  Holes (0.7cm diameter) were trephined in the skull 

and the dura beneath cut and reflected. IT electrode arrays were placed 18-

20mm lateral to the midline, 35mm posterior to the tip of the frontal pole and at 

a depth of 20-22 mm from the brain surface using a stereotaxic micromanipula-

tor. Electrode depths and placements were calculated with reference to X-rays, 

as previously described [Kendrick, 1991]. For the rAC electrode arrays were 

placed 20 mm posterior to the tip of the frontal pole, 5mm lateral to the midline 

and 12 mm from the brain surface.  They were fixed in place with dental acrylic 

and stainless-steel screws attached to the skull. Two of these screws acted as 

reference electrodes, one for each array. Electrodes were connected to 34 pin 

female plugs also cemented in place on top of the skull. 

Starting 3 weeks after surgery the electrodes were connected via male 

plugs and ribbon cables to a 128 channel electrophysiological recording system 

(Cerebrus 128 Data Acquisition System – Blackrock Microsystems, USA). Re-

cordings were made in the same experimental setting when the animals were 

conscious and either exposed to a series of projected sheep face images (8 dif-

ferent frontal views of unfamiliar sheep faces on a black background repeated 

3-times in a random sequence – i.e. 24 images in total. During each recording 

session the picture series was repeated 3-4 times. Images were displayed for a 1 

s duration and a white fixation spot was shown in between. An experimenter 
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controlled stimulus presentation and made sure the sheep was looking at the 

fixation spot on each occasion using a CCTV camera.  This image set was 

shown to each animal on three different occasions. For the resting state condi-

tion the animals were recorded on 1-2 occasions in the same environment but 

with no images projected on the screen in front of them.  Subsequently the ani-

mals were given general anesthesia (30-35ml propafol and 4-5% isoflurane) and 

recordings were made again while they were exposed to the same two stimulus 

conditions. During exposure to visual images the eyes of the anaesthetised ani-

mals were held open with fine suture and clips and irrigated regularly with ster-

ile saline.  At the end of this final anesthesia recording session animals were 

euthanized with an intravenous injection of sodium pentobarbitone and the 

brains removed for subsequent histological confirmation of X-rays that array 

placements were within the IT cortex region and in the anterior dorsal cingulate 

cortex just above and behind the genu of the corpus callosum (i.e. broadly 

equivalent to Brodman area 24 in the human brain)(displayed in Figure 5.1). 

The experiments were carried out in Babraham institute and general region 

where electrodes were located within the IT is also shown in [Ge, 2009].  
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Figure 5.1 General location of electrode arrays in anterior cingulated and in-

ferotemporal cortices. A coronal and horizontal section of the sheep brain 

showing the general location of the tips of recording electrode arrays (black cir-

cles) in the right anterior medial cingulated (approximately equivalent to Brod-

man 24) and in the left and right inferotemporal cortices. 
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The LFPs were sampled at 2 kHz and digitized for storage. We used 

custom Spike 2 (Cambridge Electronic Design, Cambridge, UK) scripts to 

translate these into text files arranged either by trial or electrode prior to further 

analysis. For the face stimulus sessions’ data from 1 second before and 1 sec-

ond during each face picture was used for analysis. For the resting condition a 

total of 3-5 min of continuous recording data was used and taken from a period 

during the recording session when the animal was calm and showing minimal 

interest in its surroundings. Any LFP data contaminated with noise artefacts, 

such as from animal chewing food, were excluded as were LFPs with unexpect-

edly high power. For LFPs, offline filtering was applied in the range of 1-200 

Hz (third-order Chebyshev type I filter, with 0.5 dB of ripple in the pass band). 

Trend was removed before spectral analysis. All analyses were carried out us-

ing custom written routines in Matlab (The Mathworks Inc, Natick, MA). 

 

5.3 Results and Discussion 

5.3.1 Synthesized Data 

Our neural network structure can be described as Figure 5.2 by using 

the Equations (5.2.1) to (5.2.13). From the figure, we can easily find that it is a 
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fully connected network. The neuron model consistes of 5 different neuron 

pools which are connected to each other. And neurons in each pool are also in-

ter-connected. However, the weights of the synaptic connections are different 

and assumed to be generated by a Hebbian learning process. Neurons are 

strongly connected to each other in the same specialized pool A and B, repre-

sented by a weight w+ . A weak connection w−  between neurons from different 

subsets or between specialized and non-specialized neurons was used; a dedi-

cated weight iw  mediates the interaction from the inhibitory neurons to the ex-

citatory neurons and a ‘medium’ weight mediumw  covers all the other cases. All 

parameters are shown in Table 1. 

 

 
Figure 5.2 The neurodynamical model used for the simulations. Diagram of the 
2 pools network model. The network architecture can be divided into two 
blocks: inhibition pool (200 neurons) and excitatory pool (800 neurons). Two 
specialized pools (A and B) which have 80 neurons each receive additional in-
puts. 
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The network is composed of 1000 neurons, 800 of which are excitatory 

and the rest are inhibitory neurons including fast and slow model. Two special-

ized pools (A and B) of 80 neurons each, taken from the 800 excitatory neurons, 

which receive additional inputs; the remaining 640 neurons construct the non-

specialized pool. Three types of data are analysed by applying Granger causal-

ity analysis: LFP data (Figure 5.3_A), firing rate data (Figure 5.3_B) and spik-

ing interval data (Figure 5.3_C). There is a stimulation at second 4, which 

causes a sharp increase for all signals.  

For stationary purpose, the data is truncated and only the time points be-

fore stimulation are used for Granger causality approach. For spiking intervals 

data, Gaussian blur filter with standard deviation as parameter is applied firstly 

to obtain a continuous data set. A more detailed description for applying 

Granger causality to spiking train data by using Gaussian filter is shown in 

[Stevenson, 2010]. The 95% confidence intervals for all possible connection are 

plotted in Figure 5.4.  
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Figure 5.3 The data generated by using neurodynamical model. (A) The Local 

Field Potential (LFP) data generated by this neural model. (B) Firing rate data 

generated by this neural model. (C) Plot of spiking events versus time for 10 

random neurons taken from each population. 
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Figure 5.4 Conditional Granger causality is applied on three types of data gen-

erated from neural network. Plot of the 95% confidence intervals for all the 

possible directed connections is displayed. For visualization purpose, all di-

rected edges (causalities) are sorted and enumerated into the table. 1-Fast neu-

ron pool. 2-Slow neuron pool. 3-Pool A. 4-Pool B. 5-Nonspecific Pool. 
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According to the confidence intervals we derived, Figure 5.5 shows the 

network structures inferred from conditional Granger causality approach for 

LFP data, firing data and spiking intervals data in order (The 10 most signifi-

cant causalities are shown). The ranking of causality strength is proportional to 

the width of arcs. From Figure 5.5_A and Figure 5.5_B, we find that the di-

rected networks are almost identical with 8 same arcs. They are very consistent 

with the preset connection weights and number of neurons used in our original 

designed model. Since there are more than 600 neurons in the nonspecific pool, 

it thus has very strong influence on the other pools. For spiking interval data, 

since only 10 random neurons are selected from each population, it shows very 

weak relations among populations. Figure 5.6 shows the Granger causality re-

sult in frequency domain. It shows a very strong interaction from the nonspe-

cific pool to slow neurons at theta frequency (4-8Hz). 

 

5.3.2 Experimental Data 

Local field potential (LFP) recordings were made from the 32-electrode 

arrays implanted in the rIT, lIT and rAC of two adult sheep (some data exam-

ples can be viewed in [Ladoure, 2009]) while they viewed a series of sheep face 

images back-projected on a screen in front of them, or while they were in a
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Figure 5.5 Granger causality approach applied on synthesized data. The 10 most significant connections are 

given. The strength of the connections are proportional to the thickness of the arcs (A) The directed network 

structure derived by using LFP data. (B) The directed network structure derived by using firing rate data. (C) 

The directed network structure derived by using spiking interval data. 
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Figure 5.6 Conditional Granger causality is approached in frequency domain. The left-most column shows 

the power spectrum for each population. The other columns show the conditional Granger causality results 

in frequency domain. The frequency domain result shows a very strong interaction from nonspecific pool to 

inhibitory pool (slow neurons and fast neurons) at theta frequency (4-8Hz). 
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neutral resting state situation (i.e. the same familiar general visual environment 

but with no face pictures shown or other task requirements). 

Effects of resting state, face stimuli and anaesthesia on cortical connections 

in the time domain 

When the animals were recorded in a conscious state, a Granger causal-

ity analysis of the LFP data in the time domain showed that exposure to face 

stimuli resulted in causal connections from the lIT to the rIT either directly or 

indirectly via the rAC. There was also a reciprocal connection from the rAC to 

the lIT (Figure 5.7_B, 5.8_A). By contrast, during resting state conditions the 

flow of causal connections was in the reverse direction from rIT to lIT both di-

rectly and indirectly via the rAC. There was still however a strong reciprocal 

connection from the rAC to the lIT (Figure 5.7_A, 5.8_A). Therefore, while the 

direction of information flow and hemispheric dominance were different in the 

two conditions a common motif was for there to be strong feedback connections 

between the rAC and lIT. 
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Figure 5.7  Conditional Granger causality is applied to LFP data from the lIT, rIT and rAC in two sheep to 

derive the direction and strength of both between and within structure connections. (A) when the sheep are 

conscious and resting and not exposed to visual stimuli  (B) they are conscious and watching face pictures. 

(C) they are anaesthetized and not exposed to face stimuli and (D) they are anaesthetized and shown the 

same face images as in (B). 
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Figure 5.8 Conditional Granger causality is applied to experimental data. (A) Plots of the 95% confidence 

intervals of Granger causality calculated by using a bootstrapping method for the four conditions. (B) Plots 

of the 95% confidence intervals for the inner structure connections 
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When LFPs were recorded from the same animals exposed to the two 

conditions under general anesthesia (propafol and isoflurane), there was a con-

siderable impact on the strength of causal connections and their direction (Fig-

ure 5.7C, 5.8A). In both cases direct causal connections between the ITs were 

abolished. Indirect causal connections via the rAC emerged in the reverse direc-

tion to that seen when the animals were conscious, whereas those in the same 

direction were either absent (resting) or unchanged (face stimuli). In both situa-

tions a clear motif associated with anaesthesia was for the strong causal connec-

tion from the rAC to the lIT to be weakened and for the appearance, or 

strengthening, of causal connections from the rAC to the rIT. The anterior cin-

gulate has been implicated in the emergence of conscious awareness [Liotti, 

2001; Egan, 2003] and so perhaps this particularly involves its influence on 

processing in the left hemisphere. Indeed, in a human PET study it was the left 

cingulate gyrus that was activated during the emergence of a consciousness 

awareness of thirst [Egan, 2003].   

 

Effects of resting state, face stimuli and anaesthesia on cortical connectivity 

in the frequency domain  

An analysis of all the main brain oscillation frequencies revealed that 

during the resting state there was significantly (p < 0.05) greater mean causality 
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per Hz for delta (1-4Hz), low (4-6Hz) and high (6-8Hz) theta, alpha (8-13Hz) 

and beta (13-30Hz) frequencies compared with the face stimulus condition. 

However, gamma (30-70Hz) mean causality was higher during the face pictures 

(Figure 5.10_A). A detailed Granger causality analysis of the different fre-

quencies for each of the six individual connections is shown in Figure 5.11. 

Thus during the resting state situation low frequency oscillations are function-

ally more dominant than higher ones, whereas following visual stimulation with 

faces there is an approximately equivalent contribution from all frequencies. 

Overall power levels of brain oscillations were similar in the two conditions 

(see Figure 5.12) and are therefore not predictive of functional connection 

strength.  

In the frequency domain, when the animals were conscious both low (1-

8Hz main contributed by theta and delta) and high (8-70Hz mainly contributed 

by Alpha, Beta and Gamma) oscillation-based causal connections showed the 

same unidirectional flow patterns as seen with the time-domain analysis, al-

though the reciprocal connection between the rAC and lIT was only seen in the 

face picture condition (Figure 5.10_B and 5.11).     

During anaesthesia in both conditions there was a reduction in power in 

the higher frequencies (>10Hz), particularly gamma, and an increase in that for 

low frequencies (<10Hz), particularly in the delta range. The visual evoked po-
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tential at each site following exposure to face pictures also showed a consider-

able simplification during anaesthesia, with less positive peaks in particular, 

and appeared less synchronised across structures.  This is similar to previous 

reports [John, 2005] (see Figure 5.9 and 5.12). A frequency domain analysis 

revealed that direct connections between the ITs were lost for both the low and 

high frequencies and there was emergence of a reversed flow in the indirect 

connections via rAC for the higher frequencies under anaesthesia state. For the 

low frequencies this reversed flow only occurred in the resting state since for 

the face pictures there were no longer any indirect connections between the rIT 

and lIT, although reciprocal ones between the rIT and rAC emerged as in the 

time domain analysis. Loss of high frequency (gamma) coherence between the 

left and right frontal cortices has also been reported during anaesthesia in hu-

mans [John, 2005], and similarly alpha has been shown to be particularly in-

volved in interhemispheric communication [Vecchio, 2007].      

In the resting state averaged causality between all the regions was sig-

nificantly decreased during anaesthesia for theta, alpha, beta, whereas delta and 

gamma were unchanged. In the face picture condition, causality in all frequen-

cies other than delta was decreased (see Fig 5.10_A). The stronger contribution 

from lower frequency oscillations during the resting state, together with the di-

rection of causal information flow from the right to the left hemisphere, is con-

sistent with the hypothesis that low frequencies are particularly dominant in the 
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right brain hemisphere which is thought to play a key role in spatial information 

processing involving a more global type of processing [MacNeilage, 2009].  

Conversely the greater contribution of gamma together with a left to right direc-

tion of information flow is consistent with the hypothesis that in the left brain 

hemisphere, which is thought to employ more localised processing in the con-

text of analysing detail and organisation and control of action [MacNeilage, 

2009], high frequency oscillations are more dominant. In the resting condition it 

therefore seems likely that anaesthesia reversed the flow of information to left 

to right due to a greater reduction of causal connections based on the low and 

middle frequency (theta, alpha and beta) oscillations relative to the highest ones 

(gamma). In the face picture condition on the other hand there is a relatively 

weaker contribution from low and middle frequencies and stronger one at the 

highest frequency, gamma, leading to left hemisphere dominance. In this case 

the reversed flow under anaesthesia may primarily reflect the reduction in 

gamma leading to a greater influence from the lower frequencies, even though 

causal connections in the latter are also reduced.   

While for the most part low and high frequencies appeared to have simi-

lar causal influences on connectivity in this network, a notable exception was 

the connections between rAC and lIT where these were only weakened or abol-

ished by anaesthesia in the low frequency domain.  This again supports the in-

fluence of the right hemisphere over the left being low frequency dominated. 
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therefore our results provide clear evidence that in both resting state and 

visual stimulation connections loss of consciousness due to anaesthesia consid-

erably alters information flow between temporal and cingulate cortices. The 

general motif in both cases is for direct inter-hemispheric connectivity to be lost 

and for the direction of indirect connectivity between ITs via the cingulate to be 

reversed. Right hemisphere dominance in the flow of connectivity tends to be 

maintained by strong causal connections in the lower to middle oscillation fre-

quencies whereas left hemisphere dominance is associated with higher ones in 

the gamma range. Reciprocal functional connections within all three regions, 

and between the temporal and cingulate cortices in the right hemisphere, are 

actually increased by anaesthesia. This could perhaps simply be viewed as a 

general breakdown in the organisation of cortico-cortical connections under an-

aesthesia leading to lack of conscious awareness. However, it could also be 

viewed as a shift within these networks away from open-loop, long-distance 

feed forward connections which support a form of conscious meta representa-

tion of information towards a closed-loop recurrent network where information 

is still processed but in a more limited, localised and automated fashion with no 

conscious meta representation.  
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Figure 5.9 Effects of anaesthesia on visual evoked potentials. Averaged (across 32 electrodes and face pres-

entations) visual evoked potentials (VEP) from the right anterior medial cingulate and the right and left in-

ferotemporal cortices for one sheep. During anaesthesia it can be seen that many of the detailed components 

of the VEP are reduced or lost, particularly the positive ones. There is also more variation in VEPs between 

the three recording sites.  
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Figure 5.10 Conditional Granger causality applied to LFP recordings in the frequency domain. (A) Histo-

grams show mean and 95% confidence levels for averaged percentage causality per Hz in different frequen-

cies. The percentage of averaged causality per Hz for the range 1f  to 2f can be calculated as 
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connections between lIT, rIT and rAC in the different conditions based either on averaged low frequencies 

(1-8Hz) or higher frequencies (8-70Hz).   
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Figure 5.11 Granger causality per Hz calculated from local field potential data for each connection in the 

different experimental conditions. The delta, low theta, high theta, alpha, beta and low gamma band causali-

ties (as a percentage) of each individual connection between the right anterior cingulate and the right and left 

inferotemporal cortices were calculated in the resting state and face picture stimuli conditions both when the 

animals were conscious and deeply anaesthetised. 
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Figure 5.12 Power spectra and conditional Granger causality calculated in frequency domain for sheep data.  

Granger causality calculated in frequency domain when sheep were either in a resting state, or exposed to 

face picture stimuli and either conscious or deeply anaesthetised. The figure is divided into 4 panels corre-

sponding to the four different conditions. The left-most column in each panel shows the averaged power 

spectra from local field potential recordings in the right anterior medial cingulate and right and left infero-

temporal cortices in two sheep. There is no clear difference between the resting and face picture conditions 

but under anaesthesia the power in low frequencies (<10Hz) is increased and that in higher frequencies de-

creased. The rest two columns in each panel show the Granger causality results calculated in frequency do-

main refer to the six possible direct edges.  
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5.4 Summary 

In this chapter, the Granger causality is applied on a complex neural dynamical 

model for three different types of data (LFP, firing rate and spiking train). From 

the results, we found Granger causality is still reliable for network inference 

especially for the LFP data. For experimental data, the connectivity in sheep’s 

brain together with its biological meaning was well studied under different con-

dition (consciousness, anaesthesia and visual stimulation). Our derived results 

show strong evidences that loss of consciousness during anaesthesia is therefore 

associated with reductions in long-distance open-loop connection and a corre-

sponding increase in the power of short-distance closed loop ones. In the next 

chapter, the further extension for Granger causality would be discussed.
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Chapter 6 

Conclusion and Future Work 

 

6.1 Conclusion and contribution 

In this thesis, we have systematically investigated the reverse-

engineering approaches commonly used in literature (especially the Granger 

causality approach) for the network re-construction problem in biology. Since 

there are several well established methods for the reverse-engineering problem, 

we first compared two commonly used approaches: dynamic Bayesian network 

inference and Granger causality approach. The comparing study was investi-

gated by using both synthesized data (linear and non-linear model) and experi-

mental data. A critical point of data length was found for synthesized data via 

intensive computations (more than 100 computers over a few weeks). Our 
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results illustrated that Granger causality approach outperformed the dynamic 

Bayesian network inference when the data length is long enough. In addition to 

the comparative study of the Bayesian network inference, we also tested our 

Granger causality approach on the biological data published in the Cell paper 

[Cantone, 2009]. In the paper, the authors tested three most commonly used re-

verse-engineering approaches (ODEs, Bayesian network inference and informa-

tion theory introduced in Chapter 1.1.2) on a well known circuit consisting of 

5 genes. They concluded that the ODEs worked better than the other two meth-

ods. By using the same experimental data, our results illustrated that Granger 

causality approach was the best one despite being simple. These conclusions 

directed our future research focus on the application of Granger causality on 

biological data.  

In practice, we often face the problem of over-fit in large network re-

constructions using the Granger causality approach when the length data is 

shorter than the dimensions of variables [Tetko, 1995]. Since the number of 

time points measured in biology labs is usually short (i.e. 100 time points) and 

the number of measured genes is very large (more than thousands genes in gen-

eral), thus it is impossible to fit the AR model for all elements by using such 

kind of data. To solve this problem, we proposed a novel approach called 

Global Granger Causality (GGC) approach which is used to reconstruct large 

networks by using iterative steps.  
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Furthermore, we applied our Granger causality approach on the LFP 

data recorded in three areas of sheep brain under different conditions (Rest, Pic-

ture Stimulus and Anaesthesia). In cognitive study, the functionality and 

mechanism of consciousness system is emerging as one of the most important 

scientific questions. In order to understand the nature of consciousness, the 

mechanism of general anaesthesia has begun to be investigated and the field of 

anaesthesiology is playing an important role in understanding consciousness 

[Mashour, 2006; Akire, 2008]. Our Granger causality results derived from both 

time and frequency domain show that loss of consciousness due to anaesthesia 

is associated with an increase in short-distance intrinsic closed loop connections, 

coupled with reductions in long-distance cortico-cortical connections. 

The main contributions of this thesis are: 

1. A comparative study of Bayesian network inference and Granger 

causality approach. In computational biology, one often faces the 

problem of deriving the causal relationship among different elements. 

Two common approaches can be used to solve such problems, namely, 

the Bayesian network inference and the Granger causality approach. 

One natural question is to choose which method to tackle the data, in 

particular when different causal networks are derived from them. Al-

though there are thousands of publications on each approach, no one 
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tried to find the advantages, performances and stabilities for both ap-

proaches by doing a comparative study before we did. Our results illus-

trated that Granger causality approach outperformed dynamic Bayesian 

network inference approach when the data length is long enough on 

both synthesized and experimental data. This conclusion helped us on 

choosing causal inferring approaches on biological data in our future re-

search.  

2. Global Granger causality approach for large network reconstruc-

tions. In order to capture the dynamics of complex systems and to in-

vestigate the functionalities and mechanisms of genes, proteins and neu-

rons in detail, one often faces the problem of deriving the whole net-

work rather than a very limited portion of it. Generally, most of the 

analysis tools currently used for a whole network are based on cluster-

ing algorithms. The idea of such algorithm is to locate groups of genes 

that have similar expression patterns over a set of experiments. Reverse-

engineering approaches such as Granger causality are then applied to 

each small group for network reconstructions. However, such analysis 

could be grossly inaccurate if the group has strong effect from external 

inputs and hidden variables. To reveal the structure of the whole net-

work, Granger causality has the difficulty come from the fact that the 

number of variables is larger than the length of the time series. As such, 
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it causes the model to be under-determined and therefore cannot be 

uniquely fitted. To solve this problem, we proposed a novel framework 

called global Granger causality. This novel approach reconstructs the 

network based on the idea of partial Granger causality by taking itera-

tive steps. This method has been successfully applied on experimental 

data to derive a network which consisted of 812 proteins  

3. Identifying the network changing in sheep brain due to the effect of 

anaesthesia. In literature, it has been reported that loss of consciousness 

under anaesthesia, sleep or vegetative states may involve reduced func-

tional cortical connectivity caused by disruption of long feed forward 

connections and synchronization [Mashour, 2006;  Akire, 2008; Imas, 

2005; John, 2005]. In this thesis, we have combined multi-array re-

cordings of local field potentials in right and left inferotemporal and 

right anterior cingulated cortices in sheep with Granger causality ap-

proach to investigate how anaesthesia alters neural processing during 

resting state and visual stimulation. Several interesting phenomena were 

observed from the results derived by our Granger causality approach. 

When animals view face images a predominatly unidirectional flow di-

rect (between ITs) and indirect (via rAc) causal connections from left to 

right IT occurs. Under resting state information flow is in the opposite 

direction. These phenomena agree with the hypothesis that right brain 
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hemisphere (low frequency) plays a key role in a more global type of 

spatial information processing, and the left brain hemisphere (high fre-

quency) employs more detailed analysis and action control. Under an-

aesthesia condition, it results in the abolishment of direct inter-

hemispheric connections and increased the intrinsic closed loop connec-

tions. 

 

6.2 Further extensions 

Granger causality approach has not been widely used yet but it has 

slowly gathered some interest over the last few years. In its original application, 

Granger causality is limited to the investigation of pairs of time series. However, 

indirect connections may produce spurious relations between distant nodes. 

Conditional Granger causality [Chen, 2006; Ding, 2006; Barnett, 2009] is de-

veloped to deal with this restriction by removing the influence of an external 

node. However, it requires the explicit knowledge of the influencing node, 

which is usually not possible in practice. To overcome this, partial Granger cau-

sality [Guo, 2008] was developed for dealing with external and hidden variables. 

For large network reconstruction, our global Granger causality approach can be 

applied. In the complex systems of genes, proteins or neurons, it is often impor-
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tant to study the interactions among groups of nodes since elements often work 

cooperatively or competitively to achieve a task. To tackle this problem, tradi-

tional Granger causality has been extended to complex Granger causality [La-

droue, 2009]. In contrast to many similar frameworks, Granger causality relies 

on dependence over time to define causality instead of using the concept of per-

turbation. Unified Causal Model [Ge, 2009] was developed to include the no-

tion of stimuli and modifying coupling to traditional Granger causality. The 

corresponding matlab toolbox was also developed [Seth, 2010]. 

These recent extensions to Granger causality provided strong supports 

for its future development and applications in computational biology. It has 

enormous potentials for further improvement in performance, stability and im-

plementation. Thus it is possible to be a powerful reverse-engineering tool and 

more widely used in the future.  

 

6.2.1 Performance improvement 

We have compared Granger causality approach and Bayesian network 

inference in the Chapter 3. The corresponding results demonstrated that the dy-

namic Bayesian network inference outperformed the Granger causality ap-

proach when the data length was short due to the over-fit problem that Granger 
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causality had. The over-fit problem is caused by the batch fitting approach used 

in the Granger causality method, and the dynamic Bayesian network inference 

used sequential fitting to overcome this problem. It is a very interesting future 

research topic for developing Granger causality approach so that it could al-

ways outperform the Bayesian network inference. To achieve this aim, one can 

improve the parameter estimation techniques for Granger causality by appling 

the similar sequential fitting techniques as the Bayesian network inference used.  

 

6.2.2 Time-varying networks 

A Granger causality derived network exposes the strength of the cou-

plings between signals or groups of signals. While elaborate dynamics can effi-

ciently be summarized by this representation, the underlying assumption is that 

the relations between signals (how they are effectively coupled) are constant 

during the observations. This issue has only recently been started to be ad-

dressed, as mostly for technical reasons reverse-engineering a fixed network is 

already a difficult task in itself. For the future work, a method for enabling 

Granger causality networks to cope with time-varying networks is required to 

be developed. To solve this issue, one could constrain the network not to 

change too dramatically on a small time scale and thus reduce the parameter 



Chapter 6: Conclusion and future work 
 
 

174 
 

space. By using the sliding window technique, we can re-construct the time-

varying networks and find how networks are changing with time. 

 

6.2.3 Impact of signal processing on Granger causality  

Granger causality is not often applied to raw data (the data without pre-

processing such as noise reductions and stationary processing) in practice. For 

example, we changed the autoregressive moving average model to autoregres-

sive integrated moving average model in Chapter 4.2.1 for Granger causality 

approach. In that chapter, we have proved that this transformation did not im-

pact on the true connection between elements in time and frequency domain. In 

biological experiments, signals are typically sampled, convolved and filtered 

before any analysis, and thus involving more kinds of transformation. For 

Granger causality to be more broadly used and trusted, the effects of these 

transformations must be elucidated in the future research. 

 

6.2.4 Dissemination  

A number of extensions for Granger causality are past the stage of de-

velopment and reached full maturity. In order to facilitate the uptake of Granger 
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causality in the scientific community and make it an easily available option, it is 

necessary to write a publicly available software for computing causalities in 

various platforms. We have already developed a demo version of Granger cau-

sality GUI programmed in Matlab [Zou, 2009]. This software includes a step by 

step guide of using Granger causality such as downsampling, band-stop filter-

ing, bootstrapping and so on. There are still some limitations for this demo ver-

sion software. For the future work, a friendly and easy used interface, with a 

more effective programming platform (i.e. C language) can be developed. More 

and more extensions of Granger causality can be integrated into this software 

for various tasks in computational biology. 
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