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ABSTRACT

A study of vertically polarised fast magnetoacoustic waves in a curved coronal loop is presented. The loop is modeled as a semi-circular
magnetic slab in the zero plasma-β limit. The governing equations for linear waves are derived. We show that the wave mode behaviour
depends on the slope of the equilibrium density profile, which is modeled as a piece-wise continuous power law curve of index α. For all
profiles, except for α = −4, wave modes are not trapped in the loop and leak out into the external medium through wave tunneling. The
particular case of α = −4, which corresponds to a linearly increasing Alfvén speed profile, is examined in more detail as this is the only model
that can support trapped wave modes. We compare the results with a straight slab model and find similar behaviour. Coupling between sausage
and kink wave modes has not been found in the model.

Key words. Sun: oscillations – magnetohydrodynamics (MHD)

1. Introduction

The foundations of the coronal MHD wave theory have been
established in the past decades (e.g. Edwin & Roberts 1982,
1983; Heyvaerts & Priest 1983; Hollweg & Yang 1988; Sakurai
et al. 1991), at a time when direct observational evidence of
coronal wave activity was practically absent. Thus, theoreti-
cal models were designed to be simple but sufficient to de-
scribe the basic coronal wave dynamics: one-dimensionally
structured straight waveguides with equilibrium quantities be-
ing either piece-wise constant or varying only in a thin layer.
Nonetheless, the theory has been very successful in identifying
the various MHD wave modes in current observations, by con-
temporary space missions such as SoHO and TRACE, and has
given birth to the new technique of MHD coronal seismology
(see e.g. Nakariakov & Verwichte 2005).

In particular, fast magnetoacoustic waves have been ob-
served with spatial resolution in the EUV in coronal loops
as kink oscillations (Aschwanden et al. 1999; Nakariakov
et al. 1999) and in radio as sausage oscillations (Nakariakov
et al. 2003). Propagating fast waves have been observed using
ground-based eclipse observations (Williams et al. 2001) and in
open magnetic structures in the EUV (Verwichte et al. 2005).
Of particular interest is the observation by Wang & Solanki
(2004) of a vertically polarised kink loop oscillation. This po-
larisation mode is resported to be strongly damped and to be as-
sociated with a density perturbation in anti-phase with the dis-
placement. This feature cannot be explained with the straight

loop model where the linear kink oscillation is practically in-
compressible.

The observations in turn offer the opportunity to construct
more sophisticated coronal loop models, whose predictions
can be directly tested against observational data. For instance,
models have been extended to include effects such as field-
aligned structuring (e.g. Díaz et al. 2004; Andries et al. 2004;
Mendoza-Briceño et al. 2004; Dymova & Ruderman 2004)
and loop curvature (e.g. Cargill et al. 1994; Smith et al. 1997;
Miyagoshi et al. 2004; VanDoorselaere et al. 2004; Brady &
Arber 2005; Murawski et al. 2005; Selwa et al. 2005). The
measure for the importance of loop curvature is the ratio of the
loop cross-section radius and the radius of curvature. For typi-
cal coronal loops this ratio is typically less than 0.2. Therefore,
loop curvature seems to be of secondary importance for loop
oscillations. In a curved geometry, though, the equilibrium
quantities cannot be all kept constant (e.g. radially dependent
magnetic field) and this affects the propagatory behaviour of
the wave modes depending on the form of the Alfvén speed
profile.

Cargill et al. (1994) studied oscillations in curved current-
carrying coronal loops. The combined effect of curvature and
twist gives rise to an additional restoring force, known as the
“hoop force”. In response to the injection of magnetic flux into
a loop, the presence of the hoop force was shown to give rise
to a new oscillation mode, which manifests itself as the peri-
odic change of the radius of curvature and the loop density.
The oscillation frequencies obtained were significantly differ-
ent from the frequencies of straight cylinder eigenmodes and
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were independent of the loop length. Roberts (2000) pointed
out that it is likely that the effect of loop curvature would
couple fast sausage and kink oscillations and hence blur the
distinction between the two types of oscillations. This would
mean that the fast kink oscillation could become leaky through
the coupling with a leaky sausage wave. A detailed analytical
calculation of this effect, though, is missing. VanDoorselaere
et al. (2004) studied analytically the effect of loop curvature
in a three-dimensional toroidal geometry for large thin loops.
They focused in particular on the resonant damping of quasi-
modes and concluded that the effect of curvature is secondary.
Also, they concluded that the different polarisation modes of
the kink oscillation have the same behaviour. This, though, is in
contradiction with the observations by Wang & Solanki (2004).

Smith et al. (1997), Brady & Arber (2005) and Selwa
et al. (2005) have performed numerical simulations of fast
magnetoacoustic waves in a density enhanced curved loop,
embedded in a two-dimensional potential coronal arcade,
with different height-dependent Alfvén speed profiles. Smith
et al. (1997) studied the leakage of fast sausage and kink os-
cillations with an exponentially increasing Alfvén speed pro-
file and came to the counterintuitive conclusion that the rate of
leakage is inversely proportional to the wave period. Brady &
Arber (2005) pointed out that this result is probably a direct
consequence of the proximity of the numerical boundaries to
the modeled loop. Brady & Arber (2005) studied the leakage
of fast kink oscillations, initially excited by footpoint driving,
with an inverse linear Alfvén speed profile. They found that
the oscillation damping due to leakage is of the same order as
observed kink oscillation damping times and that the rate of
leakage is proportional to the wave period. Furthermore, they
explained the leakage as wave tunneling through an evanes-
cent barrier above the coronal loop. Unfortunately, because of
the excitation mechanism, the leakage of the low oscillation
harmonics could not be investigated. Selwa et al. (2005) stud-
ied impulsively excited fast magnetoacoustic oscillations with
an exponentially decreasing Alfvén speed profile, in a bid to
reproduce observational signatures. Besides an order of mag-
nitude agreement with the observed damping times, they con-
firmed that the kink oscillation is compressive and that den-
sity perturbation is in anti-phase with the loop displacement.
They also reported the presence of a leaky fast magnetoacoustic
sausage mode, which they believe may play a role in explaining
the observed damping.

Miyagoshi et al. (2004) have performed three-dimensional
simulations of horizontally polarised fast magnetoacoustic
waves in a potential arcade, triggered by a velocity field lo-
calised near the top of a magnetic flux tube. They concluded
that the damping of the oscillation is explained as energy trans-
port by fast magnetoacoustic waves propagating away from the
excited fieldlines. They also concluded that an initially imposed
density enhancement in the flux tube, which is not in equilib-
rium, does not substantially enhance the trapping of the excited
waves. This result, though, is based only on three choices of
initial density contrast.

The aim of this paper is to study analytically the fast mag-
netoacoustic wave modes in a two-dimensional curved slab
model. Because fast magnetoacoustic kink waves modeled in a

straight loop are nearly incompressible in the long wavelength
limit, we wish to examine how the compressibility changes
in curved loops and compare the results with observations. In
particular, we shall examine the case of a linearly increasing
Alfvén speed profile, which has interesting features that can be
compared with wave modes in a straight loop model.

The paper is structured as follows. In Sect. 2, the curved
loop model for a general Alfvén speed profile is presented. In
Sect. 3, the equations governing the wave behaviour are de-
rived. In Sect. 4, the wave mode solutions for the model with a
piece-wise linear Alfvén speed profile are examined and com-
pared with the solutions of a straight loop model in Sect. 5. In
Sect. 6, the applicability of our model to observations is dis-
cussed. Finally, in Sect. 7, our main findings are summarised.

2. Coronal loop model

The effect of curvature on wave modes is studied through a
semi-circular slab model, which corresponds to a description
of a coronal arcade. Let 1r,1φ and 1z represent the cylindrical
coordinate unit vectors. The slab and the equilibrium magnetic
field are directed along the azimuthal φ-direction, with the solar
surface located at φ = [0, π]. The z-direction is parallel to the
solar surface and perpendicular to the loop axis.

The curved magnetic slab, with a half-width a, and radius
of curvature R, is line-tied at the solar surface with rigid bound-
ary conditions (Rosner et al. 1984). Thus the semi-infinite
space is partitioned into a lower external (r < R − a), inter-
nal (R − a ≤ r ≤ R + a) and upper external (r > R + a) regions
(see Fig. 1). The equilibrium quantities depend only on the ra-
dial coordinate. This assumption has two direct consequences.
Firstly, the loop model essentially represents an arcade stretch-
ing in the z-direction. Secondly, as equilibrium quantities are
not allowed to vary along the magnetic field, this model pre-
cludes the inclusion of gravity. A curved loop model with grav-
ity is inherently two-dimensional. Although the effect of grav-
ity is of interest, at this stage we wish to keep the model as
simple as possible and focus on the effect of curvature on wave
modes. For the same reason equilibrium flows are also not
taken into account. Furthermore, since we are interested in fast
magnetoacoustic waves, and the plasma-β in the solar corona
is much less than unity, it is reasonable to consider the zero
plasma-β limit.

For the condition of equilibrium, only the Lorentz force is
present and needs to be zero, which for the considered model
needs to be a potential magnetic field, B0φ(r)1φ, that obeys the
relation:
B0φ

rµo

d
dr

(
rB0φ

)
= 0 or B0φ = B0

( r
R

)−1
, (1)

where B0 is the field strength at r = R and µo is the perme-
ability of a vacuum. Equilibrium quantities are denoted with a
subscript “0”.

The equilibrium density ρ0 is an arbitrary function of r. It
is enhanced in the internal region compared with the external
regions to reflect the presence of a coronal loop:

ρ0(r) =

⎧⎪⎪⎨⎪⎪⎩
ρ0i

(
r
R

)α |r − R| ≤ a

ρ0e

(
r
R

)α |r − R| > a,
(2)
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Fig. 1. Model of a curved coronal loop as a two-dimensional, semi-
circular, magnetic slab.

where the constants ρ0i and ρ0e are the values at r = R of the
internal and external density profiles respectively. The power
law index α is the parameter that characterises the density pro-
file. In principle, the value of α may differ in the internal and
external regions and a similar analysis as presented here may
be done. The ratio

χ =
ρ0e

ρ0i
, (3)

is a measure of the density contrast between the external and
internal regions. For coronal loops 0 < χ < 1. Equation (2)
implies, using Eq. (1), that the Alfvén speed is of the form:

VA(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
VAi

(
r
R

)− α+2
2 |r − R| ≤ a

VAe

(
r
R

)− α+2
2 |r − R| > a,

(4)

where the constants VAi and VAe are the values of the
Alfvén speed at r = R for the internal and external density
profiles respectively.

3. Governing equations

In the cylindrical system (r, φ, z), we consider the ideal, gravi-
tationless, zero plasma-βMHD equations, which are linearised
with respect to small perturbations from the equilibrium and
written in function of the radial displacement, ξr , and the total
pressure perturbation, P. We consider transverse perturbations,
which are line-tied at the solar surface. These are essentially
vertically polarised fast magnetoacoustic perturbations. In gen-
eral, the magnetoacoustic and Alfvén wave modes are coupled
in order to fulfil the line-tied condition at the solar surface
(Goedbloed & Halberstadt 1994), so that fast magnetoacoustic
modes cannot be described separately. In our model the equilib-
rium magnetic field does not have a z-component (equivalent to
magnetic shear in a loop arcade), which decouples Alfvén and
magnetoacoustic waves. Additionally, by considering the zero
plasma-β limit, the slow magnetoacoustic waves are discarded.
Therefore, a separate analysis of vertically polarised fast mag-
netoacoustic perturbations is possible in our model. We look
for solutions of the form ξr = ξ̂r(r) sin(mφ) exp(−iωt) and
P = P̂(r) sin(mφ) exp(−iωt), where ω is the angular frequency
of a mode of azimuthal degree m.

The set of equations describing fast magnetoacoustic waves
of this type are derived in Appendix A, and are of the form

d
dr

(
ξ̂r
r

)
= − 1

2r
P̂
P0
, (5)

d
dr

(
P̂
P0

)
= 2r

⎛⎜⎜⎜⎜⎝ ω2

V2
A(r)
− m2

r2

⎞⎟⎟⎟⎟⎠ ξ̂rr , (6)

where P0 = B2
0φ/2µo is the equilibrium magnetic pressure.

Eliminating P̂ in Eqs. (5) and (6) yields the second order or-
dinary differential equation⎡⎢⎢⎢⎢⎣ d2

dr2
+

1
r

d
dr
+

⎛⎜⎜⎜⎜⎝ ω2

V2
A(r)
− m2

r2

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦
(
ξ̂r
r

)
= 0, (7)

which is known as the Hain-Lust equation for this particular
model. For constant Alfvén speed Eq. (7) reduces to a Bessel
differential equation.

Two sets of boundary conditions are imposed, depending
on the propagatory nature of the solution at r = 0 and r → ∞.
If the solution is evanescent at r = 0, we impose the condition
that ξ̂r vanishes at that point. In the limit of r → ∞ an evanes-
cent solution needs to have a vanishing kinetic energy density
perturbation ρ0( ∂ξr

∂t )2/2. On the other hand, if the solution is os-
cillatory at r = 0 (r → ∞), we only permit a solution that prop-
agates in the negative (positive) direction, away from the slab.
Because the Alfvén and phase speeds are zero at r = 0, a down-
ward propagating wave would not be able to reflect but would
accumulate in that point. At the interfaces between the external
and internal regions, i.e. at r = R ± a, the radial displacement
and total pressure perturbation need to be continuous.

The longitudinal oscillation phase speed, Vph, in a curved
slab model is the ratio of the frequency, ω, and the wave vec-
tor component in the direction of the azimuthal magnetic field,
m/r, i.e. Vph(r) = ωr/m. This means that the phase speed de-
pends linearly on r. The sign of the third term in Eq. (7) dictates
the propagatory nature of the solution. Where Vph(r) > VA(r),
this term is positive and the solution is oscillatory. On the
other hand, where Vph(r) < VA(r), this term is negative and
the solution is evanescent. This is equivalent to considering the
slope of the Alfvén frequency profile, ωA = VAm/r. For an
Alfvén speed profile of the form (4), there are three possible
scenarios:

a. α < −4, dωA/dr > 0: the solution is always oscillatory for
small r and evanescent for large r.

b. α = −4, dωA/dr = 0: the solution is either oscillatory or
evanescent, depending whether the phase speed is above or
below the Alfvén speed profile.

c. α > −4, dωA/dr < 0: the solution is always evanescent for
small r and oscillatory for large r.

Consider a solution that is oscillatory in at least part of the in-
ternal region, then for α > −4 the solution is evanescent in
the upper region up to a certain distance where the solution
becomes oscillatory again. This scenario is consistent with the
concept of wave tunneling. Similarly, wave tunneling occurs
if α < −4, but into the lower external region. Brady & Arber
(2005) studied the case α = 0 numerically and found that fast
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magnetoacoustic kink oscillations leak into the upper external
region by wave tunneling through the evanescent barrier.

Another manner to distinguish between the curved slab
models is the density perturbation, which is found from the
mass continuity Eq. (A.1), using Eqs. (2) and (A.8)

(
ρ

ρ0

)
=

1
2

P
P0
− 2
ξr

r
− 1
ρ0

dρ0

dr
ξr =

1
2

P
P0
− 2
ξr

r
− α ξr

r
· (8)

The density perturbation consists of three contributions. The
first contribution is due to the magnetic pressure perturbation
and this term also appears in the straight coronal loop model
(Edwin & Roberts 1982). The second contribution is due to the
loop curvature and is associated with the loop length perturba-
tion. We can see that from calculating the linearised loop length
perturbation of the loop axis:

(
L
L0

)
=

1
πR

∫ π

0
ξr(R)dφ =

2
mπ

(1 − (−1)m)
ξ̂r(R)

R
· (9)

Note that only odd harmonics perturb the loop length. The third
contribution is due to the advection of the equilibrium den-
sity. This term is the difference between the Eulerian and the
Langrangian description of the density perturbation. The latter
two contributions compete with each other and the balance is
determined by the sign of the factor 2 + α, which, from ex-
amining Eq. (4), is equivalent to the sign of the slope of the
Alfvén speed profile. Because both terms are proportional to
the radial displacement, any uniform displacement of the whole
loop in one direction (such as occurs approximately in kink
mode oscillations) would result in an Eulerian density pertur-
bation in phase or in anti-phase with this displacement, de-
pending on the sign of the factor 2+α. There are three possible
scenarios:

a. α < −2, dVA/dr > 0: the effect of density advection is
stronger than the effect of loop curvature.

b. α = −2, dVA/dr = 0: the effects of loop curvature and
density advection balance each other.

c. α > −2, dVA/dr < 0: the effect of density advection is
weaker than the effect of loop curvature.

The Langrangian density perturbation is

(
δρ

ρ0

)
=
ρ

ρ0
+

1
ρ0

(ξ.∇) ρ0 =
1
2

P
P0
− 2
ξr
r
, (10)

which does not explicitly depend on the parameter α. The
Lagrangian density perturbation is always in anti-phase with
the displacement.

In the remaining of this paper, we focus on fast magnetoa-
coustic wave modes for the model with a linear Alfvén speed
profile, i.e. α = −4. This is of particular interest because it
is the only case where trapped wave modes are possible. We
shall compare the results to a straight slab model with piece-
wise constant equilibrium quantities (Edwin & Roberts 1982).
The other Alfvén speed profiles are also of interest but we shall
investigate them in a future paper.

Fig. 2. The piece-wise linear Alfvén speed profile as a function of r,
corresponding to Eq. (4) with α = −4. The phase speeds of three wave
scenarios corresponding to surface, body and leaky modes are shown.

4. Wave modes in a model with a piece-wise linear
Alfvén speed profile

With a piece-wise linear Alfvén speed profile, corresponding
to ρ0 ∼ r−4, Eq. (7) reduces to⎡⎢⎢⎢⎢⎢⎣ d2

dr2
+

1
r

d
dr
−
κ2{i,e}
r2

⎤⎥⎥⎥⎥⎥⎦
(
ξ̂r

r

)
= 0, (11)

where

κ2i = m2 −Ω2 and κ2e = m2 − χΩ2, (12)

and Ω = ωR/VAi is a dimensionless frequency. Equation (11)
has solutions of the form(
ξ̂r
r

)
=

∞∑
m=1

Am

( r
R

)κ{i,e}
+ Bm

( r
R

)−κ{i,e}
, (13)

where Am and Bm are integration constants. The sign of κ2{i,e}
determines whether the solution is oscillatory (negative) or
evanescent (positive). The condition VAe > VAi, or κ2i < κ

2
e ,

allows three possible scenarios:

a. Surface modes: 0 < κ2i < κ
2
e , the solution is evanescent

everywhere.
b. Body modes: κ2i < 0 < κ2e , the solution is oscillatory inside

the loop, but is evanescent in the external regions.
c. Leaky modes: κ2i < κ

2
e < 0, the solution is oscillatory

everywhere.

The surface and body (trapped) modes are evanescent in the
external regions. Therefore, the boundary conditions of van-
ishing ξ̂r at r = 0 and kinetic energy density perturbation at
r → ∞ need to applied. For the leaky modes, the condition of
outward propagating solutions need to be applied. In that case
we expect ω to be complex with a negative imaginary part, to
describe the draining of wave energy from the loop. In this way,
the curved slab with a piece-wise linear Alfvén speed profile
supports the same types of modes as in the straight slab model.
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4.1. Trapped modes

Trapped modes (κ2e > 0) for a given degree m, which obey
the boundary conditions at r = 0 and r → ∞, have the radial
displacement

(
ξ̂r

r

)
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Ame

(
r
R

)|κe |
r < R − a

Ami

(
r
R

)κi
+ Bmi

(
r
R

)−κi |r − R| ≤ a

Bme

(
r
R

)−|κe |
r > R + a,

(14)

and magnetic pressure perturbation (using Eq. (5))

(
P̂
P0

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−2|κe| Ame

(
r
R

)|κe |
r < R − a

−2κi
[
Ami

(
r
R

)κi − Bmi

(
r
R

)−κi] |r − R| ≤ a

2|κe| Bme

(
r
R

)−|κe |
r > R + a,

(15)

where the real part of κi is positive, i.e. �κi > 0. The case
|κe| ≤ 1 needs to be considered carefully. In the upper exter-
nal region, both solutions for ξ̂r (see Eq. (13)) actually have a
kinetic energy density perturbation that decays to zero, even-
though ξ̂r itself becomes infinite. Of the two solutions the one
which grows faster than VA is eliminated. In the lower external
region, both solutions for ξ̂r actually become zero at r = 0,
eventhough the total pressure perturbation, P̂, becomes infi-
nite. Of the two solutions the one which decays faster than P0

is discarded. With these conditions, the solutions for the cases
|κe| ≤ 1 and |κe| > 1 are of the same form and given by Eqs. (14)
and (15).

Equating the solutions for ξ̂r and the Lagrangian total pres-
sure perturbation, δP̂ = P̂ − 2P0ξ̂r/r, across the interfaces at
r = R ± a leads to a dispersion relation

( |κe| − κi
|κe| + κi

)
− eκi ln q e−inπ = 0, (16)

where

q =
R + a
R − a

, (17)

and where n is an integer. Each value of n represents a differ-
ent solution branch. Even (odd) values of n refer to symmetric
(asymmetric) solutions, i.e. Bmi = −(−1)nAmi. The dispersion
relation (16) can be rewritten as

{
tanh
coth

} (
1
2
κi ln q

)
= − κi|κe| , (18)

where solutions arising from the tanh and coth functions cor-
respond to n even and odd respectively. By analogy to the
symmetric and asymmetric solutions in the straight slab wave
problem, we call these solutions sausage and kink modes re-
spectively (Edwin & Roberts 1982). In contrast to the notation
used in Edwin & Roberts (1982), m and n here refer to the lon-
gitudinal (azimuthal) wavenumber and the mode branch num-
ber respectively.

4.2. Leaky modes

Leaky modes (κ2e < 0) for a particular value of m, which obeys
the boundary conditions at r = 0 and r → ∞ of outward pro-
gating solutions have radial displacement

(
ξ̂r
r

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ame

(
r
R

)−sgn(�κe) κe
r < R − a

Ami

(
r
R

)iκi
+ Bmi

(
r
R

)−iκi |r − R| ≤ a

Bme

(
r
R

)sgn(�κe) κe
r > R + a,

(19)

and magnetic pressure perturbation (using Eq. (5))

(
P̂
P0

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2sgn(�κe)κe Ame

(
r
R

)−sgn(�κe) κe
r < R − a

−2iκi
[
Ami

(
r
R

)iκi − Bmi

(
r
R

)−iκi
]
|r − R| ≤ a

−2sgn(�κe)κe Bme

(
r
R

)sgn(�κe) κe
r > R + a,

(20)

where �κe is the imaginary part of κe. Equating the solutions
for ξ̂r and the Lagrangian total pressure perturbation, δP̂ = P̂−
2P0ξ̂r/r, across the interfaces at r = R±a leads to the dispersion
relation(
sgn(�κe) κe − iκi
sgn(�κe) κe + iκi

)
− e−iκi ln q e−inπ = 0, (21)

where the even (odd) n again refers to symmetric (asymmetric)
solutions. Equation (21) can be rewritten as
{

tanh
coth

} (
1
2

iκi ln q

)
=

κi
sgn(�κe) κe

, (22)

where solution arising from the tanh and coth functions corre-
spond to leaky sausage and kink modes respectively. The leaky
solutions have perturbation amplitudes that grow with distance
from the slab and become infinite at r = 0 and r → ∞. This
is equivalent to an infinite wave amplitude inside the slab at
time t → −∞.

4.3. Eigenmode characteristics

In addition to the azimuthal wave number m, the dispersion
relations depend explicitly on only two other parameters: χ,
the density contrast and a/R, the ratio of the loop half-width
and radius. For coronal loops both parameters lie between 0
and 1. For illustration, the left-hand sides of the dispersion re-
lations (16) and (21) are evaluated in Fig. 3 for the case of kink
modes (odd n), with m = 5, χ = 0.2 and a/R = 0.2. The circles
highlight the location of roots. Besides one real root, there are
two roots with negative imaginary parts, associated with leaky
modes. It is interesting to note that roots with positive imagi-
nary parts, indicative of unstable modes, are not present in the
range covered.

Dispersion relations (16) and (21) are solved for Ω as a
function of m. Figures 4 and 5 are dispersion diagrams show-
ing respectively the real and imaginary parts of the solutions for
the case χ = 0.2 and a/R = 0.2. The dispersion diagrams show
the same characteristic behaviour as in the straight slab model
(Edwin & Roberts 1982). There is an alternation of kink and
sausage mode branches. In the short wavelength limit, when
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Fig. 3. Real (left) and imaginary (right) parts of an evaluation of the
left-hand sides of dispersion relations (16) and (21) as a function of
the real and imaginary part of Ω, for kink modes (m = 5, χ = 0.2
and a/R = 0.2). Zeros in the real and imaginary parts are indicated
by dashed and dot-dashed lines respectively. Intersections of the two
types of curves, highlighted with a circle, indicate solutions to the
dispersion relations.

ma/R � 1, all modes are trapped body modes, with phase
speeds tending to the internal Alfvén speed. In the long wave-
length limit, where ma/R	 1, the modes are leaky and the rate
of leakage for all modes tend to the same maximum value (see
Fig. 5). Therefore there exist a finite value of ma/R for which
there is a cut-off. The fundamental kink mode branch (n = −1)
is the one exception. This mode is always trapped and tends
to the external Alfvén speed as ma/R → 0. As in the straight
coronal slab model, parallel propagating surface modes do not
exist.

We shall examine three characteristics of the wave mode
frequencies in more detail: the cut-offs, the long and the short
wavelength limits. The branches of the trapped modes have cut-
offs and become leaky for a certain minimum value of ma/R.
Only the first branch of the kink mode, which has a cut-off at
m = 0 exists for all value of ma/R. At the cut-off, κ2e = 0, or
Ω/m = χ−1/2. Dispersion relation (21) then becomes:

ei|κi | ln q e−inπ = −1, (23)

or

mc =
(2n + 1)π

ln q

√
χ

1 − χ · (24)

The location of the cut-off for the fundamental kink mode is
found for n = −1 and is m = 0. Figure 6 shows how Eq. (24) di-
vides the parameter space of a/R and χ into regimes where the
first four harmonics of the fundamental sausage mode branch
(n = 0) are either trapped or leaky. For comparison the curves
for the straight slab model have been overplotted. It shows

Fig. 4. Dispersion diagram showing the normalised phase speeds of
the solutions of dispersion relations (16) and (21) as a function of
ma/R. The thick solid and dashed lines are the solution branches for
the kink and sausage modes respectively. The first 4 branches are an-
notated. The parameters χ = 0.2 and a/R = 0.2. The position where
Vph(R) = VAi and Vph(R) = VAe are shown with thin dashed lines.
Where Vph(R) is below (above) the value of VAe, corresponding to
κ2e > 0 (κ2e < 0), the wave modes are trapped (leaky).

Fig. 5. Dispersion diagram showing the imaginary part of the wave
mode frequency, �(Ω), of the solutions of dispersion relations (16)
and (21) as a function of ma/R. The thick solid and dashed lines are
the solution branches for the kink and sausage modes respectively. The
first 4 branches are annotated. The parameters χ = 0.2 and a/R = 0.2.
The dotted line is the decay rate in the long wavelength limit given by
Eq. (26).

that sausage modes are more easily trapped in the curved slab
model presented here than in the straight slab model, with the
differences becoming more pronounced for large values of a/R.

In the long wavelength limit (ma/R 	 1) all modes except
the fundamental kink mode are leaky. In this limit the disper-
sion relation (21) becomes approximately

eiΩ ln q e−inπ ≈ −
(
1 +
√
χ

1 − √χ
)
, (25)
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Fig. 6. Regimes in parameter space of a/R and χ for which the sausage
mode (n = 0) is trapped or leaky, for the fundamental mode (m = 1)
and three harmonics. Below (above) the solid curve, described by
Eq. (24), the mode is trapped (leaky). The dashed curves show the
equivalent for the case of the straight slab.

Fig. 7. Ratio of the e-folding time, τ, and the period, P, for the
first 15 leaky modes as a function of χ in the long wavelength limit
(ma/R 	 1) using Eq. (26).

which has solutions of the form

ω ≈ VAi

R

[
(n + 1)π − i ln

(
1 +
√
χ

1 − √χ
)]
/ ln q. (26)

This formula is not valid for the fundamental kink mode
(n = −1), which is not leaky and is not described by Eq. (21).
The imaginary part of Eq. (26) gives the maximum decay rate
of the leaky mode and is the same for all leaky modes. Figure 7
shows the ratio of the maximum decay rate to the mode period,
τ/P = �Ω/2π�Ω. It gives an indication of the rate of leak-
age for low harmonic oscillations in large, thin coronal loops.
For such a case, a leaky sausage mode (n = 0) may damp in
only a few oscillation periods, unless the loop is overdense.
Solutions associated with the higher solution branches damp
even quicker.

In the long wavelength limit, the fundamental kink mode
branch is not leaky and tends to the solution Ω = m/

√
χ. By

substituting a solution of the formΩ = m(1− δΩm2)/
√
χ, with

|δΩ| 	 1, into Eq. (16) for trapped kink modes, we find the
solution for ma/R	 1

ω ≈ VAim
R
√
χ

⎡⎢⎢⎢⎢⎢⎣1 − 1
8

(
1 − χ
χ

)2
ln2 q m2

⎤⎥⎥⎥⎥⎥⎦ . (27)

In the short wavelength limit (ma/R� 1) all modes are trapped
body modes with a phase speed Vph(R) tending to VAi (Ω→ m).
Consider a solution of the form Ω = m + δΩ with |δΩ| 	 1.
In the short wavelength limit dispersion relation (16) becomes
approximately

ei
√

2 δΩ1/2 ln q e−inπ ≈ 1. (28)

Therefore in the short wavelength limit dispersion relation (16)
has solutions which are approximately

ω ≈ mVAi

R
+

(n + 2)2π2VAi

2R ln2 q

1
m
· (29)

4.4. Eigenfunctions

Figure 8 shows the wave solutions ξ̂r/r, P̂/P0 and the density
perturbation ρ̂/ρ0 as a function of the radial coordinate for a
kink body, sausage body and a sausage leaky mode. The kink
mode is an asymmetric solution with real Ami = Bmi. It has
a nonzero displacement at the loop axis, situated at r = R and
displaces the whole loop in the transverse (radial) direction (see
Fig. 9). The sausage mode is a symmetric solution with purely
imaginary Ami = −Bmi. The displacement at r = R is zero so
that the loop axis remains stationary (see Fig. 9). The example
of the leaky mode shows the propagatory behaviour in the ex-
ternal regions. At r = 0 the Alfvén and the phase speed become
zero and the energy of the leaky wave propagating downwards
accumulates there.

Of particular interest is the density perturbation. Consider
Eq. (8) with α = −4, then the solution for trapped modes is

(
ρ̂

ρ0

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2 − |κe|) Ame

(
r
R

)|κe |
r < R − a

(2 − κi) Ami

(
r
R

)κi
+ (2 + κi) Bmi

(
r
R

)−κi |r − R| ≤ a

(2 + |κe|) Bme

(
r
R

)−|κe |
r > R + a.

(30)

The density perturbation at r = R for body modes is:(
ρ̂

ρ0

)
(R) = 2(Ami + Bmi) − i|κi|(Ami − Bmi), (31)

where the two terms are the contributions from the displace-
ment and magnetic pressure perturbations respectively. The
equivalent Lagrangian density perturbation is(
δρ̂

ρ0

)
(R) = −2(Ami + Bmi) − i|κi|(Ami − Bmi). (32)

For a kink mode ρ̂/ρ0(R) = 4Ami, which is due to the displace-
ment. This amplitude is four times that of ξ̂r/r and does not
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Fig. 8. The quantities ξ̂r/r (solid line), P̂/P0 (dashed line) and ρ̂/ρ0

(dot-dashed line) as a function of radial distance r/R for three wave
modes: top: fundamental kink mode at ma/R = 0.21, middle: trapped
fundamental sausage mode at ma/R = 1.00 and bottom: real part of
the leaky fundamental sausage mode at ma/R = 0.65. The amplitudes
of the wave modes are Ai = Bi = 1 and Ai = −Bi = i for the kink
and sausage modes respectively. In the two latter plots the magnetic
pressure and density perturbations have been divided by a factor 10.
The parameters χ = 0.2 and a/R = 0.2.

depend on the phase speed. The Eulerian density perturbation
is in phase with the loop displacement and the volume pertur-
bation. This is because in Eq. (8) the perturbation due to the
advection of the equilibrium density dominates over the curva-
ture effect for α = −4. However, since δρ̂/ρ0(R) = −4Ami, the
Lagrangian density perturbation is in anti-phase with the loop
displacement and the volume perturbation.

For a sausage mode ρ̂/ρ0(R) = 2i|κi|Ami =

2i
√

Vph/VAi − 1 m Ami, which is due to the magnetic pres-
sure perturbation. The density perturbation amplitude lies
between 0 and 2i

√
(1 − χ)/χm Ami. These limits correspond

to Vph = VAi (reached in the short wavelength limit) and
Vph = VAe (at the cut-offs) respectively.

5. Comparison with a straight slab model

We compare our results with that of MHD waves in a straight
slab model. Edwin & Roberts (1982) considered parallel prop-
agating MHD waves in a straight slab with piece-wise constant
equilibrium quantities. If we impose the assumptions of the

Fig. 9. Density perturbation δρ/ρ0 of the fundamental trapped sausage
mode with a displacement amplitude of Ai = −Bi = 0.2 i. The velocity
field is overplotted. The solid (dashed) lines show the (un)perturbed
position of the slab edge. The parameters χ = 0.01 and a/R = 0.2.

Fig. 10. Density perturbation δρ/ρ0 of the fundamental trapped kink
mode with a displacement amplitude of Ai = Bi = 0.05. The velocity
field is overplotted. The solid (dashed) lines show the (un)perturbed
position of the slab edge. The parameters χ = 0.2 and a/R = 0.2.

internal and external magnetic fields to be identical and the zero
plasma-β limit, then the dispersion relation for trapped modes
in the straight slab model is
{

tanh
coth

} (
κ̃i

a
R

)
= − κ̃i|κ̃e| , (33)

where κ̃{i,e} is of the same form as Eq. (12), but where m is now
related to the wave vector component in the direction of the
straight equilibrium magnetic field.

We expect the differences between the curved and straight
slab models to minimise in two limits: the limit of a slender
loop, i.e. a/R 	 1, and in the short wavelength limit, i.e.
ma/R� 1. In the limit of a thin loop the parameter q becomes
(see Eq. (17))

q ≈ 1 + 2
a
R
≈ e2 a

R , (34)

so that dispersion relation (16) tends to dispersion relation (33).
This is also the reason why the curves of the two models in
Fig. 6 tend to each other for small a/R. For instance, the wave
solution for leaky modes in the straight slab model in the limit
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Fig. 11. Relative difference between the phase speeds of the funda-
mental sausage mode branch (n = 0) of the model presented here and
the straight slab, plotted as a function of ma/R for three values of χ
(top, χ = 0.05, middle, χ = 0.2 and bottom, χ = 0.6) and five val-
ues of a/R (solid curve, a/R = 0.01, dotted curve, a/R = 0.1, dashed
curve, a/R = 0.3, dot-dashed curve, a/R = 0.6 and triple dot-dashed
curve, a/R = 0.9). The gaps in the curves are where the sausage modes
of both models do not share the same behaviour, i.e. both are neither
trapped nor leaky.

of small a/R (Cally 1986) is recovered by substituting Eq. (34)
into Eq. (26). Furthermore, by taking r = R + as where s is the
distance from the loop axis in units of the loop’s minor radius.
In the thin loop limit, the solutions close to the loop axis, i.e.
s ∼ O(1), becomes
( r
R

)±κ
= e±κ ln(1+sa/R) ≈ e±κsa/R, (35)

and the solution (13) reduces to

ξ̂r ≈ R
∞∑

m=1

Ameκsa/R + Bme−κsa/R, (36)

which in turn reduces to the solution for the straight slab model.
Similarly, the density perturbation (8) near the loop axis is ap-
proximately of the form ρ/ρ0 ≈ ∂ξr/∂r, where terms of the
order of a/R have been neglected. Using Eq. (36) and consid-
ering a kink mode (Am = Bm), we can easily see from Eq. (30)
that the density perturbation in the thin loop limit has a zero
average across the slab. This is also consistent with the straight
slab model. The non-zero average density perturbation of the
kink mode is a characteristic of the curved slab model.

In Figs. 11 and 12 we compare the phase speeds of the fun-
damental kink and sausage mode branches of the curved slab

Fig. 12. Relative difference between the phase speeds of the funda-
mental kink mode branch (n = −1) of the model presented here and
the straight slab, plotted as a function of ma/R for three values of χ
(top, χ = 0.01, middle, χ = 0.2 and bottom, χ = 0.8) and five values of
a/R (solid curve, a/R = 0.01, dotted curve, a/R = 0.1, dashed curve,
a/R = 0.3, dot-dashed curve, a/R = 0.6 and triple dot-dashed curve,
a/R = 0.9).

model with the straight slab model as a function of ma/R for
various values of χ and a/R. As ma/R becomes larger, the dif-
ference between the two models decays to zero. Only for val-
ues of a/R above roughly 0.5 do the two model differ by more
than 5%. This means that for realistic coronal loops, where a/R
is of the order of 0.01−0.2, the curved loop model with α = −4
and the straight loop model, from the point of view of the mode
frequencies, are indistinguishable. Also, from the results it is
clear that the sausage and kink modes retain their distinct char-
acter as evidence of coupling between the two types of oscilla-
tions due to curvature has not been found.

6. Discussion

When comparing the calculated quantities with observations,
we need to consider the Lagrangian description. We have
shown that the Lagrangian density perturbation in a curved
loop model has two contributions (see Eq. (10)). The first con-
tribution is due to the magnetic pressure perturbation and ap-
pears also in the straight coronal loop model (Edwin & Roberts
1982). Because the magnetic pressure perturbation is propor-
tional to the radial derivative of ξr/r, its average across the
loop is approximately zero for a kink mode (see Fig. 8 as an
illustration). Therefore, this term does not contribute to the
average density perturbation. The second contribution is due
to the loop curvature and is associated with the loop length
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perturbation. Therefore, the density perturbation for a funda-
mental kink mode, averaged across the loop width, is approxi-
mately equal to (using Eq. (10))〈
δρ

ρ0

〉
≈ −2

〈
ξr
r

〉
≈ − 2

ξr(R)
R
, (37)

where the brackets 〈 f 〉 denote a quantity averaged across the
width of the loop. The intensity perturbation, δI, is approxi-
mately equal to 2ρ0δρ if the perturbations are small. Therefore,
the relation between the intensity and displacement, using
Eq. (37) and assuming ρ0 does not vary significantly across the
slab, is

〈δI〉
〈I0〉 ≈ 2

〈
δρ

ρ0

〉
≈ −4

ξr(R)
R
· (38)

The observation by Wang & Solanki (2004) of a vertically po-
larised fast magnetoacoustic kink wave showed the average
intensity and displacement perturbations to be in anti-phase.
Wang & Solanki (2004) reported a displacement amplitude
ξr(R)/R = 0.071 and an intensity perturbation with an am-
plitude of approximately unity. This would give an amplitude
ratio of −14, which is much smaller than the predicted value
of −4.

Of course, for such a value of the intensity perturbation am-
plitude, Eq. (38) is strictly speaking not valid. But at this point
we would like to add a note of caution about the value of the in-
tensity perturbation amplitude as reported by Wang & Solanki
(2004). The authors did not take into account the effect of time
integration. As the loop oscillates, it spends more time at its ex-
tremal positions than in between. The time-integrated intensity
is thus larger at those positions compared with the mid-points.
The intensity perturbation amplitude due to time integration
alone (17 s precisely) would be 〈δI〉/〈I0〉 = 0.78, 0.31 and 0.19
for loop half-width a = 1000, 2000 and 3000 km respectively
(for a period of 234 s and displacement amplitude of 7900 km,
as deduced by Wang & Solanki (2004). Therefore, the effect
of time-integration can explain for a large part the intensity en-
hancement at the minimal position. Also, from the data pre-
sented by Wang & Solanki (2004), it is difficult to see a real
intensity depletion at the maximal positions (see their Fig. 2).
Only two maximal positions of the oscillation are visible. The
first coincides with the time of excitation itself and the second
is near a data gap due to cosmic ray contamination. Because of
these uncertainties, it would therefore be advantageous to have
more observational examples of a vertically polarised kink os-
cillation to confirm the behaviour reported.

But if the vertically polarised kink mode observed by Wang
& Solanki (2004) does possess a significant density perturba-
tion, which is in anti-phase with the displacement, then its am-
plitude is predicted to be −0.28. We have shown that for most
density profiles, the fast oscillation modes cannot be trapped
in the loop and will leak into the external corona by means
of wave tunneling. It is of interest to note that Brady & Arber
(2005) have demonstrated this numerically for one such type
of density profile, namely α = 0. Because the wave leakage is
expected to be a function of α, we expect that the observational
measurement of the wave damping to be an additional inter-
esting seismological tool for deducing the equilibrium density

profile. Therefore in a future work, we shall investigate, using
the governing equations presented here, tunneling fast magne-
toacoustic wave modes in curved coronal loop slab models with
a density profiles with indices different from α = −4.

7. Conclusions

We have derived the governing equations for linear vertically
polarised fast magnetoacoustic waves in a curved coronal loop.
The loop is modeled as a semi-circular magnetic slab in the
zero plasma-β limit. We summarise our findings as follows:

– The propagatory behaviour of wave modes depends on the
transverse equilibrium density profile, which we have mod-
eled as a power law of index α. For such a density profile,
trapped oscillations are only possible if α = −4, which
corresponds to a loop with a linear Alfvén speed profile.
This case has been studied here in detail. For all other pro-
files, the mechanism of wave tunneling becomes possible
and the wave is expected to leak into the external medium.
Therefore, wave leakage is an inherent physical feature of
oscillations in coronal loops. A detailed analytical analysis
of these other density profiles is reserved for a future paper.

– The Eulerian density perturbation associated with a wave
mode depends on three contributions: magnetic pressure,
curvature and density advection. The last two terms are
new compared with the straight slab model of Edwin &
Roberts (1982). The latter term vanishes when going to the
Lagrangian description. The curvature gives rise to a non-
zero averaged density perturbation in a fast kink oscillation.

– We have studied the model with a linear Alfvén speed pro-
file (α = −4) in detail and found many similarities with
the straight slab model of Edwin & Roberts (1982). Waves,
which exist as sausage and kink mode types, are either
trapped body modes or oscillatory (leaky) everywhere. In
the long wavelength limit all modes are leaky, except solu-
tions from the fundamental kink mode branch. Evidence for
coupling between the fast kink and sausage modes has not
been found. This curved slab model reduces to the straight
slab model in the limit of a slender loop and for short wave-
lengths. In fact, for realistic values of the loop width to
length ratio, the two models differ by less than 5%. One im-
portant difference, though, is that in the curved slab model,
the density perturbation does not average to zero across the
loop width, i.e. fast kink oscillations may have significant
density perturbations.

The model we have presented, may be improved and extended
in several ways. The introduction of a sheared magnetic field
is expected to introduce coupling between the Alfvén and
magnetoacoustic modes (Goedbloed & Halberstadt 1994) and
it would be interesting to study this in a curved geometry.
Also, with a finite plasma-β, the effect of curvature on slow
magnetoacoustic waves may be investigated. Furthermore, a
more realistic equilibrium density profile may be introduced,
based on gravitational stratification (e.g. Andries et al. 2004;
Mendoza-Briceño et al. 2004; Dymova & Ruderman 2004).
This would make the equilibrium two-dimensional.



E. Verwichte et al.: Fast waves in curved coronal loops. I. 1149

Acknowledgements. E.V. is grateful to PPARC for the financial
support. V.M.N. acknowledges the support of a Royal Society
Leverhulme Trust Senior Research Fellowship. The authors would like
to thank T. Arber and G. Rowlands for useful discussions and the ref-
eree H. Goedbloed for helpful suggestions.

Appendix A: Derivation of the governing
equations

In the cylindrical system (r, φ, z), we consider the ideal, gravi-
tationless, zero plasma-βMHD equations, which are linearised
with respect to small perturbations from the equilibrium, viz.

ρ = −∇. (ρ0ξ) , (A.1)

ρ0
∂2ξ

∂t2
= (∇ × B) × B0

µo
, (A.2)

B = ∇ × (ξ × B0) , (A.3)

where ξ, B and ρ are the displacement, magnetic field and den-
sity perturbations respectively. The perturbed quantities follow
the Eulerian description. Wave propagation can be described in
terms of the radial displacement ξr and the magnetic pressure
perturbation P = B0φBφ/µo, following a procedure similar to
the one described by Sakurai et al. (1991).

The induction Eq. (A.3) and the Lorentz force in the mo-
mentum Eq. (A.2) are rewritten as(

B
B0φ

)
=

1
r
∂ξ

∂φ
+

[
2
ξr
r
− ∇.ξ

]
1φ, (A.4)

and

(∇ × B) × B0

µo
= −∇P − 2P

r
1r +

2P0

r
∂

∂φ

(
B

B0φ

)
, (A.5)

respectively. P0 = B2
0φ/2µo is the equilibrium magnetic pres-

sure. By eliminating B from Eq. (A.5) using Eq. (A.4), the mo-
mentum Eq. (A.2) becomes

ρ0LAξ = −∇P +
P0

r

[
2∇.ξ − P

P0
− 2

r

∂ξφ

∂φ
− 4
ξr
r

]
1r

+
2P0

r
∂

∂φ

[
2
ξr
r
− ∇.ξ

]
1φ, (A.6)

with

LA =
∂2

∂t2
− V2

A

r2

∂2

∂φ2
, (A.7)

the Alfvén wave operator. An expression for the dilation ∇.ξ
in terms of ξr and P is found from the definition of P, using
Eq. (A.4) and the azimuthal component of Eq. (A.6):

∇.ξ = −1
2

P
P0
+ 2
ξr
r
· (A.8)

A first equation coupling ξr and P is derived from the ex-
pression ∇.ξ − 1/r ∂(rξr)/∂r using Eqs. (A.6)−(A.8). A second
equation is derived from the radial component of Eq. (A.6). We
find the following set of equations:

LA
∂

∂r

(
ξr
r

)
= − 1

2r

(
LA − V2

A
∂2

∂z2

) (
P
P0

)
, (A.9)

∂

∂r

(
P
P0

)
= − 2r

V2
A

LA
ξr
r
· (A.10)

This set of equations describe Alfvén waves polarised in the
z-direction and fast magnetoacoustic waves polarised in the
r-direction. These equations are well-known in fusion plas-
mas where they describe the z-pinch in the zero plasma-β
limit (e.g. Goedbloed & Poedts 2004). Vertically polarised per-
turbations are of the form ξr = ξ̂r(r) sin(mφ) exp(−iωt) and
P = P̂(r) sin(mφ) exp(−iωt), where ω is the angular frequency
of a mode of azimuthal degree m. From Eqs. (A.9) and (A.10),
the set of equations describing the fast magnetoacoustic waves
then become:

d
dr

(
ξ̂r
r

)
= − 1

2r
P̂
P0
, (A.11)

d
dr

(
P̂
P0

)
= 2r

⎛⎜⎜⎜⎜⎝ ω2

V2
A(r)
− m2

r2

⎞⎟⎟⎟⎟⎠ ξ̂rr · (A.12)

In the absence of z-dependence, the fast magnetoacoustic and
Alfvén waves are decoupled. The Alfvén waves are charac-
terised by the dispersion relation ω2 = m2V2

A(r)/r2.
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