
  

 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap  

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

http://go.warwick.ac.uk/wrap/35722  

 

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to 
cite it. Our policy information is available from the repository home page. 

 
 

 

 

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/66664


Structural investigation of the Arabidopsis 
thaiiana circadian clock 

Thesis submitted for the degree of Doctor of Philosophy 

Oliver Durrant B. Se. (Hons.) 

Department of Biological sciences, University of Warwick 

September 2009 

- i -



Title .................................................................................... i 
Table of Fig u res ............................................................... vi 
Tables ............................................................................. vii 
Declaration ..................................................................... viii 
Acknowledgments ........................................................... ix 
List of abbreviations ......................................................... xi 

Summary ................................. ··········· ............................ xiii 

Chapter 1. Introduction ....................................... 1 
1.1. Molecular mechanism of circadian clocks ................. 1 
1.2. Rhythmicity in Plants ................................................. 4 
1.2.1. Arabidopsis as a tool for studying the Plant circadian clock ................. 5 
1.2.2. Screening for molecular components ................................................... 5 

1.3. Molecular components of the Arabidopsis circadian 
clock ................................................................................. 8 
1.3.1. THE TIMING OF CAB EXPRESSION 1 (TOC1) .................................. 8 
1.3.2 LHY ....................................................................................................... 9 
1.3.3. CCA1 .................... ······························ .................................................. 9 
1.3.4. The TOC 1- LHY I CCA 1 feedback loop ................................................ 9 

1.4. Other clock related genes ........................................ 14 
1.4.1. The PPR family ................................................................................... 14 
1.4.2. EARLY FLOWERING 4 (ELF4) .......................................................... 15 
1.4.3. EARLY FLOWERING 3 (ELF3) .......................................................... 15 
1.4.4. LUX ARRHYHTMO (LUX) .................................................................. 16 
1.4.5. CCA 1 HIKING EXPEDITION (CHE) ................................................... 17 
1.4.6. GI ....................... ····························· .................................................... 18 

1.5. Entrainment of the clock .......................................... 18 
1.5.1. Light signalling targets ........................................................................ 20 
1.5.2. Light Input ............................... ··················· ......................................... 21 
1.5.2.1 Red light photoreceptors ................................................................... 21 
1.5.2.2. Blue light Photoreceptors ................................................................. 22 
1.5.2.3. Phototropins and the F-box proteins ................................................ 23 
1.5.3. Circadian regulation of light input ....................................................... 25 
1.5.4. Temperature input .............................................................................. 25 

1.6. Post-transcriptional regulation of the Plant clock ..... 26 
. 1.6.1. Unique role for LIGHT INSENSITIVE PERIOD 1 (LIP1) ..................... 27 

1.7. Clock outputs ........................................................... 29 
1.8. Gaps in our Knowledge ........................................... 31 
1.9. Aims ....................................... ··· ........ · ...................... 32 



Chapter 2. Bioinformatics ................................. 33 
2.1. I ntrod uction .............................................................. 33 
2.2. Plant response regulators ........................................ 36 
2.2.1 TOC 1 and the PRR family ................................................................... 38 

2.3. MYB-domain transcription factors ........................... 43 
2.3.1 LHY I CCA1 ......................................................................................... 44 
2.3.2 LUX ..................................................................................................... 47 

2.4. F-box proteins .......................................................... 48 
2.4.1 LOV ..................................................................................................... 48 
2.4.2 F-box proteins ...................................................................................... 49 
2.4.3 Kelch repeats ....................................................................................... 52 

2.5. Proteins that are not classified according to sequence 
........................................................................................ 54 
2.5.1 ELF4 ............................. ····················· ........................................ ~ ......... 54 
2.5.2 ELF3 .................................................................................................... 55 
2.5.3 GI .............................. ······················ ..................................................... 55 
2.5.4 SRR1 .............................. ···················· ................................................. 56 

2.6. Discussion ............................................................... 57 

Chapter 3. Materials & Methods ....................... 59 
3.1. Initial expression screens for circadian proteins ...... 59 
3.1.1. Circadian gene cloning and vector construction ................................. 59 
3.1.2. Small scale expression ....................................................................... 59 
3.1.2.1. Transformation of E. coli strain B834 (ADE3) 'Rosetta' .................... 59 
3.1.2.2. Expression of recombinant proteins ................................................ 59 
3.1.2.3. Preparation of crude cell extract ...................................................... 60 
3.1.2.4. Polyacrylamide gel electrophoresis ................................................. 60 

3.2. Sub-cloning circadian genes into pBAD-M41 + ........ 60 
3.2.1. Production of competent TOP1 0 E. coli .............................................. 61 
3.2.2. Digestion and ligation of constructs .................................................... 61 
3.2.3. Expression in pBAD-M41 + ................................................................. 62 
3.2.4. Western blotting .................................................................................. 62 

3.3. Expression of TOC1 and ELF3 in Yeast. ................. 62 
3.4. Expression of TOC 1-P RR ....................................... 63 
3.4.1. Nickel Affinity Chromatography .......................................................... 63 
3.4.2. Protein Concentration and Determination of Protein Concentration ... 63 
3.4.3. Buffer Exchange and Protease Digestion ........................................... 64 

3.5. Coexpression of GI and SPY ................................... 64 
3.6. In vitro selection of aptamers ................................... 65 
3.6.1. Testing the polyclonal aptamers for protein specificity ....................... 67 
3.6.2. Dot-Blot of polyclonal aptamers against purified SRR 1 ...................... 67 

- III -



3.6.3. Cloning of the aptamer pool.. .............................................................. 67 
3.6.4. Phenol extraction and ethanol precipitation of PSK 11. ....•.•...••.•.•.•...•.• 68 
3.6.5. Preparation of the aptamer pool inserts .............................................. 69 
3.6.6. Cloning individual aptamers into PSKII. .............................................. 69 

3.7. ELF4 ........................................................................ 70 
3.7.1. pBAD-M41 +-ELF4 .............................................................................. 70 
3.7.2. pET32a-ELF4 ..................................................................................... 70 
3.7.2.1. Size Exclusion Chromatography and Storage ................................. 70 
3.7.2.2. Digestion, Buffer Exchange and Anion Exchange Chromatography70 
3.7.2.3. Desalting and Storage ..................................................................... 71 
3.7.2.4. Mass Spectrometry .. ~ ....................................................................... 71 
3.7.2.5. Crystallisation screens ..................................................................... 71 
3.7.2.6. Circular Dichroism (CD) ................................................................... 72 

3.8. LUX .......................................................................... 72 
3.8.1. Plant Growth ....................................................................................... 72 
3.8.2. Preparation of template ...................................................................... 73 
3.8.3. Polymerase Chain Reaction ............................................................... 73 
3.8.4. Cloning of Insert ................................................................................. 74 
3.8.5. LUX expression and purification ......................................................... 74 
3.8.6. Silver staining of SDS-PAGE .............................................................. 74 

3.9. LIP1 ......................................................................... 75 
3.9.1. Small scale expression and Ni purification of LIP1 and LlP1~ ........... 75 
3.9.2. Large scale pMAL- LIP1~ Expression ................................................ 75 
3.9.3. pMAL- LIP1 ~ Digestion ...................................................................... 75 
3.9.4. Assaying for GTPase activity .............................................................. 76 

Chapter 4. Expression trials of circadian 
proteins .............................................................. 77 
4.1. Introduction .............................................................. 77 
4.2. Initial expression trials ............................................. 78 
4.3. Sub-cloning and Expression in pBADM-41+ ........... 81 
4.4. Expression of TOC1 and ELF3 in yeast. ................. 83 
4.5. Expression of TOC1-PRR and Ni-affinity purification 
...................................................................... · .. · .............. 84 
4.6. Digestion of TOC1-PRR from Thioredoxin .............. 86 
4.7. Discussion ............................................................... 87 

Chapter 5. Development of DNA aptamers ...... 89 
5.1. I ntrod uction .............................................................. 89 
5.1.1 General principle of aptamer selection by SELEX ............................... 90 
5.1.2 Aptamer selection against circadian clock proteins ............................. 91 

5.2. Results ..................................................................... 92 

-IV -



5.3. Discussion ............................................................... 96 

Chapter 6. ELF4 ................................................. 99 
6.1. I ntrod uction .............................................................. 99 
6.2. pBADM-41 +-ELF4 expression and purification ..... 100 
6.3. pET32a-ELF4 expression and purification ............ 101 
6.4. ELF4-Trx digestion and anion-exchange ............... 103 
6.5. ELF4 Crystallisation trials ...................................... 105 
6.6. Purification and crystal trials of S-tagged ELF4 ..... 107 
6.7. Circular Dichroism of ELF4 .................................... 1 09 
6.8. Discussion ............................................................. 112 

Chapter 7. LUX .............................................. ~ .. 116 
7.1. Introduction ............................................................ 116 
7.2. Cloning of LUX ...................................................... 116 
7.3. Expression of pBAD-LUX ...................................... 118 
7.4. Discussion ............................................................. 124 

Chapter 8. LIP1 ................................................ 126 
8.1. Introduction ............................................................ 126 
8.2. Small scale expression trials ................................. 127 
8.3. Large scale expression of LIP1 Ll ........................... 129 
8.4. Assaying for GTPase activity ................................. 130 
8.5. Discussion ............................................................. 133 

Chapter 9. General Discussion and 
Conclusions ..................................................... 135 
9.1. Expression, purification and structural studies of 
circadian-related proteins ............................................. 135 
9.2. Future directions .................................................... 138 
9.2.1. Leading on from this project ............................................................. 138 
9.2.2. Investigating the function of circadian proteins ................................. 139 

9.3. Conclusions ........................................................... 140 

Bibliography ..................................................... 141 

-v-



Table of Figures 

Fig 1.1. Terms used to describe circadian rhythms ...................................................... 3 
Fig 1.2. Schematic representation of the circadian clock ............................................. 4 
Fig 1.3a. Expression of core oscillator genes LHY, CCAI and TOCI ..................... 11 
Fig 1.3b. Schematic of the central oscillator feedback loop ...................................... 12 
Fig 1.4. Schematic representation of the central oscillator incorporating a 
mathematical approach ............................................................................................... 13 
Fig 1.5. A typical Phase Response Curve for Arabidopsis thaliana .......................... 19 
Fig. 1.6. Model of the plant circadian clock .............................................................. 28 
Fig 2.1. A schematic overview of classic two component systems ........................... 36 
Fig. 2.2. Schematic representation and classification of Plant response regulators 
(ARRs) ....................................................................................................................... 38 
Fig 2.3. ClustalW alignment of the PRR proteins ...................................................... 40 
Fig 2.5. Ribbon diagram of two BeF3- activated CheY response receiver domains. 42 
Fig 2.6. Schematic representation of the classification of MYB-domain transcription 
factor family ............................................................................................................... 44 
Fig 2.7. ClustalW alignment ofCCAl and LHY ....................................................... 45 
Fig 2.8. Ribbon diagram of c-MYB R2R3 complexed with DNA ............................ 46 
Fig 2.9. Protein sequence of LUX ARRHYTHMO from ProtParam ........................ 47 
Fig 2.10. A schematic ofF-box protein (A) involvement in targeted degradation; (B) 
ZTL architecture and (C, D) function in the circadian clock ..................................... 51 
Fig 2.11. Ribbon diagram of the Kelch domain of human Keap 1. ............................ 52 
Fig. 2.12. ClustalW alignement of the F-box proteins ............................................... 54 
Fig 2.13. On-screen graphical summary ofELF4 protein sequence after BLASTp .. 54 
Fig 4.1. SDS-PAGE showing small scale expression trials ....................................... 80 
Fig 4.2. Vector map ofpBADM-41+ ......................................................................... 81 
Fig 4.3. 1 % agarose gel showing restriction digested pBADM-41+ constructs for 
insert ........................................................................................................................... 82 
Fig 4.5. Vector map ofpYES2 ................................................................................... 84 
Fig 4.6. Amino acid sequence of pET32a TOC 1-PRR-Thioredoxin fusion .............. 85 
Fig 4.7. SDS-PAGE ofTOCI-PRR expression and Ni-column purification ............ 85 
Fig 4.8. Chromatogram ofNi-affinity purification ofpET32a-TOCI-PRR .............. 86 
Fig 4.9. SDS-PAGE of digested TOCI-PRR ............................................................. 87 
Fig 5.1. A schematic showing the production of DNA aptamers based on Systematic 
Evolution of Ligands by EXponential enrichment (SELEX) .................................... 92 
Fig 5.2. SDS-PAGE showing Ni-affinity chromatography purification ofMBP-
SRRI .......................................................................................................................... 93 
Fig 5.3. 3 % agarose gels showing the amplification of the aptamer pool after the first 
round of SELEX ......................................................................................................... 94 
Fig 5.4.3 % agarose gels after amplification of the aptamer pool by PCR ............... 95 
Fig 5.5. Dot-Blot of Biotinylated aptamer pool incubated with SRR1 ...................... 95 
Fig. 6.1. Amino acid sequence ofpET32a ELF4-Thioredoxin fusion ..................... 101 
Fig. 6.2a. SDS-PAGE ofELF4-Trx fusion after Ni-affinity chromatography and size-
exclusion chromatography ....................................................................................... 101 
Fig 6.2b. Chromatographs showing Ni-affinity purification and size-exclusion of 
ELF4-Trx fusion ...................................................................................................... 102 
Fig 6.3. SDS-PAGE showing enterokinase digest ofELF4-Trx fusion .................. 103 
Fig 6.4. Chromatograph showing anion exchange of cleaved ELF4 and Trx .......... 104 

- Vl-



Fig. 6.5. SDS-PAGE of digested ELF4-Trx separated by anion exchange ............. 104 
Fig 6.6. On-screen shot ofELF4 confirmation from mass spectrometry analysis ... 105 
Fig 6.7. Picture of crystals formed in Hampton Index crystal screen 16 ................. 106 
Fig 6.8. Chromatograph showing ELF4 purification by Ni-affinity chromatography 
after digestion with Thrombin .................................................................................. 107 
Fig 6.9. Picture of crystals formed in Clear Stratergy screen 3 ............................... 108 
Fig 6.10. Picture ofa crystal formed in MDLI screen 30 ........................................ 108 
Fig. 6.11. Far-UV CD spectra observed from different types of protein secondary 
structure .................................................................................................................... 109 
Fig 6.12. Circular dichroism spectra of native ELF4 and S-tagged ELF4 ............... 111 
Table 5. Structural analysis ofELF4 CD spectra using DICROWEB ..................... 112 
Fig 7.1. 1 % agarose gel showing the cloning of LUX ........................................... 117 
Fig 7.2. Purification of MBP-LUX using Ni-affinity chromatography ................... 119 
Fig 7.3. SDS-PAGE showing digestion ofMBP-LUX fusion by TEV protease ..... 120 
Fig 704. Chromatograph showing separation of MBP and LUX by anion exchange . 
.................................................................................................................................. 121 
Fig 7.5. Silver-stained SDS-PAGE showing separation ofMBP and LUX by anion 
exchange ................................................................................................................... 121 
Fig 7.6. Purification ofMBP-LUX by Ni-affinity chromatography ........................ 122 
Fig 7.7. SDS-PAGE showing MBP-LUX fusion after size exclusion 
chromatography ........................................................................................................ 123 
Fig 7.8. SDS-PAGE showing separation ofMBP and LUX by 2 sucessive anion 
exchanges ................................................................................................................. 124 
Fig 8.1. Schematic diagram of LIP 1 protein structure ............................................. 126 
Fig 8.2. SDS-PAGE ofpBADM-41 +LIPI and pMAL-LIPl~ after Ni-affinity 
purification ............................................................................................................... 127 
Fig 8.3. Chromatographs showing pBADM-41 +LIPI and pMAL-LIPl~ after Ni-
affinity purification .................................................................................................. 128 
Fig 804. SDS-PAGE showing expression and Ni-affinity purification ofpMAL-
LIPl~ ....................................................................................................................... 129 
Fig 8.5. SDS-PAGE showing the cleavage ofMBP from LIPl~-MBP by Factor Xa . 
.................................................................................................................................. 130 
Fig 8.6. A graph showing a phosphate standard curve ............................................ 131 
Fig 8.7. A graph showing LIPl~ GTPase activity ................................................... 132 
Fig 8.8. A graph showing MBP-LIPl~ GTPase activity ......................................... 132 

Tables 

Table 1. Biophysical properties of clock-associated proteins ................................... 35 
Table 2. Summary ofPhyre predictions ofGI based on regions of presumed 
secondary structure ..................................................................................................... 56 
Table 3. Constructs provided for expression of circadian proteins ............................ 78 
Table 4. Structural analysis ofELF4 CD spectra using DICROWEB ............... .112 
Table 5. Primers used for amplification of LUX ..................................................... 117 

- Vll-



Declaration 

I hereby declare that the research submitted in this thesis was conducted by myself 
under the supervision of Prof. Vilmos Fiilop and Dr. Isabelle Carre at the Department 
of Biological Sciences, University of Warwick. No material in this thesis has been 
presented previously for any qualification or publication. 

- Vlll -



Acknowledgments 

I would like to start by thanking my supervisors Vilmos and Isabelle for their time 
and support throughout this thesis. It has been a challenging project, so advice and 
scientific direction was greatly appreciated at the time. To this end, I also need to say 
a huge thank you to Dr Dean Rea (aka the saviour of SBG). The constructs you 
prepared for initial expression trials were gratefully received. In addition, I have to 
thank you for all the technical/scientific advice you gave, and for being a good 
friend throughout. I refuse to thank you for all the whippings you dealt me at squash! 

My family have been absolutely wonderful during my undergraduate degree and my 
PhD. I have a tendency to worry, so thanks for being so understanding when I have 
been ill tempered, upset, hard work, frustrating (insert fault as appropriate) .... Mum 
(you can stop worrying now!), Corky, William and Maisie, I love you all very much. 
Special thanks to my Grandma, who helped me out when I was writing my thesis. I 
may not have been able to complete this work without your assistance. 

For my Dad, the biggest THANKS (literally!). You gave me impartial, logical and 
sensible advice when it was needed. Your constant contact was a real boost. 
Knowing someone else is thinking of you made it bearable when I was ready to 
walk. I have to also thank the RBP (Royal Bank of Paul), of which Dad is the CEO. I 
became a frequent and demanding customer and have yet to deposit any of my new 
found riches. Perhaps it isn't such a good time to be banking anyway!?! Blair (he 
does go by another pseudonym) made certain of that wouldn't you say Dad? 

Big 'nuff respec' to the Structural massive. What a brilliant environment to work in. 
Great personalities that made the social side of work an absolute pleasure. I doubt I 
will ever be lucky enough to have such a wonderful group of people around me at 
work. You're included in that Vilmos (fancy a pint at the Cottage Inn?) I miss you 
all. 

These acknowledgements would not be complete without the mention of five 
individuals who kept me going when it all got too much. First I would like to say 
thanks to Ray. You were the distraction I needed to keep me sane. You never once 
told me to stop moaning. You let me get it off my chest so I could cope with the 
pressure of the next day. You're the definition ofa true friend. 

Much love to my best friend Ian. I'm never happier than when we are together. It is 
strange to have a life-long friend whom I still admire (faults and all). How are you so 
damn talented? Mind you, still not talented enough to pull off your foray into cross­
dressing! 

Darryl and Sam, I truly don't know how this work would have been done without 
you. You have become my surrogate family. I literally can not summarise all you 
have done for me. Suffice to say, I love you both very much. 

-IX -



Finally, thanks to my brother Corky. You're one charismatic man! Thanks for Rio's 
and the raves, the beers, Tony Hark, Reet Petite, Brian Badonde, lending of shorts 
and t-shirts, screams of "where's the lamb sauce", "well you must be very proud of 
yourself' and "la de dah", football, cigarettes, disco dancing, and basically 
everything I enjoy doing. I'm lucky to have you as a brother. 

-x-



List of abbreviations 

Amp 
ARR 
BLASTp 
CAB 
CBS 
CCA1 
CCR2 
CCT 
CD 
CDF1 
CESG 
CHE 
Chlor 
CK2 
CO 
Col 
COP1 
CRY 
CT 
DD 
DET1 
EE 
ELF3 
ELF4 
EMS 
FBP 
FKF1 
FMN 
FPLC 
FR 
FRQ 
FT 
GI 
HK 
H-L-H 
HRP 
IPTG 
LB 
LCHB 
LD 
LDP 
Ler 
LHY 
LlP1 
LKP2 
LL 
LOV 
LRR 
LUC 
LUX 
MBP 
MCP 

Ampicilin 
Arabidopsis Response Receiver 
Basic Local Alignment Sequence Tool (protein) 
CHLOROPHYLL NB BINDING PROTEIN 
CCA 1 binding site 
CIRCADIAN CLOCK ASSOCIATED 1 
COLD AND CIRCADIAN REGULATED 2 
CONSTANS, CONSTANS-LiKE and TOC1 
Circular Dichroism 
Cycling of Dof Factor 1 
Center for Eukaryotic structural Genomics 
CCA 1 HIKING EXPEDITION 
Chloramphenicol 
Caesin kinase 2 
CONSTANS 
Columbia 
CONSTITUTIVELY PHOTOMORPHOGENIC 1 
CRYPTOCHROMES 
Circadian time 
Constant darkness 
DE-ETIOLATED 1 
Evening element 
EARLY FLOWERING 3 
EARLY FLOWERING 4 
Ethyl methanesulfonate 
F-box protein 
FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 
Flavin Mononuclotide 
Fast protein liquid chromatography 
Far-red light 
FREQUENCY 
FLOWERING LOCUS T 
GIGANTEA 
Histidine Kinase 
Helix-loop-helix 
Horseradish peroxidase 
Isopropyl-beta-thiogalactopyranoside 
Luria-Bertani 
LIGHT HARVESTING CHLOROPHYLL NB BINDING PROTEIN 
Light I Dark 
Long day plant 
Landsberg erecta 
LATE ELONGATED HYPOCOTYL 
LIGHT INSENSITIVE PERIOD 1 
LOV, KELCH PROTEIN 2 
Constant light 
Light, oxygen, voltage 
Leucine rich repeats 
LUCIFERASE 
LUX ARRHYHTMO 
MALTOSE BINDING PROTEIN 
Methyl-accepting chemotaxis protein 

- xi-



MCS 
MDL 
Mw 
OD 
OGT 
PAGE 

PAS 
PBS 
PRC 
PCR 
PDB 
PER 
PHOT 
PHY 
PHY A-E 
PIF3 
PRR 
R 
RR 
SCF 
SCN 
SDP 
SDS 
SPY 
SRR1 
TBS 
TBS 
TCP 
TCS 
T-DNA 
TEV 
TIC 
TOC1 
WNK1 
Ws 
ZT 
ZTL 

Multiple cloning site 
Molecular dimensions Ltd. 
Molecular weights 
Optical Density 
O-linked J3-N-acetylglucosamine 
Polyacrylaminde gel electrophoresis 
PERIOD CIRCDAIN PROTEIN, Ah receptor nuclear transolcator protein, SINGLE MINDED; 
PROTEIN 
Phosphate buffered saline 
Phase Response Curve 
Polyermase chain reaction 
Protein Database 
PERIOD 
PHOTOTROPIN 
PHYTOCLOCK 
PHYTOCHROME A-E 
PHYTOCHROME INTERACTING FACTOR 3 
PSUEDO-RESPONSE REGULATOR 
Red light 
Response Reciever 
Skp I Cullin IF-box 
Suprachiasmatic nucleus 
Short day plant 
Sodium dodecyl sulfate 
SPINDLY 
SENSITIVITY TO RED LIGHT REDUCED 1 
TCP1 binding site 
Tris-buffered saline 
TB1, CYC, PCFs 
Two-component systems 
Transfer DNA 
Tobacco Etch Virus 
TIME FOR COFFEE 
TIMING OF CAB EXPRESSION 1 
WITH NO LYSINE 1 
Wassilewskija 
Zeitgeber 
ZEITLUPE 

- xii-



Summary 

Plants, like most organisms, have developed elaborate mechanisms for anticipating 

periodic environmental changes. The circadian clock allows an organism to adapt its 

metabolic, developmental and physiological processes to coincide with favourable 

environmental conditions. At the centre of the Arabidopsis thaliana clock, linking 

environmental inputs and driving the overt biological rhythm is a central oscillator 

that consists of multiple interlocked transcriptional/translational negative feedback 

loops. What is known about the structure of the central oscillator comes primarily 

from genetic analysis. Less clear, is how putative oscillator proteins perform their 

perceived functions in circadian rhythm maintenance. Described are the cloning, 

expression and purification of clock-associated proteins; TOCI-PRR, ELF4, LUX 

and LIPl. Purified ELF4 was subjected to unsuccessful crystallisation trials, 

probably due to its intrinsically unstructured nature. A truncated form of LIP 1 was 

shown to be an active OTPase, representing the first example of an active OTPase in 

the plant clock. In addition, a protocol for the production of ssDNA aptamers has 

been developed (against SRRl), which can be used to replace antibody-based 

experimentation. The work presented discusses the difficulty in obtaining the novel, 

plant-specific proteins in quantities required for crystallisation, and suggests 

alternative methods for structural and biochemical analysis of these proteins. 

Moreover, this thesis combines experimental data with a range of Bioinformatic tools 

to aid design for subsequent biochemical expression, purification and crystallisation 

trials. 
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Chapter 1. Introduction 

Almost all living organisms have developed elaborate ways to coordinate their 

activities with the Earth's rotation. Both daily and seasonal fluctuations in the 

environment alter fundamental life processes, from whole organism seasonal 

migration to cellular events including gene transcription and cell proliferation. 

However, subsets of these alterations persist even in the absence of environmental 

cues. Biological rhythms with a periodicity of approximately 24 hours (h) under 

constant conditions are termed circadian rhythms (Fig 1.1). Although oscillations 

persist in constant conditions, the clock is set (entrained) to rhythmic cues of the 

day/night cycle, most notably light and temperature. Without entrainment the clock 

would have to be completely accurate or it would gradually drift out of phase with the 

environment. One further property of circadian clocks is that they are temperature 

compensated. When an organism is placed at different temperatures within its 

physiological range, the period remains relatively stable (Pittendrigh, 1960a). This 

important feature allows the phase relationship between physiology of an organism 

and the environment to remain robust during unpredictable changes in temperature. 

Having an internal molecular timekeeper allows an organism to predict environmental 

changes conferring a selective advantage, as they alter their developmental, 

physiological and biochemical processes to coincide with favourable conditions, 

which increase the chance of reproductive success and survival. 

1.1. Molecular mechanism of circadian clocks 

The core clock components vary between organisms, with very little conservation of 

the molecules involved, suggesting independent evolution of the circadian system on 

several occasions (Millar, 2004; Young and Kay, 2001). Despite this, conceptually, 

the molecular mechanisms of circadian clocks show remarkable similarity between 

Kingdoms. The simplest model highlights three basic components; input pathways, 

the central oscillator and output pathways (Fig 1.2.) (Dunlap et ai., 1999). Input 

pathways perceive environmental cues, notably light and temperature, and transmit 

the information by signal transduction to the central oscillator. This allows the 

entrainment of an organism to its environment. The central oscillator then generates 

and maintains rhythmicity utilising positive / negative feedback loops to drive output 
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pathways. The output pathways connect the oscillator to the metabolism and 

physiology of the organism. The importance of the circadian clock has been 

highlighted by microarray experiments which show that 8 % of mammalian genes and 

as many as 15 % of plant genes are under rhythmic control (Edwards et al., 2006). 

Although conceptually appealing, this model is an oversimplification of how 

circadian systems work. Lines of evidence suggest that rhythmically controlled 

outputs feed back to the central oscillator (Gardner et al., 2006; McClung, 2006) and 

input pathways are themselves outputs of the clock (Toth et al., 2001). Adding further 

complexity is the fact that the oscillator may consist of several feedback loops that 

contribute independently of each other in maintaining rhythmicity. Furthermore, the 

core oscillator in Drosophila melanogaster, Neurospora crassa and Arhidopsis 

thaliana is thought to comprise of several interlocking feedback loops. These 

feedback loops are thought to be cell and tissue specific. For example, the 

mammalian clock comprises of a core oscillator in specialised cells of the 

suprachiasmatic nucleus (SCN) located in the brain. This oscillator acts as the central 

oscillator of a subset of 'slave' oscillators located in peripheral tissues; liver, kidney, 

oesophagus and skin. Until recently all plant cells were thought to contain the same 

central oscillator in every cell. It now appears that the oscillator found in shoots 

differs from the oscillator located in roots (James et al., 2008), indicating a degree of 

tissue specificity and also another level of complexity. 
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Fig 1.1. Terms used to describe circadian rhythms. Period is defined as the time it 
takes to complete one full cycle. It can be measured from any phase marker, although 
it is usually measured from peak to peak. Phase is the time of day that an event 
occurs. For example, if the peak of a rhythm occurs at mid-day, its phase would be 12 
h. Phase is often expressed in terms of Zeitgeber time (ZT). Zeitgeber literally 
translates as time-giver in German, with dawn defined as ZTO and dusk as ZTI2. The 
amplitude of a rhythm is one half the peak-trough distance. 
White boxes represent periods of light, dark boxes represent periods of darkness. In 
this example, a clock component is entrained to two light-dark (LD) cycles before 
being transferred to constant darkness. The clock component has a period of 24 h 
under LD cycles. Under free-running conditions, the component's period shortens and 
the amplitude of the rhythm decreases. 
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temperature 

Central Oscillator Output pathway 

... Resp~nses including 
----~ flowering, gene 

expression, leaf 
movement, enzyme 
activities 

Fig 1.2. Schematic representation of the circadian clock. The clock has been 
classically divided into input pathways, a central oscillator and output pathways. 
Within the central oscillator, the positive / negative feedback loop is depicted with 
arrows for the positive arm and perpendicular lines representing the negative arm. 

1.2. Rhythmicity in Plants 

Diurnal rhythms have been noted from as far back as the fourth century BC. 

Androsthenes observed daily leaf movements of the tamarind tree on Tylos, an island 

in the Persian Gulf (Reviewed in McClung, 2006). These movements were not 

attributed to any internal rhythm at the time and it was not until the 18th century that 

the French astronomer de Marian reported daily movements of leaves persisted in 

constant darkness (de Mairan, 1729), suggesting an endogenous timekeeping 

mechanism. Almost 100 years later, t~e period of these leaf movements were deduced 

to be ,...,24 h (but not exactly 24 h), further indicating that these rhythms were more 

than a mere response to varying light levels, but were in fact circadian in nature. Not 

surprisingly these findings were greeted with scepticism. In 1873, German Botanist 

Pfeffer (reviewed in van Doom and van Meeteren, 2003) set out to prove that 

observed leaf movements were due to flawed experimental procedure, suggesting that 

light was leaking into the caves and wine cellars thus disrupting the constant 

conditions. In doing so, Pfeffer recorded many examples of plants with free-running 

periods and these served as the greatest evidence that the rhythms were endogenous 

rather than due to some subtle effect of a geophysical cue. Despite all the evidence, 

circadian rhythms were not generally accepted until the beginning of the 20th century 

(Sweeny, 1969). 
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The circadian clock is now known to control many aspects of plant physiology 

including leaf movement, hypocotyl elongation, odour production, stomatal opening, 

calcium levels, carbon dioxide fixation and photosynthesis (Engelmann and Johnson, 

1998; Dowson-day and Millar, 1999; Overland, 1960; Webb et al., 1998; Johnson et 

al., 1995; Dodd et al., 2005; Harmer et al., 2001). The clock is also able to measure 

photoperiod (day-length), allowing the detection of seasonal changes (Sweeny, 1987) 

which is fundamental with regard to flowering time. 

Although the connection between the circadian clock and fitness is not fully 

understood, there is increasing evidence that it provides the plant with a competitive 

advantage. Plants with clock periods in sync with the environment fix more carbon, 

contain more chlorophyll, grow quicker and survive better than short or long period 

mutants in Arabidopsis (Dodd et al., 2005). This indicates that the circadian clock 

allows prediction of environmental changes, allowing the best use of resources 

available. 

1.2.1. Arabidopsis as a tool for studying the Plant circadian clock 

Arabidopsis thaliana has become an important tool in the elucidation of plant 

circadian biology. It has a relatively small genome, is small in size and has a short 

generation time (6-8 weeks). Perhaps even more significant is its genetic similarity 

with the world's most agriculturally important crops including corn, wheat and 

soybean. Arabidopsis thaliana is therefore a perfect system for identification of genes 

that may be components of the circadian clock. Wild-type Arabidopsis backgrounds 

Colombia (col), Wassilewskija (Ws) and Landsberg erecta (Ler) with defective 

circadian associated phenotypes are used to elucidate potential components of the 

circadian clock. 

1.2.2. Screening for molecular components 

Identification of clock components was primarily based on single mutant 

backgrounds which show aberrant circadian phenotypes. Mutants are commonly 

made using the chemical ethyl methanesulfonate (EMS) or by transferred DNA (T­

DNA) of an engineered Ti plasmid that is incorporated into the plant genome by 

transfection of Agrobacterium tumefacians. The mutational analysis of plants with 
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abnormal circadian phenotypes could only suggest at possible genetic involvement, as 

many of the circadian phenotypes, including hypocotyllength and flowering time are 

only partially controlled by the circadian clock. However, many of the components of 

the input pathways have been discovered in this way. 

The elongation of hypocotyls is under circadian control from the moment of 

germination, with rapid cell expansion in the evening and arrest of growth in the 

morning (Dowson-day and Millar, 1999). As light has a profound effect on the length 

of hypocotyls, mutants displaying unusual elongation patterns have been useful in the 

screening for components of the light signalling pathways, as well as highlighting 

components downstream that may control hypocotyl elongation. 

One of the best studied developmental processes under the control of the circadian 

clock is the measurement of photoperiod which results in the switch from vegetative 

to reproductive growth. The initial hypothesis assumed that an accumulation of a 

chemical in the organism had to reach a threshold in order to trigger a physiological 

response, for example flowering. This is only achieved if the product is not degraded. 

Indeed, it may only accumulate under certain conditions (light) and be degraded 

under others (dark). The threshold is only achieved if given enough time under the 

positive condition. This model is referred to as the Hourglass model, but is known to 

be naive as it does not account for endogenous rhythmicity and the light is required to 

turn over the cycle every day. The model was extended to propose the existence of a 

circadian rhythm of photoperiodic photosensitivity. In spring, light illuminates the 

photosensitive phase of the circadian clock oscillator and triggers a response. This is 

called the External coincidence model and it has two effects; it entrains the rhythm of 

the photosensitivity and also acts as the stimulus. According to the external 

coincidence model, the circadian clock controls a light-sensitive component that 

accumulates in the leaves. In Arabidopsis, the CONSTANS (CO) gene is the light­

sensitive component (Searle and Coupland, 2004). During vegetative growth, CO 

mRNA accumulates at peak levels during dusk; however, the CO mRNA is very 

unstable in the dark. When the days become longer, the high levels of CO that are 

present, overlap with the light phase of the photoperiod. Far-red and blue light 

stabilise the CO protein and it translocates to the nucleus (Valverde et al., 2004) 

where it activates the transcription of FLOWERING LOCUS T (F1) (Samach et al., 
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2000). FT moves from the leaves to the shoot apex to promote flowering (Huang et 

al., 2005). Therefore, mutants identified due to their defective photoperiod of . 

flowering are often representative of defects in the circadian clock. 

Genetic studies of central clock components in Arabidopsis thaliana was hampered 

by the lack of convenient, non-invasive rhythmic markers. To this end, reporter 

constructs utilising the clock controlled output gene promoter of CHLOROPHYLL 

AlB BINDING PROTEIN (CAB) fused to the firefly LUCIFERASE (LUC) gene were 

constructed. Supplying luciferin to transgenic plants containing the CAB:LUC 

reporter construct results in bioluminescence that is rhythmic in nature and therefore 

reflects the activity of circadian clock (Millar et al., 1995a). This luminescence is 

easily detected with a photon-scintillation camera and can monitor circadian rhythms 

in an automated fashion for as long as required. The system has been extended to 

include other circadian controlled promoters fused to LUC, allowing the successful 

isolation and characterisation of mutants fundamental to the control of output 

pathways. 

Many mutants with circadian phenotypes were not initially isolated using the 

luciferase reporter assay. Monitoring the circadian rhythms of leaf movements in 

Arabidopsis seedlings by an automated time-lapse imagining system has provided a 

quicker alternative to the creation of transgenic lines required for the luciferase screen 

(Millar et al., 1995b). Mutant seedlings are grown in 12 hr light and 12 hr dark cycles 

for 7 days and then transferred to constant conditions for imaging. In wild-type 

Arabidopsis seedlings, the cotyledons and leaves are maximally raised once per day 

under the control of the circadian clock. As this method is not as robust as the 

aforementioned luciferase screen, it is a useful secondary screen for lines enriched in 

circadian mutants. 
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1.3. Molecular components of the Arabidopsis circadian 
clock 

1.3.1. THE TIMING OF CAB EXPRESSION 1 (TOC1) 

TOCl was the first gene to be implicated in the circadian clock using the CAB:LUC 

reporter system. The clock mutant tocl-l shows a period of21 h rhythms irrespective 

of the light condition (Millar et ai., 1995b; Somers et ai., 1998; Strayer et ai., 2000) 

and it also shows no typical light-dependant phenotypes (Somers et ai., 1998; Mas et 

ai., 2003). In addition, the tocl-l mutant allele has an early flowering phenotype 

insensitive of day length under 24 h circadian cycles, but not under the 21 h 

endogenous period of this mutant (Strayer et ai., 2000), suggesting that TOCl is an 

important component of the central oscillator rather than an input to the clock. 

Mutations in TOCl shorten the period of all circadian rhythms tested (Millar et ai., 

1995b; Somers et ai., 1998; Strayer et ai., 2000; Alabadi et ai., 2001). Further 

evidence of the importance of TOCl has been gained by using over-expressing lines. 

TOCl overexpressing lines show a lengthening of periods in a dosage dependant 

manner (Mas et ai., 2003) with constitutively over-expressing TOCl abolishing 

rhythmic expression of all putative clock genes tested thus far (Makino et ai., 2002). 

TOCl is the first identified member of the PSUEDO-RESPONSE REGULATOR 

family (PRR-l), which has a peak expression at dusk, with slowly decreasing levels 

throughout the night (Strayer et ai., 2000; Mizoguchi et ai., 2002). The TOe 1 protein 

levels peak in the middle of the subjective night and is degraded by ZEITLUPE (ZTL) 

via the 26S proteasomal pathway as the morning progresses (Mas et ai., 2003). The 

nuclear localised TOe 1 protein indirectly promotes the expression of two Myb­

domain transcription factors CIRCADIAN CLOCK ASSOCIATED 1 (CCAl) and 

LATE ELONGATED HYPOCOTYL (LHy), which have peak expression at dawn. 
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1.3.2 LHY. 

LHY was first identified as a late flowering and long hypocotyl mutant, which was 

later shown to be arrhythmic with regard to circadian phenotypes (Schaffer et al., 

1998). LHYloss-of -function mutation shortens the period by 1-2 hours (Mizoguchi et 

al., 2002; Alabadi et al., 2002) and LHY overexpression resulted in arrhythmicity of 

leaf movements and clock controlled genes including LIGHT HARVESTING 

CHLOROPHYLL AlB BINDING PROTEIN (LCHB) and COLD AND CIRCADIAN 

REGULATED 2 (CCR2) (Schaffer et al., 1998). LHY mRNA levels peak in the 

subjective morning and decrease as the day progresses. LHY is post-translationally 

modified by DE-ETIOLATED 1 (DETl) and degraded via the proteasomal pathway 

(Song and Carre, 2001). 

1.3.3. CCA1 

CCA 1 was first identified as a protein that binds to cytosine and adenine rich 

sequences in the CAB promoter (Wang and Tobin, 1998). It is a DNA binding protein 

that recognises an asymmetric DNA sequence AAAATCT (the CCAI binding site 

(CBS)) and also AAATATCT (the evening element (EE)), which is found in the 

promoters of several important clock genes. As with LHY, overexpression of CCAl 

results in arrhythmia of clock controlled genes (Wang and Tobin, 1998) and the cca} 

loss-of-function mutation causes a period shortening of 1-2 h (Alabadi et al., 2002). 

Furthermore, CCA 1 also exhibits peak expression at dusk. 

1.3.4. The TOC1· LHY I CCA1 feedback loop 

The simplest and best understood model of the Arabidopsis central oscillator is 

composed of LHY / CCAl and TOCl, forming a single negative and positive 

transcriptional/translational feedback loop (Alabadi et al., 2001) (Fig. 1.3). LHYand 

CCAl encode Myb-domain transcription factors that have a large degree of sequence 

similarity and are partially redundant with respect to the clock (Schaffer et al., 1998; 

Mizoguchi et al., 2002). The fact that neither the LHY or CCAl loss-of-function 

mutants cause general arrhythmia for genes tested, but instead shorten the period by 
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1-2 h is evidence for this. However, overexpression of LHYand / or CCA] still cause 

large disruption to rhythms tested and the double Ihy:cca] mutant results in a 

severally disrupted clock (arrhythmia after release from entrainment) (Alabadi et al., 

2002), indicating that they are important for proper clock functioning. 

The feedback loop is proposed to function as follows: LHYand CCA] are expressed 

rhythmically with peak expression in the subjective morning. The cognate proteins 

reach maximal abundance 2-3 h later where they inhibit expression of TOC] by 

binding to the EE in the TOC] promoter. As the levels of LHY and CCAI increase, 

levels of TOC] decrease and they begin to repress expression of themselves and each 

other. Consequently, as the day progresses, the levels of LHY and CCA] transcripts 

and protein begin to decrease. TOC 1 becomes alleviated from its suppres~ion and 

begins to accumulate with peak TOC] expression during the subjective evening. 

TOCI then up-regulates the expression of LHY and CCA], closing the feedback loop 

and re-initiating the cycle (Fig l.3a and b). 
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Fig 1.3a. Expression of core oscillator genes LHY, CCAI and TOC!. White boxes 
represent subjective day and dark boxes represent subjective night. LHYand CCAl 
expression peaks during the subjective morning. As LHY and CCA 1 repress the 
expression of TOCl, the trough of TOCl is opposite the peak of LHY and CCAl. As 
the day progresses, LHY and CCAI negatively regulate themselves and each other 
reSUlting in trough expression during the sUbjective evening. Free from repression, 
TOC 1 is able to accumulate, with peak expression during the subjective morning. 
TOC 1 positively regulates LHY and CCAl, restarting the cycle. Figure reproduced 
from Schoning and Staiger, 2005. 
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Fig 1.3b. Schematic of the central oscillator feedback loop. Blue rectangles 
indicate genes and green ovals represent proteins. Solid arrows show a positive 
regulatory effect with perpendicular lines indicating repression. Dashed lines between 
genes and proteins signal transcription / translation. CGCs is an abbreviation for 
clock controlled genes. 

This model creates several problems. The evidence for TOC 1 acting as a positive 

regulator comes from reduced LHYand CCAllevels in the tocl-2 mutant (Makino et 

ai. , 2002). However, TOC 1 does not contain any DNA binding motif and levels of 

LHY and CCAl only start to accumulate once TOCI has reached peak abundance. 

Therefore, it appears unlikely that TOCI directly activates LHY and / or CCAl 

expression. Consistent with this view, overexpression of TOCl decreases the 

amplitude of LHY and CCA 1 rather than increasing their rate of induction (Makino et 

ai., 2002). Other proteins are therefore likely to work mutually with TOC1 , as part of 

protein complexes or as individual feedback loops with LHY and CCA1. 

A mathematical model accounting for this has recently been proposed (Locke et ai., 

2005). The authors devised two separate models for the circadian clock to define the 

rhythm mathematically. Each model is defined using a set of differential equations, 

where each equation gives a change of either [protein] or [mRNA] over the circadian 

time (CT). The goodness of fit of these models with respect to real life is then 

calculated over many CTs, and each one has a rank assigned. The ranking of the 

model is given by using a cost-function algorithm. The model fits because no 

significant difference can be found between the model and experimental data. 
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The model stipulates that TOC 1 expression is activated by an unknown component 

'Y', a light induced gene. TOC1 then induces LHYvia hypothetical component 'X'. 

TOC 1 and LHY both repress the expression of Y, closing the loop. Although 

component 'X' remains unidentified, experimental and mathematical data indicate 

that the role of 'V' may be partially performed by OIOANTEA (01) (Locke et ai., 

2005; Mizoguchi et ai., 2005). Conformation of a second feedback loop further 

highlights the complexity of the Arabidopsis central oscillator (Fig 1.4). 
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Fig 1.4. Schematic representation of the central oscillator incorporating a 
mathematical approach. Blue rectangles indicate genes and green ovals represent 
proteins. Solid arrows show a positive regulatory effect with perpendicular lines 
indicating repression. Dashed lines between genes and proteins signal transcription. 
The well-defined LHY / CCA1 - TOC1 loop is extended to include unknown 
component X, which is positively regulated by TOC 1 and results in the up-regulation 
of LHY and CCA 1. Component Y is a proposed positive regulator of TOC1 that is 
negatively regulated by both TOC 1 and LHY protein. The nuclear protein 01 fulfils 
the experimental and mathematical criteria required for component Y. 
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1.4. Other clock related genes 

The presence of two feedback loops that still do not account for the robustness of the 

clock, suggests that there are other components working within the proposed 

feedback loops or forming new loops themselves. Several other genes and their 

protein products have been implicated in playing roles within the central oscillator 

and these are discussed below. 

1.4.1. The PPR family 

Arabidopsis contains a quintet of genes called the PRR family, of which TOC 1 

(PRR1) is a member. They all contain an N-terminal domain which shares sequence 

similarity to the bacterial response receiver domain that is required in 2 component 

transcriptional regulation. (Reviewed in Chapter 2). However, they lack the 

conserved aspartate residue which is usually phosphorylated (Mizuno et al., 2005). At 

their C-terminals they contain a highly homolgous CCT motif (named after the 

proteins it was first discovered in; CONSTANS, CONSTANS-LIKE and TOC1) that 

contains a nuclear localisation signal. The mRNA of the PPR family are expressed 

sequentially between dawn and dusk, every 2-3 h in the order PRR9-PRR7-PRR5-

PRR3-PRRl (Matsushika et al., 2000; Devlin et al., 2002». 

The role of each member was initially difficult to interpret. The single prr mutants 

show a small period variation of 1-1.5 h, with overexpression of individual PRR9, 

P RR5 and P RR3 resulting in only small defects in clock output (Matsushika et al., 

2002; Mizuno and Nakamichi, 2005). These data suggest minor roles for individual 

members of the family. However, the triple mutant prr5 prr7 prr9 has been shown to 

be arrhythmic (Nakamichi et al., 2005), which shows that they are required for proper 

clock functioning and that there may be complex interactions between family 

members with a degree of redundancy present. 

Recent experimental data combined with mathematical modelling have proposed 

another transcriptional feedback loop between PRR 7 / PRR9 - LHY / CCA 1 (Locke 

et al., 2006; Zeilinger et al., 2006). CCA1 positively regulates the expression of 
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P RR 7 and P RR9 by binding to the CBS in their promoters. By contrast, PRR 7 and 

PRR9 negatively regulate the expression of LHY and CCA1 through an unidentified 

mechanism. This negative regulation is supported by the 4-5 h period delay of LHY 

and CCA1 in the prr7 prr9 double mutant (Farre et al., 2005). However, the 

involvement of the PRR family in light entrainment and the complex nature of the 

double and triple mutants, have made their role in the central oscillator difficult to 

deduce. 

1.4.2. EARLY FLOWERING 4 (ELF4) 

ELF 4 is an early flowering mutant. It acts on flowering time by regulation of the 

floral inducer gene co. ELF4 mutants have higher activation of the CO gene. ELF4 

is expressed at a similar phase to that of TOC1 and has been shown to be mandatory 

for normal clock function (Doyle et al., 2002). Loss-of-function elf4 mutant exhibits 

attenuation of free-running periods in all the clock outputs tested, including the 

central oscillator protein CCAI (Doyle et al., 2002). Levels of LHY mRNA are also 

very low in the knockout elf4 mutant (Kikis et al., 2005). Expression of ELF4 is 

repressed by the action of LHY and CCA 1, suggesting another potential feedback 

loop (Kikis et al., 2005). Interestingly, ELF4 also appears to be involved in 

photoperiod perception. The elf4 mutant seedlings are hyposensitive to red light and 

ELF4 mRNA levels are low in the PHYTOCHROME B (PhyB) mutant (Khanna et al., 

2003). Taken together, these suggest that ELF4 is important in PHY-mediated light 

input into the clock. The pleiotropic nature of ELF4 mutants make its precise role 

difficult to determine. A further problem is that the putative ELF4 protein appears to 

be novel in structure, with no known motifs or domains based on primary sequence 

(highlighted in Chapter 2). 

1.4.3. EARLY FLOWERING 3 (ELF3) 

Another early flowering mutant (ELF3) has been shown to be important for light 

input into the clock. The e1f3 mutant displayed rhythmic expression of CCR2 in 

constant darkness (DD), but rhythmicity was abolished in constant light (Hicks et ai., 
1996). Further evidence for its role in light input comes from studies using CAB 

induction. The expression of CAB is rhythmically repressed during the night,. 
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allowing a greater rate of induction during the day (Hicks et al., 2001). In e1f3 

mutants, CAB is constitutively activated, therefore suggesting a role for ELF3 in 

gating light input. Moreover, e1f3 mutants become arrhythmic if pulsed with light 

during the night (Mc Watters et al., 2000). These claims are re-enforced by the 

abundance of ELF3 peaking at dusk when it would be required for repression of light. 

The exactly role of ELF3 is still poorly understood. As with ELF4, the ELF3 protein 

shows no similarity to any other protein based on primary sequence predictions. In 

addition, the phenotypes of the e1f3 mutants seem to be more pronounced in P HY B 

signalling. Although an interaction between PHY Band ELF3 has been shown, the 

elf3 phy B double mutant has an additive effect, indicating that ELF3 may also 

function independently of PHY B in another role (Reed et al., 2000). 

1.4.4. LUX ARRHYHTMO (LUX) 

LUX (also known as (PHYTOCLOCK, PHY)) is a Myb-domain transcription factor 

that has been proposed to function as part of the central oscillator (Hazen et al., 2005; 

Onai et al., 2005). MYB domain transcription factors form a large family of DNA 

binding proteins, with varying numbers of MYB repeats. Each MYB repeat has the 

general architecture of H, H-L-H and it is the H-L-H that is responsible for DNA 

contact (Reviewed in Chapter 2). LUX has an expression profile similar to that of 

TOC]; with peak mRNA levels during the subjective evening. The LUX promoter 

also contains an EE which LHY and CCAI can bind, presumably repressing its 

transcription as with TOC]. The lux mutant shows dampened levels of LHY and 

CCA] mRNA, hinting that it is a positive regulator of both (Hazen et al., 2005). 

Interestingly, the lux mutant has high levels of TOC] transcript which suggests that 

LUX may be important in up-regulating the levels TOCI (Hazen et al., 2005).~ It also 

shows arrhythmia of most clock outputs under constant light and darkness, 

highlighting its importance to the central oscillator. 
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1.4.5. CCA1 HIKING EXPEDITION (CHE) 

A novel high-throughput 'promoter hiking' technique was used to identify 

transcription factors that could bind to promoter fragments of LHY and CCAl 

(Pruneda-Paz et al., 2008). Functional redundancies amongst gene families make 

identification of clock-associated genes difficult using standard forward genetic 

screens. To determine direct LHY / CCAl regulators, a yeast-one hybrid system was 

used to screen transcription factors capable of binding the aforementioned promoters. 

This approach allowed several tiled fragments for each promoter to be used and 

screened against a comprehensive library of circadian regulated transcription factors. 

The authors isolated and characterised a class 1 TCP (TB1, CYC, PCF's) 

transcription factor that bound to a fragment of the CCAl promoter (GGTCCCAC) 

termed the class 1 TCP binding site (TBS) (Pruneda-Paz et al., 2008). Overexpressing 

lines of CHE result in a reduced level of CCAl mRNA and chel and che2 single 

mutants result in an increase in CCAl promoter activity (Pruneda-Paz et al., 2009). 

Taken together, this suggests CHE is a negative regulator of CCAl. Furthermore, 

LHY and CCA 1 can repress the transcription of CHE by binding to the CCA 1 

binding site (CBS) in the CHE promoter. 

As previously discussed, the mechanism by which TOC 1 performs its positive 

function in the oscillator is unclear. CHE has a similar expression profile to TOCl 

and is localised in the nucleus. Yeast two-hybrid screens and co-immunoprecipitation 

indicate that CHE binds to the N -terminal of TOC 1, representing a method for TOC 1 

recruitment to the CCAl promoter, in the absence of a DNA binding motif (Pruneda­

Paz et al., 2008). Overexpressing CHE in cell lines with elevated TOC 1 levels 

produced a significant period shortening that was not present in CHE mutants with 

wild-type TOC 1 levels. This evidence would indicate that CHE may act as an 

antagonist to TOG 1, as well as to unidentified positive CCAl regulators. 
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1.4.6. GI 

The role of 01 in the clock is difficult to interpret as it appears to have numerous 

functions, including inhibition of hypocotyl elongation by red light (Huq et al., 2000, 

induction of flowering under long days (discussed later) and a separate role in the 

oscillator (Mizoguchi et al., 2005). It is a large nuclear protein ( ..... 140 KDa) of 

unknown function that is expressed at a similar phase to TOC 1 (Park et al., 1999). 

The GI promoter contains several EE that LHY and CCAI can bind (Harmer et al., 

2000), postulating at another feedback loop analogous to the LHY I CCAI - TOCI 

loop. Indeed, plants overexpressing LHY show low levels of GI transcript that are 

arrhythmic (Fowler et al., 1999). GI loss-of-function mutants resulted in low levels of 

LHYand CCAI mRNA (Park et al., 1999; Fowler et al., 1999), indicating a positive 

regulatory role. A mathematical model for the core oscillator was proposed (Locke et 

al., 2005) and the authors confirmed that 01 could perform the role of Y, as 

experimental data of 01 was consistent with the model (Fig 1.4). 

01 also interacts with the F-box proteins which are important in targeted degradation 

of central clock components (discussed later) and SPINDLY (SPY), an O-linked P-N­
acetylglucosamine transferase (OOT) which catalyses tbe addition of an O-linked p­
N-acetylglucosamine (O-OlcNAc) to the Ser/Thr of cytosolic and nuclear proteins 

(Wells et al., 2001). This modification is important for localisation and half-life of the 

protein targets. It appears that 01 negatively regulates Spy and this may inhibit or 

down-regulate subsequent O-OlcNAc of protein targets (Tseng et al., 2004). To date, 

no targets have been determined. 

1.5. Entrainment of the clock 

The environment provides many different signals over the duration of the day I night 

cycle, including variation in temperature and both quantity and quality of light. The 

clock has therefore developed a sophisticated method for resetting itself allowing 

entrainment to the environment. If the circadian clock was advanced with respect to 

the environment, rhythmic processes would occur too early arid the entrainment 

. would have to delay its phase. Convers,ely, if the clock was delayed relative to the 

environment, entrainment would have to advance the clock. This can be observed 
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experimentally when a single stimulus, for example a light pulse, is given in constant 

darkness. If the pulse is given at noon, there will be no effect on the clock. However, 

a pulse of light administered before dawn will advance the clock and a pulse of light 

given after dusk will delay the clock. This sensitivity can be plotted as a phase 

response curve (PRC) in which the shift in phase is plotted against the time the 

stimulus is given across the circadian cycle (Fig 1.5). PRC's have characteristic 

shapes for each organism, so the effect of mutants on these curves can highlight 

possible mechanisms of entrainment (Johnson et al., 1999). 
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Fig 1.5. A typical Phase Response Curve for Arabidopsis tllalialla. Following the 
curve through the 24 hour cycle, you find the 'dead zone' during the subjective day 
(CT 2-CT 8). Light pulses given at this time have little or no effect on the phase of 
the clock. As we move to the subjective night, (CT 10 - CT 14) a pulse of light delays 
the clock, in this case by a maximum of 2 hours at CT 14. The slope then reverses 
direction until it reaches a maximal phase advance' in the middle of the subjective 
night. In this example, a light pulse given at CT 18 produces a phase advance of 3 
hours. The curve-falls back to the x intercept as the night progresses, eventually 
reaching the 'dead zone' the following day. 
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1.5.1. Light signalling targets 

Elucidating the candidates required for light' entrainment of the clock remains a 

challenge, although several proteins have been implicated. Light input is negatively 

regulated by ELF3 (as previously discussed); the e1j3 loss-of-function alleles are 

arrhythmic in light, but maintain rhythmicity in constant darkness (Hicks et al., 

1996). TIME FOR COFFEE (TIC) is another protein that appears to have an 

overlapping function with ELF3 in gating light input to the clock. Rhythmicity of 

clock outputs were abolished in tic mutants during the subjective morning (Hall et al., 

2003). The e1j3 tic double mutant showed complete arrhythmia, suggesting gating of 

light by ELF3 in the night and TIC in the day (Hall et al., 2003). 

Light input is positively regulated by SENSITIVITY TO RED LIGHT REDUCED 1 

(SRR1). Srrl mutants were defective in PHYB signalling, but also altered clock 

controlled expression of TOCl and CCA1, indicating a function independent of 

PHYB (Straiger et al., 2003). The role of SRRI with respect to the oscillator remains 

unclear. 

A well characterised part of the input of light to the central oscillator involves the 

basic-helix-Ioop-helix protein transcriptional regulator. PHYTOCHROME 

INTERACTING FACTOR3 (PIF3). PIF3 binds to the G-box located in the LHYand 

CCAl promoters, thereby inducing their expression (Martinez-Garcia et al., 2000). 

The DNA-bound PIF binds to PHYB in its active form «Martinez-Garcia et al., 

2000), providing a direct mechanism for light regulation of the negative arm of the 

central oscillator feedback loop. Interestingly, pif3 knockouts do not result in 

alteration in period length of gene expression of LHY and CCA1. This would imply 

that other components are required for PIF3 function (Martinez-Garcia et al., 2000). 
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1.5.2. Light Input 

All organisms require methods of environmental perception in order to survIve. 

Plants rely on sunlight as their sole source of energy and being sessile, it is no 

surprise that they have acquired a sophisticated photoreceptor system. The 

photoreceptors perceive the external light cues and make adjustments that alter the 

developmental and physiological processes in a light-specific manner (Mathews, 

2006). As chlorophyll has evolved to detect both red and blue absorption spectra, 

four kinds of photoreceptor are present in plants; Phytochromes, Cryptochromes, 

Phototropins and a novel family of F-box proteins. 

1.5.2.1 Red light photoreceptors 

In Arabidopsis the red / far red light detecting phytochromes are encoded by five 

genes, PHYA-E. Phytochromes are dimers that consist of two identical apoproteins 

covalently linked to a linear tetrapyrolebilin compound that acts as a chromophore 

(Phytochromobilin). This can undergo a reversible polymerisation between two states 

depending upon the wavelength of light it receives. After initial assembly of the 

Phytochrome, it absorbs at 666nm (red light) and this is the biologically active form 

called Pro Once red light is absorbed, the PhYtochromobilin undergoes a 

conformational change that results in the Pfr form which interacts with plant proteins 

in the cytosol or nucleus (after translocation), therefore inducing a light response 

(Reviewed in Rockwell et al., 2006). The conformational change is due to a Z-to-E 

photoisomerisation of the C 15=C 16 double bond in the tetrpyrole ring (current 

research is looking at the intermediate structural changes between Pr and Pfr). The 

ability of the Phytochromobilin to revert between the Pr and Pfr form allows it to act 

as a biological switch, turned on by absorption of red light and off by absorption of 

far-red light. 

The Phytochromes have overlapping roles in Arabidopsis. However, they all show 

different molecular and spectral properties indicating many indiyidual functions as 

well. For example, PHY A promotes seed germination and de-etiolation under far-re~ 

. light (FR) and also promotes flowering. I~ stark contrast, PHYB delays flowering, but 

like PHY A promotes seed germination and de-etiolation, this time in response to red 
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light (R) (Reviewed in Thomas, 2006). The other three Arabidopsis Phytochromes 

also display distinct but overlapping functions. 

1.5.2.2. Blue light Photoreceptors 

The effect of blue light on Plant development has been understood since the 

beginning of the 19th century, but the photoreceptors responsible for blue light 

perception have only recently been deduced (Cashmore et al., 1999; Briggs et al., 

2002). In Arabidopsis, the cryptochromes are encoded by two genes; 

CRYPTOCHROME 1 (CRY1) and 2 (CRY2) and were initially isolated by their role 

in the inhibition of stem elongation (Ahmad et al., 1993; Lin et al., 1998). 

Cryptochromes are flavoproteins that show a remarkable similarity to bacterial DNA 

lyases, and have also been found in mammals and flies, where they play an important 

role in blue-light photoreception and as crucial components of the circadian clock 

(van Gelder et al., 2002). In Arabidopsis, it appears that CRY2 is the principle blue­

light photoreceptor in the regulation of flowering time. The evidence for this stems 

from the late flowering phenotype of cry 2 mutants during long but not short days 

(Koomneef et al., 1991; Guo et al., 1998). Interestingly, the cry2 mutant also has an 

effect on entrainment of the clock under white light (Mas et al., 2000) which would 

suggest some convergence between CR Y2 and the phytochrome signalling pathway. 

Indeed, CRY2 has been shown to interact with PHYB where they co-localise to the 

nucleus (Mas et al., 2000). Additionally, the cry mutants show an altered entrainment 

under red light indicating that they are required in PHY A signalling to the clock 

(Devlin and Kay, 2001). So, under both red and blue light CRY2 regulates flowering 

time redundantly with CRY1 and PHYA. 

The photoreceptor signalling pathways to the clock are not yet fully 'understood and 

the connections between the photoreceptors themselves require characterisation. 

Their largely overlapping roles make their function in the clock difficult to interpret. 

Furthermore, the phyA phyB cry1 cry2 quadruple mutant still responds to the light 

signals that set the clock maintaining rhythmicity (Yanovsky et al., 2000), suggesting 

, that additional components are required for proper light signalling. 
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1.5.2.3. Phototropins and the F-box proteins 

Phototropins 1 and 2 (Photl and Phot2) have an important function in blue-light 

phototrophic responses and are known to playa role in rapid processes including 

stomatal opening and chloroplast movement (Briggs and Christie, 2002). Both 

phototropins contain two light-oxygen-voltage (LOV) domains that non-covalently 

bind Flavin MonoNucleotide (FMN) in the dark. Blue light triggers the covalent 

attachment of the FMN molecule to each LOV domain, resulting in a conformational 

change that enhances the activity of a C-terminal Ser/Thr kinase domain (Christie, 

2007; Tokutomi et al., 2008). Although the phototropins autophosphorylate in vitro, 

the kinase targets in planta remain unidentified (Christie, 2007). As yet, the 

phototropins have not been implicated in controlling circadian processes. That said, 

the phototropin chromophore binding site (P AS/LOV domain) is highly similar to the 

PAS (period circadian protein, Ah receptor nulclear translocator protein and single­

minded protein) signal sensor domain present in a novel family ofF-box proteins that 

regulate flowering time and circadian rhythms in Arabidopsis (Nelson et al., 2000; 

Klyosue et al., 2000; Schultz et ai., 2001; Jarillo et al., 2001). 

The novel gene family consists of ZTL, FLAVIN-BINDING, KELCH REPEAT, F­

BOX 1 (FKF1) and LOV, KELCH PROTEIN 2 (LKP2). These proteins all contain 

six kelch repeats (protein:protein interaction), a LOV domain (allows blue-light 

photoreception) and an F -box domain. The F -box motif is present in proteins that act 

as adapters, bringing substrates to ubiquitin protein ligase subunits for degradation via 

the proteasomal pathway (Craig and Tyers, 1999). Indeed, it has been shown that 

ZTL forms part of a Skp/CulliniF -box (SCF) E3 ubiquitin ligase complex (Mas et al., 

2003; Harman et al., 2008). The unique combination of domains found in this family 

of proteins, implies involvement in light-dependant degradation of clock components. 

Clock proteins TOC 1 and PRR5 are both substrates of ZTL and they are degraded 

via the SCFZTL pathway in a blue-light dependant manner (Mas et al., 2003; Harmon 

et al., 2008). More recent studies have also shown a physical interaction between 

ZTL and GI upon photoexcitation (Kim et al., 2007). The interaction stabilises both 

ZTL and GI and may prevent ZTL from interacting with its substrates TOCI ana 

'PRR5 during the day, leading to decreased degradation of TOC 1 and increased 

degradation during the night (Mas et al., 2003; David et al., 2006; Kiba et al., 2007; . 
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Kim et al., 2007; Fujiwara et al., 2008). Recent research has added a further layer of 

complexity by showing that PRR3 directly binds to TOC 1, leading to a decreased 

efficiency of ZTL-TOC 1 binding (Para et al., 2007). Thus, PRR3 is important in 

stabilising TOC 1, preventing its degradation by inhibiting recruitment of TOC 1 to the 

SCFZTL complex. 

FKFI indirectly promotes the expression of flowering regulator CO (Turck et al., 

2008). FKFI has been sh~wn to affect the stability of Cycling Dof Factor 1 (CDFl) 

which directly represses CO expression (Sawa et al., 2007). Interestingly, FKFI also 

associates with 01 in a blue-light dependant manner. Only when OI-FKFI-CDFI 

form a complex, is CDFI degraded (Sawa et al., 2007). This enables circadian 

regulation of CO so that expression is maximal during the afternoon in Long-day 

plants (LDPs). 

The third member of the family, LKP2 differs from ZTL and FKFI in that it only 

contains a single LOV and PAS domain. LKP 2 overexpressing lines cause arrhythmia 

of the clock under constant conditions (Schultz et al., 2001), but no substrates have 

yet been identified. Therefore, further studies will be required to deduce the function 

ofLKP2. 

It is apparent that we do not fully understand the roles of the photoreceptors and F­

box proteins in the clock. It is particularly difficult to place the members of the ZTL 

family (that show such a diverse number of potential interactions) as input or central 

clock components. One important problem that remains to be addressed is role of F­

box proteins in photo-entrainment. ZTL has been shown to interact with PHYB and 

CRYl, but the relevance of such interactions remains unexplored (Jarillo et al., 

2001). 
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1.5.3. Circadian regulation of light input 

The circadian clock is able to control its own response to light by gating light input 

signals. The mRNA levels of all PHYs and CRYs are all under circadian control 

(Kozma-Bognar and Kaldi, 2008), although the protein levels themselves may not 

cycle. The exact control of photoreceptor protein levels are complex and remain 

unclear. CRY1, PHYB and PHYE levels are not rhythmically controlled (Kozma­

Bognar and Kaldi, 2008), CR Y2 is unstable in blue light (Sharrock and Clack, 2002), 

CR Y2 and PHY A protein levels cycle in short but not long days (Yanovsky et af., 

2001) and there is evidence supporting a range of post-translational modifications 

including phosporylation, nucleo-cytoplasmic partitioning and nuclear translocation 

of the photoreceptors (Reviewed in Mockler et af., 2003). 

1.5.4. Temperature input 

One of the key criteria for a circadian rhythm is that it has to be temperature 

compensated. Very little is known about how robust rhythms are maintained over a 

broad range of physiological temperatures in pfants. Research in Drosphila has 

highlighted temperature-dependant mRNA splices and protein variants of the central 

clock protein PERIOD (PER) (Sawyer et af., 1997). In Neurospora, FREQUENCY 

(FRQ) is a central clock component that appears in two isoforms. Mutants that lack 

either isoform are only rhythmic over a short range of temperatures (Liu et al., 1997). 

Taken together, these studies suggest that temperature compensation is a fundamental 

property of core clock components. A study by Locke et af, looked for changes of 

gene expression over a wide range of temperatures for central clock components 

TOC1, GI, LHYand CCA1. Levels of LHY mRNA decreased with an increase in 

temperature and this was count~r-balanced by an increase in the expression of TOCl 

and GI (Locke et .af., 2006). Conversely, CCAl mRNA was not affected at higher 

temperatures, but CCAl mRNA levels did increase under lower temperatures (Locke 

et af., 2006). By combining mathematical modelling and the observation of many gi 
. ' 

mutants over a wide range of temperatures, the authors' concluded; LHYand GI fo~ 

,an antagonistic counter-balance at higher,temperatures to compensate the clock and at 

lower temperatures LHY is replaced by CCA1. This suggests a critical function of GI 
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In controlling temperature compensation of the clock, extending the range of 

temperature that can rhythmicity can be maintained (Locke et al., 2006). 

In addition to GI members of the PRR family have also been implicated in 

temperature compensation of the clock. The prr7-3 and prr9-1 mutants impaired the 

clocks response to thermocycles, with a prr7-3 prr9-1 double mutant showing greater 

clock defect than either single mutant (Gould et al., 2006). Importantly, the double 

mutant failed to reset the clock in response to temperature pulses and also failed to 

maintain rhythmicity in the dark; showing that these responses are light-independent 

(Gould et ai., 2006). 

Despite these findings, very little is understood about temperature input and much 

work needs to be done. The implications of such research could one day help us 

modify or enhance the performance of plants, allowing us to extend the geographical 

range conductive to growth. 

1.6. Post-transcriptional regulation of the Plant clock 

Phosphorylation is an important process in Drosophila, Neurospora and 

cyanobacteria clock functioning. At least one clock protein in each organism is 

phosphorylated before it is targeted for degradation. In Arabidopsis, the casein kinase 

CK2 has been shown to phosphorylate CCAI in vitro. Overexpression of the CK2 

subunit CKB3 results in short period circadian rhythms of several clock components 

(Sugano et al., 1999). Furthermore, overexpression of a CCAI mutant that could not 

be phosphorylated resulted in a shortening of period (Daniel et al., 2004), suggesting 

phosphorylation is required for CCA1 circadian function. Interestingly, CK2 can also 

phosphorylate LHY in vitro, suggesting a similar method of regulation to that of 

CCA1 (Sugano et ul., 1999). 

PRR3 is also phosporylated by a circadian regulate kinase WITH NO LYSINE 

(WNK1), but the significance of this remains unclear (Murakami-Kojima et ai., 

2002). 
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As previously discussed, the novel ZTL family of proteins are important in targeting a 

range of clock proteins for degradation. In addition to this family, two other proteins 

are required for light-input targeted degradation. DETl and CONSTITUTIVELY 

PHOTOMORPHOGENIC 1 (COPl) negatively regulate light input to the clock. 

DETl targets LHY for degradation (Song and Carre, 2005) and COPl (an E3 

ubiquitin ligase) is presumed to function in a similar manner. The detl and copl 

single mutations result in a shortening of period in constant light (Millar et al., 1995b; 

Song and Carre, 2005), al~hough DETl may also have a light-independent role close 

to or in the central oscillator (Song and Carre, 2005). 

1.6.1. Unique role for LIGHT INSENSITIVE PERIOD 1 (LIP1) 

LIPl is the first GTPase that has been implicated in circadian clock in higher plants. 

GTPases are molecular switches that shuttle between a non-active GDP-bound state 

to an active GTP-bound state. GTPases are split into five sub-families based on 

structural and functional similarity. LIPl represents a novel sub-family as it lacks 

certain fundamental properties of classic GTPases, including replacement of the 

catalytic glutamine94 (Q94) for a Histidine (H) (Kevei et al., 2007). This base 

substitution results in a constitutively active state protein that still binds GTP. LIPl is 

proposed to playa negative role in controlling circadian period that is suppressed by 

light in a fluence-rate dependant manner (Kevei et al., 2007). The /ipl-l mutant 

shows hypersensitivity to light pulses particularly in the first half of the subjective 

evening, resulting in large phase delays according to PRes generated (Kevei et al., 

2007). It is not known how LIP 1 negatively regulates the resetting of the clock. There 

are parallels with ELF3 and ZTL function; ELF3 attenuates light signalling in a 

similar way to LIP 1 albeit at a later phase and ZTL regulates period length opposite 

to that of LIPl. However, the evidence suggests that LIPl exerts its clock controlling 

properties by altering the distribution and or abundance of an unknown target (Kevei 

et al., 2007). 
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Fig. 1.6. Model of the plant circadian clock. This model is an overview of putative 
central oscillator components discussed. Blue rectangles indicate genes and green 
ovals represent proteins. Solid arrows show a positive regulatory effect with 
perpendicular lines indicating repression. Dashed lines between genes and proteins 
signal transcription I translation. 
The well described LHY/CCAl - TOCl feedback loop is extended to include the 
mathematical model proteins 'X' and 'V' (Locke et ai. , 2005), as well as other loops 
including LUX, ELF4 and PRR7/PRR9. The red and blue light perceiving 
phytochromes and cryptochromes entrain the clock to the photoperiod by 
upregulating the expression of LHY and CCA1. Some proteins involved in light input 
are also included. Post-translational modification of clock components is important 
and the well defined interactions between degradation of TOC 1 by ZTL and 
phosphorylation of CCA 1 by CK2 are highlighted. Other proteins previously 
discussed are omitted for clarity. , 
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1.7. Clock outputs 

The clock regulates many developmental and cellular processes through the entire life 

of a plant. The outputs from the central oscillator are responsible for the rhythmic 

control of biochemical and physiological processes including germination, 

photosynthesis, flowering and scent production. At present, little is known about how 

the clock provides temporal information to the output pathways that result in altered 

physiological responses. That said it is likely that rhythms ~n steady-state transcript 

abundance are the major output for rhythmicity, especially when considering many of 

the core clock components are transcription factors. 

Microarray analysis of the Arabidopsis genome has been a valuable tool for 

identification of clock controlled genes (Harmer et al., 2000; Schaffer et al., 2001). 

Transcripts that encode proteins functioning in related metabolic and physiological 

pathways tend to be co-expressed. This is true for transcripts encoding proteins 

involved in flowering, flavinoid and lignin synthesis, carbon metabolism, nitrogen 

fixation and photosynthesis (Harmer et al., 2000). Indeed, photosynthetic genes are 

expressed at high levels around mid-day, where the protein products are able to utilise 

light most efficiently (Harmer et al., 2000). Similarly, ~.large set of genes involved in 

the biosynthesis of photo-protective pigments peak co-ordinately just before dusk, 

when they will be required to protect the plant from damage by UV -Blight (Schaffer 

et al., 2001). The genes involved in auxin-transport and cell elongation also show co­

regulation, as they are maximally expressed during the subjective afternoon where 

elongation rates are at their greatest (Harmer et al., 2000). Collectively, analysis of 

gene expression suggests that many of the physiological processes controlled by the 

clock are a result of rhythmic transcript abundance. The challenge is to now elucidate 

the regulatory gene networks and how they are connected to physiology and 

development. 

Although the· exact mechanisms and gene networks for circadian control of 

development are not known, we do have information which implic.at~s the clock from 

the earliest stage of development to the later stages of flowering and reproduction. . 
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The circadian clock may playa role in the earliest life ~tage of a plant as germination 

is controlled by day length (Baskin and Baskin, 1976; Densmore, 1997). The fact that 

photoperiod is a requirement for germination in some species indicates the 

functioning of the clock in seedlings. Evidence that supports this notion includes, 

imbibition (absorbance of water) by Arabidopsis seedlings synchronising circadian­

controlled gene expression (Zhong et al., 1998) and gas exchange in Allium cepa 

seedlings maintain rhythmicity in darkness (Bryant, 1972). 

During plant growth the circadian clock partially controls the elongation of 

hypocotyls (Dowson-day and Millar, 1999), cotyledon and leaf movements 

(Englemann and Johnson, 1998) and stem circumnutations (Niinuma et al., 2005). In 

fact, these processes have been useful in the identification of putative clock 

components. In addition, the clock has been show important in shade-avoidance 

responses that result in stem and petiole growth when a plant is in competition for 

light (Niinuma et ai., 2005). 

Parts of the reproductive plant cycle are also controlled by the clock. As previously 

discussed, several components of the core oscillator .. are important in controlling 

rhythmic expression of the floral inducer CO which results in the switch from 

vegetative growth to flowering. Interestingly, pollination is also likely to be partially 

controlled by the clock. In Arabidopsis, the flowers open in the morning when 

pollinators are most active and close in the evening maximising damage limitation 

(van Doom and van Meeteren, 2003). Plants also release their scent so that it concurs 

at the same time pollinators are likely to be present (Overland, 1960) thereby 

increasing the chances of successful pollination. 
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1.8. Gaps in our Knowledge 

The current model of the circadian clock is primarily based on genetic screens which 

can only postulate at a particular function within the clock. As many of the inputs and 

outputs from the clock overlap with the central oscillator function it is difficult to 

determine where some of the putative oscillator proteins function in the regulation of 

the clock. Only some biochemical interactions have been elucidated at the protein 

level and this is an area which needs to be addressed. To build a complete picture, the 

interactions of the proteins with each other and with the genes of the central oscillator 

need to be deciphered as genetic screens are reaching saturation in the identification 

of clock components. 

One major problem is that several of the key regulators of the central oscillator are 

plant-specific proteins that are novel in structure. Positive LHYand CCAJ regulators 

ELF3, ELF4 and GI contain no known domains based on their primary amino acid 

. sequence. In short, how do they perform their perceived functions? Do' they form 

individual feedback loops with LHY and CCA 1, or is there some convergence of 

these loops? As these proteins are expressed at a similar circadian phase, it would 

seem logical that they may form protein complexe~ with each or with as yet 

unidentified clock components. This is particularly likely for TOC 1 which contains 

no known DNA binding domain and must therefore regulate LHY and CCAJ 

indirectly. 

Looking at 'these proteins from a structural stand-point may be beneficial in several 

ways. Firstly, by obtaining x-crystallographic data we can infer protein function 

based on active sites and domains discovered. This may help us determine specific 

functions and interactions of the clock proteins. More interestingly though, -is the 

possibility of identifying novel· folds and domains, which could have implications for 

understanding protein function beyond the lim~ts of the clock network. 
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1.9. Aims 

This aim of this thesis is to address the current gap in the knowledge of circadian 

protein function by a structural analysis. The initial aim is to attempt to express the 

circadian related proteins in E. coli and to determine which of these proteins express 

well enough for purification. The subsequent aim is to develop a purification protocol 

that will allow the production of mg quantities of protein for use in crystallography 

screening. Particular emphasis is placed on obtaining the positive regulators of LHY 

and CCAl; TOCt, ELF3·~ ELF4 and 01. These proteins are of unknown function and 

represent plant-specific novel structures, making them a highly desirable target for 

crystallisation and structural analysis. 
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Chapter 2. Bioinformatics 

2.1. Introduction 

The majority of our understanding of circadian clock associated proteins has come 

from genetic based evidence. This has led to a complicated picture of possible 

protein functions and interactions, but has yet to elucidate protein functionality at a 

biochemical level. Whilst the last several years have shed light into some 

interactions, the specific details of these remain largely unknown. To gain insight 

into the workings and importance of these proteins it is useful to employ a range of 

computational techniques. This approach not only provides insight into the structure 

of the proteins but also highlights the interest and potential importance of how a 

structurally based project could help our current understanding of the circadian 

clock. 

In addition to the standard tools used in bioinformatics, one recent publication has 

provided a significant advance in the prediction of protein structure (Kelley et al., 

2009). The protein homology / analogy recognition engine (Phyre) is similar to other 

protein prediction tools in that it uses algorithms th~t match sequences based on 

three- dimensional (3D) structures that have been experimentally elucidated. This 

allows the researcher to build their own model based on existing knowledge that the 

number of folds found in nature is limited, and that remotely homologous sequences 

tend to adopt similar structures (Baker and Sali et al., 2001). Although prediction of 

structure based on primary sequences remains the 'holy grail' of bioinformatics, the 

Phyre server provides a user-friendly interface that improves prediction and 

interpretation over pre-existing programmes. 

The Phyre servet:. uses the library of solved protein structures contained in the 

Structural Classification of Proteins (SCOP) (Murzin et al., 1995) database, as well 

as the more recent structures deposited in the Protein Data Bank.(PDB) (Berman et 

al., 2000). The user submits a sequence (query) which is scaMed against a non.­

redundal1t sequence database, creating a, profile. This profile is then queried against 

three independent secondary structure programmes; Psi-Pred (McGuffin et al., 
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2000), SSPro (Pollastri et ai., 2002) and JNet (Cole et ai., 2008), which show 

residues involved in the formation of a-helices, p-sheets and coils with confidence 

scores given for each residue. The secondary structure is then scanned against a fold­

library using an algorithm that matches profile-profile alignments (Bennett-Lovesey 

et al., 2008). The algorithm returns a score on which alignments are ranked, 

returning the top ten fitted alignments fitted to an extreme value distribution (E­

value). The top ten hits are then used to construct models of the query sequence . 

. -

It is in the interpretation of the data that the Phyre server really aids when trying to 

postulate protein structure and function. For a full review on interpreting the outputs 

from the server, see Kelley et al., 2009. 

This chapter focuses on a combination of bioinformatic techniques to gain insight 

into the circadian clock proteins. There is no hard and fast method of summarising 

the findings and so effort has been made to condense the results and to highlight 

uncertainty.- This chapter also breaks from convention, by combining results and 

discussions as appropriate. In addition, as the Phyre server returns matches of known 

protein families, a considerable amount of information regarding the background of 

such families is included. Whilst some of this could have been presented in the main 

introduction, it appears more sensible to keep the structural analysis separate but 

provide sufficient information to aid with explanation of the results. 

The Biophysical properties of the circadian-associated proteins are highlighted in 

Table 1. These are used as references through-out the thesis. 
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Protein Number of Mw (Oa) Isoelectric point (pi) Molecular Extinction coefficient 19 I L Instability Index GRAVY 
I amino acids 

TOC1 618 69,195 7.13 44,880 0.649 51.67 -0.818 
TOC1-PRR 312 34,690 6.14 29,520 0.851 34.57 -0.297 

LHY 645 70,425 5.77 50,670 0.719 48.03 -0.741 
CCA1 608 66,976 5.70 48,700 0.727 60.51 -0.933 
LUX 323 34,649 5.47 25,900 0.747 47.12 -0.790 

ELF3 695 77,205 8.63 36,060 0.467 62.32 -0.918 
ELF4 111 12,376 8.16 6,970 0.563 57.96 -1.046 

GI 1173 127,876 6.60 158,050 1.236 48.96 -0.053 
Spy' 914 101,430 5.98 108,400 1.069 37.75 -0.214 
ZTL 609 65,906 5.44 99,110 1.504 38.33 -0.079 

LKP2 611 66,351 5.16 100,840 1.52 38.37 -0.091 
FKF1 619 69,116 6.06 90,045 1.303 49.63 -0.236 
SRR1 275 31,474 4.97 37,530 1.192 61.01 -0.436 
LlP1 342 37,741 8.97 43,810 1.161 55.29 -0.517 

Table 1. Biophysical properties of clock-associated proteins. Gene sequences were obtained from PubMed and then 
submitted for BLASTp (Altschul et al., 1997) at the ExSPASy server. Outputs were linked to ProtParam (Gasteiger et al. 
2005) and the information provided in the table is taken from this prediction. 
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2.2. Plant response regulators 

In prokaryotes, two component signalling systems provide a quick and effective 

method of signal transduction through a large number of cells. This system is based a 

His-Asp phosphorelay system involving a histidine protein kinase (HK) and a 

response regulator (RR). The HK acts as a sensor for an input, which when 

stimulated phosphorylates its cognate RR. The RR is then responsible for modulating 

gene expression and / or any other cellular output. This process depends on the 

transfer of A TP onto a conserved histidine, serine, threonine or tyrosine, and then . 

subsequent phosphorylation. Additionally, a histidine containing phosphor­

transmitter (HPt) is frequently employed as an intermediate in the phosphorelay 

between the HK and RR domains (Fig 2.1). 
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Input 
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Input 
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~ ___ .. H 
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• 
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Output 
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Receiver Output 
domain domain .. 

• 1S21 ~ 
HPt 

domain 

Output 

Fig 2.1. A schematic overvie,v of classic two component systems. (A) The 
canonical phosphorelay pathway. The input domain senses the stimulus which 
induces autophosphorylation of a conserved histidine (H) in the presence of ATP. 
The phosphoryl group (P) is transferred to the receiver domain to a conserved Asp 
residue (D), which drives output pathways. (B) A two component signalling system, 
where the input domain, transmitter domain and response receiver domain are part of 
the same polypeptide. In this instance, HPt domain is phosphorylated and acts as an 
intermediate between the hybrid histidine kinase domain and. another response 
regulator domain. 
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Initially, it was suspected that these TCS were specific to prokaryotes, as it differs so 

widely from known eukaryotic signal transduction· pathways. However, many 

instances of phosphorelay systems have been found in eukaryotes with special focus 

in the higher plant Arabidopsis thaliana. In Arabidopsis, the response receiver 

domain (ARR) contains an invariant Asp phospho-accepting residue and these can be 

classified into three major sub-groups based on structural similarities; type-A ARRs, 

type-B ARRs and pseudo response regulators (APRRs). The APRRs are distinct 

from other RRs in that th.ey do not contain the essential phosphor-accepting Asp site. 

Indeed, it was assumed that the APRRs do not undergo phosphorylation and 

therefore do not act in typical His-Asp phosphorelay pathways. Recent evidence 

suggests that the APRR 7/5/3 and TOC 1 are phosphorylated in vivo, with the degree 

of phosphorylation dependant upon circadian period and therefore linked to function; 

enhanced binding or targeted degradation (Fujiwara et al., 2008) . 

. In addition to the RR domain, the plant ARRs are classified according to their C­

terminal extensions (Fig 2.2). Whilst the Type-A ARRs only contain a short C­

terminal extension, the Type-B ARRs consist of a functional GARP (maize Golden 

2, ARR; Arabidopsis response regulators and Psrl; phosphorus stress responsel from 

Chlamydomonas) domain. The GARP domain is involved in DNA binding and is 

distantly related to the MYB-domain transcription factors, including LHY / CCAI. 

Finally, the PRRs have a conserved CCT (CONSTANS, CONSTANS-Like, TOCt) 

motif at their C-terminus, which is typical of the CONSTANS-like transcription 

factors; rich in basic residues and containing a nuclear localisation sequence (NLS). 

Downstream from the CCT, is a stretch of acidic residues that may be a 

transcriptional activation domain, suggesting that these proteins may be acting as 

nuclear transcription factors (Strayer et al., 2000). 
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D I- Type-AARRs 

D I GARP I Type-B ARRs 

E CCT PRRs 

Receiver Output 
domain domain 

Fig. 2.2. Schematic representation and classification of Plant response 
regulators (ARRs). The Pseudo-response regulators (PRR) contain a phospho­
accepting glutamate (E) instead of aspartate (D) in their response receiver domain. 
Type-A ARRs contain only a modest C-terminal extension, whilst Type-B ARRs 
contain a GARP domain and the PRRs contain the CCT motif. 

2.2.1 TOC1 and the PRR family 

As previously discussed, the role of the PRR proteins in the circadian clock is very 

difficult to interpret. As TOC 1 was the first PRR protein to be described and its role 

in the circadian clock is arguably the best understood, we focus on this protein as a 

reference for elucidating how the other PRR's may function. The PRR's have a very 

high degree of sequence similarity as shown in a ClustalW alignment (Thompson et 

al., 1994) overleaf (Fig 2.3). The pseudo response receiver domain and the CCT are 

indicated in boxes, with the conserved E (Glu68 with reference to TOC 1) highlighted 

in red. The high sequence similarity in these regions suggests that the PRR proteins 

are acting in similar processes, even if they act on different targets. 

At the start of this body of work, the focus was only on TOC 1. As previously 

discussed, TOC 1 has no known DNA binding motif therefore suggesting other 

proteins are required for its perceived function. Previous attempts to expre~ss full 

length TOC 1 were unsuccessful, so work focused on the expression and purification 

of the truncated TOC I-PRR domain (residues 1-145). Full length TOC 1 submission 

to the Phyre server results in a list of ten response receiver domains that are termed 

CheY-like, with E-values > xl0-24 and estimated precision of 100 %. Indeed, 

submission of the PRR domain retrieves the· exact same list, albeit increased 

sequence identity. 
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PRR3 ------------------------------------------------------------
PRR7 ------------------------------------------------------------
PRR5 MWQTWPRQPILLDIFSNPNTLSTTVRSWSVRHPLSI ITVKTFARFFLDIFFSPHYYRKNK 60 
TOC1 ------------------------------------------------------------

PRR3 -----------------MCFNNIETGDEVETERQVFGSSEED--EFRVEDTARN--TNNV 39 
PRR7 -----------------MNANEEGEGSRYPITDRKTGETKFDRVESRTEKHSEEEKTNGI 43 
PRR5 VLFFALFSFISPLTNILICFVTVSLSLELSSSSSIIDLGFSKLSVCVVIMTSSEEVVEVT 120 
TOC1 ------------------------------------------------------------

PRR3 QISQQQ------------- QQPLAHVVKWERYLPVRSLKVLLVENDDSTRHIVTALLKN 85 
PRR7 TMDVRNGSSGGLQI----PISQQTAATVCWERFLHVRTIRVLLVENDDCTRYIVTALLRN 99 
PRR5 VVKAPEAGGGKLSRRKIRKFDAGVDGLVKWERFLPKIALRVLLVEADDSTRQllAALLRK 180 
TOC1 ------------------- MDLNGECKGGDGFIDRSRVRILLCDNDSTSLGEVFTLLSE 40 

: : : ** : *. . : : ** : 

PRR3 CSYEVTAVPDVLEAWRILEDEKSCIDLVLTEVDMPVHSGTGLLSKIMSHKTLKNIPVIMM 145 
PRR7 CSYEVVEASNGIQAWKVLEDLNNHIDIVLTEVIMPYLSGIGLLCKILNHKSRRNIPVIMM 159 
PRR5 CSYRVAAVPDGLKAWEMLKGKPESVDLILTEVDLPSISGYALLTLIMEHDICKNIPVIMM 240 
TOC1 CSYQVTAVKSARQVIDALNAEGPDIDllLAEIDLPMAKGMKMLRYITRDKDLRRIPVIMM 100 

***.* ... * : : *: : *: *: : * * :* * : .****** 

PRR3 SSHDSMVLVFKCLSNGAVDFLVKPIRKNELKNLWQHVWRRCHSS-----SGSGSESGIHD 200 
PRR7 SSHDSMGLVFKCLSKGAVDFLVKPIRKNELKILWQHVWRRCQSS-----SGSGSESGTHQ 214 
PRR5 STQDSVNTVYKCMLKGAADYLVKPLRRNELRNLWQHVWRRQTSL-----APDSFPWNESV 295 
TOC1 SRQDEVPVVVKCLKLGAADYLVKPLRTNELLNLWTHMWRRRRMLGLAEKNMLSYDFDLVG 160 

* :*.: * **: **.*:****:* *** ** *:*** 

PRR3 -KKSVKPESTQGSENDASISDEHRNESGSSGGLSNQDGGSDNGSGTQSSWT--KRASDTK 257 
PRR7 TQKSVKSKSIKKSDQDSGSSDE--NENGSIG-LNASDGSSD-GSGAQSSWT--KKAVDVD 268 
PRR5 GQQKAEGASANNSNGKRDDHVVSGNGGDAQSSCTRPEMEGESADVEVSARD--AVQMECA 353 
TOC1 SDQSDPNTNSTNLFSDDTDDRSLRSTNPQRGNLSHQENEWSVATAPVHARDGGLGADGTA 220 

PRR3 STS-----------------------PSNQFPDAPNKKGTYENG---------------- 278 
PRR7 DSPRAVSLWDRVDSTCAQVVHSNPEFPSNQLVAPPAEKETQEHDDKFEDVTMGRDLEISI 328 
PRR5 KSQFNETRLLANELQSKQAEAIDFMGASFRRTGRRNREESVAQYES-------------- 399 
TOC1 TSSLAVTAIEPPLDHLAGSHHEPMKRNSNPAQFSSAPKKSRLKIGESSAFFTYVKSTVLR 280 

* 

PRR3 CAHVNRLKEAEDQKEQIGTGSQTG-------------------MSMSKKAEEPGDLEKNA 319 
PRR7 RRNCDLALEPKDEPLSKTTGIMRQDNSFEKSSSKWKMKVGKGPLDLSSESPSSKQMHEDG 388 
PRR5 RIELDLSLRRPNASENQSSGDRPS-------------------LHPSSASAFTRYVHRPL 440 
TOC1 TNGQDPPLVDGNGSLHLHRGLAEKFQVVASEG--------INNTKQARRATPKSTVLRTN 332 

* 

PRR3 KYSVQALERNNDDTLNRSSGNSQVESKAPSSN----REDLQSLEQTLKKTR---EDRDYK 372 
PRR7 GSSFKAMSSHLQDNREPEAPNTHLKTLDTNEASVKISEELMHVEHSSKRHRGTKDDGTLV 448 
PRR5 QTQCSASPVVTDQRKNVAASQDDNIVLMNQYNTSEPPPNAPRRNDTSFYTGADSPGPPFS, 500 
TOC1 GQDPPLVNGNGSHHLHRGAAEKFQVVASEGINNTKQAHRSRGTEQYHSQGE~LQNGASYP 392 

-
PRR3 VGD-RSVLRHSNL-SAFSKYNNGATSAKKAPEENVESCSPHDSPIAKLLG---------- 420 
PRR7 RDD-RNVLRRSEG-SAFSRYN-PASNANKISGGNLGSTSLQDNNSQDLIKKTEAAYDCHS 505 
PRR5 NQL-NSWPGQSSYPTPTPINNIQFRDPNTAYTSAMAPASLSPSPSSVSPHEYSSMFHPFN 559 
TOC1 HSLERSRTLPTSMESHGRNrQEGNMNIPQVAMNRSKDSSQVDGSGFSAPNAYPYYMHGVM 452 

* 

PRR3 ---------------------SSSSSDNPLKQQ-~----SSGS----------------- 436" 
PRR7 NMNESLPHNHRSHVGSNNFDMSSTTENNAFTKPGAPKVSSAGSSSVKHSSFQPLPCDHHN 565 
PRR5 SKPEGLQDRDCSMDVDERRYVSSATEHSAIGNHIDQLIEKKNEDGYSLSVG--------- 610 
TOC1 NQVMMQSAAMMPQYGHQIPHCQPNHPNGMTGYPYYHHPMNTSLQHSQMSLQN-------- 504 
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PRR3 ------------------------------------------------------------
PRR7 NHASYNLVHVAERKKLPPQCGSSNVYNETIEGNNNTVNYSVNGSVSGSGHGSNGPYGSSN 625 
PRR5 ------------------------------------------------------------
TOC1 ------------------------------------------------------------

PRR3 --------------------------------------DRWAQREAALMKFRLKRKERCF 458 
PRR7 GMNAGGMNMGSDNGAGKNGNGDGSGSGSGSGSGNLADENKISQREAALTKFRQKRKERCF 685 
PRR5 ------------------------------------K1QQSLQREAALTKFRMKRKDRCY 634 
TOC1 ---------------GQMSMVHHSWSPAGNPPSNEVR\NKLDRREEALLKFRRKRNQRCF 549 

:** ** *** **::**: 

PRR3 EKKVRYHSRKKLAEQRPHVKGQFIR -----RDDHKSGSEDN------------------ 495 
PRR7 RKKVRYQSRKKLAEQRPRVRGQFVR AAATDDNDIKNIEDS--.---------------- 727 
PRR5 EKKVRYESRKKLAEQRPRIKGQFVR ---------VQSTQAP------------------ 667 
TOC1 DKKIRYVNRKRLAERRPRVKGQFVR NGVNVDLNGQPDSADYDDEEEEEEEEEEENRDS 609 

**:** .**:***:**:::***:*: 

PRR3 ---------
PRR7 ---------
PRR5 ---------
TOC1 SPQDDALGT 618 

Fig 2.3. ClustalW alignment of the PRR proteins. Highlighted in boxes are the 
PRR domains (residues 1-145) and the CCT domains (residue 528-576) with 
reference to TOC 1 sequence. Also shown in red is the conserved phospo-accepting E 

. that characterises this family of ARRs. Stars and semi-colons represent conserved 
and semi-conserved amino acids respectively. PRR9 was omitted from the alignment 
due to differences in the sequences. 

Che Y from E. coli is the paradigm member of the bacterial single domain response 

regulators (lacking the output domain) and is involved in regulation of chemotaxis 

through regulation of information between chemoreceptors and the flagellar switch 

(motility). Chemo-effector concentrations are detected by specific methyl-accepting 

chemotaxis (MCP) proteins that assemble with the histidine phosphate kinase (HPK) 

protein, CheA and the coupling protein Che W. These accumulate as signal 

transduction 'clusters' at the poles of the bacterial cell, where CheA mediates 

phosphorylation of CheY, which increases CheY affinity for the FliM component of 

the flagellar switch complex. This results in a change in flagellar rotation from anti­

clockwise to clockwise (Bren' and Eisenbach, 1998) and therefore the bacterial cell 
-

moves in the desired direction. (Reviewed in Jenal and Galperin, 2009). 

The RR domain of CheY contains a conserved (Ba) 5 fold that catalyzes the transfer 

of a phosphoryl group from CheA to its own aspartic acid residues located in the 

acidic pocket. This results in a structunil change from inactive to active where there 

is a sm.~ll conformational change on the a4-B5-a5 RR domain surface (Kern et al.,. 
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1999; Volkman et al., 2001). This structural change mediates effector domains 

directly or as dimers (depending on the CheY-like protein), and have also been 

shown to engage in downstream effector protein binding (Dyer et al., 2006). 

Single RR domains are found in all domains of life, with many homologs belonging 

to the family. Although the above example illustrates control of bacterial motility, 

the many members of this abundant family are thought to act on numerous spatially 

separated downstream targets, either directly or in signal transduction cascades. 

Many may even work as molecular switches in protein:protein interaction networks, 

through phosphorylation dependant remodelling of the a4-~S-aS RR domain surface. 

This may be to alter the sub-cellular localisation or activity of downstream targets. 

This is particularly interesting with respect to TOC 1 function, which may be 

activating or localising other circadian proteins such as ELF4 / GI in order to up­

regulate the transcription of the Myb-domain proteins LHY and CCA 1. 

The degree of sequence similarity of TOC 1 and Che Y from E. coli is shown as an 

alignment (Fig 2.4). There is remarkable sequence similarity between the two and it 

is likely that TOC 1 is able to form the a4-~S-aS RR domain surface that appears so 

important in CheY-like protein function (the residues'involved in the formation of 

the as helix in Che Y -like proteins, are not always conserved). The crystal structure 

of Che Y indicates that there are at least three key residues to maintain the active 

confirmation. Firstly, AspS7 which is the phosphorylation site, bonds to BeF3-

(which mimics phosphate) fonning a hydrogen bond with Thr87 and a salt bridge 

with LysI09. The OH group of Thr87 also forms a hydrogen bond with the side 

chain of Tyr 106 (Lee et al., 2001). This allows the correct orientation of the a4-~S­

as surface. TOC 1 contains semi conservative substitutions with respect to Che Y; 

AspS7 is replaced with Glu71 and Thr87 with SerIOI. The Tyr1~6 (CheY) does 

appear to be con~erved, suggesting that the active sites are similar enough to infer 

functionality. Questions that will not be answered by structural analysis are the 

exact targets of TOC 1 and indee4, other PRR domain proteins highlighting the need 

for a combination of structural and biochemical characterisation' of this interesting 

family of proteins. 
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TOC1 MDLNGECKGGDGFIDRSRVRILLCDNDSTSLGEVFTLLSECSY-QVTAVKSARQVIDALN 59 
CheY -------------MADKELKFLVVDDFSTMRRIVRNLLKELGFNNVEEAEDGVDALNKLQ 47 

.. : : : *: *: ** * **.* .: :* .: .. :.:: *: 

TOC1 AEGPDIDII LAE IDLPMAKGMKMLRYITRDKDLRRIPVIMMSRQDEVPVVVKCLKLGAAD 119 
CheY AGG--YGFVISDWNMPNMDGLELLKTIRADGAMSALPVLMVTAEAKKENIIAAAQAGASG 105 

* * .::::: ::* .*:::*: * * : **: *:: : : :: . : **:. 

TOC1 YLVKPLRTNELLNLWTHMWRRRRMLGLAEKNMLSYDFDLVGSDQSDPNTNSTNLFSDDTD 179 
CheY YVVKPFTAATLEEKLNKIFEKLGM------------------------------------ 129 

*:***: : *: * 

Fig 2.4. ClustalW alignment of the PRR domain from TOC! with Che Y. The 
archetypal bacterial phosph-accepting AspS7 of Che Y from Escherichia Coli is 
highlighted in red, with the semi-conservative substitution of Glu68 in TOC1 also in 
red. The a4-pS-aS RR domain surface of CheY is indicated in blue (P4), purple (as) 
and blue (PS) respectively. Stars and semi-colons represent conserved and semi­
conserved amino acids respectively. 

H1 

H5 H1 

Fig 2.5. Ribbon diagram of two BeF3- activated Che Y response receiver 
domains. The source of the Che Y protein was E. coli (PDB, 1FQW) and the crystal 
structure was determined at 2.4 A resolution (Lee et al., 2001). Shown is the dimmer 
crystallographic asymmetric unit, which is how the protein crystallised as Che Y is 
not a dimmer under physiological pH. The active sites are directed toward the reader. 
The residues AspS7, Thr87 and Tyr106 involved in the active site are shown in blue 
and the BeF 3 - moiety which complexes with receiver domains, mimicking 
phosphorylation-activated states, is shown in red. This diagram was drawn with the 
Pymol software package. . 
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2.3. MYB-domain transcription factors 

MYB domain proteins are widely distributed in higher plants and comprise one of 

the largest groups of transcription factors. A fundamental requirement of a 

transcription factor is the presence of a DNA binding domain, and the MYB-domain 

proteins are characterised by a highly conserved DNA-binding domain at their N­

termini. The first plant MYB gene identified was the c-MYB-like transcription factor 

(gene Cl isolated from zea mays) which is involved in the biosythesis of anthocyanin 

(Paz-Ares et al., 1987). In the past twenty years, many more MYB-domain 

transcription factors have been identified and studied, indicating diverse roles in 

physiological and biochemical process from cell cycle control, seed and floral 

development and control of cell morphogenesis (Reviewed in Du et al., 2009). The 

MYB-domain family is classified by the distinctive structure of their N-terminal 

DNA-binding domain which consists of 1-3 homologous but imperfect repeats (RJ, 

R2 and R3) dependant on their similarity to the Rl, R2 and R3 repeats of the prototypic 

MYB protein c-Myb. Each repeat is approximately 50-53 amino acids in length, 

comprising of 3 a-helices, with the second and third helices forming a helix-tum­

helix (H-T-H) motif. It is this motif which allows interaction between the 

transcription factor and the major groove of DNA. Each repeat (R) contains evenly 

spaced, conserved tryptophan residues which form a cluster in the hydrophobic core 

of each repeat, increasing the stability of the DNA binding domain. As the sequence 

similarity outside the MYB-domain varies significantly, the classification of this 

group of proteins in dependant upon the number of adjacent repeats: RIR2R3-MYB, 

R2-R3-MYB and RlIrMYB (Fig 2.6). 



MYB Repeat Transcriptional activation 

I II 

I I I, I I I 
H1 H2 H3 

R1/2 

I I I. I I I I I I I I I 
H1 H2 H3 H1 H2 H3 

R2 R3 

I I I I I I I I, I I I 
H1 H2 H3 H1 H2 H3 H1 H2 H3 

R1 R2 R3 
Fig 2.6. Schematic representation of the classification of MYB-domain 
transcription factor family. Shaded boxes represent a-helices labelled 1-3. A repeat 
of the DNA-bind domain containing 3 helices is labelled R. The MYB-domain 
proteins are grouped according to the number and type of repeats (shown to the 
right). Non-shaded areas represent protein specific domains associated with their 
transcriptional activity, and this is reflected in the diversity of the subfamilies 
members. 

2.3.1 LHY I CCA 1 

LHY and CCA 1 both belong to the RJ/2 subfamily of MYB-domain proteins. 

Unsurprisingly, they show high sequence similarity, especially towards the N-termini 

of the protein (Fig 2.7). They both contain a basic region Lys 13 to Lys 1 07 which 

contains the highly homologous MYB-domain sequence. In their MYB-repeat they 

contain the majority of the residues important for forming the hydrophobic core, 

which provides stability and maintenance of the H-T -H allowing binding of the 

domain to the major groove in DNA (Ogata et al., 1992). Interestingly, only two of 

the three conserved tryptophans are conserved in LHY and CCAI (Trp27 and 

Trp46), with the third replaced by alanine (Ala65). In terms of actual contact with the 

DNA, bases usually required are not present in either protein. Both proteins contain 

the SHAQKYF sequence which' is plant specific and can be used as a means of 

classifying the single RJ/2 domains found in plant MYB proteins. 
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CCA1 METNSSGEDLVIKTRKPYTITKQRERWTEEEHNRFIEALRLYGRAWQKIEEHVATKTAVQ 60 
LHY MDTNTSGEELLAKARKPYTITKQRERWTEDEHERFLEALRLYGRAWQRIEEHIGTKTAVQ 60 

*:**:***:*: *:***************:**:**:***********:****:.****** 

CCA1 IRSHAQKFFSKVEKEAEAKGVAMGQALDIAIPPPRPKRKPNNPYPRKTGSGTILMSKTGV 120 
LHY IRSHAQKFFTKLEKEAEVKGIPVCQALDIEIPPPRPKRKPNTPYPRKPGNNGTSSSQVSS 120 

*********:*:*****.**:.: ***** ***********.***** * *: .. 

Fig 2.7. ClustalW alignment of CCAI and LHY. Primary amino acid sequences 
are aligned by the ClustalW tool. Highlighted in red at the two Trp that are conserved 
in the MYB proteins and also the atypical Ala found in CCAI and LHY. The amino 
acids responsible for the formation of the 3 helicies are highlighted in blue (residues 
24-78), with the exception of Trp46 and Ala65 which are also involved in helix 
formation. The secondary structure prediction was performed using the Phyre server. 

From a structural standpoint, the conversion of Trp65 to Ala65 is of little interest as 

these residues clearly lie in the 3rd helix and therefore it is likely that it is a 

conservative substitution. What is more interesting in terms of crystallography is the 

C-terminal (not shown). Secondary structure predictions using CCAI and LHY 

sequences minus residues 1-80, show no similarity to any other protein. We are 

already aware that the N-terminal accounts for their perceived DNA binding 

activities, to EE in the promoters of clock outputs and components of the central loop 

itself, for example TOC 1. However, the C-terminal may be involved in other 

interactions through as yet unidentified mechanisms. .' 

When we perform a BLASTp on LHY, the results are a list of proteins termed LHY 

homologues, putative proteins, hypothetical proteins and CCA 1 derivatives. If we 

attempt a BLASTp against solved structures contained in the Protein Data Base 

(PDB), proteins containing the MYB-domain are identified, although these are 

mainly human examples. Interestingly, BLASTp of the PDB against Arabidopsis 

thaliana produces no results indicating the lack of solved structures from this 

organism. 

A c-Myb domai~ bound to DNA was one of the top scores with an E-value of 9.7 x 

10-17 e and an estimated precision of 100 .%. The chain identity was only given 19 % 

but this is due to the relatively sI11all number of residues involve~ in DNA binding in 

the LHY protein. The solution structu~e of the Myb_DNA-hinding doma.in 

complexed with DNA (PDB identifier IMSF) is shown below in Fig 1.3 (Ogata et 

ai., 1994). All features previously described can be seen in Fig 2.8. However, there is 
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more detail regarding the specificity of interaction. In this case, residues Asn183 

(R3), Lys-182 (R3) and Lys128 (R2) are responsible for sequence specificity for the 

AACTO of DNA (Ogata et al., 1994). As LHY and CCA1 are distinct from the R2R3 

family, other residues are likely to be responsible for specificity. Indeed, as LHY and 

CCA1 only contain one MYB domain, it is likely that they act together (hetero or 

homo-dimers) in order to bind downstream targets. Crystal analysis with the addition 

of fragments of targets promoters would provide insight into which residues are 

important for DNA binding, as well as an understanding for the remaining C­

terminus of the LHY and CCA 1 proteins. 

Fig 2.S. Ribbon diagram of c-MYB R2R3 complexed with DNA. The protein 
structure was deduced using NMR (Ogata et al., 1994) and deposited in the 
PDB(lMSF). The R2 and R3 domains are shown in pale green and pale yellow 
respectively. The Trp residues important in maintenance of the hydrophobic core of 
each domain are shown in red. With respect to R3, the first helix (vertical) is shown 
on the right hand side. Helix 2 and 3 make the atypical H-T-H, with the third helix 
contacting the major groove of DNA (orange backbone). This binding is achieved 
through contacts in both the R2 and R2 third helices. This diagram was drawn with 
the Pymol software package. 
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2.3.2 LUX 

The LUX protein differs significantly from LHY and CCAI proteins. Although it 

contains the SHLQKYF (Leul92 replacing A) sequence and therefore can be 

classified as a plant specific Myb-domain protein, it is not part of the LHY / CCA I 

gene family. Indeed, the conserved W residues seem to be absent in the LUX amino 

acid sequence. Furthermore, the LUX sequence contains two MYB-domains, 

classifying this protein as an R2R3 type MYB-domain transcription factor, rather than 

the R1I2 type of LHY and CCAI (Fig 2.9). The MYB domain in LUX shows greater 

similarity to MYB-domains found in the B-type response regulators (ARRs). The B­

type ARR's are involved in signal transduction by transfer of phosphate by a 

Histidine Kinase or His Phototransfer to the response receiver domain of the 

response regulator (Imamura, et al., 1998). Interestingly, the PRR family of genes 

belong to the C-type ARR family, although there are no apparent functional 

connections between LUX and any of the PRR family. 

1 11 21 31 41 Sl 

I I I I I 
1 MGEEVQMSDY DVSGDGDRVS EWEMGLPSDE DLASLSYSLI PPNLAMAFSI. TPERSRTIQD 

61 VNRASETTLS SLRGGSSGPN TSSSNNNVEE EDRVGSSSPG SDSKKQKTSN GDGDDGGGVD 
121 PDSAMAAEEG DSGTEDLSGK TLKRPRLVWT PQLHKRFVDV VAHLGIKNAV PKTIMQLMNV 
181 EGLTRENVAS HLQKYRLYLK RMQGLTNEGP SASDKLFSST PVPPQSFQDI GGGGGSSGNV 
241 GVPIPGAYGT QQMMQMPVYA HHMGMQGYHH QNHNHDPYHQ NHRHHHGAGG NGAFESNPYM 
301 MQQNKFGSMA SYPSVGGGSA NEN 

Fig 2.9. Protein sequence of LUX ARRHYTHMO from ProtParam. LUX 
ARRHYTHMO belongs to the R2R3 MYB subfamily. Highlighted in blue are the 3 
helices associated with the R2 MYB-domain and the R3 MYB-domain in shown in 
violet. The residues involved in helix formation were predicted with the Phyre server 
(Kelley et al., 2009). 

Output from the Phyre server shows the best sequence identity (56 %) with 

DNA/RNA binding 3-helical bundle belonging to a GARP response regulator. In 

fact, the estimated precision is 100 % and with an E value of 4.7 x 10-08e. 

Unfortunately, the protein (SCOP code dlirza) is not entered in the PDB and only 

has a SCOP code. Although this protein is classified as a GARP like protein, the 

SCOPentry also shows that the family it belongs to is Myb-DNA binding related. 

Indeed, the other close identities found on the Phyre ~erver are all Myb domain 

proteins, including the Myb_DNA-binding domain (PDB identifier IMSF) shown in 

Fig 2.8. 
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Although we can attribute the 3 helical bundles to LUX function in binding to the EE 

in promoters, it shows significant sequence difference from the LHY and CCAI 

proteins to be classified as distinct. These facts coupled with the caveat that LUX 

may work with other proteins including TOCI and GI (to promote the expression of 

LHYand CCAI), make LUX a potentially more interesting structural target than 

either LHY or CCAI. 

2.4. F-box proteins 

The ZTL family. are a novel class of blue light photoreceptors. As previously 

described, they contain three characteristic domains LOV, F-box and six kelch 

repeats. Each domain will be considered in tum to help decipher how these proteins 

function. 

2.4.1 LOV 

Proteins involved in the perception of blue light contain a photosensory domain 

comprising of either one or two LOV domains. The main blue light receptors in 

planta Phototropin I and 2 (Phot I and Phot 2) have a photosensory domain that 

contains two LOV domains (LOVI and LOV2) and a· C-terminal Ser/Thr kinase 

domain belonging to the AGC family (cAMP-dependant protein kinase, cGMP­

dependant protein kinase, and phospholipid-dependant protein kinase C). The LOV 

domains each non-covalently bind an FMN in the dark. Upon excitation by blue 

light, the FMN covalently binds to a conserved cystein residue in the LOV domain, 

resldting in a conformational change that increases the kinase activity of the ph~to­

sensory domain (Tokutomi et al., 2008). This binding is dark-reversible allowing 

quick switching between the two states. 

The LOV land LOV2 domains in phototropins appear to have distinct properties. 

LOV I is thought to be 'a dimerisation domain that is responsible for slowing the dark 

recovery of LOV2 (Kagawa et al., 2004) and may attenuate the kinase activity of the 

phototropins. Indeed, plants expressing only the LOV2 domain show a reduced 

sensitivity to light, that is accounted for by the absence of dimerisation or faster dark 

recovery of LOV2 (Sullivan et al., 2008). That said, it has been shown that "LOVl is 
" 

not required for the photochemistry of phot 1 and is only responsible for modest light 
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activation of phot2 (Cho et al., 2007). The LOV2 domain appears to be more 

important than LOVl in light activation of the phototropins. In the dark, LOV2 binds 

to the kinase output domain of phot2 and inhibits kinase activity (Cho et a/., 2007). 

This process is inhibited by blue light (Cho et a/., 2007). In the dark, an a-helix 

located between LOV2 and the output kinase domain (la-helix) is situated on the 

surface of the LOV2 domain. The presence of light causes the la-helix to unfold, 

alleviating the kinase domain from inhibition (reviewed in Demarsy and Fankhauser, 

2009). Downstream targets for the kinase activity are poorly understood and the 

function of LOV~. remains unclear. Interestingly, the ZTL family only contain one 

LOV domain, LOVl.1t differs from the phototropin LOVl due to an absence of dark 

recovery, therefore suggesting a role in non-reversible light response (Imaizuni et al., 

2003). It has been shown that GI interacts with LOV of FKFl and ZTL specifically 

on blue light perception (Sawa et al., 2007; Kim et al., 2007 respectively) and that 

LOV alone, is sufficient for binding ofTOCI to ZTL (Mas et al., 2003). 

2.4.2 F-box proteins 

There are over 600 known F-box proteins in Arabidopsis with diverse functions, but 

they are often involved in the ubiquitin-proteasome degredation pathway. A general 

schematic of F-box function is shown in Fig 2.l0a. In this example, El enzyme 

activates the Vbiquitin moiety (Vb) and E2 enzyme is responsible for the 

conjugation. The F-box protein (FBP) is part of an E3 ligase Skp_Cull_F-box (SCF) 

complex, S phase kinase-assosiated protein 1 (Skpl), Cullinl (Cull), Ring-box 1 

(Rbx l), which acts as a means of transferring Vb from the E2 enzyme to the FBP 

specific substrate. The FBP binds directly to Skp l, which interacts with Cull, a 

scaffold protein which is associated with a RING domain protein, in this case Rbxl. 

The RING domain protein is responsible for the binding to E2, which is loaded with 

Db moieties. In this way, the F-box proteins are able to recruit their specific 

substrates to the SCF complex (reviewed in Ho et al., 2008). The substrates are often 

phosphorylated in order to provide target recognition to the FBP. The 

phosphorylation state of the substrate is important for F-box binding, although the 
,I 

degree and sites of phosphorylation are substrate specific. '.. . 
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There are deduced crystal structures of F -box proteins complexed with SCF (SCFFBP
) 

and these provide insight into the mechanism of Vb transfer (Zheng et al., 2002; 

Orlicky et al., 2003). Briefly, components of the SCF complex are organised into a C 

shaped arrangement that is approximately 59 A from one end to the other. At one end 

is the N-terminal of the FBP responsible for substrate recognition and at the other is 

the E2 Vb carrying enzyme. For a transfer of Vb to the F-box, this rigid distance is 

required, so that the components of the SCF complex are in the correct orientation. A 

linker region between the F -box and the substrate recognition domain is also thought 

to be important in maintaining this distance, possibly by controlling the coupling 

between the two domains and therefore the enzyme activity of the surface. The F-box 

domain is a tri-helical structure which forms a hydrophobic surface for Skpl binding 

(Cardozo and Pagano, 2004). Taken together, the precise arrangement of these 

protein complexes are important in formation of an active SCFFBP complex. 

ZTL was the first described FBP in the circadian system. A schematic representation 

of ZTL is shown in Fig 2.10(B). ZTL has been shown to associate with ASK1, 

AtCVLl and AtRBXl to form an active SCFZTL complex (Han et al., 2004) which 

degrades TOCI (Mas et al., 2003) and also PRR5 (Kiba et al., 2007) in a light 

dependant manner. The F-box in FKFI has been shown t'? be important in regulating 

CO expression, by degrading CYCLING DOF ~ACTOR 1 (CDF1) (Imaizumi et al., 

2005), a repressor of CO in a light dependant manner". A schematic of these roles are 

summarised in Figure 2.1 O(C and D). 
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Fig 2.10. A schematic of F-box protein (A) involvement in targeted degradation; 
(B) ZTL architecture and (C, D) function in the circadian clock. (A) The FBP 
forms part of the SCF complex and mediates the transfer of Ubiquitin (Ub) from E2 
(Ub conjugation enzyme) to the phosphorylated substrate. The ubiqutinated substrate 
is then degradated via the proteasome pathway. (B) Schematic representation of 
ZTL, highlighting the LOV 1 domain that binds FMN, and the F -box / Kelch repeat 
output domains, responsible for SCF formation and protein:protein interaction 
respectively. (C&D) The F-box proteins FKFI and ZTL interact with circadian 
protein OI in a blue light dependant manner. (C) FKFI associates with OI through its 
LOV domain on exposure to blue light. The FKFI-0I complex binds to the CDFI 
(CO repressor) targeting it for depredation. (D) ZTL interacts with OI through the 
LOV domain under blue light. The complex formed stabilises both ZTL and OI 
allowing more TOC 1 to be targeted for degradation at the appropriate circadian time. 
This figure was largely based on the schematic shown in Fig 1 (A) and Fig 5 (A) 
from Ho et ai., 2008. 
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2.4.3 Kelch repeats 

The FBP's often contain other domains at their C-terminus, including WD40 repeats 

(B-propeller structures), leucine rich repeats (LRRs; arch-shaped a-B repeats) and 

Kelch repeats (~-propeller structures). The crystal sturucture of human Kelch protein 

KEAP1 (Li et ai., 2004) highlights the B-propeller architecture of Kelch proteins (Fig 

2.11). The number of kelch repeats varies from five to seven in proteins lacking an 

N-terminal F-box domain, and between one and five for the FBP family. The 

combination of F -box and Kelch repeats appears to be piant specific and therefore 

highlights an interest for structural analysis. 

IV 

III 

Fig 2.11. Ribbon diagram of the Kelch d()main of human Keapl. The structure 
was solved to 1.85 A (Li et ai., 2004) and deposited in the PDB (1 U6D). The 
diagram shows the top-down view of the Kelch domain (residues 322-609). Each 
Kelch repeat is numbered I-VI, and contains four ~ strands which run anti-parallel to 
each other. Blade I contains both the Nand C termini of the domain and this are 
labelled accordingly. This1diagram was drawn with the Pymol software package. 
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An interesting point to consider with this set of proteins is that they all appear to 

have very similar sequences (shown in Fig 2.12), yet we already understand that they 

act on different targets. Deducing the crystal structures of each of these proteins will 

help elucidate how these proteins differentiate between their targets and may provide 

insight into unidentified targets / protein partners. The large degree of sequence 

similarity is shown in the ClustalW alignment below (Fig 2.12). 

ZTL - - - - - -.MEWDSGSDLSADDASSLADDEEGGLFPG- - GGPI PYPVGNLLH - TAPCGFWTD 51 
LKP2 --MQNQMEWDSDSDLSGGDE--VAED---GWFGGD-NGAIPFPVGSLPG-TAPCGFWSD 51 
FKF1 MAREHAIGEATGKRKKRGRVEEAEEYCNDGIEEQVEDEKLPLEVGMFYYPMTPPSFIVSD 60 

* :* **: : * . *: *: * 

ZTL AVEPDQPIIYVNTVFEMVTGYRAEEVLGGNCRFLQCRGPFAKRRHPLVDSMWSEIRKCI 111 
LKP2 ALEPDNPIIYVNTVFEIVTGYRAEEVIGRNCRFLQCRGPFTKRRHPMVDSTIVAKMRQCL 111 
FKF1 ALEPDFPLIYVNRVFEVFTGYRADEVLGRNCRFLQYRDPRAQRRHPLVDPVWSEIRRCL 120 

*:*** *:**** ***:.*****:**:* ****** *.* ::****:**. :*:::*:*: 

ZTL DEGIEFQGELLNFRKDGSPLMNRLRLTPIYGDDDTITHIIGIQFFIETDIDLGPVLGSST 171 
LKP2 ENGIEFQGELLNFRKDGSPLMNKLRLVPIR-EEDEITHFIGVLLFTDAKIDLGPSPDLSA 170 
FKF1 EEGIEFQGELLNFRKDGTPLVNRLRLAPIRDDDGTITHVIGIQVFSETTIDLDRVSYPVF 180 

::***************:**:*:***.** ***.**: .* :: *** 

ZTL KEKS--IDGIYSALAAGE---RNVSRGMCGLFQLSDEWSMKILSRLTPRDVASVSSVCR 226 
LKP2 KEIPRISRSFTSALPIGE---RNVSRGLCGIFELSDEVIAIKILSQLTPGDIASVGCVCR 227 
FKF1 KHKQQLDQTSECLFPSGSPRFKEHHEDFCGILQLSDEVLAHNILSRLTPRDVASIGSACR 240 

* * .. :**:::*****:: :***:*** *:**: ... ** 

ZTL RLYVLTKNEDLWRRVCQNAWGSETTRVLETVPGAKRLGWGRLARELTTLEAAAWRKLSVG 286 
LKP2 RLNELTKNDDVWRMVCQNTWGTEATRVLESVPGAKRIGWVRLAREFTTHEATAWRKFSVG 287 
FKF1 RLRQLTKNESVRKMVCQNAWGKEITGTLEIMT~-KKLRWGRLARELTTLEAVCWRKFTVG 298 

** ****:.: : ****:**.* * .**:. *:: * *****:** ** ***::** 

ZTL GSVEPSRCNFSACAVGNRWLFGGEGVNMQPMNDTFVLDLNSDYPEWQHVKVSSPPPGRW 346 
LKP2 GTVEPSRCNFSACAVGNRIVIFGGEGVNMQPMNDTFVLDLGSSSPEWKSVLVSSPPPGRW 347 
FKF1 GIVQPSRCNFSACAVGNRLVLFGGEGVNMQPLDDTFVLNLDAECPEWQRVRVTSSPPGRW 358 

* *:**************:*:**********::*****:*.:. ***: * *:*.***** 

ZTL GHTLTCVNGSNLWFGGCGQQGLLNDVFVLNLDAKPPTWREISGLAPPLPRSWHSSCTLD 406 
LKP2 GHTLSCVNGSRLWFGGYGSHGLLNDVFLLDLDADPPSWREVSGLAPPIPRSWHSSCTLD 407 
FKF1 GHTLSCLNGSWLWFGGCGRQGLLNDVFVLDLDAKHPTWKEVAGGTPPLPRSWHSSCTIE 418 

****:*:*** ****** * :*******:*:***. *:*:*::* :**:*********:: 

ZTL GTKLIVSGGCADSGVLLSDTFLLDLSIEKPVWREIPAAWTPPSRLGHTLSVYGGRKILMF 466 
LKP2 GTKLIVSGGCADSGALLSDTFLLDLSMDIPAWREIPVPWTPPSRLGHTLTVYGDRKILMF 467 
FKF1 GSKLWSGGCTDAGVLLSDTFLLDLTTDKPTWKEIPTSWAPPSRLGHSLSVFGRTKILMF 478 

*:**:*****:*:*.**********: : *.*:*** .. *:*******:*:*:*- ***** 

ZTL GGLAKSGPLKFRSSDVFTMDLSEEEPCWRCVTGSGMPGAGNPGGVAPPPRLDHVAVNLPG 526 
LKP2 - GGLAKNGTLRFRSNDVYTMDLSEDEPSWRPVIGYGSSLPG--GMAAPPPRLDHVAISLPG 525 
FKF1 GGLANIGHLKLRSGEAYTIDLEDEEPRWRELECS--AFPG---VWPPPRLDHVAVSMPC 533 

****: * *::**.:.:*:**.::** ** : * *********: . : * 

ZTL GRILIFGGSVAGLHSASQLYLLDPTEDKPTWRILNIPGRPPRFAWGHGTCWGGTRAIVL 586 
LKP2 GRILl FGGSVAGLDSASQLYLLDPNEE KPAWRI LNVQGGPPRFAWGHTTCWGGTR LWL 585 
FKF1 GRVIIFGGSIAGLHSPSQLFLIDPAEEKPSWRILNVPGKPPKLAWGHNTCWGGTRVLVL 593 

**::*****:*** * ***:*:** *:**:*****: * **::**** ******** :.** 
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ZTL GGQTGEEWMLSELHELSLASYLT--- 609 
LKP2 GGQTGEEWMLNEAHELLLATSTTAST 611 
FKF1 GGHTGEEWILNELHELCLASRQDSDL 619 

**:*****:*.* *** **: 

Fig. 2.12. ClustalW alignement of the F -box proteins. An alignment of ZTL, 
FKFI and LKP2 is presented. Conserved and semi-conserved residues are shown as 
stars and semi-colons respectively. 

2.5. Proteins that are not classified according to sequence 

The proteins discussed so far belong to discrete families. Whilst they may differ from 

other members of the family, they have enough structural (at least predicted) 

similarity to be grouped likewise. The remaining proteins introduced earlier are not 

members of previously reported families. They represent novel, plant-specific 

proteins. These are introduced over the next few pages. 

2.5.1 ELF4 

As previously described, ELF4 is a novel protein of unknown structure and function. 

BLASTp of ELF4 produces a list of hypothetical proteins as well as ELF4-like 

protein, presumably named due to their relatedness to ELF4. The only clue to a 

functional domain is the DUF1313 super-family on the pfam server (Fig 2.13). 

Local query sequence 

Gra hical summar 5how cptlO ns • 

query seq. 
Non-specific 
hits 
Superf anilles 

I, 45 it 
! , , , , ! , , , 

OUF1313 

DUF1313 superfa.ilU 

i ' T ' T 

Fig 2.13. On-screen graphical summary of ELF4 protein sequence after 
BLASTp. The graphical domain of the DUF1313 is indicated below the ELF4 query 
(1IIaa) and spans from residue 16 to 92. 

The DUF1313 super-family on pfam is described as a family of several hypothetical 

plant proteins approximately 100 amino acids in length. Pfam confirm that the 

function of this family is unknown. 
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Submission of the ELF 4 sequence to the Phyre server confirms this prediction. - In 

terms of output, the most similar protein in the PDB is chain A on the Syntaxin A 

protein. With the lowest E value above 0 and the highest estimated precision of 

prediction at 20 %, the conclusion holds that ELF 4 structure resembles nothing so far 

published. That said, the secondary structure prediction (Psi-Pred, SSPro and JNet) 

highlights regions of disorder (likely unstructured) but also regions capable of 

forming a-helix (residues 23-56 and 62-86), in approximately a 50:50 ratio. This 

suggests ELF4 may be a good target for crystallisation as not only is it small, but it 

may form stable structures. 

2.5.2 ELF3 

As with ELF4, there is little in the literature regarding structure. Indeed, submission 

to the Phyre server confirms this as the top result in the fold recognition section is 

(PBD entry 1 TWG) RNA polymerase II complexed with CTP. The RNA polymerase 

II structure consists of 10 peptides and the fold recognition between this entry and 

ELF3 is within chain A, a peptide consisting of 1733 residues. ELF3 only shows a 3 

% identity with chain A and any similarity can be attributed to the large size of the 

peptide. Other predictions have similarly low percentage identities and relatively 

large E-value's (10.2 
/ 10.3), showing similarity with small peptides that are part of 

--

much larger complexes. Given the output, there is no evidence of any known 

homology from deduced protein structures 

2.5.3 GI 

GI is a large nuclear protein of unknown structure and this was confirmed by the 

Phyre prediction programme. The top results show very small percentage identity 

and low E values with RNA polymerase. As GI has been shown to interact with other 

circadian proteins including the F-box proteins ZTL and FKF_1, it is likely that there 

are domains along the length of the protein that have yet to be identified. Although 

the Phyre prediction did not highlight -similarity of GI to structures contained in the 

PDB, the server did predi~t regions of secondary structure. By taking these regions 

and submitting them individually to the Phyre server we minimise the chance of poor 
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percentage identity against such smaller template sequences. Summarised below· in 

Table 2, are the predictions based on truncations of the GI protein. 

Again, there appears to be no confidant prediction of regions of similarity with the 

PBD database. As we are unable to predict domain boundaries for GI, it is difficult to 

determine which truncations should be submitted to the Phyre server. Indeed, it 

should be possible to enter much smaller regions in order to find a closer match. 

However, by submitting the regions of predicted secondary structure, we have gone 

some way to addressing this question. Table 2 shows the residues submitted to the 

Phyre server and the similarity to structures currently in the PBD database. It is clear 

from the output from such analysis that there appears to be very little confident 

matches with regard to the GI protein. Furthermore, the entries presented in Table 1 

represent the most significant similarities from each submission. The conclusion is 

that it is not possible to predict functional domains of GI using these parameters and 

the Phyre server. 

Residue 
POB Functional summary %Identity E- Precision 
entry value {%} 

1-141 2VOX 
The dimerisation domain of 

19 11 20 
lap2alpha 

261-397 2EBG Hypothetical protein 26 5.8 35 
435-601 2P72 Glycosyltransferase 17 8.4 25 

693-807 1QVX 
FAT domain of focal adhesion. 

20 10 20 kinase 
893- 2N05 Transcriptional regulator rha1 12 4.5 40 
1170 

Table 2. Summary of Phyre predictions of GI based on regions of presumed 
secondary structure. The Table shows which residues from GI were submitted for 
each Phyre prediction. The best 'hit' is shown as a PDB entry with a description of 
each entry given under functional summary. Also highlighted are the % identity, E­
value and precision (confidance) of the prediction. 

2.5.4 SRR1 

Analysis of the SRRJ gene shows that it encodes a novel protein with homologs in 

several Eukaroytes including mouse, 4uman Drosophila and yeast (Staiger et ai., 

2002). The function of these proteins is yet to be determined. Indeed, more recent 

BLASTp analysis, identified a list of SRRI-Like protein. Again, these are 
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categorised based on sequence similarity to SRRI and have yet to be assigned 

function. 

Submission of SRRI to the Phyre serv~r confirms these findings. The top ten 'hits' 

have E-values greater than 0, % identities of less than 5 % with an estimated 

precision of less than 60 %. This further confirms SRRI as a novel protein and 

indicates interest from a structural perspective. 

2.6. Discussion 

This chapter serves as an introduction to structural and biochemical analysis of 

clock-associated proteins. As previously mentioned, there is no defined way to 

present such analysis, so this chapter is a summary of what we know about particular 

families of proteins and how clock-associated proteins may function based on 

similarities to previously solved structures. There is little new information presented 

here. As the genetic evidence for the function of putative clock proteins is elucidated, 

similar bioinformatic approaches have been applied in order to assess the function of 

the newly discovered gene and its cognate protein. Many circadian publications only 

mention family identification and a broad description of the background into their 

modes of function. This chapter has focused on introducing the background of the 

protein families, including specific archetypal examples and tried to place context 

with respect to the proteins studied in this thesis. Differences between the clock­

associated proteins and other family members have been discussed and this 

highlights the level of interest in structural studies of clock proteins. What is striking 

about the analysis conducted is that there are often fundamental differences between 

the queries and bon fide family members, such as the Asp to Glu alteration of the 

PRR family (phosphotransfer) or the lack of conserved Trp residues in the MYB­

domain proteins (LUX). This occurs in the functional regions, so their relevance. is 

interesting. Perhaps even more exciting are the remaining, undefined parts of the 

proteins. For ELF3, ELF4, SRRI and GI, we are aware that they contain no known 

domains or motifs, despite containing regions of secondary structure (predicted and 

shown). However, even in r,~asonably well defined proteins such as the PRR family, 

there are huge sequence differences between database entries and also closely related 
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family members. Are these regions of undefined structure responsible for protein 

function, possibly protein:protein interactions? 

The interest of these proteins from a st~ctural standpoint goes beyond the circadian 

clock. Some of these proteins are likely to contain novel domains. Indeed, what is 

striking about the PDB entries are the lack of crystallised plant proteins. It is 

plausible that the plant circadian proteins represent completely unique structures. 

This is backed up by the caveat that circadian associated proteins between different 

organisms appear to share little homology. 

Whilst much of what is reported is already understood, this chapter is the first 

example in the literature of a complete discussion of the proteins from a structural 

perspective, summarised in the same review. It certainly provides far more 

background than the current literature and therefore provides a link between the 

genetically based circadian information and the protein biochemistry of putative 

clock components. 

- 58-



Chapter 3. Materials & Methods 

3.1. Initial expression screens for circadian proteins 

3.1.1. Circadian gene cloning and vector construction 

This part of the experimental procedure was carried out by our collaborator Dean Rea in 

the laboratory of Laszlo Polgar, Budapest. Briefly, the genes listed in Table 3 were 

amplified by polymerase chain reaction (PCR), digested with appropriate restriction 

enzymes and ligated into the expression vectors. 

3.1.2. Small scale expression 

The following vectors were used for small scale expression trials; pET26b-TOC 1, 

pET32a-TOCI-PRR, pET28b-ELF3 and pET32a-ELF4. GI, SPY, ZTL, FKFl, LKP2, 

CCAl, LHY and SRRl, LIPI and LIPl~234 were expressed in pMAL-c2x-cHis. 

3.1.2.1. Transformation of E. coli strain 8834 (ADE3) 'Rosetta' 

1 J.ll of prepared expression construct was added to 100 J.ll of competent E. coli strain 

B834 (,,-DE3) cells (F- ompT hsdSB (rB- mB) gal dcm (DE3) pRARE (CamR
), which 

contain the chloramphenicol resistance-carrying 'Rosetta' plasmid for 

supplementation of rare tRNA codons, and incubated on ice for 30 minutes (min). 

The mixture was then heat shocked at 42°C for 45s and returned to ice for 2 min. 

The E. coli was plated onto pre-warmed (37°C) Luria-Bertani (LB) agar containing 

100 J.lg/ml ampicilin, 35 J.lg/ml chloramphenicol, and incubated at 37°C overnight. 

3.1.2.2. Expression of recombinant proteins 

Vector containing colonies were used to inoculate 5 ml of LB medium containing 100 

J.lg/ml ampicilin, 35 J.lg/ml chloramphenicol, and incubated at 37°C with shaking at 180 

rpm overnight. 50 J.ll of culture was added to 20 ml fresh LB containing 100 J.lg/ml 

ampicilin,35 J.lg/ml chloramphenicol, and grown at 37°C until an optical density (OD) 

of 0.6 at 600 nm was reached (OD600)'" Protein expression was induced by addition of 

isopropyl-beta-thiogalactopyranoside (IPTG) to 0.5 mM, a~d growth was continued at 

37°C for 4 h. 
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3.1.2.3. Preparation of crude cell extract 

Cells were harvested by centrifugation at 6000g for 15 min at 4 °C and re-suspended in 

20 ml containing 50 mM HEPES pH 8.0, 1 M NaCI, 25 mM Imidazole, 10 % glycerol 

(buffer A). The cell suspension was sonicated (70 % power) on ice for 4 x 30 s and the 

soluble fraction was separated by centrifugation at 50,000g for 45 min at 4°C. The 

insoluble pellet was re-suepended in 20 ml buffer A. 

3.1.2.4. Polyacrylamide gel electrophoresis 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was carried 

out according to the method of Laemmli (1970) using 12 % gels cast and run using the 

Mini Protean II gel electrophoresis system (Biorad). 20 J-li of expressed protein was 

added to 5 JlI of SDS sample buffer (containing 10 % (w/v) SDS, 10 mM beta-mercapto­

ethanol, 20 % (v/v) glycerol, 0.2 M Tris-HCI, pH 6.8 and 0.05 % w/v bromophenolblue) 

and heated to 95°C for 4 min, before loading in to the gel. 5 J-ll of SeeBlue Plus2 pre­

stained standard markers (Invitrogen) were also added to the gel for easy visualisation of 

protein molecular weights (Mw). 

Samples were run on the gel for 2 h in 1 litre (1) of buffer containing 25 mM Tris-HCI, 

200 mM glycine, 0.1 % (w/v) SDS (SDS running buffer) before staining with Coomassie 

blue (1 g Coomassie blue R250, 10 % acetic acid,AO % methanol). 

3.2. Sub-cloning circadian genes into pBAD-M41+ 

pPRO-EX constructs containing the genes listed in Table 3 (page 77) were provided by 

Dean Rea. The majority of these were sub-cloned into a modified pBAD-M41 + vector 

(Invitrogen), except for GI, SRRI and LIPI which were sub-cloned into a modified 

pBAD-M41 + vector containing the multiple cloning site (MCS) of pPRo-EX-HTa 

(Invitrogen), and LHY, CCAI and LKP2 containing the MCS of pPRo-EX-HTb 

(Invitrogen). 
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3.2.1. Production of competent TOP1 0 E. coli 

100 III of E. coli strain TOPI0 (were cultured in 50 ml LB at 37°C with shaking at 180 

rpm until the OD6oo reached 0.4-0.6. Cells were harvested by centrifugation at 4,000 rpm 

for 10 min at 4 °C and the pellet resuspended in 10 ml of ice cold 0.1 M MgCh followed 

by centrifugation as before. The pellet was resuspended in 4 ml of ice cold 0.1 M CaCh, 

centrifuged as before and then repeated. Glycerol was added to a final concentration of 

50 % (v/v) to the cells on ice and the cells were immediately frozen in liquid nitrogen in 

200 J.lI aliquots and stored at -80°C. All competent E. coli used in this thesis were 

prepared in this manner regardless of the strain. 

The genotype of TO PI OF' is provided below: 

F' {laclq TnlO (TetR)} mcrA, ~(mrr-hsdRMS-mcrBC), <I>801acZDMI5, ~lacX74, 
endAl, recAl, araDl39, ~(ara,leu)7697, galU, ga/K, nupG, rpsL (StrR). 

3.2.2. Digestion and ligation of constructs 

1 III ofp pPRo-EX constructs were added to 100 J.lI ofTOPI0 comp-etent cells and these 

were heat shocked, plated and sub-cultured according to section 3.1.2.1 and 3.1.2.2 

respectively. Plasmid DNA was extracted from the overnight culture using a miniprep 

kit (Qiagen) and 10 l·tI was double digested with 0.5 J.lI (Nco I and Xho I for pBADM-

41 + constructs, Eco RI and Xho I for pBADM-Hta constructs and Bam HI and Xho I for 

pBADM-Htb constructs) each restriction enzyme (Fermentas) in a reaction mixture 

containing 8 J.lI H20 and 4 III restriction digest buffer for 2 h. Reaction mixtures were 

added to 5 J.lI of 30 % glycerol, 0.05 % bromophenol blue and 70 % TAE (DNA lo~ding 

buffer) before running on 1 % agarose gel containing 10 mg/ml ethidium bromide for 

visualisation of DNA under UV light. The corresponding genes were cut from the gel 

and gel purified using a commercial kit (Qiagen). Vectors were digested and purified in 

the same way. 2 J.lI of vector was added to 10 III of insert, 11 III H20, 2 III ligase buffer 

and 1 III T4 DNA ligase (Invitrogen) and then left overnight at 18°C. 20 III of ligation 

was added -to 100 J.lI TOPI0 cells and these were transformed and plated as before 

(section 3.1.2.1). To validate the success of the ligation, single colonies were sub­

cultured overnight, DNA isolated, digested as before and .. the vector and insert were 
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visualised on a 0.75 % agarose gel. Samples positive for insert and vector were 

sequenced using the in-house sequencing service. 

3.2.3. Expression in pBAD-M41+ 

Initial expression was performed as described in section 3.1.2.2. The only deviation was 

the addition of 0.2 % L-arabinose as a synthetic inducer in place of IPTG. Cells were 

harvested and visualised as highlighted in sections 3.1.2.3 and 3.1.2.4 respectively. 

3.2.4. Western blotting 

Polyacrylamide gels were blotted onto a nitrocellulose Hybond-C membrane 

(Amersham Biosciences) using a mini-trans blot cell (Biorad) at 20 volts (V) overnight. 

The nitrocellulose membrane was washed in 25 ml TBE for 10 min and then dried on 

blotting paper for 20 min. The membrane was immersed in 7 % milk (Marvell) in Tris­

buffer saline (TBS) for 1 h to block non-specific proteins, before addition of 40 III anti­

His6 anitbody conjugated to horse radish peroxidise (HRP) (Invitrogen) in 20 ml 7 % 

milk in TBS for 2 h. After 4 x 10 min washes in TBS-tween (TBS-T), excess liquid was 

removed from the blot and ECL detection solutions were added according to the 

manufacturer's instructions (Amersham). The blots were exposed on x-ray film (Kodak) 

for detection of His-tagged proteins. 

3.3. Expression of TOC1 and ELF3 in Yeast 

Constructs of pYES2 (Invitrogen) containing TOCI and ELF3 were provided by our 

collaborator Dean Rea and these were used for expression trials in Yeast. Two strains 

DB2061 (Provided by Dr Carre) and INVSc 1 (Invitrogen) were inoculated from glycerol 

stock onto a 2 cm2 patch on non-selective YPAD agar (containing 12 g Bacto-peptone, 6 

g yeast extract, 12 g' glucose, 12 g agar supplemented with 100 mg adenine 
-

hemisulphate) before incubation overnight at 30°C. The resulting yeast was used to 

transform pYES2-ELF3 according to the Quick and Easy TRAFO protocol (available at 

http://home.cc.umanitoba.ca/-gietzJOuick.htmI). Transformations by this method failed 

to yield any p YES2-TOC 1 containing strains, so a more stringent method from the Yeast 
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molecular Biology protocol book was used instead (Gietz and Woods, 2002). Expression 

of the recombinant proteins was performed using the p YES2 version J protocol 

(Invitrogen), specifically the time course of protein induction by Galactose and detection 

of recombinant protein. 

The genotype and phenotype of the INVSc 1 host strain are provided below: 

Genotype: MATa his3tJ.J leu2 trpJ-289 ura3-52lMATa his3tJ.J leu2 trpJ-289 ura3-
52 
Phenotype: His-, Leu-, Trp-, Ura-

3.4. Expression of TOC1-PRR 

The N-terminal 312 amino acid (aa) (including the PRR domain) was cloned into 

pET32a and pPRoEX-HTa by our collaborator Dean Rea. The vectors were transformed 

into E. coli strain C41 (ADE3) containing pRARE2 (rare tRNAs), expressed and 

harvested as indicated in section 3.1.2. The protocol deviated in that 2 I of culture were 

induced and left overnight at 20°C instead of 37°C for 3 h. 

3.4.1. Nickel Affinity Chromatography 

A 5 ml nickel sepharose Hi-Trap column (Amersham Biosciences) was equilibrated in 

buffer A using the AKTA fast protein liquid chromatography (FPLC) purifier. The 

clarified cell extract was applied and the column was washed with buffer A until the 

absorbance at 280 nm had returned to O. Further washing in buffer B (50 mM HEPES 

pH 8.0, 1 M NaCI, 100 mM Imidazole, 10 % glyerol) to remove loosely bound proteins 

was followed by elution of TOCI-PRR with buffer C (50 mM HEPES pH 8.0, 1 M 

NaCI, 500 mM Imidazole, 15 % glyerol). 

3.4.2. Protein Concentration and Determination of Protein 
Concentration 

Eluted TOCI-PRR protein samples were pooled and then concentrated using a 10,000 

molecular· weight cut-off centrifugal concentrator (Vivaspin) as instructed by the 

manufacturer. 
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Protein concentration was determined from the absorbance at 280 nm using the 

calculated extinction coefficient, A 0.1% = 0.851. This was calculated using the ProtParam 

tool available at http://us.exspasy.org/tools/protparam (Gasteiger et al., 2005) 

3.4.3. Buffer Exchange and Protease Digestion 

The concentrated TOCI-PRR was divided into 2 centrifugal concentrators (Vivaspin) 

and 20 ml Throm~in digest buffer (20 mM Tris pH 7.4, 150 mM NaCI, 25 mM CaCh) 

was added to one sample and 20 ml Enterokinase digest buffer (20 mM Tris, pH 7.5, 150 

mM NaCl, 2 mM CaCh) to the other. Samples were centrifuged at 4,000g until 

concentrated to 1 ml and then the procedure was repeated. Concentration of each sample 

was determined as previously described (section 3.4.2) Thrombin (Amersham) and 

Enterokinase (Novagen) were added as according to the manufacturer instructions and 

left at 4 °c overnight for digestion. Success of digestion was determined by a SDS­

PAGE (section 3.1.2.4). 

3.5. Coexpression of GI and Spy 

GI has been co-expressed with Spy at the University of Minnesota (Tseng et aI., 2004). 

pETcoco-SPY was provided upon request by Neil Olszewski and used in an expression 

trial with pMAL-GI as published (Tseng et al., 2004). In addition, pETcoco-SPY was 

also co-expressed with pBADM41+-GI in E. coli strains C41, C43, MIS (containing the 

kanamycin resistant pRED4) and JMI0l. 

Cells were transformed with pETcoco-SPY (section 3.1.2.1), sub-cultured (section 

3.1.2.2) with appropriate antibiotics and made competent (section 3.2.1) as previously 

described. 100 JlI of competent cells were super transformed with either 2 JlI pMAL-GI 

or pBAD-GI. Small scale expression was performed as before (section 3.1.2.2). 
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3.6. In vitro selection of aptamers 

The random oligonucleotide library was synthesised and HPLC purified to 

concentration of 1 Ilmol (Operon) and this was diluted in 10 mM Tris pH 8.0 to 

produce a stock of 0.1 nmol / Ill, which was stored at -20°C. The diluted library 

(LICSe1exApt) comprises of 40 random nucleotides flanked by the oligonucleotides; 

5' -ggtattgagggtcgcatc -40N- gatggctctaactctcctct- 3', allowing easy amplification of 

the degenerate nucleotide pool. Primers LICSelexF and LICSelexR; 5'­

ggtattgagggtcgcatc-3' and 5'-agaggagagttagagccatc-3' respectively, were used to 

amplify the aptamer pool by PCR during the selection process. The primers were 

obtained in both non-biotinylated and biotinylated forms (Invitrogen). 

The His-MBP-SSRI protein was purified (according to 3.1.2.2) and was selected due 

to its relative purity and the presence of an N-terminal His tag. Ni-NTA magnetic 

beads (Qiagen) were prepared by taking 150 III of a 5 % slurry and equilibrated in 1 

ml PBS-T (50 mM K2HP04 pH 7.5, 150 mM NaCI, 0.05 % Tween -20). The Ni­

NT A beads were allowed to settle, the supernatant removed, before being 

resuspended in 1.25 ml PBS-To Purifed SRRI fusion protein was diluted in PBS-T to 

give a final concentration of 2 mg / ml and 25 f.tl was added to the Ni-NT A beads in a 

1 ml eppendorf, succeeded by 60 min incubation with mild rotation at 4°C. The 

eppendorf was placed in a magnetic stand (Amersham Biosciences), to retain the 

beads and the supernatant removed. This was followed by 3 washes in I ml PBS-T 

and the resulting Ni-NT A-SRRI bound beads were stored at -20°C. 

In the initial round of selection, 1 nanomole of LICSelexApt was diluted in! 00 III of 

PBS-T in a PCR tube, heated to 95°C for 2 min and instantly cooled on ice. The 

resulting ssDNA was added to 10 ml PBS-T containing I Jlg / ml bovine serum 

albumin (BSA) and 0.1 Jlg / ml dI-dC (Polydeoxyinosinic-Deoxycytidylic Acid). One 

hundred pmol of bead-bound SRRI was then added to this mixture and incubated 

with rotation' for 30 min at 20 °C. T~ese tubes were applied to a magnet, the 

supernatant removed and I ml of PBS-Twas added. The wash step was achieved by 

inversion of the eppendorf, reapplying the magnet and removing the supernatant. 

Each wash was repeated 2 further times, to remove any, unbound ssDNA. SRRI 

fusion and aptamers were eluted from the Ni-NT A beads with 20 JlI of 20 mM Tris 
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pH 7.5, 500 mM imidazole and stored at 4°C. A PCR tube containing 10 III of the 

SRRI / aptamer eluate was added to 10 11M LICSelex F and LICSelexR 

(biotinylated), 0.1 mM dNTPs, 0.2 mM MgS04, 1.25 U pfx polymerase (Invitrogen), 

10 III pfx buffer, and made up to 100 III total volume· in milli Q water. Amplification 

conditions were 95°C for 2 min; 20 cycles of 95 °c for 30 s; 50°C for 30 s; 68°C 

for 30 s; 2 min at 68°C. The resulting 80 bp product was visualised by loading 10 III 

onto a 3 % agarose gel stained with ethidium bromide. The remaining 90 J-ll of PCR 

product and 23 J-ll of 5 M NaCI were mixed with 1.5 mg of M-280 strepavidin 

magnetic beads (Qiagen) for 15 min at 20°C, and then washed 3 times in 1 ml PBS­

T, as previously described. The ssDNA was separated from the complementary 

immobilised strand (biotinylated) by the addition of 50 Jll of 100 mM NaOH. The 

tube was applied to a magnet; the supernatant containing the ssDNA was carefully 

removed and diluted in 1 ml of PBS-T containing 100 mM monobasic phosphate 

buffer to adjust the pH to 7.5. To prevent re-annealing, the material was heated to 95 

°c for 2 min and then placed on ice immediately thereafter. 

Subsequent rounds of selection were performed as described overleaf with only a 

few exceptions. The numbers of cycles of the elongation stage during PCR were 

altered during the rounds of selection. For each round, 10 cycles of elongation were 

performed and 10 J-ll of the PCR product was visualised on a 3 % agarose gel. In the 

event of no product present, the aptamer pool was subjected to a further 5 cycles of 

elongation until a product was detected. Rounds 1-3 required 20 cycles, (4-6) 15 

cycles, (7-8) 10 cycles and (9-15) 15 cycles. The amount of protein used was 

decreased from 50 J-lg to 25 J-lg for rounds 10-15, and the incubation time was 

reduced to 15 min. A negative selection of non-specific aptamers was performed 

after rounds 4, 8 and 12, where the aptamer pool was incubated with Ni-NTA 

magnetic beads alone. 5 % slurry of Ni-NTA magnetic beads was added to 1 mlof 

ssDNA in PBS-T and incubated for 15 min with rotation. The eppendorf was applied 

to a magnet and the supernat~nt removed for use in ·subsequent rounds of SELEX. 

After 15 rounds of SELEX two strategies were employed. The first was to test if the 

SELEX procedure had developed a pool of aptamers with specificity towards the 
.. 

target. The second involved cloning the aptamers into PSK II '-'vector, transforming 
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into competent E. coli and isolation for sequencing in order to determine the 

sequences responsible for the specificity. 

3.6.1. Testing the polyclonal aptamers for protein specificity 

Using the eluate after last round of SELEX it was possible to determine if the 

polyclonal aptamer pool had specificity towards SRRI. To determine specificity, 10 

I.d of the last round of elution was subjected to a PCR using the same conditions and 

reagents as described for the first round of SELEX selection, with the non­

biotinylated LICSelexF. primer being replaced with the biotinylated form. The double 

stranded PCR product was then heated to 95°C for 2 min and instantly cooled on 

ice, yielding biotinylated ssDNA that could be used in a Dot-Blot to assess 

specificity. 

3.6.2. Dot-Blot of polyclonal aptamers against purified SRR1 

A nitrocellulose membrane (Amersham Biosciences) was divided into 6 equal 

squares each measuring 2 cm3
• To each piece, 2 J.lI of purified SRRI (2 mg / ml) was 

added and dried using a low temperature setting on a hand held hair-drier. The 

polyclonal aptamer pool was diluted in H20, in 10-fold serial dilutions increments 

and added to each square in 5 J.lI aliquots. The membr~ne was blocked with 5 % BSA 

in TBS-T (20 mM Tris-HCI, 150 mM NaCI pH 7.5, 0.05 % Tween20) for 1 hr at 

room temp followed by 3 wash steps in TBS-T for 10 min each. The streptavidin­

HRP conjugated antibody (Amersham Biosciences) was diluted 1: 1 ,500 in TBS and 

10 J.lI was applied to the membranes followed by incubation with shaking for 2 hr at 

room tem'p. The blots were then washed 3 times in TBS-T, for 15 min, and detection 

was performed using the ECL detection reagents (Amersham Biosciences) according 

to the manufacturer's instructions. 

3.6.3. Cloning of the aptamer pool 

2 J.lI ofPSK II were mixed with 100 J.lI of competent E. coli (DH5a) cells and left on 

ice for 45 min. The mixture wa~ heat shocked at 42°C for 45 s and incubated back 

on ice for 2 min. All 100 J.lI of the transformation was plated on LB agar containing 

50 J.lg / ml kanamycin, and incubated at 37°C overnight. Individual colonies were 

- 67-



picked, used to inoculate 5 ml LB containing 50 flg I ml kanamycin and grown 

overnight at 37°C with shaking of 180 rpm. The plasmid was extracted from the 

overnight culture using the standard miniprep (Quiagen) protocol. The purified 

vector was then blunt-end digested with Sma I to allow the incorporation of a T/A 

based cloning strategy. 

The entire 50 fll of vector was used in a restriction digest containing, 2 fll Sma I 

(New England Bioloabs), 10 fll of 10 X NEB buffer 4 and 38 fll ultra pure water. The 

reaction was incubated at 25°C for 2 hrs followed by heat inactivation of the enzyme 

at 65°C for 20 min. After the blunt-end digest, 50 fll of the vector was incubated 

with 20 flM deoxyThymidine Triphosphate (dTTP), 1 U Taq polymerase and 1 X 

Taq buffer to add single 3' T overhangs at both termini of the blunt-end vector. This 

reaction proceeded for 1 hr at 70°C. The resulting plasmid was purified by phenol 

extraction followed by ethanol precipitation. 

3.6.4. Phenol extraction and ethanol precipitation of PSK II 

An equal volume of 10 mM Tris-HCI pH 8.0, 0.1 mM EDTA (TE) saturated phenol 

was added to the digestion mixture in a 1.5 ml microfuge tube and vortexed for 30 s 

before centrifugation at 13,000 rpm for 2 min in a bench top microcentrifuge. The 

upper aqueous layer was transferred to a clean tube,· carefully avoiding the aqueous 

phenol interface. The aqueous phase was extracted once more by the addition of an 

equal volume of TE saturated phenol:chloroform (1: 1), centrifuged as before and 

removed to a clean tube. An equal volume of water saturated ether was added, 

followed by vortex and centrifugation at 13,000 rpm for 3 min. The upper ether layer 

was discarded and the procedure was repeated once more. 

To precipitate the DNA, 3 volumes of 95 % ethanol I 0.12 M sodium acetate was 

added to the tube and left on ice for 20 min .. The DNA was precipitated by 

centrifugation at 13,000 rpm for 15 min at 4°C. The supernatant was once more 

discarded and the precipitate left to dry at room temp. Two volumes of 80 % ethanol 

were added to the precipitate f~llowed by centrifugation as before. The supernatant 

was discarded and the microfuge tube placed in a speed-vac(Savant) to dry for 
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approximately 10 min. The DNA was dissolved in 50 JlI 10:0.1 TE buffer and stored 

at 4°C. 

3.6.5. Preparation of the aptamer pool inserts 

The aptamer pool was amplified by PCR under the same conditions as detailed in the 

first round of SELEX (note 25 cycles), using the non-biotinylated primers LICSelexF 

and LICSelexR. The aptamer template was diluted 1: 1 00 in ultra pure water prior to 

PCR and 10 J.lI was used as the template. In order to make the aptamer pool 

complementary to the digested PSKII vector, 50 J.lI PCR product was incubated with 

20 J.lM deoxy Adenosine Triphosphate (dATP), 1 U Taq polymerase and 1 X Taq 

buffer and heated to 72°C for 8 min. This produced aptamers with 3' A overhangs as 

required in T/A cloning. The DNA was isolated by phenol:chloroform extraction 

followed by ethanol precipitation using the same protocol described. The DNA was 

resuspended in 50 J.lI of ultra pure water .. 

3.6.6. Cloning individual aptamers into PSKII 

The ligation reaction contained 20 J.lI insert, 2.5 J.lI PSKII vector, 3 J.llligase buffer 

(Invitrogen), 1 JlI T4 DNA ligase (Invitrogen) and 3.5 JlI H20. To ensure efficient 

ligation, the reaction was left at 18°C overnight. 10 J.lI of the ligation was 

transformed into DH5a competent E. coli (incubated and heat-shocked as before) and 

plated onto LB agar containing 50 J.lg I ml kanamysin (Kan). Plates were left at 37°C 

overnight and 25 colonies were used to inoculate 25 x 5 ml LB cultures containing 

the antibiotic. The DNA was extracted by the standard miniprep procedure (QIagen) 

and these were sent for sequencing on the in-house AB sequencing facility according 

to their guidelines. 
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3.7. ELF4 

3.7.1. pBAD-M41+-ELF4 

pBADM-41 +-ELF4 was expressed in E. coli C43 (ADE3) containing pRARE as 

detailed in section 3.4. The initial Ni-affinity chromatography was performed as 

described in section 3.4.1, and size exclusion was performed as described in section 

3.6.2. Unsuccessful purification procedures were carried out according to the 

manufacturers instructions; ResourceQ and S (Amersham Biosciences) and amalose 

resin (New England Biolabs). Ammonium sulphate cuts from 10-90 % saturation 

were performed according to Deutscher, 1990. 

3.7.2. pET32a-ELF4 

pET32a-ELF4 was expressed in E. coli C41 (ADE3) containing pRIL (rare tRNA 

codon) as before (section 3.4). The first step in the purification was Nickel affinity 

chromatography which was performed in a similar manner (section 3.4.1) and 

concentrated using Vivaspin concentrators. 

3.7.2.1. Size Exclusion Chromatography and Storage 

A Superdex 200 gel filtration column (GE Healthcare life sciences) consisting of 

cross-linked agarose and dextran matrix was used in association with the AKTA 

purifier as a simultaneous polishing and buffer exchange step. The 50 ml Superdex 

column was equilibrated in 350 ml Enterokinase buffer containing 10 % glycerol. 5 

ml of he" Nickel column elution was applied to the Superdex 200 and ELF4 was 

eluted based on size. The resulting fraction was flash frozen in liquid nitrogen and 

stored in 1 ml aliquots (5 mg / ml) at -80°C. 

3.7.2.2. Digestion, Buffer Exchange and Anion Exchange 
Chromatography , 

100 mg of ELF 4 fusion was digested with Enterokinase according to the 

manufacturer's instruction (Novagen). The digested ELF4 was buffer exchanged with 

20 mM Tris-HCI pH 8.0 using the centrifugal concentrator (Vivaspin), concentrated 



to 2 ml and applied to an I ml Resource Q (GE Healthcare life sciences) connected to 

an AKT A purifier. The sample was eluted from the column by application of a 

gradient from 0 - 1 M NaCI in Tris-HCI pH 8.0. Separation of the fusion from the 

ELF4 protein was determined using SDS-PAGE (section 3.1.2.4). 

3.7.2.3. Desalting and Storage 

5 ml cleaved and purified ELF4 samples were buffer-exchanged into 20 mM Tris­

HCI pH 7.0 using 4 serially-linked 5 ml Hi-trap desalting columns (Amersham 

Biosciences) according to the manufacturer's procedure. ,Protein concentration was 

determined using the A2so as before (section 3.4.2) and samples were concentrated to 

12 mg / ml. Freeze-thawing samples leads to aggregation so samples are either used 

immediately or were stored for up to 24 h at 4°C. 

3.7.2.4. Mass Spectrometry 

100 JlM of purified ELF4 was analysed by the Biological Mass Spectrometry and 

Proteomics service (Department of Biological Sciences, University of Warwick). 

Briefly, the bands of interest were excised then processed on the MassPrep protein 

handling system using the manufacturer's recommended methodology (available on 

request). The tryptic peptide extracts were transferred to suitable vials and analysed 

by means of nanoLC-ESI-MS/MS (NanoAcquity/Synapt HDMS) and the data used to 

interrogate appropriate databases for the sample source using ProteinLynx Global 

Server reI. 2.3. 

3.7.2.5. Crystallisation screens 

Crystal trials were performed in 96-well micro-titre plates. 50 JlI of screening buffers 

were added to the plate reservoir and 1 JlI was transferred to the adjacent well. 1 JlI of 1,2 

mg / ml ELF4 were added to each well to create a total of 2 JlI under each condition. The 

screens used were as follows; MDL1 and MDL2 (Molecular Dimensions Ltd, (Jancarik 

and Kim, 1991); Clear Stratergy I and II (Molecular Dimesnsions Ltd), Hampton Index 

(Hampton Research; (Cudney et ai.,· 1994)), Wizard Sparse 1 and 2 (Emerald 

Biosystems Inc) and Newcastle screen (Prof. Richard Lewis, University of Newcastle, 

personal communication). 
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3.7.2.6. Circular Dichroism (CD) 

CD scans were performed on a Jasco J-815 CD spectrophotometer. A data pitch of 0.5 

run, band width of 1 run, and response time of 1 s were used for all scans. All spectra 

presented here are the average of 16 consecutive scans. Far-UV CD scans in the range 

260-190 run were performed using a 1 mm path length cuvette, with 0.25 mg / ml 

protein in 10 mM phosphate buffer pH 7.0. Near-UV CD scans in the range 320-240 run 

were performed using 1 mg / ml protein in 10 mM phosphate buffer pH 7.0, using a 

cuvette of 10 mm path length. For Far-UV measurements, mean residue ellipticity 

([8]MRW) was calculated by this equation: 

[0] - 0 
MRW - Nclxl0 

where 8 is the observed ellipticity (millidegrees), N is the number ofpept~de bonds in the 

protein, c is protein concentration (M) and I the pathlength of the cell used (cm). 

3.8. LUX 

3.8.1. Plant Growth 

Ws Arabidopsis seeds were sterilised by decanting 40-60 into an eppendorf containing 1 

ml 50 % bleech, 0.01 % Tween 20 with gentle agitation for 5 min. 0.5 ml csterile H20 

with 0.01 % Tween 20 was' added, followed by several inversions allowing seeds to 

settle. The liquid was decanted and seeds were washed in 4 x 1 ml sterile H20. Seeds 

were sown on MSO agar plates ,.t 0-15 mm apart and left at 4 °C for 4 days before being 

transferred to continuous light in a grow-room at 21°C. 
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3.8.2. Preparation of template 

1 g of plant material was frozen in liquid nitrogen and ground into a fine powder in a 

pestle and mortar on dry ice. 15 ml of ext~action buffer (100 mM Tris pH 8.0, 50 mM 

EDTA, 0.5 M NaCI, 10 mM beta-mercaptoethanol) is added to 2 ml SDS and mixed 

with the plant material and shaken thoroughly. The mixture was incubated at 65°C for 

10 min before addition of 5 ml 5 M potassium acetate followed by incubation on ice for 

20 min. Then the tube was centrifuged at 25,000g for 20 min, the supernatant filtered 

through a micracloth into 10 ml isopropanol, and then frozen at -22°C for 30 min. The 

tube was re-centrifuged at 20,000g for 15 min after which the supernatant was discarded 

and the pellet redissolved in 0.7 ml 50 mM Tris pH 8.0, 10 mM EDT A. The liquid was 

transferred to an eppendorf and spun in a bench top centrifuge for 10 min. 20 J.lI of 

RNase (2 mg / ml) was added and incubated at 37°C for 30 min. DNA was precipitated 

from solution by adding 75 J.lI 3 M sodium acetate and 150 J.lI ethanol, mixing well and 

centrifuging at 13,000 rpm for 1 min in a bench top centrifuge. The supernatant was 

discarded and the DNA pellet washed in 80 % ethanol. The pellet was air-dried and 

redissolved in 10 mM Tris pH 8.0, 1 mM EDT A. 

3.8.3. Polymerase Chain Reaction 

Two primers were designed based on the Lux arrhythmo sequence found on Pubmed. 

0.5 fll (stock 100 flM) of LUX_F25 forward (ATGGGAGAGAGGAAGTACAAAT­

GAG) and LUX_R27 reverse (TTAATTCTCATTTGCGCTTCCACCTCC) primers 

were added to a reaction mixture containing 2 J.lI DNA template (section 2.7.2), 0.4 J.lI 

nucleoside triphosphatase (NTPs), 0.5 J.lI cloned Pfu turbo DNA polymerase 

(Invitrogen), 2 fll cloned Pfu buffer and this was made up to a total reaction volume of 

20 fll with sterile H20. The PCR conditions were according to the manufacturer's 

instructions with the exception of annealing temperature which was increased to 55°C 

and the number of elongation cycles changed to 25. The product was visualised on a 

0.75 % agarose gel. The 1 kilobase (kb) product was excised froni the gel and purified 

using a gel purification kit (Qiagen). The purified LUX DNA was used as a template in a 

similar PCR but instead using primers containing overhangs with restriction sites 

included. 0.5 J.lI LUX_For (TTTGCGGAATTCATGGGAG~G9AAGTACAA) and 

LUX Rev (TTTGCGCTCGAGTTAGTCGACATTCTCATTTGCGCTTCC)· with 
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EcoRI, XhoI and SalI restriction sites underlined respectively) were added to a reaction 

mixture containing 2 III template (diluted 1: 1 00), 0.4 III dNTPs, 2 III cloned Pfu buffer, 

0.5 III Pfu and 14.1 JlI H20. PCR was performed as before and the DNA was isolated 

and gel purified from a 0.75 % gel as described above. 

3.8.4. Cloning of Insert 

30 JlI of the LUX insert was digested with 1 III EcoRI and 1 III XhoI, and 50 III of the 

pBADM41 +-BN vector was digested with 1.5 III of both EcoRI and XhoI according to 

the Fermentas protocol. The digests were run on a 0.75 % agarose gel and purified using 

the Qiagen gel purification kit. A reaction containing 1 III vector, 20 III LUX insert, 1 III 

T4 DNA ligase, 3 III T4ligase buffer, 5 III H20 ligated the insert into the vector and this 

was verified using the in-house sequencing service. 

3.8.5. LUX expression and purification 

1 L pBADM-41 +-LUX was expressed as described in section 3.2.3. The cells were 

harvested as described in section 3.1.2.3 and purified by Ni -affinity chromatography 

(Section 3.4.1). The MBP-LUX fusion was buffer exchanged and concentrated to 5 ml 

of 20 mM Tris-HCI pH 8.0 in a centrifugal concentrator (vivaspin). The MBP-LUX 

fusion was cleaned by anion exchange on a resource Q column (3.6.2.1) before being 

buffer exchanged into TEV protease buffer (containing 50 mM Tris pH 7.5, 0.5 mM 

EDT A, 2 mM p-mercaptoethanol) by size exclusion chromatogaphy as before (3.6.2.2). 

100 JlI TEV protease was added and left overnight at 4 °C. The digested product was 

subjected to size exclusion chromatography as described in section 3.6.2.1 and then 

further purified by anion exchange chromatography on MonoQ5/50 column (GE 

Healthcare life sciences) according to the manufacturers' instructions. The small 

quantities of LUX were detected by silver staining of SDS-PAGE. A combination of 

SDS-PAGE and Western blots were used to analyse purification procedures. 

3.8.S. Silver staining of 50S-PAGE 

The SDS-PAGE was fixed in 50 ml de-stain (50 % v/v methanol, 10 % v/v acetic acid 

and 40 % H20) for 30 min, washed in 50 ml50 % v/v methanol, 5 % v/v acetic acid and 
.' . 

45 % H20 for 10 min and then rinsed in distilled H20. The gel was then placed into 150 
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ml 10 % glyceraldehyde for 30 min before being transferred to H20 and left overnight -at 

4 °C. The H20 was decanted and replaced with 200 ml containing I g w/v DTT for 30 

min, followed by ISO ml 0.1 % v/v silver nitrate for a further 30 min. The gel was rinsed 

in H20 for 5 min and 150 ml 3 % sodium carbonate (Na2C03), containing 75 III 

formaldehyde was added until bands became visible. The reaction was stopped with 7.5 

m12.3 M citric acid and the resulting gel was washed in 0.3 % Na2C03 and then H20 for 

10 min each. 

3.9. LIP1 

The constructs used in the expression trials of LIPI were pBADM-41 +-LIPI, pMAL­

LIPI and pMAL-LIPI~. 

3.9.1. Small scale expression and Ni purification of LIP1 and LIP1d 

The vectors were transformed into E. coli strain C41 (,,-DE3) containing pRARE2 (rare 

tRNAs), expressed and harvested as indicated in section 3.1.2. The protocol deviated in 

that 0.5 I of culture were induced and left overnight at 20 °C instead of 37 °C for 3 h. 

3.9.2. Large scale pMAL- LIP1d Expression 

7 L of LB were inoculated with 5 ml pMAL-LIPI~ overnight culture and grown at 37 

°C until an OD600 of 0.4 was reached. Protein expression was induced at 25 °C with I 

mM IPTG and the culture was left overnight. Cells were harvested and purified by 

Nickel affinity chromatography as described in sections 3.1.2.3 and 3.4.1 respectively. 

3.9.3. pMAL- LIP1d Digestion 

The Ni purified fusion prote~n was buffer exchanged into Factor Xa protease buffer (50 

mM Tris pH 7.5, 0.1 M NaCI, I mM CaCh) as indicated in section 3.6.2.2. The MBP­

LIPI~ fusion was concentrated to 1 mg / nil, 4 III Factor Xa (Pierce) was added to I ml 

of concentrated fusion and left to digest overnight at 18 °C. 
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3.9.4. Assaying for GTPase activity 

The GTPase activity ofLIP1~ was determined using a malachite green assay. The assay 

detects the release of inorganic phosphate using visible light spectroscopy, via the 

formation of an intermediate complex between malachite green molybdate and free 

orthophosphate at 630 nm. 

To prepare the phosphate standard curve, 12 fll of 1 mM phosphate solution was added 

to 288 fll reaction buffer (20 mM Tris-HCI, pH 8.0, 200 flM GTP, 5 mM MgCh) to 

make a 40 flM phosph~te solution. 500 fll of the phosphate solution was added to 1.5 ml 

reaction buffer to make a 10 flM phosphate standard. From this, dilutions were made to 

obtain a standard curve from 0 - 10 flM phosphate and the standards were made up to 

100 fll total volume using the reaction buffer. 80 fll of the standards were pipetted in 

duplicate in clear-bottom 96-well plates (VWR International). Blanks containing 

reaction buffer and water only were added a negative controls. 

LIP1 and LIP1~ were diluted (10 flM and 30 flM final concentration) and 80 fll added in 

duplicate to the 96-well plate. The reaction was initiated by the addition of 20 fll 

Malachite Green Reagent (Invitrogen), the wells were mixed on a plate mixer and the 

plate was incubated at room temperature for 10 min. The absorbance of the solution at 

630 nm was recorder over a period of 60 min on a DYN-EX MRX plate reader. 
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Chapter 4. Expression trials of circadian proteins. 

4.1. Introduction 

In order to investigate the structure of a protein by crystallisation, an expression and 

purification protocol that results in the production of milligrams of soluble protein is 

required. At the start of this thesis, no such protocol was available. Although there 

were several examples of over-expressed circadian proteins in the literature, the 

quantities obtained were in the Jlg range. A consortium based at the University of 

Wisconsin, Madison,. known as the Center for Eukaryotic Structural Oenomics 

(CESO) was founded as a collaborative effort to develop efficient methods of 

obtaining three dimensional crystal structures, with the initial focus on proteins 

found in the model plant Arabidopsis thaliana. The CESO designed an expression 

and purification protocol that utilises a pBAD vector containing an N -terminally His­

tagged Maltose Binding Protein (MBP), which is responsible for increasing protein 

solubility and affords an effective one-step method of purification. In addition to this, 

a Tobacco Etch Virus (TEV) protease cut site is located between the MBP-fusion 

allowing easy separation of the native protein. The consortium reported much higher 

yields of soluble Arabidopsis proteins using this expression system (Jeon et al., 

2004). 

In this chapter the expression of circadian proteins listed in Table 3 was investigated. 

Small scale expression trials in the constructs provided by Dean Rea were performed 

as described in section 3.1.2. Furthermore, pBAD constructs were made (section 3.2) 

and expression trials based on the CESO protocol were performed (section 3.2.3). 

The success the trials determined which proteins would be subject to further study. 

Particular emphasis was placed on obtaining the positive regulators of LHY and 

CCA1, including ELF3, ELF4, 01 and TOe 1. 
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Protein pProEx pET26b pET28a pET32a pET39b pGEX6p pMAL- pMAL- pYES2 
c2x c2x-

cHIS 
TOCl X X X X X X X X 

TOCl- X X 
PRR 
ELF3 X X X X X X X X 

ELF4 X X X X X X (+4T) 

GI X X X 

Spy X 

ZTL X X X X X X 

FKFl X 
.. 

X 

LKP2 X X X 

CCAl X X 

LHY X X 

SRRl X 

LIPl X X X X X X 

LIPl X X X X X 
d234 

Table 3. Constructs provided for expression of circadian proteins. This table 
highlights the constructs provided at the start of this body of work. Constructs were 
made in Hungary by our collaborator Dean Rea. The genes are listed on the far left. 
Of particular note are the TOCI-PRR and LIP1~234. TOC1-PRR contains residues 
1-145 of the TOC1 sequence (the PRR domain only) and LIP1~234 is a truncated 
LIP1 (residues 1-234) that lacks the disordered 108 C-terminus. In this table X 

denotes provided construct. 

4.2. Initial expression trials 

Small scale expression trials of the constructs shown in Table 3 were initially 

performed in the laboratory of Laszlo Polgar, Budapest and re-performed at the start 

of this project. Briefly, constructs highlighted in Table 3, were· transformed into 

B834 competent E.coli containing the pRARE plasmid (encodes rare tRNA) or BL21 

Star Rosetta (Invitrogen) E.coli. Small scale expression trials were performed in a 

final culture volume of 50 ml, using varying amounts of inducer, various lengths and 
.' . 

temperature of induction, before extraction of the protein in a similar manner as 
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described in Chapter 3 (3.1.2.3). The results are not reported here, but the most 

significant levels of expression (as judged by our collaborator and ourselves) were 

re-examined. Expression of GI, SPY, ZTL, FKF1, LKP2, LHY and CCA1 were 

greatest in the pMAL-c2x-cHis construct. ELF3 and TOC1 failed to express in any 

of the constructs provided, but the pseudo-response receiver domain (PRR) of TOC 1 

(TOC1-PRR) (Fig 4.1) was expressed in pET32a. Overexpression of ELF4 was also 

highest in pET32a and all these expression trials are summarised by SDS-PAGE (Fig 

4.1). 

Fig. 4.1 indicates an obvious overexpression of ELF4, CCA1, LHY, ZTL, FKF1, 

LKP2 and LIP 1 ~234. It is encouraging to see overexpression of so many constructs 

and it appears that using MBP as a fusion partner to aid soluble expression is an 

effective way of expressing these clock proteins. However, the quantities required 

(mg) for crystallisation does mean that removal of the fusion protein will be 

extremely costly and therefore not viable for so many proteins. For these reasons, 

cloning the clock proteins into a modified pBAD vector which contains MBP and 

also a Tabacco Etch Virus (TEV) protease cleavage site would provide a financially 

viable alternative. There is an abundant supply of TEV protease in the Structural 

Laboratory which has been purified by Dr Roper (personal communication). 
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TOC1-
A TOC1 PRR ELF3 B ELF4 GI SPY 
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Fig 4.1. SDS-PAGE showing small scale expression trials. For each gel, 20 /lg of 
protein was loaded, as determined using a BSA standard curve (appendix). In each 
case, M indicates protein markers in kDa, U are un-induced cell fractions, I are 
induced fractions and S are soluble fractions. Red arrows highlight the Mw of the 
proteins. (A) There is no obvious over-expression of TOCl, TOCI-PRR or ELF3. 
(B) There is no obvious overexpression of either 01 or SPY. ELF4 is clearly 
overexpressed in pET32a with a visible band at 32 KDa. (C) The F-box proteins 
ZTL, FKFI and LKP2 are all soluble, expressed as MBP-fusion proteins. (D) CCAI 
and LHY are both overexpressed (~11 0 kDa) as MBP fusions. SRRI is not obviously 
overexpressed. (E) Full length LIPI-MBP fusion (---70 KDa) is not overexpressed 
whereas LIP 1 ~234 truncate is dearly overexpressed (~58 KDa). 
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4.3. Sub-cloning and Expression in pBADM-41+ 

The genes were sub-cloned from pProEX constructs into a modified pBAD vector (Fig 

4.2) as described in section 3.2. After ligation of the gene and vector (section 3.2.2), 

plasmid DNA was tested for presence of the insert by restriction digest (Fig 4.3) and 

further confirmed by sequencing. Cloning of TOC1-PRR, CCA1 and LKP2 were 

unsuccessful after several attempts and the decision to focus on the other proteins 

was made. 

BAD pmllloter 

EcoRV (4609) 

NdeI (3964) pBADM-41(+) 

5223 bp 

BClIuHI a39) 

Neol (1520) 
KPllI (1538) 
BamHI (1540) 

~----- EcoRI (1546) 
SaoI (1556) 
Sall (1559) 
HindIII (1565) 
RagI (I57:!) 
NoU (157~) 
XhoI (1580) 

Fig 4.2. Vector map ofpBADM-41+. This vector map was reproduced from 
the EMBL database. 
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C 

M 

TOC1 

86 

ZTL 

GI 

Spy 

SRR1 

B 

M 

D 
M 

ELF3 ELF4 

FKF1 LHY 

Fig 4.3. 1 % agarose gel showing restriction digested pBADM-41+ constructs 
for insert. In each figure M denotes DNA marker (l Kb ladder) and red arrows 
represent the dropped insert. Above each arrow the presence of a higher Kb band 
indicates the 5.2 Kb digested pBADM-41 + vector. The inserts sizes are as follows; 
(A) TOC1 at 1.8 Kb, ZTL at 1.8 Kb and Spy at 2.7 Kb, (B) ELF3 at 2.1 Kb and 
ELF4 at 0.33 Kb, (C) B6 at 1 Kb, GI at 3.5 Kb and SRR1 at 0.8 Kb, (D) FKF1 at 1.8 
Kb and LHY at 1.9 Kb. 

The overexpression of pBADM-41 + constructs was evident for both ELF4 and ZTL, 

but less so for other constructs. The solubility and yield of overexpression was 

confirmed by Western analysis (Fig. 4.4) as described in section 3.2.4. TOC1 and 

ELF3 failed to express in pBADM-41 +, whilst SRR1 and B6 were only expressed 

insolubly. Both LHY and Spy were overexpressed with approximately half the yield 

being insoluble. 
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M TOC1 ELF3 ELF4 ZTL M SPY LHY SRR1 86 

Ins Sol Ins Sol Ins Sol Ins Sol Ins Sol Ins Sol Ins Sol Ins Sol 

250 ---+ 
148 ---+ 
98 ---+ 

64 ---+ 

50 ---+t 

36 ---+t 36 ---+ 

22 ----+" 22 ---+ 

Fig 4.4. Western analysis of pBADM-41 + expression. The expression of His­
tagged MBP-fusions was detected using anti-His antibodies. Insoluble (Ins) and 
soluble (Sol) expression of each fusion is shown respectively. Red arrows highlight 
the correct protein band. M denotes protein standard protein markers in kDa. 

4.4. Expression of TOC1 and ELF3 in Yeast 

As all expression trials of TOe 1 and ELF3 had failed, an attempt to express both in 

yeast (section 3.3) was made. The genes were cloned into the expression vector 

p YES2 (Fig 4.5) and these were expressed in Saccharomyces cerevisiae strains 

DB2061 and INVScl. The transformed Yeast cells failed to grow on the initial 2 

attempts, but grew on the 3 rd trial. No expression of Toe 1 or ELF3 was detected by 

either SDS-PAGE or Western blots against the His-tagged proteins. 
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SnaB 1 pYES2 8g/1 

5.9kb 

Apa 1 

Fig 4.5. Vector map of p YES2. This map was reproduced from the p YES2 manual 
from Invitrogen. 

4.5. Expression of TOC1-PRR and Ni-affinity purification 

As expression of the full-length TOC1 was unsuccessful, focus turned to purification 

of the PRR domain. The N-terminal PRR domain ofTOC1 was expressed in pProEX 

and pET32a vectors (Fig 4.6) and initially purified by Ni-column chromatography as 

described in section 3.4 and 3.4.1. SDS-PAGE analysis of the expression and 

purification of the TOC1-PRR (Fig 4.7) shows large soluble overexpression of the 34 

KDa TOC1-PRR-Thioredoxin fusion in the pET32a vector (Fig. 4.7, lane 7). The 

fusion protein was eluted from the Ni-column with 100 mM suggesting loose binding 

to the Ni-column as shown in Fig 4.7 lane 8 and as the predominant peak in Fig 4.8. 

The elution after addition of 0.5 M imidazole (Fig 4.7, lane 9) produced the purest 

fraction, which was used in subsequent digestion. 
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1 11 21 31 41 51 

I I I I I I 
1 MSDKIIHLTD DSFDTDVLKA DGAILVDFWA EWCGPCKMIA PILDEIADEY QGKLTVAKLN 60 

61 IDQNPGTAPK YGIRGIPTLL LFKNGEVAAT KVGALSKGQL KEFLDANLAG SGSGHMHHHH 120 
121 HHSSGLVPRG SGMKETAAAK FERQHMDSPD LGTDDDDKAM DLNGECKGGD GFIDRSRVRI 180 
181 LLCDNDSTSL GEVFTLLSEC SYQVTAVKSA RQVIDALNAE GPDIDIILAE IDLPMAKGMK 240 
241 MLRYITRDKD LRRIPVIMMS RQDEVPVVVK CLKLGAADYL VKPLRTNELL NLWTHMWRRR 300 
301 RMLGLEHHHH HH 

Fig 4.6. Amino acid sequence of pET32a TOCI-PRR-Thioredoxin fusion. The 
following residues are; 1-108 Thioredoxin, 117-122 His-tag, 126-131 Thrombin 
digest site, 134-147 S-tag, 154-158 Enterokinase digest site and 159-305 TOCl­
PRR. 

kDa M 1 2 3 4 M 6 7 8 9 

175 

80 

58 

46 

30 

23 

17 

7 

Fig 4.7. SDS-PAGE of TOCI-PRR expression 'and Ni-column purification. M 
denotes marker proteins with Mw in kDa. Lanes 1 and 6 show soluble 
overexpression of TOCI-PRR fusion in pProEX and pET32a respectively. Lanes 2 
and 7 represent flow-through fractions, lanes 3 and 8 are elution fractions after 100 
mM imidazole wash and lanes 4 and 9 are elution fractions after addition of 0.5 M 
imidazole. 
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Fig 4.8. Chromatogram of Ni-affinity purification of pET32a-TOCI-PRR. The 
TOC1-PRR-Thioredoxin fusion shows a major peak elution around 90 ml at 20 % 
elution buffer (containing 100 mM Imidazole) and a smaller second peak around 115 
ml at 100 % elution buffer (containing 0.5 M Imidazole). 

4.6. Digestion of TOC1-PRR from Thioredoxin 

The pET32a vector was digested by Enterokinase and Thrombin to remove the 

Thioredoxin and to determine which protease provided more successful cleavage. 

SDS-PAGE indicated that both proteases were efficient at removing the fusion 

protein (Fig 4.9). The Thrombin digest results in the removal of the 14 kDa 

Thioredoxin-polyHis (Fig 4.9, lane 5, lower band) from the 20 kDa S-tagged PRR 

(Fig 4.9, lane 5, upper band). However, according to the construct (Fig 4.6) digesting 

by Enterokinase will result in only the PRR domain and is therefore the preferred 

method of digestion. Unfortunately, digesting with Enterokinase resulted in 

precipitated TOC1-PRR. This precipitate was resuspended in 6 M urea for the 

purpose of SDS-PAGE, but this is not a practical solution when considering using 

the product for crystalisation trials. 
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kOa M 1 2 3 4 5 6 M 

175 

80 
58 

46 

30 

23 

17 

7 

Fig 4.9. SDS-PAGE of digested TOCI-PRR. Lane 1 contains the purified TOC1-
PRR salnple from Ni-column chromatography, lanes 2 and 3 contain Enterokinase 
and Thrombin buffer exchanged TOC1-PRR respectively. Lane 4 shows the 
Thrombin digested sample, whilst lanes 5 and 6 indicate Enterokinase digested 
sample. Lane 6 represents the precipitated product of Enterokinase digestion re­
suspended in 6 M urea. 

4.7. Discussion 

The aim of this thesis is to investigate the structures of circadian proteins by using x­

ray crystallography. For this, mg quantities of protein are required and the evidence 

shown in Fig 4.1 would suggest that whilst the initial vectors appear successful at 

producing moderate levels of protein, a financially viable alternative was required. 

This set of vectors requires digestion of fusion protein using expensive proteases. 

The expense of the proteases required for digestion of mgs of fusion protein and the 

large scale-up required for significant levels of protein expression made existing 

constructs a practical impossibility. With this is mind, it was a logical progression 

to try and express the proteins in pBAD vectors in accordance with the CESG 

protocol. Not only does this system offer an increased solubility for ~80 % of 

proteins tested (Jeon et al., 2005), but the MBP-fusion can be cleaved using TEV 

protease which is in plentiful supply in the laboratory. 
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The initial expression trials in pBAD were successful for soluble expression ofELF4 

and ZTL. As previously mentioned, emphasis is placed on determining the structures 

of the positive regulators of LHY and CCAI and for this reason; pBAD-ELF4 was 

chosen for further experimentation (Chapter 6). Other positive regulators have been 

previously expressed in other laboratories. ELF3 was expressed in pET30a in E. coli 

BL21 (Liu et ai, 2001) which is a similar expression system to pET32a. It has also 

been shown that GI can be co-expressed as MBP-GI with pETcoco-SPY (Tseng et 

ai, 2004). Attempts to express ELF3 and GI according to the literature using 

constructs provided by the authors were unsuccessful. It is difficult to decipher why 

the protocols were not reproducible, but one suggestion is that important information 

may have been excluded from the publications. 

As previously determined, no expression was detected for TOC 1 and ELF3 in the 

initial trial (Fig 4.1), pBAD expression trials (Fig 4.4) or yeast expression trials 

(section 4.4). There were no protocols in the literature for expression of TOC1 

which lead to attempting to express the TOC1-PRR domain. The PRR domain offers 

a great palace to start crystallisation trials; it is present in multiple clock proteins and 

is likely to playa key role in their functions, and it is quite small (16.5 kDa) allowing 

easier crystallisation and crystallographic analysis. 

This domain showed high soluble expression (Fig 4.7) and was able to be purified in 

significant quantities as a Thioredoxin fusion. However, the digestion of the fusion is 

problematic. Digestion using Enterokinase removes all tags and the Thioredoxin 

fusion, but results in precipitation of the TOC1-PRR protein. Conversely, digestion 

using Thrombin maintains TOC1-PRR solubility, but also leaves the S-tag attached .. 

It is possible to crystallise proteins with fusion partners and / or tags, but it can be 

difficult to determine the effect of such interactions on the native protein structure. 

The unstructured nature of the S-tag leads to increased solubility, but may make 

crystallisation more difficult. 

The overexpression of the PRR domain was deemed successful, however due to time 

constraints no scale ups were attempted. It would be possibl~ to continue this work 

by scaling up and attempt crystallisation. That said, the presence ~f the S-tag is l.ikely 

to be required for obtaining reasonab!e amounts of protein. . 
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Chapter 5. Development of DNA aptamers 

5.1. Introduction 

The development of affinity tags against proteins is of significant importance in 

molecular and biochemical research. Traditionally, the production of antibodies has 

been the most convenient way of providing specificity and allowing a wide range of 

experiments to be conducted. These experiments range from the very basic 

identification of a particular target, such as western analysis, to the very complex, 

including DNA/protein interactions, protein/protein interactions and even for the 

purification of proteins from whole cell extracts. Whilst antibodies are a staple 

feature of everyday research, there are problems concerning their use. 

The first major step in their production involves the injection of the protein into live 

mammals, such as mice or rabbits. The animal is then bled and the resulting serum 

purified for the antibody in question. This is time consuming as the protein needs a 

significant incubation period to illicit the immune response that produces the 

antibody. It is also costly, in terms of keeping the animals and purifying the serum. 

In addition, the specificity of the antibody can vary from highly specific to non­

specific. When considering the large number of proteins investigated in this thesis, it 

makes sense to find alternative affinity tags to replace the antibodies usually used. 

In the early 1990's, several laboratory's reported an in vitro selection and 

amplification technique for the isolation of nucleic acid sequences that bind a target 

with high specificity and affinity (Robertson and Joyce, 1990; Tuerk and Gold, 1990; . 

Ellington and Szostak, 1990). The technique was named SELEX, an acronym for 

Systematic Evolution of Ligands by EXonential enrichment, and these highly 

specific nucleic acids (Both RNA and later, single stranded (ss) DNA) were given 

the name aptamers. Aptamers bind non-nucleic acid targets !ncluding- peptides, 

proteins, organic / inorganic molecules and drugs, based on their three dimensional 

structures,. which include hairpins,. loops, stems, pseudoknots, triplexes and 

quadruplexes. Aptamers show a specificity towards their targets that is at least 

comparable to the speciifictiy of antibodies towards their targets, with Kd values in 

some cases, reaching the pmol range (Jenison et ai., 1994). Furthermore, aptamers 
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specificity have been shown to discriminate between 10,000 and 12,000 fold (Jenison­

et al., 1994; Geiger et al., 1996) to that of their targets, even between cases where 

there is significant structural similarity of the target. 

The high affinities and specificities of aptamers show the potential that they present 

in terms of diagnostic, bio-analytical and therapeutic applications. Furthermore, 

aptamers have significant advantages in their production over existing methods used 

for the production of monoclonal antibodies. Aptamers are made by the in vitro 

process SELEX, which removes the need for live animals and extends the list of 

potential targets to non-immunological and even toxic targets, which would be 

excluded during the production of monoclonal antibodies~ In addition, aptamers can 

be produced against specific regions of a target, rather than relying upon the immune 

system of an animal selecting the epitopes of the target. As aptamers are selected 

from an oligonucleotide library containing large quantities of nucleaic acid (typically 

1015) and go through many rounds of selection, the affinity achieved can be greater 

than that of natural selection. The direct sequence knowledge of the aptamers allows 

for easy modification, including the introduction of an enzyme or fluorophores, or 

even immobilisation on a resin or micro-array that will not decrease or interfere with 

the aptamers ability to bind its target. Above all other considerations, arguably the 

most useful property of aptamers production is the conditions under which they are 

produced can be non-physiological to reflect the experiment or assay they are 

required for. They are much more likely to be stable and function under these 

conditions than an antibody. 

5.1.1 General principle of aptamer selection by SELEX 

The process starts with the synthesis of a degenerate nucleic acid library, consisting 

of 1014_1015 DNA or RNA molecules that have a random region flanked by fixed 

regions that allow amplification of the sequence by peR. The library is commonly 

incubated with an immobilised target (microtitre plates, affinity column, magnetic 

beads) and given time to form unique specific three-dimensional structures against 

the target. The bound oligonucleotides are separated from the unbound and non­

specific nucleic acid sequences by a series of stringent wash ,steps. Target-bound 

oligonucleotides are eluted by the introduction of an affinity elution, and this 
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depends upon the kind of immobilisation performed. Once the aptamers have been­

separated from the target, they can be amplified by PCR. Resulting double-stranded 

DNA is separated into ssDNA, before being incubated with the target once more, 

ready for the next SELEX round (not necessary for RNA). Iterative cycles of 

selection and amplification decreases the size of the random nucleic acid library and 

increases the specificity of the aptamers towards the target (Fig 5.1). The number of 

rounds required and the specificity of the aptamer pool at the end of SELEX will 

vary from the methodology and the targets used. The enriched pool is then cloned 

and sequenced to determine the exact nucleotide sequence responsible for the 

affinity. Individual clones are usually screened for specificity by using fluorescent or 

radioactive binding assays, Surface plasmon resonance (SPR) or fluorescence 

correlation spectroscopy. A typical SELEX will yield approximately 50 specific 

aptamers. ClustalW analysis can help with identifying homologous sequences, but 

the specificity is usually determined by the aforementioned techniques. 

5.1.2 Aptamer selection against circadian clock proteins 

To determine the structural properties of the putative clock proteins, we require large 

amounts of protein, some of which can be used for the production of aptamers. If we 

are able to make aptamers towards the clock proteins, it will allow us and others to 

design experiments that go beyond structural analysis. As we are expressing many 

proteins, the development of antibodies is too expensive. We can therefore attempt to 

develop a SELEX protocol for the production of aptamers against any circadian 

clock associated protein that we purify. 
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unbound nucleic acids 

Fig 5.1. A schematic showing the production of DNA aptamers based on 
Systematic Evolution of Ligands by EXponential enrichment (SELEX). (1) A 
random single stranded DNA (ssDNA) library is incubated with a target, in this case 
a protein. (2) The ssDNA forms unique three dimensional structures around the 
target, with a minority showing specificity. (3) Unspecific ssDNA is removed from 
the target by gentle removal of the protein from the pool. (4) Several stringent 
washes remove any remaining unspecific ssDNA that may be associated with the 
protein due to steric interactions. (5) ssDNA is eluted from the protein by applying a 
high salt wash. The resulting eluate is amplified by peR, enriching the pool for DNA 
that has specificity for the protein. The double stranded DNA is denatured to produce 
ssDNA that is responsible for the required specificity. The newly amplified pool is 
the subjected to further rounds of enrichment and amplification (steps 1-5), typically 
between 12-15 rounds, with each round improving the specificity of the aptamer pool 
for the protein. (6) The resulting pool contains highly specific sequences of ssDNA 
which can be sequenced, produced and used in subsequent experiments. 

5.2. Results 

The basis for aptamer selection was due to the attempt to purify numerous proteins. 

Although the main focus of the thesis did not involve the crystallisation of SRR1, it 

was chosen due to the relative ease at which it was purified. The MBP-SRR1 fusion 

is approximately 72 KDa and was purified using Ni-chromatography as described in 

the previous chapter. The resulting SDS-PAGE is shown in Fig. 5.2. Although the 

SRRI appears to contain numerous contaminants, these were significantly less in 

concentration than other circadian proteins after one affinity purification. Other 
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proteins in the elutions in Fig 5.2 were present for the aptamer selection process by 

SELEX. The elution's Fig 5.2 (lanes 7-9, indicated by the red arrow) were buffer 

exchanged according to section and used at a concentration of 2 mg / ml. Each 

elution contained 1 mg / ml of SRRI fusion protein, which was concentrated during 

the buffer exchange step. A total of 50 Jlg of fusion protein was used in the 

subsequent aptamer selection. 

KDa 

148 
98 

64 

50 

M 1 2 3 4 5 6 7 8 9 

Fig 5.2. SDS-P AGE showing Ni-affinity chromatography purification of MBP­
SRRI. Lane 1 shows the soluble lysate, lane 2 contains flow-through, lanes 3 and 4 
contain the fractions after 100 mM imidazole washes, lanes 5 and 6 contain the 
fractions after 200 mM imidazole washes and lanes 7-9 represent elution of MBP­
SRRI with 300 mM imidazole, highlighted by the red arrow. M denotes protein 
standards in KDa. 

After the first round of SELEX, amplification of the aptamer pool required 

optimisation. The initial PCR conditions differed from the procedure detailed in the 

methods section and produced two products, of which one was the correct size (Fig 

5.3 (A». The likely explanation is due to mis-annealing of the LICSelexF and 

LICSelexR primers which result in the production of conaptamers Goined aptamers). 

Optimisation of the protocol included reducing the annealing temperature from 56°C 

to 50 °c and optimising the concentration of the co-factor MgS04• In addition, the 

number of PCR cycles had to be carefully monitored. Reducing the number of cycles 

from 25 to 20 or 15 still produced the double band. As few as 10 cycles were 

required to produce a product of the correct 80 bp size (Fig 5.3, (B, lane 2». Figure 
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3.3 (B) highlights the difference in product between 15 and 10 PCR cycles (lanes 1 

and 2, respectively). 

A 
M 

1 Kb 

100 LlLI---' 

B 
M 1 2 

Fig 5.3. 3 % agarose gels showing the amplification of the aptamer pool after 
the first round of SELEX. (A) Shows the amplification of two products, one at 80 
bp and the other slightly larger (red arrows). (B) Comparison of altering the number 
of PCR cycles from 15 cycles (lane 1) to 10 cycles (lane 2). Lane 1 highlights the 
presence of two bands and lane 2 contains the expected 80 bp oligonucleotide, 
indicated by the red arrow. M denotes protein standards. 

Unfortunately, too few cycles result in no product at all and too many cycles produce 

bands of incorrect sizes. For these reasons, the aptamer pool was amplified using 10 

cycles in the first instance and if no product was detected, the pool was subjected to a 

further 5 cycles. This eliminated the production of a double band and also proved 

that the pool contained ssDNA of the appropriate size. In total, 15 rounds of SELEX 

were performed and the aptamer pool was visualised after each round. Figure 5.4 

shows the amplification of the aptamer pool after rounds 3 (A), 6 (B) and 9 (C). Any 

one of the rounds could have been selected for this figure. 
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A 
M 

100 bp 

B 
M 

c 
M 

Fig 5.4. 3 % agarose gels after amplification of the aptamer pool by peR. The 
three gels highlight the amplification of an 80 bp product after SELEX rounds (A) 3, 
(B) 6 and (C) 9. The red arrows indicate the aptamer pool slightly under the 100 bp 
marker. M denotes protein standards. 

After 15 rounds of selection, the aptamer pool was assessed for specificity towards 

SRRI by a Dot-blot analysis. In the final amplification step, the LICSelexF was 

replaced with the biotinylated primer which resulted in the production of 

Biotinylated aptamers. The SRRI was blotted on to a nitrocellulose membrane and 

incubated with the biotinylated aptamer pool. Specificity towards the SRRI fusion 

was ~etected by Dot-blot analysis using a streptavidin-HRP conjugated antibody 

(Fig. 5.5). 

1 2 3 

4 5 6 

Fig 5.5. Dot-Blot of Biotinylated aptamer pool incubated with SRRI. The 
aptamer pool was diluted in ten-fold serial dilutions (1-6) from the initial 
Biotinylated pool (square 1). 5 t.ll of the aptamer pool was added to each square. 
Squares 1 and 2 show the detection of Biotinylated aptamers that have bound to 
SRRI. 
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The specificity of the Biotinylated aptamer pool is clearly shown in Fig 5.5, squares 

1 and 2. The remaining squares do not highlight any specificity, presumably due to 

low concentration of the aptamer pool. 

As specificity had been shown, the remaining aptamer pool was cloned into PSKII 

and transformed into competent E. coli. Approximately 35 colonies grew on the 

selective media, however after extraction of the plasmid and subsequent sequencing; 

no 80 nucleotide insert was detected. It is likely that the insert was never 

incorporated into the plasmid. Whether this was due to a failure of the T / A based 

cloning strategy or the ligation itself is unknown. 

5.3. Discussion 

The results clearly indicate that the selection protocol used in this thesis has 

produced aptamers with specificity towards SRRI fusion protein (Fig 5.5). 

Unfortunately, the cloning of the aptamer pool did not provide any sequence 

information to elucidate nucleotides required for the observed specificity. Given 

more time, further attempts to clone the aptamer pool would have been made and 

these sequences screened for common nucleotide regions. That said, there would be 

plenty more testing of individual aptamer sequences in order to assess the specificity, 

in terms of binding affinity and the specificity towards the target itself. The first 

question this point raises is the aptamer pool specificity may be towards SRRl, MBP 

or even the linker region of the fusion protein. The reason for using the tagged fusion 

protein was for the immobilisation of the target to magnetic beads, via the N-terminal 

His-tag found on the MBP. The use of the His-tag is important because it promotes 

the proper orientation of the protein on the surface of the bead, and simultaneously 

provides an extra purification step, reducing the likelihood of producing aptamers 

towards a contaminant. Indeed, the purified, SRRI fusion ~hows several other 

proteins are ~present in the elution (5.2), so this was an important feature of this 

particular aptamer selection process. Subsequent aptamer specificity would have to 

be tested against purified ~RRI and purified MBP alone. It would be easy to 

synthesise the individual aptamers· with tags or fluorescent 'molecules and perform 

western blots against lanes of either purified protein. This would certainly allow the 
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specificity to be determined, however, it would not indicate the specificity for these 

targets alone. If the aptamers were to be used in any situation where other proteins 

are present, we would need to infer that there is minimal non-specific binding. For 

example, if the interest lies in determi~ing the relative abundance of a circadian 

associated protein over the daily light / dark cycle, how could we be sure that the 

aptamer binds only to our target? To this end, a range of experiments utilising whole 

Plant cell extracts would required. It is feasible to test individual aptamers against 

whole cell extracts run on an SDS-PAGE followed by western analysis. Highly 

specific aptamers should only produce one band on such blots. Combining the results 

of this kind of experiment with sequence alignment would provide nucleotide 

sequences that are a specific towards the target as possible. In any case, the very 

same problems exist with non-specific binding of antibodies and this does not 

prevent their use. 

The SELEX protocol developed in this thesis highlights a straightforward and 

efficient method of developing affinity tags towards proteins. It has incorporated our 

knowledge of the strong and highly specific biotin-streptavidin interaction for; 

generating ssDNA from biotinylated PCR products using streptavidinmagnetic 

beads, and also the detection of biotinylated aptamers specificity by western blots. If 

time had allowed, we could have further used this interaction to immobilise 

biotinylated aptamers to streptavidin beads for the purification of a protein target 

from cell extracts. This would have been particularly useful in isolating protein: 

protein interactions between circadian associated proteins. Moreover, using aptamer 

affinity chromatography would allow a means of purification without the need for 

affinity tags that may adversely affect protein structure, function or ability to form 

crystals for structural determination. Perhaps the most exciting use for developing 

aptamers in this project however, lies in the concept of producing DNA arrays. In 

theory, we could have produced highly specific aptamers towards all of the circadian 

associated proteins previously discussed. Theaptamers could.then be bound to a 

DNA chip a!1d whole cell extracts washed over the chip at different circadian times. 

It would be possible to determine the level of protein accumulation over the circadian 

cycle and to therefore infer possible interactions. If the LHY / CCA 1 interaction had 

not been characterised, then an experiment along these lines· would show similar 

le"e1s of protein accumulation at similar points of the circadian cycle. This may infer 
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an interaction or working in a similar pathway / manner. To simultaneously be able 

to monitor the protein levels in a given system would be very powerful in 

understanding unidentified interactions. 

The benefit of the work presented here, is that this protocol can be used and adapted 

to suit the requirements of any research project. Any protein containing any type of 

tag could be subjected to this process of SELEX. As long as the affinity steps have 

been considered and appropriate tags (protein or aptamer) have been used, this 

protocol can be used for the development of aptamers towards any protein. As 

previously discussed, the aptamers can be used in place of antibodies in everyday 

research, highlighting a massive potential in their use. Their biological properties 

suggest an advantage over using antibodies and these have been addressed. Indeed, 

recent years have seen the development of aptamer technology dramatically increase, 

with ever more publications showing either the use of aptamers in medical 

diagnostics or an improvement in the methodology of selection, suggesting 

replacement of antibody technology. There is also increasing interest in commercial 

development of aptamer technology, as indicated in the number of industrial patents 

filed over the past few years. The protocol here describes a way to manufacture 

aptamers, in short time frames and at low cost which would suit the average 

academic researcher. 
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Chapter 6. ELF4 

6.1. Introduction 

ELF4 is an interesting circadian protein that appears to exert its effect as a light input 

into the clock and also as a putative central oscillator protein (as discussed in section 

1.4.2). Evidence suggests that it is fundamental for proper clock functioning as all 

free-running periods are attenuated in the elf4 loss-of-function mutant (Kikis et al., 

2005). Interestingly, ELF4 loss-of-function appears to have a more pronounced 

effect on clock function that any of the other potential oscillator proteins, which 

result in an altered period or amplitude of rhythm. For example, TOe] loss-of­

function results in a shorter period of clock outputs (Millar et al., 1995b; Somers et 

al., 1998; Strayer et al., 2000), but the rhythmicity of outputs is maintained. There 

appears to be no redundancy in the function ofELF4. 

There are several reasons for wanting to study the ELF4 protein in greater detail. 

From a structural standpoint it is interesting in that ELF4 contains no known domains 

or motifs based on its primary amino acid sequence. As ELF4 is expressed at similar 

phase to GI, LUX and TOCI it is possible that it forms a part of a complex with 

these proteins. By obtaining a crystal structure it may be possible to predict such 
.. 

interactions which we can not decipher from the sequence. Furthermore, ELF4 may 

represent a species specific protein with a novel structure which may have 

implications for the study of non-circadian proteins. Indeed, a BLASTp of ELF4 at 

the NCBI results in a list of ELF4-Like 1-4 proteins, highlighting other proteins of 

unknown function may also have a similar structure and may therefore function in a 

similar manner. 

In addition, results show that pBADM-41 +-ELF4 and pET32a both express very well 

(Fig 4.2. and 4.5) and t~is is a decent starting point to attempt purification and 

crystallisation. 
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6.2. pBADM-41+-ELF4 expression and purification 

As determined previously, there was high expression of ELF4 in pBADM-41 + (Fig 

4.5). The expression trials were scaled up to 8 Land the resulting culture prepared 

for purification as laid out in section 3.1.2.2 and 3.1.2.3. ELF4 was subjected to Ni­

affinity chromatography followed by size-exclusion chromatography into TEV 

protease buffer. At this stage, there was approximately 80 mg of fusion protein 

produced. The resulting fraction was cleaved by TEV protease before subsequent 

removal of the His tagged MBP. Although it appeared that ELF 4 and MBP had been 

separated, the His-t~gged MBP failed to bind to the Ni-column. To overcome this 

problem, the fraction was applied to an amylose resin which should bind the MBP 

itself. As before, no binding was detected. 

As separation based on the His tag and MBP had failed, purification utilising ELF 4s 

intrinsic properties were applied. Digested fractions were applied to anion and cation 

exchange chromatography, ammonium sulphate cuts and size exclusion 

chromatography, none of which showed separation. Hydrophobic interaction 

chromatography (HIC) was also attempted (phenyl-Sepharose, buthyl-Sepharose and 

octyl-Sepharose columns), but ELF4 and / or MBP failed to bind to the columns used 

leading to co-elution. An attempt to purify the fusion protein utilising the properties 

of MBP was also attempted. ELF4 fusion was applied to an amylose resin which 

should immobilise the MBP. TEV protease was included in the wash and elution 

buffers in order to cleave ELF4 from the fusion. The MBP did not bind to the resin. 

The type and order of the purification procedure appeared to make no difference in 

the separation of ELF4 from MBP. With every column used, the yield of ELF4 

decreased but the purity did not improve. Consequently, purification of ELF4 in 

pET32a was trialled in place ofpBADM-41+. 
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6.3. pET32a-ELF4 expression and purification 

Expression of ELF4 in pET32a is shown in Fig 4.2 (B). The vector contains a 

Thioredoxin (Trx) fusion protein to aid solubility, and His and S-tags to aid in 

purification (Fig 6.1). The fusion was expressed as described in section 3.6.2, and 

subjected to Ni-affinity chromatography which resulted in a yield of 200 mg of 

protein. The resulting fraction (Fig 6.2.a, lane 4) was applied to size exclusion 

chromatography in order to buffer exchange ready for digest. Approximately 1 70 nlg 

of protein was eluted from the gel filtration (Fig. 6.2.a, lane 5). 

1 11 21 31 41 51 
I I I I I I 

1 MSDKIIHLTD DSFDTDVLKA DGAILVDFWA EWCGPCKMIA PILDEIADEY QGKLTVAKLN 60 
61 IDQNPGTAPK YGIRGIPTLL LFKNGEVAAT KVGALSKGQL KEFLDANLAG SGSGHMHHHH 120 

121 HHSSGLVPRG SGMKETAAAK FERQHMDSPD LGTDDDDKAM ETKRNGETKR RRNVAEEAEQ 180 
181 GEDPAMETWE NLDRNFRQVQ SVLDRNRSLI QQVNDNHQSR METADNMETS KNVALIQELN 240 
241 GNISKVVNME TYSDLNTSFS SGFHGGKNGH DGGGAAGTRA LE 

Fig. 6.1. Amino acid sequence of pET32a ELF4-Thioredoxin fusion. The 
following residues are; 1-108 Thioredoxin, 117-122 His-tag, 126-131 Thrombin 
digest site, 134-147 S-tag, 154-158 Enterokinase cut site, 160-281 ELF4. 

A 
kDa M 1 2 3 4 5 

250 
148 
98 

64 

50 

36 

Fig. 6.2a. SDS-PAGE of ELF4-Trx fusion after Ni-affinity chromatography and 
size-exclusion chromatography. (A) M denotes protein markers. Lane 1 shows 
crude extract, lane 2 is induced fraction~ lane 3 soluble fraction, lane 4 Ni-purified 
fraction and lane 5 ELF4-Trx after size-exclusion chromatography. 
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Fig 6.2h. Chromatographs showing Ni-affinity purification and size-exclusion of 
ELF4-Trx fusion. (B) ELF4-Trx fusion showed a peak at 20 % elution buffer 
containing 100 mM imidazole. (C) ELF4-Trx fusion after size-exclusion shows an 
absorbance of 2500 mAu at 254 nm. 
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6.4. ELF4-Trx digestion and anion-exchange. 

The ELF4-Trx was digested by Enterokinase resulting in two products; ELF4 at 13 

kDa and Trx (with His and S-tags) at 17 kDa (Fig 6.3). The uppermost band indicates 

undigested fusion just below the 30 kDa marker. 

kDa 

97 
66 
45 

30 

20 

10 

M 1 2 3 

Fig 6.3. SDS-P AGE showing enterokinase digest of ELF4-Trx fusion. M denotes 
protein markers. Lanes 1-3 show the digestion of 10 mg of ELF4-Trx with 1,2 and 3 
Units of enterokinase respectively. 

The cleaved Trx still contains a His-tag, which was used as an anti-purification step 

using Ni-affinity chromatography. The Trx failed to bind to the Ni-column, so ELF4 

was separated from Trx by anion exchange. Both proteins bound the Resource Q 

column and were eluted at different NaCI concentrations (Fig 6.4). SDS-PAGE 

analysis of the three peaks eluted from anion exchange clearly shows the separation 

ofELF4 from Trx (Fig 6.5). 

The gel containing ELF4 and the Trx tag (Fig 6.5) was gIven to the Mass 

spectrometry department. The two bands were identified to be the correct proteins. 

The data from (Fig 6.5, Track 1) was used to interrogate the Arabidopsis protein 

database (rel. 3.42 May 2008, http://www.ebi.ac.ukJIPI/IPlarabidopsis.html) and was 

identified as: Gene Symbol ELF4 (ELF4 EARL Y FLOWERING 4, Accession 

IPI:IPI00528125 .IITREMBL:004211IREFSEQ:NP _565922ITAIR:AT2G40080.1) 

with 2 peptides identified and 24% sequence coverage. The data from (Fig 4.5, 

Track 3) was used to interrogate the UniProt KB database rel.,13.3 May 2008 and the 
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protein was identified as: Thioredoxin - 1 Accession POAA25 and homologues. The 

on-screen shots are shown in Figure 6.6. 
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Fig 6.4. Chromatograph showing anion exchange of cleaved ELF4 and Trx. The 
peak around 50 ml with approximately 0.8 M NaCI represents ELF4, whilst the two 
converging peaks at 55 ml represent the elution of Trx. 
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16 

Fig. 6.5. SDS-PAGE of digested ELF4-Trx separated by anion exchange. Lane 1 
is pure ELF4 (12 kDa), lane 2 contains the Trx tag and degradation products, lane 3 
contains pure Trx (16.5 kDa). M denotes protein markers. 
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Fig 6.6. On-screen shot of ELF4 confirmation from mass spectrometry analysis. 
The output file shows the results from mass spectrometry of the band excised from 
Fig 4.5. The top left identifies the protein as ELF4 with the sequence coverage is 
shown in the middle of the screen shot. Two peptides are highlighted in purple and 
green respectively. 

6.5. ELF4 Crystallisation trials 

The purified ELF4 (Fig 6.5, lane 1) was buffer exchanged according to section 

3.2.6.3 and concentrated to 10 mg / ml. Pure ELF4 was very unstable and needed to 

be kept as cool as possible. In order to maximise the amount of ELF4 that could be 

used in crystal trials, crystal screens were set-up immediately after sample 

concentration. A typical purification using the methods a stated in this chapter, 

yielded 1 mg / ml ELF4 from 4 L of initial culture. Each 96-well screen required 96 

fll of ELF 4 at 10 mg / ml. Therefore, every crystal screen performed required the 

growth of 4 L culture. 
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Initial screens were performed as described in section 3.6.2.5. Crystals formed in the 

Hampton Index screen 16 under the conditions O.3M Magnesium formate, 0.1 M Tris 

pH 8.5. These crystals grew 3 weeks after incubation. To determine whether crystals 

were protein or salt, crystals from the drop (Fig 6.6, A) were broken with a fine 

needle and two crystals were incubated with a protein specific dye (lsit?; Hampton 

Research). The crystals took up the dye and were stained purple. When pressure was 

applied to the crystal, they fell apart with little resistance. Additionally, no crystals 

formed in the buffer reservoir. Taken together, the evidence suggested that the 

crystals were protein and these were x-ray diffracted. 

Several months after the crystals were obtained; the diffraction pattern indicated that 

the crystals were salt. As no other conditions showed signs of crystallisation, a 

tagged ELF 4 was used for subsequent trials. 

Fig 6.7. Picture of crystal~ formed in Hampton Index crystal screen 16. (A) 
Crystals of varying sizes found in the drop (B) Two crystals isolated for x-ray 
diffraction. The upper crystal is about 0.5 mm in the longest dimension . .These 
crystals formed under the same conditions. 
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6.6. Purification and crystal trials of S-tagged ELF4 

The purification applied was identical to the previous protocol (Section 4.3). After 

size-exclusion chromatography, ELF 4 was successfully digested with thrombin in 

place of enterokinase. This removed the Trx tag, but left a 15 aa N-terminal S-tag as 

shown in Fig 6.5. The cleaved Trx was removed by Ni-affinity chromatography and 

the S-tagged ELF4 came through the flow through (Fig 6.8). The chromatograph 

indicates a much higher absorbance at 280 nm than Fig 6.8, showing a greater yield 

of ELF4. The solubility of S-tagged ELF4 was far greater than native ELF4 with 

almost no precipitation after subsequent buffer exchange into Tris HCI, pH 8.0. 

Consequently, the yield of S-tagged ELF4 was approximately 20 mg from the 

cleavage and purification of 50 mg of fusion protein. 
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Fig 6.S. Chromatograph showing ELF4 purification by Ni-affinity 
chromatography after digestion with Thrombin. S-tagged ELF4 is present in the 
flow-through with a peak elution at 22 ml whilst Trx binds the Ni-clownn and is 
eluted at 60 ml with 100 % elution buffer containing 0.5 M imidazole. 
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A total of 5 crystal screens covering 480 conditions were performed as described in 

section 3.6.2.5. Crystals formed in 0.2M Magnesium Chloride, 25 % PEG 2K MME 

after 2 days at 18°C (Fig 6.9). The crystals dissolved under the heat of a lamp that 

was used to take pictures. We were unable to form crystals by repeating the condition 

or screening around the condition by altering MgCh concentration and pH. 

Fig 6.9. Picture of crystals formed in Clear Stratergy screen 3. The crystals 
appear very fine and are not suitable for x-ray diffraction. 

One month after obtaining the crystals shown in Fig 6.9, a single crystal was isolated 

from the MDLI screen under the following conditions; O.IM Na Hepes pH7.5, 2 % 

v/v PEG 400, 2.0M Ammonium Sulphate. This crystal was cryogenically frozen and 

stored at -80 for x-ray diffraction at the next available opportunity (Fig 6.10). 

Fig 6.10. Picture of a crystal formed in ·MDLI screen 30. A single crystal of about 
0.3 mm in the longest dimension. 
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6.7. Circular Dichroism of ELF4 

Predication programmes based on mathematical algorithms can potentially highlight 

structural properties based on sequence similarity to proteins that have had their 

structure determined. Most programme outputs show no predication for the structure 

of ELF4. By applying CD to ELF4, we may be able to infer certain secondary 

structure (Fig 6.11) and may also be able to determine if the protein is suitable for 

further crystallisation trials. 

CD was performed on the pure ELF 4 sample and the S-tagged sample as described in 

section 3.6.2.6. In addition, Near-UV CD was applied to the S-tagged ELF4 due to 

the amount of protein available. 
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Fig. 6.11. Far-UV CD spectra observed from different types of protein 
secondary structure. a-helix (solid line), anti-parallel p-sheet (long dashed line), 
type I p-turn (dotted line), 31-helix or poly (pro) II helix irregular (cross dashed line) 
or unstructured (short dashed line). (Reproduced from Kelly et aI., 2005). 
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Circular dichroism (CD) spectroscopy is a biophysical technique that measures the 

difference in absorption of right-handed and left-handed circularly· polarised light. 

Proteins are naturally chiral compounds, and when folded can give rise to distinctive 

CD spectra (Fig 6.11). By examining the CD speCtra in the Far-UV (190-260) range 

we can infer information regarding secondary structure. In terms of this Chapter, it is 

useful to provide information on structure as this may have implications regarding 

crystallisation. A structural robust protein is more likely to crystallise than an 

unstructured protein. 

The CD spectra on. ELF 4 clearly show the characteristics of a protein with ~-sheet 

content (Fig 6.12 (A». Each spectra up to 80 °C, exhibits a maxima around 198 nm 

and a minima around 220 nm. There is also a less pronounced minimum at 209 nm, 

which would indicate the presence of a-helix. At 95 °C, a protein should be 

denatured and the spectra clearly show all structure has been lost. 

The CD spectra on S-tagged ELF4 indicate the protein is completely unstructured 

(Fig 6.12(B». To confirm this, Near-UV CD (250-350 nm) was also. performed and 

the spectra showed no maxima or minima which did not change at for any given 

temperature (results not shown). Near-UV provides information on the packing of 

aromatic amino acids in the protein's hydrophobic core (Sreerama and Woody, 2004) 

and can therefore provide information on whether--a protein appears folded or not. No 

maxima or minima indicate a completely unfolded protein. 

These spectra were submitted to Online Circular Dichroism Deconvolution 

(DICROWEB) software programme (dichroweb.cryst.bbk.ac.uk) (Whittmore and 

Wallace, 2008). The spectra were submitted to each of the four analysis programmes 

separately (CONTINLL, SELCON3, CDSSTR, K2D). Each output gave very 

different secondary structure predictions varying from 0 - 100 % a helix (not 

shown). More important,ly, the normalised root-mean-square .deviation (NRMSD) 

values were.poor, in one instance being greater than 1.0. Low NRMSD values «0.1) 

indicate that there is less discrepancy between the calculated structure and the 

crystallographic data in the database. NRMSD values are a ~easure of the reliability 

of the prediction and were therefore not used for further analYsi~. 
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Fig 6.12. Circular dichroism spectra of native ELF4 and S-tagged ELF4. CD 
spectra of (A) ELF4 and (B) S-tagged-ELF4 at 20°C (black line), 40°C (red line), 
60 °C (green line), 70°C (yellow line), 80°C (blue line) 95 ~C (Pink line) and 20°C 
after re-cooling (turquoise line). [8]MRW represents mean molar ellipticity per ~esidue 
(Section 3.7.2.6). 
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Strand Strand 
Algorithm NRMSD Reference set Helix 1 Helix 2 1 2 Turns Unordered 

CDSSTR 0.282 4 0.040 0.090 0.210 0.110 0.250 0.300 

0.275 7 0.020 0.050 0.190 0.090 0.190 . 0.450 

0.263 SP175 0.050 0.100 . 0.200 0.110 0.130 
SELCON3 0.297 4 0.023 0.044 0.251 0.122 0.233 

0.265 7 0.031 0.046 0.233 0.122 0.209 
0.253 SP175 0.051 0.108 0.144 0.112 0.135 

CaNTIN 0.272 4 0.062 0.106 0.211 0.103 0.206 
0.282 7 0.068 0.088 0.179 0.084 0.155 
0.257 SP175 0.046 0.110 0.181 0.121 0.128 

Table 4. Structural analysis of ELF4 CD spectra using DICROWEB. Three 
separate algorithums using three different reference sets were used against the CD 
spectra obtained in Fig 6.12 (A). Indicated are the percentage of helix, strand, turns 
and regions of predicted disorder. The high NRMSD values are also included to 
show the relatively poor prediction using this software. 

Table 4 shows a more recent submission of the CD spectra to DICROWEB. Whilst 

the NRMSD values are far better than previous analysis, they still lie outside an 

acceptable prediction of < 0.1. Indeed, all NRMSD values are> 0.25, suggesting 

error in the programme calculation (Kelly et al., 2005). As the structure of ELF4 is 

completely unknown, it is not even possible to take the best data set from Table 4 

and use this as the most likely prediction. 

6.8. Discussion 

As previously discussed, the structure of ELF4 is plant-specific and novel. This 

makes ELF4 an interesting but high-risk target for purification and crystallisation. 

Standard procedure would be to purify a protein in a way similar to that of proteins 

that are structurally the same. As this was not possible, it appeared appropriate to 

follow the purification protocol set out by the CESG. Although ELF4 was well 

expressed in pET32a (previously shown Fig 4.2), by cloning into pBADM-41+ we 

could utilise the enhancing solubility property of the MBP fusion partner (Kapust 

and Waugh, 1999) and also remove the MBP.with the relatively inexpensive TEV 

protease. 

Initial pBADM-41 +-ELF4 ~xpression was encouraging (Fig 4.5), so a significant 

amount of time was spent on this construct, trying to remove-the MBP after cleavage 

by TEV protease. None of the purification methods previously discussed resulted in 
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separation of ELF4 from MBP despite complete cleavage of the fusion protein. It is 

strange that the cleaved His-MBP did not bind the Ni-column or amylose resin. The 

reason for this is unclear, but it may be due improper folding of the individual 

proteins in solution. It is also unclear why MBP and ELF4 did not bind to any of the 

anion exchange, cation exchange or HIC columns. This problem has occurred with 

other members of the laboratory working on MBP fusions. As yet, no satisfactory 

explanation or protocol to overcome this has been deduced. Although there are 

several examples of proteins co-crystallised with MBP (Smith et ai., 2003), it was 

not pursued in this case due to the difference in Mw. The MBP is almost 4 times as 

large as ELF4 and would therefore be likely to interfere' with the structural properties 

ofELF4. 

The expression of ELF4 in pET32a was also very high (Fig 6.2 B), but the 

purification procedure was problematic. The first problem was cleaving the Trx tag 

with enterokinase, which according to the manufactures instructions would cost £100 

to cleave 1 mg of fusion protein. By altering the digestion conditions, we were able 

to cleave far more fusion (Fig 6.3) but it was still expensive. F~rthermore, the 

stability of ELF4 decreased when removed from its fusion partner. Some passenger 

proteins are unable to form into their native conformations even after they have been 

made soluble by their fusion partner. These proteins are likely to resist aggregation 

whilst part of the fusion, but will become aggregated once removed. It is difficult to 

assess whether the protein is fully folded in its native state until cleavage is 

performed. In the case of ELF4, it would appear that it is insoluble on its own. 

Altering the buffers salt concentration, glycerol concentration, pH amongst others 

can help solubilisation of a target protein; however no screens performed suggested a 

significant improvement for ELF4. It is also useful to leave out solubilising agents 

for crystallisation trials, where you wish to increase the insolubility of the protein. 

Therefore, although yield was low, the best method for purification was to work at 4 
'-

°C and to perform fewer purification steps quicker, to minimi~e aggregation. This 

was not a co_nsideration for the S-tagged protein which enhanced the solubility of 

ELF4 significantly, resulting in a much larger yield of protein. 

Crystallisation trials failed to provide any protein crystals, with ·the exception ~f the 

crystal shown in Fig 6.10 which is yet to be diffracted. Approximately 480 initial 
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conditions were screened for the pure and tagged verSIon of ELF4. A recent 

symposium suggested that if you do not obtain a 'hit' from 2 screens (192 

conditions) there is little point in attempting to crystallise the protein under its 

current conditions (lCCMB 12; personal communication). Indeed, ELF4 is a small 

(12 kDa) protein that would be highly suitable for studies by Nuclear Magnetic 

Resonance (NMR). Unfortunately, this would be time consuming and therefore 

represents a project in its own right. 

As nothing was known about the structure, it was difficult to determine whether 

crystallisation trails. were likely to be successful. There are structural prediction 

programmes which assess the likelihood of crystallisation based on primary 

sequence. In the case of ELF4, these programmes suggested that the crystallisation 

trails would be difficult. That said, the process of crystallisation can be quite random 

and is worth attempting before discounting. 

To determine why the trails performed did not provide any protein crystals, we used 

CD to investigate structural composition. The results indicate that ELF4 contains p­

sheet and possibly some a-helix (Fig 4.12 (A». A protein with a more pronounced 

band at 209 nm than at 220 nm is indicative of an a + p protein (Pelton and McLean, 

2000). As the spectra shows stronger minima at 220 nm and a maxima closer to 200 

nm, any a-helix content is likely to be outweighed by p-sheet content. Another 

interesting observation from the CD spectra is the stability of ELF4. The structure 

hardly changes at all, even when heated to 80°C. It requires heating to 95°C to lose 

its structure and once denatured it does not appear to refold. 

S-tagged ELF4 provides some interesting observations. The S-tag was originally 

identified as a fragment, following cleavage of RNase A by Subtilisin (Richards, 

1992). The 15 residue peptide (S-tag) has been utilised as a 'carrier peptide' f~r 

purification of fusion proteins. It is small, excessively soluble with little structure and 

net charge at neutral pH. It therefore makes an ideal candidate for purification 

procedures as it is not likely to interfere with the structure of the fusion protein 

(McCormick and Mierendort). When we look at the CD spectra for S-tagged ELF4, 

we clearly see no structure (Fig 4.12 (B». This could be iriterpreted in one of two 

ways. Firstly, the S-tag may be interfering with the secondary structure of ELF4. As 
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previously highlighted, this is probably not the case. More likely, is that the S-tag 

masks the structural signal of the native protein. This would be particularly evident if 

ELF4 contains only. a small amount of secondary structure combined with a 

reasonable amount of random coil or un~tructured sequence. This conclusion would 

also highlight the difficulty in obtaining crystals for either native or S-tagged ELF4. 

A protein that is highly unstructured is more fluid in solution and therefore less likely 

to form an ordered crystal lattice. 

Although we can only postulate at potential structure, the hypothesis of a small 

amount of very stable structure (mainly p-sheet) combined with a high proportion of 

random coil may help to explain the function of ELF4. It would not seem 

unreasonable that ELF4 may act as a hub protein which is promiscuous in binding. 

Indeed, ELF4 appears to exert an effect on the oscillator, and input and output 

pathways, suggesting a multi-functioning role. Interestingly, genome-wide studies of 

hub proteins indicate that deletion of a hub protein tends to be more lethal than 

deletion of a non-hub protein in regulatory protein networks (Jeong et ai., 2001). 

This may help explain the arrhythmicity observed in all outputs tested in the ELF4 

loss-of-function mutant. 
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Chapter 7. LUX 

7.1. Introduction 

Months before the start of this thesis, another CAB::LUC screen identified five 

mutant alleles of a clock gene called LUX ARRHYTHMO (LUX) (Hazen et al., 

2005). This gene encodes a Myb-domain transcription factor which is necessary for 

positive regulation of LHY and CCA} and is repressed in a similar manner to 

repression of TOCI (Reviewed in section 1.4.4). LUX's role as a positive regulator 

and the fact that it is mandatory for proper clock functioning highlight its potential as 

a crystallographic target. In addition, as TOC} is upregulated in the lux mutant 

(Hazen et al., 2005) it may be working as a protein complex with TOC 1 in the 

control of LHY and CCA}. Structural analysis may provide insight into what or how 

LUX binds to protein partners. 

In this chapter, the Lux gene was cloned into pBADM-41 +-BN according to section 

3.7.2 and 3.7.3. A similar initial purification to those shown in Fig 4.4 was used and 

the protocol was adjusted to maximise the amount of LUX protein obtained. The 

overall aim was to perform crystal screens should sufficient protein be produced. 

7.2. Cloning of LUX 

Initial attempts at cloning LUX were performed using LUX-FOR and LUX-REV 

(Table 4), and were unsuccessful. Alterations to the PCR conditions, Mg2+ 

concentrations, and amounts of primer / template added were also unsuccessful. Th~ 

cDNA templates extracted from Arabidopsis backgrounds Ler, Ws and Col did not 

result in amplification of LUX using the aforementioned primers. As the LUX gene 

does not contain any Introns, genomic DNA was extracted (as described in secti~n 

2.7.1 and 2.7.2) from wt col Arabidopsis, and used as a template. The PCR produced 

non-specific products due to the poor annealing of LUX-FOR and LUX-REV to the 

template. LUX-F25 and LUX-R27 corresponding to the start and end of the LUX 

gene without overhangs were used to amplify the 992 bp LUX gene (Fig 7.1 (A). The 

LUX products shown in Fig 7.1 (A) were used as template" with the primers LUX­

FOR and LUX-REV in a PCR that -resulted in the amplification of LUX with 
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overhangs beneficial for cloning (Fig 7.1 (B)). LUX was then successfully cloned 

into pBADM-41 +-BN and verified by digestion of the construct with the appropriate 

restriction enzymes to remove the insert (LUX gene) from the plasmid (Fig 7.l (e)). 

The construct was also sequenced in-house to make sure there were no point 

mutations and that the gene had been cloned in-frame. 

Name of Primer Primer Sequence 

LUX-FOR 5' TTTGCGGAATTCATGGGAGAGGAAGT ACAA 3' 

LUX-REV 5' TTTGCGCTCGAGTT AGTCGACATTCTCA TTTGCGCTTCC 3' 

LUX-F25 5' ATGGGAGAGGAAGTACAA 3' 

LUX-R27 5' TTAATTCTCATTTGCGCTTCCACCTCC 3' 

Table 5. Primers used for amplification of LUX. The nucleotides underlined in 
bold type indicate the restriction enzyme sites. Overhangs are added to the 5' end of 
the primers to allow directional cloning of the peR product into pBADM-41+-BN. 

A M B M 

C M 

Fig 7.1. 1 % agarose gel showing the cloning of LUX. (A) shows the amplification 
of LUX using primers LUX-F25 and LUX-R27. (B) shows the amplification of LUX 
using the product of (A) as template and primers LUX-FOR and LUX-REV. (e) 
shows the digestion of LUX insert from pBADM-41 +-BN (upper band). I~ each 
case, M denotes DNA markers and the red arrow highlights the LUX gene. 
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7.3. Expression of pBAD-LUX 

Small scale expression was performed according to section 3.7.5. The construct was 

expressed better than many other pBAD constructs and was purified by Ni-affinity 

chromatography. The resulting SDS-PAGE (Fig 7.2 (A)) indicates that although the 

expression of the fusion is reasonable, there are many other products that are co­

eluted when Ni-affinity chromatography is performed. 

The Chromatograph shows a relatively small peak of elution at around 250 mM 

imidazole (50% elution buffer) (Fig 7.2 (B). The resul~ing fraction was subjected to 

anion exchange (section 3.6.2.1), followed size exclusion chromatography (section 

2.6.2.2) to further clean the MBP-LUX fusion. The cleaned fusion was digested, 

clearly separating MBP from LUX as shown by SDS-PAGE (Fig 7.3). Other 

digested fractions (Fig 7.3, lanes 2 and 3) show a completely digested fusion that 

results in only pure MBP. This would suggest instability of the LUX protein after 

digestion. Although the yield of LUX was poor, it was worth attempting to separate 

the MBP from the fraction. 
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Fig 7.2. Purification of MBP-LUX using Ni-affinity chromatography. (A) SDS­
P AGE, lane 1 contains crude fraction, lane 2 contains flow-through and lanes 3-5 
contain the LUX elution fractions. M denotes protein markers in kDa (B) 
Chromatograph showing LUX elution around 120 ml at 50 % elution buffer 
containing 250 mM imidazole. 
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Fig 7.3. SDS-PAGE showing digestion of MBP-LUX fusion by TEV protease. 
Lane 1 contains 3 bands indicating MBP-LUX, MBP and LUX (red arrow) from top 
to bottom. Lanes 2 and 3 contain MBP alone. M denotes protein markers in kDa. 

Size exclusion of the digested fraction (Fig 7.3, lane 1) did not separate MBP and 

LUX despite the obvious difference in Mw. One further anion exchange was 

performed and several peaks are present (Fig 7.4). The 3 peaks at ~ 44, 48 and 52 ml 

were loaded on to a SDS-PAGE, but no band corresponding to LUX was identified. 

As the concentration of LUX may have been low, a silver staining of the SDS-PAGE 

was performed. The silver stained SDS-PAGE shows the presence of LUX (Fig 7.5, 

red arrow). However, the fractions also contain MBP, indicating that the anion 

exchange was unsuccessful. 
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Fig 7.4. Chromatograph showing separation ofMBP and LUX by anion 
exchange. 4 peaks in absorbance over a 12 ml volume (44-56 ml) are shown. The 3 
largest peaks were taken for analysis by SDS-PAGE. 

kDa 
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98 

64 

50 

36 

Fig 7.5. Silver-stained SDS-PAGE showing separation of MBP and LUX by 
anion exchange. Each lane contains 20 III of 1 ml fractions taken from the anion 
exchange. Numbers 1-3 highlight the 3 largest peaks (as shown in Fig 5.6). MBP is 
present in all fractions and LUX is shown in the fraction 2 by a red arrow. The 
presence of a band at -57 kDa in 2 and 3 is indicative of contamination. M denotes 
protein markers in kDa. . 
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The previous expression had only produced a small amount of LUX so the decision 

to scale-up to 8 I of growth was made. The large scale attempt provided excellent 

expression (Fig 7.6 (B), but the Ni-affinity chromatography was not as effective. 

Figure 7.6 (A) shows the presence of MPB-LUX fusion (red arrow) but also many 

other proteins. 
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Fig 7.6. Purification of MBP-LUX by Ni-affinity chromatography. (A) SDS­
PAGE showing purification of MBP-LUX fusion (red arrow). Lane 2 contains flow­
through, lanes 3,4 and 5 contain elution with 25 mM imidazole and lanes 6,7 and 8 
contain elution of MBP-LUX with 250 mM imidazole. M denotes protein markers in 
kDa (B) Chromatograph showing 1 peak with large absorbance at 280 nm. This peak 
corresponds to the MBP-LUX fusion. 
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The fraction from Fig 7.6 (A) lane 7, was used in a subsequent anion exchange 

followed by a size exclusion. The 3 resulting size-exclusion fractions are shown by 

SDS-PAGE (Fig 7.7). 

kDa M 1 2 3 

250 
148 

98 

64 

50 

36 

Fig 7.7. SDS-PAGE showing MBP-LUX fusion after size exclusion 
chromatography. The MBP-LUX fusion is shown in lane 1. Lane 2 also contains 
the MBP-LUX fusion albeit in a much smaller concentration. Lane 3 represents a 
fraction containing no fusion protein. M denotes protein markers in kDa. 

The purest MBP-LUX fraction was cleaved as before. The red arrow (Fig 7.8 (A) 

lane 2) on the SDS-PAGE overleaf, indicates the successful digestion of LUX from 

the MBP fusion partner. This fraction was applied to 2 rounds of anion exchange and 

visualised by SDS-PAGE. Fig 7.8 (A), lane 1 only shows the presence of MBP. Due 

to this, further fractions from the anion exchange were pooled and also subjected to 

SDS-PAGE. The yield of LUX was very low and the faint protein bands are 

indicated by a red arrow (Fig 7.8 (B». The poor yield of the large-scale expression 

prevented an attempt at crystallisation. 
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Fig 7.8. SDS-PAGE showing separation of MBP and LUX by 2 sucessive anion 
exchanges. (A) Lane 1 show the purification of MBP and lane 2 shows the cleavage 
of MBP-LUX fusion, with LUX highlighted by the red arrow. (B) Lanes 1 and 2 
contain LUX (red arrow) after pooling of the 2 anion exchange fractions. M denotes 
protein markers in kDa. 

7.4. Discussion 

The initial expression of LUX was not as high as it had previously been for other 

pBAD contstucts (Fig 4.4), however there was enough expression to attempt 

purification. Unfortunately, the MBP-LUX fusion was co-eluted with many other 

proteins during Ni-affinity chromatography. The reason for this could be due to non­

specific binding of other proteins to either MBP or LUX. The equilibration buffer 

(buffer A) and the elution buffer (buffer C) contain 0.5 M NaCI which would usually 

prevent non-covalent interactions. Another plausible reason for the contamination 

may be the presence of degraded fusion protein. Any degradation products 

containing the N-terminal of MBP would also bind the Ni-column and therefore be 

eluted with the fusion protein. 

After cleaning the fusion by anion exchange and size exclusion chromatography, a 

significant amount was lost. With every purification procedure, the yield of protein 
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significantly decreased. As the fusion was cleaved, only a small amount of LUX was 

present (Fig 7.3 and 7.8 (B». Theoretically, for every MBP translated there should be 

a LUX protein translated. The results of cleavage clearly indicate there is a higher 

concentration of MBP than LUX. The reason for this is unclear, but it is a recurring 

theme with this project and also amongst colleagues in the laboratory. A satisfactory 

explanation for the observed higher concentration of MBP may be due to instability 

of LUX after cleavage. As previously discussed (Section 6.8), proteins are frequently 

insoluble after removal of the fusion protein. Solubilisation screening of the LUX 

protein could solve this problem; however, the quantity of the fusion prior to 

cleavage was poor. Furthermore, the removal of MBP after cleavage is problematic. 

As with ELF4 (Chapter 6), the MBP was co-eluted with LUX suggesting a re­

association after cleavage. Other members of the structural group have also reported 

the 'sticky' nature ofMBP following cleavage. The reason for this is not known. 

Although, the results presented show the successful purification of LUX (Fig 7.5 and 

7.8 (B», the concentration is so low, nothing can be done with the protein. The initial 

expression coupled with the quantity of purification steps made the production of 

LUX impractical. For the production of mg quantities of LUX, another expression 

system would need to be used. Time constraints did not allow any other vectors to be 

screened for increase in LUX expression, but this would be the logical progression. It 

would also be worth considering expression of individual domains. As shown with 

TOC1-PRR and LIP1~ (Chapters 4 and 8 respectively), this can be successful in 

increasing the amount of protein produced and also the stability, once cleaved from 

their fusion partner. 
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Chapter 8. LIP1 

8.1. Introduction 

Several months before the start of this project, Laszlo Polgar's group in Budapest 

isolated a clock nlutant that exhibited aberrant entrainment of the clock to light. The 

work on this mutant was not published at the time and the mutation was given the 

name B6 (personal communication). Later, B6 was renamed to LIP1 and was shown 

to represent a new plant specific GTPase which is the first GTPase to be implicated 

in the Arabidopsis clock. 

LIP1 shows a degree of similarity to known GTPases as it contains a large Rab like 

domain (Fig 8.1), however this domain contains non-classical peptide inserts as well 

as the conserved Q94 alteration to a H (Kevei et al., 2007). Furthermore, Rab-like 

GTPases are commonly membrane bound due to their role in vesicle fusion. The 

LIP 1 sequence shows no specific motifs that are associated with lipid anchoring. Due 

to LIP 1 s novel negative role in light entrainment, its novel structure and its nature as 

an enzyme (Kevei et al., 2007), it represents a very interesting protein to study from 

a crystallographic standpoint. 

In addition to attempting full-length expression and purification of LIP1 in pMAL 

and pBADM-41 +, one further construct was used. This construct contained LIP1 

minus 108 aa from the C-terminal (LIP1~) (Fig 8.1). By removing the relatively 

disordered proline rich C-terminal, it is expected that the protein would form a lnore 

compact ordered structure which would be beneficial for crystallisation 

Rab-like3 domain 

28 241 

-10AA 

280 320 342 

Fig 8.1. Schematic diagram of LIP! protein structure. Residues 28-241 is a Rab­
like domain which contains the GTp · binding residues and LIP 1 specific features 
including several peptide inserts and a serine rich domain. P represents a conserved 
proline rich domain. In this Chapter, a truncated form of LIP1 (LIP1~) minus 108 
residues from the C-terminus was also investigation. (Reproduced from Kevei et al., 
2005) 
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8.2. Small scale expression trials 

Small scale expression trials were performed on pMAL-LIPl, pBADM-41+-LIPl 

and pMAL-LIPl~ as described in section 3.8.1. The pMAL-LIPl construct failed to 

express after several attempts, so this was discarded. The pBADM-41 +-LIPI showed 

a reasonable expression with the isolation of a relatively pure LIPI-MBP fusion after 

the application of Ni-affinity chromatography Fig 8.3 (A). However, the expression 

and purification of pMAL-LIPl~ was greater than either full-length construct as 

shown in Fig 8.3 (B). The relative expressions of both are highlighted by SDS-PAGE 

in Fig 8.2. 

kOa M 1 2 3 M 5 6 7 

175 

80 

58 

46 

30 

Fig 8.2. SDS-PAGE of pBADM-41 +LIPI and pMAL-LIPIA after Ni-affinity 
purification. M denotes protein markers in kDa. Lane 1-3 show the elution of LIP 1-
MBP with increasing elution buffer concentration 10, 35 and 100 % (50 mM, 175 
mM and 0.5 M imidazole) respectively. Lanes 5-7 show elution of LIPl~-MBP with 
10, 20 and 100 % elution buffer containing 50 mM, 100 mM and 0.5 M imidazole, 
respectively. Red arrows indicate the purest fractions of LIPI-MBP and LIPl~­
MBP. 
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Fig 8.3. Chromatographs showing pBADM-41 +LIPI and pMAL-LIPIA after 
Ni-affinity purification. (A) shows 3 imidazole washes (50 mM, 100 mM and 0.5 
M) with the peak at 100 % elution buffer representing the purest fraction of MBP­
LIPl. (B) shows the elution of MBP- LIP1~ in a similar manner, with peaks at 100 
ml and 123 ml containing relatively pure fractions. 
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8.3. Large scale expression of LIP1~ 

As LIP 1 /). was expressed well, this was chosen for subsequent purification trials. 

LIP 1 /). was grown in 8 L of culture and expressed and purified as detailed in section 

3.8.2. The resulting Ni-affinity purification is shown in Fig 8.4, with the highest 

yield of LIP1/).-MBP obtained after elution with 50 mM and 0.5 M imidazole (Fig 

8.4, lanes 4 and 6). The presence of such a large amount of LIP1/).-MBP in the 50 

mM imidazole wash suggests a poor affinity for Ni binding by MBP (Fig 8.4, lane 

4). The fraction after elution with 0.5 M imidazole shows an increase in purity from 

the pervious elution's, but is still far from pure. 

kOa M 1 23M 4 5 6 7 

175 

80 

58 

46 

30 

Fig 8.4. SDS-PAGE showing expression and Ni-affinity purification of pMAL­
LIPIA. Lane 1 contains whole cell fraction · before sonication, lane 2 contains 
supernatant post-sonication and lane 3 contains flow-through from Ni-affinity 
purification. Lanes 4-6 show elution fractions containing 50 mM, 100 mM and 0.5 M 
imidazole (10, 20 and 100 % elution buffer). Lane 7 is another fraction after 0.5 M 
imidazole elution and M represent protein markers in kDa. 

The fraction taken from the 0.5 M imidazole elution (Fig 8.4, lane 6) was subjected 

to digestion using Factor Xa, to remove the MBP from LIP1/). as described in section 

3.8.3. By concentrating the protein in centrifugal concentrators prior to digestion, 

almost half of the protein precipitated. Due to this, there was simply not enough 

protein to attempt crystallisation trials after digestion. The digestion with Factor Xa 

produced only small amounts of LIP I/). (25.5.kDa) in comparison with the amount of 

MBP (~ 40 kDa) present (Fig 8.5, lane 1). With time constraints, it was impractical 

to attempt other purification protocols and so the resuHing fraction was used for 

assaying the GTPase activity of LIP 1 /).. 
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Fig 8.5. SDS-P AGE showing the cleavage of MBP from LIPIA-MBP by Factor 
Xa. M represents protein markers, lane 1 shows the digested sample with LIP 111 
indicated by the red arrow. Lane 2 and 3 show undigested samples and lanes 4-6 
contain 50 mM, 100 mM and 0.5 M imidazole elutions from the Ni-affinity 
chromatography as reference. 

8.4. Assaying for GTPase activity 

As with Toe 1, the trunacated form of LIP 1 was easier to express and purify. As 

LIP111 contains the OTPase domain, we could. still assay for OTPase activity. The 

Malachite green assay can accurately measure inorganic phosphate using light 

spectroscopy at 620-640 nm. The assay detects the inorganic phosphate released by 

the turnover of OTP to ODP by a nucleoside triosphophatase (LIP 1), via the 

formation of a green solution containing a complex of malachite green, molybdate 

and free orthophosphate. 

A phosphate standard curve was constructed (Fig 8.6) to estimate the amount of 

phosphate released in the OTPase assays, and thus a rate of reaction 
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Fig 8.6. A graph showing a phosphate standard curve. Concentrations from 0-10 
JlM inorganic phosphate (80 JlI) were added to 20 JlI of malachite green reagent and 
the reaction was followed at 630 nm for 60 min. 
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Fig 8.7. A graph showing LIPIA GTPase activity. The concentration of inorganic 
phosphate released was followed by the absorption of light at 630 run, via the 
formation of a green complex (malachite green, molybdate and free orthophosphate) 
over 60 min. Absorbance has been rebased by subtracting blank absorbance values 
and converted to JlM of phosphate using the standard curve (Fig 8.6). The gradient 
represents the rate of phosphate release in Jlmol / min. 
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Fig 8.8. A graph showing MBP-LIPIA GTPase activity. Absorbance has been 
rebased by subtracting blank absorbance values and converted to JlM of phosphate 
using the standard curve (Fig 8.6). The gradient represents the rate of phosphate 
release in Jlmol / min. 
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Figures 8.7 and 8.8 clearly show the release of phosphate over a 60 min period. The 

phosphate release assays were successful in showing that LIP 1 fl. is active in its 

truncated form, and also that it is an efficient GTPase. The data is supported by the 

use of blanks in which the absorbance did. not change over time, ruling out 

spontaneous GTP hydrolysis. In addition, both LIPIfl. and MBP-LIPIfl. (non­

cleaved) release different concentrations of phosphate, suggesting a the observed 

difference is due to the GTPase activity. Furthermore, more phosphate was released 

in the 30 J.lM assays compared to 10 J.lM, as would be expected. These assays 

represent the successful isolation of an active LIP 1 GTPase. 

8.S. Discussion 

As with TOCI (Chapter 4), the truncated form of LIPI proved easIer to express and 

purify than the full length. That said, the expression and purification protocol still 

requires modification as the quantity and purity of LIPIfl. produced was not enough 

for crystallisation trials. A similar problem of stability after removal from the fusion 

partner is one that requires attention. 

The success of the GTPase assay poses many questions regarding LIP 1 structure and 

function. The GTPase activity displayed by the LIP 1 fl. assay confirms the predicted 

Rab-like 3 domain structure of LIP1, and that this domain contains all the necessary 

components for GTPase activity. Previously, thin layer chromatography (TLC) had 

been used on a mixture containing MBP-LIPI and radiolabelled phosphate (Kevei et 

al., 2007) to prove LIPI had GTPase activity. The results of the assay presented here 

confirm the previous findings, but are novel in that they represent the first time LIP 1 

has been assayed for activity without MBP. Although the data presented shows that 

activity is higher in the MBP- LIPIfl. (Fig 8.7 and 8.8), it is highly unlikely that MBP 

is responsible for any of the phosphate turnover. It is more likely that removal of the 

MBP results in an adverse effect on LIPIfl. stability and hence a decrease in GTPase 

activity. 

One further interesting point is the· rate of GTP hydroysis. The TLC assay was 

performed overnight and only recorded small levels of hydrolysis (Kevei et al., 

2007), whereas the data presented here suggests that LIPI is a very active GTPase 
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capable of an average rate of reaction of 6.0 J.lmol / min / mg. Such a high rate ~as 

not expected; as all studied Rab GTPases require accessory factors to turnover GTP. 

Guanine nucleotide exchange factors (GEFs) facilitate the interchange between GDP 

and GTP bound forms of Rab allowing the ~ab to perform its molecular switch 

function. Furthermore, GTPase activating proteins (GAPs) assist in the hydrolysation 

of GTP to GDP. As there were no accessory proteins present, LIPI represents a 

highly novel Rab-like GTPase with high GTPase activity independent of accessory 

factors. 

Taken together, these results support the evidence that LIPI is a truly plant-specific 

novel class of proteins, not only as a GTPase but within the circadian oscillator. 

Indeed, as LIP 1 does not contain the membrane binding motif (important in vesicle 

formation) present in Rab proteins, which may be consistent with the unusual 

GTPase activity. 

To further characterise the GTPase activity and to determine Michaelis Menton 

enzyme kinetics, a coupled enzyme would have to be performed. This would result in 

continuous monitoring of GTPase activity and would allow better comparison with 

other GTPases. However, optimising the purification and separation of LIPIL\ would 

be worthwhile if further biochemical characterisation is required. 
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Chapter 9. General Discussion and Conclusions 

9.1. Expression, purification and structural studies of 
circadian-related proteins 

The work presented in this thesis highlights the difficulty in large scale expression 

and purification of eukaryotic proteins in prokaryotic expression systems. It has been 

shown that attempts to express TOCI and ELF3 (Chapter 4) were unsuccessful in a 

variety of expression vectors, E. coli strains and even yeast strains. It appears that 

utilising fusion proteins Trx and MBP was ineffective at increasing the expression of 

TOCI and ELF3. As these proteins are plant-specific, it is possible that they are 

toxic to E. coli and yeast which could explain the low levels of expression. Other 

attributes that may effect the expression of recombinant eukaryotic proteins in E. coli 

include codon bias and post-translational modification. Both proteins were expressed 

in E. coli strains that contained accessory plasmids providing rare tRNA's that would 

aid the translation of eukaryotic proteins. These did not appear to aid the expression 

of either TOC 1 or ELF3. It is possible that some post-translational modifications are 

required for the production of fully stable and functional TOC 1 and ELF3. These 

modifications may not be made in E. coli and therefore represent another explanation 

for the difficulty of expression. One important discovery of the work presented is the 

successful overexpression of truncated form's of, TOCI (Chapter 4) and LIPI 

(Chapter 8). Expressing individual domains may represent the best option for large 

scale protein production. Indeed, a precedent has be set for this approach by the 

recently published partial structure of the Drosophila clock protein PERIOD (PER) 

(Landskron et al., 2009) Individual domains will reduce the overall size of. the 

protein (and therefore processing required) resulting in independently folded units of 

structure lacking the flexible inter-domain regions. This is likely to increase the 

solubility and stability which may be beneficial for crystallisation. That said, as 

many of these circadian proteins are novel in structure (based on primary sequence) 

(Chapter~) it is very difficult to infer where domain boundaries exist. To this end, an 

approach where random sections of the gene are cloned into expression vectors may 

be one method that allo'Ys regions of the protein to be expressed and purified. The 

problem with this approach is that it would be labour intensive and there would be no 
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guarantee of successful crystallisation. In the best case scenario where a crystal 

structure is obtained, other regions of the protein would still need to be purified in 

order to build a structure of the whole protein in order to fully investigate structure­

function relationships to infer protein function. That said, the information provided in 

Chapter 2 does highlight regions of predicted structure which may allow the 

construction of stable, structured truncated forms of the protein. 

Many of the clock proteins that were not perused after initial expression trials 

(Chapter 4) could be purified by expressing individual domains. This includes LUX 

(Chapter 7) which contains a single Myb-domain for DNA binding and a domain. If 

time had permitted, this would have been trialled, as full length expression and 

purification resulted in extremely low quantities of LUX (Chapter 7). The reason for 

not attempting this on proteins such as LHY and CCA 1 are simple. The literature 

contains many examples of Myb-domain transcription factor structures which are 

likely to be similar to these proteins. In addition, we already understand that LHY 

and CCA 1 regulate the positive arm of the negative feedback loop by binding to the 

EE located in the promoters of positive regulators. They are also capable of binding 

to each others promoters by binding the CBS. A crystal structure of these two would 

confirm the postulated function, but is unlikely to provide new insights into protein 

function. The other protein targets presented in this thesis; TOC1, ELF3, ELF4 and 

GI do represent exciting structural targets, as ..they have no sequence homology to 

any other protein and the exact function are unknown (Chapter 2). This makes such a 

project very high risk, but if successful would provide valuable information 

regarding the function of the proteins within the regulatory clock network. 

The CESG protocol used at the start of the thesis suggested that a fusion using MBP 

results in the solubilisation of -80 % of Arabidopsis proteins tested (496 out of 632) 

(Jeon et al., 2004). The results shown in Chapter 4 confirm that MBP is a good 

solubilisation tag. However, there are problems associated with the removal ofMBP. 

The results in Chapter 7 clearly show the difficulty in separating MBP and LUX after 

cleavage, and also the high insolubility of, LUX without MBP. If a protein 

precipitates after release from MBP then it is probably improperly folded or prone to 

aggregation in its native state. This can be overcome "by. altering conditions that 

maintain solubility, including varying pH, addition of metal ions and other'additives, 
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and the variation of buffer composition. Although several obvious conditions were 

screened in this thesis, the time required to solubilise a protein could be a project in 

its own right and even then there is no guarantee of success. This point is further 

confirmed by the purification of ELF4 (Chapter 6). Once Trx was removed from 

ELF4, the solubility of the protein decreased dramatically. Rather than alter buffer 

composition and procedure (time-consuming) it was easier to keep the purification 

procedures to a minimum and work at low temperatures, quickly. To avoid this 

problem, it is possible to screen whether a passenger protein is properly folded and 

whether it will be soluble after cleavage (Kapust and Waugh, 1999). The authors co­

express the MBP fusion with a vector containing the TEV protease (pRK603). TEV 

protease is produced following the addition of anhydrotetracycline and the cells 

harvested after time has been allowed for digestion of the MBP fusion. Soluble 

fractions can then be easily visualised by SDS-PAGE. If domains were to be 

expressed in E. coli as MBP fusions, it would be worthwhile screening in this 

manner to determine potential purification targets. 

The overall purification success rate according to the CESG protocol was 42 % (Jeon 

et al., 2004). The authors cite weak expression, low solubility and protein 

precipitation during concentration of the protein, as reasons for the failure of the 

purification. Indeed, all 3 of these problems have been witnessed throughout this 

thesis. Proteins that failed to express well were discarded fairly early on and the 

solubility issues have been discussed. The precipitation problem was evident in 

TOCI-PRR and ELF4 purification. These proteins precipitated when attempting to 

concentrate them to at least 10 mg / ml for crystallisation screens. This was not a 

problem for the S-tagged ELF4, which maintained solubility, but this does. not 

present a solution to the problem. Tagging with a protein / peptide that maintains 

solubility is more likely to affect the structure of the passenger protein and therefore 

represents a problem for crystallisation. With few exceptions, fusion tags mu.st be 

removed before successful crystallisation. 

This thesis. has clearly shown the difficulty in trying to express these eukaryotic 

proteins in E. coli. Understandably, there have been no reported crystal structures of 
.' 

Arabidopsis circadian clock proteins as yet. Many of the proteins mentioned here 

have been prepared in small quantities sufficient for use in antibody production, but 
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quantities required for structural studies have been rarely reported. The research 

carried out for this thesis corroborates this point. Some progress has been made 

towards structural studies of proteins involved in circadian clocks of other 

organisms. PERIOD (PER) and KaiCfrom the Drosophila and cyanobacteria central 

oscillators, respectively, have had their structures solved by x-ray crystallography 

(Landskron et al., 2009; Pattanayek et al., 2004), highlighting the emerging interest 

in structural studies of circadian clock proteins. The fact that no structures exist for 

the plant clock is more likely due to aforementioned difficulties of expression and 

purification of these challenging proteins than lack of interest. Indeed, Chapter 2 

provides evidence for circadian proteins being intere~ting structural targets, and this 

thesis provides the first attempt to bridge the 'gap' between experimental evidence 

and structure / function (Bioinformatics) of the circadian proteins. 

9.2. Future directions 

9.2.1. Leading on from this project 

The expression of TOCI-PRR (Chapter 4) requires further attention to minimise 

precipitation during concentration of the protein. As the expression and purification 

yield good amounts of protein, this could be further extended to include the cloning 

and expression of the other PRR domains from PRR9, 7, 5 and 3 for crystallisation 

screening. Comparisons between the PRR domains could shed light on the function 

of this complex set of proteins. 

Crystal trials for ELF4 (Chapter 6) have proved unsuccessful. This is perhaps 

unsurprising given the predicted intrinsically unstructured nature of this protein. 

Indeed, the background literature, Bioinformatics (Chapter 2) and CD data (Chapter 

6, Fig 6.12) all indicate that ELF4 is a novel protein, without much ordered 

secondary structure. It would not be conducive to continue crystal screening in the 

case of ELF4. Without a crystal hit in the initial --480 conditions it is unlikely that 

ELF4 will crystallise.,A better strategy would be to perform NMR spectroscopy to 

the study of the structure. However, the intrinsic disorder would probably pose 

problems f~r NMR as well. This wouid be a PhD project in its own right. 

" . 
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Work on LUX (Chapter 7) showed the problems that can occur during purification 

even if high levels of soluble expression can be achieved. The solubility is very low 

after cleavage from MBP and the removal of MBP is problematic. Other expression 

vectors may be worth attempting, however, it may not be desirable enough as a 

structural target to justify the painstaking experimental procedure it would require for 

obtaining crystals. It could be preferential to investigate the function of LUX rather 

than pursuing the crystal structure. 

LIPI studies have shown that it is a highly active GTPase (Chapter 8). The results 

presented need to be confirmed using an entirely pure LIP 1 sample and also needs to 

have coupled assays performed to determine Michaelis Menten enzyme kinetics of 

this GTPase. The protein appears to be difficult to purify, but the structure is likely to 

be interesting due to its novel properties. A project focusing on assaying for activity 

and screening for crystallisation could carryon from the work presented in this 

thesis. 

This thesis has provided a protocol for the production of aptamers (Chapter 5). 

Whilst the target in this case was the clock-associated 8RRI protein, the protocol 

extends far beyond the clock. In theory, any protein target could be used with this 

protocol to obtain specific DNA aptamers. As previously discussed, aptamers can be 

used in a range of biochemical applications and would of use in nearly any field of 

protein research. The thesis has highlighted the potential use of apatamers in the field 

of circadian biology and therefore constitutes a novel approach for protein research 

in this area. 

9.2.2. Investigating the function of circadian proteins 

During this project, an attempt to express TOCI and ELF3 in planta was made. The 

genes were cloned into a 358 cassette which could then be cloned into pGREEN29. 

The 358 cassette is regulated by the Cauliflower Mosaic Virus promoter (CaMV) 

which results in constitutive expression of the target gene. We could then transfect 

Arabidopsis plants using Agrobacterium tumefaciens cont.aining the pGREEN29 

construct for expression trials in plants. The cloning of the 35 8 cassettes into 
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pGREEN29 was not completed due to time constraints. However, this strategy could 

be applied to the expression of other circadian genes. This would remove the post­

translational modification and codon bias problems discussed previously. However, 

the generation of a transgenic plant can take time and the quantity of protein 

obtained from the expression would probably not be enough for crystallisation. If this 

is the case, the small amount of expression could be used to raise antibodies against 

the proteins for functional studies. For proteins that show acceptable expression 

(Chapter 4) in E. coli, existing constructs could be used for antibody production. 

If antibodies could be raised against all of the circadian proteins, it would be possible 

to use them in Western Blots over time courses to find out at what times and relative 

levels these proteins are accumulating. This would give insight into which proteins 

may be acting together or as part of complexes. Potential interactions could be 

further characterised by gel shift assays with combinations of the purified proteins. 

Another possibility utilising antibodies includes co-immuno-precipitations over time 

courses. For example, LHY and CCAI have been shown to interact in vitro (Lu et 

al., 2009). It should be possible to show such interactions in vivo at specific circadian 

times. This could be extended to include chromatin-immuno-precipitations to 

determine how proteins such as TOCI, ELF4 and GI up-regulate the expression of 

LHYand CCAI. Such experiments may result in the identification of novel binding 

p~rtners (especially transcription factors) which would be of interest in deciphering 

control of LHYand CCAI. 

9.3. Conclusions 

This project represents an initial effort to develop a protocol for the expression and 

purification of plant circadian proteins. With hindsight, the project was ambitious, as 

many of these proteins proved difficult to purify in any reasonable quantity. To 

follow on from the work presented, it would be worth taking a more focused 

approach. Further projects could either concentrate solely on a structural genomics 

project, on a number of proteins or a combined biochemical and structural study on 

individual or discreet families of proteins. These strategies -would be more likely to 
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yield results which may help deduce the structure and function of these novel, plan/.­

specific proteins. 

In addition to experimental design, this thesis summarises our current understanding 

of the Arabidopsis circadian clock from a genetic and structural (protein) 

perspective. This is the first instance of such a wide review and therefore represents 

an attempt to bridge the current gap in the understanding of circadian-associated 

protein function. 
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