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Abstract 

In visual search tasks participants search for a target among distractors in strictly controlled 

displays. We show that visual search principles observed in these tasks do not necessarily 

apply in more ecologically valid search conditions, using dynamic and complex displays. A 

Multi-element Asynchronous Dynamic (MAD) visual search was developed where the 

stimuli could either be moving, stationary and/or changing in luminance. The set sizes were 

high and participants did not know the specific target template. Experiments 1 – 4 showed 

that, contrary to previous studies, search for moving items was less efficient than search for 

static items and targets were missed a high percentage of the time. However, error rates were 

reduced when participants knew the exact target template (Experiment 5) and the difference 

in search efficiency for moving and stationary targets disappeared when lower set sizes were 

used (Experiment 6).  In all experiments there was no benefit to finding targets defined by a 

luminance change. The data show that visual search principles previously shown in the 

literature do not apply to these more complex and ‘realistically’ driven displays.  
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Introduction 

People regularly perform visual search tasks where they search for a target among a variety 

of distracting items (e.g. finding a friend in a crowd, detecting a tumour in a mammogram or 

finding a threat on security surveillance footage). In the laboratory, scientists investigate 

visual search behaviour by asking participants to search for a pre-specified target item among 

competing distractor items (e.g., Duncan & Humphreys, 1989; Treisman & Gelade, 1980; 

Wolfe, Cave & Franzel, 1989). By recording reaction times (RTs) and accuracy it can be 

determined how the visual system prioritizes certain display properties (like color, movement 

and orientation) to help us find a target (e.g., Treisman & Gelade, 1980; Wolfe & Horowitz, 

2004). The search slope (RT x set size function) indicates how efficiently participants search 

a display, with steeper slopes indicating less efficient search than shallower slopes. Past 

research has proposed many visual search principles that tell us how the cognitive system 

processes information. One would hope that the information obtained from these past studies 

would directly apply to more ‘realistically’ driven search tasks. However, here we show that 

this is not necessarily the case. 

 

Laboratory tasks tell us how the visual system and search behaviour works. Ultimately, their 

aim is to help us to understand how humans search in the real world. However, there are 

many differences between laboratory experiments and real world search. In a typical lab 

search task participants may be presented with a static display and asked to search for a single 

specific item (e.g., look for a T) among a relatively small number of distractors (displays 

typically have a set size of less than 20 items e.g. Chun & Jiang, 1998; Duncan & 

Humphreys, 1989; Horowitz & Wolfe, 1998; Hubner & Malinowski, 2001; Jonides, 1981; 

Joseph et al., 1997; Kunar, Smith & Humphreys, 2003; Tong & Nakayama, 1999; Treisman 
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& Sato, 1990; Smilek et al., 2006; Von Mühlenen et al., 2003; Watson & Humphreys, 1999; 

Wolfe & Friedman-Hill, 1992; Wolfe, Klempen & Dahlen, 2000). Participants often perform 

accurately in these searches, with error rates of up to 10%, and usually less than 5% (Wolfe, 

1998). However, search in the real world usually does not look like this. For example, 

imagine you are a security guard being asked to search for something ‘suspicious’ in 

surveillance footage of a busy airport. In order to conduct this search effectively, you are 

likely to search through a myriad of stimuli (e.g., people, baggage, dustbins etc.) some of 

which may be stationary and others which may be moving in different directions and at 

different speeds. Some items may also temporarily disappear from view (e.g. if they are 

occluded), or change in luminance (e.g. if they pass through a shadow). The scene may also 

be comprised of a high number of distracting items and if you were looking for something 

‘suspicious’, for example, you would not have a detailed visual description of what you are 

looking for (threatening objects or behaviour could take on many different forms so that the 

searcher does not have a single, well-defined ‘target template’). Clearly, these real-world 

search tasks differ greatly from the types of search tasks that have typically been used in the 

lab.  

 

Of course, within a scientific study it is important to keep experimental situations as 

controlled as possible. Scientists often use artificial and rigorously manipulated stimuli with 

the intention of understanding how search in the real world works. Using these tightly 

controlled displays is a good strategy and has told us much about the visual system. However, 

it can mean that some lab based studies become highly constrained and do not reflect the 

complexity and sheer number of variables that co-occur in more realistic search tasks. As 

such, there has been a recent trend in the literature to move towards investigating visual 

orientating of more realistic settings. To give a few examples, Rasche & Gegenfurther (2010) 
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have employed dynamic broadband (1/f) noise displays to investigate saccade orientating in 

more naturalistic settings, Wolfe et al. (2007) and Van Wert et al. (2009) have used search 

displays adapted from real-life baggage screening tasks and Brockmole et al. (2006), 

Swallow & Jiang, (2010) and Torralba et al., (2006), among others, have all investigated 

visual attention using photographs of naturalistic scenes. In this study, we further bridge the 

gap between lab and real-world search, by combining and adding basic but important 

elements of real-world search into lab-based visual search tasks (i.e. static and moving items 

within the same display, changes in luminance to some objects, high set sizes, poorly-defined 

target template/target uncertainty). Using a more complex, and yet still highly controlled, 

‘Multi-element Asynchronous Dynamic’ search methodology we ask whether search 

principles previously demonstrated in the lab apply to these more dynamic, unpredictable 

scenes. If even relatively modest changes to traditional search tasks lead to important 

differences in behaviour then this calls into question the validity, and generality, of previous 

lab results in real world search tasks. 

 

First we look at the effects of motion in visual search. Generally there have been two schools 

of thought: motion either aids target detection, or has no effect on it. Taking the first point, 

previous work suggests that participants are able to filter search displays on the basis of 

motion so that they can search through moving items efficiently (e.g. McLeod et al., 1988; 

1991). More recently Pinto et al., (2008) found that participants can search efficiently for a 

moving target among blinking distractor items. Furthermore, it has been suggested that 

motion onsets and perhaps motion itself can capture attention in a relatively automatic 

fashion (Abrams & Christ, 2003, 2005; Franconeri & Simons, 2003; 2005, although this may 

depend on factors such as how relevant the motion is to the search task, see Hillstrom & 

Yantis, 1994, and Yantis & Egeth, 1999, who show that moving distractors may not capture 
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attention if they are deemed task irrelevant and Folk, Remington & Wright, 1994, who show 

that apparent motion only captures attention when participants form attentional sets for 

dynamic changes). In contrast, others have argued that although there is no cost to searching 

moving stimuli, neither is there a benefit. Hulleman (2009) found no difference in search 

efficiency between searching through static targets compared with moving ones. In his study 

search slopes to find a target in a display where all the elements were static did not differ 

from search slopes in displays where all the stimuli moved at a constant rate of 3.6, 7.2 or 

10.8 degrees per second (see also Horowitz & Rich, 2007). Although past opinions differ, the 

overall story suggests that motion cues have a tendency to either benefit or have no effect on 

search efficiency. However, here we show that in tasks which more closely reflect the 

properties encountered in real-world situations, search efficiency for moving targets is worse 

than search for static targets. 

 

Second, we examined the effect of having items disappear and re-appear from view. Previous 

literature suggests that items appearing with an abrupt luminance onset, capture attention 

(e.g. Christ & Abrams, 2006; Schreij, Owens, & Theeuwes, 2008; Theeuwes, 1994; Yantis & 

Jonides, 1984; 1996). However, in the real-world, when items appear they rarely show an 

abrupt luminance onset. Let us return to the example of searching surveillance footage. 

People do not suddenly appear out of thin air but are more likely to gradually appear into 

view. Moreover, they may undergo gradual luminance transients as they walk in and out of 

shadows. Do these more naturalistic onset/offset luminance changes also capture attention?  

Here we show that there is no difference between searching for items which show a gradual 

luminance change versus those that do not.  
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Finally, we consider how accurate participants are at finding the target in these more complex 

search tasks. Typically, accuracy in lab based visual search tasks is high (Wolfe, 1998). 

However, we find that when the display is made more complex, participants miss a large 

percentage of the targets. One of the reasons for this may be that participants are searching 

for multiple possible targets and do not know from trial to trial what the target will look like. 

In the majority of previous visual search tasks participants knew in advance the exact target 

template (e.g., look for the letter T among distracting letter Ls, look for the green vertical bar 

among red vertical and green horizontal bars etc). However, in the real world, participants 

often have to search for more than one potential target (e.g., baggage screeners search for 

guns, knives, I.E.D.s, cigarette lighters etc. all in one display). Sometimes observers may not 

even have a clear representation of what they are searching for (e.g., search for something 

‘suspicious’). Recently, Menneer et al. (2004, 2009) have shown a dual target cost when 

participants have to search for one of two possible target items. Our experiments address the 

situation in which targets are even less well defined and are presented within much more 

complex search contexts. Under these conditions, we show that participants fail to find a 

large proportion of targets. 

 

In the current study, we developed a Multi-element Asynchronous Dynamic (MAD) search 

task. This task was designed to retain the scientific control of lab-based tasks (in accordance 

with other work in the field) but also better reflect the complexities of real-world visual 

search within one display. MAD search consists of a mix of moving (different speeds and 

directions) and stationary stimuli, and items that maintain a constant luminance over time or 

change in luminance by ‘blinking’ off and on1. Target uncertainty was produced by having 

                                                            
1 By luminance change we refer to independent local changes in the luminance of a subset of the stimuli, rather 
than a global change of the display’s lightness (a global change in lighting would result in synchronous changes 
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the target appear in any of these stimulus types. Furthermore, participants did not know from 

trial to trial what the target would look like (it could be one of five vowels) or if it was even 

there (on 50% of the trials there was no target). The number of objects on the screen (set size) 

was also high. Overall the data suggest that previous findings from the lab do not apply when 

artificial search displays are made (even modestly) more like those encountered in the real-

world.  

 

In Experiment 1 participants searched a MAD display of 16, 24 or 32 items for the presence 

of any one of five target vowels. Here, the blinking stimuli did not offset entirely but 

gradually changed in luminance from 38.2 cd/m2 to 0.7 cd/m2 and back again. In Experiment 

2 the blinking stimuli entirely offset and re-onset again, while Experiment 3 positioned 

‘placeholders’ around the stimuli that never changed in luminance, allowing participants to 

keep better track of the positions of the blinking items. To preview the results, in all 

experiments, search slopes for moving targets were less efficient than those for static targets, 

there was no difference in search slopes between blinking and non-blinking targets and miss 

errors were high.  

 

In Experiment 4 the motion and blinking type of the target was blocked so that in each 

condition participants were told in advance what motion and blinking categorical group the 

target would fall into (e.g., in one block of trials the target would always be moving and 

blinking, in another block the target would always be static and not blinking etc). Even when 

                                                                                                                                                                                         
to the luminance of all display items). This is measured as the change in candela per meter squared rather than 
the change in luminous flux (i.e., illumination). Both of these changes in lighting reflect different aspects of real 
world luminance, however, our study investigates how independent, local luminance changes (caused for 
example by moving in and out of shadows or transient occlusion) influence search in these dynamic conditions. 
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participants knew the overall characteristics of the target, the results showed that search 

efficiency for moving targets was worse than that for static targets. Again there was no 

difference in search slopes for blinking and non-blinking targets and error rates, although 

somewhat reduced, were still relatively high. In Experiment 5 participants knew the identity 

of the target (it was always the letter A). Here, error rates were reduced but participants were 

still less efficient at finding a moving target than a static one (there was no difference in 

blinking versus non-blinking search slopes). Finally, in Experiment 6 the set size of the 

display was reduced to 4, 8 or 12 items. With these smaller set sizes, search slopes for 

moving and static stimuli were similar, aligning the results of MAD search to those from 

other previous search tasks (e.g. Hulleman, 2009). In this experiment, again there was no 

difference in blinking versus non-blinking search slopes and error rates were reduced. The 

results of these experiments suggest that by changing the complexity of the search task to 

resemble more ‘realistic’ search displays, participants use different search principles than 

those that have been previously suggested. 

 

Experiment 1  

Method 

Participants: 

Twelve participants (5 female) were recruited from the University of Warwick’s participant 

scheme in exchange for course credit or payment. Their ages ranged from 18 to 20 (M = 18.9 

years, SD = 0.8 years). All participants had normal or corrected to normal vision. 

Stimuli and Procedure: 
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Displays were generated and responses recorded by custom written computer programs 

running on a PC attached to a Sony 19” CRT monitor running at 75Hz. Stimuli were letters of 

the alphabet and were white (average luminance 14.9 cd/m2) presented on a black 

background (see Figure 1). Participants were instructed to search for a target vowel (A, E, I, 

O or U) among distractor consonants and respond whether the target was present or absent by 

pressing ‘m’ or ‘z’, respectively (please note, the letter ‘W’ was not included in the display as 

it’s dimensions were wider than the other consonants). Fifty percent of trials contained a 

target (on any given trial only one target was presented), on the other fifty percent of trials 

there was no target. When present, the target was equally likely to be any one of the five 

vowels.  Set sizes of 16, 24 or 32 items were used and participants were given a short practice 

session before the experiment proper.  

------------------------------------- 

Figure 1 about here 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

 

Half the stimuli were stationary and remained in the same location throughout the trial. The 

rest of the stimuli were moving and could move in any direction and each item’s speed was 

randomly generated from a range of 1.9 to 3.3 degrees/second (from a viewing distance of 57 

cm). Moving stimuli passed transparently over each other and bounced off the sides of an 

invisible rectangle of size 14.5 degrees by 14.5 degrees. Half of the moving stimuli and half 

of the static stimuli also changed in luminance to fade off and on the screen (‘blinking 

items’). The blinking items did not offset entirely from the screen but faded from a luminance 

value of 38.2 cd/m2 to 0.7 cd/m2 and back again. To avoid grouping of the blinking items into 

one set, and thus mimic the unpredictability of real-world conditions, all the blinking items 

disappeared and re-appeared independently of each other. Thus, items that changed in 
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luminance all had smooth random oscillating frequencies to fade in and out, randomly 

ranging from one luminance cycle of 1 second to 3 seconds (i.e. each item took between 1 

and 3 seconds to change from the upper luminance level to the lower level and back to the 

highest level). Stimulus luminance was varied by changing the transparency (alpha level) of 

each stimulus between the values of 1 and 0.3 by a value ranging from 0.0184 units (1 sec 

oscillation) to 0.0062 units (3s oscillation) per screen retrace. Each blinking item initially 

appeared on the screen at any luminance level (randomly generated) between 38.2 cd/m2 to 

0.7 cd/m2. As such, each blinking item offset and re-onset at a different rate and they all 

‘blinked’ out of phase. Items remained blinking until participants made a response. The target 

was equally likely to be in the moving and/or blinking set. For each experiment there were 

480 trials per participant. Participants were instructed to respond as quickly but as accurately 

as possible. Error rates and RTs were recorded. No feedback was given for either correct or 

incorrect responses similar to real world conditions (e.g., security guards are not likely to 

receive immediate feedback if they miss a target during real-time surveillance tasks).  

 

Results and Discussion 

Trials with RTs less than 200 msec or greater than 10000 msec were removed as outliers 

(0.6% of the data). Overall RTs for present and absent trials, for all experiments, are shown in 

Table 1. Looking at the RT data, unsurprisingly and consistent with previous research (e.g. 

Chun & Wolfe, 1996; Treisman 1988; Wolfe, 1998), there was a main effect of target 

presence. RTs for target present trials were faster than those for target absent trials, F(1,11) = 

56.2, p < 0.01, overall RTs increased with set size, F(2, 22) = 123.7, p < 0.01, and RTs 

increased more for target absent trials across set size than for target present trials, F(2, 22) = 

34.3, p < 0.01. As this pattern of data was similar for all the following experiments, and are 



12 
 

not important to the questions in hand, in subsequent sections we do not report them further. 

Our primary interest was how the different motion and blinking patterns affected the time and 

accuracy to find the target. To investigate this, both here and in the ensuing experiments, we 

separated the target present trials into whether the target was moving or stationary and 

whether it was blinking or non-blinking2. Figure 2a shows mean RTs for target present trials 

across set size and Figure 2b shows the search slopes. RTs for correct trials were entered into 

a within-participants analysis of variance (ANOVA), with main factors of motion type (static 

vs moving), blinking (blinking vs non-blinking) and set size. RTs to detect static targets were 

faster than RTs to detect moving targets, F(1,11) = 15.8, p < 0.01, and RTs increased with set 

size, F(2, 22) = 52.8, p < 0.01. There was no difference between RTs to detect blinking 

targets or non-blinking targets, F < 1. More importantly the Motion type x Set size interaction 

was significant, F(2, 22) = 10.7, p < 0.01. RTs increased more across set size when the target 

was moving compared with when it was static. No other interaction was significant (all Fs < 

1.5, ps > 0.2).  

------------------------------------- 

Figures 2 and 3 about here 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

 

Miss errors in MAD search were higher than in most previous traditional lab search tasks (see 

Figure 3). There were very few false alarms (2%). In typical lab search experiments 

participants tend to make miss errors of less than 5% (Wolfe, 1998). In this more complex 

display participants were missing moving targets, on average, 30% of the time and static 

targets 19% of the time. Miss errors were greater for moving stimuli than for static stimuli, 

                                                            
2  As the target absent trials had no target they could not be separated into these different motion or blinking 
categorical groups. 
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F(1,11) = 59.4, p < 0.01 and there was a main effect of set size, F(2, 22) = 7.4, p < 0.01, with 

participants making more miss errors as set size increased. There was no main effect of 

having the target blink, F < 1. Neither were any of the interactions significant (all Fs < 1, ps > 

0.4). As MAD search was designed to better reflect the dynamic aspects of real world search 

this high proportion of miss errors suggest that previous lab work has greatly overestimated 

people’s realistic, search capability. We will return to this point later. 

 

When searching through this complex MAD display, search slopes for moving targets were 

steeper than those for static targets. This contradicts previous lab-based findings where search 

for and/or the filtering of moving items was efficient (e.g., Franconeri & Simons, 2003; 2005; 

McLeod et al., 1988; 1991) or there was no difference between searching through moving 

and static items (Hulleman, 2009).  When the search task becomes more complex, designed 

to reflect some of the dynamic and unpredictable aspects of real-world search, searching 

through moving items is actually less efficient than searching through static items. 

Furthermore, luminance changes made to stimuli in these displays do not affect search. 

Previous work has suggested that items showing an abrupt luminance onset capture attention 

(e.g., Yantis & Jonides, 1984). However, when the change in luminance is made to be more 

gradual, as demonstrated in MAD search, there was no difference in search slopes between 

items that showed luminance changes and those that did not. The data suggest that luminance 

changes do not capture our attention when they exhibit properties more like those that occur 

in the naturalistic world. 

 

Perhaps one of the reasons why luminance changes did not capture attention in Experiment 1 

was that the ‘blinking’ items never fully disappeared from the display and so their re-onset 
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might not be interpreted as the appearance of a new perceptual object.  Perhaps such 

luminance changes would be more effective if the items totally disappeared from the screen? 

In order to investigate this possibility, Experiment 2 used blinking stimuli which fully offset 

from the screen during their luminance cycle.  

 

Experiment 2 

Method 

Participants: 

Eighteen participants (11 female) were recruited from the University of Warwick’s 

participant scheme in exchange for course credit or payment. Their ages ranged from 18 to 39 

(M = 19.8 years, SD = 4.9 years). All participants had normal or corrected to normal vision. 

Stimuli and Procedure: 

The stimuli and procedure were similar to that of Experiment 1 except that here the blinking 

stimuli offset entirely. Across the trial the blinking items changed from a luminance value of 

38.2 cd/m2 to 0.0 cd/m2 and back again, so that when the stimuli re-appeared they showed a 

full (but gradual) luminance onset. As in Experiment 1, items that changed in luminance all 

smoothly faded in and out, with a random transition time ranging (to avoid grouping) from 

one luminance cycle of 1 second to 3 seconds. Luminance values were manipulated by 

varying the alpha level between the values of 1 and 0 at a rate between 0.0263 units per trace 

for 1s oscillations to 0.0088 units per retrace for 3s oscillations. Stimuli with alpha values of 

less than 0.075 were not visible on the screen. Thus, a blinking stimulus was invisible for 

anywhere between a minimum of approximately 80 msec (6 screen retraces), corresponding 

to the oscillating frequency of 1 second, to a maximum of 240 msec (18 retraces) 
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corresponding to the oscillating frequency of 3 seconds. Participants were given a short 

practice session before the experiment proper and told to respond as quickly but as accurately 

as possible.  

 

Results and Discussion 

Trials with RTs less than 200 msec or greater than 10000 msec were removed as outliers 

(1.8% of the data). Overall RTs for present and absent trials are shown in Table 1. Figure 4a 

shows mean RTs for target present trials across set size and Figure 4b shows the search 

slopes. RTs for correct trials were entered into a within-participants analysis of variance 

(ANOVA), with main factors of motion type (static vs moving), blinking (blinking vs non-

blinking) and set size. RTs to detect static targets were faster than RTs to detect moving 

targets, F(1,17) = 39.0, p < 0.01 and RTs increased with set size, F(2, 34) = 66.0, p < 0.01. 

There was no difference between RTs to detect blinking targets or non-blinking targets, F < 

1. The Motion type x Set size interaction was significant, F(2, 34) = 4.5, p < 0.05. RTs 

increased more across set size when the target was moving compared with when it was static. 

No other interaction was significant (all Fs < 1.6, ps > 0.2).  

------------------------------------- 

Figures 4 and 5 about here 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

Again miss errors were higher than in most previous traditional lab search tasks (see Figure 

5). There were very few false alarms (1.1%). Miss errors were greater for moving stimuli 

(30%) than for static stimuli (21%), F(1,17) = 21.4, p < 0.01 and there was a main effect of 

set size, F(2, 34) = 27.4, p < 0.01, with participants making more miss errors at higher set 

sizes. There was no main effect of having the target blink, F < 2.2. There was a significant 
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Blink x Move interaction, F(1, 17) = 4.6, p < 0.05, where the effect of blinking increased 

errors more for moving items than it did for static items. None of the other interactions were 

significant (all Fs < 1.3, ps > 0.2).  

 

Response times in Experiment 2 were longer than in Experiment 1, F(1, 28) = 12.8, p < 0.01. 

We believe this was due to individual differences in participants between experiments. 

However, of most importance, none of the interactions with experiment were significant (all 

Fs < 2.2, ps > 0.12). Neither was there a difference in error rates, either as a main effect (F < 

0.05, p > 0.8), or in any of the interactions (all Fs < 2.7, ps > 0.11). Although participants 

responded more quickly in Experiment 1, the same overall pattern of results was found in 

both Experiments 1 and 2. 

 

Experiment 2 replicated the results of Experiment 1. Search efficiency for moving targets was 

worse than search efficiency for static targets and miss errors were generally high. 

Interestingly, there was again no effect of items blinking on and off. Search efficiency for 

blinking items was not different to that of non-blinking items. This occurred even though the 

blinking items offset entirely so that their subsequent onset could be interpreted as the 

appearance of a new object. It seems that unlike abrupt onsets, in MAD search, gradual 

luminance changes do not benefit search efficiency. This finding contrasts with previous 

work showing that abrupt luminance onsets or the appearance of perceptually new objects 

automatically capture attention (e.g., Hillstrom & Yantis, 1994; Yantis & Jonides, 1984; 

1996). 
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One reason why blinking items failed to capture attention might have been due to the period 

of time for which they were invisible. Yantis & Gibson (1994) showed that an item needed to 

offset for approximately 100 msec (before it re-onset) in order to fully capture attention. In 

our experiment each blinking stimulus could offset for any time period between 80 to 240 

msec (depending on its randomly generated blinking frequency). Blinking items that only 

offset for 80 to 100 msec may not have disappeared for long enough to capture attention on 

their return3. For trials where this occurred there would not have been a search slope benefit 

for blinking items. However, we calculate that there was an 87.5% probability that the target 

would offset for 100 msec or longer, thus, the majority of targets had the potential to capture 

attention. Despite this, there was no overall benefit (or even a hint of a benefit) of having the 

target blink compared to a target that did not blink.  

 

The data from Experiments 1 and 2 suggest that search for moving items was less efficient 

than search for static items and that there was no benefit of having the items blink. One could 

argue that if items were blinking their luminance fluctuations made it harder for participants 

to consistently monitor their locations, which may in turn negate any improvement in search 

efficiency. This seems unlikely as in Experiment 1 the blinking stimuli were always visible. 

Nevertheless, in Experiment 3 we directly tested this possibility by placing constant-

luminance, square, place holders around all of the letter stimuli. This procedure made the 

locations of all the stimuli, blinking or not, continuously available to the observer. 

 

Experiment 3 

                                                            
3 Although, according to Yantis & Gibson (1994) items that offset for more than 67 msec showed some ability 
to capture attention. 
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Method 

Participants: 

Twelve participants (11 female) were recruited from the University of Warwick’s participant 

scheme in the exchange for course credit or payment. Their ages ranged from 18 to 20 (M = 

18.7 years, SD = 0.8 years). All participants had normal or corrected to normal vision. 

Stimuli and Procedure: 

The stimuli and procedure were similar to that of Experiment 2 except that all the search 

stimuli were surrounded by the outline of a white box (1.2 deg x 1.2 deg) which was visible 

throughout the trial and did not change in luminance. These boxes acted as placeholders to 

mark the locations of all stimuli. 

 

Results and Discussion 

Trials with RTs less than 200 msec or greater than 10000 msec were removed as outliers 

(0.7% of the data). Overall RTs for present and absent trials are shown in Table 1. Figure 6a 

shows mean RTs for target present trials across set size and Figure 6b shows the search 

slopes. RTs for correct trials were entered into a within-participants analysis of variance 

(ANOVA), with main factors of motion type (static or moving), blinking (blinking or non-

blinking) and set size. RTs to detect static targets were faster than RTs to detect moving 

targets, F(1,11) = 16.1, p < 0.01 and RTs increased with set size, F(2, 22) = 35.9, p < 0.01. 

There was no difference between RTs to detect blinking targets or non-blinking targets, F < 

1. The Motion type x Set size interaction was also significant, F(2, 22) = 4.7, p < 0.05. RTs 

increased more across set size when the target was moving compared with when it was static. 

None of the other interactions were significant (all Fs < 1.2, ps > 0.3).  
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------------------------------------- 

Figures 6 and 7 about here 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

Again miss errors were higher than in most traditional lab search tasks (see Figure 7). There 

were very few false alarms (2.1%).  Overall, miss errors were greater for moving stimuli than 

for static stimuli, F(1,11) = 24.3, p < 0.01, where participants missed 35% of moving targets 

and 24% of static targets and there was a marginal effect of set size, F(2, 22) = 2.7, p = 0.09, 

with a trend for participants to make more miss errors with higher set sizes. There was no 

main effect of having the target blink, F < 2.3. There was a significant Blink x Move 

interaction, F(1, 11) = 5.5, p < 0.05, where blinking increased errors more for moving items 

than it did for static items. The Blink x Set Size interaction was also borderline significant 

F(2, 22) = 3.4, p = 0.051, with fewer errors at set size 24 when the target was non-blinking 

than when it was blinking but not at set size 16 or 32.  

 

The results from Experiment 3 replicated those from Experiments 1 and 2. Search for moving 

targets was again less efficient than those for static targets. Furthermore, there was no 

difference in search efficiency for blinking versus non-blinking targets. As the stimuli in 

Experiment 3 had placeholders around each of them, that never changed in luminance, the 

lack of a blinking effect in Experiment 1 and 2 was not because it was harder to monitor the 

positions of the blinking items. Even when the locations of the blinking items were 

continuously available, luminance changes did little to benefit (or disrupt) search. 

 

Clearly, the results of Experiments 1 to 3 are different from previous findings in the 

literature. For example, previous work has suggested that people are either better at finding 
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moving targets or that motion does not affect search efficiency. Taking the first point, it could 

be argued that in past work, motion usually defined the target (e.g. McLeod et al., 1988): 

participants were more efficient at finding a moving target because they knew to look for a 

moving target.  Furthermore, it is possible that in Experiments 1 – 3, participants had 

intentionally adopted a strategy of first searching through the static items before switching to 

the moving items. This would have the effect of artificially inflating the moving target search 

slopes compared with the static target slopes. This strategy seems unlikely because the target 

was equally likely to be either moving or static. However, even if this were the case, it would 

suggest that moving items do not automatically capture attention or enjoy privileged 

processing in these types of display conditions (see also Abrams & Christ, 2003, Hillstrom & 

Yantis, 1994 and Yantis & Egeth, 1999).  

 

In Experiment 4, we blocked MAD search by target motion and/or blinking type in order to 

test, firstly, whether there was a benefit of motion when participants knew to look for a 

moving target, and secondly whether the lack of a motion benefit in Experiments 1-3 

occurred because participants had intentionally adopted a default attentional set for static 

items.  In this experiment, participants knew in advance what category the target would fall 

into. This gave them the opportunity, if possible, to adopt the most appropriate attentional set 

in order to try to restrict their search to the target defined group (Egeth, Virzi, & Garbart, 

1984; Folk et al., 1994). Accordingly, any default attentional set (e.g., for static items) should 

not apply to search under these conditions (e.g., in a block when the target was always 

moving). 

 

Experiment 4 
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Method 

Participants: 

Eleven participants (3 female) were recruited from the University of Warwick’s participant 

scheme in the exchange for course credit or payment. Their ages ranged from 18 to 22 (M = 

19.3 years, SD = 1.3 years). All participants had normal or corrected to normal vision. 

Stimuli and Procedure: 

The stimuli and procedure were similar to that of Experiment 2. However, here the conditions 

were blocked so that in each block participants would know what motion and blinking subset 

the target would fall in (e.g. in one block the target would always appear in the static items 

and not be blinking, in another the target would be static and blinking, in another the target 

would be moving and not blinking and in another condition the target would be moving and 

blinking). In each block there were 120 trials of which fifty percent contained a target. As in 

Experiment 1 there were three set sizes of 16, 24 and 32 items. The order of the blocks was 

randomized. 

 

Results and Discussion 

Trials with RTs less than 200 msec or greater than 10000 msec were removed as outliers 

(0.2% of the data). Overall RTs for present and absent trials can be found in Table 1. Figure 

8a shows mean RTs for target present trials across set size and Figure 8b shows the search 

slopes. RTs for correct trials were entered into a within-participants analysis of variance 

(ANOVA), with main factors of motion type (static vs moving), blinking (blinking vs non-

blinking) and set size. RTs to detect static targets were marginally faster than RTs to detect 

moving targets, F(1,10) = 4.5, p = 0.06 and RTs increased with set size, F(2, 20) = 44.2, p < 
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0.01. Although RTs appeared to be slower for blinking targets compared with non-blinking 

targets (particularly in the static conditions) this difference was not significant, F < 2.7. More 

importantly, as in Experiments 1 – 3 above, the Motion type x Set size interaction was 

significant, F(2, 20) = 4.9, p < 0.05. RTs increased more across set size when the target was 

moving compared to when it was static. None of the other interactions were significant (all Fs 

< 1,  ps > 0.5).  

------------------------------------- 

Figures 8 and 9 about here 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

 

Knowing the motion and blinking type of the target in advance reduced the error rate 

somewhat in comparison to Experiments 1-3 (see Figure 9). There were very few false alarms 

(0.5%). However error rates were still relatively high. Miss errors were greater for blinking 

stimuli than for non-blinking stimuli, F(1,10) = 5.5, p < 0.05 and there was a main effect of 

set size, F(2, 20) = 13.9, p < 0.01, with participants missing more targets at the higher set 

sizes. There was no main effect of motion type (participants missed 18% of moving targets 

and 15% of static targets), F < 1.8. There was a significant Blink x Motion type interaction, 

F(1, 10) = 5.9, p < 0.05, with participants missing more moving than static targets when the 

targets were non-blinking but not when they blinked. None of the other interactions were 

significant (all Fs < 1.5,  ps > 0.2).  

 

The main findings from this experiment suggest that even when participants knew in advance 

what category the target would appear in, search for moving items was less efficient than 

search for static items. This replicates the results of Experiments 1 – 3 and was not predicted 
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by previous work where search for motion defined targets was found to be efficient (e.g., 

McLeod et al., 1988).  

 

Neither were the results predicted by theories suggesting that search becomes efficient if 

participants form an attentional set for the target: for example, that motion may only capture 

attention when it was relevant to target detection (e.g., Hillstrom & Yantis, 1994, Yantis & 

Egeth, 1999, see also Pinto et al., 2006, for the reverse case of efficient search for a static 

target among moving distractors). Here, participants should have been able to set up an 

attentional bias to prioritise moving stimuli in blocks where the target was known to be 

moving (e.g., Folk et al., 1994). Although participants were theoretically able to form these 

attentional sets (thus prioritising search for moving items) search for moving targets was still 

worse than search for static ones. One of the main differences between previous work and 

that presented here is the complexity of the display. By using higher set sizes, different 

motion and blinking types, and uncertainty of the exact target template, MAD search is more 

complex than the previous search tasks investigating motion. With these more complex 

displays different search strategies seemed to be used to help find the target. We return to this 

idea in the General Discussion. 

 

In summary, knowing the target category in advance did not allow participants to restrict 

search to the correct motion/blinking groups. However, there was a small benefit in accuracy 

as miss errors were lower in Experiment 4 than in previous experiments. Comparing 

Experiment 4 to Experiment 1, for example, a between experiments ANOVA showed that the 

Motion x Experiment (F(1,21) = 6.4, p < 0.05), Blinking x Experiment (F(1,21) = 12.9, p < 

0.01) and Motion x Blinking x Experiment (F(1,21) = 5.0, p < 0.05) interactions all reached 
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significance, demonstrating fewer errors in Experiment 4 than in Experiment 1. One reason 

for this might be that prior knowledge of the target category helped participants to reject 

distractors from other categories more readily. However, error rates were still high as 

participants had to search for one of five target templates. This is in line with Menneer et al. 

(2009) who showed a dual-task cost when participants had to search for one of two possible 

targets (see also Fisk & Rogers, 1991, Kramer et al., 1986, Kunar et al., 2008, Schneider & 

Fisk, 1982 and Schneider & Shiffrin, 1977, who showed an impairment in search 

performance as the memory search set increased). Experiment 5 investigated what happens in 

MAD search when target uncertainty was reduced, by giving participants knowledge of the 

target identity in advance. Here participants were only asked to search for the letter A. With 

this precise target template, were people better at determining whether a target was present or 

absent in MAD search?  

 

Experiment 5 

Method 

Participants: 

Sixteen participants (9 female) were recruited from the University of Warwick’s participant 

scheme in exchange for course credit or payment. Their ages ranged from 18 to 29 (M = 20.0 

years, SD = 2.8 years). All participants had normal or corrected to normal vision. 

Stimuli and Procedure: 

The stimuli and procedure were similar to those of Experiment 1 except that, here, 

participants knew in advance what they were looking for as the target was always the letter A 

(none of the other vowels were presented). Analysis of the target vowels in Experiment 1 
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showed that, although participants responded slightly faster and more accurately to the letter 

I, there was no difference in RTs or error rates to detect any of the other vowels. Thus, the 

letter A was chosen to be a typical target. The target A could appear in any of the motion or 

blinking types and participants were asked to press the letter ‘m’ if it was present and the 

letter ‘z’ if it was absent. Participants were asked to respond as quickly but as accurately as 

possible. 

 

Results and Discussion 

Trials with RTs less than 200 msec or greater than 10000 msec were removed as outliers 

(0.03% of the data). Overall RTs for present and absent trials are shown in Table 1. Figure 

10a shows mean RTs for target present trials across set size and Figure 10b shows the search 

slopes. RTs for correct trials were entered into a within-participants analysis of variance 

(ANOVA), with main factors of motion type (static or moving), blinking (blinking or non-

blinking) and set size. RTs to detect static targets were faster than RTs to detect moving 

targets, F(1,15) = 15.8, p < 0.01 and RTs increased with set size, F(2, 30) = 45.1, p < 0.01. 

There was no difference between RTs to detect blinking targets or non-blinking targets, F < 

1.5. The Motion type x Set size interaction was significant, F(2, 30) = 4.9, p < 0.05. RTs 

increased more across set size when the target was moving compared with when it was static. 

No other interactions were significant (all Fs < 1, ps > 0.4).  

------------------------------------- 

Figures 10 and 11 about here 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

Knowing the identity of the target dramatically reduced the error rate in comparison to 

Experiments 1-3 (Figure 11). As in all the previous experiments there were very few false 
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alarms (0.8%). Participants missed 8% of moving targets and 6% of static targets. There was 

a trend for miss errors to be greater for moving stimuli than for static, F(1,15) = 3.2, p = 

0.095, however, there was no main effect of blinking or set size. There was a significant 

Blink x Motion type interaction, F(1, 15) = 11.8, p < 0.01, with blinking increasing errors 

more for moving items than for static items. No other interactions were significant (all Fs < 1, 

ps > 0.4). 

 

As hypothesised, knowing the identity of the target reduced the observed miss errors. By 

having participants hold only one target template in working memory rather than five items 

(as was the case in Experiments 1 – 4), the effective memory search set was reduced which 

led to an improvement in search accuracy (see also Fisk & Rogers, 1991, Kramer et al., 1986, 

Kunar et al., 2008, Schneider & Fisk, 1982 and Schneider & Shiffrin, 1977, for similar 

examples of improvements in search performance with a reduced memory search set). This 

may be because there was less confusion from distractors when there was only one target 

template compared to multiple possible targets. With many possible targets it becomes harder 

to reject distractors, as they have greater chance of sharing at least one of the target features 

and thus will compete for selection (e.g., Menneer et al., 2009). However, when there is just 

one target, distractors can easily be discounted from search if they do not share any of the 

target’s features. Of note, in MAD search, this only affected the search accuracy and did not 

affect the overall search efficiency. Search to find moving targets was still less efficient than 

search to find static targets, and there was no effect of having the target gradually blink off 

and on. 

 



27 
 

As mentioned above, one of the reasons why the findings from MAD search differ from 

previous work might be because the search task is more complex. The design of MAD search 

has allowed us to manipulate many factors together in one paradigm. The observed effect of 

increasing the complexity of the display produces a different overall search pattern where 

there is greater search efficiency for static targets than moving ones. In contrast, in a recent 

study, Hulleman (2009) found that the search rate for static targets was the same as that for 

moving ones. There are many differences between MAD search and the search displays used 

by Hulleman (2009), one of which is the set size. Hulleman used smaller set sizes of 6, 12 

and 18 items compared with the ones presented here. Perhaps with smaller set sizes 

participants opt to search the display purely from vision (Hulleman, 2009; Horowitz & 

Wolfe, 1998; Oliva et al., 2004; Wolfe et al., 2000), whereas with higher set sizes other 

search strategies are used.  For example, Kristjannson (2000) showed evidence that memory 

benefitted search at higher set sizes of up to 56 items although this effect was not visible with 

set sizes below 16 items (Horowitz & Wolfe, 1998). Theoretically, if different search 

strategies are used at higher set sizes, the difference between moving and static search slopes 

may disappear if the set sizes were reduced. This was investigated in Experiment 6.  

 

Experiment 6 

Method 

Participants: 

Sixteen participants (6 female) were recruited from the University of Warwick’s participant 

scheme in exchange for course credit or payment. Their ages ranged from 18 to 25 (M = 19.7 

years, SD = 2.0 years). All participants had normal or corrected to normal vision. 



28 
 

Stimuli and Procedure: 

The stimuli and procedure was similar to that of Experiment 1 except that here the set sizes of 

4, 8 and 12 were used. 

 

Results and Discussion 

Trials with RTs less than 200 msec or greater than 10000 msec were removed as outliers 

(0.04% of the data). Overall RTs for present and absent trials can be found in Table 1. Figure 

12a shows mean RTs for target present trials across set size and Figure 12b shows the search 

slopes. RTs for correct trials were entered into a within-participants analysis of variance 

(ANOVA), with main factors of motion type (static or moving), blinking (blinking or non-

blinking) and set size. RTs increased with set size, F(2, 30) = 123.1, p < 0.01. There was no 

difference between RTs to detect blinking targets or non-blinking targets, F < 1, nor was 

there a main effect of Motion type, F(1, 15) = 3.0, p = 0.1. Unlike Experiments 1-5, the 

Motion type x Set size interaction was not significant, F(2, 30) = 1.0, p = 0.4. Neither were 

any of the other interactions significant (all Fs < 1.9, ps > 0.1).  

------------------------------------- 

Figures 12 and 13 about here 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

Error rates were relatively low (Figure 13). There were very few false alarms (1.5%). 

Participants missed 8% of moving targets and 7% of static targets. There was a trend for miss 

errors to be greater for moving stimuli than for static stimuli, F(1,15) = 3.4, p = 0.09. There 

was no main effect of blinking or set size. None of the interactions were significant (all Fs < 

1.5, ps > 0.2). 
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Decreasing the set size changed the pattern of search efficiency found previously in 

Experiments 1–5. With smaller set sizes there was now no difference in search slopes 

between search for moving targets and search for static ones. These results have a number of 

implications. Firstly, they rule out the idea that moving items were simply harder to perceive. 

One reason why search for a moving target was less efficient than search for a static target 

might have been because a moving target was less easy to detect on a perceptual level, 

leading to a deficit in RTs. However, if this was driving the main differences between static 

and moving stimuli in Experiments 1-5 we would expect to see a similar difference here. 

Secondly, the pattern of results in Experiment 6 was similar to that of Hulleman (2009) who 

found that search efficiency through static items was the same as that through moving items. 

The difference between the results in Experiment 6 and those presented above is that, here, 

participants were searching through fewer elements. Search strategies seem to differ as the 

range of set sizes change.  

 

Of final note, we observe that there was no effect of having the items blink. Whether the set 

size was low or high there was no benefit (or cost) of gradual luminance changes. Error rates 

on the other hand were reduced at lower set sizes. With fewer items on the screen participants 

were better able to perform a more exhaustive search and so miss fewer items that, in turn, go 

undetected at a higher set size. 

 

General Discussion 
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Visual search tasks allow us to investigate how we search our environment. Past work has 

shown that the visual system prioritises certain stimulus properties, such as motion and abrupt 

onsets, to better find a target. These properties are important in understanding how we 

visually process the world. However, when these attributes are combined into one display, 

making search more complex, we find that the pattern of data changes. We present six 

experiments that used a Muti-element Asynchronous Dynamic (MAD) visual search design, 

incorporating elements of motion (as well as static stimuli), gradual luminance onsets, target 

uncertainty and high set sizes into one overall search display. Experiment 1 found that when 

using these types of displays: (i) search for moving targets was less efficient than search for 

static targets; (ii) there was no difference in search efficiency for finding a gradually 

luminance changing ‘blinking’ target  versus a non-blinking one and (iii) error rates were 

higher than those observed in many past experiments. This pattern of data was replicated in 

Experiment 2, where the blinking items fully offset (becoming invisible) before re-appearing 

and in Experiment 3 where all stimuli were surrounded by a placeholder to help participants 

keep track of the position of each stimulus regardless of whether it was blinking or not. 

 

Experiment 4 investigated whether there was a difference in search efficiency between 

moving and static items when participants knew in advance the target’s moving and blinking 

category. However, even with knowledge of a target’s category, participants were still less 

efficient at using motion to find the target compared with when the target was static. As in 

Experiments 1-3 there was no effect of having the target blink on or off, although there was a 

slight reduction in error rates. Experiment 5 had participants only look for the target letter A 

(opposed to looking for any vowel in Experiments 1-4) which could appear in any of the 

motion or blinking types. The search efficiency data for the moving and blinking targets 

showed the same results as Experiments 1-4, however, here error rates were lower than the 
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previous experiments. In Experiment 6, the set size was reduced from 16, 24 and 32 items (in 

Experiments 1-5) to 4, 8 and 12. With this reduction in set size search efficiency for moving 

and static items was equivalent and error rates were low overall. However, there was still no 

benefit (or cost) of having the target gradually change in luminance. On the whole, the data 

observed in MAD search has shown a different pattern of results than that which would be 

predicted by previous literature. 

 

Motion in Visual Search 

Experiments 1 to 5 showed that search for moving targets was less efficient than search for 

static targets – even when the motion type was known in advance and could be used to define 

the target (Experiment 4). These findings differ from previous experiments which have 

shown that motion either makes search more efficient (especially when it defines the target 

and/or participants form an attentional set for a moving target, e.g. Franconeri & Simons, 

2003; 2005; Hillstrom & Yantis, 1994; McLeod et al., 1988; Yantis & Egeth, 1999) or that 

there was no difference in search rates between static and moving items (Hulleman, 2009). 

One reason for this difference can be gleaned from Experiment 6. When the set size was 

reduced, search efficiency between moving and static items was equated, mimicking the 

results of Hulleman (2009). Hulleman (2009) found that search efficiency through a display 

containing 6, 12 or 18 static items was similar to search through a display where all the items 

were moving at an identical speed. Similarly, Experiment 6 presented here, showed that with 

relatively small set sizes search efficiency for moving targets was again identical to that of 

static targets. Furthermore, our results extend those of Hulleman (2009) because in MAD 

search all the moving items had different velocities within the same display (in Hulleman’s 
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work all the stimuli had the same velocity within the same display). At smaller set sizes, 

motion and static search efficiencies were similar. 

 

However, the pattern of data changed when the set size increased. With this increase 

participants became less efficient at finding a moving item than a static item. It is not the first 

time in the literature that increasing the set size has changed the observed search pattern of 

results. For example, Horowitz & Wolfe (1998) showed that search efficiency through a 

static display was similar to search efficiency through a display which changed every 

111msec (the ‘random’ condition). However, Kristjansson (2000) found that this was no 

longer the case if the set size was increased to up to 56 items. Here search in the static display 

was more efficient than search in the random display. Kristjansson (2000) argued that 

increasing the set size of the display highlighted the potential use of memory in visual search.  

 

Other work has shown that although participants can use memory in visual search it is 

generally a less efficient strategy than searching from vision (Kunar et al., 2008, see also 

Wolfe et al. 2000 and Oliva et al. 2004). As such, it has been suggested that the default in 

visual search is to search from vision rather than memory (Oliva et al., 2004). Most of these 

studies have used small set sizes, however. One could theorize that with higher set sizes, and 

a more complex and laborious search display, other strategies are needed alongside a purely 

visual one. For example, it could be that at lower set sizes, participants search the display 

from vision but at higher set sizes participants search the display from a mixture of vision and 

memory. Let us consider the results in terms of Inhibition of Return (IOR), a mechanism 

proposed to prevent attention from returning to previously attended and discounted locations 

(Danziger, Kingstone, & Snyder, 1998; Klein, 1988; Posner & Cohen, 1984; Snyder & 
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Kingstone, 2001). Kristjansson (2000) suggested that, with an increase in set size, some static 

items undergo IOR and so participants do not re-search these stimuli. This memory of what 

has already been searched leads to a reduction in search slopes for static items. However, 

given that humans have a limited ability to track moving objects (e.g., Pylyshyn & Storm, 

1988; Pylyshyn, 2001), and as moving stimuli are constantly changing their positions, then 

with larger set sizes, participants may not remember which moving items have been 

previously searched. Under these circumstances participants would instead search the display 

from vision and, thus, may re-search some moving items more than once. This would lead to 

an increase in search slopes. Further research is needed to investigate this. However, for 

present purposes it is enough to note that search through moving and static displays operates 

differently under these more complex conditions than would be predicted from past research. 

 

One final point of interest can be seen if we examine the results of Experiments 1 and 2, 

where there is a levelling off of RTs from set sizes 24 to 32 in the static conditions. This 

asymptote at the higher set sizes could occur because with higher display densities, more 

stimuli fall within the foveated area, within each glance, enabling better detection of the 

target. Furthermore, it has been suggested that in some displays (particularly feature searches) 

search becomes more efficient at higher densities because local feature contrasts allow the 

target to be more distinguishable from surrounding distractors (e.g. Nothdurft, 2000). 

However, please note, that we view this result with some caution because the effect was not 

replicated in Experiments 3 to 5. 

 

Luminance Changes in Visual Search 
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Previous research has shown that items showing an abrupt luminance onset capture attention 

(e.g. Christ & Abrams, 2006; Schreij, Owens, & Theeuwes, 2008; Theeuwes, 1994; Yantis & 

Jonides, 1984; 1996). However, when items appear in the real world they may not necessarily 

show an abrupt luminance onset. Many items may instead gradually appear in our field of 

view over a number of milliseconds (e.g., a person re-appearing from being occluded by 

another object). MAD search investigated how these gradual luminance onsets affected 

attention. In contrast to abrupt luminance onsets there was no advantage of having the target 

show a gradual luminance change (even from a fully offset luminance value, Experiment 2). 

Interestingly, neither was there a cost. Having items display these luminance fluctuations did 

not affect the overall search rate, and, furthermore, the visual system was able to compensate 

for these luminance changes so that search effectiveness did not deteriorate.  

 

Another point to consider is the uniqueness of each gradual onset. Previous work showing 

onset capture has often used a design where the abrupt onset was unique in the field (e.g. 

Yantis & Jonides, 1984). In contrast, in MAD search there were many gradual onsets and the 

changes were asynchronous. Perhaps there was no benefit of blinking targets, here, as their 

unique luminance change was lost in the midst of the other luminance changes that occurred. 

This idea fits with work by Von Muhlenen et al. (2005) who tested a unique-event hypothesis 

and found that color, motion and luminance changes captured attention strongly when they 

were temporally and spatially unique but not when their transients coincided with other 

display transitions  (see also O’Regan, Rensink & Clark, 1999; Watson & Kunar, 2010). 

Further research will need to investigate whether a unique luminance change captures 

attention in MAD search, or whether even this unique transient is lost in the more dynamic 

display. Nevertheless, in agreement with Von Muhlenen et al., (2005) the current data raise 
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the important point that the capturing potential of stimuli depend on the circumstances of the 

display.  

 

Rauschenberger (2003) also noted that the degree of luminance change should be considered 

when asking whether luminance onsets capture attention. In his work he found that both 

small and large abrupt luminance changes captured attention when participants formed an 

attentional set for them, however, large luminance changes (approximately a 1:3 ratio 

change) always captured attention regardless of whether there was an attentional set or not 

(although see Watson, Braithwaite & Humphreys, 2008, who showed that large luminance 

changes do not necessarily capture attention under some conditions). In the work presented 

here perhaps the luminance onsets were not large enough to capture attention automatically. 

This seems unlikely given that the luminance changes were greater than the 1:3 ratio change 

needed to capture attention (e.g., 0.7 cd/m2 to 38.2 cd/m2 in Experiment 1). Furthermore, 

even if the luminance changes were not large enough to capture attention automatically, they 

should still have captured attention in Experiment 4 where participants were able to form an 

attentional set for them. However, this was not the case. 

 

Error rates in visual search 

Error rates in MAD search were higher than in most previous traditional lab search tasks (e.g. 

Wolfe, 1998). In Experiments 1–3, miss errors hovered around the 30% mark (for moving 

stimuli) and 20% for static stimuli. This elevated error rate makes sense if we remember that 

MAD search was designed to be more complex than other previous visual search tasks. 

Increasing the complexity of the display also increases the noise in the display. This in turn 
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puts pressure on the visual system, resulting in an increase in errors.  The data demonstrate 

that previous visual search tasks might have overestimated how well humans search their 

environment. When the display is comprised of twelve static stimuli, for example, search 

accuracy is fairly high. However, search in the real world often comprises of more noisy and 

complex scenes, involving search through many items independently varying in their motion, 

luminance and velocities. By creating a hybrid of lab and ‘real world’ search, data from 

MAD search suggest that miss errors in real-world tasks are higher than previously 

anticipated.  

 

Reviewing other work in the literature we see glimmers of this pattern before. For example, 

Hulleman (2009) reports miss errors of 19% in one of his conditions (where stimuli were 

moving at 10.8 degrees/second in a Brownian motion). This display is on the whole more 

complex than a standard visual search task comprised of solely static elements. Although 

Hulleman does not discuss these error rates in detail it again suggests that increasing the 

complexity of visual search reduces accuracy.  

 

Furthermore, putting pressure on the visual search system in other ways, for example, by 

reducing the target prevalence, also elevates miss errors4. Wolfe et al. (2005) showed that 

reducing the prevalence rate of a target to 1-2% increased the number of miss errors from 7% 

to 30-40% (see also Fleck & Mitroff, 2007; Kunar et al., 2010; Rich et al., 2008; Van Wert, 

Horowitz & Wolfe, 2009; Wolfe et al., 2007). One could argue that the high error rates 

shown in MAD search were a result of low prevalence (LP) factors. For example, in 
                                                            
4  Reducing the target prevalence may put pressure on the visual search process in a number of ways, including 
shifting the decision criterion, reducing the quitting threshold of search and/or increasing the number of motor 
errors that are made (for a review see Wolfe & Van Wert, 2010 and Van Wert et al., 2009). 
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Experiment 1, the target could appear in any of the four different motion/blinking categories 

(static, moving, static-blinking or moving-blinking). Participants did not know from trial to 

trial which category the target (if present) would appear in giving the target a 12.5% 

prevalence of appearing in each category. Furthermore, if each combination of target vowel 

and motion/blinking status was considered to be different then the individual target 

prevalence rates reduce even further (i.e. if a static, non-blinking letter A is considered a 

different target to a static, blinking letter A, which is different to a static, blinking letter E, 

etc. then the prevalence of each target drops to 2.5%). Perhaps it is this lower prevalence rate 

that caused the elevated errors? Experiments 4 and 5 give some credibility to this theory. In 

both these experiments the target prevalence increased (either by blocking the 

motion/blinking type of the target, Experiment 4, or by keeping the identity of the target 

constant, Experiment 5) and a reduction in miss errors was observed (see also Wolfe et al., 

2005). Please note, however, that MAD search differs from typical low prevalence studies as 

the overall target prevalence is high. It has been suggested that part of the LP Effect is caused 

by a criterion shift: due to the infrequency of the targets, participants form a bias to respond 

‘target absent’ (Van Wert et al., 2009; Wolfe et al., 2007). Clearly, such a bias is unlikely to 

occur in MAD search where the target occurs, overall, 50% of the time. 

 

The high error rates observed in MAD search can be better explained, however, by Wolfe and 

Van Wert’s (2010) model of how participants reach a decision to terminate search. Wolfe and 

Van Wert suggested that search does not simply involve a two alternative forced choice 

(2AFC) decision of whether a target is present or not. Instead, once a stimulus has been 

selected participants have to make a series of decisions. First, they decide if the stimulus is 

the target or not. If it is the target, they press ‘present’. If it is not the target then they are 

faced with another choice of whether to select a new stimulus or to terminate search. Under 
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low prevalence conditions both the decision criteria and the point where participants decide 

to terminate search is affected. In the latter case the search termination threshold is lowered. 

We suggest that the same principle is happening in MAD search. In conditions where there 

are high set sizes of complex stimuli and when participants do not know the exact template of 

what they are looking for, in a bid to constrain their time, participants set their quitting 

threshold as lower than it should be to accurately perform this search task. Many targets are 

missed as a result.  

 

In terms of real-world implications, low prevalence visual search tasks mimic the applied 

search of looking for a threat at airport security checkpoints.  Missing approximately 30% of 

dangerous items in baggage screening is an unsettling statistic. If we apply our experiments 

in a similar fashion, our data show that, in more complex displays, even when the target has a 

frequent (50%) occurrence, people also fail to find the target up to 30% of the time. If we 

compare these search tasks to operators monitoring surveillance footage for poorly defined 

events, objects or people (e.g. under the category of suspicious behaviour in an airport) our 

data show that human observation will often fail. This statistic will presumably be even 

greater in the real world if target prevalence is also low. It is for further research to 

investigate this. 

 

Conclusions 

When lab tasks are changed, even modestly, to reflect realistic visual search the observed 

pattern of visual search is changed. Data from MAD search shows that when faced with more 

complex, realistic visual search conditions some fundemental characteristics, previously 
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reported in lab experiments, do not apply. Search for moving targets is less efficient than 

search for static targets, gradual luminance changes do not benefit (or cost) search and 

participants miss a large percentage of the targets. Of course, search conditions in the real 

world are often still more complex and diverse than those shown in MAD displays. 

Nevertheless, these data warn that even slight changes, towards more realistic stimuli, greatly 

influence the way people search their environment.  
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Table 1: Overall Reaction Times (msec) for present and absent trials in Experiments 1-6 

across set size (Please note that in Experiment 6 the set sizes across the columns were 4, 8 

and 12 instead of 16, 24 and 32, respectively) 

 

Condition Present Absent 

 16 24 32 16 24 32 

Experiment 1 1321 1657 1908 2488 3221 3833 

Experiment 2 1789 2189 2502 3840 4748 5317 

Experiment 3 1647 1973 2284 3071 3950 4667 

Experiment 4 1556 1836 2147 2787 3588 4269 

Experiment 5 965 1114 1277 1601 2204 2747 

Experiment 6 757 918 1122 937 1471 2035 
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Figure Legends 

 

Figure 1. Example display of Multi-element Asynchronous Dynamic (MAD) Search. Arrows 

represent moving items. Stimuli surrounded by stars represent items that blink on and off. 

The target (if present) is a vowel. 

 

Figure 2. (a) Reaction times (RTs) across set size and (b) search slopes for when the target 

was Static, Moving, Static-Blinking or Moving-Blinking in Experiment 1. Error bars 

represent the standard error. 

 

Figure 3. Miss errors for when the target was Static, Moving, Static-Blinking or Moving-

Blinking in Experiment 1. Error bars represent the standard error. 

 

Figure 4. (a) Reaction times (RTs) across set size and (b) search slopes for when the target 

was Static, Moving, Static-Blinking or Moving-Blinking in Experiment 2. Error bars 

represent the standard error. 

 

Figure 5. Miss errors for when the target was Static, Moving, Static-Blinking or Moving-

Blinking in Experiment 2. Error bars represent the standard error. 

 



53 
 

Figure 6. (a) Reaction times (RTs) across set size and (b) search slopes for when the target 

was Static, Moving, Static-Blinking or Moving-Blinking in Experiment 3. Error bars 

represent the standard error. 

 

Figure 7. Miss errors for when the target was Static, Moving, Static-Blinking or Moving-

Blinking in Experiment 3. Error bars represent the standard error. 

 

Figure 8. (a) Reaction times (RTs) across set size and (b) search slopes for when the target 

was Static, Moving, Static-Blinking or Moving-Blinking in Experiment 4. Error bars 

represent the standard error. 

 

Figure 9. Miss errors for when the target was Static, Moving, Static-Blinking or Moving-

Blinking in Experiment 4. Error bars represent the standard error. 

 

Figure 10. (a) Reaction times (RTs) across set size and (b) search slopes for when the target 

was Static, Moving, Static-Blinking or Moving-Blinking in Experiment 5. Error bars 

represent the standard error. 

 

Figure 11. Miss errors for when the target was Static, Moving, Static-Blinking or Moving-

Blinking in Experiment 5. Error bars represent the standard error. 
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Figure 12. (a) Reaction times (RTs) across set size and (b) search slopes for when the target 

was Static, Moving, Static-Blinking or Moving-Blinking in Experiment 6. Error bars 

represent the standard error. 

 

Figure 13. Miss errors for when the target was Static, Moving, Static-Blinking or Moving-

Blinking in Experiment 6. Error bars represent the standard error. 
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