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Chapter

Introduction

1.1 Artificial Hearing

Many people listen to, or at least hear, some form of music almost every day of their lives.

However, only some of the processes involved in creating the sensations and emotions evoked by

the music are understood in any detail. The problem of unravelling these processes has been much

less thoroughly investigated than the comparable topics of speech and image recognition; this has

almost certainly been caused by the existence of a greater number of applications awaiting this

knowledge. Nevertheless, the area of music perception has attracted some attention over the last

few decades and there is an increasing interest in the subject largely arising from the availability of

suitably powerful technology. It is becoming feasible to use such technology to construct artificial

hearing devices which attempt to reproduce the functionality of the human auditory system. The

construction of such devices is both a powerful method of verifying operational theories of the

human auditory system and may ultimately provide a means of analysing music in more detail

than man. In addition to the analytical benefits, techniques developed in this manner are readily

applicable to the creative aspects of music, such as the composition of new music and musical

sounds.

2
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1.2 The human auditory system

The human auditory system extends from the outer ear (pinna) through a complex and highly

sensitive set of mechanical and chemo-electrical systems to the temporal lobe of the brain. The

physical layout is normally divided into the outer, middle and inner ears; the auditory nerve and

central auditory pathways. The ear itself, a highly complex system comprising many delicate

components, not only serves to convert sound waves in the atmosphere to nerve impulses but also

includes the sensory organs of balance. Though the processing performed by the ear on the acoustic

signal has been the subject of a long, and sometimes heated, debate, it is now generally accepted

that it operates as both a temporal and frequency analyser. The inner ear performs the conversion

from mechanical vibrations to nerve impulses by means of the cochlea, a spiral tube divided in two

along its length by the basilar membrane. The tube becomes smaller in diameter along its length so

that, as sound waves pass along it, different frequencies resonate in different regions and excite tiny

hair cells on the membrane. At low frequencies at least, these hair cells can respond fast enough to

respond synchronously with the extreme excursions of the signal. This topic is the best documented

area of hearing, having a large body of work associated with it, see [Ge18 1] or [Nor70] for thorough

surveys. After the cochlea, the signal passes into the auditory nerve and our degree of knowledge of

the physical aspects of its subsequent processing and interpretation starts to decrease fairly rapidly.

Experimentation by many workers has, however, suggested the qualities of the signal which are

measured and the types of features recognised by the subsequent processing stages.

Figure 1.1 represents the human auditory system as an information processing hierarchy. At

the lowest level the musical signal is in its most fundamental form, an acoustic wave. As the signal

passes up the hierarchy it is refined and interpreted making its form and the quality of information

it carries increasingly abstract. The most clearly defined percept for the listener is the symbolic

form of the signal. The listener perceives a stream of events within the music [MB79], which

predominantly correspond to the sounds produced by each of the performing instruments. Of these
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'events', some are perceived as having a distinct pitch and are commonly referred to as notes.

The number of properties which may be attributed to notes, as demonstrated by the richness of

language used to describe them, is vast. For the purposes of analysis, however, only four are

typically discussed, namely: pitch, loudness, duration and timbre. In the case where a single note

has been isolated, pitch and loudness are primarily functions of the frequency and amplitude of the

signal, respectively. Duration is fairly simply related to the physical duration of the signal, though

exactly which facets of the signal correspond to timbre is largely unknown. Part of this problem is

that the term is fairly loosely defined; W. Dixon Ward in [Nor70] says that the term has become a

'wastebasket' category, "if two sounds are 'different' though having the same pitch and loudness,

then they must differ in timbre". Classical (now obsolete) theory speculates that this quality is

related to the spectral distribution of the note; while certainly contributing, the simple experiment of

observing the great difference in timbre of playing a sound backwards, via a tape machine, suggests

that temporal aspects of the signal also play an important role. J. M. Grey in [Gre75] devised a

timbral space in which the distance between two points corresponded to the perceived difference

in timbre between two notes. However, the space was produced by a multi-dimensional scaling

algorithm run on the results of a set of listening tests and so, unfortunately, the relationships between

the axes of the space and any physical attributes of the test signals could not be deduced.

The study of the human perception of pitch is possibly the most thoroughly investigated areas

of psychoacoustics. For simple (monophonic) signals, pitch is the psychological correlate of the

frequency of the signal, but the relationship is far from simple. The method by which the auditory

system determines the pitch of a stimulus is one of the oldest and most heated areas of debate in

psychoacoustics, centering around a percept known variously as fundamental pitch, residue pitch,

virtual pitch, or periodicity pitch. The percept is the single pitch identified from a tone containing

one or more frequency components (a tone complex). The exact pitch perceived depends on many

factors including the absolute and relative frequencies of the tone's partials (see below), their relative
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amplitudes and on the listener themselves. One of the more important findings of this investigation

is that the tone may not have a component at the frequency of the pitch it is perceived to have;

hence the term virtual pitch. Many thorough surveys are available on this subject including [Sma70]

and [Ge181], while a more musical look at the topic can be found in [War70].

Notes can be broken down into a set of partials, each a pseudo-sinusoidal function having a

single frequency. For a note to have a clear pitch of N Hz. the partials with the largest magnitudes

have frequencies of N Hz, 2N Hz, 3NHz. etc. These partials are normally referred to as the

harmonics of the note, the others sometimes being referred to as the inharmonic partials. As the

relative magnitude of the harmonics decreases with respect to the inharmonic-partials the pitch of

the tone becomes decreasingly distinct. The tones produced by bells have inharmonic-partials with

significant magnitude. For the notes analysed in this work, it is assumed that the magnitude of the

inharmonic-partials is so small that they can be ignored. For this reason, the terms harmonic and

partial are used interchangeably.

1.3 Objectives of this work

The work described in this thesis leads to a system which can interpret a limited set of signals

and produce output at the level of symbols which correspond to the notes of a score. The term

automatic transcription system 1 has become applied to such such systems, since the symbolic

representation produced is similar to the information represented on a musical score and the process

can be considered equivalent to writing down the score on hearing a piece of music.

The main objectives of this work are:

1. Investigate some aspects of the nature of musical signals in the context of signal processing

and pattern recognition.

'where transcription is used in the literary rather than the musical sense.
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2. Develop a signal representation suited to the analysis of musical signals.

3. Devise analytical techniques which make the best use of the devised representation.

4. Build an example application using the representation and the techniques in order to assess

their potential.

1.4 Automated Transcription

In order to move towards a methodology for building an automatic transcription system, the problem

is first discussed in general terms.

Figure 1.2 shows the magnitude of a short segment of a musical signal with respect to time.

Figure 1.3, which is the musical score which would have been performed in order to produce the

signal.

Figure 1.2: Magnitude of Two Piano Note Audio Signal

The score is a symbolic description of the music in the sense that it is constructed from a set of

discrete elements (the symbols) which are in this case, of course, its notes. The score too uses its



CHAPTER 1. INTRODUCTION	 8

Figure 1.3: Score for Two Piano Note Signal

horizontal scale to measure time but represents frequency or pitch on its vertical scale; which is a

far more perceptually important parameter of the music than its magnitude with time. In addition,

the durations of the notes are represented by the form of the symbols used.

A note can be thought of as a special kind of sound, though it is not possible to define the precise

point at which a sound becomes a note. Both are experienced as a single percept, but that described

as a note, by a typical listener, will have a definite pitch associated with it as well as a clear starting

time and, often less distinctly, a finishing time. A listener could judge which of two sounds started

first but could only attempt to place them above or below each other in pitch if they were notes.

A simple working definition of the task to be implemented by a music transcription system can

now be proposed:

Definition 1.1 The requirement of an automatic music transcription system is to produce a 'score-

like' representation of a piece of music given only a description of the amplitude of its acoustic

signal with respect to time.

The minimum information required in the output data consists of estimates of the onset time,

frequency and duration of each of the notes in the signal.

The techniques developed in this work are specifically aimed at polyphonic signals. A poly-

phonic, rather than monophonic, signal is one where more than one note occurs simultaneously.

Typically the classification is based on the number of instruments playing and how many notes they

can sound at any time. The oboe, for instance, has only one sound producing element, its reed, and

so is classed as monophonic. An instrument such as a piano has a set of strings for each note and is
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Figure 1.4: Magnitude of Fourier Transform of Two Piano Note Signal

not restricted to the number of notes it can play at once; it is polyphonic. From a signal processing

point of view, the situation is not quite as clear. The simple two note signal presented above would

probably be classified as monophonic since only one note is 'played' at any time, however the first

note is still decaying when the second starts (legato), and so must be considered polyphonic for

the purposes of signal analysis. Much previous work has been applied to monophonic sources.

While not without value, the techniques developed are often dependent on this monophonicity and

so can never be applied in polyphonic situations. The work presented here has tried to avoid such

limitations.

The structure of the music is clearly represented by its score in Figure 1.3: there are two notes

at different frequencies. The signal, on the other hand, is a continuous function and so has a far less

transparent structure. Having said that, in such a simple case, it is easy to postulate that each of

the peaks in the signal correspond to the onsets of the notes. For this example, it would be a fairly

trivial exercise to estimate manually the onset time of each note with no more than a ruler. However,

it would be extremely hard, if not impossible, to determine the pitch of both notes. The problem is
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twofold: the signal time plot has no explicit frequency scale and so this parameter would have to be

determined implicitly from the temporal behaviour of the signal and after the onset of the second

note, the signal is the sum of two component signals which would have to be separated from each

other before such analysis could take place. Such separation of a signal into a set of component

signals is know as signal segmentation; to perform this on a given class of signals requires the

definition of a segmentation strategy which has been discussed in general terms by several authors

including Harlick [Har83] Wilson and Spann [WS87b]. The deduction of a such a strategy for

music transcription forms the basis of Chapter 4.

The problem of not having an explicit frequency scale for the raw data can be approached by

applying some transform to the data which results in an alternative representation of it. This is

discussed at length in the next chapter; for now observe Figure 1.4, which is the magnitude of

the Fourier Transform (Fr) of the signal. This representation has axes displaying frequency and

amplitude. Clear peaks can be seen corresponding to the harmonics or partials of the notes. The

frequencies of the notes could be obtained from these peaks but notice that there exists the problem

that the harmonics are intermingled and need to be assigned to notes which is, again, a signal

segmentation problem. However, the more fundamental problem with this form of the signal is that

there is now no time axis; it is therefore no more use for deducing all of the parameters of the notes

than Figure 1.2, since it is impossible to observe either the onset times or durations of the notes.

The solution to this dilemma can, at least partly, be resolved by the use of some signal repre-

sentation which has both time and frequency axes. An example of such a representation is shown

in Figure 1.5, which is a Short Time Fourier Transform (STFT). This is a three dimensional repre-

sentation, with axes of time, running front to back, frequency left to right, while the amplitude at

each point is represented by the height of the surface. The shading in this and other 3D plots used

in this thesis serves to reinforce the perspective of the surface rather than indicate any value. The

signal represented is, again, the two piano notes. The plot consists of a small number of ridges
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Figure 1.5: A combined time-frequency representation of two piano notes
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running front to back which correspond to the partials (see below) of each note. The front edges of

the ridges lie at the onset times of the partials and closer inspection reveals that there are two sets

of ridges grouped by onset time. Each note corresponds to one of these sets. The first set of ridges

(toward the front) is more widely spaced than the second, corresponding to the pitch of the first

note being higher than the second. The basic parameters of the music can now be observed directly

from the signal representation. There are clearly two sets of partials, they occur at different times

and the first is higher in frequency than the second. The argument here, all be it fairly heuristic,

is simply that this kind of time-frequency representation is clearly more suited to the analysis of

musical signals than a representation describing it exclusively in terms of time or frequency. For

these reasons, it has become a standard technique to use time-frequency representations (with the

Short-time Fourier Transform being the most common) for the analysis of audio and many other

signals. Various forms of time-frequency representations and their relative merits are discussed in

Chapter 2.

1.5 Previous Work

The most formative work in the area of polyphonic music transcription is undoubtedly that of

J.A.Moorer, both in his thesis [Moo75] and later works e.g. [GM77] and [Moo78]. The thesis,

"On the Segmentation and Analysis of Continuous Musical Sound by Digital Computer", identifies

many of the problems associated with the task and includes a review of various signal processing

techniques which were available at the time. The system presented used a directed bank of hetrodyne

filters to track partials. The algorithm required that the key signature of the piece be determined at an

early stage in order to direct the filterbank. The source material was limited to two note polyphony,

the lines played were not allowed to cross in frequency and the interval between the lines had to

be between a minor third and minor seventh. The system included techniques for presenting the

results in the form of a musical score and attempted to closely match the original score.
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Work by Charles Watson in [Wat86], using a variety of heuristic techniques, obtained accurate

results from synthesised and natural signals. The algorithms developed need to be tailored interac-

tively to suit the characteristics of the particular signal being analysed, it is not clear whether they

could be generalised to cope automatically with a range of input signals.

A variety of techniques have been described by Chafe et al in [CMR82, CJK + 85] and [SS86]

from the Centre for Computer Research in Music and Acoustics (CCRMA). These techniques have

been used as tools forming part of an interactive signal editor, but it is not known if they have, to

date, been successfully integrated into a fully-automated analysis system.

Of particular interest is a recent work by Serra [Ser89], though being oriented towards sound

manipulation and resynthesis rather than transcription, it does demonstrate the power gained by

using a feature based analysis method. Very briefly, the system generated a pseudosinusoidal

expansion of the signal using a short-time Fourier transform. The representation could then be used

to drive an additive synthesiser, the output of which could be combined with the residual of the

original to produce realistic reconstructions. The system is oriented towards monophonic sound

sources but can cope with the kind of 'overlap' polyphony described above. The user is required

to know some of the parameters of the music as it is necessary to enter these before the analysis is

performed. There is also an interactive stage after the automatic analysis when the accuracy of the

partial tracks detected can be improved by the user.

Work on the synthesis of realistic sounds has much to contribute to the successful analysis of

natural signals. Only by accurate modelling of the sound generating processes of natural instruments

can an understanding be gained of the signals they produce. An ideal analysis system should be able

to recognise the individual subtleties of the wide range of sound sources in common use today while

retaining the ability to identify their common features. In recent years sufficient computational

power has become available to allow highly complex models of the physical elements of natural

instruments to be used for synthesis rather than the simple oscillator and frequency modulation (Fm)
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techniques used by currently available commercial synthesisers. Such methods have been applied

to the modelling of reed and string instruments [AR85, ACR87, Smi87, ACE88] and the human

vocal tract [RDP87], most notably as part of the CHANT project [Rod84, RPB84]. The models used

in this thesis are simple by comparison though there is no fundamental reason why more complex

models could not be used within the analysis framework presented. The limitations of the signal

model used are discussed in the final Chapter.

1.6 Mathematical Notation

The mathematical notation used in this thesis makes use of a great many superscripts and subscripts.

In order to aid the reader, an attempt has been made to use this notation in a consistent manner.

A particular letter is associated with each value to be represented e.g. t for a time. The letter is

emboldened when it represents a vector e.g. t might be a vector of times. Elements of such vectors

are referenced using a subscript e.g. for a single dimensional vector, t i would be the ith element

of t. Elements of multidimensional vectors are referenced by means of a comma separated list of

subscripts.

Sometimes there are occasions when letters are required to represent several related values.

In these situations a tag letter is attached as a subscript, or if a subscript already exists (e.g. a

vector dereference) as a superscript. For instance fp might be a frequency associated with a partial

while fn might be a frequency associated with a note which may also have an associated time tn.

Superscripts are also used in their normal role of exponentiation and it is hoped that the context will

make the intended meaning clear. This use of superscripts and subscripts can be applied recursively

so that each may have superscripts and subscripts of their own, though excessive levels of recursion

have been avoided.
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1.7 Equipment Used

The experimentation and software development for this work was performed on several Sun Mi-

crosystems computers. Analogue to digital and digital to analogue conversion of the audio signals

was via equipment kindly supplied by Solid State Logic Limited of Oxford, U.K. who also partly

funded the work. A sampling precision of 16 bits and a sampling rate of 48kHz was used for all

signals. Test signals were synthesised using the CSound package from MIT, while natural sound

sources were provided by the McGill University Master Samples Compact Discs and a variety of

other prerecorded sources.

1.8 Thesis Organisation

The following Chapter discusses the properties of various combined time-frequency representations

leading into a description of the Multiresolution Fourier Transform (MET) which forms the basis

of the rest of the work. Chapter 3 discusses the more practical aspects of the MET including its

implementation and application to musical signals. This discussion is proceeded by the presentation

of some transforms of simple signals to allow familiarisation with the qualitative aspects of this

signal representation. Chapter 4 then turns to the modelling of harmonic based musical signals

within the MET which is developed into a set of feature detection algorithms in chapters 5 and 6. The

results of applying these algorithms to various pieces of music are presented in Chapter 7, while

conclusions, suggested improvements and further work are covered in Chapter 8.



Chapter 2

Representations of Audio Signals

2.1 Introduction

This chapter comprises two main parts. After a brief discussion, there is a review of several signal

representations which have been applied to the analysis of audio signals: the next section then

introduces and defines the multiresolution Fourier transform (mFr) which forms the basis of the

work presented in the subsequent chapters.

It is important to distinguish between a signal and a representation of that signal. The repre-

sentation can be considered to be a view of the signal by some observer. A given signal may have

many representations: many different views of the same data. For one dimensional signals, such as

audio, the most common representation is that given by observing the signal in the time domain —

other representations can be obtained by applying some signal transform. Different representations

can give highly dissimilar views: some aspects of the signal may be revealed in one representation

and hidden in another, as was demonstrated in Chapter 1.

Any system which processes audio signals must represent those signals internally in one or more

ways. Simple systems which only perform modifications on an audio signal (e.g. an equaliser), may

only use only the time domain description: the modifications they make are easily implemented

16
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in the time domain. An audio analysis system, which produces a symbolic output, rather than

a modified signal, typically transforms the signal from the time domain into some more suitable

representation, on which it then operates. The suitability of the representation depends upon the

goals of the system. Where those goals are to produce a perceptually relevant set of symbols

from the input signal, then it can be seen that the algorithms that the system must implement will

be simplified by allowing them to operate on a signal representation which describes the signal

in similar terms to those in which it is perceived. This similarity is of particular importance in

an interactive analysis-synthesis system [CMR82, Ser89] where the transformed signal may be

directly observed and possibly modified by the user. As was discussed in the previous chapter, it is

generally agreed that the best representation for this type of work is one which incorporates aspects

of both time and frequency and these are commonly referred to as combined or conjoint [Dau88b]

representations.

2.2 Some commonly used representations

A wide variety of time-frequency representations have been investigated by many different workers

and, as a result, there has been much literature published on the subject. Several comprehensive sur-

veys of the topic have been published; a most exhaustive review has recently been given by [Coh89]

and there is little point going into as much detail here. All combined representations fall into one

of a few broad categories and examples from each of these are discussed in the following sections,

with an emphasis on those which have been applied to musical signals.
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2.2.1 Linear Transforms

A transform G is termed linear if it has the following property. If some signal v(t) can be described

as a linear combination of signals,

v(t) = E kivi(t)
	

(2.1)
1=1

where ki are constants, then its transform G(v) satisfies

G(v(t)) = E kiqvi(t))
	

(2.2)
1.1

The transform of the composite signal is the sum of the appropriately weighted transforms of the

component signals. Equation 2.1 is a suitable model for musical signals, which, typically, consist

of individual sounds 'mixed' together. A linear transform ensures that this form is retained in the

transformed domain, clearly simplifying any analysis system based on it.

The Fourier Transform

The single most important transform in signal processing is the Fourier transform (Fr) which relates

the time and frequency domains. The Fourier transform V(w) of a signal v(t) is defined by

V(w) = 1:v(t)e —.iw t dt	 (2.3)

The inverse transform is then defined as

lroo
V(t) =	 V(w)e3w t dco	 (2.4)

A similar transform can be defined for discrete signals and is referred to as the discrete Fourier

transform (DFr).

This transform is of little use for any practical analysis system, as the infinite integration involved

means that it must be evaluated for all time. Rather, the transform is a mathematical ideal [S1e76]

most useful as a base on which to build other transforms. For practical purposes the data are

normally multiplied by some window function, which is non-zero only within some limited range.

This form is discussed in the next section.



(2.7)

(2.8)
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The Short Time Fourier Transform

The short time Fourier transform (STFT) is often called the 'phase vocoder' in speech [Por76] and

music applications [Moo78, Can80]. The name arises from the fact that the transform coefficients

are complex; previous vocoders had not included phase information.

The forward transform is defined as [Por80]

00
V2(t, co) =	 h(t — r)v(r)e-3"dr

	
(2.5)

—00

The function h(t) is the analysis window and is chosen to be concentrated in both time and frequency.

It is this localisation which means that V2(t, w) can be considered as a representation intermediate

between v(t) and V(w). It can be seen from the STFT definition that it is a linear transform.

An inverse swr can be defined. The original signal can be recovered using [Por80]

cx)
v(t)	 f (t — 7-)v2(T,w)eiw t dr dt

	
(2.6)

-00 -CO

The function f(t) is the synthesis window which, to ensure invertibility, must be related to the

analysis window h(t) by
[00

h(t)f(—t)dt = 1
I -00

A discrete form of the STFT can be defined [Por80]. Given a time sequence, x(n), then

co
X2(n,m)	 h(nR —

:=-00

0 < m < M

The indices n and m select the transform coefficients from a two-dimensional integral lattice

covering the time-frequency plane. .R and 271M are the sampling intervals in time and frequency

respectively.

As for the continuous case, with appropriate choices of sampling intervals and windows, this

form of the transform is invertible [Por80].

M-1 001
x(n) = -E Ef

M ,	
(n — m)X2(m,k)e3Tc4

• 27r km

sc=0 m=-00

(2.9)
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The windows must now satisfy an additional condition arising from the sampling process [Por801,

00

E f(n — sR)h(sR — n pM) = 5(p)	 (2.10)
8=-00

for all n

Note that the representation has no redundancy when R = M.

The coefficients of the discrete STFT are best interpreted by considering rows and columns of

the representation individually. A single column, X 2 (no, m), can, from Equation 2.9, be seen to

be the DFT of the time windowed signal h(noR — n)x(n). A single row is then a time sequence of

coefficients, one from each column, with m = mo.

00

X2(n, mo) = E h(nR —	 (2.11)
i=-00

which can be considered in terms of a convolution,

X2 (n, mo) = h(nR) * (x(nR)e rnonR )	 (2.12)

This may be interpreted as the output of an analysis filter h(n) operating on a frequency shifted

version of x(n) [Por801.

The summation limits in Equation 2.9 are given as ±oo, but in practice they depend on the

analysis window, which is typically zero-valued outside some finite interval. This leads to the idea

that efficient implementations of the STFT are possible using the fast Fourier transform (F ,H) [Por76]

and this is the technique normally used in audio analysis [Moo78]. More recently, multirate filter

bank implementations [SB87] have been used, which permit the application of quadrature mirror

filter (QMF) techniques [ECG76]. Such a scheme removes aliasing in the analysis stage allowing

the original signal to be perfectly reconstructed simply and efficiently.

Clearly, an important consideration when implementing the sTFr is the choice of window

function. Many windows have been tried, including rectangular, Hamming, Hanning and Kaiser.

These, and others, have been reviewed in many places e.g. [RG751 and [Har78] so their relative
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merits are not considered here. Note, however, that the Kaiser window [E74] is commonly used,

e.g. [Ser89].

The Gabor Representation

Gabor (1947) did not agree with the prevailing idea that hearing was well represented by frequency

based Fourier analysis, though the representation he proposed [Gab46] has more recently been

shown to be related to the STFT [Bas81]. Gabor stated "...it is our most elementary experience that

sound has a time pattern as well as a frequency pattern...". The Gabor representation is defined as

an expansion of the signal
00

v (t) = E	 iai(t)
k,1=-oo 

Cgk (2.13)

where Cm are the expansion coefficients and the basis functions, g ki (t) are time-frequency shifted

versions of a Gaussian window g(t) = e.

gia(t) = g(t — kT)ej(int+0)
	

(2.14)

TC2 =
	

(2.15)

where T, 1, a and are all constants. Given the time and frequency dispersions of the basis

functions and the sampling intervals T and LI, each transform coefficient Cki represents a region

(Gabor called it a logon') of the time-frequency plane of size T x F, at time kT and frequency 1F.

A drawback of the representation is that the basis functions g ki (t) are not orthogonal and so

calculation of the expansion coefficients, Cki, is not straightforward, requiring either vast computa-

tional resources or some iterative approximation. Recent work has lead to more efficient techniques

[Bas81] but these are still computationally expensive compared to FFr based implementations of the

STFT. The Gabor Transform has found little application in computer music, apart from being the

motivation behind the development of granular synthesis [Roa85], though more interest has been

shown by the image processing community, e.g. [Dau88b].
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Within the context of this thesis, the importance of Gabor's work was to identify that there is

a fundamental limit to the resolution at which a signal may be simultaneously expressed in time

and frequency. This arises from Heisenberg's uncertainty principle [Pap77] which had previously

been applied to quantum mechanics, but has become a fundamental result in signal processing.

The principle implies that the time t and frequency f of some phenomenon cannot be measured

simultaneously with arbitrary accuracy. The phenomenon must be considered to be somewhat

dispersed in both domains and so degrees of uncertainty must be associated with those measurements.

Specifically, if At and Af are the uncertainties in time and frequency respectively, then they are

bound by

AtAf > 1	 (2.16)

This relation is reflected in the limitation in Equation 2.15 on the relative concentrations in time and

frequency of the transform basis functions. The uncertainty restriction is not, of course, specific to

the Gabor transform — it applies just as much to the window functions used for the STFT.

2.2.2 Non-Linear Transforms

Various attempts have been made to overcome the limitations imposed on the linear transforms

by the uncertainty principle. These representations forsake the linearity (eqn. 2.2) of the methods

described in the previous section in order to increase time-frequency resolution.

The most widely used of these transforms is the Wigner distribution (WD) [CM80a, CM80b,

CM80c]. It is defined for a continuous signal v(t) by

cc
Wv(t , = I v It +	 v* 

(
t —

—00
(2.17)

The correlation involved in the calculation of the WD means that it is bilinear; the WD of a linear

signal with just two components, v(t) = v i (t) v2(t), is given by

Wv(t , w) =	 (t, co) W2(t, w) 231 [W1,2( t , w)]
	

(2.18)
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where [W1 ,2 (t, w)] is the real part of the so called cross Wigner distribution of the signals v i and

V2.

As discussed above, linearity of a signal representation is an important consideration for its

applicability to polyphonic musical signals; the bilinearity of the vsrD is a potential drawback in this

application.

The WD suffers from a number of other disadvantages. These are, most notably

1. The wi) cannot readily be inverted [CM80al. Thus it is not suitable as the basis of analysis-

synthesis systems which are typically required by computer musicians.

2. The definition of the WD must be somewhat compromised for discrete signals [CM8013]; this

has lead to several different interpretations, most of which suffer from a certain amount of

aliasing [CM83].

3. The infinite integration in equation (2.17) means that, for a practical implementation of the

WD, some window function must be introduced [CM80b]. These windows suffer from the

uncertainty problems described above, and so discrete forms of the WD provide little or no

increase in resolution compared with their linear counterparts.

These disadvantages have restricted the use of the WD, although it has been applied in some

areas of audio analysis [JK83, VKDV88].

2.2.3 Multiscale Techniques

Gabor's work in relating the uncertainty principle to signal processing, as described above, revealed

the fundamental limit on the resolution which can be obtained by a windowed transform. Recent

attempts to overcome this limitation have concentrated on multiscale approaches and these are often

referred to as wavelet transforms, after [GM84]. Basically the idea is to represent the signal as an

expansion of a set of functions (wavelets), rather than just one. These families of functions are



f
	 dw < oo

_

Jw
(2.22)
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based on translations and dilations of some function, g(t),

gott\	 1 g (t — b)

"a )
(2.19)

where a > 0 is the dilation parameter and b is the translation parameter. These parameters are

typically restricted to some discrete sublattice with steps ao and bo, giving

1 	 (t — nbo)
g m,n(t ) = aion

which leads to a definition of the discrete wavelet transform for some signal v(t)

1 	 00	
(t —aomnbo)

U(m,n)	 v(t)dt

(2.20)

(2.21)

There is great latitude in the selection of a basis function, g(t), and this is somewhat dependent

on the application. Any well behaved, real or complex function may be used, as long as it satisfies

where G(w) is the FT of g(t). Recent work has concentrated on defining wavelets which form an

orthogonal basis [AS87] and those which feature compact support [Dau88a].

Various forms of the wavelet transform have been used extensively in both image [Ma1891 and

audio analysis [KMMG87, KM88]. Work on audio has been concentrated upon by the Marseilles

group [KMMG87], and uses Gaussian wavelets of the form

g(t)	 If e —t2 12 ea'A't	 (2.23)

where wo is the characteristic frequency. Clearly this is a close relative of the basis functions of the

Gabor representation (eqn. 2.15). The wavelet lattice is shown in Figure 2.1. It can be seen that

varying the dilation parameter corresponds to scaling (hence multiscale) of the basis function and

that this changes both the characteristic frequency of each wavelet as well as the temporal spacing

between them. Note that the number of cycles in the wavelets remains constant with frequency
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Time

Figure 2.1: Wavelet Transform Lattice

giving a logarithmic frequency scale. The translation parameter corresponds directly to time in this

application.

The transformed signal is represented over a time-dilation plane and this is similar to the time-

frequency plane with the restriction that the time-frequency resolution achieved is a function of

frequency. The representation has high frequency resolution at low frequencies which decreases,

with a corresponding increase in temporal resolution, for higher frequencies. The range of scales

used means that the representation as a whole achieves time-frequency resolutions in excess of

those obtainable by using a fixed window size, but that high time and frequency resolution is not

achieved simultaneously at any point. Analogies have been drawn between such forms of the

wavelet transform and the analysis performed by the human auditory system [KMMG87], but is not

clear whether this structure is advantageous for music analysis. These issues are expanded upon in

the following section.
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2.3 The Multiresolution Fourier Transform

All of the representations discussed have inherent advantages and disadvantages. In order to design

a combined signal representation to overcome their limitations, it is necessary to identify what

features would be most desirable in such a scheme.

2.3.1 Linearity and Invertibility

As described above, linearity is a highly desirable attribute of a signal transform, particularly when

the signal is composed of many parts. Linearity in the signal representation greatly simplifies

the analysis algorithms which operate on it; for instance, it enables linear filtering operations to be

defined in terms of the transformed signal [Por80] and allows the transform to be simply interpreted.

If it is required that the signal be resynthesised, a common feature of musical systems and a necessary

component of coding systems, then the transform should be readily invertible. Additionally, if the

transform is to be of practical use, then its definition should lead to an implementation which is

computationally efficient whilst not compromising the properties of the transform.

2.3.2 Scale

Possibly the most important property of a combined representation is the time-frequency resolution

achieved, as this ultimately determines the performance parameters of any analysis system built

upon it. Many workers, e.g. [Moo75, Wat86, Ser89], have noted difficulties in choosing window

sizes to use with linear transforms. Often such decisions must be made by trial and error, the

final outcome often depending on the specific signal being analysed. The basic problem is to

select a window size such that the signal features become isolated from one another, allowing their

parameters to be calculated. When two or more such features lie under the same analysis window

then interference will occur [WK88], making it impossible to interpret the transform coefficients in

that region.
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Difficulties in the selection of a single analysis window can be accounted for by observing

that to achieve results comparable to the human auditory system for an arbitrary audio signal

requires simultaneous time and frequency resolutions far in excess of the bounds of the uncertainty

principle, i.e.

AtAf < 1	 (2.24)

indicating that such a window cannot exist. Multiscale techniques go some way to improving this

situation by taking advantage of the observation that it may not be necessary to achieve such high

resolutions simultaneously for all times and frequencies. The logarithmic frequency axis provided

is similar to the human perception of pitch, but it is not clear from the literature that the ear's

frequency discrimination varies in a similar manner, especially for low frequencies [Nor70]. Thus,

such a form is of questionable utility for the analysis of polyphonic signals; it is true that the

fundamental frequencies of notes are spaced logarithmically across frequency but the notes' partials

lie at integer multiples of these frequencies resulting in many closely spaced harmonics at high

frequencies. An accurate analysis of such signals requires high frequency resolution over a wide

range of frequencies in order to isolate all of the signal components with separate analysis windows.

Unfortunately these windows will then have long durations, increasing the likelihood that two or

more temporally separated features will lie within that window. The problem here is in identifying

a natural scale for the signal features being identified: knowledge of the appropriate scale will lead

to a suitable choice of analysis window. The problem is that such knowledge is unavailable prior

to analysis. A solution to this dilemma, which forms the basis of this work, is as follows. Since,

for a general analysis system, it is impossible to choose a suitable window size without knowing

the signal's characteristics, it will be necessary to postpone such a decision until the analysis is at

least partly complete and so a range of window sizes must be available in the signal transform. In

contrast, the wavelet transform features a range of window scales, but does not offer any choice of

scale and so the problem of adapting the scale to the data still remains.
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Time

Figure 2.2: Idealised representation of a two-feature signal

What is scale?

The term 'scale' has seen much use in recent years by the signal processing community primarily

as a result of the increase in interest in multiscale (wavelet) techniques. In these representations the

scale of the analysis windows varies with frequency and scale is often used simply as an analogue

of frequency.

By contrast in this work the term 'scale' is used independently of time or frequency suggesting

that it must have an axis of its own, along which there are many representations of the time-

frequency plane with differing time and frequency resolutions. It should then be possible to select

the representation scale for each point on the time-frequency plane, whatever its position. Unlike

wavelet transforms, this structure allows analysis algorithms to operate in a 'scale space' independent

of time and frequency.

The effect of scale
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Figure 2.3: Finite resolution representation

Consider the idealised representation of the continuous time-frequency plane in Figure 2.2. The

signal shown contains two features, each of which is localised in both time and frequency with the

durations and bandwidths shown. The features are also distinct: there is no overlap between the

areas they occupy. This representation is idealised in the sense that it does not take into account

the restriction on simultaneous time-frequency resolution imposed by the uncertainty principle, it

assumes arbitrary resolution.

A realisable representation of this signal will have limited resolution. An interpretation of this

is that each point in the representation is associated not only with a time and frequency but also

a corresponding pair of uncertainty values, determined by the time-frequency distribution of the

analysis window. The implication is that when the separation of two such points is not greater than

their uncertainties then their values are not independent of each other. This effect will appear as a

spreading or blurring of the features. Figure 2.3 shows how a limited resolution representation of

the two feature signal may appear: the time-frequency regions spread according to the choice of
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Figure 2.4: Inappropriate representation

analysis window. This will reduce the accuracy with which the feature parameters can be measured.

Figure 2.4 shows a different case: at this scale the feature regions are no longer distinct resulting in

interference between the features [WK88]. It may not be possible to identify and parameterise the

two features using this representation. Indeed they could be classified as a single feature. Given that

the signal model defines two features in the signal, such a classification would be incorrect and this

leads to the observation that this scale is somehow inappropriate for the analysis of such a signal.

Finding the correct scale

How can an appropriate scale be determined? Clearly the separation of the two features plays

an important role: the further they are apart the more likely they are to be correctly identified.

This relationship between scale and feature separation is best explored by considering some simple

examples in which aspects of time and frequency can be isolated.
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Figure 2.5: I Va (t , w) I (Infinite resolution)

A Single Feature. A simple example signal consists of a single complex sinusoid

va (t) = ejwat
	

(2.25)

where wa is the constant frequency of Va. This signal is infinite in time, having no beginning or end.

The idealised representation of this signal is shown in Figure 2.5, its energy is entirely concentrated

in frequency at wa and distributed evenly across all time. The STFT representation of va can be

found

Va(t,w) - E w(r — t)e—i"va(r)

▪ EW(T -	 eiwar
1•

= E w(r)e—i(w—wa)(r+t)

• W(co — wa)e—i(w—Wa)t (2.26)

where w(t) is the analysis window and W(w) is its FT. The local magnitude spectrum at any time

is thus the FT of the analysis window shifted in frequency to wa. The limit on frequency resolution

due to the width of the analysis window causes the signal's energy to appear spread in frequency.

An example is shown in Figure 2.6 for the window
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Figure 2.6: 1Va (to, w)1 (Scale 1)

w(w) { 1 + cos(Ew)	 < C2
0	 else

(2.27)

where Si controls the window bandwidth. The relationship between such a representation and the

idealised model is still clear, however. There is still a single stationary band of energy running

across time. An appropriate choice of analysis windows and sampling intervals will lead to

accurate estimation of the single signal parameter, its frequency. Suppose now that the scale

of the representation is changed: the altered window function is more concentrated in time and

correspondingly wider in frequency giving increased temporal resolution. The resulting local

magnitude spectra of the representation are naturally more dispersed (Figure 2.7) but the form is the

same as before: a single peak. Provided that the sampling intervals of this new representation are

modified appropriately then the signal frequency may still be obtained without ambiguity. It seems

that this signal is accurately represented irrespective of the analysis scale used.

Two Features. Consider now a signal comprising two complex exponentials

= ejwi t emtvb (t)	 (2.28)
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Figure 2.7: Va (to , w)I (Scale 2)

with frequencies w i and 0)2 . The frequencies and particularly their separation, 0, 2 — wi , could be

chosen so that a listener would be able to hear two distinct tones when presented with two sinusoids

at these frequencies, for example. In such a case, the desired segmentation of the signal will isolate

the two components and estimate their frequencies. Figure 2.8 shows an idealised time-frequency

representation of this signal, two distinct bands of energy which is easily related to the listener's

perceptions. Forming windowed transforms of this signal at the two scales used before gives the

pair of local magnitude spectra in Figures 2.9 and 2.10. Given that the representation is linear these

may be obtained from Equation (2.26), giving

Va (t, w) = W(w — 0.4)e_2(w_(1)t m u, _ 0.,2)e—j(w-0,2)t 	 (2.29)

At the scale with higher frequency resolution (Scale 1) there are two distinct peaks at the frequencies

of the signal components. Assuming that the analysis windows are exactly bandlimited then the

signal is perfectly segmented, the magnitudes of the peaks are independent of each other depending

solely on the magnitude of the corresponding component. An alternative interpretation of this is

given by observing that the width of the analysis window in frequency is smaller than the frequency
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Figure 2.8: 1Vb(t, (.0)1 (Infinite resolution)
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Figure 2.9: I Vb(to, w )I (Scale 1)
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Figure 2.10: I Vb(to w) I (Scale 2)

separation of the two features and so it is impossible for more than one feature to 'fall' under

the window whatever its centre frequency. However, at the scale with lower frequency resolution

(Scale 2) this is no longer true, the bandwidth of the analysis window is now greater than the

frequency separation of the features so the two components are less well separated. At this scale the

representation no longer conforms to the signal model (eqn. 2.28). A feature detection algorithm

using that signal model may fail when presented with such data. The amount of interference between

features which can be tolerated by a detector is clearly dependent on the algorithm it uses, but there

will always be some amount above which correct separation cannot be achieved. Such scales can be

considered inappropriate for the required segmentation of the signal and this implies the existence of

a scale bound based on the frequency separation of the features, in terms of the minimum frequency

resolution required. It is not the case, however, that it will be possible to separate any pair of features

simply by choosing a scale within some bound. A more accurate model can be formed in terms of

the probability of separating some pair of features which will increase with their separation.
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Figure 2.11: I Vc (t, co) I (Infinite resolution)

Scale Restriction 1 The frequency separation of some pair of features will restrict the choice of

analysis scale by defining a frequency resolution below which the probability of successful detection,

with a given window, is unacceptably low.

The same effect can be observed in the time domain by considering a signal

7),(0 = 6(t — t i) O. (t — t2)	 (2.30)

composed of two impulses at times t i and t2 . Each impulse is a purely temporal feature fully

parameterised by a single time value. Assuming that the signal analysis is to determine the

times of these impulses in the signal then a similar argument to that above can be followed to

restrict the range of applicable analysis scales. Each impulse is broadband in frequency and highly

concentrated in time, this can be seen in the idealised time-frequency representation in Figure 2.11.

The correspondence with Figure 2.8 is clear: the axes are transposed. Sections parallel to the time

axis of an sTFT of this signal will have the same form as the spectra in figures 2.9 and 2.10, leading to

the conclusion that to distinguish the two impulses the representation used must employ an analysis

window with a duration shorter than the temporal separation of the impulses (assuming the window



CHAPTER 2. REPRESENTATIONS OF AUDIO SIGNALS 	 37

is now finite in time).

Scale Restriction 2 The temporal separation of two features will restrict the choice of analysis

scale by defining a temporal resolution below which the probability of successful detection, with a

given window, is unacceptably low.

Feature Localisation. The signals discussed in the previous discussion were each localised in

only one domain. Clearly such features are idealised and do not occur in natural signals. This work

seeks to describe musical signals in terms of a set of features localised, to some degree, in both

time and frequency. The localised nature of these features causes them to be 'spread out', making

it possible to describe them in terms of their widths (duration and bandwidth) in these domains.

A common requirement of feature detection algorithms is that the feature to be detected should

fall entirely under at least one of the analysis windows in one or both dimensions. The idealised

features examined above are unrealistic: local structure variation is common in natural signals and

so the detection algorithms require an analysis window with sufficient width to span the feature.

Such local structure decreases the certainty with which the feature's parameters can be determined

and gives rise to a further two scale restrictions required to guarantee an appropriate analysis scale.

Scale Restriction 3 For a given detection strategy, the local bandwidth of the target feature restricts

the highest frequency resolution which may be used to detect it reliably.

Scale Restriction 4 For a given detection strategy, the local duration of the target feature restricts

the highest temporal resolution which may be used to detect it reliably.

Restrictions have now been defined for the upper and lower time and frequency resolutions

required for the accurate detection of some feature. The lower restrictions depend on its separation

from neighbouring features in the appropriate domain while the upper restrictions are related to the

local structure of that feature. For a given window, these restrictions define a range of scales at
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which it may be applied in order to reliably identify some target feature; indeed it may be said that

they define the 'natural' scale of a feature.

The General Case Returning now to the more general segmentation problem for the signal shown

in Figure 2.2, it can be seen that all four restrictions can be determined for each feature e.g. Feature 1:

0 < f2-h (2.31)

I' < t2 — t 1 (2.32)

0 > b 1 (2.33)

F > d1 (2.34)

Unfortunately the situation is not so simple because the maximum time and frequency resolutions

available simultaneously are also bounded by the uncertainty principle (eqn. 2.16) i.e. the four scale

restrictions are not independent.

The second pair of restrictions is independent of the signal context, depending only on the

extent, in time and frequency, of the feature in question and this can be determined by interactive

analysis of various examples of the feature represented over a range of scales. Signal context does,

however, determine the first pair of restrictions. Knowledge of the nearest neighbouring features

in time and frequency is required before suitable scales can be selected which isolate the feature

under investigation. However, the determination of the signal context requires the parameterisation

of the neighbouring features which also requires knowledge of their context. This dilemma can be

resolved at least partly by careful ordering of the analysis steps, see Chapter 6.

Situations may arise, of course, when many features are in close proximity, in which no

appropriate analysis scale n can be selected to satisfy the requirements of a detection strategy

based on single feature localisation. In these cases interference between features is inevitable and

it will be difficult to extract meaningful features from the data unless the detectors can be made

insensitive to such interference. Alternatively, detectors could be devised to recognise more than
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one feature from a local data set. Such a scheme for determining the frequencies of two unresolved

partials within a duet signal has been described by Nah901 but it is too specialised for a general

system. Investigations carried out during the preparation of this work have not revealed any suitable

algorithms which reliably implement such multiple-feature detectors for natural signals. The large

quantity of local structure variation in such signals (e.g. the beating of coincident partials) introduces

a high degree of ambiguity to the data, giving poor results for the simultaneous detection of just two

features.

2.3.3 Invariance.

It was mentioned in the introduction that it is desirable for an interactive analysis-synthesis system

that the signal representation should be intuitively interpretable by a human observer, additionally

this quality simplifies the development of analysis algorithms. Linearity contributes to this, but it

is greatly enhanced if the transform shares invariances with the signal features being detected. To

illustrate: a note may occur at any point in time; if it is delayed by some amount then none of its

perceptual properties (other than onset time) is changed - it is time-shift invariant. It is desirable

that the representation of such a note is also unchanged, apart from a time shift. Similarly, if a

note's duration is altered or it is transposed in pitch then its representation should reflect this change

while remaining unmodified in all other respects. Note that the structure of the wavelet transform

gives rise to time-shift invariance but not frequency-shift invariance, so that a note and its transpose

would be represented by differing numbers of coefficients. Time and frequency invariances can

be satisfied by the use of a regular tessellation of the time-frequency plane i.e. regular sampling

intervals of both time and frequency, as is used in the STFT.

2.3.4 Representation Requirements.

To summarise, the desirable properties of a signal representation for musical signal analysis are:
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1. Linearity.

2. Invertibility.

3. A choice of resolution at each point on the time-frequency plane.

4. Invariances which correspond to a listener's perceptions.

5. Simple and efficient implementation.

In order to satisfy these demands the approach taken in this work is to use a transform based on

the STFT, but which provides multiple representations of the signal, each of which has a different

time-frequency resolution. The transform is referred to as the multiresolution Fourier transform

(mFT) and is a one dimensional form of a scheme recently developed for image analysis [Ca189]. An

alternative description of the MFT, including the 2-d form, can be found in that work and [WCPon].

2.3.5 MFT Definition and Properties

The mvr is best introduced by considering again the continuous STFT, but now introducing a scale

parameter a such that
00

f)(t, CO, a)= - Wa(t — r)v(r)e—i"dr	 (2.35)
03

The scale parameter affects the size of the analysis window which is related to a basic analysis

window w(t) via

w(t) =	 w(ta)	 (2.36)

Thus as a decreases, the duration of the analysis window increases, allowing it a greater concen-

tration of energy in the frequency domain. As a —> 0 then the window becomes infinitely long and

Equation (2.35) reduces to the continuous Fourier transform.

Using this structure the mvr can be considered to be a superset of both the wavelet and STET

representations. This may be seen by observing the invariances of the MFT'S set of analysis vectors,



(2.41)
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(7), to various transformations. The analysis vectors are simply the appropriate time and

frequency shifts of the analysis windows [Dau88a]

= wa (r — t)e—i"	 (2.37)

The delaying of such a vector by time St gives

wa (r + St — t)e—iw(r+6t) = 7t+a,,,,,a(r)e —jwst 	 (2.38)

a different analysis vector with an appropriate phase shift. Similarly the frequency shift of an

analysis vector by S f transforms to another analysis vector.

w, (r — t)e — (w+ f )1- = 'Y t,((.0 +8 .f),0-(7)
	

(2.39)

These invariances are similar to those of the sm. Additionally the MFT'S analysis vectors are

invariant to a dilation by a factor . Using Equation (2.36), such a dilation gives

wa (5,7- — t)e—i" = -yt 6g,scr,,,5,,(7)
	

(2.40)

which corresponds directly to the same operation in the wavelet transform.

The discrete form of the MFT can now be defined. The overall structure is shown in Figure 2.12.

The representation is indexed by three independent parameters: time, frequency and time-frequency

resolution. The resolution parameter n selects one of a number of transform levels, each of which is

a complete invertible description of the signal, with a structure identical to that of the discrete STET.

Resolution varies uniformly between levels, with the lowest and highest levels being the original

signal and its DFT respectively. The level n relates to the scale parameter of the continuous form via

where a is the MFT scale constant. This multiplicity of representations allows the analysis algorithms

(rather than their implementer) to 'choose' the most appropriate window size to use according to

the signal content, giving the ability for the system to adapt to widely varying input.



CHAPTER 2. REPRESENTATIONS OF AUDIO SIGNALS 	 42

Towards frequency
domain
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Time

Towards time
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Figure 2.12: 1-d MET structure

For a finite input signal sequence {x i } : 0 < i < M the transform coefficients are given by

M-1

ik( n ) =-	 (i—ir(n))(n)x le
	 51(n)kl
	

(2.42)
1=0

where g(n) is the analysis window for level n, F(n) and CI (n) are the time and frequency sampling

intervals and all index arithmetic is calculated modulo M. The indices i and k on each level select

coefficients from a regular lattice covering the time-frequency plane. There are different numbers

of coefficients on each axis for each level, with

0 < i < N(n)	 (2.43)

and

0 < k < N k (n)	 (2.44)

For each level to be a complete description of the original sequence, the sampling theorem states

that there must be at least the same number of coefficients per level as there were samples in the

sequence i.e.

Ni(n)N k(n) M	 (2.45)
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Choosing the scale constant, p = 2, and constraining the signal sequence length M to be a power of

two, leads both to efficient computation via the 1-VI and an obvious choice for the number of sample

points to satisfy the equality in Equation (2.45)

Ni (n) = 2N ' Nk (n) = 2 M = 2N 0 < n < N
	

(2.46)

and so, for regular sampling, the time and frequency sampling intervals,

F(n) = Nk (n) S2(n) = N2(n)
	

(2.47)

Thus each MET coefficient 2k( n) represents a rectangular region or 'cell' of the M X M time-

frequency plane, of size F(n) x 0(n) and position iF(n), 142(n). These cells are arranged as a

uniform time-frequency plane tessellation. Note that each coefficient on level n 1 represents a

region of size 21-(n) x 10(n), giving a doubling (a = 2) of frequency resolution and corresponding

reduction of temporal resolution; consequently the coefficient pair

[k (n), (i_f-i)k(n)]
	

(2.48)

represents the same area of the time-frequency plane as the pair

[(i/2)(2k)(n + 1 ), '(i/2)(2k-E1)(n + 1)]
	

(2.49)

on the level above.

The MET definition leads to the requirements for the analysis windows g(n), clearly they must

be localised in both time and frequency, and ideally should be zero outside a time-frequency region

of size F(n) x S2(n).

g(n) = 0 if i <0 i > F(n)	 (2.50)

(n) = 0 if i < 0 i > S2(n)	 (2.51)

However, it has been shown that no such function exists [Pap77] and so this ideal is compromised

somewhat by using a window with finite bandwidth Sl(n) but which is concentrated, as much as is

allowable, in the time interval F(n).
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These requirements suggest the use of the class of finite prolate spheroidal sequences TPsss',

which have been fully described in [PSL61] and [WS87a]. The definition of these sequences is best

put in terms of a solution to an eigenvector problem, using linear operator notation

B(S2(n))T(F(n))g(n) = Aog(n) 	 (2.52)

where T(F) is the index limiting operator, an M x M matrix with elements

Oik Ikl <F/2
Tik(F)= 1 0 else

The DFT operator F can be similarly defined with elements

1	 '21*
Fik =

v M

(2.53)

(2.54)

The operator B(S2) in Equation (2.52) is the bandlimiting operator, the frequency domain counterpart

of T, which can be defined as

B(52) = F*T(L-2)F	 (2.55)

where F* is the adjoint of F and is thus the inverse DFT operator. The scalar Ao is the largest

eigenvalue of the combined operator B(F(n))T(S2(n)) and g(n) is the associated eigenvector. In

other words an FPSS is a sequence which is unchanged, apart from a linear factor, by the application

of time-truncation and bandlimiting operations. The resulting sequences do satisfy the requirements

of the MET analysis windows: it can easily be seen from the definition of the combined operator that

these sequences are exactly bandlimited in the interval C2(n), and it has been shown that they have

their energy optimally concentrated in the time interval F(n) [WS87a]. The use of bandlimited

analysis windows allows efficient computation of the MET using the FFT algorithm.

Extending this linear operator notation, each level of the MET can be defined as

k(n) = F(n)x	 (2.56)
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F(n) is the nth level MET operator. The parameters of the MFT levels in Equation (2.46) lead to the

observation that the lowest level is simply

F(0) = I	 (2.57)

the identity operator. At the other extreme, the highest level is the DFT of the original sequence

F(N) = F	 (2.58)

2.3.6 Oversampled Transform

The above discussion is based on an MET where the number of coefficients on each level is the min-

imum required to satisfy the sampling theorem. However, Equation (2.45) suggests that alternative

structures are possible in which a certain degree of oversampling is incorporated. Discussion of the

issues behind this type of MET is postponed until the next chapter, where they may be considered

alongside the implementational details of the transform.

2.3.7 Inverse Transform

The overcompleteness of the MET leads to a number of possibilities when defining an inverse

transform. Each level of the MET contains enough information to reconstruct the original signal

exactly. Thus an inversion operator, F — ' (n), may be defined for each level, such that

x = F 1 (n)k(n)	 (2.59)

The observation that, since the MET analysis windows are bandlimited to the frequency domain

sampling interval, then the rows of the transform are linearly independent, leads to a definition of

the inverse transform's synthesis windows g -1 (n) via the frequency domain relationship [Ca189]

.4,c(n)lign) lki <2(n)/2
gk = 0
	 else

(2.60)
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where g(n) and g- 1 (n) are the Fourier transforms of g (n) and g -1 (n) respectively. In other words

the synthesis window has the inverse frequency response of the corresponding analysis window

within the interval of its support.

An alternative strategy is to devise some sort of inverse operator which uses a set of coefficients

selected from more than one level. Clearly there are many possible schemes for the selection process

and the choice may be dependent on the application. Some examples have been considered for

image reconstruction in [Ca189], but this theme is not pursued further here.

2.3.8 MET Interpretation

Interpretation of the MFT coefficients is analogous to that for the STFT. The analysis window is

localised in both time and frequency, the magnitude of the coefficient thus represents the amount of

energy present in a particular region of the time-frequency plane over which the signal is expanded.

The uniform time-frequency plane tessellation of each MET level leads directly to the local spectrum

and filter bank interpretations suggested for the STFT [Por81].

An MET level can be considered an implementation of a filterbank structure by observing that

each row in Equation (2.42) can be interpreted as a subsampled convolution of an analysis filter

g(n) with a frequency shifted version of the signal sequence x i e —jwki , where wk = DSA(n)k.

The filters in the bank will have an impulse response similar to the analysis window in the time

domain [Por81].

Alternatively, by selecting one column i = io of a level, Equation (2.42) can be written as

= E xi(io)e-MI
	

(2.61)
1=0

which is the DFT of the windowed sequence

= 9(irfro_0 (n)x 1	 (2.62)

Each column of a level can thus be interpreted as a local Fourier spectrum of the input signal viewed
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through the analysis window.

The importance of the use of phase derivatives with respect to both time and frequency in feature

identification is discussed in chapters 4, 5 and 6. These partial derivatives must be approximated, in

the case of a discrete transform, by the corresponding phase differences which may be obtained via

Pik ( fl )	 argPik(n)4(k—i))
	

(2.63)

vik (n)	 arg(ik(n)i—i)k)
	

(2.64)

where * indicates the complex conjugate. It can be seen that the desired choices of sampling

intervals and analysis window would allow these values to be determined unambiguously from

the MFT coefficients. However the choice of window was compromised in that it did not satisfy

Equation (2.51) resulting in a certain amount of leakage between time frames. A means of reducing

these errors is discussed in the next chapter.

mFr interpretations involving coefficients from more than one level are fully discussed in

Chapter 6, for now it can be seen that the MET definition leads to simple inter-level relationships

such as that between coefficients in equations (2.48) and (2.49). Such simplicity encourages the

development of multiresolution models and algorithms using the MET.

2.3.9 Summary

This Chapter has reviewed several time-frequency signal representations and proposed a new rep-

resentation, the MFT, designed to overcome their disadvantages.



Chapter 3

MFT Implementation and Initial Results

3.1 Introduction

The previous chapter gave a definition for the MFT and described its properties: the purpose of this

chapter is to give a more practical discussion of the mFr and its application to audio analysis. The

first section discusses the form of MFT best suited to this application, this is followed by a description

of the actual implementation used in this work. The second half of the chapter presents examples

of the MFT applied to some simple signals and discusses their properties.

3.2 Selecting the MFT Parameters

The mFr described in the previous chapter consisted of N transform levels ranging in resolution

from the original signal sequence up to its DFr. It has been indicated in several places above that

the kinds of signal features of interest to an analysis system are best localised at a scale some way

intermediate between these two extremes, suggesting that the extreme levels may be of little use for

analysis work. It then follows that this may also be true for other levels close to these extremes,

which leads to the conclusion that it may not be necessary, or desirable for storage considerations,

48
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Level Coefficients
Time	 Frequency

0 65536 1 Time Sequence
1 32768 1
2 16384 2
3 8192 4
4 4096 8
5 2048 16
6 1024 32
7 512 64
8 256 128
9 128 256
10 64 512
11 32 1024
12 16 2048
13 8 4096
14 4 8192
15 2 16384
16 1 32768 Fourier Transform

Table 3.1: Coefficients per MFT Levels

to generate all N levels of the MET. Clearly, for a given application, there will be some useful range

of levels, n t . . .nh, such that

0 < ni < nti < N	 (3.1)

The parameters which serve to characterise each level are:

1. The width of the analysis vector in the frequency domain.

2. The temporal duration of that vector within which its energy is concentrated.

3. The frequency sampling interval, i.e. the distance between the centres of adjacent frequency

bins.

4. The temporal sampling interval; this is commonly referred to as the hop-size.

Example values for these parameters are given in tables 3.1 and 3.2 for all the levels of an MET

with M ---= 2 16 and a sampling rate of 48 KHz. Various workers have commented on the temporal
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Level Coefficients
Duration (ms.)	 Bandwidth (Hz.)

0 0.02 48000 Time Sequence
1 0.04 24000
2 0.08 12000
3 0.16 6000
4 0.33 3000
5 0.66 1500
6 1.33 750
7 2.67 375
8 5.33 187.5
9 10.7 93.75
10 21.3 46.88
11 42.7 23.44
12 85.3 11.72
13 170 5.86
14 341 2.93
15 683 1.46
16 1365 0.73 Fourier Transform

Table 3.2: Coefficients per MFT Levels

resolutions desirable for audio analysis; Serra in [Ser89] uses the sTFr with window sizes as small

as 25 ms. and hop-sizes down to 6 ms, while Watson [Wat86] chooses a hop-size of 10 ms. The

frequency resolution required depends heavily on the application; for the purposes of polyphonic

music transcription we note that there is 1.64 Hz separating the lowest two notes on a piano and that

this represents a fairly extreme case.

The mFr considered up to this point has minimum redundancy, each level contains just enough

coefficients to be a complete description of the original signal. Section 2.3.6 introduced the idea that

alternative structures are possible in which this optimality is relaxed by introducing some degree of

oversampling. It has been found, both in this work and in [Ca1891 that these modified forms have a

number of advantages over the original definition.

Consider the analysis vector shown in Figure 3.1, which satisfies Equation (2.52) with F = 16

and S2 = 32; the chosen bandwidth gives rise to discontinuities in the frequency response and

consequently the vector has fairly large sidelobe magnitudes (see Table 3.3) in the time domain.
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Figure 3.2: Time-Frequency plane 'relaxed' FPSS 16 x 32
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Lobe Magnitude (dB)
1 -15.6
2 -20.2
3 -23.0
4 -25.2

Table 3.3: Time Domain Sidelobe Magnitudes for FPSS 16 x 32

Lobe Magnitude (dB)
1 -26.9
2 -32.8
3 -37.1
4 -40.0

Table 3.4: Time Domain Sidelobe Magnitudes for 'relaxed' FPSS 16 x 32

Increasing the truncation width in the frequency domain should result in a vector which is better

behaved in both domains. The effect of doing this is shown in Figure 3.2 for an increase by a

factor of two. The vector is smoother in the frequency domain and more localised in time, while

the sidelobe magnitudes are reduced to the figures shown in Table 3.4. It is related to the original

analysis vector by

g'(n) = B(212(n))T(F(n))g(n)	 (3.2)

and has been termed a 'relaxed' FPSS owing to the relaxation of the frequency domain constraint. In

order to use this modified analysis vector the sampling theorem dictates that, to retain invertibility

and the phase relationships in equations (2.64) and (2.64), it is necessary to introduce a corresponding

amount of temporal oversampling. The number of coefficients on each level becomes

Art = 2N2 (n) = 21v—n+1 N = N k(n) = 2n N 1(n)nn) = 2M	 (3.3)

This modified structure has certain other advantages as well as increased temporal localisation.

Figure 3.3 shows, for the original scheme, the frequency domain alignment of the shifts of the

analysis vector required to generate an MFT level. The corresponding time domain relationship

is shown in Figure 3.4. There is no overlap between analysis vectors in the frequency domain;

this may cause 'boundary' problems when some signal feature lies very close to such a frequency
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Figure 3.3: Analysis vectors (freq), a = 1

discontinuity. Contrast this with the corresponding relationships for the relaxed version in figures 3.5

and 3.6. Note that there is a loss of frequency resolution, (and corresponding increase in temporal

localisation) but that this is accompanied by the avoidance of 'boundary' problems in the frequency

domain; there is a smooth transition between adjacent frequency 'bins'.

The resulting tessellations of the time-frequency plane for some MFT level are shown in fig-

ures 3.7 and 3.8. Note that in the relaxed version each point on the plane falls under four analysis

windows. Each coefficient is now calculated via

M-1

' i.k (n) = z-i g (g(n)-0(n)xie-3171
•27., - ,n s •14 )k1

1=0

0 < i < 2N+1-n 0 k < 2n M = 2N

F(n) = 2N u(n) = 2N—n

In the current MFT implementation, the windows are shifted from the origin in time and frequency

by one half of the sampling interval in that domain. e.g. the frequency response of the analysis
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Figure 3.4: Analysis vectors (time), a = 1

Figure 3.5: Analysis vectors (freq), a = 2
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Figure 3.6: Analysis vectors (time), a = 2
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Figure 3.7: Level tessellation, a = 1
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Extent of one basis function (a — 2)

Time

Figure 3.8: Level tessellation, a = 2

vector for the coefficient o has the property that

= 0 for 
30(n) < m <	 CI(n) 

2	 2

The effect of this is to centre the coefficient 'cells' retaining the inter-level alignment between

coefficient pairs described in Chapter 2 (2.48) and (2.49).

In the previous chapter it was said that a level from the non-relaxed MFT could be inverted by

the application of synthesis vectors (eqn. 2.60) whose frequency response was the inverse of the

synthesis vectors and that this inversion is exact. However, it can be seen that the required synthesis

window (fig. 3.9) has large discontinuities in the frequency domain and so it is correspondingly

poorly localised in the time domain (fig. 3.10). This lack of locality will give a poor inversion.

To use the terminology of Daubechies [Dau884, the frame is not snug. The frequency domain

overlapping of analysis windows introduced into the relaxed rAFT allows an alternative choice for

the synthesis vector. Instead of having the inverse frequency response of the analysis vector it is

now only necessary for the summation of the analysis-synthesis window products to give a 'flat'

overall frequency response. Rather surprisingly, it has been found [Ca189] that a choice of

(g7-1 (n)	 g/(n)	 (3.8)

(3.7)
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Figure 3.9: Non-relaxed MFT synthesis vector (freq)
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Figure 3.11: Analysis-Synthesis window products (frequency)

(i.e. reapplying the analysis vectors) gives a frequency response with little ripple, (fig. 3.11), and

that this results in an inversion with no noticeable degradation. This result leads to the idea that the

relaxed mFr analysis and synthesis windows may be approximated to in the frequency domain by

the cosine based window

cos(2
C2()

Ir	 k) lki < 2(n)
O(n) P-2, {	 n 	 —

0	 else

which is more easily computed than the corresponding FPSS, though this approximation is not used

in this work.

3.3 MFT Implementation

3.3.1 Analysis Vector Generation

In order to generate an MET, it is necessary to have the appropriate set of analysis vectors available

and so FPSS's of appropriate sizes must be computed. Note that these sequences can be stored and so

there is no need to repeat this computation for each application of the MET. The FPSS's are defined

(3.9)
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by the eigenvector problem [WS87a]

B(C1(n))T(F(n))g(n) = )tog(n)
	

(3.10)

(previously eqn. 2.52), where Ao is the largest eigenvalue of the combined operator

B(F(n))T(52(n))
	

(3.11)

There exist software library algorithms for the solution of eigenvector problems (e.g. [Gro89]), but

for the general case they typically have a computational complexity of 0(n 3 ), which means that

they are very expensive to calculate for large orders. An iterative algorithm for sequences where

r(n) = 2 and C1(n) = 2, is suggested in [WS87 a] and this has been implemented for this work.

The algorithm is shown in Figure 3.12.

Stage 1 The size of the FPSS is divided by a power of two to reduce the order of the problem.

Stage 2 An FPSS of this smaller size is calculated by some library routine via Equation (3.10).

Stage 3 This sequence is expanded to the required size by successive applications of the iterative

process: oversample the sequence by a factor of two and then successively apply the operations

of time-truncation and bandlimiting until a convergence criterion is satisfied.

Stage 4 Finally the sequence is normalised such that its energy is unity.

The act of repetitively applying time-truncation and bandlimiting operations causes the sequence

to converge such that it becomes invariant to these operations — the desired property. The technique

of starting from a small FPSS and successively expanding it by a factor of two encourages convergence

since there is only a small difference between the starting and final sequences at each stage.

3.3.2 Forward Transform Implementation

Implementation of the mFr itself can now be discussed. To commence, consider only the generation

of one level; each coefficient can be obtained via Equation (3.4). Each row, k = lc() has 20(n)
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Figure 3.12: Algorithm for Efficient FPSS Generation



1 A r'±' colco( n ) = 
F(n)

(3.13)

CHAPTER 3. MIT IMPLEMENTATION AND INITIAL RESULTS 	 62

coefficients i.e. there is a time-domain subsampling of the M signal samples down to 20(n) row

coefficients. The DFT of a row, with respect to i and in terms of the signal DFr X, can be obtained

directly using the subsampling and convolution properties of the DFT [Bra86]

r(n)-1
1

s c..dco( n) = E §w-F2rS2(n)(n)-7C-1-kon(n)-1-2ril(n)F(n) r=0
(3.12)

where g is the DFT of the analysis vector. The summation represents the time-domain subsampling.

However, recall from above that the analysis vector is truncated in the frequency domain with width

20(n), making the summation redundant and Equation (3.12) reduces to,

This is simply the frequency response of the analysis vector multiplied by an appropriately shifted

DFr of the signal, suggesting that the MFT can be efficiently implemented in the frequency domain,

making use of the WI [Dau88a].

The algorithm for the generation of a single mFr level is shown in Figure 3.13. To summarise:

Stage 1 Take the Fri of the entire input buffer. In this work a buffer length of 2 16 samples is used.

Stage 2 For each frequency bin in the level, multiply the signal spectrum by the DFT of the

appropriately shifted analysis vector, keeping only the samples within its supportl.

Stage 3 Take the inverse PHs of these vectors.

Stage 4 These become the rows of the MFT level.

The generation of other levels is accomplished in a similar fashion using the appropriate analysis

vector (but note that the DFT of the input buffer is common to all levels and so must only be generated

once per Mn'). Since the input data is real it is desirable to generate only the mFr coefficients for the

positive half of the frequency axis, so reducing the storage requirements of the Mn' by a factor of 2.

'Note that subsampling occurs implicitly here.
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In order to retain invertibility for this form it must be possible to reconstruct the whole input buffer

DFT from the MET coefficients available. To facilitate this, it is necessary to shift the input buffer

DFT by one half a sample to obtain a truly Hermitian symmetric spectrum [Bra86]. The negative

half of such a spectrum can then easily be obtained from the positive half. This shift is implemented

in the time domain by pre-multiplying the input data by the appropriate complex exponential.

xme-jfen 0 < m < M	 (3.14)

Computationally, the initial DFT requires 0 (M log2 (M)) complex operations; for each level

there are F(n) vector applications and F(n) order 212(n) inverse DFTs. Ignoring the initial DFr for

a moment, the generation of an MET level n has a computational complexity

0 (F(n)(20(n) + 20(n) log2(20(n))))
	

(3.15)

which reduces to

0 (2M(2 N — n))	 (3.16)

The requirements for the whole MFT with levels n i to nh are then

(3.17)

This is comparable to generating the corresponding number of STFTs.

Audio signals can clearly be infinite in length, sections to be analysed typically range from 1

second upwards, and are normally sampled at rates from 8KHz up to 48KHz, giving a total number

of samples 104 M- —total < 107 . Hardware restrictions imply that it is impractical to perform PET

calculations on very long sequences and so some algorithm is required to partition the signal into

smaller sections or blocks. It can be seen that the lowest level required in the MET places a lower

bound on the size of this buffer by observing that its generation requires a signal DFr of at least

2 (n) points and that this gives an intermediate MET with just one column. There are other issues to

consider, however: in the time domain analysis vectors are not finite and adjacent vectors overlap.

0 (M log2 (M) + 2M E (2 + N — n))
nh

n=n1
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While this is not normally a problem, the circular properties of the DFT imply that the first and last

coefficients in a row must also be considered adjacent in time resulting in energy from the start and

end of the signal appearing in the last and first few MFT columns respectively. Making sure the signal

to be analysed starts and ends with a period of silence will avoid this problem in cases where the

MFT is generated from a single block, but this is not possible when the signal must be transformed

in many blocks. The solution used here is to use an 'overlap-save' technique by applying the

cosine based window shown in Figure 3.15 to each block before transformation, transfer only the

central coefficients from each intermediate mFr level to the final level and to overlap the blocks

in time by 50% of their length. Note that the lower bound on block length is now increased to

give an intermediate MFT with level widths of at least four coefficients. The algorithm is shown

in Figure 3.14, note that this method increases the computational requirements (eqn. 3.17) of the

transform by a factor of two.

3.3.3 Inverse Transform Implementation

Inversion of a single MFT level is accomplished by a process very similar to its generation. The DFT of

each row of the level is taken and the analysis vector is reapplied; these vectors are then accumulated

at appropriate frequencies on the signal spectrum which when inverse Fourier transformed gives the

original signal.

It follows, from the discussion on the 'blocked' generation of the MFT from long signals, that

some corresponding method is required for level inversion. Again the technique is similar to

generation: the level is partitioned in to a series of shorter duration intermediate levels (with 50%

temporal overlap), each of which is then inverted and the central samples spliced into the final

signal, see figure 3.16. No windowing operation is required in this case.
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Figure 3.14: 'Blocked' Forward Transform Implementation
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Figure 3.15: 'Blocked' Forward Transform Window

3.4 Some Examples

3.4.1 Introduction

Below are some example plots of single instrument notes transformed by the mFr. The main purpose

of this section is to allow those readers who may not be familiar with time-frequency representations

of musical notes to acquaint themselves with the general structure of these signals. Readers who

are familiar with such plots can see that the MET gives a familiar representation of the signals but

that the multiplicity of levels delivers a more informative view of them.

3.4.2 A Simple Sinusoid

Figure 3.17 shows four MET levels for a simple sinusoidal signal. The sinusoid has a frequency

of 440 Hz. and has had a rectangular window applied to it such that it has zero magnitude before

350ms. The MET used is, as described above, oversampled by a factor of two; notice how there are

two coefficients per time frame with significant magnitude at each level. The rectangular window
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Figure 3.17: 4 mFr levels of a sinusoidal tone

results in very rapid start to the tone, (a distinct 'click' can be heard on listening). Correspondingly

the energy of the signal spreads across frequency at the onset. The differences between the levels

should be fairly clear: the lowest level (Level 9 - top left) has the highest time resolution enabling

the time of the tone's start to be accurately observed. For each successive level (moving left to

right and top to bottom), there is twice as much frequency resolution and half as much temporal

resolution. The highest level gives the most accurate measure of the frequency. The higher the

level, the more concentrated across frequency the sinusoid becomes: the sinusoid is well localised

in frequency.

3.4.3 A complex tone

Figure 3.18 shows the same four MFT levels as before, but for a synthesised tone with five harmonics

with frequencies of 110 Hz, 220 Hz, 330 Hz, 440 Hz and 550 Hz. The relative strengths of the
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Figure 3.18: 4 MET levels of a complex tone

harmonics are 1, 1/2, 1/3, 1/4 and 1/5.

A rectangular window was applied to the signal in the time domain before the MET was applied

such that the signal magnitude is zero before 0.3 ms and after 1.3 s; the characteristic broadband

features resulting from this can clearly be seen at all levels. The most important observation to make

from this signal is that at the lower two levels (top row) there is insufficient frequency resolution

to separate all the harmonics from one another. In the lowest level particularly, interference can be

seen as a variation in amplitude of the harmonics with time that is not present in the higher levels.

Clearly, in order to obtain a meaningful representation of a signal, it is necessary to have sufficient

resolution to separate its various parts.
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Figure 3.19: 4 mFr levels of a violin note

3.4.4 A Violin Note

Once again the same four mFr levels are shown in Figure 3.19, this time for a natural signal,

a single violin note. The signal appears less 'clean' than the previous two even though it is a

modern recording made in isolation. This can be attributed to the complexities of the violin as a

mechanism for producing si nals compared with the pure environment of a synthesiser and is typical

for mechanically produced audio signals. The variation in frequency and amplitude corresponds to

the presence of a small amount of vibrato in the note.

3.5 Summary

This chapter has discussed the implementation of the MFT and its application to musical signals.

It has been shown that, once an appropriate set of analysis vectors has been generated, both the

inverse mFTs can be implementedand	 efficiently for arbitrary length audio signals. Theforward 
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computational requirements of the transform (eqn. 3.17), through use of the PH, are similar to

traditional implementations of the sTFr [Ca189], though the multiple resolutions produced does

imply a corresponding increase in the computational load. It is hoped.that the example transforms

shown above and the analysis algorithms described in the following chapters will demonstrate that

the characteristics of the MFT are desirable enough to warrant the additional processing and storage

required by the MET.

The similarity of individual levels of the MFT to the STFT can only be an advantage in the area

of music analysis. The STFT or phase vocoder has been widely applied by computer musicians

which has resulted in a large body of experience with the transform and much knowledge of the

way in which musical signals are represented by the transform. The choice of window size offered

by the MFT combined with its uniform tessellation of the time-frequency plane lends itself to the

application of traditional techniques. It is hoped that the methods for multiresolution analysis

discussed in chapters 5 and 6 will prove useful in the adaptation of techniques developed for the

sTFT so that they may take advantage of the more powerful representation of signals afforded by the

MET.



Chapter 4

A Model of Note Structure

4.1 Introduction

This chapter discusses the types of features which are to be extracted and the signal properties

of these features. Once the relevant parts of the signal have been identified, simple mathematical

models for their behaviour in time and frequency are formed which lead to the definitions of a set

of feature detection algorithms in the following chapter.

4.2 Towards A Note Detection Strategy

In order to detect and parameterise notes within musical signals, it is first necessary to observe

and discuss the structure of such signals, in order that a detection strategy be formed. Aspects

of individual note structure, the arrangement of notes within a polyphonic musical signal, and the

presence of structures other than notes in the signal must be considered.

73
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4.2.1 Note Structure

Notes are produced by a wide variety of instruments both natural and synthetic, each with its own

distinctive timbre. An aim of this work is to detect notes from a broad range of instruments: any

detection strategy having properties which are instrument specific is to be avoided. Clearly only

note characteristics common across the class of source instruments may be considered as input for

the detection process. Each note is defined to be a vector of parameters: the ith note is

etniT
	

(4.1)

The parameters, which are fully described in chapters 5 and 6, include

	

Oil = ti	the onset time
	

(4.2)

	

= fi	 the fundamental frequency
	

(4.3)

	

= Ty	 the duration
	

(4.4)

Using the MFT to examine notes from differing sources over a range of scales reveals the

following general features

1. Notes may have one or more partials, each of which has a pseudo-sinusoidal nature.

2. The total energy of the note can be fairly arbitrarily distributed amongst its partials.

3. The onset times of the partials are grouped fairly closely.

4. The amplitude envelope of each partial can be very complex, particularly during the attack

phase.

5. The frequency of the partial may deviate with time, though typically only moderately, and

the deviations of partials pertaining to the same note are usually synchronised.
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4.2.2 Note Juxtaposition

A musical piece can be considered to be constructed from many notes produced by several in-

struments arranged through time and across frequency. It is this arrangement, the score, which

characterises the piece. The score may never ever exist on any media particularly when the music

is composed and performed by the same artist or in the case of many forms of folk music where

the music is communicated between musicians via performance. When a score does exist, it is

not normally a precise definition of the signal that will be produced from it, since interpretation by

the performers will 'warp' both the time and frequency parameters of the score as well as adding

detail. Additionally the performance environment and recording chain will introduce effects such

as reverberation and noise.

Composition normally takes place within the framework of some well defined musical system

or at least within the bounds of a set of cultural traditions. These may be fairly precise, a certain

pitch scale for example, or some more general structural conventions. Such rules and conventions

have found their way into musical analysis systems. J. A. Moorer's system [Moo75] used a set of

bandpass filters centered on the partials of the set of notes which may occur, given the harmony of

the piece, which is estimated by a preprocessing stage using a hetrodyne filter. The typical strategy

of this type of technique is to reduce the number of possible arrangements of notes at an early stage

in the processing so reducing the amount of computation required by the rest of the system. Such

an arrangement may be represented using a general stochastic model specified by the probability

density for the ith note, pe(Oi 10k , k < i), which incorporates the fact that the probability of some

note occurring with a given set of parameters is affected by the parameters of the preceding notes.

For a general analysis system however, it seems undesirable to include such restrictions, partic-

ularly in the early stages of the analysis: the system will probably fail when presented with input

which does not conform to the incorporated rules. With musical signals, this can be very restricting,

since, particularly for more modem music, it is common practice for the composer to disregard at
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least some of the traditional rules and conventions. Even if this is not the case and the music is 'well

behaved', there is a danger that an erroneous decision made during preprocessing will cause the all

subsequent stages of the system to malfunction.

Thus it would seem desirable to keep the feature detection strategy as independent as possible of

conventions associated with any particular musical style. This system does not seek to describe the

music as the score represented it but as it was performed. This description should be rich enough

to allow further analysis by some subsequent processing stage which may seek to reconstruct the

original score by making use of some set of stylistic conventions. Given this generality, the analysis

algorithms consider the music to be a set of independent notes, i.e.

pe(Oi lOk, k/neqi) MOO	 (4.5)

each of which is identically distributed

P0( 0i) = MOO	 (4.6)

No assumptions are made about the relationships between each notes' parameters and so these are

also considered to be both independently distributed such that

rn

MOO = 11 pk (k)	 (4.7)
k=1

and uniformly distributed within appropriate bounds.

Notes may thus be laid out at any position on the time frequency plane, which leads to the

following observations:

1. When two or more notes of differing pitches are active at any time their partials become

meshed across frequency; neighbouring partials may not be attributable to the same note.

2. Partials, or sections of partials, belonging to distinct notes may be coincident on the time

frequency plane.
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The meshing of partials (fig 4.1) implies that it is impossible to find a rectangular region of the

time frequency plane which contains all the energy from a given note and energy from no other

notes. Clearly a simple algorithm for isolating notes will be insufficient in such cases. The second

problem, coincidence (fig 4.2), is rather more serious. The implication here is that it is impossible

to find any set of time-frequency regions which between them contain all the energy from a given

note and energy from no other notes. Note isolation purely by means of time-frequency localisation

will be impossible in such cases and this may lead to ambiguities in the detection process. In fact

this situation is common, particularly when the music is bound by some melodic framework, which

typically constrains the choice of pitches for the notes and defines simple frequency ratios between

those pitches. The most extreme, though still common, case of this occurs when two instruments

play simultaneously one octave apart: all of the partials of the higher note will be coincident with

the even numbered harmonics of the lower note.

4.2.3 Other Signal Features

A musical signal may contain features other than the notes discussed above. These features may be

broadly classified as follows:

1. Inharmonic sounds produced by percussive instruments such as cymbals or snare drum which

are broad-band.

2. Highly complex sounds such as those used in the Musique Concrete school of composition

e.g. engine noise, breaking waves and other complex textures.

3. Artifacts introduced by the recording or transmission chain through which the signal has

passed.

Recognition of these structures is outside the scope of this work and so the source material is

restricted to pieces not containing percussive or highly complex sources. Otherwise there are few
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restrictions, poorly recorded or badly distorted signals are avoided, material is taken from Compact

Discs of live and studio recorded work. Room reverberation and other such multi-path ambient

effects (whether natural or synthetic) are not explicitly avoided as was the case with the resynthesised

material used in [Wat86].

4.3 A Feature Hierarchy

The preceding discussion implies that the total energy of a note may be distributed over a reasonably

large area of the time frequency plane, and the total energy within that area may be attributable to

several notes and other features. The strategy used in this work relies on identifying a set of isolated

signal features on the time-frequency plane by finding analysis scales (the multiple resolutions of

the MET) which best localise these features, allowing them to be parameterised independently. A

note is clearly very poorly localised: to consider it a single feature could almost certainly make

impossible the task of choosing an appropriate scale from which its parameters can be estimated.

Choice of appropriate scale is discussed at length in Chapter 6, first it is necessary to identify a set

of localised features which together correspond to our perception of a note; the obvious method for

this is to decompose the note structure.

The primary components of a note are its partials: a set of time-varying pseudo-sinusoidal wave-

forms having frequencies in a nearly harmonic sequence. This harmonic structure is represented

by a set of parameter vectors Oij for each note Oi . Again these parameters are fully described in

chapters 5 and 6 but include

	

= tij	 the onset time
	

(4.8)

	

= fij	 the onset frequency
	

(4.9)

	

t9ii3 =T j	the duration
	

(4.10)

While being far more localised in frequency than a note, each may be long in duration and highly
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time variant. Previous workers e.g. [Gre75] have shown that piecewise linear approximations to the

amplitude and frequency trajectories of partials result in a compact signal description which retains

many of the perceptually significant details of the signal. However, it has been noted e.g. [Ser89],

that for a general system, it is not sufficient to have fixed length linear segments to give compact

descriptions of steady-state sections while retaining the ability to represent accurately the more

time-variant sections such as the attack phase and vibrato. In this work, partials are broken down

into a set of partial segments each of which maps onto a small number of coefficients from a single

MET level. Thus the duration of the segments varies according to which MET level they are associated

with. With this scheme it is possible to seek compact partial descriptions, such as would be useful

for data compression, but the system presented here selects segment durations in order to extract a

highly accurate description of the partial's time-frequency evolution.

The importance of the onset of a note has been reported by several workers e.g. [GM77]: these

sections of a note hold important cues for the perception of timbre and source identification. While

these aspects of signal analysis do not fall within the scope of this analysis system, it is clear that

the onset should be described as accurately as possible in order that this important information is

retained for any subsequent analysis stages. In contrast to the subsequent sections of a note, the

attack phase may be highly time-variant, particularly for the fast attacks produced by striking or

plucking a string. A consequence of uncertainty is that, in contrast to a partial segment, this energy

will be relatively poorly localised in frequency. For this reason and because of its great perceptual

importance, the signal model of a partial used here incorporates additional information about the

onset energy of a partial. Experimentation has shown, however, that for many instruments the

quantity of this energy is small compared with the total note energy, making detection difficult, and

that, for relatively slow onsets, it may be negligible.

The proposed feature hierarchy is shown in Figure 4.3. The score consists of a set of notes each

of which is decomposed into a set of partials. Each partial maps onto some set of MET coefficients,
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Figure 4.3: The Feature Hierarchy

which may not be distinct due to partial overlapping, via a sequence of partial segments and an

optional partial onset. Since the partial components map directly on to mFr coefficients, they are

thus the features which are to be extracted from the MFT. It should be noted that these features are

far better suited to this task than those in the higher levels of the hierarchy as they are reasonably

well localised on the time-frequency plane.

4.4 A Signal Model

In order to design suitable feature detectors it is prudent first to form a mathematical model of those

features. The purpose of this model is not to provide a comprehensive definition of the source data

since this would be far too complex to be of practical value. The signal model should be a relatively

simple, though not unrealistic, symbolic representation of the class of target feature. In practice the

actual algorithms used for the feature detectors may be somewhat more complex than those required

by the signal model. The purpose of the model is to simplify the general problem in order that an

initial set of definitions for the detector algorithms may be deduced.
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4.4.1 Notes

The signal for a note, N (t), is simply the sum of its partials

N (t) =	 Pk(t)
	

(4.11)
k=1

where pk (t) is the kth partial of N (t). A note can be considered in some sense ideal when the

frequencies of its partials, wk(t), form a harmonic series

04(0 ko.w(t)	 (4.12)

where uw(t) is the fundamental frequency of the note at time t. In terms of the note and partial

parameter sets O i and Oa this relationship gives

fik = kfi	 (4.13)

In addition such an ideal note will have the onset times of its partials perfectly synchronised

tik = ti	 (4.14)

and all partials will have similar durations

(4.15)

In practice, however, due both to noise in the signal and the complexities of many instruments,

such simple relationships are rarely observed and a more relaxed model is required. Variation in

the estimates of these parameters can be modelled by using Markov processes [Pap84]. The onset

times of a note's partials are then related via

tik = ti(k-1)	 Et k > 1	 (4.16)

where et is a random variable with zero mean and variance such that let I < Tik•

Similarly the frequencies of the partials are modelled using

{ k 
f

(k—
fik =	

k—i JiI) + Elc k> 1
fi + ek	 k = 1

(4.17)
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where ek are random variables with zero mean and variance such that le i,' < fik . While this form

is general enough to represent a wide range of instruments, it should be noted that cases have been

reported for specific instruments (e.g. the piano [Bla65]) where a systematic bias in the values of

ek can be detected.

Finding a model which is reasonably instrument independent for the amplitudes of the partials

has proved not to be so straightforward. Great variation in the partial amplitudes can be observed

both between instruments and even for different note instances produced by the same instrument.

Thus without introducing specific instrument models into the system, little can be deduced from the

relative amplitudes of the partials. However a form of Markov model has been used to describe the

normalised onset magnitudes used in the onset detector algorithm (see Section 6.3.5).

4.4.2 Partials

The signal for each partial is modelled as the sum of two functions

p(t) = v' (t) 0(0	 (4.18)

where 0(0 is an optional short-time 'onset function' while v'(t) represents the 'steady-state' portion

of the partial and can be modelled in the time domain as a slowly-varying sinusoidal (pseudo-

sinusoidal) function

/At) =	 (t) cos(tca„,(t) Ov')
	

(4.19)

where a„, (t) is the amplitude envelope of v' and w„, (t) is its frequency at time t. The phase offset Ow

is constant for each v'. Such sinusoidal forms have been used on many occasions for the modelling

of speech e.g. [Por81, MQ86], musical partials [GG78, Ser89, and others] and have also been used

successfully for non-harmonic sounds [SS86]. The envelope functions for amplitude a(t) and

pitch w„(t) are defined to be slowly time-varying functions, and so they have the majority of their

spectral energy far removed from the frequency of the carrier they modify.
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Figure 4.4: Typical Synthesiser Envelope Model

It is common practice to work with complex exponential signals instead of sinusoids in order to

simplify the modelling process. Therefore Equation (4.19) is rewritten as

1/(t) = R(v(t))	 (4.20)

v(t)	 av(t)ejwv(t)t+Ov
	

(4.21)

The complex form is used from now on; its relationship to the original form can be easily seen.

The frequency of the partial is expected to remain fairly constant with time, deviating only

slightly from this mean value. Vibrato is the most common form for this modulation, it has

been reported [Sma37] for a typical case on the violin as being approximately sinusoidal with

frequency 6-7Hz and deviation 5% of the carrier frequency.

The amplitude envelope is far more significant and is often referred to as just the envelope of

the partial. Generally speaking, its shape may be fairly arbitrary, typically rising quickly to its

maximum then decaying to some lower value at which it remains before finally being damped to

zero. The model shown in Figure 4.4 has been used by many synthesiser manufacturers for several

years and has been found general enough to simulate a wide range of instruments. Most modem

synthesisers allow all of the envelope's breakpoints to be adjusted in height and time, though for
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many common instruments sounds, the settings follow the shape shown in Figure 4.4. It can be seen

that v (t) alone is insufficient to represent this envelope model, the rapidly increasing attack section

cannot be accounted for by the slowly-varying nature of a(t). The 'onset function', 0(0, models

this transient element at the start of a partial which cannot be accounted for by v (t). Clearly, for the

partial to be represented accurately over its whole length, two distinct model elements are required,

and this reflected in Equation (4.18). Recently there has been a trend to use short recordings of

the attacks of real instruments to supplement the attack and decay phases of these piecewise linear

synthesiser envelopes. The great increase in realism which results from this addition suggests that

such a simple model is insufficient to represent the attack complexities of 'natural' instruments,

whereas the latter portions of the note are adequately synthesised. Experimentation with this form

of synthesis soon reveals that the choice of attack used affects the timbre of each note much more

than changes to the synthesised part, indicating that the majority of instrument dependent perceptual

cues are contained within the attack. This phenomenon was described by [GM77], who reported

the significant effects of removing these parts from recorded instrument sounds. The proposed

partial model does not account for all such energy: the definition of o(t) (below) represents only

the simple transient energy present at the partial onset. Any more complex features will be left in

the residual energy after that accounted for by the partial model has been removed. The use of such

residual energy was demonstrated in [Ser89] where it was set aside for use by a resynthesis system.

However, these parts of the signal are not analysed further in this work.

The slowly time-varying nature of v(t) leads to the observation than within the region of some

time ts the magnitude and frequency of the partial will remain fairly constant

ct,(ts + 7-)	 a(t)
	

(4.22)

cov(tx +	 w(t)
	

(4.23)

171 < Tv(tx)
	

(4.24)

where Tv(t) is some scale related constant for the partial at time t. Consequently Equation (4.21)
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may be locally approximated by

v(ts + 7)	 at,(tx)ej(tx"'(ts)+4'" 	 171 < T(t)	 (4.25)

The partial v(t) is approximately sinusoidal in the region of tx.

Consider now the STFT representation V2 (t, co) of v(t) about time tx , using an analysis window

h(t)
co

V2(ts + 7, co) =	 h(tx + r — r)v(T)e—jwr di	 (4.26)
—00

Using the steady-state approximation in Equation (4.25) while constraining the duration of the

analysis window to be shorter than the scale duration constant T(t) allows V2(tx + r, 0.) to be

considered narrow-band in the region of w(t), giving

1/2( tx + 7, w)	 at, (ts )e-j((tx+T)w. ( tx ) +00 H(wt, (tx ) — 0) )
	

(4.27)

That is the Fourier transform, .11 (w), of h(t) shifted to w(t), weighted by the amplitude envelope

at time tx and multiplied by a complex exponential. The phase of V2 (t, co) in the region of tx and

w(t) is

cov(tx T) =- arg (V2 (tx + , vet x)))

—(tx 7 )C0 v x) Qv
	 (4.28)

Note that, locally, cov(t) is a linear function of t; it has be shown [Por81] that its derivative

Co- ,,(t) = w(t)
	

(4.29)

can be considered to be the instantaneous frequency of v at time tx.

The onset function o(t) will be highly instrument dependent and will in general have increasing

total energy as the onset time of the partial decreases. The simplest form for the onset of a partial is

a step function giving a 'rectangular' envelope. This form, however, is only produced by the most

rudimentary electronic instruments. In general the form of o(t) is unknown and may be highly
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complex, precluding symbolic analysis, though some general observations can be made. Assuming

that o(t) is a short-time function with centroid at t = n o, then its Fourier transform 0(w) will have

the property that [Pap77]

arg (0(w)) = con° (1)0 	 (4.30)

where 00 is some phase constant. In other words the position of o(t) is directly proportional to the

phase variation of its spectrum.

These signal models are now considered in the sampled domain by regularly sampling the sTvr

of the signal with sampling intervals of F and SI in time and frequency respectively. Applying

this sampling to the signal model of a partial (eqn. 4.27) across time in the region of t x at the

frequency of the partial, wv (tx ), gives a set of complex samples gikt, , 1 < i < I. The linear form of

Equation (4.28) then implies that the value of the sample with time index i depends only upon the

value of the previous sample g (i_ok,, . Once again, a suitable model for this behaviour is a first-order

autoregressive or Markov process [Pap 841

ag(i-1)Ict, +13Ei	 > 1g ikv ==
El	 i = 1

where the regression coefficient

(4.31)

a = lal exp ( —iwv(to)r)	 (4.32)

and

0 G	 <	 = 1—P2
	

(4.33)

The complex values e i , representing noise in the sample estimates, are normally distributed with

zero mean

E [ei] = 0	 (4.34)

and unit variance

E [gen = (i — 1)	 (4.35)



gink
k = 1

{ agi,(k-1) + /3ik > 1
(4.37)
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Given this, it has been shown [Pap 841 that

E [gik„ Pikv ] =-- 
atl	 > 1	 (4.36)

Thus, if a partial is present, this relationship may be used as a basis from which estimates of a and

hence w(t), the partial frequency, may be made.

A similar form can be used to model the short-time onset signal o(t). This is suggested by

the linear form of Equation (4.30). Sampling the MFT of o(t) across frequency in the temporal

neighbourhood of its centroid no, with sampling intervals as above, will give a set of complex

samples	 1 < k < K, where

where the regression coefficient is now

a= a I exP (-inn)
	

(4.38)

and the other parameters are as described above.

These processes assume a phase coherent model. While not strictly necessary, this approach

has been adopted to investigate the use of such information and to confirm that, since it is new, the

MFT presents this information in a suitable manner. The limitations of this approach is that phase

coherence may be lost when several features, such as partials or onsets, are coincident. This is

discussed further in chapters 7 and 8.

4.5 Summary

This Chapter has proposed a feature hierarchy which relates the coefficients of the MET through

a set of localised features to the notes and ultimately the score of a piece of music. The features

which map directly onto the MET coefficients have the important property of being localised in both
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time and frequency allowing them to be isolated from one another by the use of efficient small

neighbourhood detectors.

Having established a feature hierarchy, models for each of the elements were defined allowing

various parameter and coefficient relationships to be described in terms of first-order autoregressive

processes.

The following two chapters define a set of feature detection algorithms based on these models

and describe how these are integrated into a multiresolution framework for the analysis of polyphonic

music signals.



Chapter 5

Feature Detection

5.1 Detection Overview

This is the first of two chapters describing the analysis algorithms. In this chapter, algorithms are

developed to implement detectors which attempt to recognise the features described in the preceding

chapter. An overview of the analysis procedure is shown in Figure 5.1.

The detectors are based upon the signal models developed for the corresponding features with

the addition that the data on which they operate is modelled as the sum of the signal and independent

white noise w with variance a-2

x = s + w	 (5.1)

The raw data is first transformed using the MFT to give sets of level coefficients

St(n) = F(n)x	 (5.2)

Subsequent processing falls into two main categories: that performed on data from each mFr

level independently and that which combines estimates made across a range of scales. This chapter

deals with the per level processing, the next chapter deals with the scale space based processing.
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Chapter 3	 Chapter 5	 Chapter 6

Figure 5.1: Analysis Overview

5.2 Feature Detection

A model for the slowly-varying element of a partial was described in the previous chapter (eqn. 4.19)

and it was shown that, over short periods, it had constant frequency and magnitude and so may

be represented in that region by a single complex exponential. A discrete form of this signal

approximation may be written, simply, as the sequence

s = {s 77, : 0 <	 < M}	 (5.3)

where

s,„ = cts e In 	(5.4)

and as is the locally constant partial amplitude. The angular frequency ws is related to the frequency

of the partial f, Hz. via w8 = hlfs where fs is the sampling frequency (48 kHz.)

An oversampled version of the MFT is used in this work, the inequality in Equation (2.45)

becomes

Ni(n)Nk(n) = 2M	 (5.5)

Chapter 3 gave a definition of this oversampled MET (eqn. 3.4) and described several advantages of

using this form. The coefficients of this MET for the input sequence s are given by

M-1
—j2Z1-1(n)(k+1)1

(5.6)



(5.7)

(5.8)

CHAPTER 5. FEATURE DETECTION	 92

where all indices are calculated modulo M. For the steady-state partial sequence, this gives

coefficients

M-1
as E g/i(n)e-ja%((k+1)C1(n)-0,8)(10+1);_17

82k(n) =

1=0

= a a'	
c,,8)(i+Dai _17

s-(k+Da(n)„,.(n)e-i(Z((k+1)52(n)-

The coefficient magnitudes are given by

	

I gik(n)i = asY(k+i)n(n)_„.(n) 	 (5.9)

which is independent of the time frame. The analysis windows are exactly bandlimited in the

frequency domain with bandwidth of `I 11-2(n), so that

	

(n) = 0 for Iml > 0(n)	 (5.10)

The spacing between adjacent frequency bins is only 52(n) giving a 50% overlap with the result

that there are always two non-zero coefficients associated with the partial. This was illustrated in

Figure 3.5 which showed the frequency arrangement of the analysis windows in each time frame.

The two non-zero coefficients are gik/ , referred to as the primary bin, and one of its neighbours, the

secondary bin, 8ik2 = gi (ki ± i ). The frequency index k 1 of the primary bin satisfies

0< 
w	

< 1
SZ(n)

The frequency response of the analysis window results in

(5.11)

(5.12)

The approximation of the analysis window frequency response by a cosine based function in

Chapter 3 (eqn. 3.9) allows the magnitude of the partial to be readily obtained via

as 	 KnVI 81k11 2	 Igik212

	
(5.13)

where Kr, is a constant for each MET level.



(5.15)

(5.16)

(5.17)
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The phase of the coefficients in Equation (5.8) is given by

27r	 F(n)
arg(Sik, (n)) = —( 271 ((lc i + 0.5)0(n) — co 8 )(i + 0.5) 2 (5.14)

As was shown in Chapter 4, a measure of the instantaneous frequency of a partial can be determined

by the derivative of its phase with time. Taking the forward phase difference (eqn. 2.64) of successive

time frames at the partial's primary bin gives

vik, (n) = arg(3(i+ 1 ) k, (n)) — arg ( giki (n))

27r	 F(n)
— 17-1 ((ki 0.5)0(n) — w8 ) 2

Q(n) ((k 1 0.5)0(n) — ws)

When the partial's frequency lies at the centre of its primary bin w, = (k 1 0.5)0(n) then

(n) = 0. The maximum frequency deviation of the partial from this point is 2m7r 0(n)/2, any

greater deviation will (eqn. 5.11) cause another frequency bin to be chosen as the primary bin.

Consequently

I viki I < —2
	 (5.18)

allowing the partial frequency to be determined unambiguously via

=(
hhikl 

+ k1 +0.5) nm(n) fs	 (5.19)

In the case that the frequency of the partial remains constant over the duration of several time frames

then

= 11(i-1-1)h
	

(5.20)

Note that Viki may be obtained via the conjugate multiplication

( n) = arg ( 3(i+1)k1 ( 7 ) §7k1 (n))
	

(5.21)

The secondary bin was defined to be one of the neighbours of the primary bin, its location can
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be determined from the displacement of the partial from the centre of the primary bin

k	 ki + 1 741 0

2 -	 ki - 1 else

Note that the forward phase differences between the primary and secondary bins will be

(5.22)

Vik2 I =ir (5.23)

giving

l arg ( . ik, (n)) — arg(. ik2 (n))1 =	 (5.24)

To summarise, the properties of the MET coefficients representing a partial are

1. Two non-zero coefficients (primary and secondary bins) in each time frame in which the

partial is active.

2. Locally constant forward phase difference between time frames which is linearly related to

the partial's frequency.

3. Constant phase difference (ir) between the primary and secondary bins.

5.2.1 Partial detection

Detection of the partials is the first stage of the transcription process. At this time there is lit-

tle a priori knowledge of the signal structure, due to the independent nature of the underlying

score process (eqn. 4.5). Both this and the inclusion of a certain amount of noise into the sig-

nal model (eqn. 5.1) imply the use of a maximum likelyhood (ML) estimation technique for the

detection of partials. The autoregressive model for this type of signal described in the previous

chapter (eqn. 4.31) suggests the use of the sample covariance as a measure of the presence of a

partial [Cha75]. The rnth order sample covariance is defined by

"Ymik(n) = E (i_i_„)k(1i)7k(n)] 	 (5.25)



1 k= 0,1
hok == 0	 else

(5.28)
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which may be estimated using [And71]

-yrnik(n) = E (77+,,,)q(n)Xp*q(n)	 (5.26)
pa

However, finding suitable limits for p and q will not be possible given that there is expected to

be more than one partial present in the signal as well as other features. The localisation of the

partials on the time-frequency plane suggests that some windowed form of this measure will be

more suitable. The local sample covariance is thus defined to be

Cmik(n) = E ftn(i_p)hm(k_ q) 'i(p+m)q(n)Xq(n) 	 (5.27)
1))9

where fm and hm are the components of a set of time-frequency separable filters.

The current system makes use of two of these measures, namely coik (n) and c iik (n). The

first-order covariance e iik (n) gives a measure of the degree to which the transform coefficients

correspond to the signal model in the region of coefficient '2k(n) on MFT level n while coik(n)

measures the total signal energy in that region. In order to accomplish this, it is first necessary to

deduce suitable definitions for the filters fo, ho, fi and h1 . Recall from above that a partial will only

contribute energy to two coefficients in any time frame. This immediately suggests that

Similarly, but incorporating the constant phase difference in Equation (5.24)

{ —1 k k = 0, 1
hik =	

0	 else
(5.29)

Given the approximation in Equation (5.13), this definition gives measures of a partial's amplitude

which are largely independent of its frequency.

Choice of fm is less obvious since the extent of the partial across time in the region ofk(n)

is unknown at this stage. The signal model assumes that the partial is locally stationary in this

region, which suggests that a suitable definition will be some form of lowpass filter having a smooth
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magnitude response with its maximum value at fm . Various forms have been investigated during

the preparation of this work: the results presented in later chapters use a filter with a Gaussian

response

exp	 lk < 4crf
fmk =	 2 f

0	 else
(5.30)

with o- f = 2. This form gives a reasonable compromise between localisation of response and

independence from noise.

5.2.2 Partial Onset Detection

It has been mentioned earlier that the class of signals to be analysed will contain structures other

than pseudosinusoidal partials. The measures described in the previous section attempt to reject

such features which do not conform to the partial model, but there may be significant energy in

these features compared to some of the weaker partials and this may give rise to false results. The

perceptual importance of the note onset was discussed earlier and it has been found that specific

detection of these onsets can greatly improve the reliability of the partial detection by providing

clues to their positions. The problem of detecting these onsets is directly analogous to the task of

edge detection in image analysis which has received much attention over many years [Mar82, Jai89].

Typical amplitude behaviour of various partial onsets can be seen in the example transforms shown

in figures 5.2 to 5.5. It is clear from these examples that there can be great variation in the attack

rate of the partials and that this rate must be considered relative to the 'hop-size' of the MFT level

on which it is observed. For the purposes of this work, a given partial onset observed on some

MFT level is roughly classified as either a 'smooth' or 'transient' onset. Figures 5.4 and 5.5 show

two transform levels of the onset of a violin note. At both resolutions, the amplitude of two active

frequency bins of each partial can be seen rising smoothly out of the noise floor. This corresponds

to the transient element of the signal model, (eqn. 4.18), containing negligible energy, o(t) = 0.

Comparing these plots with figures 5.2 and 5.3, which show two similar transform levels for a piano
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Figure 5.2: Piano note (C4) onset at MET level 9
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Figure 5.3: Piano note (C4) onset at MFT level 12
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Figure 5.4: Violin note (C4) onset at MFT level 9
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Figure 5.5: Violin note (C4) onset at MFT level 12
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partial onset, reveals that the attack rate of the piano is much greater. At the higher level, which

has lower temporal resolution, this results in a significant amount of energy spreading out across

frequency from the centre of the partial onset. Clearly, in this case, the hypothesis that there are only

ever two active coefficients for the partial fails and the detector described above will be insufficient

to accurately parameterise the signal at this time. The detection of smooth onsets will be discussed

first and then the technique extended to incorporate more rapid onsets.

Smooth onsets

The obvious approach to detecting onsets is to examine the gradient of the signal in each fre-

quency bin. As an initial attempt, the time-difference between the magnitudes of each coefficient

pair -P ik (n), (i+ok(n)} was analysed. Unsurprisingly, this measure is highly susceptible to noise,

giving a very high number of false detections. The principles of Wiener filtering (see [Pap77])

suggest that the signal model needs to be incorporated into the onset detector. The approach used

currently is to analyse the time-derivative of c iik (n). Since this measure is derived from more than

just two coefficients it is more immune to noise in the signal and it incorporates the expected signal

phase behaviour. This measure is defined in terms of a modified filter fl which has the form of the

time-derivative of

fik =

—(k-oF.o.5)2)k ( 0 < k < 4a1'

4o-f, < k < 0

else

(5.31)

exp	 ,
1' fi

— k-1"—k exp (	 2 f,

0

with af, = 2. Since cC ik (n) is required to be a measure of gradient, it is, unlike c l ik(n), required to

be a real value. In order to preserve the sign information while removing the unknown phase, the
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two lobes are calculated separately and then added after their modulus is taken

4c r fr 1

= E E 	 (k_q) (p+i) q(n) 'p'l`q(n)

p=0 q=0

(5.32)
-1	 1

E E ff (i_p) hi(k_q) 'i(p+i)q(n)ng(n)
p=-4(71 , q=0

The last stage of the onset detection is to generate a set of onset events from the processed

data. This operation normally includes thresholding and peak detection. It has already been noted

that typical note structure includes partials with widely varying amplitudes. Clearly cC ik(n) is not

independent of the partial amplitude and so it will not be possible to find a threshold suitable to

allow detection of partials with low amplitudes whilst avoiding false alarms caused by amplitude

fluctuations in large active partials. Some amount of normalisation is required in order to obtain

a measure which is more or less independent of the signal magnitude. An obvious choice for

the measure to normalise cC ik (n) by is coik(n) since this represents the energy in a similar region

independent of the signal model. The resulting measure is thus a form of 'serial correlation' [Cha75]

and is defined by

Pik(n) =	
ciik(n)
	 (5.33)
max [ coik( n), e]

where p is a small constant selected to prevent false alarms caused by noise in regions where there

is little signal energy.

Finally then, a set of onset events is obtained for each MV!' level, n by thresholding P ik (n) and

then finding the position of the peak value within each thresholded region. The ith onset event on

level n is a vector 9i(n) which includes the following parameters

	

921 (n) = t(n)	 onset time	 (5.34)

	

12 (n) = f (n)	 onset frequency	 (5.35)

	

023 (n) = St? (n)	 onset time uncertainty	 (5.36)

	

Oi,(n) = i5f,0 (n)	 onset frequency uncertainty	 (5.37)
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0i5(n) = a°(n)	 onset certainty
	

(5.38)

The position of each local maxima gives values for t? (n) and 49 (n), while a? (n) is simply the value

of p ik (n) at that position. The parameters (54(n) and (n) are the uncertainties (variances) of the

corresponding time and frequency estimates. In the current implementation these are independent

of i, being based solely on the size of the unit cells on each level.

	

5t(n) = 3F(n)
	

(5.39)

(n)	 20(n)
	

(5.40)

These values are included in each parameter vector to ease the implementation of extensions such

as the detection of transient onsets described below.

The following chapter describes the process by which onset events Oi (n) from a range of levels

are combined to give some of the parameters for the partial parameter vectors pi.

Transient Onsets

The spreading of a partial across frequency in the region of a sudden onset, as was modelled

in Chapter 4, has been incorporated in to the detection strategy. Experience has shown that this

behaviour alone is not a reliable means of detecting partial onsets but is a useful means of decreasing

the temporal uncertainty of detections. The reason for this was described above, often there is little

or no spreading of the onset due to a slow attack rate relative to the analysis scale.

The detector used is based around a small Gaussian filter (a = 2) straddling the partial. The

filter coefficients at the primary (k = k 1 ) and secondary (k = k2 ) bins are set to zero as the phase of

the MFT coefficients in these bins does not fit the transient model (they take a far larger contribution

from the steady state portion of the partial than the onset). As described in Chapter 2 (eqn. 2.64),

the frequency phase difference

Pik( fl ) = arg(ik(n)4(k—i))
	

(5.41)
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is employed in the detector. A cross-frequency phase-differenced mFr coefficient is defined as

2k( n) = ik(n)I	 Pik (n)
	

(5.42)

The detector uses the ratio between magnitude of the sum of these modified coefficients and the

corresponding sum of the coefficient magnitudes to obtain a measure of cross-frequency phase

linearity in the region of the onset.

-(k-k1 
Ee 2 ,72	 1k(n)

k:kOki ,k2

E 2 1 ^	 )1C 20"	 xik(n

(5.43)

,k2

The closer this measure comes to unity, given sufficient magnitude in the denominator, then the

more certain it is that there is an onset in this time frame i . The value of the phase difference

has been found to be of little use in this application (see [Ca189]) as it is related to the centroid

(eqn. 4.30) of the onset within the windowed signal, rather than its true start time; the two cannot

be related without knowledge of the form of the onset.

The scheme is complicated by the fact that there may be significant energy contributions from

nearby partials in the coefficients above and below the onset in frequency. Methods of avoiding this

interference and the situations in which this detector is employed are discussed in the next chapter.



Chapter 6

Transcription

6.1 Introduction

The previous chapter described feature detection algorithms for some of the common structures in

musical signals but did not address the question of how to integrate information from a range of

MFT levels. This chapter describes how the aspects of scale and the criteria defined for determining

appropriate analysis scales, discussed in general terms in Chapter 2, have been applied to the

transcription of polyphonic music signals.

The detector algorithms described in the previous Chapter have been incorporated into a mul-

tiresolution detection framework such that they can operate successfully on signals containing many

features. There are two basic strategies which have been used to implement this: either one level of

the wr can be selected as the most appropriate scale to apply a detector or a detector can be applied

to all MFT levels and the information so produced combined across some range of levels. The actual

process of combination will vary according to the nature of the data being combined and is described

fully for the processing of partial onset events. Generally, however, the combination strategies are

fairly independent of the features being combined and it is proposed that they could be applied to

problems other than those demonstrated here. It is assumed that a set of candidate features has been

105
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generated for each MFT level by some detection process. The simpler of the two methods is to start at

some fairly high level and successively link each feature detected on that level with a corresponding

feature on the level below until either the signal context suggests that correct detection on the level

below would be impossible or no event can be found which satisfies the closeness of fit criterion. At

this point, the chain of linked events is either, rejected, or merged into a single feature and accepted

for the final set, depending on some measure of the agreement found along its length. While this

technique has been found to work well it does suffer from the clear disadvantage that no feature

can be in the final set that was not present in the starting set. Consequently all features must be

correctly detected on the start level and this is not always possible, especially for data containing

many closely grouped features. The problems involved in setting a threshold on the output of the

per-level detection process were discussed in Chapter 5 (see Equation 5.33) and the lowering of

thresholds required to ensure that no desired features are excluded from the initial set gives a large

number of false detections due to noise. This in turn can give rise to false detections still present in

the final set.

A variation on this first scheme is to start with a fairly low level and proceed upwards through

the MFT's resolutions. Which variation performs the best depends on the performance of the detector

used with respect to MFT level.

The second, more complex, technique is a generalisation of the first. Instead of having just one

starting level, several, if not all, of the levels are considered as potential starting points for chains

of linked features. Two different thresholds are used in this scheme. A higher threshold is set for

the features which start a chain than for those which become linked to it. The reasoning behind

this is that each feature will be best detected on the level which most closely corresponds to its

natural scale but will also be detected, to some degree, on all levels where it is sufficiently isolated

from neighbouring features. Setting a high initial threshold rejects all but the most certain features

while the lower 'linking' threshold allows a chain of features to be built up, where such inter-level
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Figure 6.1: Transcription Data Structure Hierarchy

agreement exists.

Both techniques have been found to work satisfactorily, with the first being somewhat easier to

implement while the second performs better in more demanding situations.

6.2 Transcription Data Structures

As was described above, determination of which levels are appropriate for the detection of some

feature is dependent on the signal context and consequently much of the complexity of the current

implementation is concerned with maintaining data structures to hold this contextual information.

Figure 6.1 depicts the main data structures used by the transcription software. The major elements

of the diagram are described in the following sections.
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6.2.1 Partial Bank

At the heart of the system is the partial-bank structure. The most important parameter of this

structure is the partial-bank time tP . The partial-bank holds the set of partials P, which are

active at time t, as a frequency ordered list. Initially t P = 0 and P is empty. As the analysis

proceeds tP increases monotonically and partials are added and removed from P. The use of

such a scheme ensures that all calculations involved in the analysis are localised in the region

of tP and consequently it is necessary to keep those frames of the MFT in memory which represent

the signal around that time. Consequently, such a scheme allows for the possibility of a real-

time implementation given sufficient computational resources (see discussion of performance in

Chapter 8). The current implementation keeps all mFr coefficients from levels nine to fourteen

which represent the signal over the period tP ± 300ms. in memory. In addition, the measures

co, c i and c'1 are calculated for this set of coefficients and held in memory. Maintaining a list of

all currently active partials enables the frequency difference between any given frequency and the

nearest active partial to be easily determined. The availability of this information enables the lower

bound on available MFT levels to be easily calculated.

Af
min (n) : 

1267
-0 > 3

i.e. the lowest level at which the two frequencies are separated by at least 3 coefficients.

6.2.2 Partials

Each partial in P is defined as a parameter vector p i , where the index, i, is unique for each partial

which is a member of P over the duration of the analysis. The first five of the partial's parameters

are scalars describing the partial's onset.

(6.1)

pil	partial onset time	 (6.2)

P12 =
	 partial onset time uncertainty	 (6.3)
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Pi3 = ff
	

partial onset frequency
	

(6.4)

Pi4 = 6 fr
	

partial onset frequency uncertainty
	

(6.5)

pi5 =	 partial onset magnitude
	

(6.6)

The next parameter is a list of parameter vectors representing the time-frequency path of the partial

P i6 = qi (6.7)

Each element of q i , qik has four elements characterising a point on the path of the partial

= tclic	 time (6.8)

qik2 frk 	 frequency (6.9)

qik3 = cqk	 amplitude (6.10)

qika = 17,k	 mFr level

qi is kept in time-order such that

tik„ < tam	 where	 n < m

(6.11)

(6.12)

In addition to the time, frequency and amplitude being recorded for each point on the partial, notice

that the MFT level is also stored; partials are allowed to change their scale from frame to frame.

Keeping a record of the level is not strictly necessary to describe the partial's path but has proved

useful for display and debugging purposes and would possibly be required by some subsequent

processing stage.

For notational convenience, the most recently added values of amplitude and frequency to the

path vector are defined as:

Tr	 current partial frequency 	 (6.13)

AI:	 current partial amplitude 	 (6.14)



CHAPTER 6. TRANSCRIPTION	 110

The final parameter associated with each partial is a vector of references to notes in the note-bank

(6.15)

6.2.3 Note Bank

The Note-bank structure is similar to the partial-bank. It is a container for the set, N, of current

note hypotheses which are held as a list in order of increasing onset frequency. The note-bank

is subordinate to the partial-bank in the sense that N is the set of hypotheses at the partial-bank

time t.

6.2.4 Note Hypotheses

Each note hypothesis, ni , is a potential note. During the course of the transcription the existence

of many notes is hypothesised; more information becomes available as the partial and note banks

progress through time and, in the light of this, many of the hypotheses are rejected and removed

from N. As with partials, the index, i, is over all note hypotheses which are members of N for any

period during the analysis. ni contains the following scalar parameters:

= t	 note onset time	 (6.16)

ni2 =	 note onset fundamental frequency	 (6.17)

as well as two vectors

	

ni3 --= mi
	 note fundamental path	 (6.18)

	

--= hri`
	

note's partials	 (6.19)

The path vector mi is a record of the estimated fundamental frequency of and total energy belonging

to the note with time. It is similar to the path vectors of partials, with each element being a parameter



CHAPTER 6. TRANSCRIPTION
	

111

vector having three elements

rniki =	 time
	

(6.20)

mik, = fx,	 frequency
	

(6.21)

mj = eta	 amplitude
	

(6.22)

The last note parameter, h7, is a vector of references to partials in the partial-bank. Each element, ha,

where 1 < k < Nnih ax , is the index of a partial which is hypothesised as being the kth harmonic of

note i. This linking vector is used by the note-partial linking algorithm to associate a set of partials

with each note. The current implementation links up to ten partials with each note, NA az = 10. As

was mentioned above, there is a corresponding linking vector of note indices associated with each

of the partials which is used by the same algorithm. In this case each element is 141, again with

1 < k < NAax, and indicates the note which is considering partial i as its kth harmonic at that

time. The use of this double linking enables the mapping between notes and partials to be easily

changed. No partial in the partial-bank or note hypothesis in the note-bank has an index of zero.

This value is used to indicate an empty element in the linking vectors.

6.2.5 Accepted Note List

This list stores notes which have been removed from the note-bank. These notes have not been

rejected, but have been determined to have ended and so should not be present in the note-bank.

Although data on the performance of the transcription system is derived from many of the data-

structures, this list can be considered to be the primary set of results.
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6.3 Transcription Algorithms

6.3.1 Generating Onset Events

The method of generating candidate onset events from the correlation measures derived from each

MFT coefficient was described in the preceding chapter. The first task of the transcription system

is to ascertain the positions of the partial onsets; this is done by combining these candidate events

across scale. Such a process results in a set of onset events which have decreased time and

frequency uncertainties and far fewer false-alarms than the initial sets. Both the generation of

the candidate events and their combination are performed in advance of the partial-bank by an

amount which assures that all combination and revision processing for a given partial onset will

have been completed by the time the partial-bank arrives at that point. However, as will be seen

below, such computations make use of the positions of the partials within P, and so it is necessary

to make the assumption that these positions will remain fairly constant over this period. The current

implementation sets this bank offset time to 200ms. This is largely determined by the duration of

the coefficients in the highest MFT level used. The offset could be shortened for most events by the

use of a more complex algorithm which would take into account the current level of the nearest

partials rather than using the worst case, the highest level.

The second scale combination algorithm, described above, is used for combining the onset

events. The two thresholds used are Ar and Ar, with A? < 4. Starting at each level, events which

have a magnitude a? (n) greater than Al are used as the starting point of a linked chain of events.

The 'distance' measure, (19 , between two events 9 1 (n) and 02 (n — 1) on neighbouring levels n

and n — 1 is calculated using

1(4(n) — t3(n — 1)12	
1(f() — 

f(n — 1) 12

d 0
1 '2	 (54 (n) 64(n —1)	 6 ff(n)	 f29, (n —1)

(6.23)

A chain which already includes 0 1 (n) is extended by selecting 0 2(n-1) from the events on level rt- 1

with al(n — 1) > A? so as to minimise deL2. However 02 (n — 1) is only added to the chain if both
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the conditions

14(n) — t(n — 1)12 < 64(n) + 64(n — 1)	 (6.24)

ff(n) — f(n — 1)12 <	 (n)	 fAn — 1)	 (6.25)

are satisfied. If the chain cannot be extended to this level then the extension process terminates,

since the chains must be contiguous. An event chain is merged and accepted as a partial onset if it

contains more than one event. The resulting combined event, Okt, has the same parameter list as the

level events. These are calculated by successively combining events 9k (n) and 03 (n — 1) along the

chain using the following formulae which are based on the assumption that the estimation errors

made at each level are independent.

0 4Ste. + 064
tk , = 	 3	 3

+3

0 f 61 + gbg 
— S + fk9

3

2,Ste.Ste
Stt, = 	 3 k

bte + Stk

so	 2(5 f
— (5f.;) of:

aek, max (at a
3
e)

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

At this point in the process, the transient onset detector, described at the end of Chapter 5

(eqn. 5.43) is employed to decrease the temporal uncertainty of the onset estimates. The detector

is applied at each point where an onset has been found, as directed by the preceding process, at

the highest Mn' level employed in this detection. If the transient detector indicates that the cross-

frequency differenced phase is approximately linear in that region then the temporal uncertainty of



CHAPTER 6. TRANSCRIPTION	 114

the onset is reduced to the duration of that time frame if this is less than the uncertainty already

obtained by the cross-level combination process.

Each of the accepted events are used to initiate a new partial p i . The first five partial parameters

are simply copies of the corresponding onset event parameters.

=	 tt, (6.31)

69:	 =	 Stek ,

fr =

(6.32)

(6.33)

fr =	 ff, (6.34)

Ok' (6.35)

The change in index is required since many candidate onset events have been rejected by this stage

and it is simpler to keep the indices of the partials contiguous. Thus p i is the ith partial to be added

to the partial-bank set P. It should be noted that, due to the bank offset time, the onset time of this

partial will be in advance of the partial-bank time (ti: > t) and so the new partial must remain

dormant within the bank until t = t. This dormant phase is in fact the first of three that members

of P may pass through; the phases are

Dormant awaiting bank to arrive at its onset time

Active keeping up with bank, seeking path through the MET data

Dead no longer active (ti: < tP ) awaiting removal from the bank.

The Active and Dead phases are discussed below.

6.3.2 Forming Note Hypotheses

At the same time a new partial p i is added to the partial-bank a corresponding set of note hypotheses

is added to the note-bank. These entities represent the hypotheses that the new partial is the jth



(6.37)
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harmonic of some note; with 1 < j < r 77.41	 For each j the note hypothesis' parameters are

initialised such that

41+i (6.36)

=	 (6.38)

given that the last hypothesis to be added to N was the kth. Additionally the links in the partial are

set up to link to the created note hypotheses

hYj = k j	 (6.39)

The choice of a suitable value for Nnillax has been the subject of some experimentation. It has

been found not unreasonable to constrain the system such that N cix = 1, i.e. generating just one

note hypothesis for each new partial such that the partial is its first harmonic. This produces good

results in most circumstances, only failing when the first harmonic of the note cannot be detected,

a so called missing fundamental [Sma70]. No such cases have been found for the set of natural

instruments analysed for this work, though such signals can be easily generated.

Each note hypothesis may pass through several stages during its lifetime. Possible stages are

linking, mature, defunct and dead. Newly generated hypotheses are initially in the linking phase.

6.3.3 Note-Partial linking

The note-partial linking algorithm is executed once during every main loop of the transcription

algorithm i.e. once for every time frame of the lowest MET LEVEL. It acts to link note hypotheses

in the note-bank with a set of partials from the partial-bank which is best suited to be the note's

harmonics. The algorithm runs as follows; for each note ni in the bank which is in its linking

phase an initial estimate of its fundamental frequency AP is made from the lowest currently linked
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fi
n = (6.43)
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harmonic, hLin

/min = min(/): ha � 0	 (6.40)

Then, for each harmonic, 1, in turn, its expected frequency is estimated by adding the note's

fundamental frequency onto the frequency of the previous harmonic or it's estimate

I	
f

Ph	
)

nit	 'sp
t(L-1)

else	
(6.42)

hn

Using this estimate, the partial-bank is searched for the partial nearest to this frequency with a

similar start-time. If a suitable candidate is found and it is a better match, in terms of onset time and

frequency, than any previously linked partial then the linking vectors are adjusted to link this partial

and note. The note's fundamental frequency is then re-estimated using the partials linked so far

Recalculation of the fundamental for each harmonic avoids cumulative errors building up in the

estimated frequencies of the upper harmonics. The process continues until either all harmonics

have been processed or the number of unlinked harmonics exceeds three. The note start-time is

then revised according to the start-times of the linked partials

E	 - j + 1)
t,0J:i00

= 	 	 (6.44)

�0

Using this algorithm, each note hypothesis seeks out the set of partials which best fits its harmonic

frequencies. Running the algorithm in every time-frame allows the chosen set to change freely during

the early stages of a note so avoiding problems caused by the lack of onset synchronisation observed
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between the harmonics of many notes. The algorithm is not run on notes which have passed out of

the linking phase.

6.3.4 Partial-bank iteration

The partial-bank iteration algorithm is executed for every time-frame. The first stage is to scan

the list of partials to see which of the dormant partials are to become active on this frame. Those

are then allocated a scale using Equation (6.1) and marked as being in their active phase. This

part of the transcription system can suffer from problems. The idea of having dormant partials in

the partial-bank for some time before becoming active is to allow the already active neighbouring

partials to adjust their scale in order to avoid a collision. However, when a dormant partial is

very close in frequency to one of the other members of the bank there may be no available scale

with sufficient frequency resolution to separate them. In such cases, the two partials are probably

coincident and would certainly be perceived as one tone by a human listener even if they were

attributable to separate source instruments. Clearly, trying to separate them by means of an MET

level with excessively high frequency resolution is not a desirable strategy; the current approach in

such situations is to arbitrate between the two partials, removing one of them from the bank. A very

simple method of choosing which one to remove is used; if the already active partial is older than

50ms, then it is removed; otherwise the new partial is removed. A better scheme is suggested in the

final chapter.

On the next pass along the bank each partial is given the opportunity to advance; whether it

does or not depends on its current level, since the partial-bank iteration algorithm is run for every

frame in the lowest level. When a partial advances it moves forward in time by the duration of one

frame on its current level and records this new position in its path vector. Thus for partial i with k

elements already in its path vector q i , the next time is calculated using

t7(k+1) = elk + F(17 k )	 (6.45)
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The frequency of the partial is allowed to vary in order to track the frequency variations of the note.

There are two parts to this process: a coarse variation is accomplished by following the peak in the

amplitude of the measure c i (n) with the restriction that the partial may not move more than one

frequency bin per time frame. The phase of the selected coefficient is then used to determine the

frequency of the partial using the method shown in Equation (5.19) but using c i (n) rather than the

forward phase difference of the level coefficients directly. This gives an estimate with increased

noise immunity. The path frequency is recorded in filk+i) . Lastly, the path amplitude of the

partial a4+1) is calculated from the primary and secondary level coefficients (Equation 5.13).

As each partial advances it is also given the chance to change level. The current level of each

partial is the lowest available level which satisfies Equation (6.1) using the frequency difference

between itself and its closest neighbour. Moving up mFr levels is accomplished by choosing a

coefficient on the destination level which corresponds to the current time-frequency position of the

partial. The current partial frequency is, however, not known with sufficient certainty to determine

the corresponding frequency bin on the higher level. This problem is overcome by choosing the

coefficient in that area with the largest amplitude. Moving down levels is relatively simple, the

chosen coefficient is that just proceeding the temporal mid-point of the current coefficient.

The third and final pass over the partial list determines whether any of the partials should be

terminated. This decision is based on two criteria: either the absolute magnitude of the partial has

remained below -80dB 1 . for more than 50ms. or the value of co (n) at the current coefficient is less

than 1% of its maximum value during the lifetime of the partial. These criteria were derived by

experimentation. Partials which are terminated pass into the dead phase for later removal from the

list.

l the original signal is normalised during the generation of the MFT so that the largest signal peak has a mgnitude of

OdB.
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6.3.5 Note-bank iteration

The note-bank, as well as the partial-bank, has an iteration algorithm which is called for every

time-frame on the lowest MFT level. The algorithm's purpose is to update the parameters and phases

of all of the note hypotheses in the note-bank. The note hypothesis phases are a little more complex

than the partial phases and are defined as follows:

Linking. The note-partial linking algorithm is run for each note hypothesis recently introduced to

the bank on every time-frame in order to establish the best fitting set of partials.

Mature. In order to become mature, a note hypothesis must satisfy certain conditions, described

below, on the quality of fit of its partials. Mature notes cannot change the linking of their

partials. Both the linking and mature phases are active phases but this phase can be considered

to be the normal phase for a successful note hypothesis.

Defunct. A defunct note hypothesis has been rejected for some reason and will never be transferred

to the accepted note list. After entering this phase the note hypothesis becomes inactive and

is removed from the bank on the next iteration.

Dead. When a mature note hypothesis has been determined to have finished then it passes to the

dead phase. It becomes inactive and is transferred from the bank to the list of accepted notes

on the next iteration.

The processes by which note hypotheses are formed, added to the note-bank and behave during

the linking phase have been described above. The number of note hypotheses generated and added

to the bank is much larger than that expected to be accepted as notes since at least one hypothesis

is generated for each partial detected. The number of hypotheses on the note-bank is reduced by

considering the quality of fit of the set of partials which become associated with each hypothesis

during its linking phase. In the current system, this calculation is performed on hypotheses after
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they have been in the bank for longer than 80ms. Such a fixed evaluation time limits the minimum

length of note which can be detected by the system, though this value has been found suitable for

the test data analysed in the following chapter; a better algorithm is suggested in the final chapter.

The quality of fit is a correlation measure and is defined on each note hypothesis ni as the sum

of the products of the normalised partial onset certainties of adjacent pairs of its partials

NH

nPri = E aPhn
i(j-1)	 tj

j=2

an being the onset certainty aP for the jth partial of the ith note.

(6.46)

This measure is derived from the proposition that the normalised onset magnitudes of the set of

partials belonging to a note may be modelled using a Markov model

where 0 < y < 1. cii are random variables with mean (1 —

The note hypotheses are reduced by simply discarding (making defunct) any which have a

quality measure below a certain threshold, ri < A' . Such a simple technique does not yield perfect

results, the aim is merely to remove the most unlikely hypotheses, any further reduction would

almost certainly require algorithms which incorporate some amount of stylistic and contextual

knowledge. As was discussed earlier, such algorithms are outside the scope of this work. Even so,

this stage of the processing reduces the number of hypotheses by 60-80% and rarely removes any

which correspond to actual notes in the original data.

The note bank iteration algorithm, in addition to updating the phases of the note hypotheses

using the methods described above, calculates the parameters stored on the path vector for each

hypothesis in either of the linking or mature phases. These calculations are performed for every

time frame resulting in a detailed description of the fundamental path for each note. For the ith note,

already having j — 1 elements on its path vector, the jth member has its three elements calculated
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using the following formulae
NAzmax

(4) 2 = E (471 )	 (6.48)
i=1:tqloo

i.e. the amplitude of the note is simply the sum of the amplitudes of its partials. The fundamental

frequency is calculated as the mean of the partial frequencies divided by their partial number and

weighted by their amplitude
NAax

E .,4"; FPn /1
zit

Lastly, the note's path vector time is set to the partial-bank time

tii74 = tP	(6.50)

The final action of the note-bank iteration algorithm is to identify notes which have terminated

and mark them as dead. In the current implementation, notes are deemed to have terminated when

all their harmonics have terminated.

At regular intervals, the note-bank is searched for dead notes. These are then removed from the

bank and transferred to the final note list.



Chapter 7

Results

7.1 Introduction

This chapter presents some results obtained using the algorithms presented in the preceding chapters.

First there is an example of the use of phase differencing for pitch detection. Next the representations

at all stages of a full transcription of the two piano note signal, seen in Chapter 1, are shown. The

analysis of a short section of a Bach woodwind trio then demonstrates the ability of the system to

cope with a signal containing many features. Finally, a short piece of a Schubert trio is analysed

and shows some of the shortcomings of the present system.

The analyses were performed on a Sun Microsystems 4/480 SPARC based computer with 32Mb.

of memory. The time taken was approximately 1.5 — 2 minutes for each second of audio; 90in the

generation of the MFrs themselves. The use of more specialised signal processing hardware and

computing each MET level in parallel would significantly reduce these times.

122
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Figure 7.1: Violin note showing forward phase-difference

7.2 Phase Differencing

The use of the differenced phase to detect the pitch and onset time of partials was discussed in

chapters 3 and 4. Figure 7.1 shows level 9 of an MFT of a single violin note C4. This plot is different

from the preceding plots in that the colour of each coefficient indicates its complex value. As before,

the brightness at each point represents the magnitude of the coefficient, but the hue indicates the

phase. The mapping between hue and phase has been chosen so that a smooth variation of phase is

seen as a smooth variation of hue. The absolute value of this phase is not important for the results

shown here. The phase of the violin MFT level has been differenced across time. Notice that, for the

first half of the note, the colour of each of the two active coefficients is constant. After that point a

gentle vibrato is introduced; this can be seen as variation of colour along the partial, accompanied

by a shifting in the distribution of partial energy between adjacent frequency bins. The effect is

more noticeable in the upper harmonics, where the frequency deviation is larger.
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Figure 7.2: Polar and magnitude only plots of tone with changing frequency

The effect of frequency variation on the forward phase difference can be more clearly seen in

Figure 7.2 which shows two plots of level 10 of the mFr of a single tone of changing frequency.

The tone starts at 400 Hz and decreases in frequency by 200 Hz over 1.37 seconds. The upper plot

shows just the magnitude of the level coefficients. Note the way energy moves smoothly between

frequency bins using this (relaxed) version of the MFT. There is some rapid variation in magnitude

with time, which can be attributed to beating caused by interference due to the temporal sidelobes

of the FPSS basis function. The lower plot is a polar display of the forward differenced phase for

the same level. The colour changes smoothly with time, aside from some beating, indicating the

proportional relationship between partial frequency and the time-differenced phase. There is a

constant phase difference between adjacent bins of 7r, while the phase in the primary bin, that with

the largest magnitude in any time frame, is always within the range ±-121 . These relationships enable

the frequency of the tone to be determined unambiguously from the forward-differenced phase of
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the primary bin, as has been described above (eqn. 5.19).

7.3 Two Piano Notes

This section examines, step by step, the analysis of the two piano note signal which was first

discussed in Chapter 1. The signal consists of F O above middle C followed by middle C. The sound

was assembled in the digital domain from the McGill University Master Samples compact disc

[0W87] Volume 3, Track 2, Bands 46 and 40, by simple addition. The relative magnitudes of the

two notes were left as they were on the disc while the onsets of the notes were set at 1.18 s and

1.38 s, as could best be judged using a graphical signal editor. The onset in this case is taken to be

the point at which the sample magnitude is observed to start rising above the noise floor, which was

measured at -70dB for this signal. In what way this definition of the onset time is at variance with

the perceived onset time has not been investigated in this work, due to its non-clinical nature. It is

assumed that the perceived onsets would be at somewhat later times. The sound has been truncated

at about 2 seconds using a rectangular window, all sample magnitudes after this point being set to

zero.

The signal was first transformed using a mFr incorporating oversampling by a factor of two.

Five levels, (9-13), were calculated and are discussed in the next section.

7.3.1 The MFT Levels

Figures 7.3 to 7.7 display all the computed MFT levels for the two piano note signal. The amplitude

scales of these plots is a logarithmic (dB) scale with the black level of the plots being set at -50dB

below a white level of OdB. Such a scale is effective in revealing, somewhat disproportionately, the

low magnitude details present. For instance, it is evident from levels 10 and 11 that there is a fairly

large amount of low frequency noise at the time of the note onsets. The next most obvious feature

revealed is the effect of the analysis window's sidelobes in the time domain. This is clearly shown
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Figure 7.3: Two Piano Notes: MFT level 9, magnitude

Figure 7.4: Two Piano Notes: MFT level 10, magnitude
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Figure 7.5: Two Piano Notes: MFT level 11, magnitude

Figure 7.6: Two Piano Notes: mFr level 12, magnitude
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Figure 7.7: Two Piano Notes: /vIFT level 13, magnitude

in levels 11 to 13 by the 'leaking' of energy from the first partial of the first note across time into the

coefficients before its onset. If the primary bin of this partial has a frequency index k, note that the

leakage is relatively larger in the coefficients with frequency indices k — 1 and k + 1 than k. This

is due to a discontinuity in the frequency variation of phase at the primary bin in the time frames

close to the note's onset. This behaviour is useful since the leakage does not conform to the partial

model defined in Chapter 4 and so can be discriminated from an actual partial.

Viewing the plots as a set, the harmonic nature of the signal can be seen at all levels. The

lower levels do no have sufficient frequency resolution to separate adjacent partials. The beating

which this causes is strongly evident in several places at the lowest level. Note that the 'difference'

frequency of this beating covers a wide range: the fifth harmonic of the first note exhibits, on

Level 9, cancellation points 240ms apart but only 20ms apart for the second and seventh. Level 11

just manages to resolve the two closest partials, the third harmonic of the first note (1100Hz) from
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Figure 7.8: Two Piano Notes: cC ik (9), magnitude

the fourth harmonic (1048Hz) of the second. Moving up in scale, the partials are better separated

and resolved with respect to frequency, with a corresponding decrease in the clarity of the partial

onsets. At level 13, which has the lowest temporal resolution, it is difficult to determine visually

the relative onset times of the lower partials, though this is in part due to the compression of the top

end of the amplitude scale in these plots.

7.3.2 Feature Detection

The transcription process proper starts from the raw MET coefficients and generates the three

measures coik(n), ciik(n) and cC ik (n), described in Chapter 5 for each coefficient 'th'ik on level n.

Normally, these intermediate values are calculated on demand by the onset detection algorithms:

no permanent record is made. For this case cC ik(n) has been plotted in figures 7.8 to 7.10, since

observation of this measure aids understanding of the onset detection process.
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Figure 7.10: Two Piano Notes: el2k (13), magnitude
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The resulting plots show the effect of the onset detection calculations on the original coefficient

magnitudes. The steady-state portions of the signal have been largely suppressed, while peaks are

centred around each partial onset. Comparing the levels, it can be seen, as would be expected, that

the detector only works effectively at the resolutions at which the onsets are clearly resolved, tOn

level 9 the detector responds strongly to the beating between the third harmonic of the first note and

the fourth of the second note. Random responses caused by the low frequency noise are present

at the lower levels. Although the highest level appears very cluttered, a large response has been

produced for all of the partial onsets, admittedly with low temporal resolution.

The next stage of processing is to search for peaks in the response of the onset detection to

generate a set of onset events for each level. These event sets are plotted in figures 7.11 to 7.15. The

event markers are overlaid on the original coefficient magnitudes to show the alignment between

them and the signal transform. Each event is represented by a green ellipse centered on its estimated

time-frequency position. The relative lengths of the ellipse diameters serve to indicate the level of

uncertainty associated with the event's time and frequency estimates. At this stage these uncertainties

are based purely on the geometry of the level coefficients and so are of longer duration and less

bandwidth with increasing level. Each event is annotated with its frequency in Hz.

The events generated on each level are a fairly good match with the partial onsets. In accordance

with the requirements of the multi resoluti on event combining process, most of the errors are inclusion

errors: events generated at points where there is no actual onset. Some events are excluded, however,

due to lack of resolution in either domain causing the onset to merge with some other nearby feature.

A notable example of this behaviour is the failure to detect the first partial of the second note at

levels 9 and 10, as it is obscured by the nearby (in frequency) first partial of the first note. There

are instances where the detector seems to be working better than was initially expected. The onset

of partial four of the second note is closer in frequency to the first note's third partial than in the

previous case; yet it is correctly detected at level 10 and above. This may be due to the use of both



CHAPTER 7. RESULTS	 132

11111111!1 11111111P1111111111

Figure 7.11: Two Piano Notes: onset events, level 9

Figure 7.12: Two Piano Notes: onset events, level 10
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Figure 7.13: Two Piano Notes: onset events, level 11

Figure 7.14: Two Piano Notes: onset events, level 12
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Figure 7.15: Two Piano Notes: onset events, level 13

magnitude and phase in the detection algorithms. Note that none of the partials above the sixth of

the second note has been detected; this is due to their low magnitude.

The inclusion errors can be attributed to the low frequency onset noise, cancellation due to

interference between poorly resolved partials and to multiple events being generated for a single

onset. It is thought that more work on the peak detection algorithm could eliminate these errors.

The next stages of processing, however, successfully remove these false alarms.

7.3.3 Multiresolution Processing

All processing up to this stage has been carried out on each level separately. The large amount

of data present on each level has been reduced to much smaller sets of onset events, allowing

the multiresolution processing to proceed relatively efficiently. Two sets of results, figures 7.16

and 7.17, are presented for this process to demonstrate the effect of the transient onset extension to
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Figure 7.16: Two Piano Notes: Combined onset events, no transient detector

the onset detection described in sections 5.2.2 and 6.3.1.

Figure 7.16 shows the result of the onset combination without the transient onset phase detection.

The algorithm, described in Chapter 5, has linked together nearby events across the levels to give a

single set with decreased uncertainties. The varying shapes of ellipses can no),v be used to compare

the relative uncertainties, in both domains, of the combined events. The effect of the determination

of suitable resolution within the combination algorithm can be seen on partials three and four of

the second note. These onsets have relatively large uncertainties associated with their onset time

estimates, due to nearby features making the lower levels of the MET unsuitable for reliable detection.

There is still one inclusion error in this set, which is just below the onset of partial two of the second

note.

The effect of the transient onset detector operating on the frequency variation of phase of the

onsets can be seen by comparing figures 7.16 and 7.17. These plots are similar in all respects except
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Figure 7.17: Two Piano Notes: Combined onset events, with transient detector

the addition of the transient onset detector. Note the way that the onset events which previously

had relatively large temporal uncertainties due to nearby features, such as the onset of the fourth

harmonic of the second note (1049 Hz.), have had that uncertainty decreased by this process. One

disadvantage of this is an increase in the susceptibility of the detector to 'ghosting' effects caused

by the temporal sidelobes of the FFsss. This is exhibited by the moving forward in time of the onset

event for the first harmonic of the first note.

The determination of the partial onset events proceeds simultaneously with the generation and

tracking of partials, as shown in Figure 7.18. The partial magnitude is not included in this figure,

so that the positions of the partials may be compared with the level coefficients (from level 11).

Figure 7.19 is a more representative illustration of the detected partials. In this plot, the intensity

of the line represents the magnitude of the partial, while its colour shows the level which has been

selected for tracking. Note the way in which the start of the second note causes the tracking levels
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Figure 7.18: Two Piano Notes: Partial Positions

Figure 7.19: Two Piano Notes: Partials
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Figure 7.20: Two Piano Notes: Notes

of the first note to increase. The single onset inclusion error generates an incorrect partial, but the

tracking process terminates it after a relatively short period.

The final step in the analysis is to associate groups of partials with notes. This is relatively easy

in this case, as is shown in Figure 7.20. Here, the colour of the text at the onset of each partial

indicates its note grouping. The note name is indicated on the fundamental and the harmonics

display their number. The single erroneous partial has been rejected, since it could not be associated

with any other partials.

The analysis of the two piano notes resulted in both notes being identified, with partial tracks

generated for the lower eight harmonics of the first note and the lower six harmonics of the

second note. The estimated and expected partial frequencies are given in table 7.1. The estimated

frequencies assume that the instrument was tuned to A440 and that the partials are an exact harmonic

sequence. The latter assumption is not quite true; it is recognised that piano partials are sharpened
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Note Partial Expected (Hz.) Estimated (Hz.)
F4 0 1 370 367

2 740 734
3 1110 1102
4 1480 1465
5 1850 1829
6 2220 2223
7 2590	 ' 2601
8 2960 2985	

—

C4 1 261 255
2 522 523
3 783 779
4 1044 1048
5 1305 1312
6 1566 1576

Table 7.1: Expected and Estimated partial frequencies for two piano notes

at high frequencies [B1a65], this does, however, seem to be reflected in the results. The estimated

pitches for the notes are 370 Hz for the F4 11 and 262 Hz for the C4; which are their expected values.

The estimated onset time for the first note is 1.18s and the second at 1.40s, within 20ms of the

actual times.

For this example, as can be seen from Figure 7.9, that all onsets and partials are resolved at

level 11 and so it should be possible to obtain all the note parameters from that single resolution.

The power of using many resolutions even for this simple case lies in the event confirmation and

reduction of uncertainty provided by the scale space processing. There are 25 events detected on

level 11 (fig. 7.13), of which 11 are false alarms: after combination (fig. 7.17) this is reduced to 14

correct events and one false alarm. The frequency uncertainties are, on average, reduced by a factor

of 2 while the temporal uncertainties are reduced by at least a factor of 4.

7.4 Bach Woodwind Trio

The second set of results shows the analysis of just over two bars (5 seconds) from the start of Trio I

for two oboes and bassoon which forms part of the first Brandenburg Concerto by J.S. Bach.
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Figure 7.21: Bach Trio: level 9 magnitude

Figures 7.21, 7.22 and 7.23 show the coefficient magnitudes for levels 9, 11, and 13 for this

signal. Clearly this signal is a great deal more complicated than the previous example. There are

three instruments playing simultaneously and since they are playing fairly quietly there is little

dynamic range. The plots appear much less 'clean' than than those of the two piano note example.

The large number of simultaneous partials results in almost no detail being revealed at level 9 —

only the higher levels, with increased frequency resolution, fully reveal the detail.

The results of applying the onset detection to these levels are shown in figures 7.24, 7.25

and 7.23. Unsurprisingly, few detections can be made from level 9 and those that have been are

largely incorrect. The detectors, however, do behave well at level 11 and above, detecting all onsets

where the available time or frequency resolution allows. Most of the false detections are caused

either by low frequency noise, beating between coincident partials or clusters of events around a

single onset. As before, this last class indicates that improvements could probably be made to the
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Figure 7.23: Bach Trio: level 13 magnitude
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Figure 7.24: Bach Trio: onset events, level 9

Figure 7.25: Bach Trio: onset events, level 11
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Figure 7.26: Bach Trio: onset events, level 13

onset detection algorithm.

The results of the multiresolution processing are shown in figures 7.27 and 7.28 which show

the partial tracking levels and note allocation respectively. The notes of the original piece are given

in table 7.2 while those detected by the analysis are shown in table 7.3. Not all the notes shown in

the plot are included in the table, a threshold of 0.1 having been applied to the harmonic correlation

(eqn. 6.46) to remove those note hypotheses with very weak harmonic structure.

Instrument
Bar Bassoon Oboe 1 Oboe 2
1

2

3

D4
C4
A3°
C4
A30
A3
A30

A4

A4°
G4

.2

A4
F4

F5

G5
E5

F5
D5

Table 7.2: Notes from Bach Trio
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Figure 7.27: Bach Trio: partials with tracking levels
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Figure 7.28: Bach Trio: note allocation and partial positions
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Bar Note Hypotheses
1 D4 F4 A4 F5

C4 C5
A3° A40

2 C4 04 C5 E5 05
A3° A40--
A3 A4 F5

3 A3 0 F4 A40 D5

Table 7.3: Notes from Bach Trio Analysis (r i > 0.1)

Piano Cello Violin
D3 0
A2 0
G2
G2°
C3

D40
A3 0
G3
G3 0
C4

D5 O
A40
G4
G40
C5

D6 0
A5 1
05
05d

C6

D3 0
A2 0
02
G2 0
C3

D5O
A40
04
GO
C5

Table 7.4: Notes from Schubert Trio

There are 17 notes in the original score, and 22 notes in the analysis. There is one note excluded,

a 05 on the third beat of the first bar, which is masked by the C4 of the preceding beat being at

exactly one third its frequency. Of the other (inclusion) errors, the F4 on the first beat seems to be

caused by reverberation from the preceding movement, which was masked off for this analysis. All

other inclusion errors are notes at one octave above correct notes. Without including factors such

as the number and type of instruments playing into the analysis model such hypotheses are valid.

A simple way to reduce these would be to increase the correlation threshold, but this would tend to

remove correctly identified notes, such as those on the third beats of the first and second bars where

two instruments are playing an octave apart.

7.5 Schubert Piano Trio

The final piece analysed is the first few notes of Schubert's piano trio in EL, major (op. 100) for piano,

cello and violin. The notes of the piece are given in Table 7.4. As can be seen, the instruments

are playing in unison, which causes several partials to be coincident in frequency. This coincidence
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Table 7.5: Notes from Schubert Trio Analysis ri > 0.1)
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Figure 7.29: Schubert Trio: partials with tracking levels

destroys the phase coherence found in single partials and introduces irregular beating in the partial

amplitudes. Additionally, the sample was recorded from an FM radio transmission onto cassette

tape and consequently has a fairly high noise floor, estimated at around -45dB.

Figure 7.29 shows the partials detected the signal. The majority of partials appear to have been

correctly identified and tracked, with only a few false detections. An increased amount of frequency

jitter can be seen in the partial tracks, compared with the previous example, which can be attributed

to the corruption of the partial phases. The partials which have not been identified have either

their onsets masked by ongoing partials or are so affected by the lack of phase coherence, beating
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Figure 7.30: Schubert Trio; note allocation and partial positions

and noise to cause the onset detector to fail. The number of partials missed increases with time

as the level of reverberation from the preceding notes interferes further with their already complex

structure. Given that the detectors are designed to operate on phase coherent data, this part of the

transcription process appears to work well with this demanding signal.

The note allocation result is shown in Figure 7.30 and Table 7.5. The allocation algorithm is

heavily dependent on all partials being identified and is not sufficiently robust to deal with the many

ambiguities introduced by several instruments playing in unison. The algorithm thus copes fairly

predictably with the first two notes of the set; additional notes identified are all harmonically related

to those present, while the failure to identify the higher notes can be attributed to the lack of partials

detected at high frequencies. Performance tends to tail off towards the end of the piece, due mainly

to the increasing number of missing partials.

To summarise, this last result highlights some of the deficiencies of the current models and
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algorithms.

1. The partial onset detection performance is degraded when a number of partials are coincident.

While it still performs satisfactorily at low frequencies, where the partial magnitudes tend to

be fairly large, the increased 'jitter' in signals of this type causes the higher partials, which

typically have much less energy, to be missed.

2. It is difficult to detect a partial onset when there is already significant energy before the onset

at the same frequency. The present system depends on the signal phase characteristics in the

region of the onsets to detect them and so does not perform well when these have become

corrupted by coincidence or noise.

3. The note identification algorithm relies heavily on partials being detected and it has been seen

that this is not always possible. A possible improvement would be to allow the presence of

partials to be proposed from the presence of other, already detected, partials. It may then be

possible to track the characteristic energy of such partials, confirming their presence, even

though their onsets could not be detected.

7.6 Summary

While not perfect, it is hoped that the results presented in this Chapter have proved the suitability

of the Multiresolution Fourier Transform as a signal representation for the analysis of polyphonic

music and demonstrated that its potential to allow analysis algorithms to treat scale as an additional

representation parameter to time and frequency offers numerous advantages over single or multiscale

techniques. Although the use of phase information in such analysis has its limitations, it has been

shown that it can provide reduced uncertainty in time and frequency estimates, over what can be

accomplished with 'magnitude only' processing. Of course, the use of multiple window scales is a

necessary precondition for such methods to be effective, since without it the problems of interference
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would render the phase information ineffective.



Chapter 8

Conclusions

8.1 Thesis Summary

The aim of the work described in this thesis has been to explore the application of multiresolution

signal processing techniques to the analysis of polyphonic music. The motivation for this work

came from the recognition of a problem which has limited the success of previous studies in this

area, which were based on STFT signal representations, namely the choice of a suitable analysis

window size e.g. [Wat86, Ser89].

8.1.1 Signal Representation

Chapter 2 contains a review of several signal representations which have been applied to audio

signals and identified the problem that none of them achieved sufficient resolution in both time and

frequency while retaining a structure well suited to the analysis task. Further discussion revealed

that no single window function could exist, due to the uncertainty principle, which could satisfy the

requirements of such an analysis system. Additionally, even if given some flexibility in the choice

of window size, it would not be possible to select the most appropriate size until the analysis was

partly complete. The second half of Chapter 2 described a signal representation, the Multiresolution

150
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Fourier Transform, which attempts to overcome these difficulties by offering a range of resolutions

at all points on the time frequency plane. Analysis algorithms may then be defined which pick the

most appropriate coefficients from the range of available resolutions according to some selection

criterion. It was shown that a feature's context, the relative positions of neighbouring features, in

addition to the known properties of that feature, provides a sufficient set of parameters to determine

an appropriate analysis scale.

The implementation details of the MET were discussed in Chapter 3. A modification of the initial

MET definition, termed relaxation, involving oversampling by a factor of two, was described which

resulted in several desirable improvements of the mFT structure. The implementation of both the

forward and inverse transforms was discussed, as was the incorporation of the initial fixed length

algorithms into a 'blocked' scheme for the analysis of arbitrary duration signals. It was shown that

the mFT can be efficiently implemented using FF1S and that the computational cost is comparable

with generating the corresponding number of STFTS (Equation 3.17). Finally, the mFT was applied

to a set of three simple signals to demonstrate its properties, in particular the way in which the

representation of these signals changes with scale.

8.1.2 Signal Modelling and Analysis

Chapter 4 considered the modelling of harmonically based musical signals. The aim was to define

a feature hierarchy which could relate musical notes to the kind of signal representation offered by

the mFr. At the lowest level of the hierarchy would be the MET coefficients themselves, with the

notes at the top level. It was shown that a direct mapping between these two levels was not possible

due to the spectral structure of a note (its partials) being distributed across the time-frequency

plane. An intermediate set of features were deduced, all of which could be localised on the time-

frequency plane using an appropriate analysis scale. In this way, given the existence of a signal

model for a feature, then the known relationship between the corresponding set of coefficients and
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the feature's parameters can be used to obtain a description of that feature in which interference

from neighbouring features can be minimised by choice of suitable analysis scale.

The set of intermediate features was defined to be:

1. Short segments of note partials in which the amplitude and frequency remains constant.

2. An optional partial onset feature describing the transient behaviour which may be present at

the beginning of a partial.

Having established a suitable feature hierarchy, a set of mathematical models for each level

of the feature hierarchy were defined. The models incorporated the variations in feature structure

common in natural signals by the use of Markov processes.

In Chapter 5, the feature models of Chapter 4 were used to define a set of detection algorithms

which enable the detection of each feature from the next lower level in the hierarchy. A common

element of these algorithms was the use of sample covariance as a means of dealing with the

statistical nature of the signal and improving the reliability of the detection in the presence of noise.

In addition, the algorithms made extensive use of the coefficient phase as well as the magnitude.

The majority of previous workers have not made use of the phase information available in the signal

representations their systems were based on, e.g. [PG78, Ser89, Wat86]. This was done because it

was considered worthwhile to try to use this information, both to verify that the mFr presents it in

a suitable form and to investigate its usefulness. The analysis of the Schubert trio in Section 7.5,

however, showed that such phase information can be corrupted in some circumstances, e.g. when

partials from two or more sources are coincident in frequency. In the case of the Schubert analysis,

this caused the partial tracking to produce poor frequency estimates, appearing as jitter in the partial

tracks and caused the onset detection to fail at even moderate partial magnitudes. In the cases

where the expected phase behaviour does exist, the detectors perform well, certainly better than

could be expected of an algorithm operating on coefficient magnitude alone. All of the detection

algorithms used in this thesis could be easily modified to make them phase independent, by using
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only magnitude information. The underlying model structure and estimation algorithms would

remain unchanged. The modifications required would simply require the removal of the complex

elements from the detection algorithms. The tracking of partials would use the interpolation of

local coefficient magnitudes rather than the forward phase differences and the onset detection would

substitute the time derivative of co ik (n), c'oik (n), for elik(n) (from eqn. 5.27) in its calculation.

Similarly, the use of phase in the transient onset detection could be eliminated by just using the

local energy at the onset, given by the denominator of Equation 5.43. An obvious strategy for

incorporating these modified forms would be to run them in parallel with the originals and then

compare their outputs. In this way, the system would be able to operate well with phase coherent and

incoherent signals but also be able to determine whether a feature hypothesis was phase coherent or

not and use this information to decide whether more than one feature was present at that place. In the

case of partials, such a modification would affect the feature hierarchy, introducing a new element

(a multi-partial) intermediate between partials and MFT coefficients to allow more than one partial

to be present at the same place on the time frequency plane. Several partials could then map onto

one multi-partial. The modified feature hierarchy is shown in Figure 8.1. All partials attached to the

same multi-partial would have the same path vector parameters during their overlapping portions

and it would not be possible to distribute the coefficient energy amongst the partials without having

some model of the spectra of the notes to which they are associated. The multi-partial could possibly

attempt to unravel the beating present in the MFT coefficients for such cases, using techniques such

as those suggested in [Mah90] and [Cha86], given that the new structure makes available an estimate

of the number of partials overlapping and allows access to the parameters of their related notes and

harmonics.

In was noted in Chapter 7 (two piano notes) that the event detection algorithms fail to detect the

upper harmonics of the notes due to their relatively small magnitude. It may be possible to improve

this by adapting the detection normalisation process with respect to frequency, given the general
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Figure 8.1: Proposed modification to Feature Hierarchy

low-pass frequency spectrum of most music. The disadvantage of such a technique would certainly

be an increase in the number of false detections at these frequencies.

8.1.3 Transcription

The algorithms used selectively to apply the feature detectors in a multiresolution framework

and combine their outputs across scale were described in Chapter 6. The use of several signal

descriptions inevitably introduces complexity into this task, which is not encountered in single

resolution systems. In particular, it has been found difficult to keep information regarding the signal

context, positions of existing features etc, up to date while attempting to detect all features present

in the signal. Very careful ordering of the analysis steps is required and it has been found difficult

to avoid introducing significant time lag between the time at which new features are detected and

that at which the state of existing features is updated. This results in the suitable analysis scale

range for some feature being determined by the state of features some way before that point. For

instance, the detection of short duration notes in close frequency proximity, such as trills, remains
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a difficulty since the feature context time-lag causes the analysis scale for those note onsets to be

unnecessarily restricted in temporal resolution. There is, however, no fundamental reason why this

problem cannot be overcome by a more sophisticated algorithm; it is simply a deficiency in the

current implementation.

A general criticism that may be made of the current algorithm is that there is not enough

information flow between its various parts. The majority of information passes from the lower to

the higher levels of the feature hierarchy and elements on each level behave fairly independently.

For instance, note hypotheses depend exclusively on detected partials: there is no way for the

presence of a partial to be proposed given the existence of one or more note hypotheses or, for that

matter, other partials. Also, the partial tracking algorithm could be improved by taking into account

the frequency estimates of other partials associated with the same note.

It has been stated that the output of the current system should be suitable as input to subsequent

processing stages which may well use culturally specific and other a priori information to further

refine the information flow. It would, of course, be highly desirable to pass information relating to

the musical context back down from such stages into the feature detection process. The independent

model of note probabilities (eqns. 4.5 & 4.6) is weak but necessary when only the lower levels of

such a more complete system are being constructed. When available, high-level information, such

as 'key' and 'rhythm' could be used to direct the low-level detectors, enabling them to perform

more reliably, particularly at low signal to noise ratios.

The current system makes no attempt to account for the energy in the signal. It should be

possible to calculate the energy that each detected feature represents and thereby decide whether all

significant features had been extracted. This approach was one of the strengths of Charles Watson's

work [Wat86] which continued to distribute harmonic energy among note hypotheses until the

energy remaining in the signal was very small. Problems of introducing such a scheme into the

present system include the fact that general signals are expected to contain significant energy in
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forms for which suitable models have not yet been defined and the use of many resolutions requires

the accounting to be performed over a wide range of coefficient geometries.

While there is still a great deal of work to be done using the MFT as an analysis tool, its application

to sound synthesis has not been investigated in this work. The similarity of the mFT's structure to

the model used by granular synthesis is clear. It has been noted [Roa85] that there has been some

debate in this area on the choice of suitable grain size. Using the MET for such work would allow

for a range of grain sizes in the synthesis algorithms, allowing for an adaptive, rather than uniform,

quantisation of the time-frequency 'sound maps' commonly used to drive such systems.

Less directly, the MET is a very powerful general analysis and visualisation tool in its own right,

which could be used to verify the performance of other synthesis techniques.

8.2 Concluding Remarks

This thesis has presented a new approach to the analysis of musical signals. It has investigated the

application of a new signal transform, the Multiresolution Fourier Transform, to the transcription

of polyphonic music. The MET provides a multiplicity of views of a signal, each with differing

time-frequency resolutions, in a regular structure enabling the development of analysis algorithms

which operate in a space with axes of time, frequency and scale. The motivation for this approach

was provided by observing that it is not possible to define a single transform analysis window suited

to the detection of the wide range of features present in musical signals.

Algorithms have been presented to detect and track the partials of musical notes based on a

novel statistical model, and to find groups of these partials to form a list of note estimates. A key

part of the analysis involved the confirmation of feature estimates from various scales within the

NFL This process facilitates the selection of suitable analysis scales for each feature as well as

increasing the probability of reliable detection and decreasing the uncertainties of the associated

parameter estimates.
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While the list of note features detected from the signals is far from complete, it is hoped that

the results presented demonstrate the success of the technique and that the discussion of the general

principles involved points towards similar success for a broader range of features given the flexibility

of the mFr as a transform for signal analysis.

The key elements of this work form part of a paper [WCPon] which also includes the application

of the IVIFT in image processing as well as a more rigorous theoretical development of the transform

itself. This work was presented at the International Computer Music Conference in Ohio (1989)

and Glasgow [PW90] (1990).
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