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Abstract. - Detailed balance and the resulting constraints on equilibrium steady states constitute
corner stones of statistical physics. No principles of comparable significance are known for non-
equilibrium steady states. Here we introduce a representation of non-equilibrium steady-states
(that violate detailed balance) in terms of cycle fluxes. We show that on the new space where the
states are the original flux cycles, there is a natural dynamics that satisfies detailed balance. The
non-equilibrium steady-state occupation numbers of cycles hence follow a Boltzmann distribution,
and expectation values of arbitrary observables for the stochastic systems can be expressed as
cycle averages, resembling the representation of expectation values in dynamical systems by cycle
expansions.

Introduction. – A major challenge of statistical
physics is to identify principles organizing the structure
of steady states [1,2]. Equilibrium systems are singled out
by detailed balance, a symmetry in the transition rates be-
tween different states which can be used to explicitly cal-
culate their free energies [3,4]. This symmetry provides a
thermodynamic potential which yields all thermodynamic
properties of the system. In non-equilibrium steady states
(NESS) detailed balance is broken. Consequently, there is
no reason to expect that there is a potential function for
these systems that allows one to calculate the steady-state
properties of the system.

Here we demonstrate that this expectation is premature.
In our argument we follow Penrose [5], and idealize observ-
able processes as irreducible, positively recurrent Markov
processes on a finite state space. Irreducible means that
the system can reach any state i from any other state
j with a finite number of transitions. Positive recurrence
means that in an infinite time span the system visits every
state infinitely often. Together, these assumptions imply
ergodicity, and hence ensure the existence of a steady state
[6].

Below, we present a principle to map the non-
equilibrium steady state of such a system to a Markov
process on a dual space where detailed balance is restored.
Steady-state averages take the form of equilibrium aver-
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Fig. 1: Representation of a non-equilibrium steady state in
terms of linear superpositions of cycle fluxes. The numbers on
the arrows representing the directed edges are the values of
the fluxes. The steady-state fluxes between the states 1©, 2©,
3© and 4© can be decomposed into cycle fluxes with positive

weights. Two different decompositions are indicated and cycles
are labeled by greek letters.

ages on that dual space.

The essence of this approach is best viewed in the en-
semble picture. Consider a large number of identical phys-
ical systems with a finite number of states. Each system
entering a certain state i stays there for an average time
〈τi〉, and then proceeds to another state j according to a
fixed transition rate. Up to normalization the flux may
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be seen as the number of systems proceeding from one
state to another per unit time. In fig. 1 we present an
elementary four-state example. A cycle representation of
the fluxes means to write them as a linear superposition
of cycle fluxes with a non-negative weight assigned to each
cycle. Below we show that such representations exist for
every NESS. To follow the line of arguments it is helpful
to consider a socio-physical analogy: the cycles may be
interpreted as the lines of a mass transit system with the
peculiarity that the lines are running one-way on closed
loops. The fluxes are proportional to the total amount
of passengers travelling from one station to another; i.e.,
from a state i to state j of the Markov process. The lines
are represented in different colors in fig. 1. We imagine
each passenger to carry a (correspondingly colored) ticket
indicating the line he is currently using. Passengers can
change lines in the stations. To remain in a steady state
this involves exchange of tickets between passengers at sta-
tions.

The aim of this work is to formally describe the rep-
resentation of NESS by cyclic fluxes, that represent the
number of passengers on the lines, and to explore conse-
quences of this point of view on NESS. Natural questions
concern the existence and uniqueness of such a represen-
tation. Fig. 1 shows by example that a representation in
terms of a linear superposition of cycles is not unique. The
question concerning existence will be answered positively
in the following.

Markov Processes Revisited. – We start by briefly
reviewing Markov processes on a finite state space [3,4,6].
We represent the process as a random walk on a graph
G = (V,E) with N = |V | vertices vi, i ∈ {1, . . . , N}
and directed edges (i, j) ∈ E. The vertices represent the
states of the non-equilibrium system, and are shown as
grey circles displaying the vertex indices 1, . . . , 4 in fig. 1.
A system entering vertex vi will jump to another vertex
vj with probability aij after having stayed in state i for an
exponentially distributed waiting time τi. Consequently,
the transition rates per unit time are wij := aij/〈τi〉. A
system trajectory is the realization of a random walk of
one of the passengers through the transit system. In terms
of the transition matrix

W i
j :=

{
wij i 6= j

−
∑
k 6=i w

i
k = −〈τi〉−1 i = j

(1)

or for the fluxes from i to j 6= i

φij = piw
i
j (2)

the equation for the evolution of the probability pi(t) to
find the system in a state i at time t becomes the compact
form

dpi
dt

=
∑
j

W j
i pj =

∑
j 6=i

(
φij − φ

j
i

)
. (3)

Here and in the following we suppress the explicit time-
dependence and write, e.g., pi instead of pi(t). The first

equality in eq. (3) stresses the linearity of the problem and
is useful for algebraic considerations. The second empha-
sizes the physical concept of a master or continuity equa-
tion: in a steady state the net influx must equal the net

outflux,
∑
j 6=i φ

i
j
∗

=
∑
j 6=i φ

j
i

∗
. In terms of the currents,

Iij := φij − φ
j
i , this node condition,

0
!
=
∑
j 6=i

(
φij
∗ − φji

∗)
=
∑
j 6=i

Iij
∗
, (4)

amounts to Kirchhoff’s current law which expresses parti-
cle (or probability) conservation at each vertex [10]. Here
and in the following the ∗ marks steady-state quantities.

Due to the continuity equation (3) every normalized ini-
tial distribution remains normalized at all times, and it
relaxes to a steady state p∗i [3].

Algebraically the steady-state probability distribution
p∗i is a left eigenvector of W with eigenvalue zero. Er-
godicity ascertains the existence of a path i0 . . . in with a
positive ωi0,...,in :=

∏n
j=1 w

ij−1

ij
for every pair of vertices

i0 and in. This ensures existence and uniqueness of the
normalized distribution obeying∑

i

p∗i = 1. (5)

In the physics literature a steady state is called an equi-
librium if it obeys detailed balance, i.e., if the individual
fluxes between any two vertices i and j cancel

Iij
∗

= φij
∗ − φji

∗
= 0. (6)

A necessary yet not sufficient condition for detailed bal-

ance is that φij
∗ 6= 0 implies φji

∗
6= 0. As we will argue

below, this is a symmetry property obeyed by all physical
systems. For an equilibrium system the ratio of ωi0,...,in
and the one for the reverse path ωin,...,i0 only depends
on the initial and final point irrespective of the chosen
path [3, 4]. Examining the above relation for paths start-
ing from a fixed reference vertex j one obtains an explicit
representation of the steady-state probability density

p∗i = p∗j
ωj,...,i
ωi,...,j

=: p∗j exp
(
−U (j)

i

)
. (7)

Hence one can always write U
(j)
i = Ui + cj , where Ui is a

universal function and cj depends on the chosen reference
site. Consequently,

p∗i = Z−1 exp(−Ui) (8a)

where the partition function

Z =
∑
k

exp(−Uk) (8b)

secures normalization eq. (5).
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Cycle Representation and Transform. – The cy-
cle transform is based on the idea that fluxes in a steady
state may be represented as superpositions of cycle fluxes
(cf. fig. 1). A cycle α of length sα is an equivalence class
of ordered sets of sα vertices which form a self-avoiding
closed path, where paths differing only by a cyclic permu-
tation of vertices are identified. We quantify the number of
systems traversing each edge of α by the weight m∗α. There
can be several cycles traversing an edge (i, j), the flux φij
quantifies the total number of states traversing that edge
per unit time. In the remainder of this section we work
out how the steady-state fluxes can be represented by dif-
ferent cycles α with positive weights m∗α assigned to each
of them.

To express the geometrical structure of the cycles we
define the indicator functions χij,α and χi,α as

χij,α =


1 if α passes through the

directed edge (i, j)

0 otherwise

(9a)

χi,α =

{
1 if α passes through vertex i

0 otherwise
(9b)

In the language of graph theory χij,α is the adjacency
matrix of a cycle. The following identities hold:∑

j

χij,α =
∑
j

χji,α = χi,α, (10)

∑
i

χi,α = sα, (11)

where sα is the length of the cycle α. With their help we
formulate the ideas of the previous paragraph mathemati-
cally. As we show below, there is a set of cycles {αk} with
non-negative flux densities m∗α ≥ 0 such that

φij
∗

=
∑
α

m∗αχ
i
j,α (12)

for all pairs of vertices (i, j).
To obtain a decomposition we choose an arbitrary enu-

meration of all M possible cycles α1, α2, . . . , αM on G.
The ambiguity in choosing the order of this enumeration
leads to different decompositions constructed by the fol-
lowing algorithm:

Start the iteration for cycle α1 with a flux field φij
(1)

= φij
∗

that contains the steady-state fluxes of the original system:

• Initialization:

φij
(1)

:= φij
∗
, for all i, j. (13)

Successively subtract the fluxes along different cycles. In
the kth step set m∗αk

to be the minimum of the values of

the flux φij
(k)

along the edges contained in αk. The new
flux field in iteration k + 1 is the current one with m∗αk

subtracted at the edges traversed by cycle αk:

• Iteration:

m∗αk
:= min

i,j
{φij

(k)
: χij,αk

> 0}, (14a)

φij
(k+1)

:= φij
(k) −m∗αk

χijαk
. (14b)

The algorithm terminates after all possible cycles have
been considered:

• Termination condition:

k = M (15)

We claim that at this point all edge fluxes have been as-
signed to a cycle, and the remaining flux field is zero along
all edges,

φij
(M+1)

= 0, for all i, j. (16)

Existence of a valid decomposition. – To show
existence of such a decomposition we demonstrate that
for every flux field satisfying the steady-state condition,
eq. (4), the algorithm terminates with zero fluxes along all
edges, eq. (16), and provides non-negative weights which
fulfill the defining equation (12).

The algorithm always terminates in finite time because
M is finite.

Since the weight assigned to a cycle, eq. (14a), is the

minimum of all φij
(k)

among the edges of cycle αk, the

new fluxes φij
(k+1)

assigned by eq. (14b) remain non-
negative. Consequently, the steady-state weights m∗αk

are
non-negative.

We prove eq. (16) by contradiction. Suppose there is a

flux φij
(M+1) 6= 0. If this flux fulfills the node condition

there is a cycle which could have been assigned a larger
weight m∗αk

, contradicting eq. (14a). Hence, the remaining
fluxes obey ∑

j

(
φij

(M+1) − φji
(M+1)

)
6= 0. (17)

In contrast, for every steady state the intial flux field
eq. (13) fulfills the node condition (4). Iterating the initial
flux field we find

0 =
∑
j

(
φij

(k) − φji
(k)
)

=
∑
j

(
φij

(k+1) − φji
(k+1)

)
+m∗αk

∑
j

(
χij,αk

− χji,αk

)
=
∑
j

(
φij

(k+1) − φji
(k+1)

)
where we used eq. (10) in the last line. In contradiction to
eq. (17) this holds for every k ≤M , and we hence proved
eq. (16).
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Fig. 2: Transformed graph H obtained for the original graph G
for the two decomposition of the flux field introduced in fig. 1.

By construction the cycle-fluxes obtained in this way
fulfill eq. (12). We use eq. (14b) and a telescope sum
argument to obtain

M∑
k=1

m∗αk
χij,αk

= φij
(1) − φij

(M+1)
= φij

∗

where in the last equation we used the algorithm initial-
ization eq. (13) and eq. (16).

Although one cannot specify in advance which cycles
are used in the general case, one can (by using the free-
dom of choice in the enumeration) specify a set of disjoint
cycles to be part of the cycles used in the decomposition,
i.e., cycles α with non-vanishing weights m∗α. A possible
choice is to include the set of 2-cycles. The result is a
splitting of the fluxes in a detailed-balance part (the set
represented by the 2-cycles), and the remaining current
part. This resembles the approach in [4], but is concep-
tionally different because the decomposition here does not
discard the information stored in the 2-cycles.

Transitions on cycle space. – The set of weights
{m∗αk

} can be interpreted as a mapping that transforms
the original graphG = (V,E) into a new oneH = (C,EC),
see fig. 2. For instance, the vertex α ∈ C represents the
cycle α in G with the non-zero weight m∗α as identified by
the algorithm. A directed edge (α, β) ∈ EC indicates that
two cycles share at least one vertex of G, i.e., one state of
the original system. Each edge (α, β) of the transformed
graph is associated with a transition rate bαβ . In the anal-
ogy of the mass transit system ψαβ := m∗αb

α
β characterizes

the number of passengers changing from line α to line β
in the stationary system, see fig. 2.

We shall call the operation G→ H the cycle transform.
By virtue of eq. (12), the inverse of the cycle transform
exists and is unique.

To find the rate constants bαβ we realize that in the
steady state at each vertex vi (i.e., station, in the socio-
physical picture) a constant number of passengers arrives
per unit time. This number is proportional to the overall

influx
∑
γ χi,γm

∗
γ =

∑
j 6=i φ

j
i

∗
. After all, the passengers

carry tickets indicating which line they are running on.
Upon arrival at the station, the passengers randomly ex-
change their tickets with other passengers, and board the
line for which their new ticket holds. We adopt a random

exchange where all passengers arriving at a station put
their tickets into an urn and subsquently draw a new one
from the urn. The probability for a passenger to continue
on line β after arriving at station i amounts to the ratio
of the number of tickets for line β to the overall number
of tickets.

Thus at station i the probability of continuing with line
β is

b
(i)
β =

m∗β∑
γ χi,γm

∗
γ

. (18)

The total flux ψαβ from line α to line β is obtained by

summing the local exchange flux m∗αb
(i)
β over all mutual

stations where χβ,iχα,i = 1

ψαβ =
∑
i

χβ,iχα,im
∗
αb

(i)
β = m∗α

∑
i

χβ,iχα,i∑
γ χi,γm

∗
γ

m∗β = ψβα.

(19)
One of the key features of the new formulation is that
these cycle-space fluxes fulfill detailed balance (ψαβ =

ψβα for all α, β). This is due to the formulation of the
exchange process as a microscopically balanced ticket ex-
change.

Because of detailed balance in H we can proceed along
the line indicated by eq. (7). Replacing wij by bαβ , one
obtains a potential Hα, such that the occupation numbers
m∗α are given by Boltzmann weights,

m∗α = Z−1 exp(−Hα). (20)

Here the partition function

Z =
∑
α

τα exp (−Hα) , (21)

includes the average cycle period

τα =
∑
i

χα,i〈τi〉. (22)

After all, the weights m∗α are no probabilities. According
to eqs. (1) and (2) they rather fulfill∑

α

m∗ατα =
∑
α

m∗α
∑
i

χα,i〈τi〉 =
∑
i

χ∗i = 1

In summary, the potential Hα is obtained from the rate
constants wij , by determining the population density m∗α
of the cycles, followed by eqs. (18), (19) and finally (7).

Physical applications. – Markov processes often
possess a symmetry property, sometimes denoted as dy-
namical reversibility [11]: if for any two states i and j the
transition i → j is possible, then the reverse transition
j → i must also be possible, i.e., wij 6= 0 ⇔ wji 6= 0.

Still, one can have wij � wji . This symmetry always holds
for physical systems with reversible microscopic laws be-
cause for every microscopic “forward” trajectory leading
the system from state i to j the time-reversed “backward”
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trajectory from j to i is also a valid trajectory. In contrast,
the example of fig. 1 does not fulfill dynamic reversibility
along its outer edges. Yet the transformed graphs (fig. 2)
always do.

The connection of Markov process to thermodynamics
[3, 5, 12–14] allows us to explore the importance of fluxes
in two fundamental ways:

1. in non-equilibrium thermodynamics the central quan-
tities are the non-zero currents I which are driven by
affinities A. Though such quantities are usually de-
fined for macroscopic transport, one can consistently
define them for stochastic transitions if dynamic re-
versibility holds:

Iij := φij − φ
j
i , (23a)

Aij := log φij − log φji . (23b)

Observe that sgn(Iij) = sgn(Aij). Consequently, the
positive total entropy production can always be ex-
pressed [3] as

Ptot =
1

2

∑
i,j

AijI
i
j ; (24)

2. also the well-known fluctuation relations for the en-
tropy production along (a set of) individual random
trajectories crucially rely on distinguishing transi-
tion i→ j from j → i, as they compare probabil-
ities of trajectories and their reverse counter-parts
[11,13–16].

An electric and thermodynamic analogy. – In
this section we introduce an analogy relating Markov pro-
cesses, thermodynamics and electrical circuits. Different
electric analogies have been presented in the literature
that are suitable for different purposes (see e.g. [4,6]). The
appropriate analogies are summarized in table 1. In this
analogy the quantities defined above have the properties
of their electrical counterparts:
U , I, A and E are antisymmetric and the resistance R is
symmetric and positive.
The definition of the fluxes, eq. (2), obeys Kirchhoff’s
equation [10],

U ij + E ij = RijI
i
j , (25)

which states that if no current is flowing between two
nodes with a battery-like element connecting them, a volt-
age difference U is created. This voltage is the negative of
the electromotance E of the battery. However, if a current
is running over a resistor R, it obeys an Ohmic law and
the voltage drops by R · I.
Kirchhoff’s current law (“node rule”) amounts to eq. (4).
Kirchhoff’s voltage law (“mesh rule”) states that integrat-
ing the voltage differences around a closed cycle is zero.
This also holds in our analogy. It is the basis for the iden-
tification of U with a total differential in thermodynamics.

symbol analogy thermodynamic electric

Vi − log pi potential

U ij log[pi/pj ] tot. differential voltage

Iij φij − φ
j
i current

Aij log[φij/φ
j
i ] affinity -

E ij log[wij/w
j
i ] - electromotance

Rij U ji /I
i
j - resistance

Psys
1
2

∑
i,j U

i
jI
i
j entropy change power

Table 1: Electrical and thermodynamical analogies for Markov
processes.

Finally, the quantity Psys describes the change of the sys-
tem’s Gibbs entropy Ssys := −

∑
i pi log pi as the systems

undergoes its dynamics,

Psys =
d

dt
Ssys. (26)

It vanishes in the steady state, and can be related to the
irreversible entropy production Ptot by defining an entropy
flux to the medium [3,4]

Pmed =
1

2

∑
i,j

(
φij − φ

j
i

)
log

wij

wji
. (27)

One then finds Ptot = Psys + Pmed. Introducing thermo-
dynamic analogues one obtains Pmed = 1

2

∑
i,j I

i
jE ij such

that Ptot = 1
2

∑
i,j I

i
j(U

i
j + E ij). Hence, the defintions of ta-

ble 1 are consistent with the definitions made earlier, and
Aij = U ij + E ij .

The analogy is not perfect, however. Consider a sim-
ple cycle with the same current flowing through all nodes.
Then the potential difference between two non-adjacent
nodes i and j cannot be obtained from an effective resis-
tance (or electromotance) which is the sum of the individ-
ual resistances (or electromotances) of the edges connect-
ing i to j as it would be the case in an electrical network.

Averages on cycle space. – For every well-defined
mapping F : α 7→ Fα from the set of cycles to the real
numbers we define the cycle average

〈F 〉C :=
∑
α

m∗αFα. (28)

For instance, for the geometric matrices χij,α we have

〈χij〉C = φij
∗

by the definitions eqs. (12, 28). On the other
hand, 〈1〉C 6= 1, because the edge fluxes are not normal-
ized weights.

Now let us consider cycle-space observables related to
physical quantities. Consider some matrix F ∈ RN×N .
We can interpret this quantity as the change of some phys-
ical observable due to the transitions between different
states. We define

JF (t) =
∑
i,j

F ijφ
i
j(t) =: 〈F 〉2,t (29)
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as the average flux of quantity F at time t. The last
equivalence is the definition of the average as the two-point
probability-density function at time t. For antisymmetric
F one has JF = 1/2

∑
i,j F

i
j I
i
j .

To connect this with the cycle transform we define an
observable

Fα =
∑
i,j

χij,αF
i
j (30)

which is the integrated contribution of F along cycle α. It
is straightforward to show that

J∗F = lim
t→∞
〈F 〉2,t = 〈F 〉C . (31)

For F ij = Aij = log
(
φij/φ

j
i

)
we hence generalize the result

of [3] for the entropy production in the steady state

P ∗tot = J∗A = 〈A〉C =
∑
α

m∗αAα (32)

to cycles that are constructed in a completely different
way than in [3]. Here, to obtain the first equality we used
the antisymmetry of Aij .

Conclusion & Outlook. – In this work we presented
a mapping, the cycle transform, that generally applies to
steady states of discrete Markov processes. It can be used
to transform a non-equilibrium steady state represented
by a graph G into an equilibrium steady state on a graph
H whose vertices are appropriatly chosen cycles in G. For
physical systems, a natural symmetry on G, called dy-
namical reversibility, allows us to relate our method to
thermodynamics. The presented mapping supports the
paradigm of focussing on fluxes rather than currents. The
non-uniqueness of the decomposition can be used to seper-
ate detailed balance contributions (2-cycles) from non-
equilibrium currents (non-trivial cycles). Also, the con-
nection between averages defined on the space of cycles to
steady-state averages was made.

In forthcoming work the cycle transform might serve as
another perspective on thermodynamical machines where
different cycles represent the different operation modes.
A well-studied example is the steady-state dynamics of
the molecular motor kinesin (see eg. [17]) in the frame-
work of a Markov process. For such small machines ther-
mal fluctuations play a crucial role. The cycle-transform
representation of the entropy production, eq. (32), is a
novel perspective to this problem, which can also provide
a deeper understanding of (steady-state) fluctuation rela-
tions [15,18,19].

The suggested approach also has interesting parallels to
the theory of dynamical systems, especially chaos theory
[7–9]. In chaos theory cycles, i.e., unstable periodic orbits
of the dynamical system, play a crucial role. They lie
dense in phase space such that trajectories can be seen as
a realization of a random-walk dynamics between cycles,
similar to the dynamics in cycle space considered in the
present study. Also expectation values in such systems
can be calculated using cycle expansions.

Finally, though this paradigm might be useful to cap-
ture non-equilibrium thermodynamics it still relies cru-
cially on the existence of a steady state. For many
interesting non-equilibrium systems, like the Belousov-
Zhabotinsky reaction in a flow reactor [2,20] this paradigm
is not applicable. Instead of having a steady state with
constant macroscopic quantities such systems show per-
sistent regular oscillations on a macroscopic scale which
prevent the existence of a steady-state probability den-
sity. To describe such systems we propose to explore the
generalization of the present results to Markov processes
with sources and sinks of probability (and thus drop the
assumption of irreducibility) in order to account mass flux
through the system.

∗ ∗ ∗

The authors are indebted to L. Rondoni, M. Brinkmann,
R. Lipowsky, P. Cvitanović, U. Seifert, B. Drossel, M.
Denker, A. Fingerle, and V. Zaburdaev for inspiring dis-
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