
The Library
Improvement of activated charcoal-ammonia adsorption heat pumping/refrigeration cycles : investigation of porosity and heat/mass transfer chacteristics
Tools
Turner, Lynne Helen (1992) Improvement of activated charcoal-ammonia adsorption heat pumping/refrigeration cycles : investigation of porosity and heat/mass transfer chacteristics. PhD thesis, University of Warwick.
![]()
|
PDF
WRAP_THESIS_Turner_1992.pdf - Submitted Version - Requires a PDF viewer. Download (9Mb) |
Official URL: http://webcat.warwick.ac.uk/record=b1412761~S1
Abstract
Reported in this thesis are the results of a combined theoretical and experimental
study into improvements to the solid adsorption refrigeration or heat pumping cycle
using the ammonia-activated charcoal pair. The three areas which have been examined
are the cycle thermodynamics, the porosity characteristics of ammonia-charcoal pairs and
the heat transfer through an ammonia granular charcoal packed bed.
It was found through the use of advanced thermodynamic cycles utilizing multiple
beds that the coefficient of performance of a refrigerator could be increased by sv 250%
and the coefficient of amplification of a heat pump could be increased by co 110%. The
coefficients of performance and amplification may also be increased to a lesser degree
by judicious choice of the charcoal porosity characteristics.
A survey of charcoal porosity characteristics revealed that the useful energy per
cycle could be doubled by the correct choice of charcoal.
The thermal conductivity of an ammonia granular charcoal bed was measured using
a novel piece of apparatus. From the results it was decided for all practical purposes that
the bed conductivity may be considered constant and equal to 0.165 W/m K.
The power output of the cycle was found from modelling the dynamic desorption of
a reactor using a one-dimensional finite difference model set in radial coordinates. The
cycle simulations revealed that ideally the reactor should be constructed from solid charcoal
shapes manufactured in such a way as to incorporate paths of enhanced conductance
and be integral with the containing vessel wall.
Item Type: | Thesis (PhD) | ||||
---|---|---|---|---|---|
Subjects: | T Technology > TP Chemical technology | ||||
Library of Congress Subject Headings (LCSH): | Charcoal -- Absorption and adsorption, Refrigeration and refrigerating machinery -- Design and construction, Heat pumps, Ammonia | ||||
Official Date: | July 1992 | ||||
Dates: |
|
||||
Institution: | University of Warwick | ||||
Theses Department: | School of Engineering | ||||
Thesis Type: | PhD | ||||
Publication Status: | Unpublished | ||||
Supervisor(s)/Advisor: | Critoph, Robert E. | ||||
Extent: | vi, 243 leaves | ||||
Language: | eng |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year