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ABSTRACT

A new switched reluctance motor configuration is proposed, in which the windings

are arranged to encourage short magnetic flux paths within the motor. Short flux

path motor configurations have been modelled extensively using electromagnetic

finite element analysis. It is demonstrated that short flux paths significantly reduce

the MMF required to establish the B-field pattern in a motor; as a result copper

losses are reduced. In addition, hysteresis and eddy current losses are decreased

as the volume of iron in which iron losses are generated is reduced.

Short flux paths are formed when two adjacent phase windings, configured to give

neighbouring stator teeth opposite magnetic polarity, are simultaneously excited.

In order to accurately model short flux path machines, a thorough electromagnetic

analysis of doubly excited systems is adopted. The proposed modelling theory

forms the basis for design considerations that can optimise the performance of the

4-phase and 5-phase switched reluctance motors.

The electromagnetic theory of doubly excited systems is used in conjunction with

a dynamic simulation program, written in Turbo Pascal, to design a 5-phase

switched reluctance motor that exploits the advantages of short flux paths. Test

results from the constructed prototype confirm that short flux paths significantly

improve the efficiency of the switched reluctance motor. The 5-phase prototype

achieves higher efficiency than all known prior art switched reluctance motors and

industrial induction machines constructed in the same frame size. At the

[1300rpm, 20Nrn] operating point the efficiency of the 5-phase drive was measured

to be 87%. The corresponding motor efficiency was in excess of 89.5%.



PREFACE

The switched reluctance motor (SRM) is an electric motor consisting of a salient

pole stator with concentrated excitation windings and a salient pole rotor with no

conductors or permanent magnets. Torque is produced by the tendency of the

rotating member to move to the position which maximises the flux linking the

excited stator phase. Rotation is maintained by switching on and off the current

in the phase windings in synchronism with the position of the rotor. The direction

of the torque does not depend on the sign of the flux and current, but only on the

sign of the rate of change of reluctance with rotor position. This offers the

advantage of simple, unipolar power converter circuits.

Switched reluctance motors of three and four phases have received considerable

attention in recent years, as low cost robust variable speed drives. The 3-phase 6/4

(i.e. 6 poles on the stator and 4 poles on the rotor) motor ensures starting capability

in either direction. However, the torque profile of this motor contains a significant

amount of ripple. In contrast, the 4-phase 8/6 configuration can operate with two

phases simultaneously excited which helps to minimise the problem with torque

dips. The penalty incurred is that of increased iron loss, due to the higher

fundamental switching frequency.

This thesis describes the design and development of a 5-phase 10/8 switched

reluctance drive. The 5-phase motor exploits the advantages of a new winding

configuration which encourages short flux paths within the motor. Short flux paths

reduce the MMF required to establish the B-field pattern in the motor, leading to

a significant reduction in copper losses. In addition, the volume of iron in which

hysteresis and eddy current losses are generated is reduced considerably. The

proposed 5-phase motor can operate with (at least) two phases excited at any time

to produce smooth torque with high efficiency.

A thorough electromagnetic analysis of doubly excited systems, which relates to



switched reluctance motors operating with two phase windings conducting at any

time, is proposed in this thesis. Mutual coupling and saturation effects are

investigated. Accurate electromagnetic modelling forms the basis for design

considerations that can optimise the performance of the 4-phase and 5-phase

switched reluctance motors.

Electromagnetic finite element analysis (FEA) is used extensively to model the

static performance of a number of different switched reluctance drives. The finite

element analysis program is used not only as a motor design tool but also as a

means of validating the electromagnetic theory of doubly excited switched

reluctance motors. Switched reluctance motor structures are modelled using two

and three-dimensional finite element analysis. The effect of end-core flux on the

performance of the switched reluctance motor is investigated.

Finite element analysis is employed in the lamination design of the 5-phase

prototype together with a sizing / dynamic simulation program, which is developed

in Turbo Pascal. Test results from the constructed 5-phase motor confirm the

significant benefits arising when the machine is configured for short flux paths.

The thesis has eight chapters, a list of references and six appendices. Chapter 1

gives a historical background to the reluctance motor before describing in more

detail the components of the present day switched reluctance drive.

Chapter 2 describes the more usual switched reluctance motor designs and

highlights their merits and shortcomings. The new motor design is subsequently

described in which the windings are configured for short flux paths. The

advantages of the proposed configuration over prior art motors are highlighted. In

addition, the chapter introduces finite element analysis, the 'software tool' used for

electromagnetic design of switched reluctance motors. The design and construction

of 'hardware tools', such as drive circuits for power converters and controller

components is also described. These were employed to test a number of different
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switched reluctance motors throughout the project. The chapter concludes with an

account of the experimental procedures which have been adopted.

Chapter 3 introduces an electromagnetic analysis of doubly excited systems which

relates to switched reluctance motors operating with two phases excited at any

time. The new modelling procedure includes the effects of mutual coupling and

accounts for the increased flux density, present in some parts of the magnetic

circuit when two phases are simultaneously excited. The chapter focuses on the

implementation of the modelling theory on a 150W 4-phase and a 4kW 7-phase

machine. The design of 4-phase switched reluctance drives for low torque ripple

is proposed. Finite element analysis results from a 4kW 7-phase motor, configured

for long and short flux paths, highlight the advantages offered by the latter

configuration.

Chapter 4 describes the effect of end-core flux on the performance of the switched

reluctance motor. The chapter begins with a description of three-dimensional

effects in the switched reluctance motor. The superiority of three-dimensional

modelling is asserted by comparing test results from the 150W 4-phase motor with

two-dimensional and three-dimensional finite element modelling results. Correction

charts are set up to account for end-core flux at a range of rotor positions and

excitations, to alleviate the need for three-dimensional modelling of the switched

reluctance motor. An extensive discussion into three-dimensional modelling of

anisotropic material structures is also given. In addition, a useful description of the

effect of end-core flux on instantaneous static torque production is presented.

The following chapter describes the work that was undertaken in this project to

develop SRDESIGN; a program written in Turbo Pascal for dynamic simulation

of switched reluctance drives. The principal mathematical formulations

incorporated in the program are described.

The accuracy of the dynamic simulation program is verified in chapter 6, where



simulated data from the 150W 4-phase and 4kW 7-phase motors is compared with

experimental results.

Chapter 7 describes the design, construction and testing of the 5-phase switched

reluctance drive. Finite element analysis is used to compare the static performance

of the 5-phase motor with that of a 4-phase machine (based on the Oulton motor).

Test results from the 5-phase prototype are compared with simulated data obtained

using SRDESIGN. The performance of the 5-phase motor is compared to that of

a 'standard' and 'high efficiency' induction motor of the same frame size.

The main conclusions of the work are highlighted in chapter 8. The author's

contribution to knowledge is described and areas of future work are proposed.

The list of references is followed by appendices containing mathematical

derivations and power device data sheets. 'Members' of the stepping motor family

are also reviewed and a brief description of operation of the induction motor is

given.



Chapter 1

THE SWITCHED RELUCTANCE DRIVE:

AN OVERVIEW

1.1 Historical background to the reluctance motor.

The operation of the switched reluctance motor relies on the 'alignment principle'

which gives rise to reluctance torque. When a salient pole rotor is turned from the

position of alignment with the excited phase of a salient pole stator, a torque

tending to realign the members will be developed. The phenomenon has been

known ever since the first experiments on electromagnetism. In the first half of

the 19th century, scientists all over the world were experimenting with this effect

in order to produce an electromechanical energy conversion device. Their early

designs were named 'electromagnetic engines'. In a book [1] published in 1859,

H. M. Noad describes much of this early development work. Some of the early

designs which he describes show remarkable similarity to the switched reluctance

motor of today.

In 1838, W. H. Taylor obtained a patent for his electromagnetic engine in the

United States and subsequently, on the 2' of May 1840, he was granted a patent

[2] in England for the same engine. The structure was composed of a wooden

wheel, on the surface of which were mounted seven pieces of soft iron, called

armatures, equally spaced around the periphery. The wheel rotated within a

suitable framework in which four electromagnets were mounted. The soft iron

pieces could pass over each electromagnet in turn without touching it. In his

description of the engine, Taylor said that "the magnets must also be so fixed in

the framework that when the centre of one of them is opposite the centre of an

armature, another magnet shall have one of its edges just opposite the edge of an

armature, and the third its contrary edge opposite a contrary edge of another
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armature and the fourth magnet directly in the centre between the two". This

arrangement ensured that there was always at least one of the electromagnets

capable of producing torque irrespective of the direction of rotation. It is for the

same reason that today's reluctance motors have different numbers of rotor and

stator poles. Taylor's wheel had a mechanical commutator which magnetised an

electromagnet until a soft iron pole piece was brought into alignment and then

demagnetised that electromagnet when its "attractive power" ceased to "operate

with advantage". A lever arrangement on the commutator allowed the turn-on

angle of the electromagnets to be altered so that the engine could be stopped and

reversed. Taylor also pointed out that current needs only to flow through the

electromagnet in one direction, making the connection to the power source a

simpler task. A detailed account of this engine was given in the Mechanics

Magazine [3] in 1840. This resulted in many other scientists describing similar

work which they had completed.

One such person was Robert Davidson of Aberdeen who wrote to the editor of

Mechanics Magazine [4] claiming priority over Taylor's invention, as he had built

a very similar machine himself. Davidson pursued his ideas further and in

September 1842 successfully powered an electric locomotive on the Edinburgh to

Glasgow Railway [5,6], using a six-step reluctance motor. The motor comprised

of two electromagnets, mounted 180 mechanical degrees apart in space, as shown

in fig. 1.1. Between them was a wooden rotor on which three equally spaced

rectangular bars of iron were fixed. Switching between the two electromagnets

was being synchronised to appropriate rotor angles by a commutator. The

commutator consisted of a disk, divided into twice as many parts as there were

armatures, each part being alternately copper or some non-conducting material.

The disk was mounted on the motor shaft and revolved at the rotor speed. One

end of the winding on each 'stator pole' was connected to the negative battery

terminal. The other "extremity" of each winding made contact with the rotating

disk. The disk also made contact with a wire feeding into the positive battery

terminal.
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Fig. 1.1. Principle of Davidson's six—step reluctance motor.

One problem faced by all the early inventors was the size of the batteries which

were required to power their machines. Another major problem was likely to have

been heating losses in the iron which was not laminated. In addition, the

unbalanced nature of the magnetic forces required very rigid construction or very

large air gaps in order to avoid contact between the stationary and moving parts.

The latter solution led to unnecessarily high copper losses. Davidson's locomotive

reached a disappointing 4 mph over a distance of 1.5 miles. Current in the motor

windings fell off with time due to lack of proper cooling arrangements. Other

electromagnetic engines with similarities to reluctance motors were constructed by

Bain, Wheatstone and Henley [1]. However these motors all suffered from torque

pulsations and were soon superseded by the invention of the dc machine.

1.2 A present day switched reluctance drive.

One hundred and twenty years after these early experiments, the switched

reluctance motor began to realize its full potential. The modern era of power

electronics and computer-aided design brought the switched reluctance motor into

the variable speed drive market [7,8]. The simple brushless structure of the motor
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Fig. 1.2. Block diagram of a switched reluctance drive.
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makes it very reliable in operation and keeps construction costs at bay. High

permeability-low loss materials and rigid construction, which allows a small air gap

between the stationary and rotating members, have increased the motor efficiency.

The unipolar power converter which has replaced the mechanical commutator is

reliable and robust.

A block diagram of a typical switched reluctance drive is shown in fig. 1.2.

Unlike induction motors or dc motors the switched reluctance motor cannot run

directly from an ac or de supply. The flux in the switched reluctance motor is not

constant, but must be established from zero every working step. A power

converter circuit must supply unipolar current pulses, timed accurately to coincide

with the rising inductance period of each phase winding. It is therefore

advantageous to feed rotor position information from a shaft mounted sensor back

to the control board. The power converter must also regulate the magnitude of the

current, to meet the (torque and speed) demand placed on the drive by the load.

A phase current measuring device and current regulator should therefore be present.



Fig. 1.3. Plan of the laminations of a typical 4—phase motor.

The major parts of the switched reluctance drive shall be described in more detail

in subsequent sections of this chapter.

1.3 The switched reluctance motor.

The switched reluctance motor has a salient pole stator with concentrated excitation

windings and a salient pole rotor with no conductors or permanent magnets. A

plan view of a typical 4-phase switched reluctance motor is shown in fig. 1.3. The

4-phase motor has eight stator poles and six rotor poles. A coil is wound around

each stator pole and is connected, usually in series, with the coil on the

diametrically opposite stator pole to form a phase winding; e.g. coils 1 and 1' form

phase Pl. The reluctance of the flux path between the two diametrically opposite
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stator poles varies as a pair of rotor poles rotates into and out of alignment. Since

inductance is inversely proportional to reluctance, the inductance of a phase

winding is a maximum when the rotor is in the aligned position, and a minimum

when the rotor is in the unaligned position. In fig. 1.3 the position of the rotor is

such that two rotor teeth are aligned with the stator teeth of phase Pl. This is the

position of minimum reluctance and hence maximum inductance. The stator teeth

of phase P3 are shown to be facing the rotor interpolar air slots. This is the

position of maximum reluctance (minimum inductance) in phase P3.

The equivalent circuit of a switched reluctance motor phase winding (neglecting

mutual interaction with other phases) comprises the winding resistance, R, and the

variable winding inductance, L, as shown in fig. 1.4a. The winding inductance, L,

varies not only with rotor position, 0, but also with current, i. This is because the

magnetic circuit becomes substantially saturated when the phase current, i, is high

and there is significant overlap between the excited stator poles and the associated

rotor pole pair. The equivalent circuit satisfies Faraday's voltage law,

dt

where the flux linkage, X, is given by

X, = L(0,i)i
	 (1.2)

Typical phase current and flux linkage waveforms are shown in fig. 1.4b. A pulse

of positive torque is produced if current flows in a phase winding as the inductance

of that phase winding is increasing. The 'lines of force' acting on the structure

behave like stretched elastic bands and attempt to pull the members into alignment.

In the aligned position the magnetic forces will tend to close the air gap by pulling

opposite members together. The stator is, under such conditions, subjected to

compressive forces while the rotor is under tension. A negative torque contribution

is avoided if the current is reduced to zero before the inductance starts to decrease

again. Rotation is maintained by switching on and off the current in the stator

phase windings in synchronism with the rotor position. The rotor speed can be
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varied by changing the frequency of the current pulses.

Switched reluctance motors can operate with any number of phase windings;

however there are some guidelines governing the choice of stator and rotor pole

numbers [7,8] and therefore phase windings. To ensure starting torque in either

direction there should be at least three stator phases. Additionally there should be

different numbers of stator and rotor pole pairs. Usually there is one more stator

pole pair than rotor pole pairs, though many other combinations are possible. Both

the stator and rotor should be made of laminated steel to reduce the iron losses in

the motor. The number of stator and rotor poles has a significant influence on the

performance of the switched reluctance motor, and a choice must be made with the

particular application in perspective. Low torque ripple may be achieved by

increasing the number of stator and rotor teeth. As a penalty, the higher switching

frequencies 'fluxing' this structure would incur excessive eddy current losses at

very high speeds. It is for this reason that low cost, single phase switched

reluctance machines have been developed [9] and successfully operated at speeds

up to 20,000rpm. In addition, configurations that encourage short flux paths within

the switched reluctance motor have been reported [10], reducing losses overall

while retaining low torque ripple capability.

The absence of permanent magnets or coils on the rotor means that there are no

excitationl forces acting on the structure. Torque is produced purely due to the

variation of reluctance in the magnetic flux path, introduced by the saliency of the

rotor laminations. The direction of the reluctance torque is irrespective of the

direction of the B-field through the rotor, and hence the direction of current in the

stator phase windings is not important. The need for unipolar phase current in the

switched reluctance motor results in simpler and more reliable power converter

circuits.

1 Excitation forces are induced when a permanent magnet or wound rotor is present in a stator
roduced magnetic field.
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1.4 Existing power converter circuits for the

switched reluctance drive.

The purpose of the power converter circuit is to provide some means of increasing

and decreasing the supply of current to the phase windings. Many different power

converter circuits have been proposed for the switched reluctance motor. The

circuits which have been proposed, tested and most widely used shall be described

and the advantages and disadvantages of each highlighted.

1.4.1 Power converter with bifilar motor windings. 

Much of the early research work on switched reluctance drives concentrated on the

development of power converter circuits for motors with bifilar windings [11,12].

The single motor winding is replaced by two closely coupled bifilar windings. One

of these windings is connected to a single switching device and the other to a

freewheeling diode as shown in fig. 1.5. When the switching device is turned on,

current builds up in the main winding. The voltage across the secondary winding

reverse biases the diode. When the switch turns off, current flow transfers to the

secondary winding. A potential difference dV above the applied voltage V

required to forward bias the diode and allow stored magnetic energy to flow back

into the supply. Depending on the degree of coupling between the two windings

and their turns ratio, the voltage across the main switching device may rise to over

twice the supply voltage at the instant of turn-off. The switching device must be

rated to withstand this.

Although this power converter utilises only one switch per phase, the voltage rating

of that device must be at least twice the rating of the motor windings. A second

disadvantage of this power converter lies in the inefficient use of the copper in the

motor since only one of the bifilar windings in each pair can carry current at any

time.
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1.4.2 Power converter with split dc supply. 

One of the simplest power converter circuits suitable for controlling the unipolar

phase current in a switched reluctance motor uses a split dc supply [13,14]. Figure

1.6 shows the simplest form of this power converter. Two phase windings are

connected to the central tap point of a bipolar dc supply. The other ends of the

two phase windings are each connected to a switching device and associated

freewheeling diode. The switching device and diode associated with each phase

winding are connected in opposite positions to ensure that there isno power flow

imbalance between the two supply capacitors. This arrangement means that this

power converter circuit is only suitable for motors which have an even number of

phases.

This power converter requires only one switching device and associated

freewheeling diode per phase. Each switch and diode must be rated to withstand

the complete supply voltage plus any transient voltages due to the switching.

However only half this voltage can appear across the motor winding in the positive

or negative direction. The available supply voltage is therefore under-utilised.

1.4.3 Capacitor dump power converter.

This power converter, shown in fig. 1.7, has been proposed [15] in an attempt to

minimise the number of switching devices per phase, while ensuring that the

switches do not have to be rated much in excess of the motor voltage rating. Each

phase has a main switch (Sa, Sb and Sc) which can be turned on to increase the

current in the respective phase winding. When the switch is turned off, the stored

energy in the phase winding is transferred to the dump capacitor C. A buck

chopper circuit is used to return energy from the dump capacitor to the supply.

However the mean capacitor voltage must be maintained well above the supply rail

in order to rapidly reduce the phase current to zero after commutation. The main

switches and freewheeling diodes must therefore be rated in excess of the motor

voltage. The low reverse voltage dV impressed across the phase winding upon
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Fig. 1.7. Capacitor dump power converter.
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Fig. 1.8. Power converter with asymmetric half—bridge.



commutation may limit the drive performance, especially at high speeds. The

chopper circuit adds to the C-dump converter component count; however this is not

as high as the component count of the asymmetric half-bridge power converter

which is described below.

1.4.4 Power converter with the asymmetric half-bridge.

Some papers [16,17] have proposed using the asymmetric half-bridge as the power

converter for the switched reluctance drive. The asymmetric half-bridge is shown

in fig. 1.8 connected to one phase winding of a switched reluctance motor. One

switching device, Sa, connects the positive supply rail to one end of the phase

winding. This switch is called the upper or floating switch since the drive circuit

for such a switch must be isolated from the lower supply rail. The second

switching device, Sb, connects the other end of the phase winding to the lower

supply rail and is referred to as the lower switching device. The inductive nature

of the motor phase windings means that the asymmetric half-bridge must also

incorporate a freewheeling diode for each switching device. Each diode provides

a path for freewheeling motor current when the associated switching device is

turned off. The switches and diodes must be rated to withstand the supply voltage

plus any switching transients. The motor windings are rated at the supply voltage.

This circuit therefore allows the motor to be rated close to the maximum switch

voltage. This is important where the dc supply voltage or the available switch

voltage may be limited.

The asymmetric half-bridge has three main modes of operation. The first, a

positive volt loop, occurs when both switching devices, Sa and Sb, are turned on.

The supply voltage is connected across the phase winding and the current in the

phase winding increases rapidly, supplying energy to the motor. The second mode

of operation is a zero volt loop. This occurs if either of the two switching devices

are turned off while current is flowing in the phase winding. In this case the

current continues to flow through one switching device and one diode. Energy is

neither taken from nor returned to the dc supply. The voltage across the phase
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winding during this time is equal to the sum of the saturation voltages of the two

semiconductor devices. This voltage is very small compared to the supply voltage

and so the current in the phase winding decays very slowly. The final mode of

operation is a negative volt loop. Both the switching devices are turned off. The

current is forced to flow through both the freewheeling diodes. The current in the

phase winding decreases rapidly as energy is returned from the motor to the

supply. The asymmetric half-bridge thus offers three very flexible modes for

current control. The zero volt loop is very important in minimising the current

ripple at any given switching frequency. The zero volt loop also tends to reduce

the power flow to and from the motor during chopping by providing a path for

motor current to flow without either taking energy from or returning it to the

supply capacitors.

The major advantage with this circuit is that all the available supply voltage can

be used to control the current in the phase windings. As each phase winding is

connected to its own asymmetric half-bridge there is no restriction on the number

of phase windings. However as there are two switches per phase winding it is best

suited to motors with few phase windings.

1.4.5 Shared switch, asymmetric half-bridge power converter. 

A family of power converter circuits has been developed [18] which are based on

the asymmetric half-bridge, but use less than two switches per phase. A section

from the simplest form of the power converter circuit is shown in fig. 1.9. Two

phase windings are connected to three switching devices. The central switch in the

diagram, Sb, is connected to two phase windings and must therefore be rated to

withstand at least twice the motor phase current. The operation of this switch

affects the flow of current in either of the two phase windings to which it is

connected. This imposes a restriction on the operation of the circuit as a positive

volt loop in one phase cannot be accompanied by a negative volt loop in the

adjoining phase. By carefully selecting the phase windings which are connected

to the same switch it is possible to ensure that this restriction does not impose a
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Fig. 1.9. Shared switch, asymmetric half—bridge converter.

severe limitation on the operation of the drive.

The switching steps involved in the excitation of phase windings P1 and P2 are

shown in Table 1.1. Current i, can be built up in a positive volt loop by

simultaneously switching devices Sa and Sb on. When current i1 reaches a

predetermined level, /fli , it can be maintained constant by chopping switch Sb at

high (-201(1-1z) frequency. The duty cycle of the pwm voltage waveform is

dependent on the magnitude of I.. In order to subsequently increase the current

i2 in a positive volt loop, devices Sb and Sc must be switched on. Therefore the

chopping operation of i 1 is transferred to Sa. Current i2 can be maintained at a

constant level 4, by chopping switch Sc. During this period the top switching

device Sb is carrying the sum of the currents i1 and i2, i.e. 24 and must be rated

accordingly.

It is possible to subsequently decrease the current in P1 while maintaining the level

of i2, by switching device Sa off and interchanging the functions of Sb and Sc. At

this time, phase winding P1 is impressed with an average negative voltage, Keg,

where
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Keg =	 - Vc 	(1.3)

The term vc denotes the average voltage that is impressed across phase winding P2

during chopping, and is dependent on the magnitude of i 2 and the back-emf seen

by P2.

ii 12 S a Sb Sc

incr zero on on off

hold zero on chop off

hold incr chop on on

hold hold chop on chop

decr hold off chop on

Table 1.1 Shared switch converter switching algorithm.

1.5 Rotor position measurement techniques.

For motoring operation the phase current pulses must be carefully timed to

coincide with the rising inductance period of each phase winding. This means that

the controller requires information on the position of the rotor relative to the stator

phases. Depending on the performance required and speed of operation various

techniques may be suitable [19]. A selection of rotor position measurement

techniques shall be presented in this section.

1.5.1 Slotted disk arrangements. 

One of the most common techniques is to use a slotted disk, driven by the motor

shaft, in conjunction with optoelectronic devices. The optoelectrOnic devices are

fixed, with the optical transmitter on one side of the disk and the receiver on the
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other side. As the disk rotates, a tooth or a slot is between the optotransmitter and

the receiver arrangement, hence producing an on / off signal. The resolution of

such a system is dependent on the number of optical devices used.

The optoelectronic devices may be replaced by RF transducers in dusty

environments. As an aluminium tooth reaches an RF transducer, eddy currents are

induced which alter the transducer coil inductance. The coil is fed with a high

frequency ac waveform so as to amplify eddy current effects.

Alternatively, a permanent magnet rotating element may be employed which is

attached to the shaft. The rotating magnetic field can then be sensed using search

coils or Hall effect transducers. The Hall effect transducers must be used if

information about the stationary position is required. This information is usually

necessary for the switched reluctance drive to determine which phase to excite at

start up. Slotted disk arrangements are cost effective and robust and need only be

as complicated as the system demands.

1.5.2 Optical shaft encoders. 

Optical shaft encoders may be purchased as a complete unit. Incremental encoders

consist of a disk divided into (fine) alternate opaque and transparent sectors. The

disk is mounted on the shaft and a single light source / detector arrangement is

used as the sensing device. The disadvantage of this arrangement is that the

angular information is stored in an external counter. If the information in the

counter is lost, the angular position cannot be extracted. Furthermore, at start up

the disk must be rotated through one revolution marker to determine the shaft

angle. These problems are overcome by the use of absolute encoders. The

absolute encoder disk is radially divided into N sectors, each sector also being

divided up along its length into opaque and transparent sectors. This arrangement

forms a digital word of maximum count 21' representing rotor position. Encoders

constitute a more expensive option than a few discrete optical devices but provide

more accurate position information if it is required.
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1.5.3 Brushless resolvers. 

Very fine position information can be provided by the combination of a brushless

resolver and resolver to digital converter [20]. The simplest form of resolver has

a rotating member with a single phase winding and a stationary member with two

windings at 90° to each other. The resolver and resolver to digital converter

arrangement exploits the sinusoidal relationship between the shaft angle and output

voltage to produce a (typically) 12 bit digital word representing the angular

position. Such systems are costly and are therefore only suitable for very high

performance drives.

1.5.4 Sensorless position detection.

It is possible to derive rotor position information from the phase windings of the

motor. In one sensorless position detection method a 'mini' high frequency square

wave voltage is applied to an unexcited phase [21-24]. The resulting current pulse

magnitude increases as the phase inductance decreases to reach a minimum at the

unaligned position. A threshold current level may be set which relates to a

particular rotor position and upon detection a particular phase winding may be

excited or commutated. Such readings may however be affected by mutual

coupling effects between phase windings. Alternatively, it is possible to monitor

the current in the (active) phase winding during chopping to determine the rotor

position from the rate of change of current [21]. This however implies that the

range for which position detection is possible is restricted to low speeds else the

motor back-emf will affect accuracy. Sensorless position detection is an ongoing

research area which exploits the recent advances in digital signal processing.

1.6 Phase current measurement and control.

Current pulses must be applied in a phase winding of the switched reluctance

motor when a pair of rotor poles is approaching alignment. The timing, duration
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and magnitude of the current pulses determine the torque output and machine

efficiency. However, the nonlinear relationship between torque, current and rotor

position presents complications in feedback control systems for the switched

reluctance drive. Several control models have been proposed for the drive [25,26],

though some simplification of the nonlinear characteristics is usually made.

Programmable gate arrays offer increased potential in this area, allowing a large

amount of logic circuitry to be implemented in a single device. The flexibility of

user programming reduces the risks involved in changing a circuit design. More

complex control may be required for high-power switched reluctance drives,

particularly where a wide speed range is required at constant power, and

microprocessor controllers have been developed and used to this effect [27,28].

At low speeds, the back-emf is small and the current must be limited with the aid

of either a 'hysteresis type' current chopping regulator or a fixed frequency pwm

current regulator. A Hall effect current transducer can be used to measure the

phase current in the switched reluctance motor. Hall effect transducers can be

multiplexed between several phase windings. These transducers are relatively

expensive and therefore not suitable for small, low cost drives. Recently,

MOSFETs, called SENSEFETs, have become available, in which part of the silicon

substrate is used to measure the current. These devices, successfully employed in

switched reluctance drives [21], offer the possibility of switches modulating the

current flowing through them.

The base speed, cob , is the highest speed at which maximum current can be supplied

at rated voltage with fixed firing angles. If these angles are kept fixed beyond cob,

the maximum torque at rated voltage decreases significantly. However, if the

conduction angle is increased by advancing the turn-on angle, maximum current

can still be forced in the motor windings. This sustains the torque level high

enough to maintain a constant power characteristic over a considerable speed range.
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1.7 Market applications of the switched reluctance

drive.

The switched reluctance drive offers many advantages over competing drives. The

structure of the motor is simple, robust and hence very reliable in operation.

Manufacturing costs are also kept at bay. Starting torque can be very high and,

under running conditions, the bulk of the losses occur on the stator where they can

readily be dissipated. The motor is, in addition, very competitive on power /

weight and power / cost ratios.

The requirement for unipolar phase current means that the SRM can employ simple

power converter circuits. These power converters do not exhibit shoot-through

problems and therefore prove more reliable and easier to protect. The need for

some form of position feedback and current feedback increases circuit complexity

and cost, but once added can offer useful control features such as optimisation of

the developed torque at all operating speeds.

The major disadvantage of the switched reluctance motor is the inherent torque

ripple that is produced by the stepping action of the motor. However, efforts have

been made which illustrate the potential of the motor to produce low torque ripple.

One technique requires the precise wave-shaping of phase current, which must be

stored in electronic memory and subsequently forced in the phase winding [8]. It

has been shown [29] that neural networks are capable of learning the current

profiles required to minimise torque ripple. In a treatment of multi-tooth per pole

structures Wallace and Taylor [30] demonstrated how maximum torque and

minimum torque ripple can be achieved by the same motor design.

High levels of acoustic noise are also caused by the pulsed nature of torque

production, though research at the University of Warwick [31] has shown that the

problem can be reduced by 'clever switching'. The new active control technique

employs two complimentary effects to minimise stator vibration. Firstly, the
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magnitude of any step change in the voltage is minimised, particularly at turn-off.

Secondly, at commutation, if the voltage across the phase winding is decreased in

two successive steps, with the second occurring half a resonant cycle after the first,

the resulting vibrations will be out of phase and therefore cancel.

Many applications for switched reluctance drives have been considered. These

range from traction [32,33] and battery powered vehicles [34] to small drives for

domestic appliances [17]. High performance drives have also been constructed for

servo drive applications [35] and spindle drives [16]. These papers all show that

switched reluctance drives are suitable for a range of applications providing the

cost of the power converter and the control electronics can be kept to a minimum.
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Chapter 2

THE SWITCHED RELUCTANCE DRIVE:

ASPECTS OF DESIGN, CONSTRUCTION

AND TESTING

Some switched reluctance motor design principles shall be described in section 2.1.

Basic considerations aim at justifying the traditional design methodology. At the

same time, shortcomings of existing designs are highlighted. A new switched

reluctance motor design is then presented, which offers significant advantages over

prior art motors.

Section 2.2 of this chapter aims at introducing finite element analysis, the software

tool that was used in this project to model existing motor configurations and design

the proposed switched reluctance motor. The hardware tools employed to test the

constructed switched reluctance prototype and prior art motors are subsequently

described. A detailed account of all experimental procedures is presented.

2.1 Switched reluctance motor design.

The relationship between the fundamental switching frequency and speed is derived

from the fact that, if the poles are wound oppositely in pairs to form the phases,

then each phase produces a pulse of torque on each passing rotor pole. The

fundamental switching frequency in one phase is therefore

f=TIN,	 (2.1)

where 11 is the rotational speed in rev/s. If there are q phases, the step angle is

2TE
step = qN (2.2)
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The non-uniform nature of torque production leads to torque ripple and contributes

to acoustic noise. The torque ripple can be reduced by increasing Nr, the number

of rotor teeth. However, the resulting increase in the fundamental switching

frequency will induce higher core losses.

It can be shown that peak static torque in multiphase stepping motors can be

obtained when half the phases are simultaneously excited [36], i.e. in a machine

with q phases the static torque is maximised if

phases excited = qI2 for q even
	 (2.3a)

phases excited = (q±1)/2 for q odd
	

(2.3b)

The overlap between current pulses of adjacent phase windings leads to smoother

torque production capability.

2.1.1 Low phase numbers. 

The simplest switched reluctance motor and power converter is single phase. A

2/2 1-phase motor is practical only if the starting problem can be overcome. In 1-

phase motors zero torque zones are inevitable and sufficient load inertia must exist

to push the rotor through them. Single phase motors can, however, operate at

extremely high speeds [9] before their performance is limited by excessive eddy

current losses.

Zero torque zones can be minimised with a low cost, 2-phase 4/2 machine. A

primitive form of the 2-phase motor is shown in fig. 2.1. The rotor is shown to

reside in a zero torque position. In theory, an infinitesimal displacement of the

rotor is needed to enter the rising inductance region of phase 1. In practice though,

the torque output is small for several degrees on either side of this point.

Some form of starting assistance or parking mechanism should be present in the

4/2 2-phase motor. A stepped airgap structure [37], shown in fig. 2.2, has been

23



Fig. 2.2. The 2—phase 4/2 motor with a stepped gap [37],
showing self—starting capability.
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suggested for this purpose. The authors of reference [37] suggested that this

structure extended the region of positive inductance variation, to provide positive

dL I c/0 for at least one of the phase windings at any rotor position.

The most commonly described forms of switched reluctance motor are those with

stator / rotor pole numbers of 6/4 (3-phase) and 8/6 (4-phase). The 6/4 3-phase

machine has starting torque capability in either forward or reverse direction. The

12/8 3-phase machine (a 6/4 'multiplied' by 2) offers the advantages of shorter end

windings and shorter flux paths which lead to reduced copper and iron losses

respectively.

A 12/10 3-phase structure shown in fig. 2.3, with two teeth per stator pole, was

developed by Harris and Finch [38]. In comparison to the 6/4 3-phase motor, the

authors reported a significant increase in torque per ampere. On the other hand,

the increase in steps / rev resulted in higher core losses. In addition, the stator

pole structure restricted the winding area available. Therefore, the benefits of this

configuration were thought to be restricted to low speeds [39].

Hendershot [40] reported a similar 12/10 3-phase machine, in the form shown in

fig. 2.4, in which the stator had unevenly spaced teeth. The stator teeth were

energised as pairs of adjacent poles having opposite magnetic polarities so as to

create a magnetic circuit between each pole pair. The induced short flux paths

reduced the core losses in the machine. However, the unevenly spaced teeth on

the stator resulted in restrictions in the winding area available. Therefore, the

torque developed by this 3-phase 12/10 motor is expected to be reduced.

The 4-phase 8/6 switched reluctance motor ensures starting torque from any rotor

position and, in addition, delivers smoother torque compared to its 3-phase

counterpart (ref. eqn. 2.3).
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arrows show
magnetic polarity

Fig. 2.5. The proposed machine configuration. A 5—phase
10/8 motor showing short flux—paths both
producing positive torque. Phases 1 and 2
are simultaneously excited.
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2.1.2 Higher phase numbers - a new motor design.

The use of the shared switch power converter was demonstrated in the control of

a 7-phase switched reluctance motor [41]. It was shown that the efficiency of the

motor was improved considerably by arranging the windings to encourage short

flux paths. Michaelides and Pollock [10] described results of research into

computer-aided modelling of short flux paths. It was demonstrated that the MMF

required to produce the nominal flux linkage level in the excited stator poles was

reduced significantly by configuring the motor for short flux paths.

Figure 2.5 illustrates the flux distribution in a section of a 5-phase switched

reluctance motor. If the phase windings are arranged so that adjacent stator poles

have opposite magnetic polarity, then the B-field associated with any two adjacent



phase windings forms a short magnetic circuit linking the excited stator poles via

the rotor teeth. Short flux paths can only be realised in switched reluctance motors

with an odd number of phases, if a discontinuity in the B-field distribution is to be

avoided. Furthermore, to benefit fully from this technique, there should be

considerable overlap between current pulses in adjacent phase windings. Sufficient

overlap does not occur in the 3-phase motor. Five-phase and 7-phase motors are

therefore thought to be suitable, cost effective configurations. Experimental results,

taken from the 7-phase motor, demonstrated the superior performance offered by

the short flux loop configuration. A 5-phase motor, that would exploit the

advantages of short flux loops in a simpler 'package', is now proposed. The 10/8

structure can ensure improved torque production and lower torque ripple compared

to its 4-phase 8/6 counterpart. Although the fundamental switching frequency is

increased, lower iron losses can be expected from the 10/8 structure because the

motor is excited with short loops.

The stator and rotor poles of the proposed 10/8 and 14/12 structures are

symmetrical about their centre lines and equally spaced around the stator and rotor

periphery. This poses no restriction to winding area or torque output. A detailed

analysis of the 7-phase machine and the design and development of a 5-phase

prototype will be described in subsequent chapters of this thesis.

2.2 Introduction to electromagnetic finite element

analysis.

2.2.1 The need for finite element modelling. 

Modem electrical machines must be designed to meet specified operating

conditions that are set by the load demand, while maintaining optimum efficiency

and reliability. In addition, the power / cost and torque / volume ratios must be

maximised. In order to meet these requirements, reliable machine performance

predictions at the design stage must be established. An accurate model of the
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(2.4)

(2.5)

switched reluctance motor magnetic circuit cannot be constructed using simple

analytical functions or equivalent circuit representations. This is due to the

complexity introduced by the doubly salient structure and the highly nonlinear

relationship between the stator phase current and flux. In recent years, numerical

techniques have been developed that can overcome certain limitations of analytic

methods such as their restriction to linear, steady state problems, and provide

efficient solutions to a wide range of problems. For example, it has been possible

for several years to compute the magnetic forces acting on the members of a

switched reluctance motor, taking into account the three-dimensional geometry and

saturation effects of the material, using the finite element method.

Finite element analysis is the most widely used numerical method for transient and

steady state solutions to two and three-dimensional electromagnetic problems. The

enormous capabilities of this technique are largely due to considerable advances

in computers. This computer-based numerical technique for solving partial

differential equations is implemented by representing the domain of the problem

under consideration by a collection of finite elements. The nodes associated with

each element are the points in space where the field values are calculated.

Governing equations for each element are set up and subsequently combined in

order to describe a global property (variable).

2.2.2 Electromagnetic field equations.

The governing laws of electromagnetism can be concisely expressed by Maxwell's

equations [42]. In differential form, these are

VxE = - 
aB
at

ap
VxH = J+ -7

and
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.D = p
	 (2.6)

	

V .B = 0
	 (2.7)

Maxwell's equations form the basis of two and three-dimensional finite element

programs. When the frequency is low, displacement currents can be neglected.

Equation 2.5 is therefore reduced to

	

V xH = J
	 (2.8)

The magnetic flux density, B, is related to magnetic field strength, H, by

B = p,(H - H c)
	

(2.9)

where p, denotes the material permeability. The magnetic field remanence,

relates only to permanent magnet materials and may therefore be omitted in the

treatment of the switched reluctance motor model. The displacement current D is

related to electric field strength by

D = cE
	

(2.10)

and the current density, J, is expressed as

J = GE
	

(2.11)

Throughout this project, the software used for two and three-dimensional

electromagnetic modelling of the switched reluctance machine was supplied by

Vector Fields Ltd. The basic electromagnetic field theory on which the packages

are based [43,44] follows from the laws of electromagnetism and may be found in

Appendix A.

2.2.3. Finite element model creation. 

In OPERA-3D the finite element model of a switched reluctance motor is created

by describing the projection of the required three-dimensional geometry onto a

two-dimensional XY plane cross section. The three-dimensional mesh is then
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(2.12)

formed by extruding the section in the third dimension. The level of discretisation

in the third dimension is dependent on the stack length of the individual model and

the required accuracy.

Boundary conditions can provide a way of reducing the size of the finite element

representation of symmetrical problems. Symmetry considerations reveal that the

three-dimensional finite element model of a typical switched reluctance motor may

be divided into four identical regions by means of two bisecting planes. The first

plane bisects the model parallel to the XY plane, mid-way along the stack length

of the machine. The second, a ZX plane divides the base plane into two

semicircular regions. Only one of these four regions is therefore modelled. A pair

of matching surfaces is identified, namely the ZX and Z(-X) surfaces, where the

potential values have the reverse sign but equal magnitude. These surfaces are

assigned a negative periodicity boundary condition. This implies that field values

along the Z axis are assigned to zero.

During the early stages of the project only the 3D software was available.

However, a two-dimensional model of the switched reluctance machine could be

constructed in OPERA-3D / TOSCA. This consists of a single element slice

through the machine. The conductors are defined as long parallel bars intersecting

the mesh at right angles. The symmetry boundary condition is specified on the ZX

and Z(-X) surfaces. The faces of the slice have the Neumann (default) boundary

condition imposed on them i.e.

This is a weak boundary condition setting the direction of the flux to be tangential

at these boundaries. With the tangential flux direction imposed, these boundaries

can be considered as reflection boundaries, with a mirror image of the solution on

either side of the boundary. Hence the slice appears to be one (in the middle) of

a stack of similar slices. This produces the effect of an infinite model in the axial

direction. The setup of a typical two-dimensional and three-dimensional model of
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a 4-phase switched reluctance motor is illustrated in fig. 2.6a,b respectively.

Two independent finite element meshes are created and subsequently 'stitched',

namely the stator and rotor meshes. The conductors do not form a part of the

finite element mesh. The air regions, in which the conductors resided, are assigned

the reduced scalar potential formulation whereas magnetic volumes are assigned

the total scalar potential formulation. The finite element mesh may be created such

that solutions to the problem at different rotor positions can be obtained by

allowing the rotor to rotate, in steps of one degree, with respect to a fixed stator

position. The appropriate symmetry boundary conditions are then imposed and the

model submitted for analysis. The analysis is completed using the TOSCA

computer algorithm, which is briefly described in Appendix A.

2.2.4 Field values computed using the finite element analysis

package. 

I. Flux linkage computation. 

The flux of B over a surface element dS regarded as a vector, is given by the

product of the component of B normal to the surface, and the area of dS. Hence,

the magnetic flux, c1), over a finite stator pole area, Si,, is

(I) = .fB.dS.	 (2.13)

This integral can be readily obtained in OPERA by the use of a POLAr or

CARTesian patch that computes field values over a predetermined surface (capital

letters in the text represent the command that must be typed in). The flux linkage,

X, associated with a phase winding of N turns is defined as

=
	 (2.14)

32



33



-o
co

LU

<L

0

34



II. Energy considerations. 

Poynting's theorem [45] finds its source from the vector identity

V.(ExH) = H.(VxE) - E.(VxH)

Substitution of Maxwell's equations yields

aB	 apV .(ExH) = H	 - E.J - E
at	 at

(2.15)

(2.16)

Integrating over a volume, vo , and applying the divergence theorem on the term on

the left hand side of the equation gives

(ExH).dS = f(E.J+ HLB + E aD )dv
at	 at	 °V„

(2.17)

If there were no power sources within the volume considered, then the first integral

on the right of eqn. 2.17 would represent the total Ohmic power dissipated within

the volume. If sources are present within the system, then the result of integrating

over the volume of the source represents the input power into the system. The

second and third terms on the right represent the total power stored in the magnetic

and electric fields. The sum of the terms on the right equals the total power

radiated out of the volume. In the treatment of the magnetostatic switched

reluctance motor model using the finite element analysis package, an ideal 'no

loss' system is considered. The radiation power is therefore assumed to be zero.

The displacement current term is only significant at high frequencies and is

therefore ignored.

The electrical energy, WE, input to the switched reluctance motor system is equal

to the stored magnetic energy, Wm, that is

.dA dvo = TH.dB	 (2.18)

The system coenergy, Wc, is defined as
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Wc. = fB.dH dvo (2.19)

(2.20)

(2.21)

li(BBB)

2" X 4
BBy BBy z

(2.22)1
= —

In linear systems, the stored magnetic energy and coenergy terms are equal, i.e.

IH.dB dvo = fB .dH	
1

dvo = IB .H dvo
v.

In nonlinear systems, such as the switched reluctance machine,

IB.Hdvo = fH.dB dvo + JB .dH dvo

The energy terms can be readily obtained in OPERA by typing ENERgy.

Electromechanical energy conversion principles may be applied in order to extract

information on the torque production of the machine. It is also useful to note that,

in singly excited systems, the flux linking the stator pole phase winding can be

computed using energy considerations.

III. Instantaneous static torque: the Maxwell stress tensor. 

The Maxwell stress tensor is defined as

12 (B-By2-Bf)	 BA	 BA

BA	 BA 1-(B2-B2-B2)
2 4 X Y

The diagonal terms in the matrix are equivalent to tensions whilst off diagonal

terms represent shear stresses. The forces acting on the rotor of a switched

reluctance machine, at a particular rotor position and excitation, may be found by

SELEcting the rotor surface and computing the INTEgral of the Maxwell stress

tensor over the selected surface. The resultant torque about a specified pivot point

(centre of shaft) is also computed.
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Inaccuracies in the calculation of forces using Maxwell stresses occur when the

selected surface is an interface between air and a magnetic body. This is because

finite element analysis results give a poor approximation to reality at a corner of

the body. In order to accurately compute the forces acting on the rotor, it is

advisable to mesh the airgap of a switched reluctance motor with four layers of

eight-node brick elements. The iron structure (rotor) is selected, and subsequently

enclosed by two layers of air elements. This gives the best possible chance of the

integration of forces over the selected surface being accurate [44].

2.3 Construction of power converter circuits.

This section describes the construction of the power converter circuits which were

used for dynamic testing of switched reluctance motors. The power converter

components, i.e. the power switches, power diodes, drive circuits and snubbers,

were selected / constructed in the early part of the project. The same components

were employed in the dynamic testing of different switched reluctance machines,

rated from 150W to over 4kW. Different power converter configurations could be

realised by making the appropriate connections to the power switches and diodes.

2.3.1 Overview of semiconductor devices for power converters. 

I. The ideal switch. 

Several types of semiconductor power devices, including B.ffs, MOSFETs, GTOs

and IGBTs, can be turned on and off by control signals applied to the control

terminal of the device. These devices are known as controllable switches. No

current flows when the switch is off, and when it is on, current can only flow in

one direction.

The ideal controllable switch has the ability to block arbitrarily -large forward and

reverse voltages with zero current flow when off. Furthermore, it can conduct
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arbitrarily large current with zero voltage drop when on. An ideal device switches

from on to off or vice-versa instantaneously when triggered and requires negligible

power from the control source in order to be triggered [46].

Semiconductor switches are not ideal, but have certain operational characteristics.

There is a maximum rated voltage which can be applied across their terminals in

the off-state before the devices breakdown. They do not offer zero impedance in

the on-state and hence there is usually a maximum forward current rating to avoid

damage to the semiconductor. Semiconductor switches also have a finite transition

time between states so there are power losses in the device during this time. This

imposes a limit on the operating frequency of the switch.

II. The thyristor. 

The thyristor is a semiconductor device which comprises four semiconductor

layers, and operates as a switch having two stable states, on and off. There are

many variants in the thyristor family, two in particular being the most common, the

silicon controlled rectifier (SCR) and the gate turn-off thyristor (GTO). The

thyristor is triggered into the on-state by a short duration gate current pulse,

provided that the device is in its forward blocking state. Once the device begins

to conduct, it is latched on and the gate pulse can be removed. The major

difference between the SCR and the GTO is in their turn-off mechanism. The SCR

can only be turned off by reducing the main current through the device below a

holding current level to allow forward blocking to take place. This commutation

requires additional components to divert the principal current. The GTO however

has a simpler turn-off process which can be initiated by a negative gate current

pulse, reducing the amount of extra circuitry required.

Both these devices are capable of supporting large voltages and carrying large

currents. They are generally the most cost efficient way of switching very large

powers. However they have low switching speeds which limits their operating

frequency to below 51thz. When used for motor control applications, this low
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switching frequency may produce unacceptable audible harmonics in the motor

windings. The SCR was used in some of the early power converter designs [11],

but the complicated commutation circuitry meant that it was superseded by designs

using the GTO [13,14].

III. The bipolar transistor. 

The bipolar transistor is the most widely available power semiconductor device and

is therefore quite competitively priced. It is available in both nn and pnp types,

thus offering flexible circuit design choices. A sufficiently large base current,

dependent on the collector current, results in the device being fully on. The BJT

is a current controlled device, and base current must be continuously supplied to

keep it in the on-state. This requirement, however, adds to the cost of the base

drive circuitry. There is a wide range of device ratings available although, in the

higher power range, better silicon utilisation is offered by the thyristor. Below

10kW bipolar transistors can offer higher switching frequencies than thyristors,

though not quite high enough to put the switching noise into the ultrasonic range.

The on-state voltage of the power transistor is usually in the 1-2V range and hence

conduction power loss is small.

IV. The MOSFET. 

The name MOSFET stands for a Metal Oxide Semiconductor Field Effect

Transistor. A power MOSFET has a vertically oriented, four layer structure of

alternating p-type and n-type doping. This switching device requires continuous

application of a gate-to-source voltage, of magnitude higher than the threshold

voltage Vrh, in order to be in the on-state. No gate current flows except during the

transitions from on to off or vice-versa, when the gate capacitance is being charged

or discharged. Upon application of a gate-to-source voltage of appropriate

magnitude, a load current conduction channel is initiated from drain to source.

The MOSFET exhibits very fast switching speeds and can be operated at ultrasonic
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switching frequencies. However, at higher voltages (>250V) the on-state losses of

this switch exceed those of the BJT. The MOSFET offers poor utilisation of the

silicon area compared to the bipolar transistor and can therefore be more expensive

if the manufacturing volume is low. This can be offset by snubberless operation

and as a result the MOSFET has been used in low power switched reluctance

drives [17].

V. The insulated gate bipolar transistor (IGBT).

This is a relatively new device which combines the low current, gate voltage

control requirement of the MOSFET with the high off-state and low on-state

voltage characteristics of the bipolar transistor. The switching times of this device

are better than those of the bipolar transistor, in particular the turn-on time. IGBTs

have not yet reached their full potential but are a very suitable device for all

switched reluctance drives. Voltage ratings up to 2000V and current ratings of

several hundred amperes are projected. At present, pre-packaged IGBT modules,

in which several devices are connected in parallel to increase the total current-

carrying capability, are manufactured.

2.3.2 Selection of type and rating of the semiconductor devices.

Power MOSFETs were selected to construct the power converter circuit.

MOSFETs simplify the drive circuitry considerably because they are voltage

controlled devices, and offer high switching speeds. They have great ruggedness

due to the absence of the second breakdown mechanism present in bipolar

transistors.

The rating of the power switches was chosen with the feasible power converter

configurations in mind. Two configurations were considered, namely the

asymmetric half-bridge and the shared switch converter [18]. The former

configuration was employed in the proposed 5-phase • drive, as it provided

maximum control flexibility (see chapter 1) and could therefore be used to optimise

the performance of the 5-phase motor. The latter configuration reduced the number
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of switches required to operate the drive, posed no compromise to the winding area

and could power a motor of any phase number. It was therefore used to control

the current in the circuits of the 7-phase motor. However, the top switches of the

shared switch converter would have to be rated at approximately twice the motor

current. The largest motor that required testing was in excess of 4kW, designed

to operate at 600V and carry a maximum phase current of 15A. All switches

ought to be able to withstand the supply voltage plus any switching transients. The

top switching devices of a shared switch converter ought to carry current in excess

of 30A. SEMIKRON SKM 181F power MOSFETs were therefore selected for the

construction of the power converter circuits. BYT 261 fast recovery power diodes

were also employed in the power converter circuits. The data sheets for these

semiconductor devices may be found in Appendix B.

2.3.3 Gate drive circuits for power MOSFETs. 

I. Selection of the gate drive isolating device. 

The top switching devices of any power converter configuration must have their

gate drive circuit referenced to the source rather than to the ground. The drive

circuit may be 'floated' with respect to ground by means of a pulse transformer,

an optocoupler or an optical fibre.

When pulse transformers are employed, the control signal may be modulated by

a high frequency (1MHz) oscillator output before being applied to the primary

terminals of a compact HF transformer. The secondary terminals can then be

connected to a full wave rectifier and filter capacitor arrangement. The output

signal is commonly applied to a totem pole amplification stage.

The optocoupler is a semiconductor device consisting of a light emitting diode, an

output transistor and often a built-in schmitt trigger circuit. The "capacitance

between the LED and the base of the receiving transistor within the optocoupler

must be as small as possible. This is to avoid re-triggering of the power MOSFET,

at both turn-on and turn-off, due to the jump in potential between the floating
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source terminal and the ground of the control board. Electrical shields are

frequently used to reduce this problem. As an alternative fibre-optic cables can be

used, where the LED is kept on the control board and the fibre-optic cable

transmits the signal to the receiving transistor which is placed on the drive circuit

board.

Optocouplers are low cost, compact units which reduce the gate drive component

count and were hence chosen to isolate the MOSFET gate drive. As a

precautionary measure, opto-isolators were employed on both top and bottom

switch drive circuits. The optocouplers that were to be incorporated in the power

MOSFET drive circuits ought to have the following characteristics:

a) High common mode transient immunity (CMR figure). Typically, the MOSFET

is capable of switching 600V within 0.1 IIS though additional protection devices,

such as snubbers, limit the dv I dt rate. The requirement for high CMR was posed

only on the top switch drive.

b) High speed; typically, a propagation delay time of 500ns is tolerated.

Very few optocouplers featured high common mode transient immunity at a high

test voltage. Testing of devices also revealed that the guaranteed CMR figure

drops dramatically when the optocoupler is subjected to a voltage higher than the

test voltage.

II. Gate drive circuit design for a top switch. 

The top switch gate drive circuit, shown in fig. 2.7a, was powered from a +15V -

5V supply. The -5V rail was incorporated to speed up the gate discharge path at

turn-off. The input on / off signal was isolated from the main control board by the

high speed, TTL compatible HCPL2611 optocoupler. The on / off 5V control

signal on the optocoupler output was fed to a voltage translation stage. A Baker's

clamp [47] circuit diverted excess current from the base of the BC 109 transistor

into the collector, to ensure that the device was not driven hard into saturation.

The Baker's clamp increased the speed of the circuit considerably. A totem pole

amplification stage followed the voltage translation stage. A gate resistor value of
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12C2 was chosen, to damp out oscillations in the circuit while maintaining an

acceptable switching speed.

The modes of operation of the circuit are given below:

0"On-state": The optocoupler output is low and the BC109 transistor is switched

off. The ZTX651 npn transistor is switched on, base current being provided

through the totem pole 11(0 base resistor. Taking into account the voltage drop

across the 1211 gate resistor and the collector-emitter junction of the ZTX651, the

gate is charged to approximately 14V.

b)"Off-state": The optocoupler output is high and the BC 109 transistor is switched

on. The collector-emitter junction of the BC109 may be regarded to be shorted,

i.e. the transistor acts as a closed switch. The ZTX751 pnp transistor is switched

on, discharging the gate capacitance.

III. Bottom switch gate drive circuit design.

The bottom switch gate drive circuit, shown in fig. 2.7b, was powered from a

+15V -5V supply. The input on / off signal was isolated from the main control

board by the high speed, CMOS compatible HCPL2200 optocoupler. CMOS

compatibility removes the need for a voltage translation stage. The optocoupler

output was fed to a totem pole amplification stage. The signal was then applied

between the gate and source terminals of the MOSFET.

2.3.4 Snubber circuits. 

Snubber circuits are employed in order to reduce transistor switching stresses and

losses by improving their switching trajectories. There are three basic types of

snubbers:

a) Turn-off snubbers

b) Overvoltage snubbers

c) Turn-on snubbers

The goal of a turn-off snubber is to provide a zero voltage across the transistor

44-



while the current in the device reduces to zero. Overvoltage snubbers are

employed to minimise overvoltages at turn-off caused by stray inductances in the

circuit. Turn-on snubbers are used to reduce turn-on losses at high switching

frequencies.

Compact Rs-Cs snubber units were employed to reduce the turn-off switching losses

and protect the power MOSFET from excessive dv I dt rates and overvoltages. A

complete turn-off snubber circuit is shown in fig. 2.8. As the switch opens, current

is diverted into the initially uncharged snubber capacitor which limits the value as

well as the rate of rise of the switch voltage. This allows the drain current to

reduce significantly, before the voltage across the device rises to an appreciable

level. Switching losses are therefore reduced. At turn-on, the snubber capacitor

discharges through a closed switch. The discharge current is limited by the

snubber resistor, connected in series with the snubber capacitor. The energy stored

in the snubber capacitor is dissipated as heat in the snubber resistor. Therefore, no

additional energy dissipation due to the snubber occurs in the transistor.
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The presence of the snubber resistor is detrimental at turn-off; unnecessary heating

losses are incurred though the resistor provides good damping. The energy

associated with stray inductances in the circuit is absorbed in the Rs.-C, network,

thereby containing the voltage overshoot to a safe level and guarding against

excessive dv I dt rates. If desired, the snubber resistor may be shunted by a diode.

Snubber circuits reduce power losses in the switching device. However, snubber

losses are incurred at turn-on as the capacitor stored energy is dissipated as heat

through the snubber resistor. It is therefore important to select appropriate values

for the snubber resistor and capacitor so that the snubber reduces switching losses

and stresses considerably but does not cause excessive heating losses. A simple

mathematical model was developed and incorporated into a Turbo PASCAL

program to simulate the response of the system at turn-off. Theoretical predictions

were supported by laboratory work. At turn-off, it was found that the drain voltage

rise time is very much dependent on the capacitance of C. For a given load and

current the larger the snubber capacitor, the slower the drain voltage rises. Large

valued resistors provide good damping in the system though the smaller the

snubber resistor, the slower the drain voltage rises. Experimental work also

suggested that the transistor current fall time at turn-off, and the drain voltage fall

time at turn-on are dictated primarily by the characteristics of the switching device.

The values of the capacitance and resistance of the turn-off snubber that was

selected are given below:

= 0.0047f polypropylene. Polypropylene capacitors can withstand high

voltage, fast rise time pulses and have an excellent high frequency performance.

Rs = 13.6O. Five 2W carbon film resistors were connected in parallel to provide

a power dissipation capability of 10W.

The fast recovery power diodes were also `snubbered' for protection.

2.4 The control board.

The information extracted from the rotor position sensor and the current measuring
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devices is fed back to the drive controller. The controller must then produce the

correct switching signals for the power converter to supply timely, magnitude

regulated current pulses to the motor phase windings. The design of a 'clever'

controller can maximise the performance of the drive.

2.4.1 Current sensing and control.

I. Hysteresis type current chopping regulator. 

In its basic form, the circuit consists of two amplifier comparator circuits and an

SR bistable, as shown in fig. 2.9. A small percentage perturbation about the

required phase current level is chosen, and the appropriate current limit signals (Cin

and imax) are set. Level imi„ is fed into the inverting input of comparator I, while

level imax forms the input to the non-inverting terminal of comparator II. The

measured current level forms the input to the second terminal of each comparator.

The output signals from the comparators are fed into the SR bistable. The SR

bistable truth table, given in fig. 2.9, reveals how the current is contained within

the prescribed levels.

This circuit is simple and robust. However, having set limits imin and in.,' the

circuit has no control over the chopping frequency. The power switch may

therefore be subjected to excessive switching stresses. For this reason, a fixed

frequency pwm current regulator was preferred. This circuit will now be described

in more detail.

II. Fixed frequency pm current regulator. 

An inverting amplifier and potentiometer arrangement was used to set the required

phase winding current, as shown in fig. 2.10. The device was calibrated so that

if	 V cd = OV	 then req = OA

cd = -12V then „q = 20A
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where vcd denotes the current demand signal and i„q the interpreted phase current

requirement. The current demand signal was fed into the inverting input of an

adder (inverting summing amplifier). Current flowing in the motor phase windings

was sensed by LEM Hall effect transducers. The measured phase current signal

from the LEM module board was also fed to the inverting input of the adder. The

resulting error signal was equal to the difference between the current demand and

the actual current measurement. This was compared to the instantaneous amplitude

of a triangle wave. An operational amplifier comparator, together with an

integrator was used to generate the triangle waveform, shown in fig. 2.10. The

frequency of the triangle wave set the chopping frequency of the power switch, and

could be altered by trimming a variable resistor pot. A TTL on / off signal was

transmitted from the current feedback board to the digital control board. As an

example, if the error signal was OV ( 1p41 = ireq) a square wave of 50% pulse width

would be transmitted. This would indicate that the chopping power switch ought

to be on half the time in order to maintain the present current level.

2.4.2 The implementation of logic functions - XILINX. 

Recent breakthroughs in logic architectures have resulted in Application Specific

Integrated Circuits (ASICs) which can be configured by the user [48]. These user

programmable gate arrays offer the logic integration benefits of custom VLSI. The

flexibility of user programming allows easy design changes.

The )(MINX development system consists of three stages namely the design entry,

design implementation and design verification. The design entry software consists

of libraries and netlist interfaces for standard CAE software (e.g. FutureNet). The

programmable gate array libraries allow design entry with standard UL gates and

Boolean equations. The design implementation software converts schematic

netlists and Boolean equations into efficient designs for programmable gate arrays.

The software includes sub-programs to perform gate minimisation, placement and

routing, and interactive circuit editing. The design verification stage may be

performed using simulation software (SILOS) or testing on XILINX demonstration

boards. The XILINX development system was used to implement the control logic
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Fig. 2.11. The dc generator test bed.

in the 5-phase and 7-phase drives.

2.5 Experimental arrangements.

This section describes the experimental arrangement that was employed for static

and dynamic tests on the switched reluctance motors.

2.5.1 Description of the test rigs. 

A `dc generator test rig', shown in fig. 2.11, was designed to carry out extensive

testing on integral kW switched reluctance machines. The prime mover was

mounted on the test bed and coupled via a VibroMeter torque transducer to the

load machine. The torque transducer measuring shaft was supported by the

transducer housing which was bolted directly to the test bed. Double element

flexible couplings were used to connect the measuring shaft to the test and load

machines. The torque transducer was used in conjunction with the ISC 228 signal

conditioner to measure the rotational speed and average torque produced by the test

machine. The load machine was a separately excited dc generator. A small

resistance-high power load was connected across the terminals of the dc generator
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armature. As an accessory, a mechanical fixture could be mounted to lock the

rotor of the prime mover. This was useful for static torque and phase winding flux

linkage measurements.

Sub-kW switched reluctance machines were mounted on an 'eddy current test bed'.

The shaft of the test machine was connected to the shaft of the eddy current brake

via a flexible coupling arrangement.

23.2 Flux linkage measurement. 

This section describes the experimental procedure that was adopted in order to

measure the flux linking a phase winding of the switched reluctance machine. The

required rotor position was selected with the aid of a position sensor and / or an

LCR meter, and the rotor was clamped using the mechanical fixture arrangement.

The electric circuit arrangement, shown in fig. 2.12, consisted of a power

MOSFET, the source terminal of which was connected to one terminal of the phase

winding undergoing measurement. The other end of the phase winding was

connected to the negative terminal of a dc power supply and decoupling capacitor

arrangement. A freewheeling diode, connected across the motor winding, provided

a path for the current once the main switching device was turned off. The other

phase windings of the switched reluctance motor were left open-circuit.

I. Measurement of rising current. 

The switching device was turned on and measurement commenced. A step

increase in voltage across the circuit terminals caused an (approximately)

exponential rise in the phase current waveform, the profile of which was dictated

by the instantaneous value of the time constant R I Lin„. The measurement was

terminated once the phase current waveform attained the value experienced by the

motor at full load, I.. The phase winding voltage and phase current waveforms

were recorded. Faraday's voltage equation, in integral form, was applied in order

to compute the winding flux linkage i.e.
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A	 v,

fc12 = Tv dt - R fidt
	 (2.23)

where A denotes the flux linking the phase winding when i(t) reaches I.. The

initial flux linkage value X(0) = 0, as both v(t) and i(t) were zero at t = 0. The two

integrals on the right hand side of eqn. 2.23 were computed using measurement

facilities on-board a Gould digital oscilloscope. An accurate reading of the circuit

resistance, R, was taken using a 4-terminal ohmmeter. Although the circuit

resistance varied with temperature, the effect was minimised by conducting the

experiment on a 'single shot' basis.

II. Measurement of decaying current. 

A step voltage was applied to the test winding and, once the phase current attained

a steady-state value, the switching device was turned off. The winding was

disconnected from the voltage source and the profile of the decaying current was

recorded. The measurement was terminated when the phase current was reduced

to zero. Faraday's equation was used to compute the winding flux linkage. At t

= 0, the boundary conditions were specified as v(0) = V, i(0) = I. and A.,(0) = A.

III. Biasing the electromagnetic field. 

Switched reluctance motors of 4 and 5 phases operate with two phase windings

simultaneously excited. In order to measure the flux linking phase winding Pl,

while the neighbouring phase P2 is carrying rated current I., the following

procedure was adopted: it was necessary to connect phase P2 across the terminals

of a constant current source and not a voltage source, as shown in fig. 2.13. The

current source ensured that level I. was maintained in phase P2, irrespective of

step changes in the voltage across phase Pl. Therefore P2 was connected across

an asymmetric half-bridge arrangement. A separate high-voltage power supply

powered the bridge and a pwm current regulator, operating at 20kHz, maintained
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a constant current chopping level of 	 Subsequently the flux linkage in phase P1

was measured as described in section I.

2.5.3 Measurement of static torque. 

I. The dc generator test rig. 

The required rotor position was selected with the aid of a position sensor, and the

rotor was locked mechanically. The appropriate phase winding(s) was (were)

excited with dc current, and the static torque was obtained from the torque

transducer / signal conditioner arrangement.

II. The eddy current test rig. 

No suitable mechanical fixture was provided to lock the rotor of the test machine.

The eddy current brake was decoupled from the prime mover and a pulley-and-

weights arrangement was mounted on the shaft of the test machine. The

appropriate phase winding(s) was (were) energised and the necessary force was

applied on the pulley in order to keep the rotor in position. The rotor position was

subsequently recorded using a position sensor.

2.5.4 Measurement of dynamic torque. 

I. The dc generator test rig. 

The level of torque presented to the prime mover was varied by varying either the

field current, i.e. the strength of the magnetic field on the stator of the separately

excited dc generator, or the armature resistance. The power developed was

dissipated, in the form of heat, in a load resistor connected across the armature of

the dc machine.
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II. The eddy current test rig. 

The eddy current brake develops load torque by the interaction of a de magnetic

field, produced by stator winding excitation, and induced eddy currents in a solid

rotor [49]. The power developed is dissipated in the form of heat. The level of

torque presented to the prime mover by the brake was varied by varying the

strength of the magnetic field on the stator. The torque developed in the machine

was transmitted to the stator, which was free to rotate over a limited arc. The

degree of rotation of the stator frame was recorded on a spring- balance. Torque

could therefore be directly measured on a scale. Torque indicating scales could be

changed so as to alter the range of the instrument.

A digital tacho was used to record rotational speed, (0. The shaft power output was

obtained by computing the product of Ta„ CO. The electrical input power was

measured with a Voltech power analyzer connected across the dc link capacitor.

2.6 Review of fundamental aspects of switched

reluctance motor technology.

This chapter has reviewed the fundamental motor design methodology of previous

researchers. The 'traditional' phase numbers and pole combinations i.e. 3-phase

6/4 or 12/8 and 4-phase 8/6 structures have been described. A new design of

switched reluctance motor has been proposed, in which the windings are arranged

to encourage short magnetic flux paths. It was demonstrated that switched

reluctance motors of five and seven phases can be configured for short flux paths.

This is achieved by arranging the phase windings such that each stator pole has

opposite magnetic polarity to its neighbouring poles, and simultaneously exciting

two adjacent phase windings.

Furthermore, this chapter has illustrated the use of the finite elemdnt method, in the

prediction of phase winding flux linkage and static torque in the switched
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reluctance motor.

The construction of the power converter and control electronics, that were common

to all the drives tested, has been described. Power MOSFET switching devices

were chosen to provide high switching speeds and simplify gate drive electronics.

Simple Rs-C, snubbers were connected across the MOSFETs to decrease switching

losses and stresses. The design of the opto-isolated gate drivers for the upper and

lower switching devices has been presented.

The control board featured LEM Hall effect current measuring devices. A fixed

frequency pwm current regulator was constructed to provide current magnitude

regulation. Implementation of logic equations was performed in logic cell arrays.

The experimental procedures for static and dynamic testing of switched reluctance

machines has been described. All experimental results that will be presented in

subsequent chapters have been obtained by adopting the procedures described.
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Chapter 3

ELECTROMAGNETIC ANALYSIS OF THE

SWITCHED RELUCTANCE MOTOR

This chapter focuses on electromechanical energy conversion theory and its

application to the switched reluctance motor. The virtual work principle, as

applied to singly excited electromagnetic systems, is described. The virtual work

principle is frequently used by designers to compute the average torque produced

in a switched reluctance motor. The established modelling procedure works well

for 1, 2 and 3-phase switched reluctance motors (referred to in the thesis as singly

excited motors) where there is no (or little) overlap between phase current pulses.

The chapter introduces a thorough electromagnetic analysis of doubly excited

systems which relates to switched reluctance motors operating with two phases

simultaneously excited [50]. These include the 4-phase 8/6 and 5-phase 10/8

switched reluctance motors. The new modelling procedure that is proposed

includes the effects of mutual coupling and increased flux density present in some

parts of the steel when two phases are excited at any time. The variation of

winding flux linkage with phase current and rotor position is described for such

motors. The accurate electromagnetic modelling proposed forms the basis for

design considerations that can optimise the performance of switched reluctance

motors. The design of 4-phase motors for low torque ripple is described. Finite

element analysis results from a 4kW 7-phase motor configured for long and short

flux paths are also presented. It is shown that short flux loops significantly

improve the torque production capability of the 7-phase machine.
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(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

3.1 Electromechanical energy conversion theory.

3.1.1 Singly excited systems. 

In a lossless electromechanical energy conversion device operating as a motor, an

incremental change in the electrical energy input, dW„ will cause one component

of energy, dWp to be stored in the field and another component, dWmech, to be made

available to the load. The energy balance equation is

dW = dW f + dWe	 meeh

Introducing Faraday's law, dWf may be expressed as

dW =	 - T dO

where i denotes the current in a particular phase winding and X its associated flux

linkage; the term T represents (average) torque while d0 denotes angular

displacement. By application of the chain rule the increment in field energy, dWp

can also be expressed in terms of the flux linkage, X, and rotor position, 0, as

aw	 aw
dW =,e=const	 doI	 dA + ao X.const

Comparison of eqn. 3.2 with eqn. 3.3 reveals that

aw (x 0)
T= -  f 

ae

The system coenergy, W, can be defined as

W c = fX(i3O)di
0

The coenergy may be expressed in terms of the stored energy by

Wc =	 - Wf	(3.6)

Torque, T, is also given by the rate of change of coenergy with respect to the rotor
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angle, at constant excitation i.e.

aw (i3O)
T-  

a0

In order to estimate the average torque produced in the switched reluctance motor,

it is essential to know how the phase winding flux linkage, X, varies with phase

current, i, and rotor position, O. The change in coenergy, AW,, during one

repetitive excitation cycle of duration AO, is equivalent to the area enclosed by the

operating trajectory described on the X / i diagram. The average torque is given

by

N
Tave = AW, 	 	 (3.8)

(N - Ar)

Figure 3.1 illustrates the laminations of a typical 2-phase switched reluctance motor

with four teeth on the stator and two teeth on the rotor. This machine is operated

by ensuring that one stator phase winding is conducting at any time. Referring to

fig. 3.1 (consider solid lines), the stator teeth of phase P1 face the interpolar airgap

depth. This is known as the 'unaligned' rotor position which marks the beginning

of the excitation cycle. The stator teeth of P2 are aligned with the rotor teeth.

This is known as the 'aligned' rotor position which, in the 2-phase motor, marks

the end of the (repeatable) excitation cycle.

The ideal excitation cycle can be described with the aid of a A. / i diagram, shown

in fig. 3.2. The start of the excitation cycle is marked upon application of full

positive volts across the terminals of phase Pl. In the ideal case the current rises

to its maximum value I. instantaneously. This current level is maintained

throughout the duration of the excitation cycle by means of a current chopping

regulator. The rotor poles rotate to take up a position of minimum reluctance, that

is, to align with the magnetised stator teeth (ref. dashed lines in fig. 3.1). During

this time the phase winding flux linkage rises from A. to A.al. At alignment, after

the rotor has moved by 90 0, full negative volts are impressed on the terminals of

phase P1 to instantaneously reduce the current to zero. At the same time, full

positive volts are impressed on the terminals of P2 to move the rotor 90° further.

(3.7)
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Fig. 3.1 A 2—phase 4/2 motor, illustrating
movement through a rotor step.
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3.1.2 Exciting two phases simultaneously a new modelling

procedure. 

I. Flux patterns in the 4-phase motor. 

The 4-phase 8/6 switched reluctance motor is fundamentally a doubly excited

system, as two phase windings are carrying current at any time to produce

continuous torque. Fig. 3.3a illustrates the flux pattern arising in the motor if

phase winding P1 is excited. The B-field links the excited stator poles via the

rotor body and stator yoke. The stator yoke carries half the flux linking the excited

stator poles. However, at this rotor position phase P2 is also in the torque

producing region, as shown in fig. 3.3b. The B-fields produced by the two excited

phases cause most parts of the magnetic circuit to be driven at higher flux

densities. In the stator yoke the B-fields oppose each other only in the sections

that lie between adjacent excited poles. In these sections a balancing flux exists,

complementing the resulting B-field flux pattern as shown in fig. 3.3c.

The effective torque zone for each phase of the 4-phase 8/6 motor is 30 0, as

illustrated in fig. 3.3d. However, the stepping action which results in the B-field

pattern described in fig. 3.3c is repeated every 15°. This is confirmed by the plot

of the ideal phase current pulses in the four phases, shown in fig. 3.3e. The

stepping action will be referred to as the excitation cycle.

II. Computation of coenergy in a doubly excited system. 

The energy balance equation that was introduced in section 3.1.1 can be re-written

for a system with two excitation sources as

dWf = iidX,i + i2dA.,2 - Td0	 (3.9)

The increment in field energy, dWp can also be expressed in terms of Al, dA,2 and

de as
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Fig. 3.3a. Flux pattern in a singly excited 4—phase motor.

Fig. 3.3b. Flux pattern in a doubly excited 4—phase motor.
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Fig. 3.3e. Excitation sequence in the 4—phase motor.
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a w	 aw	 aw
dW =	 dX, +	 dX +	 I,	 de	 (3.10),

ax, .2,u=con	 A,,,O=con	 2	 a0 Ad.2=con

As a result

-awfai,x2,0) T—
ae

Similar expressions may be derived using the coenergy 147c, where

Wc	 X2i2 Wf

(3.11)

(3.12)

The torque, T, is given by the rate of change of coenergy with respect to the rotor

angle, 0,

T = awc(i1,12,8)	
(3.13)

ae

In order to obtain the coenergy Wc of a doubly excited system, such as a switched

reluctance motor with two phases simultaneously excited, at a particular rotor

position and winding excitation, the integral idwc must be evaluated in steps, as

illustrated in fig. 3.4. It is assumed that the rotor is turning in an anticlockwise

direction; rotor position P marks the beginning of the conduction cycle in the 4-

phase machine. At this position phase P2 has been conducting maximum current

1/4, for 15° of rotor rotation and the current in phase P1 now increases from 0 to

It is therefore necessary to first compute the coenergy associated with the

excitation of the leading phase P2, before attempting to calculate the coenergy

associated with the excitation of P1 in the presence of i2p:

1. Step OA; i1 = i2 = 0 and 0 varies from zero to Op:

Now di1 = di2 = 0 and T = 0 , therefore

A	 A

PIK = f(Xidii + X2di2 + TdO) = 0
	

(3.14)

0	 0

2. Step AB; i, = 0, 0 = Op and i2 varies from zero to i2p:
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i2p

fdw,
A	 0

3. Step BP; i2 = i2p ,8 = Op and i1 varies from 0 to i1p:

idWc = fX1BP4il
0

Hence

2P

Wc(i1p' i2p'e p) = fkABdi2	 fX1BPdil
0	 0

where

AtAB	 A.2(ii = 0, i2, p )

X1BP = 1 (i2 = i2p' il' 0 p )

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

Equation 3.17 dictates that two separate integrals i.e. JA,2di2 and fAlcii i must be

computed in order to estimate the coenergy at the start of the excitation cycle.

First, the integral of flux linkage in the leading phase (X 2) wrt to current i2 is

calculated, assuming that the trailing phase is carrying no current (i 1 = 0).

Subsequently the integral of flux linkage in the trailing phase (X1 ) is computed wrt

ip assuming that the leading phase is conducting full current (i 2 = i2p). These are

then added together to give the total coenergy associated with the two excited

phases.

The average torque output of the 4-phase machine can be determined by evaluating

the change in the coenergy of the system from position P at the start of the

conduction cycle, to position P' at the end of the cycle, as shown in fig. 3.4. At

position P', the integral fc/147, may be evaluated in steps following any suitable

integration path to obtain
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X213 1PI = At(ii = i lp" i2' ° pi)

	
(3.22)

'1

leading phase

Fig. 3.4. Integration path in a doubly excited system.

leading phase
trailing phase trailing phase

position P'

i4.1	 i2p1

W (i i 8 ) = .12t, di + TX
c le 2p" pi	1/11131 1	 2.1311)i

d1  2
0	 0

(3.20)

where

Xm,B , = 21. 1 (i2 = 0, i i3 Op,)	 (3.21)

The rotor has moved one complete step between positions P and P' and is now in

the same position relative to phase Pl, as it was to phase P2 at position P.

Examination of equations 3.17 - 3.22 reveals that
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(3.23)

assuming

is given by

Therefore, the change in coenergy over the conduction cycle

i2pf	 14

WC	 = j.k2B /Pitii2 fklBPdi
(3.24)

WC/ 1

0	 0

where

21.2B ,p, = X2(i 1 = i,p„ i2, Op,) (3.25)

klBP = 1 (i2 = i2p' i1' Op ) (3.26)

Computation of the first integral in eqn. 3.24 yields the X, / i curve at the end of

the excitation cycle ('aligned' characteristic). In order to obtain this integral the

rotor is positioned at P', a bias current i1p . is applied to phase P1 and the flux

linkage of phase winding P2 is integrated for different excitations up to i2 = i2p , =

1/4) . The second integral in eqn. 3.24, which represents the X, / i characteristic at the

start of the cycle, can be obtained in a similar fashion as dictated by eqn. 3.26. In

this doubly excited system the area enclosed by the system / i characteristic that

is defined by these curves is equal to the electrical energy per step that is

converted to mechanical work.

Results obtained from two-dimensional electromagnetic finite element modelling

shall be presented in subsequent sections of this chapter. Two switched reluctance

motors were extensively modelled; a 150W 4-phase machine and a 4kW 7-phase

motor. These motors were available for testing and their dimensions could readily

be obtained. The switched reluctance motor models were created and analysed

using OPERA / TOSCA, as described in chapter 2. The performance of these

motors was characterised by implementation of the electromechanical energy

conversion theory presented in this section.
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3.2 The 150W 4-phase motor.

The 4-phase switched reluctance motor that was modelled, was constructed as part

of earlier development work in the laboratory. The analysis that follows includes

flux linkage and static torque computations on the 4-phase motor, for a range of

rotor positions and current levels. For comparison purposes the analysis includes

results into modelling of the 4-phase motor with one and two phases excited at the

same time. Magnetic interaction effects between simultaneously excited phase

windings are investigated.

Magnetic interaction effects include mutual coupling between adjacent phase

windings and saturation. Mutual coupling arises when flux generated from current

flowing in one phase winding is linked by an adjacent phase winding. Saturation

must be taken into account since some parts of the magnetic circuit will carry

increased flux when two phases are excited. Magnetic saturation degrades the

performance of the switched reluctance motor. In a saturated 4-phase structure

operating with two phases simultaneously excited, the flux linking a phase winding

at a specified rotor position and excitation would increase if the second phase was

switched off. This is because the stator and rotor yokes would operate at a lower

flux density.

3.2.1 Single phase excitation.

The / i characteristic for one phase of this machine at the aligned and unaligned

positions is shown in fig. 3.5. In comparison to measurement, two-dimensional

model solutions consistently underestimate the flux linkage value. The effect is

particularly noticeable at positions where the excited stator poles face the interpolar

airgap depth. This error can be attributed to end-core flux, which is not accounted

for in two-dimensional modelling. A full analysis of three-dimensional effects in

the switched reluctance motor will be presented in chapter 4.
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The / 0 characteristic for one phase of the 150W, 4-phase motor is illustrated in

fig. 3.6. When the excitation is low, the relationship between flux linkage and

rotor position in the region where the excited stator poles and associated rotor

poles overlap (henceforth referred to as the overlap region) is linear. This is

because, although the reluctance of the magnetic circuit decreases as the rotor poles

reach alignment, the excitation is not high enough to saturate the iron. At high

excitations, the relationship between flux linkage and angular position in the

overlap region may be characterised by a linear followed by a sigmoidal function.

The degree of saturation depends on path reluctance and excitation.

The measured static torque produced by the experimental 4-phase machine, as a

function of rotor position, is illustrated in fig. 3.7. Also shown is the static torque

profile of the machine, predicted by the two-dimensional finite element model, At

a particular rotor position and excitation, static torque was computed by evaluating

the Maxwell stress integral over the rotor surface. Finite element analysis

predictions show good agreement with experiment, though there is a tendency to

underestimate the measured static torque value at early rotor positions (0 = 0°-15°).

This may again be attributed to three-dimensional effects which shall be

investigated in chapter 4.

3.2.2 Simultaneous excitation of two phase windings in the 4-

phase machine - normal machine operation. 

The system X, / i characteristic, drawn by adopting the new field computation

procedure for motors with two phases simultaneously excited, is shown in fig. 3.8.

In order to obtain the characteristic that marks the end of the excitation cycle, the

rotor was positioned such that a pair of rotor poles was aligned with phase P2 (see

position P' in fig. 3,4). The selected bias cunent was then applied to phase P1 and

the flux linking P2 was measured for different excitations up to 10A. The

(unaligned) characteristic that marks the beginning of the excitation cycle was

obtained by applying similar considerations to phases P1 and P2 at rotor position

P. A system X / i diagram was also constructed for a 5A phase current bias.
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The variation of flux linkage with rotor position in the doubly excited 4-phase

motor is shown in fig. 3.9. The excitation cycle of a 4-phase switched reluctance

motor spans 15°. In one cycle the rotor poles associated with the leading phase

move from the 15° rotor position to the 30 0 (aligned) position. In the same cycle,

the rotor poles associated with the trailing phase are displaced from the 0°

(unaligned) position to the 15° rotor position, as shown in fig. 3.3d,e. The X, /

profile of both the trailing (0°-15°) and leading (15°-30°) phases is depicted. The

characteristic is similar to that of a typical, singly excited switched reluctance

motor. In the overlap region, from 0 = Obo to 0 = ebo 13, / 2 (where 0„ denotes

the beginning of the overlap), the A, / 0 characteristic follows a linear relationship.

From 0 = Obo Ds / 2 to 8 = ebo Ps the profile follows a sigmoidal relationship.

The static torque profile of the 4-phase motor, with two phases conducting

simultaneously, is illustrated in fig. 3.10. The T I 0 profile is drawn with respect

to the absolute rotor position, i.e. the unaligned rotor position of the trailing phase.

The characteristic, obtained by evaluating the Maxwell stress integral at discrete

positions, spans one rotor step angle. Average torque can be computed by

averaging the instantaneous static torque values over the step angle.

Tave	

step

1	
TO) de

step 0

(3.27)

This is in close agreement with the value obtained by the use of the coenergy

principle as applied to doubly excited systems. A comparison between the

different methods of computing average torque in the 4-phase motor (coenergy-

singly excited, coenergy-doubly excited and Maxwell stress) is given in Table 3.1.

Table 3.1 suggests that if mutual coupling and saturation effects are neglected,

average torque values calculated by the coenergy method are overestimated.

3.2.3 Bulk saturation effects. 

Extensive finite element analysis of doubly excited switched reluctance motors has

revealed a departure from the customary X, / 0 characteristic when the stator and
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/ or rotor yoke sections are heavily saturated. In order to investigate the effects of

stator yoke saturation, the back-iron width of the 4-phase fmite element model was

varied by changing the stator slot depth. The stator bore and pole arc were held

constant. The geometry of the 4-phase finite element models, referred to as Mk

I, II and III, may be found in Table 3.2.

Current

Torque

(coenergy

singly

excited)

Torque

(coenergy

doubly

excited)

Torque

(Maxwell

stress)

Overestimation

by singly

excited theory

5A 1.05Nm 1.00Nm 0.99Nm 6.4%

10A 3.65Nm 3.52Nm 3.5Nm 4.0%

Table 3.1. Average torque figures for the 150W 4-phase motor.

Mk I Mk II Mk III

stator diameter (mm) 106.5 106.5 106.5

stator back-iron width (mm) 10.0 7.00 5.00

stator pole arc (rad) 0.365 0.365 0.365

stator pole height (mm) 14.775 17.775 19.775

airgap length (mm) 0.6 0.6 0.6

rotor diameter (mm) 55.75 55.75 55.75

rotor pole arc (rad) 0.436 0.436 0.436

stack length (mm) 50.0 50.0 50.0

packing factor 0.92 0.92 0.92

turns per phase 220 220 220

Table 3.2. Dimensions of the 4-phase motor models.
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The customary X / 0 relationship can be 'distorted' in cases where the magnetic

circuit is heavily saturated. Consider the X / 0 characteristic of the 4-phase Mk I,

II and III motors, shown in fig. 3.11. The diagram only shows the flux linkage in

the leading phase, as this is the one most affected by saturation. In the Mk I motor

the flux linkage reaches a peak at the aligned position. In the Mk II and III

motors, the flux linkage value reaches a maximum before the approaching rotor

poles reach alignment. The peak flux value occurs earlier as the back-iron width

is reduced. Beyond this peak, and while the overlap angle increases, the flux

linking the leading stator phase P1 decreases. In contrast, it can be shown that the

flux linkage of the trailing stator phase P2 continues to rapidly increase so that the

energy balance equation

w.	 =	 i2x2
	 (3.28)

is adhered to.

Long flux loop motor configurations are more susceptible to saturation effects

because the stator yoke constitutes a significant part of the overall magnetic flux

path length. Magnetic interaction between adjacent phases becomes more

pronounced as the back-iron width is reduced, largely due to saturation. Figure

3.12 shows the system X / i characteristic of the 4-phase Mk II motor; also

demonstrated is the significant error that arises if the effects of mutual coupling

and saturation, brought about by exciting the second phase, are ignored.

These and subsequent comparisons between the 4-phase Mk I, II and III assumed

equal copper loss. This was found to be most appropriate because a comparison

based on equal MMF (excitation) would not take into account the increased copper

area which becomes available as the yoke thickness is decreased. The

mathematical analysis that describes the setup of finite element models for equal

copper loss can be found in Appendix C.
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3.3 Electromagnetic design of switched reluctance

motors for low torque ripple - a new alternative.

Figure 3.13 shows the variation of static torque with rotor position for the three

different 4-phase motors. Instantaneous static torque was computed by integrating

the Maxwell stress tensor over the rotor surface. Figure 3.13 illustrates that the

back-iron width not only affects the average torque for a given copper loss but also

controls the shape of the static torque profile. In this case a flatter torque / angle

characteristic may be achieved by compromising the yoke thickness.

The choice of the appropriate yoke thickness coupled with 'clever' switching can

extend the flat torque period. This observation is particularly useful in applications

where low torque ripple is a principal requirement. The variation of static torque

with rotor position in the 4-phase Mk II motor is illustrated in fig. 3.14. When the

rotor pole associated with the trailing phase is at the 90 position, the leading phase

is commutated. The conduction period of each phase is therefore 24° (15°+9°)

rather than the usual 30 0 . In fig. 3.14 it can be seen that while the rotor turns from

9° to 15 0 (relative to the trailing phase) the torque output of the motor is increased

by switching off the excitation of the leading phase and reducing the motor to a

singly excited system. While the static torque increases in doing so, the copper

losses decrease! By commutating the current before alignment, the deeply

saturated stator yoke is 'relieved' magnetically. A lower reluctance path is set up

for the overlapping (trailing) phase which, for the same MMF, now produces

significantly higher torque. The magnetic flux path, set up when the leading phase

is energised during the 24° - 30° period, could be thought of 'absorbing' MMF.

Furthermore, at rotor positions near alignment, the B-field produced by the leading

phase causes predominantly tensile rather than shear forces to act on the rotor. As

a result P1 does not contribute significantly to torque production.

The commutation of the leading phase before alignment also results in substantially

reduced torque ripple. The Mk II 4-phase motor design for low torque ripple does
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not compromise the average torque output as Table 3.3 suggests. For a 24° phase

current conduction period the 4-phase Mk II model achieves comparable torque to

Mk I for equal copper loss and lower operating current density.

Torque

(Maxwell

stress)

e =30°

Torque

(Maxwell

stress)

Oc=26°

Torque

(coenergy

doubly

excited)

e=30°

Torque

(coenergy

singly

excited)

8c=30°

Mk I 3.51Nm 3.46Nm 3.52Nm 3.64Nm

Mk II 3.06Nm 3.44Nm 3.04Nm 4.35Nm

Mk III 1.90Nm - 1.85Nm 4.30Nm

Table 3.3. Average torque figures for the 4-phase motor models.

A smooth torque characteristic can be achieved by careful selection of critical

motor dimensions i.e. the stator yoke and rotor pole arc. Dynamic operation

parameters such as the rated speed and resulting commutation angles must also be

considered. Phase current profiling has been suggested as a means of achieving

smooth torque (ref. discussion in [8]), though the electromagnetic design of a 4-

phase motor for low torque ripple proposed in this thesis should simplify phase

current control.

Table 3.3 lists average torque values for the three 4-phase finite element models,

computed for equal copper loss. It is demonstrated that the virtual work principle

applied to doubly excited systems yields average torque values which compare

favourably with torque computed from Maxwell stress (ref. 0,=30° columns).

Significant errors can arise using traditional coenergy methods in which magnetic

interaction effects are neglected.
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3.4 The 4kW 7-phase switched reluctance motor.

In chapter 2, it was shown that motors with an odd number of phase windings can

be configured to encourage short magnetic flux patterns. It was asserted that this

configuration would decrease the MMF required to establish the flux in the airgap

while also decreasing the iron losses in the machine. A 4kW 7-phase 14/12

prototype machine was constructed in order to investigate the performance of small

step-angle structures and evaluate the effectiveness of the shared switch,

asymmetric half-bridge converter [41]. It was therefore suitable to model this

machine in finite element analysis, in order to examine the advantages offered by

short flux loops and be able to validate FEA predictions with experimental results.

The design of the 7-phase machine, illustrated in fig. 3.15, was not optimised.

This is because the stator and rotor laminations were stamped out of existing

induction motor laminations. This lead to a significant compromise in the stator

yoke width and pole depth. Results will be presented from two-dimensional

modelling of the machine, configured for short and long flux loops.

Short flux loops can be established by simultaneously exciting at least two phase

windings. Equation 2.3 dictates that in order to obtain peak static torque from the

7-phase machine, three phase windings need to carry current at the same time.

However, the switching algorithm that was developed for the shared switch

converter allows the current in only two phase windings to be simultaneously

controlled [18]. The current in the third phase winding would have to be partially

dependent on the voltage across one of the other two. This would be an

undesirable feature and therefore modelling of the 7-phase machine was confined

to simultaneous excitation of two phases.

In the analysis, two excitation cycles as described below shall be considered. In

the 7-phase machine the beginning of the repeatable excitation cycle is defined as

the point in space where a particular phase winding P1 is energised, while a second

phase winding P2 has been conducting for one rotor step. The end of the cycle is
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marked by the de-energisation of P2, one step angle later, while a third phase

winding is being energised. At high speeds a phase winding must be excited at the

unaligned position so as to provide sufficient time for the current to build up in the

phase winding. The excitation cycle in which a phase is fired at the unaligned

position and conducts for two rotor steps will be referred to as the high speed

cycle. At lower speeds firing may be delayed until just prior to the overlap period

between the excited stator and associated rotor poles, such that the conduction

period lies entirely within the pole overlap period. A low speed cycle will be

examined in which firing is delayed by 3°.

3.4.1 Electromagnetic field considerations.

The ideal X / i trajectory assumes square current pulses and spans an angle equal

to two rotor steps. It can be constructed by the use of magnetic circuit

considerations developed for motors operating with two phases conducting at any

time. Figure 3.16 shows a plot of the system X / i diagram for the 7-phase

machine, configured for long and short flux loops and operating in the low speed

excitation cycle. A phase current bias of 10A is assumed. A similar plot

describing the high speed excitation cycle is shown in fig. 3.17. The area enclosed

by the A, / i trajectory is a measure of the average torque developed in the switched

reluctance motor (see eqn. 3.8). It is therefore evident that short flux loop

excitation results in higher torque output. It is also noted that the benefit is greater

where the reluctance of the iron constitutes a substantial part of the total magnetic

circuit reluctance.

The X / 0 characteristic of the leading phase of the 7-phase machine, configured

for long and short flux loops, and excited with 10A is shown in fig. 3.18. In

comparison with the 4-phase (Mk I) motor, the magnetic interaction between the

excited phase windings in the 7-phase machine is more acute. This is due to the

close proximity of one stator pole winding to another which implies a higher level

of mutual coupling between adjacent phases. In addition, the simultaneous

excitation of two phase windings rapidly saturates the stator yoke (the thickness of
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which is insufficient) hence degrading performance.

For the same current level, a significant increase in phase winding flux linkage

resulted by configuring the motor for short flux loops. The flux linking the excited

stator poles of the long flux loop machine was limited by bulk saturation of the

stator yoke sections. The phase winding flux linkage reached a maximum of

0.44Wbt, 50 before alignment; beyond this point it began to decrease though the

overlap between the stator and rotor poles increased. The lower reluctance path

set up in the short flux loop machine allowed the phase winding flux linkage to

rise to 0.55Wbt; no significant decrease in X was noted toward alignment. The

static torque production of the long flux loop configuration was therefore severely

compromised due to saturation effects, in sharp contrast to the short flux loop

configuration.

Referring to the long flux loop configuration (see fig. 3.15), the B-field is

essentially encouraged to separate in two long loops that link stator coils 1-2' and

l'-2. Both long and short flux loop configurations attempt to maximise the mutual

B-field linking the excited stator coils. However, the latter configuration

encourages the B-field to follow a short path to link coils 1-2 and 1'-2'. In a

sense, this is the natural B-field path of minimum reluctance. The short flux loop

configuration is significantly less sensitive to back-iron thickness because only a

small arc of the stator periphery forms part of the magnetic pattern. This feature

offers an additional design advantage since, for a specified rotor diameter, the

back-iron width of the machine can be reduced to offer larger copper area.

3.4.2 Instantaneous / average torque considerations. 

The measured static torque produced by the 7-phase machine, as a function of rotor

position, is illustrated in fig. 3.19. Measurements were taken for phase currents of

5A and 10A in two adjacent phase windings. Also shown is the static torque

profile of the machine, predicted by the use of the two-dimensional finite element

analysis model. The long and short flux loop characteristics considered are similar
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at rotor positions early in the excitation cycle. In this region the reluctance of the

magnetic circuit is dominated by the interpolar airgap depth facing one of the

excited stator phases. As the associated rotor poles move into alignment with the

excited stator poles, the reluctance of the iron becomes more significant, and

substantially higher torque is produced by the short flux loop motor configuration.

Good agreement between the instantaneous static torque predicted by the two-

dimensional model and measurement, was obtained for the short flux loop

configuration. End-core effects in the 7-phase machine are minor because the stack

length is large. However, in the long flux loop configuration, finite element results

consistently overestimated measured values. The dimensions of the machine,

including the sensitive airgap length, were accurately entered during the model

creation stage. In any case, errors in geometry would affect both long and short

loop configurations. Referring to fig. 3.15, the grooves in the back iron of the

machine were not included in the finite element model. This is an 'innocent'

omission which is frequently made. However, in this particular machine, the back-

iron thickness is small and the grooves randomly positioned with respect to the

poles. This was a design restriction, set by the use of existing induction motor

laminations. The grooves may have therefore increased the magnetic path

reluctance enough to cause a noticeable error in the results. This would only be

visible in the long flux loop configuration, where the back-iron periphery

constitutes a significant part of the path reluctance.

The average static torque may be evaluated by averaging the instantaneous static

torque values over the angle that the excitation cycle spans. The results of this

study are summarised in Table 3.4. Also tabulated is the average torque, computed

using the coenergy principle as applied to doubly excited systems. Long and short

flux loop configurations were considered. Good agreement is noted between

results obtained by the two methods.
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Low Speed Cycle

Torque	 Torque

(Maxwell	 (coenergy

stress)	 doubly

excited)

High Speed Cycle

Torque	 Torque

(Maxwell	 (coenergy

stress)	 doubly

excited)

Long 20.77Nm 20.85Nm 25.73Nm 28.53Nm

Short 32.48Nm 33.69Nm 28.73Nm 30.30Nm

Table 3.4. Average torque figures for the 7-phase motor.

3.5	 Summary of fundamental modelling

considerations.

A new procedure of applying the virtual work principle to switched reluctance

motors which operate with two phases conducting at any time has been described.

The electromagnetic theory of doubly excited systems does not neglect magnetic

interaction effects between simultaneously excited phases, hence leading to more

accurate modelling of the switched reluctance motor. The procedure which has

been described shall facilitate the modelling of short flux loop machines, but can

also be applied to the 'traditional' 4-phase 8/6 structure. The method proposed

allows much of the existing dynamic modelling theory to be adopted providing the

correct X1 characteristics are computed.

It has been shown that in 4-phase switched reluctance motors the stator yoke

thickness must be carefully chosen to allow for the overlap of phase current pulses.

If the chosen yoke thickness is small, bulk saturation effects will severely limit

torque production. This phenomenon, however, will not 'show up' in the

modelling if the virtual work principle as applied to singly excited systems is

adopted.
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It has also been illustrated that careful selection of the yoke thickness, coupled with

matching commutation angles, can optimise the performance of the 4-phase drive.

Although the 4-phase switched reluctance motor is doubly excited (the effective

torque zone is equal to twice the step angle) the back-iron width need not be equal

to the stator pole width. The yoke thickness can be reduced to allow for more

copper area, and the commutation angles appropriately adjusted to give optimum,

low ripple torque production.

Modelling of the 7-phase motor with the windings configured for long and short

flux paths, has demonstrated the benefits of the latter configuration. The torque

developed by the switched reluctance machine was computed by the methods of

virtual work or Maxwell stress. Good agreement was obtained between the two

methods when applied to the 4-phase and 7-phase motors, providing the new

modelling theory for doubly excited motors was adopted.

\/.
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Chapter 4

THE EFFECT OF END-CORE FLUX ON THE

PERFORMANCE OF THE SWITCHED

RELUCTANCE MOTOR2

4.1 The need for three-dimensional modelling.

Finite element analysis is considered to be highly suited to handle the modelling

complexities introduced by the deeply saturated, doubly salient iron structure of the

switched reluctance motor. Having decided to use commercially available finite

element analysis software, the question posed by researchers is whether the

switched reluctance machine can be modelled, with sufficient accuracy, using a

two-dimensional code. A useful, early discussion on inductance estimation and

three-dimensional effects in switched reluctance motors may be found in [51].

Simkin and Trowbridge [52] reported that inductance calculations on a stepping

motor using a two-dimensional computer program had shown good agreement with

measurement when the rotor teeth were aligned with the excited stator teeth.

However in the 'unaligned' position, that is, the position at which the rotor slots

are aligned with the excited stator teeth, values for computed and measured

inductances disagreed. In the latter position the airgap facing the excited stator

poles is large causing strong axial components of field to arise. These were not

modelled by the two-dimensional program and the errors were thought to be caused

by this.

Williamson and Shaikh [53] demonstrated the superiority of three-dimensional

models for calculating A. / i diagrams for the switched reluctance motor and

2This chapter is based on a paper, written by A. Michaelides and C. Pollock, which has been
accepted for publication in IEE Proc. B.
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concluded that the difference between the results obtained using two-dimensional

and three-dimensional models cannot be accounted for by assuming a single-valued

end winding inductance. However, the authors of the paper did not explicitly

suggest a suitable procedure for estimating the end winding flux at any rotor

position or excitation.

Despite these observations, finite element analysis packages that employ two-

dimensional formulations are established as the primary tool in switched reluctance

motor design. Users of finite element analysis packages have found that two-

dimensional models require far less cpu time to solve and occupy little disk space

in contrast to three-dimensional models. Typically a two-dimensional nonlinear

problem (one particular excitation level and rotor position), processed on a Sun

Sparcstation10, requires twenty minutes of cpu time to solve and occupies 2Mb of

disk space. Its three-dimensional counterpart would require six times the cpu time

and occupy up to ten times the disk space. In addition, most two-dimensional

formulations are today available in PC form, which makes them more attractive.

It is widely accepted that the two-dimensional formulation for electromagnetic

finite element analysis is easier to implement and expand. Recently C.

Biddlecombe [54] and D. Roger [55] have reported advances in the two-

dimensional code to include heat and bending calculations. Implementation of

these advances in three dimensions is a few years away, mainly due to the

complexity of the three-dimensional algorithm. The description of basic equations

on which two and three-dimensional algorithms are based (see Appendix A)

illustrates this: in two dimensions, a simple equation relating A z to the applied

is solved for the magnetic field.

The purpose of this chapter is to illustrate the effect of end-core flux on the / i

/ 0 diagram and on the predicted values of static torque in the switched reluctance

motor. The phase winding flux linkage and static torque of a 4-phase 8/6 switched

reluctance motor are determined as a function of phase current and rotor position

using a two-dimensional finite element model. The base- plane lamination is

extruded to different stack lengths to form three-dimensional finite element models.
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The flux linkage and static torque characteristics of each model are determined and

compared with results obtained from the two-dimensional model. An experimental

motor of stack length exactly equal to one of the models is used to verify

computed results. Correction charts are set up providing appropriate coefficients,

to allow users of two-dimensional software to account for three-dimensional

effects, at a range of excitations and rotor positions. The sensitivity of the end-

core flux value to magnetic circuit parameters such as applied MMF, conductor

overhang and magnetic saturation is also examined. An application to an

alternative 7-phase 4kW switched reluctance motor is presented. OPERA -3D /

TOSCA was used throughout this work [44].

4.2 Three-dimensional effects in the switched

reluctance machine.

There are three different three-dimensional effects that must be carefully considered

in order to correctly compute phase winding flux linkage and static torque:

a) anisotropy of the laminations,

b) end winding flux and

c) axial fringing.

Like most electrical machines, the switched reluctance motor is laminated in order

to minimise eddy current losses. Finite element modelling of the individual

laminations and the interlamination insulation would require a mesh of unrealistic

element number. In the three-dimensional finite element code, laminated structures

can be solved by specifying the packing factor, pf, and the direction normal to the

laminations. These parameters enable the program to calculate the effect of the

laminations using anisotropic material properties, i.e. by assigning a high

permeability in the direction parallel to the laminations and a considerably lower

permeability in the direction perpendicular to them. In directions parallel to the

laminations, the program uses
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= pf vi,„„ + ( 1 —PDI-Lo
	 (4.1)

and normal to the laminations

1-10 Pjron

pf + ( 1 -pnilimn

(4.2)

whereuiron is the relative permeability of iron obtained from the BH curve data.

The value of the relative permeability is dependent on the magnetic field intensity

at any point in space. The symbol 1.i.0 denotes the absolute permeability.

In a two-dimensional finite element model, the effect that the laminated structure

of the machine has on stator flux linkage and static torque production may be

accounted for in one of two different approaches:

Method A: The original BH curve data may be used and the field values per unit

length, obtained from finite element model solutions, multiplied by the stack length

times the packing factor.

Method B: The BH curve data can be manually scaled by multiplying the value

of the flux density, at all MMFs, by the packing factor. This approach closely

approximates the method employed in the three-dimensional code (ref. eqn. 4.2).

Once two-dimensional model solutions have been correctly scaled to account for

anisotropy, the remaining discrepancy between corrected two-dimensional solutions

and measurement must be due to end-core flux.

End-core flux can be accounted for by considering three-dimensional effects that

arise at the ends of the machine stack. The dominant effect is end winding flux

i.e. the B-field lines generated from current flowing in the conductor region which

extends beyond the lamination stack, and link the phase winding via the main

magnetic circuit. One other end-core effect is axial fringing, or bulging of flux in

the axial direction. The B-field lines, fringing axially from the ends of the stator

pole stack into the rotor pole ends, can be lines generated from both h and hp.,

(end winding) current. The phenomenon is minimal in the unaligned position, and

occurs as a pair of rotor teeth align with the excited stator teeth. The effect that
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this magnetic flux path has on the phase winding flux linkage, is accounted for

only in three-dimensional modelling.

In order to accurately determine end-core effects, three-dimensional model

solutions were compared with corresponding solutions from a two-dimensional

model that was prepared using BH curve data scaled by the packing factor (method

B). This scaling method was solely used for comparison purposes. A second two-

dimensional model was prepared using the original BH curve data; scaling method

A was imposed on solutions of this model. It is the intention of the author to

provide information on the difference between two-dimensional model solutions

obtained by the use of these two scaling approaches.

4.3 Comparison between two-dimensional and

three-dimensional finite element analysis results with

experimental results.

The base plane used for the two and three-dimensional finite element models

corresponds to the lamination of the experimental 150W 4-phase 8/6 switched

reluctance motor. Comparisons will now be presented between two-dimensional

model solutions, solutions from a three-dimensional model of stack length equal

to that of the experimental machine, and measurement. Scaling method A was

employed for two-dimensional model solutions.

4.3.1. Flux linkage.

The X / i characteristic for one phase of this machine at the aligned and unaligned

positions is shown in fig. 4.1. Two and three-dimensional finite element model

predictions are shown alongside experimental results. A significant error in

computing X, using two and three-dimensional finite element cOde, was noted at

very low currents. This was thought to be caused by the 'reverse curvature'
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FIG. 4.1 EXPERIMENTAL 4-PH MOTOR : FLUX LINKAGE / CURRENT DIAGRAM
0.25

relationship that magnetic materials exhibit at very low values of H. This was not

included in the definition of the BH curve, in order to assist convergence in

nonlinear problems (it is advisable that 1.1 decreases monotonically with H). At

higher current levels, flux linkage calculations using two-dimensional and three-

dimensional modelling show good agreement with experimental results when the

rotor pole is aligned with the excited stator pole (high flux linkage position).

However, in the unaligned position results from two-dimensional modelling of the

machine are in error while calculations using a three-dimensional model maintain

good agreement with measurement. Two-dimensional model solutions consistently

underestimate the flux linkage value, the effect being particularly noticeable at

positions where the excited stator pole faces the interpolar airgap depth. These

findings are in agreement with observations made by previous authors [52,53].

Figure 4.2a illustrates the flux linking the excited stator pole when this is aligned

with a rotor pole while fig. 4.2b shows the flux linking the same Pole, for the same

excitation, in the unaligned position. Strong axial fields arise due to end windings,
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especially in the latter case. However, as the motor structure is laminated and the

permeability in the (Z) direction normal to the laminations is low, B-field lines find

it difficult to penetrate the magnetic material axially. High flux densities therefore

appear at the ends of the structure, where flux is encouraged to follow a path

parallel to the laminations. These effects are not accounted for in two-dimensional

modelling. A view of the B-field distribution in the 4-phase motor is shown in fig.

4.2c; the rotor is in the aligned position, where axial fringing effects are

pronounced. This is confirmed by the increased flux density appearing at the stator

and rotor pole tips.

4.3.2. Static torque.

The static torque produced by the switched reluctance motor at a particular rotor

angle and excitation can be obtained by computing the integral of the Maxwell

stress tensor t over the appropriate surface. In order to accurately compute the

forces acting on the rotor, the airgap of the machine was meshed with four layers

of eight-node brick elements. The iron structure (rotor) was selected, and enclosed

by two layers of air elements before computing the integral of the Maxwell stress

tensor. This gave the best possible chance of the integration of forces over the

selected surface being accurate.

The measured static torque produced by the experimental 4-phase machine, as a

function of rotor position, is illustrated in fig. 4.3. Also shown is the static torque

profile of the machine, predicted by the use of two-dimensional and three-

dimensional finite element models. Figure 4.3 is drawn for phase currents of 5A

and 10A. Superior agreement with experimental results was obtained from three-

dimensional model solutions.
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FIG. 4.3 EXPERIMENTAL 4-PH MOTOR: STATIC TORQUE / ROTOR POSITION
3

-- 2D FEA

- 3D FEA

* experiment
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10	 15	 20	 25	 300

alignedunaligned Rotor Position (deg)

4.4 Correction charts for two-dimensional finite

element modelling.

The base plane lamination of the 4-phase 8/6 machine was extruded to create two

further three-dimensional models, 100mm and 150mm in stack length. The A, / i

/ 0 characteristic and static torque profile of the machines modelled was

determined and compared with the characteristic that was obtained using two-

dimensional modelling. For comparison purposes, scaling approach B was imposed

on two-dimensional model solutions, as described in section 4.2.

4.4.1 Flux linkage. 

The end-core flux, 4) e, was obtained by subtracting the value of flux linking the

excited stator poles computed on a two-dimensional model, from the
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corresponding value computed using a three-dimensional model. The value of

end-core flux is not constant over the excitation range. In the linear region of

operation, 40 e increases in proportion to excitation. The end-core flux reaches a

peak value when the excited stator poles are operated at the 'knee' point of the BH

curve (measurements taken at the centre of the core). Beyond this point gi e begins

to decrease due to the marked decrease in the permeability of iron.

The variation of end-core flux with rotor position in the experimental 4-phase

motor is illustrated in fig. 4.4. It is seen to be heavily dependent on the excitation.

At high excitations (i = 10A), (1) e decreases monotonically as a rotor pole moves

into alignment with the excited stator pole. This is due to the fact that the machine

is driven harder into saturation as the overlap of the poles increases and the end

windings 'see' a low permeability, high reluctance path resulting in less end-core

flux. In contrast, at lower excitations (i = 5A) the relative permeability is constant

(at most rotor positions) and the reluctance of the magnetic circuit decreases as the

overlap of the poles increases. The end-core flux is therefore found to increase as

the rotor poles move into alignment with the excited stator poles, only decreasing

slightly due to saturation near alignment.

Figure 4.5 indicates the correction factor which needs to be applied to a two-

dimensional solution to account for end-core flux. The chart shows the percentage

increment in flux linkage due to end-core effects, as a function of current, when

a rotor pole is aligned with the excited stator pole. Depending on the airgap length

and structure of a machine, the MMF required to establish the necessary flux

linkage value (or flux density over the appropriate magnetised pole surface) varies.

It must therefore be emphasised that the correction diagram should be used as a

function of flux density in the stator pole, and not as a function of current. It is

for this reason that the nominal value of flux density in the excited stator pole is

also depicted on the diagram. The flux density values were extracted from two-

dimensional model solutions and were equal to those of three-dimensional model

solutions taken midway along the stack.
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The reluctance of the path which the end winding B-field must follow can be

separated into two parts. Firstly, there is the air region which B-field lines must

penetrate to reach the stator teeth. The reluctance of this path is essentially

constant. Secondly, there is the main (iron) magnetic circuit linking the

magnetised stator poles via the rotor body and back iron. The reluctance of this

path increases with excitation. Hence, at low excitations the current flowing in the

end windings has a more significant impact on the value of the phase winding flux

linkage because the permeability of the magnetic material is high. In the saturation

region the permeability of iron approaches unity and the end winding effects are

small. The error in two-dimensional finite element model solutions is greater when

a machine of short stack length is modelled due to the fact that the end winding

constitutes a significant part of the conductor.

Figures 4.6a and 4.6b illustrate the percentage increment in flux linkage due to

end-core effects, as a function of rotor position, for an excitation level of 5A and

10A respectively. Two-dimensional modelling incurs significant errors at rotor

positions where the excited stator pole faces the interpolar airgap depth (00 being

the unaligned position), though maintaining good accuracy at positions where there

is complete overlap between the magnetised stator pole and a rotor pole (30° being

the aligned position). In the unaligned position, the error incurred in two-

dimensional model solutions is very much constant over the excitation range as the

interpolar airgap depth dominates the magnetic circuit reluctance. In the overlap

region the error decreases as the rotor poles move into alignment.

In order to predict the percentage increase in flux linkage due to three-dimensional

effects at any rotor position, the end-core flux at the unaligned and aligned rotor

positions must be known; an appropriate function must then be fitted to

approximate the profiles of fig. 4.6. It can be observed that, at high excitations,

straight line approximations can be adopted. At the unaligned and aligned rotor

positions, the appropriate correction factors at any excitation level can be

readily obtained from fig. 4.5 - 4.6. The correct value of average torque can then

be computed from the amended 2 / i diagram upon application of the coenergy
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principle.

4.4.2 Comparison with a 140mm stack 7-phase switched

reluctance motor. 

The guidelines and correction charts have been verified on a 4kW 7-phase switched

reluctance motor. This motor has 14 stator poles and 12 rotor poles. Although the

dimensions of the 7-phase motor are completely different to the 8/6 configuration

that was used to produce the correction charts, it has been found that it

demonstrates the same percentage increase in flux linkage due to end-core flux, at

a given mid-stack stator pole flux density. This machine has a stack length of

140mm and an airgap length of 0.4mm. The percentage increment in flux linkage

due to end-core flux was plotted as a function of flux density in the excited stator

pole. The profile fits the correction chart convincingly (see fig. 4.5).

Solutions of a two-dimensional and a three-dimensional model of the 7-phase

machine at different rotor positions revealed a similar trend to that obtained from

solutions on the 4-phase switched reluctance motor model. In the unaligned

position, a small variation of the percentage increment in flux linkage due to end-

core effects was noted for different excitations (6.4 to 7.11%). This result is

consistent with earlier findings on the 4-phase machine (ref. fig. 4.5 and fig. 4.6

at 0 = 00 ) . At constant (high) excitation, end-core flux decreased linearly in the

region where the stator and rotor poles overlap to reach a minimum at alignment.

Results for an excitation of 10A are given in fig. 4.7.

4.4.3. Static torque. 

The percentage increment in static torque due to end-core flux as a function of

rotor position, for low and high excitation levels, is illustrated in fig. 4.8a, b. The

discrepancy in static torque calculations performed using a two-dimensional finite

element model is not analogous to errors in flux linkage calculations. The

relationship that governs static torque production in the switched reluctance motor
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dictates that the axial field Be, a strong component of which is induced by end

windings, does not contribute to positive torque. Torque is maximised by

optimising the shearing force 'r on the rotor, a direct consequence of

maximising the tangential component of flux density on the rotor, B. The radial

component Br, tends to keep the rotor in position, by subjecting it to tension or

compression. It must be pointed out that not only the direction but also the

magnitude of the flux density components is important. This is the reason why

maximum torque is obtained in the region where there is significant overlap

between the excited stator and rotor poles (0 = 10 0-200), and not earlier in the

excitation cycle.

End windings induce all three components of flux density (Br, By, and Be). The

first two components acting parallel to the XY plane contribute to torque.

However, at high excitations and towards alignment a higher value of static torque

was predicted by two-dimensional model solutions. This is thought to be due to

the fact that in positions close to alignment the radial component of flux B,.

produced by end windings may be more dominant than component B.

4.5 Discussion on other effects.

4.5.1 Anisotropy. 

In three-dimensional finite element models of the switched reluctance motor using

anisotropic materials, the iron permeability in the axial direction is assigned a low

value, making flux penetration in this direction difficult. As a result, a significant

axial component of field arises solely at the ends of the excited stator poles. Flux

is forced to penetrate iron parallel to the plane of laminations where the relative

permeability is very high. However, at very high excitations as the iron becomes

saturated, more flux penetrates the iron axially. In field solutions of the machine

using isotropic materials, the axial component of flux is at its highest value at the

ends of the excited stator poles and decreases more uniformly toward the middle
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of the stack. The net flux linking the stator windings is higher in the isotropic

materials machine due to the higher permeability, although higher flux densities

appear at the pole edges of the laminated structure. Therefore, in the three-

dimensional finite element code, the equations governing the behaviour of the

magnetic field in an anisotropic structure appear to provide a faithful

representation. However, one might argue that parallel to the plane of each

lamination the permeability of iron should not be affected. This leads to the two

approaches used to scale two-dimensional model solutions. Figure 4.9 illustrates

the X / i diagram of the experimental machine, computed using two-dimensional

models that were either set up by scaling the BH curve data (method B) or

prepared using the original BH curve data and scaling field solutions per unit

length by the stack length times the packing factor (method A). When the rotor

poles are aligned with the excited stator poles, the results produced by the two

methods converge as the excitation increases due to the marked decrease in iron

permeability, but they are never equal.

This trend may be understood more easily if the case is considered where three-

dimensional models, structurally identical, were assigned packing factors of 0.96,

0.92 and 0.88 and solved for different excitations. Figure 4.10 shows that at low

excitations, field values calculated in all three variants were in close agreement,

somewhat higher values being obtained from the model that was assigned the

highest packing factor. This is because the motor was operated in the linear, high

permeability region and the iron was 'seen' as infinitely permeable in comparison

to air. At higher excitations, as the relative permeability of iron approaches that

of air, the field values obtained from the three variants diverged and the loss in

performance due to a poor packing factor was evident.

Referring to fig. 4.9, the reader will notice that the X / i diagram computed using

scaling method B is in closer agreement with measurement. This, however, is

misleading. It must be remembered that end-core flux has not been accounted for.

The use of the original BH curve data to set up a two-dimensional model, and the

subsequent scaling of the field values per unit length by the stack length times the
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packing factor (method A), constitutes a more realistic scaling approach. It

provides information on the true flux densities that drive the machine by assuming

no change in the magnetic properties of a single lamination. Despite the fact that

this approach yields higher field values in the post-processor, it still predicts lower

overall (scaled) values of flux linkage and static torque when compared to solutions

of finite element models prepared using scaling method B.

The three-dimensional model consistently yields more accurate field solutions of

the motor, at any rotor position and excitation, in comparison to the two-

dimensional model. However, flux linkage and static torque values are, even

marginally, overestimated by three-dimensional model solutions. One reason for

this discrepancy could be the properties assigned to anisotropic material structures,

and in particular eqn. 4.2. The margin of error is still very acceptable though, and

defining a three-dimensional model with layers of iron and air interleaved would

be unnecessarily expensive, if not impossible.

4.5.2. Conductor overhang / inside coil radius. 

The variation in length of the conductor overhang and inside coil radius, shown

diagrammatically in fig. 4.11, has little effect on the end-core flux linking the

excited stator poles of the switched reluctance motor. Three models were set up

with a conductor overhang of 3mm and an inside coil radius of 3mm, 4.5mm and

6mm respectively. The value of end-core flux plotted against excitation, when the

rotor poles are aligned with the excited stator poles, is shown in fig. 4.12. As the

inside coil radius increases the end-core flux decreases, but only marginally,

because the end conductors are positioned further away from the stator poles.

The results suggest that the overhang, present in all machines, plays the most

significant role in producing the marked increase in flux at the ends of the excited

stator pole. The B-field lines generated by current flowing in the overhang, follow

a shorter path through air in order to 'creep into' the stator poles. These findings

were confirmed by extending the end windings a considerable distance away from
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Fig. 4.11. Illustration of overhang and inside coil radius.

the pole ends (the overhang was set to lOmm) and repeating the computation of

flux linkage. The results are superimposed on fig. 4.12 and demonstrate clearly

that the dominant cause of the end-core flux is the coil overhang and not the

tangential (XY) part of the end winding.

4.5.3. Sources of error.

The most significant source of error in finite element modelling is that incurred due

to the level of discretisation. In order to minimise this, the discretisation of the

two-dimensional (base plane) mesh was repeatedly refined until field solutions

obtained from the most finely discretised model were within 1.0% of the previous.

Discretisation in the third dimension was also optimised, although a very fine mesh

here would produce a model of unrealistic element size. The ends of the machine

were more finely discretised in order to 'capture' the end effects. This is important

when dealing with anisotropic structures, where there are abrupt changes in field

values at the excited stator pole ends. A small margin of error should however be

allowed to the results presented to account for discretisation ei-rors.
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4.6 Conclusions.

The effect of end-core flux on the performance of switched reluctance motors has

been presented. Experimental results from a 4-phase motor verified the superiority

of three-dimensional modelling. The percentage increment in flux linkage due to

end effects was found to be maximum when the excited stator poles face the

interpolar airgap depth. The percentage increment in flux linkage due to end

effects decreased linearly as the overlap between stator and rotor poles increased,

reaching a minimum value in the aligned position. The correction charts that were

set up for different machine lengths may be used to account for end-core flux at

a range of rotor positions and excitations. An application to an alternative 4kW

7-phase machine confirmed the reliability of the charts. The value of end-core flux

was found to be heavily dependent on excitation, rotor position and magnetic

saturation. An extensive discussion into the modelling of anisotropic material

structures was put forward.

It is thought that the most realistic approach of accounting for three-dimensional

effects when modelling switched reluctance machines in two dimensions,

constitutes the scaling of field values per unit length by the stack length times the

packing factor and, at a particular rotor position and stator pole flux density,

adding the end-core flux value provided by the correction charts. This procedure

was applied to the experimental four phase machine, and the resultant X / i

diagram, shown in fig. 4.13, compares favourably with measurement (except at

very low current, as explained earlier). A similar procedure may be followed for

static torque estimation.
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Chapter 5

THE SRDESIGN PACKAGE: MODELLING

AND SIMULATION

SRDESIGN is a computer simulation program, written in Turbo Pascal by C.

Pollock and A. Michaelides to characterise the performance of the switched

reluctance motor under running conditions. This chapter shall describe

fundamental design and modelling considerations supported in SRDESIGN.

The structure of SRDESIGN, shown in fig. 5.1, is based on screen menus which

control the flow of data and sequence of calculations. A design entry interface and

a facility for design changes in the lamination geometry or the power converter

specification is provided. Once a complete switched reluctance drive specification

has been entered, the program offers the choice of either (internally) computing the

magnetisation curves at 'extreme' rotor positions, or importing them from finite

element analysis. Magnetisation curves at intermediate rotor positions are

subsequently computed within SRDESIGN. Information on the operating speed

and level of excitation is used to calculate the output torque, power input and

efficiency. A collection of additional data that may be of interest to the designer

is also provided. Included are the operating flux density in different parts of the

magnetic circuit, the rms current and current density and information on the stator

slot area, winding resistance and slot fill factor.

With the aid of mathematical formulations, this chapter will predominately describe

the work that was undertaken only in this project to improve SRDESIGN.
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Fig. 5.1. Structure of the SRDESIGN program.
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5.1 Modelling magnetisation curves for singly

excited systems.

5.1.1 'Extreme' (aligned and unaligned) rotor positions. 

The X / i diagrams for the aligned and unaligned rotor positions play a significant

role in the modelling structure. It is therefore advantageous to obtain these curves

from a finite element analysis program. A PASCAL routine has been written to

import X / i data calculated by finite element analysis into the SRDESIGN package.

The PASCAL program interpolates linearly between the imported A, / i array, as

needed. If finite element software is not available, the curves can be computed

within the package, with routines which find their source in [51].

Figure 5.2 shows the laminations of a 2-phase switched reluctance motor. The

magnetic flux pattern in the unaligned position is illustrated. The unaligned X, / i

characteristic is shown to be approximated with a straight line. The magnetic path

reluctance is highest at this position because of the large interpolar airgap between

the rotor and the excited stator teeth. The magnetic circuit is not subject to

saturation effects and therefore

un = Lun i
	

(5.1)

where A„ and Lu„ denote the flux linkage and inductance in the unaligned position.

In the aligned position the reluctance of the magnetic circuit is at its lowest; for a

constant excitation level the phase winding flux linkage is therefore at its highest.

At very low excitation the flux linkage varies linearly with current. The iron paths

are highly permeable, with a relative permeability, v r, of over 6000. 'Reverse

curvature effects' are neglected to aid the convergence of nonlinear finite element

problem solutions. At high current levels the magnetic circuit becomes saturated,

with the iron relative permeability II r decreasing rapidly.
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unaligned position

Fig. 5.2. Obtaining magnetisation (Vi) curves
for singly excited systems.

current i

aligned position

5.1.2 Intermediate rotor positions. 

I. Low excitation. 

As a pair of rotor poles turn from the unaligned position to the point where they

begin to overlap with the excited stator poles, there is a small_ increase in the flux

linking the excited stator phase. The large rotor interpolar airgap facing the excited

stator poles maintains a high magnetic circuit reluctance. B-field lines tend to
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fringe from the stator pole tips to the approaching rotor teeth. Fringing effects

become more pronounced near the onset of overlap. Fringing B-field lines account

for the small increase in flux linkage from X„„ to ko in this region. The flux

linkage at the beginning of overlap, ko, is estimated using an empirical formula

derived from finite element analysis studies; Xbo varies linearly with excitation i.e.

X Lho	 ho i
	

(5.2)

A sharper increase in phase winding flux linkage is noted with the onset of

overlap. As the excitation is low, X varies linearly with 0, throughout the overlap

region as shown in fig. 5.3a. The reluctance of the magnetic circuit decreases as

the rotor teeth approach the excited stator poles, though the excitation is never high

enough to saturate the magnetic circuit. The slope of this linear function is

expressed as

= 
22.

—Xho
	

(5.3)

s

Byrne and Lacy [56] recognised the gradient of this profile to be analogous to the

back-emf constant of a dc motor, and appropriately assigned the symbol k to it.

II. High excitation. 

At higher current levels, the X / 0 profile in the overlap region can be

approximated by a linear function followed by a sigmoid. The rotor travel angle

may be separated in four regions as shown in fig. 5.3b. The slope of the linear

region (II) is similar to that of the idealised (trapezoidal) inductance characteristic,

i.e.

Ada1 — Li

s

This observation was first made by Miller and McGilp [57]. It must, however, be

pointed out that the slope k is not constant; it varies with excitation from kie to khe.

khe = (5.4)
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Fig. 5.3. NS variation in singly excited systems.
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A sigmoidal function has been chosen to describe the flux linkage variation with

rotor position in region III. This is of the form [58]

X = 	
a102	

(5.5)
02 + f3 f + yf

The starting gradient of the sigmoid at 0 = eh, was set to be the slope of the X /

0 characteristic in region II. This defines two points on the sigmoidal function.

A third point is needed to define the shape of the sigmoid, and this is extracted

from the aligned magnetisation curve, at the specified current level. The 'Gauss

routine' within the SRDESIGN package uses this information to compute constants

ai, flf and yf and therefore completely define the sigmoidal variation of flux linkage

with rotor position in the overlap region. Although a similar approach can be used

to define a sigmoidal X / 0 characteristic in region I, it was thought that a linear

function description would suffice.

5.2 Modelling magnetisation curves for switched

reluctance motors with two phases simultaneously

excited.

5.2.1 'Extreme' rotor positions.

When modelling switched reluctance motors with two phases simultaneously

excited, the advantage of importing X, / i diagrams for the 'extreme' rotor positions

from finite element analysis is more pronounced. The analytical technique which

is embodied in the SRDESIGN package does not account for magnetic interaction

effects. In finite element analysis the system A, / i characteristic is drawn by

following the new field computation procedure for motors with two phases excited

at any time. The procedure, described in chapter 3, is graphically illustrated in fig.

5.4. Referring to fig. 5.4,
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position P

Fig. 5.4. Obtaining system Vi characteristics for SR motors
with two phases simultaneously excited.

increase
current

in P1P2 biased
with Im

P1 biased

increase
	 with Im

current
in P2

position P•

current i

X2(al) = Nph IB ds il = Int , varying i2
	 (5.6a)

X1(un) = N
Ph 

iBds i2 = 'm' varying il
	 (5.6b)

where I. denotes the set current chopping level.

5.2.2 Intermediate rotor positions. 

The modelling structure presented in section 5.1.2 is valid for motors with two
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phases excited at any time, provided no part of the magnetic circuit is heavily

saturated. There are cases where bulk saturation of the yoke sections may distort

the usual 2 / 0 curve. This phenomenon was extensively discussed in chapter 3.

Long flux loop machine configurations are more susceptible to yoke saturation

effects because of the flux path nature. The X, / 0 curve of a deeply saturated

motor with two phases excited at any time is reproduced in fig. 5.5. The phase

winding flux linkage in the leading stator phase increases rapidly with rotor

position in the overlap region. However, the flux linkage value reaches a

maximum before the approaching rotor poles reach alignment. Beyond this peak

towards alignment, and while the system energy increases, the flux linking the

leading stator phase decreases.

It is possible to use a second order function to fit a heavily saturated X, / 0
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characteristic within the SRDESIGN package so as to obtain an accurate model of

the behaviour of the motor. However, additional data needs to be imported from

finite element analysis in order to perform this task. In addition to the

magnetisation curves at the extreme rotor positions, the maximum flux linkage,

Xm., and the rotor position at which it is obtained must be entered. This operating

point moves along the 0 axis with changing excitation. The data is therefore valid

for a single operating current, In,• The approximate curve fitting procedure is

illustrated in fig. 5.5.

5.3 Dynamic operation considerations.

Under running conditions, it is necessary to commutate the current in the phase

winding before the approaching rotor teeth align with the excited stator poles.

Early commutation ensures that the current and associated flux linkage reduce to

zero before the rotor teeth move beyond alignment, as shown in fig. 5.6.

When the rotor speed is low, the supply voltage exceeds the motor back-emf. It

is therefore essential to limit the phase current to its rated value with the aid of a

current chopping regulator. There exists a speed, known as the base speed wb , at

which the applied voltage is equal to the back-emf. In theory, at this speed a flat

topped current pulse may be maintained without chopping. In practice this cannot

be achieved as the back-emf constant varies with rotor position, as illustrated in

section 5.1.2.

When the motor is running above base speed, the supply voltage is not enough to

overcome the back-emf. In this case the phase current rises to a set value and

immediately decreases as the approaching rotor teeth begin to overlap with the

excited stator poles. Figure 5.6 demonstrates how the electrical energy that is

converted to mechanical work during each working stroke decreases with speed.
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Fig. 5.6. Dynamic operation considerations.

126



5.3.1 Base speed estimation. 

If the phase current is constant, and a linear variation of inductance with rotor

position is considered in the overlap region, the back-emf is also constant. The

speed at which the back-emf is equal to the supply voltage is known as the base

speed.

As the rotor turns through an angle equal to the stator pole arc, f3„ the flux linkage

increases from kb, to ka. The time taken to complete the move is given by f3/ co,

where Co represents the average speed of rotation. If the motor is running at base

speed, wb, the current must have risen to (and maintained) a constant value under

the influence of the supply voltage, V. Hence

P
al - Xbo = (Vs - In,R) —

co

where R denotes the phase winding resistance. The base speed is therefore given

by

- /R )13
= 	

'1ph(al — Cob)

(I) denotes the flux linking the excited stator phase at the rotor position specified

by the subscript. In this form, eqn. 5.8 indicates to the switched reluctance motor

designer that the key parameters which must be considered when tailoring the base

speed are the supply voltage, V„ and the number of turns per phase, Nph.

5.3.2 Commutation. 

The rotor angle, beyond the onset of overlap, at which negative ( or zero ) voltage

is applied across the phase winding in order to decrease the current and flux

linkage to zero is defined as the commutation angle. The commutation angle may

be expressed as the product of the stator pole arc, f3s, and the commutation ratio,

c, where 0 < c 1. Upon commutation, the angular duration available for the

(5.7)

(5.8)
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current to decrease to zero is equal to ofall , where

° fall = Pr	 CI3

	
(5.9)

Commutation must be delayed as much as possible in order to 'capture' the

maximum possible area within the ideal (square current pulse) energy conversion

loop. There is therefore an ideal commutation angle for each rotational speed and

current level. If the ideal commutation angles are adhered to in practice, the drive

efficiency is optimised and the power converter kVA rating is kept to a minimum.

Here it must be stressed that the commutation angles proposed in SRDESIGN may

not always be ideal. The program assumes that commutation must be delayed as

much as possible but regeneration must be completely avoided. However, there

may be cases where the motor performance stands to gain by delaying

commutation even further. If the extra time the current has been maintained at I.

lies in the peak torque producing region, then substantially higher torque will be

developed. This would overwhelm any negative torque produced as the current tail

enters the generating region.

The commutation ratio prediction is dependent on the choice of the unipolar

converter that powers the switched reluctance motor. Full negative volts (-Vs) can

be impressed on a phase winding connected to the asymmetric half-bridge

converter. In power converters with a split de rail, only half the supply voltage

(-Vs / 2) is available for commutation. A more complicated situation arises when

the shared switch converter is employed. The switching algorithm which allows

current control in two phase windings connected to the same switching leg was

presented in chapter 1. One disadvantage of this technique is the increased current

fall time in phase P1 due to the switching requirements of the adjacent phase, P2.

During the current fall time in Pl, negative volt loops are interspersed with zero

volt loops, each time the adjacent phase P2 requires a positive volt loop to

maintain the current at its rated value.

The computation of the commutation angles for the asymmetric half-bridge, split

dc and shared switched converter will serve as an illustrative example. In this
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ca =	 (Vs - ImR)
dt	 w b

(5.13)

X,
COM xbo	 CO

- IR)m 
cf3	 b	

(5.14)

or

example it is assumed that the motor is running below base speed, and therefore

current chopping is required in order to maintain a predetermined current level.

It is appropriate to derive an expression for the average voltage, vc, that is

impressed across the motor winding during chopping. The average voltage during

chopping, vc, is equal to the sum of the generated back-emf and the resistance drop

in the phase windings. Faraday's law states that, at a rotational speed co, below the

base speed wb, the average chopping voltage Vc must satisfy

(5.10)—	 = (vc — Im R) 70.

It has also been shown that

PS
-X 0 ( — Ir7nR)_ (5.11)

Equating 5.10 and 5.11, and rearranging to give an expression for ve at a rotational

speed below cob yields

Vc = V	 + ImR(l -	 .)	 (5.12)
co b	 (I b

A straight substitution for V in Faraday's equation gives the rate of change of flux

linkage during chopping

The time taken for the rotor to turn through the commutation angle, ci3„ is equal

to Os / o.). The flux linkage at commutation A,„,, is therefore given by
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tfall
co

13 r — cf3 s (5.16)

vs o r + 
ImR 

(3 r — C Lbolm
2

co
vs (1 +	 +	 - -or)

C° b

c13 (5.19)

= Xho + (Vs - ImR) 
cr•	 (5.15)

b

De-energisation of the phase winding follows the chopping mode. The time, tfall

available for the current to fall to zero is given by

The equation governing the fall of flux linkage in a phase winding, connected to

an asymmetric half-bridge converter is

0

= f(- V - iR)dt
	 (5.17)

k.„,	 o

The second term of the integral on the right hand side of the equation may be

evaluated upon application of the trapezoidal rule. An expression for A„,„, may be

obtained as follows

ImR 13 — cf3
A. = (V +	 )(	 S)

COM	
s

2	 co
(5.18)

Equating 5.15 and 5.18 yields an expression for the commutation angle, assuming

an asymmetric half-bridge converter:

Should a split dc rail converter be used, eqn. 5.19 is modified, to

c =

n	 ImR

 
bo rn2 r	 2	 r

V
_1(1 +	 + I R(1 -	 )

2	 b	 2	 co b

(5.20)

Upon commutation, the average negative voltage V„„ that is impressed on a phase
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= 1(73 - ImR)(1 -
I R f3 - P

+	 1(  r 	 )
2	 co

)

b

(5.23)

winding connected to a shared switch converter is given by

Vfleg = Vs - Vc	 (5.21)

Substituting for V, (see eqn. 5.12),

Vneg = (Vs - InzR)(1 - 

6-) b
	 (5.22)

Keg arises because the lower switching device, to which the commutated phase is

connected, is off whereas the top switching device is chopping. The top switching

device is shared with the adjacent phase which carries the rated current.

The equation that governs the fall of flux linkage is given below:

Equations 5.15 and 5.23 may be equated and rearranged to yield an expression for

the commutation angle, assuming a shared switch converter

V3 0 s (1 - Li) ) - /mRP s(1 - ._°) ) - Lb 10)
2	 os.) b(-1) b

Cf3 = 	 	 (5.24)
I R

Vs. - m
2

This section has illustrated how an SRDESIGN routine can be employed to

automatically compute the phase current commutation angle at any speed co,

chopping current level, /m, and supply voltage V,. The user does, however, reserve

the option of manually specifying the commutation angles, as an attempt to further

optimise the torque production capability of a motor design.

5.3.3 Maximum speed for a given current. 

Once the stator and rotor poles begin to overlap, the motor back-emf increases

substantially and, depending on the running speed, can limit or decrease the

current. It is therefore desirable to increase the current to the desired value before
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the onset of overlap. Speed limit o.)..a is computed on this basis, and represents

the maximum speed at which current of magnitude I. can be switched in (but not

necessarily out of) the winding at the specified supply voltage. Similar

considerations must be adopted for commutation. Negative motoring torque is

avoided if phase current I. is reduced to zero before the rotor poles move beyond

alignment, into the generating region. If necessary, commutation may be brought

forward to c = 0 (i.e. 0,„„, 0 1,0). This defines a second speed limit cu„, 2 . The

maximum speed routine compares Wmi and (0„,„,2 and warns the user of the smaller

speed limit for the chosen current level.

The algorithm chosen to compute the maximum speed limit depends on the type

of converter employed in the switched reluctance drive and on the switching

technique adopted, that is, whether the firing and commutation angles are fixed by

the drive electronics or calculated by the SRDESIGN program.

5.3.4 Variation of current with angle. 

The current profile can be predicted, having specified the current chopping level

and running speed. The time, t„ taken for the current to rise to a specified value

is computed using

a.,	 t

517 sdt - R fidt
	 (5.25)

0	 0	 0

where X,. lies between xu„ and kw The trapezoidal rule is used to compute the

second integral on the right hand side. The time interval, t, can be expressed as

a function of rotor angle and rotational speed,

= 
0	 (5.26)

When the rotational speed, co, is lower than the base speed, co,„ the phase current

rises to the predetermined chopping level and maintains a 'flat top' until it is

commutated. At commutation,
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c
X,„. -XbQ = (V - ImR)	 s (5.27)

If the rotational speed is higher than the base speed, the switched reluctance motor

back-emf exceeds the supply voltage in the overlap region and, as a result, causes

the current to decay though the flux linkage increases. At the onset of overlap the

program enters a time stepping algorithm which estimates the phase current and

winding flux linkage during the angular period c0,..

This time stepping algorithm, which was written in a general format, is also used

to predict the current fall in the phase winding during the commutation period -

cps).

5.3.5 Time stepping algorithm for current prediction. 

The variation of phase current with time must always obey Faraday's law

aX(i3O)	 dO	 ax(i e)	 di
= iR + 	 I,-	 le-	 —

ao	 -const. di 
	

-const. dt
(5.28)

The second term on the right represents the motor back-etnf, Vb. The rate of

change of flux linkage with current at a specified rotor position is otherwise known

as the incremental inductance, Lin,. Equation 5.28 can therefore be rewritten as

V, iR + Vb +	 (5.29)

The discrete time equivalent of eqn. 5.29 may be obtained by taking finite

differences to give

Vs =	 + vbt	 L it 	 it_i
Inc	 t (5.30)

where t t represents the discrete time (sampling) interval. Solving for the phase

current it, at time t,
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(V, - Vb t)t
it = 	 Rt .si + L .

LI.nc it -1

Rt.si + Lino
(5.31)

In the overlap region, and at a specified current level, the back-emf of a non-

saturated motor is constant. The back-emf constant, k, can be found by evaluating

the gradient of the / 0 characteristic at that current level. Therefore, the back-

emf is equal to

vb = Xcd — Lbo Im	 (5.32)
PS

or, in the customary dc machine equation format

Vb = kw
	 (5.33)

This quantity plus the resistive drop may be regarded as the applied voltage that

would be required to maintain the specified current value constant at a given speed.

The back-emf of a saturated motor varies with position in the overlap region. The

variation of flux linkage with rotor position is described by a linear followed by

a sigmoidal function. At a specified current level, the corresponding A, / 0 diagram

is drawn with the aid of the 'Gauss routine' and the gradient of the X, / 0 curve is

then computed at a given rotor position to give k.

Information on the incremental inductance, Lino is also needed to predict the phase

current value, it . In the overlap region and at constant excitation, the incremental

inductance of a non-saturated motor increases linearly with position from Lba to

Lai . A PASCAL routine has been written to interpolate between aligned X, / i data

imported from FEA, in order to compute ki at any phase current value. At the

operating point (i[t-1 ] ,k[t-11),

Lino = L bo	 r (Lai - Lbo)	 (5.34)

where the ratio r is expressed as
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Mt — 1] — i[t-1]40
r = 

	

	 	 (5.35)
A.,a1 - i[t-1]Lbo

The incremental inductance of a saturated motor is found by computing the

gradient of the 2t., / i diagram at the required rotor position and phase current value.

SRDESIGN generates three arrays namely Aphase, lphase and Fphase which

contain instantaneous values for rotor position, phase current and winding flux

linkage respectively.

5.4 Computation of output power and losses.

5.4.1 Computation of the rms phase current 4„,•

The profile of the phase current pulse is defined by two arrays, namely

lphase[count] and Aphase[count], which contain values for the instantaneous

current magnitude and the corresponding rotor angle.

The equation of the line joining two consecutive points (Aphase[count],

Iphase[count]) and (Aphase[count+1], Iphase[count+1]) is arranged in the form

Iprof (0) = MO + Co 	 (5.36)

where M denotes the profile slope

M
lphase[count+1] - Iphase[count]

-
Aphase[count+1] - Aphase[count]

(5.37)

and Co is the zero crossing.

Equation 'prof (A) is squared and integrated with respect to the rotor angle. The

process is repeated for all values of variable 'count', from count = 0 to count =

Tcount. The integrals are summed and the total is divided by the phase current

repetition angle, before finally taking the square root, i.e.
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Tcount-

E(CI dO)
prof

count.0

27c

N,.

I =
rtns

1w = N
ph 

1 ave
(5.42)

and

(5.38)

5.4.2 Copper losses. 

The switched reluctance motor copper losses, Pc, ' may be computed from

Pcu = 4'2 sRq
	 (5.39)

where q represents the number of phases. The phase winding resistance, R, is

given by

R = p
	

(5.40)

where l 	 the copper wire length and A H, its cross-sectional area.

An average turn length of copper wire, 1„e, wound around the stator tooth is

considered in order to compute the total length of the phase winding. Referring

to fig. 5.7,

I ave = 
21„k + 41oh A- 2ts + 2rc rave

	 (5.41)

The slot area, Aslot of the motor is also calculated and, for a specified number of

turns, the maximum (standard) copper wire diameter is estimated. An empirical

approach to the slot fill factor computation is taken. In production, switched

reluctance motor coils can be pre-wound and slid over the poles without interfering
_

with each other, as shown in fig. 5.8. Hence the actual coil area il. 011 is

compromised. Each wire takes up a slot area fractionally higher than the area of
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Fig. 5.7. Illustration of principal winding dimensions.
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Fig. 5.8. Slot filling in the switched reluctance motor.



KcA coil
= (5.44)

A 
slot

K " fp = h B 
rnax

h	 p	
(5.46)

a square with a side equal to the wire diameter. This accounts for the insulating

varnish coating the copper wire. The coil fill factor IC, is therefore equal to

2
IL

K = 	  = 0.7	 (5.43)
c 4(r +

where r„, denotes the copper wire radius and tv the thickness of the varnish. The

overall slot fill factor, K5, is equal to

This parameter works out to approximately 0.4 for a 4-phase machine, but

increases with increasing number of stator poles. It is also acknowledged that

methods may be found by which the fill factor is increased. The SRDESIGN

package therefore allows the user to input the copper wire diameter from the

keyboard, should one choose to do so.

The resistivity of copper, p, is a function of the operating temperature O cp. R

increases with temperature at the rate of about 20% for every 50°C rise in the

copper windings according to

Rop	 R20°C [1 + a	 - 132001
	

(5.45)

where a denotes the temperature coefficient of resistance of copper. The program

computes R20.c and Rop given a nominal operating temperature. The skin effect is

neglected.

5.4.3 Iron losses.

Hysteresis losses, Ph, can be expressed as

where Bmax is the maximum flux density in the iron, p is the mass density of iron
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and Kh is the hysteresis constant [59]. This expression holds for a system excited

with a sinusoidal waveform of frequency f. The exponent n may not necessarily

be constant.

Eddy current losses are expressed as

K B 2 f2
Pe =  e " 

(5.47)

where Ke is the eddy current constant.

Loss data in WIKg for different lamination materials is provided by the

manufacturers for frequencies ranging from 50 to 500Hz. These curves were used

to obtain constants Ke and Kh. Exponent n was found to be a second order function

of the flux density B, yielding values between 1.5 and 2.5 in the region of 0 to 2T.

Hence, a general analytical expression was formed, predicting core losses at any

excitation frequency, and assuming the iron to be excited with sinusoidal

(alternating) current. In the switched reluctance motor the flux waveforms in

different parts of the magnetic circuit are non-sinusoidal, and as a result, an error

in the calculation of the iron losses is expected.

Hysteresis and eddy current losses are calculated from eqns. 5.46 and 5.47 in WIKg

and multiplied by the weight of the iron of the respective magnetic circuit section.

This procedure requires some information on magnetic circuit parameters. The

'active' (or 'excited') volume of iron, Vaci, is equal to

Vact [section] = l[section] A[section]
	

(5.48)

where l[section] and A[section] represent the length and cross-sectional area of

different sections of the magnetic circuit (such as the stator pole and stator yoke).

The program incorporates a routine to compute V on the motor winding

configuration (short or long flux paths).
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PoutTave
CO

(5.50)

A
E= 	

A + A
o	 r

(5.51)

5.4.4 Output power, input power and efficiency. 

The area Ao enclosed by the operating trajectory on the flux linkage / current

diagram of the switched reluctance motor system is equal to the electrical energy

per 'stroke' that is converted to mechanical work. The net power delivered by the

motor shaft is given by

P — A 
qNr \co p	 p

out 	 2 fiv	 Ferc
(5.49)

where P 	 friction and windage loss and P Fe is the sum of hysteresis and

eddy current losses. The average torque output is expressed as

In each working stroke, energy is delivered to the switched reluctance motor from

the power supply during the transistor conduction period. A proportion of the total

energy supplied is converted to mechanical work during this period while the

remainder is stored in the magnetic field. During the diode conduction period,

some of the stored field energy is converted to mechanical work and the remainder,

111, is returned to the power supply. It is not possible to convert all the electrical

energy supplied during one working stroke to mechanical work. The ratio of the

energy converted to mechanical work, A o, to the electrical energy supplied in each

working stroke is known as the energy ratio, E [7].

This ratio is computed in the SRDESIGN package because it reveals information

on the rating of the power converter.

The total power input to the motor may be computed by summation of all power

loss components of the system, P and the power made available to the motor

shaft, Pout.
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Pin = Pout + 'loss

	 (5.52)

where

loss = Cu	 PFe	 P fiv

	 (5.53)

The motor efficiency is given by

P out
P out + P in

(5.54)

5.5 Structure of the SRDESIGN package.

The implementation of the modelling theory presented in previous sections has

made use of the modular (or 'unit') structure within Turbo Pascal. This has helped

to subdivide the programming task to manageable sections. The contents and

purpose of each unit will now be described in brief.

5.5.1 Unit CONSTANT. 

Information on the geometry of the machine and the number of turns per phase is

used in this unit, in order to calculate the variation of flux linkage with current in

the unaligned and aligned rotor positions. The X, / i diagram computation is based

on the procedure described in [51], which applies to singly excited systems.

System X / i diagrams for switched reluctance motors with two phases

simultaneously excited can be computed, with sufficient accuracy, using finite

element analysis. Unit CONSTANT was therefore written such that the X, / i

diagram can be imported from finite element analysis, should the user choose to

do so. The characteristic is stored in two arrays, namely 'Flux Linkage' and

'Current'.
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The length of the magnetic flux pattern (short or long flux paths) is estimated and

used for subsequent iron loss computations. Geometrical considerations also allow

the maximum diameter of copper wire that can be used (for a given number of

turns per phase) to be estimated. This information is used to compute the

resistance of the phase winding at room and operating temperatures.

5.5.2 Unit CURRCALC.

The phase current and flux linkage profiles, as a function of rotor position, are

computed within unit CURRCALC. Information on the maximum phase current,

speed of rotation and type of converter employed in the drive is used to calculate

optimum turn-on and commutation angles. Alternatively these parameters can be

keyed in.

Subsequently, the variation of current and flux linkage with rotor position is

predicted within a time stepping algorithm, based on the theory presented in

sections 5.1-5.3. At each time step, the values of the rotor angle, phase current and

winding flux linkage are stored in arrays Aphase, lphase, Fphase. Unit

CURRCALC could be thought of as the 'heart' of SRDESIGN.

5.5.3 Unit DRAW. 

This unit makes use of pre-written graphic routines within Turbo Pascal in order

to display graphics on the screen. A plot of any two arrays of the same size

against each other may be created, displayed on the screen and subsequently sent

to a printer if required. The plot facility features automatic scaling of the axes.

The unit was written in a general format such that plots of the variation of all

major parameters with speed (such as torque) and rotor angle (such as flux linkage)

may be obtained.

142



5.5.4 Unit GLOBALS. 

All variable and constant definitions are included in this unit, and it is accessed by

all other units including the main (control) program.

5.5.5 Unit INPUTS.

Unit INPUTS allows the user to interactively key in the geometry of the machine

which is to be analyzed. Information on the power converter configuration and

rating is also essential. A machine design may be stored as a file on / or retrieved

from the disk. A built-in facility checks the machine design for errors and prompts

the user for corrections.

5.5.6 Unit MENUS. 

Unit MENUS comprises four procedures that activate and display an 'Input Panel

Menu', an 'Operating Conditions Menu' and two 'Results Menus'. The 'Input

Panel Menu' lists user options regarding data input from the keyboard or disk, such

as motor geometry entry and modification. The 'Operating Conditions Menu'

prompts the user to specify the operating speed (or range of) and maximum phase

current for the present run. Presentation of results and user options for a 'single'

or 'batch' run are controlled within the appropriate 'Results Menus'.

5.5.7 Unit RESULTS. 

Program results may either be displayed on the screen or sent to a printer. In

'batch mode' the motor performance is predicted, for a specified maximum phase

current value, at a range of speeds. The program tabulates results, indicating the

variation of rms phase current, average torque, total machine losses and efficiency

with speed. A 'single run' examines the motor performance at a specified motor

speed and maximum phase current. A detailed results file is provided for a single
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run, listing additional information on phase winding resistance, average flux density

values in the iron parts and commutation angle(s).

5.5.8 Main Program. 

The main program acts as a data flow controller. Data flow control is achieved by

sequentially calling key procedures within the units. The program also contains

short procedures which use data supplied from units INPUT, CONSTANT and

CURRCALC to compute the average torque, power output, power losses and

machine efficiency.

5.6 Summary.

This chapter presented the 'back bone' theory supported in SRDESIGN.

SRDESIGN is used for sizing and dynamic simulation of the switched reluctance

motor. The program is capable of computing the motor magnetisation curves using

internal (analytical) routines (ref. Unit CONSTANT). However, it does also offer

the facility of importing the curves from finite element analysis.

The A. / 0 characteristic is subsequently computed within SRDESIGN. At low

excitations the A. / e diagram is approximated by a linear function. At higher

excitations, a set of linear and sigmoidal functions are calculated to accurately

define the variation of flux linkage with rotor position. These observations and the

resulting mathematical formulations are the product of extensive finite element

modelling of the switched reluctance motor.

The phase current and flux linkage variation with rotor position is estimated with

the aid of a time stepping algorithm within Unit CURRCALC, having specified the

current chopping level In, and operating speed.

The area enclosed by the operating trajectory described on the A, / i diagram yields
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the average torque developed in the motor. Program MAINSR includes a

procedure to calculate this. MAINSR also includes procedures to calculate motor

losses and efficiency. SRDESIGN is thought to be a valuable tool to a switched

reluctance motor designer. At the design stage the performance of a motor may

be completely characterised within minutes. The geometry of the motor (stator /

rotor pole width, rotor diameter etc) can then be altered to improve its

performance. More accurate results from a 'reasonable' design may subsequently

be sought by obtaining a finite element model of the motor and importing

magnetisation curves into SRDESIGN. This is advisable in cases where a switched

reluctance motor operating with two phases simultaneously excited is examined.
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Chapter 6

SRDESIGN VERIFICATION: DYNAMIC

TESTING OF SWITCHED RELUCTANCE

MOTORS

The previous chapter described in detail the 'back bone' structure of SRDESIGN.

The accuracy of this dynamic simulation program was verified by testing the

switched reluctance machines that were available in the laboratory: a 150W 4-

phase motor and a 4kW 7-phase motor. This chapter will present a comparison of

simulated data and experimental results obtained from these machines. The

strengths and weaknesses of SRDESIGN, which was used for the design of the 5-

phase prototype, are identified.

6.1 The use of A / i diagrams in SRDESIGN.

Chapter 3 demonstrated that when modelling switched reluctance motors with two

phases excited at any time, electromagnetic theory of doubly excited systems ought

to be adopted. The proposed procedure of computing system X, / i diagrams for

doubly excited switched reluctance motors was implemented using finite element

analysis. The 150W 4-phase motor is operated with two phases conducting

simultaneously. Therefore, X / i diagrams at the 'extreme' rotor positions were

imported from FEA to SRDESIGN for dynamic simulation of the experimental

motor. Two-dimensional finite element modelling was used to obtain the

magnetisation curves; end-core flux correction was applied, as described in chapter

4. The magnetisation (X / i) curves at intermediate rotor positions were computed

within SRDESIGN using mathematical formulations described in chapter 5. A

similar procedure was adopted for the 4kW 7-phase motor configured for long or

short flux loops.
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FIG. 6.1 FLUX LINKAGE/CURRENT DIAGRAM (4-PH MOTOR, 1 PH EXCITED)
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In SRDESIGN, it is possible to compute X, / i diagrams at the 'extreme' (unaligned

and aligned) rotor positions, for singly excited switched reluctance motors. This

would be applicable to 1,2 and 3-phase motors. In order to assess the accuracy of

the SRDESIGN algorithm, the X / i diagram of the 150W 4-phase motor (assumed 

to operate with one phase excited at any time for comparison purposes) was

computed. This was compared with the corresponding plot obtained using two-

dimensional finite element analysis and corrected for end-core effects. Figure 6.1

illustrates that, at any excitation level, SRDESIGN tends to yield a lower value of

flux linkage, especially in the unaligned position. However, taking into account

the vast difference in computation speed (SRDESIGN yields the X / i curve within

seconds), the results are satisfactory.



6.2 Testing the 4-phase 150W motor.

6.2.1 Experimental arrangement. 

The purpose of testing the 4-phase motor was to assess the accuracy of the

simulation package in predicting the dynamic performance of a switched reluctance

motor. The SRDESIGN algorithm that is implemented on a motor powered by an

asymmetric half-bridge converter is simpler in comparison to the shared switch

converter algorithm. As a first step, it was therefore thought appropriate to analyze

a drive that employs an asymmetric half-bridge converter. This power converter

was chosen further because it reduces the complexity of the digital controller and

provides increased flexibility.

The SKM181F power MOSFETs that were made available for the research project

were rated at 800V / 32A, suitable for driving a 4kW motor. The gate drive

circuitry has been described in chapter 2. The on-state losses of the SKM181F

modules may well have been higher than the losses that a smaller device, suitable

for a 150W motor, would exhibit. This however was not considered important as

the aim of the exercise was to validate a computer model and not to optimise the

drive efficiency.

Rotor position sensing was present in the 4-phase drive in the form of (four)

optical sensors and a shaft mounted slotted disk. This method produced a

resolution of 7.5°, though this was improved with digital electronic circuits

integrated into the drive controller.

The switched reluctance drive energy ratio, E, is significantly reduced when the

motor is driven in saturation. It was shown by Miller [8] that in a magnetically

linear motor

E	 (k1 / ku ) - 1

2(X 1 /	 ) - 1
(6.1)
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The energy ratio improves with increasing a1 / X'un but can never exceed 0.5. In

the saturating motor an energy ratio of 0.6 - 0.7 can be achieved and this reduces

the converter volt ampere requirement.

Finite element studies and flux linkage measurement indicated that the 150W 4-

phase motor must be excited with a peak phase current of 10A in order to be

driven into saturation. This, however, could not be achieved in practice due to

thermal limitations. The frame that was constructed for the motor was not finned

and no provision was made for a shaft mounted fan. As a result, heat generated

by copper and iron losses was only removed by natural (and not forced)

convection. The current level in the 4-phase motor winding was limited to 5A

with the aid of a pwm current regulator. The pwm current regulator circuit

diagram and description of operation have been presented in chapter 2. One LEM

Hall effect current sensor was used for each phase winding in order to simplify

current control. The experimental 4-phase drive is shown in fig. 6.2.

6.2.2 Test presentation. 

A series of tests were carried out to validate the SRDESIGN program. In order to

optimise the motor performance, the onset of excitation was retarded and the phase

current commutation angle was varied. A selection of experimental results together

with computer-aided predictions shall be presented in this section. The reader is

reminded of the notation that is used throughout this section in fig. 6.3.

The predicted and experimental torque / speed curve obtained for I.= 5A Of = 10

and Oo„ = 15° is illustrated in fig. 6.4. The power loss in the motor as a function

of speed is shown in fig. 6.5. Sample SRDESIGN printouts, listing the most

important operating parameters are given for a running speed of 1500rpm in Table

6.1.

A series of tests was conducted in which the on-state angle was kept constant (80„

= 15°, 1m = 5A). Measurements on the 4-phase motor were repeated for a firing
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Fig. 6.2. The experimental 4—phase drive.
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Parameter	 Value Units

Number of stator poles 	 8 poles
Number of rotor poles 	 6 poles
Air gap length at alignment	 0.615 mm
Inter-polar air gap depth	 9.500 mm
Rotor diameter	 56.000 mm
Stator outside diameter	 106.500 mm
Stator back iron width	 10.000 mm
Core length	 50.000 mm
Stator pole arc	 0.365 rad
Rotor pole arc	 0.436 rad
Shaft diameter	 14.000 mm
Supply voltage	 100.000 Volts
Turns per phase 	 220 Turns
Chosen wire diameter	 Auto
Switching strategy	 Normal
Angle control technique	 Predefined Commutation angles
Stepping mode	 Single
Winding configuration	 Long flux loops
Step angle	 0.262 rad
Maximum wire diameter	 0.730 mm
Actual wire diameter	 0.710 mm
Resistance of each winding (atTop= 80°C)	 2.021 Ohms
Total mass of steel	 1.676 kg
Total mass of copper	 0.536 kg
Minimum inductance 	 6.800 mH
Phase current	 5.000 A
RMS phase current	 2.480 A
Peak current density	 12.629 Aimmimm
RMS current density	 6.264 A/mm/mm
Maximum speed at this current	 2413.753 r/min
Base speed for flat topped current	 3205.109 r/min
Running speed	 1500.000 r/min
Commutation Ratio	 0.425
Current at commutation 	 5.000 A
Flux linkage at commutation	 0.088 Wb Turns
Flux linkage at alignment 	 0.000 Wb Turns
Current at alignment	 0.000 A
Average torque	 0.540 Nm
Average torque per rms phasecurrent 	 0.218 Nm/A
Stator heat loss	 49.711 W
Windage and friction losses	 2.069 W
Hysteresis and eddy current losses 	 5.545 W
Total losses in machine 	 57.324 W
Bridge rating	 252.423 W
Power returned to supply	 110.312 W
Net power input	 142.111 W
Shaft power output 	 84.787 W
Efficiency	 59.662
Energy ratio	 0.336
No. of phases conducting at one time 	 1 phases
Flux density in stator poles	 0.835 T
Flux density in air gap	 0.706 T
Flux density in rotor poles	 0.716 T
Flux density in rotor body 	 0.377 T
Flux density in stator yoke	 0.434 T

Table 6.1. Sample SRDESIGN printout for the 150W 4-phase motor.
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0
unaligned Vf
position	 (firing angle)

'acorn
(commutation angle)

°on
(on—state angle)

°on = 'acorn —.Of

'hand
(conduction angle)

Fig. 6.3. Notation used throughout chapter 6.

angle of Of = 0° to Of = 5°. At low speed it was found that for approximately

equal losses, higher average torque is obtained by retarding the excitation. As the

speed increased, it was more beneficial to impress the supply voltage across the

phase winding early so as to allow sufficient time for the current to rise to In,•

Figure 6.6 illustrates the maximum torque / speed characteristic that was derived

from this exercise. A similar experiment was performed for In, = 5A, 0„„ = 200;

figure 6.7 shows the resulting maximum torque / speed curve.

Two simulated phase current pulses are shown in fig. 6.8 and compared with

measurement at a rotor speed of 450rpm and 1500rpm. The current pulse on-state

angle, 00„, was set to 15°. The simulated X, / 0 and X / i curves at 450rpm are also

illustrated in fig. 6.9a,b respectively.
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FIG. 6.7 MAX.TORQUE/SPEED CHARACTERISTIC (4-PH,CONDN PERIOD=20 DEG)
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Fig. 6.8a Experimental i / 0 profile @ 45Orpm.

Fig. 6.8b Experimental i / 0 profile @ 1500rpm.
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Fig. 6.9a SRDESIGN X, / 0 diagram @ 450rpm.
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Fig. 6.9b SRDESIGN A, / i diagram @ 450rpm.
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6.2.3 Sources of error.

The spring balance and torque indicating scale arrangement, mounted on the eddy

current test rig, did not provide an accurate reading of the torque applied on the

eddy current brake shaft. Although the equipment was repeatedly calibrated, a

margin of error on the torque reading must be allowed.

In SRDESIGN, average torque is computed using the 'virtual work' method which

involves the computation of the area enclosed by the operating trajectory on the A,

/ i diagram during each stroke. Linear and sigmoidal functions are used to

interpolate between the 'unaligned' and 'aligned' magnetisation curves, and some

error is expected from this.

Errors may also occur in the estimation of power losses using SRDESIGN. Power

losses mainly comprise of copper and iron losses. At low speeds, the heat

dissipated in the copper windings forms the major source of power loss. The

estimation of rms phase current /,„.. and phase winding resistance R has been found

to be very accurate. However, the absence of a thermal model prevents the

prediction of temperature rise in the copper winding and its effect on R. A

transducer mounted on the coil surface measured temperature and this was used as

a guideline in determining R0  running conditions, since the temperature

coefficient of resistance for copper was known. Finally, as the operating speed is

increased the eddy current loss component becomes more pronounced. SRDESIGN

uses the Steinmetz formulae to compute iron losses. However, no modifications

were made to account for the non-sinusoidal flux waveforms encountered in

switched reluctance motors.
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6.3 Testing the 4kW 7-phase motor.

6.3.1 Experimental arrangement. 

The shared switch power converter was employed in the 4kW 7-phase drive.

Figure 6.10 shows seven phase windings connected to eight switching devices and

associated freewheeling diodes. Two series diodes block unwanted current when

more than two switches in the circuit conduct simultaneously. The series diodes

are slow recovery, rectifying diodes because the voltage across them only reverses

at the phase current frequency, not at the chopping frequency seen in the fast

recovery freewheeling diodes.

The motor was designed to operate at a de link voltage of 600V and a peak phase

current of 10A. The top switching devices of the shared switch converter ought

to be rated to withstand twice the motor rated current. These criteria were met by

the SKM181F MOSFET devices.

A brushless resolver was mounted on the shaft of the 7-phase motor and was used

in conjunction with the 11RS260 resolver to digital converter, to provide rotor

position feedback. The digital converter offered 12 bit (0.0879°) resolution, thus

allowing very fine control of the phase current firing and commutation angles.

6.3.2 7-phase motor testing. 

Measurements were carried out on the 7-phase motor for a range of operating

speeds up to 1500rpm. A test voltage of 200V and maximum phase current of

10A were chosen. This reduced the motor base speed below the rated speed of

1500rpm and allowed SRDESIGN 'above base speed' algorithms to be verified.

The on-state angle, Oon, was set to 8.57° (twice the step angle). At low speeds

improved performance could be achieved by setting 0 0„ up to three step angles.

However the shared switch converter algorithm allowed the current in only two
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Fig. 6.10. The experimental 7—phase drive.
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phase windings to be simultaneously controlled. The current in the third phase

winding would be dependent on the voltage across one of the other two excited

phases. This would be an undesirable feature.

Short and long flux loop configurations were examined. At each running speed

and for a constant O the current firing angle Of was advanced (or retarded)

in steps of 0.7°. The torque, input power and rms phase current were recorded and

the optimum firing angle (i.e. the firing angle for which maximum torque was

obtained) was established. The results of this experimental procedure shall next

be analyzed.

The maximum torque / speed characteristic describing the 7-phase motor

configured for short flux loops is given in fig. 6.11. Also shown is the SRDESIGN

predicted curve, which was drawn having specified the firing angle, commutation

angle and maximum current /„, at each operating speed. Good agreement between

simulated and experimental results is achieved. In the short flux loop

configuration, the 7-phase motor achieved a maximum efficiency of 78%, as shown

in fig. 6.12.

The maximum torque / speed curve obtained by winding the motor for long flux

loops is shown in fig. 6.13. Significantly lower torque was produced by the long

flux loop configuration, although the rms phase current at each test speed was kept

constant. Configuring the 7-phase motor for long flux paths also resulted in an

increase in iron losses. As a result, the motor efficiency decreased significantly,

as shown in fig. 6.14.

At any speed, the torque output was limited by one of two factors. Firstly, there

was a limitation on the amount of losses that could be dissipated by the motor

frame, if the temperature in the stator windings was to be kept within an acceptable

level. This was addressed by controlling the rms phase current. At higher speeds

torque production was limited by the back-emf which exceeded the supply voltage.
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Fig. 6.13 MAX.TORQUE/SPEED CHARACTERISTIC (7-PH MOTOR,LONG LOOPS)
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A collection of SRDESIGN-generated graphs that describe the 7-phase motor

'behaviour' at 1000rpm is given in fig. 6.15. It is interesting to note that at 1/„. =

200V the motor is running above base speed when configured for short flux loops.

In contrast, the same drive runs below base speed when configured for long loops.

This is because the system 2 / i characteristic predicted by finite element analysis

was different for the two machine configurations. Base speed may be expressed

as

(Vs - / R)13
?tt

b
al —	 bo

The difference Xal A.,bo was greater in the short flux loop machine configuration.

This example demonstrates yet again the adverse implications of neglecting

magnetic interaction effects. Had the magnetisation curves at the aligned and

unaligned positions been constructed using the virtual work method as applied to

singly excited systems, no information on the modified A, / i curve, which results

by exciting a second phase or configuring the machine for short loops, would be

conveyed to the user.

Referring to the simulated phase current profiles shown in fig. 6.15, the current

rises to 8.5A (chosen chopping level) and maintains this value until the rotor teeth

begin to overlap with the excited stator teeth. In the overlap region, if the back-

emf exceeds the supply voltage (short flux loops) the current decreases though flux

linkage continues to increase. If the supply voltage exceeds the back-emf (long

flux loops) then the current is maintained constant (with the aid of a current

chopper in practice). Upon commutation, the phase current decreases in a zero volt

loop; flux linkage also decreases, with a slower rate of fall though. Full negative

volts subsequently force a faster rate of fall of flux linkage.

6.4 SRDESIGN practicality.

The purpose of SRDESIGN is to provide a design and simulation facility for

switched reluctance motors. SRDESIGN is capable of completely characterising

(6.2)
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Fig. 6.15a SRDESIGN i / 0 profile @ 1000rpm (short loops).

Fig. 6.15b SRDESIGN i / 0 profile @ 1000rpm (long loops).
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Fig. 6.15c SRDESIGN X / 0 diagram @ 1000rpm (short loops).

--

Fig. 6.15d SRDESIGN X / 0 diagram @ 1000rpm (long loops).
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Fig. 6.15e SRDESIGN X / i diagram @ 1000rpm (short loops).

Fig. 6.15f SRDESIGN X, / i diagram @ 1000rpm (long loops).
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the performance of a switched reluctance motor within minutes. However, with

how much accuracy is the analysis performed?

This very much depends on the starting point: the X / i diagram at the unaligned

and aligned rotor positions. If the magnetisation curves are imported from finite

element analysis, preceding sections demonstrated that the predicted motor torque

at any speed or commutation angle is within 10% of the measured value. This is

very acceptable considering that the X, / 0 curves are computed analytically within

SRDESIGN. In addition, the simulated i I 0 profile at any speed compares

favourably with traces obtained experimentally.

However, importing A, / i diagrams implies additional man hours to produce the

finite element model. Accurate results may only be obtained by computing the X

/ i diagram within SRDESIGN, if switched reluctance machines operating with

only one phase excited at any time are being examined. This subject was

addressed in section 6.1.

Switched reluctance motor losses are also calculated within a 10% accuracy,

though this is achieved by manually entering the (measured) operating temperature

in the copper windings. The absence of a thermal model suggests that an

SRDESIGN user must have some basic knowledge on the permissible current

density that can appear in the motor in order to avoid overheating. SRDESIGN

supplies information on - peak and 4... Miller [8] provides some guidelines on

maximum permissible current densities for a range of motor types.
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Chapter 7

THE 5-PHASE SWITCHED RELUCTANCE

DRIVE: DESIGN, CONSTRUCTION AND

PERFORMANCE

The design, construction and testing of the 5-phase switched reluctance drive are

presented in this chapter. The electromagnetic theory of doubly excited systems

is used in the motor lamination design process. Finite element analysis is

employed to model the static performance of the 5-phase prototype. This is

compared with the static performance of a 4-phase motor based on the Oulton3

motor design. SRDESIGN was employed for the dynamic simulation of the 5-

phase drive. Experimental results from the constructed 5-phase drive are compared

with simulation data. Market applications of the 5-phase switched reluctance drive

are discussed.

7.1 5-phase motor design.

The task was to design a switched reluctance motor, to be constructed inside a

standard D112 induction motor frame. An outer stator diameter constraint of

165mm was therefore imposed. The existing D112 frame also set a constraint on

the stack length of approximately 150mm. The main aim was the electromagnetic

design of an energy efficient switched reluctance motor.

7.1.1 Selection of stator pole arc and back-iron width. 

A 10/8 5-phase motor, showing motor dimensions is depicted in fig. 7.1. The

choice of stator pole arc and stator back-iron width must be a compromise between

3The Oulton motor is a well known motor design, manufactured by Graseby Controls.
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rotor pole pitch (rad)

stator pole pitch (rad)

ds stator outside diameter (mm)

ts stator pole width (mm)

y	 stator back—iron thickness (or stator yoke)

ps stator pole arc (rad)

dr rotor diameter (mm)

Pr rotor pole arc (rad)

g airgap (mm)

d b=d r +2g

Fig. 7.1. Dimensions of a 10/8 5—phase motor.
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the requirement for a low reluctance iron path and the need for sufficient space for

the copper conductors. A comprehensive study on the sensitivity of stator and

rotor pole arc / pole pitch ratios on 3-phase switched reluctance motors has been

reported [60]. It was illustrated that average torque may be maintained at high

levels if the stator pole arc / pole pitch (0, I s) ratio is between 0.35 and 0.45.

Faiz and Finch [61] reported that maintaining ps I s within 0.42-0.47 would

maximise torque production though this must be reduced, subject to Ohmic loss

constraints. Miller [8] reports that the optimum 13, / s ratio increases with the

number of poles. However, these observations should only be used as guidelines.

The stator pole arc ought to be chosen in conjunction with the stator bore, db.

These two dimensions set the pole width, ts according to

db	 f3
= 2(_.

2	 2

which dictates the path reluctance.

In switched reluctance motors the stator bore is found to increase with increasing

pole numbers. In order to establish the stator bore, suitable for the 5-phase short

flux path motor, finite element models of varying bore were constructed. The

stator pole arc, r3s, and stator pole width / yoke thickness ratio (t, / y) were held

constant. As a result ts increased with increased db. It was found that a db I d =

0.535 design produced significantly less average torque, as shown in fig. 7.2.

These and subsequent comparisons between different 5-phase motor designs

assume equal copper loss. The db I d,= 0.535 structure also exhibited the highest

operating flux densities. The results depicted in fig. 7.2 were by no means

conclusive. Thermal considerations dictate that the conductor current density must

be maintained at low levels in order to limit the temperature rise in the windings.

Therefore the lowest db I d, ratio possible that would not limit T was chosen: db

I d, was set to 0.6.

In a subsequent design exercise 13, / s was varied from 0.42 to 0.45, for a constant

stator bore to stator outer diameter ratio (db I d„) of 0.6. It was found that

(7.1)
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marginally lower torque was produced by the [3, / s 0.42 tooth design in

comparison with higher 13, Is ratio designs, as shown in fig. 7.3. This design would

also exhibit marginally higher iron loss. However, the current density in the coil

would be somewhat lower. It was decided to strike a balance between high flux

density and high current density by setting ps I s to 0.435. A design validation

exercise was subsequently performed. Additional finite element models were

defined in which the db / ds. ratio was set to 0.58 and 0.62 and Ps / s was varied.

No significant change in performance was noted.

The back-iron thickness must be specified having considered the magnetic flux

patterns that arise in the switched reluctance motor. If the system is singly excited

(e.g. a 2-phase 4/2 motor), the back-iron need only be as thick as approximately

half the stator pole width. The two 180° yoke sections can then share the flux

linking the diametrically opposite excited stator poles. The stator yoke thickness

must be increased in 3-phase 6/4 designs to account for the partial overlap between

phase current pulses. In motors with two phases excited simultaneously (such as

the 4-phase 8/6), the back-iron thickness ought to be (approximately) equal to the

stator pole width. If however a switched reluctance machine is designed for short

flux paths, the back iron does not constitute a significant part of the magnetic

circuit. The back-iron thickness can therefore be decreased for the benefit of

increased copper area (and hence reduced copper loss). Alternatively, for the same

slot area, the stator bore of a short flux loop machine can be increased, resulting

in a linear increase in torque production.

Finite element studies have shown that, as the back-iron thickness of the 5-phase

10/8 motor is reduced from t s. to 0.65t„ the average torque per unit copper loss is

increased when the motor is configured for short flux loops. This is because the

benefit that arises from the increased copper area overwrites the penalty incurred

by narrowing the stator yoke and, as a result, increasing the yoke reluctance. This

result does not hold for the long flux path-configured 5-phase motor. The

reluctance of the long B-field path around the stator yoke increases significantly

when the yoke thickness is reduced beyond 0.8t„ and the average torque output is
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compromised.

In contrast to the electromagnetic design, it is required mechanically that the stator

yoke is thick in order to maximise the stiffness of the stator against compressive

forces. This is important in reducing acoustic noise. Therefore, a compromise

between the two requirements (bigger slot area or stiffer structure) was reached.

The copper area was shaped for rectangular coil sections and the coil was designed

to make contact with both the stator pole side and the back-iron for improved heat

transfer capability. The average stator yoke thickness in the 5-phase motor was set

to O.8 t.

7.1.2 Stator / rotor pole arcs.

A simple 'rule of thumb' that is applicable to singly excited switched reluctance

systems states that the rotor and stator pole arcs ought to be approximately the

same. The 'useful' energy converted to mechanical work, is equal to the difference

in the system coenergy at the 'aligned' and 'unaligned' rotor positions. If for

example pr was to be increased significantly beyond 13 there would be no

noticeable increase in the 'aligned coenergy'. In contrast, the 'unaligned coenergy'

would be increased, hence decreasing the torque output of the machine.

Referring to fig. 7.4, as the rotor moves from position 1 (0 = 13,) to position 2 (0

= Pr) the phase winding flux linkage (at constant excitation) remains constant i.e.

I d0 = 0. This is the 'zero torque period' that compromises the average torque

produced by the motor. However, the 'zero torque period' offers more time for the

flux in the aligned pole to be forced to zero before negative torque is produced.

The rotor pole width of the 5-phase motor was designed marginally bigger than the

stator pole width. More time was therefore made available to force the flux to zero

upon commutation. This design feature would prove especially useful if the shared

switch asymmetric half-bridge converter was connected to the 5-phase motor. This

converter does not allow full negative volts to be impressed across the motor

winding at commutation. The torque production capability of the motor is not
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Position 1	 Position 2

a go
0=fi's	 19=16r

Fig. 7.4. Illustration of the 'zero torque period' concept.

Duration of excitation cycle (in deg.) = 9°

Phase current conduction angle = 18°

Beginning of excitation cycle
	

End of excitation cycle

(0° position)
	

(9° position)

Fig. 7.5a. Excitation cycle in the 5—phase motor.
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compromised by this choice; an 18° conduction period ensures that both excited

phases are always in the torque producing region.

The excitation cycle of the proposed 5-phase motor is shown in fig. 7.5a. The

distribution of the B-field in the motor configured for short or long flux paths is

shown in fig. 7.5b,c respectively. The rotor is positioned at 6° with respect the

unaligned position of the trailing phase.
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stator pole
arc

rotor slot
arc

In
1

rotor slot arc > 1.5 stator pole arc

Fig. 7.6b. Rotor slot depth considerations.
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7.1.3 Rotor slot depth.

Minimum airgap permeance data for doubly slotted structures has been presented

by D. Tormey and others [62]. The authors suggested that the ratio of rotor slot

depth to rotor slot arc ought to be higher than 0.4. Additionally a rotor slot to

stator pole arc ratio of 1.5 or higher ensures low airgap permeance. However,

there is no point in making the rotor slot too deep because, in unaligned the

position, B-field lines from the stator pole tend to fringe into the rotor teeth edges

as shown in fig. 7.6a. Finite element studies on the 5-phase motor have verified

the notion that a semicircularly shaped rotor slot, shown in fig. 7.6b, is adequately

deep to provide low airgap permeance, provided the rotor slot to stator pole arc

ratio is higher than 1.5. In the 5-phase motor, it was further ensured that there was

enough clearance in the unaligned position to build up the current to its full load

value at the rated speed of 1500 rpm.



7.1.4 Choice of steel grade.

The choice of silicon steel grade to be employed in a switched reluctance motor

is dependent on the number of phases (i.e. fundamental frequency of excitation)

and the motor rated speed. High speed machines employ low loss TRANSEL grade

steel in order to limit eddy current losses. Low speed machines employ

NEWCORE grade steel which is highly permeable in order to reduce copper losses.

The 5-phase switched reluctance motor can be configured for short flux loops.

This excitation pattern reduces core losses substantially. The need for expensive

TRANSIL grade steel was therefore removed. A LOSIL 500-50 (0.5mm in

thickness) grade, which is between the NEWCORE and TRANSIL grades, was

readily available from European Electrical Steels and was considered suitable for

use in the construction of the 5-phase prototype.

Figure 7.7 illustrates the final drawing drafted for the 5-phase switched reluctance

motor, and Table 7.1 lists the full specification. The number of turns per phase

was set to 160; the maximum current level in the winding was not to exceed 15A.

7.2 5-phase motor construction.

7.2.1 Construction procedure.

The 5-phase motor laminations were laser-cut from long sheets of silicon steel.

SUBCON laser cutting undertook the fabrication of the laminations. The

laminations were cut to a guaranteed tolerance of 0.1mm. However, the specified

guaranteed tolerance was not satisfactory for critical dimensions such as the stator

bore, db , and rotor diameter, dr, Dimensions dr and db set the length of the airgap

which was designed to be 0.25mm. Within the specified tolerance the airgap could

be reduced to 0.05mm or increased to 0.45mm; this was unacceptable. SUBCON,

however, agreed to cut sample laminations which were sent- to Warwick for

inspection. 'Batch production' commenced once all dimensional requirements were
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met, and the quality of the laser cut was up to standard: free of burrs and burns.

number of stator poles 10

number of rotor poles 8

stator diameter 165 mm

stator pole arc 0.275 rad

stator pole height 20 mm

airgap length 0.25 mm

rotor diameter 100 mm

rotor pole arc 0.34 rad

stack length 150 mm

turns per phase 160

maximum phase current 15 A

maximum supply voltage 600 V

Table 7.1 Dimensions of the experimental 5-phase motor.

A stacking fixture, shown in fig. 7.8, was made in order to stack the stator

laminations. The fixture consisted of two parallel plates through which four

circular cross-section bars run. Each bar located at two points on the stator

lamination: on the side of a stator pole and yoke section. This arrangement

ensured that there was no skew on the stack. The mechanical fixture allowed

access to the circumference of the stator laminations.

It was thought initially that the stack could be held together by spring-steel strips,

located in the pre-fabricated grooves on the outside diameter. This was a 'clean'

method that is successfully adopted in induction motors. However, the facilities

182



Stator and rotor laminations.

The stacking fixture for the stator laminations.

Fig. 7.8 The 5-phase motor construction process through a set of photographs.
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-MCI= milmmoN011n11=NIR

The wound stator assembly.

The rotor assembly.

Fig. 7.8 (cont.) The 5-phase motor construction process through a set of

photographs.
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at Warwick workshops proved inadequate to fit the strips finnly in place. 'This job

was also made difficult by the unevenness of the grooves, presumably caused by

the poor laser-robot repeatability. Therefore, once the stacking fixture plates were

pressed on, the laminations were welded at two points on the outside diameter.

The quality of the MIG weld proved poor in comparison to resistance welds

adopted on a manufacturing process in industry. A stacking factor of 0.945 was

achieved for the stator stack.

The 5-phase motor outside diameter and stack length was designed to shrink-fit

into a standard D112 induction motor frame. The aluminium cast frame was

supplied by Electrodrives Ltd. The assembly procedure involved heating up the

frame to 100°C at which temperature the aluminium expanded and the stator stack

was pushed in. The arrangement was left to cool at room temperature and the

aluminium frame contracted to fit onto the stack. Once the lamination assembly

was rigid, the mechanical stacking fixture was dismantled. Subsequently, 80 turns

of 1.32mm diameter copper wire were wound around each stator pole. The slot

fill factor of 0.45 estimated by the SRDESIGN program was achieved.

The rotor laminations were stacked on the shaft and located on the shaft key. The

laminations were subsequently pressed into position using two steel endplates.

Endcaps placed on each end of the stack ensured that the rotor laminations were

held firmly in place. A stacking factor of 0.93 was achieved for the rotor stack

assembly.

7.2.2 Potential improvements of the constructed 5-phase motor. 

Welding the back of the core introduces paths for eddy currents to flow and

potentially degrades material properties at the weld area. Holding the stack with

spring-steel strips would be preferable.

The copper slot fill factor of 0.45 that was estimated in SRDESIGN proved over-

cautious. Having examined the wound stator, it was thought that 80 turns of

185



1.4mm diameter wire could have been wound around the stator poles, hence

increasing K, to 0.5. In addition, ample space was allowed at the ends of the stack

for end windings and terminating connections. In retrospect, the motor stack

length could have been increased from 150mm to 160mm.

The stacking factors achieved, though satisfactory, could be improved significantly.

Stacking factors as high as 0.98 are achieved in industrial manufacturing processes,

where appropriate tools are available to apply high pressure on the laminations and

eliminate 'air pockets'.

All these factors would potentially improve the efficiency of the 5-phase prototype.

7.3 Measurement of flux linkage and static torque.

The static magnetisation curves at the unaligned and aligned rotor positions were

measured and compared with calculated values. The measurement of

magnetisation curves is based on the integration of Faraday's voltage equation, as

described in chapter 2. Measurement on all phases was carried out in order to

investigate the degree of potential imbalance in flux linkage (and hence torque) in

the five phases. The results are depicted in fig. 7.9. It is concluded that some

degree of imbalance does exist in the phase windings; the two extreme cases

(phases with highest and lowest A) are shown. Imperfections in the mechanical

assembly account for this phenomenon and the results are very acceptable on the

whole, considering that no subsequent stack-machining operations were performed.

Figure 7.9 also illustrates the magnetisation curves calculated using two-

dimensional finite element analysis. An average stacking factor of 0.94 was

assumed for modelling purposes. Three-dimensional effects are not pronounced in

the 5-phase prototype (such was also the case with the 7-phase prototype) because

the stack length / outside diameter ratio is high. Good agreement between finite

element analysis results and measurement is noted.

The predicted static torque profile is superimposed on the measured characteristic
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in fig. 7.10. The T I 0 characteristic was obtained by simultaneously exciting the

two phase windings that were in the torque producing region with 12.75A. Short

and long flux loop configurations were examined. At any rotor position, higher

torque is obtained when the motor is configured for short flux paths. Figure 7.10

indicates the maximum average torque T 	 at this excitation level where

T	
1

., =	 fTde , step = 90
step

Some error is noted between predicted and experimental results. In finite element

analysis, the Maxwell stress integral was computed to yield forces acting on the

rotor surface and hence torque at any rotor position. Although the mesh was

refined in the airgap region, an error is expected from this computation which may

be amplified when two phases are producing torque. The magnetic imbalance

caused by imperfect mechanical construction may have also resulted in a

discrepancy between predicted results and measurement.

7.4 Static performance comparison between the 5-

phase prototype and the 4-phase Oulton motor.

For comparison purposes, the static performance of a 4-phase motor based on the

`Oulton.' motor design was examined in finite element analysis. Unlike the 5-phase

prototype, the outer diameter of the 4-phase motor was 180mm. The comparison

between the 4-phase and 5-phase motors was therefore performed on a 'torque per

unit volume' basis and for equal copper loss (ref. Appendix C). Both machines

were assumed to have an airgap of 0.25mm and a stack length of 150mm.

Table 7.2 lists the results of this static performance comparison. It is interesting

to note that the 4-phase motor stands to gain significantly by commutating well

before alignment. This technique, first proposed in chapter 3, results in higher

torque development and less copper loss. Table 7.2 confirms that, at its best, the

4-phase motor develops 17% less torque per unit volume compared with the short

flux path machine. In addition, the iron losses of the 5-phase machine will be

(7.2)
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Motor

Ta, per

unit volume

Ta, per

unit volume

Tay per

unit volume

type 0,=18° Oc=300 Oc=26°

(Nm / m3) (Nm I m3) (Nm / m3)

4-phase

Oulton 7225 8510

5-phase

short loops 10289

Table 7.2 Static torque developed by the 4-phase Oulton and 5-phase prototype

motors (equal Pci, loss).

significantly lower compared with the iron losses of the 4-phase motor, because the

5-phase machine is excited with short flux paths. Manipulation of the Steinmetz

core loss formulae [59] can produce an approximate comparison on the core loss

per Kg exhibited by the 4-phase and 5-phase machines. The Steinmetz formulae

can be written as

'Fe = Kh fBnnla. Ke f2 Bm2

	
(7.3)

The fundamental frequency of excitation can be written as

f = co AT, 	(7.4)

Constants Kh and IC depend on material properties and active volume, and may be

rewritten as

= Ce vo	(7.5)

Kh	 ChVo
	 (7.6)

where v, is the active (or 'excited') material volume, equal to the magnetic circuit

length 1m times the cross-sectional area A. Geometrical considerations were used

to compute the magnetic circuit length of a 4-phase long flux loop machine and a

159



5-phase short flux loop machine. The approximate core loss equations for the two

machines were therefore found to be

1 Fe_4ph = 0.61 ChA 6w B:ax + 0.61ceA 36 co2Bm2.	 (7.7)

= 3.66chA w B + 21.96ceA co 2 Bm2a„

PFe_5ph = 0.25chA 8co 13L + 0•25ceA 64(0 2 Bm2.	 (7.8)

= 2chA w B, + 16ceA co 2 Bm2a„

These equations confirm that significantly lower iron losses are exhibited by the

5-phase motor, though this benefit decreases with speed. The cross-sectional area

of the magnetic circuit, A, dictates 13,7,„, and is dependent on the motor design.

The comparison did not consider temperature rise effects in the phase windings;

it should be noted that the current density in the 4-phase motor was marginally

lower.

7.5 Dynamic performance prediction.

SRDESIGN was used to model the performance of the 5-phase prototype under

running conditions. Outlined in this section shall be the simulated results obtained

for the rated voltage of 600V (rectified 3 - 0, 415V, ac mains).

The 5-phase motor can be fed from an asymmetric half-bridge or a shared switch

power converter. In either case SRDESIGN was instructed to compute optimum

firing and computation angles, using the procedure described in chapter 5. A

current chopping level I. was specified in SRDESIGN for which full load torque

(25Nm) would be produced at the rated speed of 1500rpm. The current chopping

level,	 was dependent on the type of power converter employed.

The torque / speed curve predicted by SRDESIGN, assuming an asymmetric half-
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bridge converter is shown in fig. 7.11a. At each operating speed the rms current,

commutation ratio, output power and losses (as predicted by SRDESIGN) are given

in Table 7.3. A current chopping level of 13.425A is sufficient for the motor to

produce 25.5Nm of torque at 1500rpm. The torque output is maintained fairly

constant for a wide range of operating speeds. Beyond 750rpm, torque begins to

fall (but not significantly) as the commutation ratio is reduced from 1.0 to 0.761

at 1500rpm. The efficiency curve for the asymmetric half-bridge powered motor

is given in fig. 7.11b. It is shown that the motor efficiency climbs to above 80%

at 500rpm and reaches 91% at the rated speed of 1500rpm. Every confidence was

placed on the computation of copper loss at room temperature, as the phase

winding resistance was computed to be equal to the measured value of 0.812.

However it must be pointed out that any temperature rise in the phase winding and

its resultant effect on winding resistance was neglected in this exercise. An 80°C

increase in winding temperature is specified as the maximum level for class B

motor operation. The 5-phase motor rated rms current density never exceeds 6.5A

/ mm2. This figure is modest for a fan-cooled industrial drive [8] and winding

temperature was therefore not expected to exceed the specification. It was

estimated that at 1500rpm, efficiency would fall to 90.05%, if the winding

temperature was to rise to 100°C.

The simulated torque / speed curve of the 5-phase prototype employing the shared

switch power converter is shown in fig. 7.12a. SRDESIGN simulated performance

data is given in Table 7.4. It is demonstrated that a higher current chopping level

of 14.5A is required to maintain full load torque at 1500rpm. This is due to the

operating requirements of this converter which result in reduced negative volts

upon commutation. Therefore, in order to reduce the phase current to zero before

entering the regenerative region, commutation is advanced. As a result, torque falls

off faster as the speed increases, from 31.5Nm at 200rpm to 25.5Nm at rated

speed. However, this requirement does not impose a penalty on the efficiency of

the 5-phase motor, as fig. 7.12b suggests. The additional copper losses incurred

are counterbalanced by the reduced iron loss resulting from lower operating flux

densities. Efficiency is maintained above 90% at rated speed.
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Fig. 7.11a Torque / speed curve predicted by SRDESIGN (asymmetric half-bridge

converter).

Fig. 7.11b Efficiency / speed curve predicted by SRDESIGN (asymmetric half-

bridge converter).
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Parameter

Number of stator poles
Number of rotor poles
Air gap length at alignment
Inter-polar air gap depth
Rotor diameter
Stator outside diameter
Stator back iron width
Core length
Stator pole arc
Rotor pole arc
Shaft diameter
Supply voltage
Turns per phase
Chosen wire diameter
Switching strategy
Angle control technique
Stepping mode
Winding configuration

Value Units

10 poles
8 poles

0.250 mm
15.000 mm

100.000 mm
165.000 mm
10.750 mm

150.000 mm
0.275 rad
0.340 rad

40.000 mm
600.000 Volts

160 Turns
1.320 mm

Normal
Automatic angle selection
Single
Short flux loops

Speed results for phase current of
	

13.425A.

Speed
(r/min)

Torque
(Nm)

corn
ratio

RMS
current

Pout
(W)

Power
Loss/W

Efficiency
(%)

100.000 28.808 1.000 7.974 301.678 266.863 53.062
200.000 28.762 1.000 8.003 602.389 277.427 68.468
300.000 28.716 1.000 8.033 902.134 288.957 75.740
400.000 28.670 1.000 8.062 1200.912 301.454 79.935
500.000 28.624 1.000 8.091 1498.723 314.917 82.636
600.000 28.577 1.000 8.120 1795.568 329.347 84.501
700.000 28.620 0.977 8.050 2097.929 337.011 86.159
800.000 28.372 0.946 7.950 2376.883 342.719 87.398
900.000 27.996 0.917 7.856 2638.573 349.137 88.314
1000.000 27.635 0.888 7.764 2893.910 355.958 89.047
1100.000 27.230 0.861 7.677 3136.638 363.270 89.621
1200.000 26.801 0.834 7.593 3367.903 370.962 90.078
1300.000 26.373 0.809 7.511 3590.308 378.889 90.454
1400.000 26.017 0.784 7.429 3814.324 386.884 90.791
1500.000 25.523 0.761 7.355 4009.095 395.332 91.024

Table 7.3 SRDESIGN simulated data for the 5-phase short flux loop motor

(asymmetric half-bridge converter).
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Fig. 7.12a Torque / Speed curve predicted by SRDESIGN (shared-switch

converter).

Fig. 7.12b Efficiency / Speed curve predicted by SRDESIGN (shared-switch

converter).
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Parameter
	 Value Units

Number of stator poles 	 10 poles
Number of rotor poles	 8 poles
Air gap length at alignment 	 0.250 mm
Inter-polar air gap depth	 15.000 mm
Rotor diameter	 100.000 mm
Stator outside diameter	 165.000 mm
Stator back iron width 	 10.750 mm
Core length	 150.000 mm
Stator pole arc	 0.275 rad
Rotor pole arc	 0.340 rad
Shaft diameter	 40.000 mm
Supply voltage	 600.000 Volts
Turns per phase	 160 Turns
Chosen wire diameter	 1.320 mm
Switching strategy	 Novel Switching Algorithm
Angle control technique 	 Automatic angle selection
Stepping mode	 Single
Winding configuration 	 Short flux loops

Speed results for phase current of	 14.500A.

Speed
(r/min)

Torque
(Nm)

corn
ratio

RMS
current

Pout
(W)

Power
Loss/W

Efficiency
(%)

100.000 31.433 1.000 8.613 329.170 310.296 51.476
200.000 31.386 1.000 8.647 657.346 321.535 67.153
300.000 31.338 1.000 8.682 984.528 333.838 74.678
00.000 31.291 1.000 8.717 1310.716 347.210 79.058
500.000 31.244 1.000 8.754 1635.909 361.658 81.895
600.000 31.191 0.990 8.748 1959.814 373.656 83.987
700.000 31.012 0.949 8.600 2273.302 374.955 85.841
800.000 30.511 0.908 8.458 2556.116 376.782 87.153
900.000 29.939 0.868 8.312 2821.711 378.488 88.173
1000.000 29.332 0.827 8.164 3071.677 379.916 88.993
1100.000 28.642 0.786 8.014 3299.292 380.900 89.650
1200.000 27.804 0.745 7.864 3493.917 381.464 90.157
1300.000 26.969 0.704 7.709 3671.388 380.960 90.599
1400.000 26.116 0.663 7.553 3828.733 379.623 90.979
1500.000 25.499 0.633 7.443 4005.361 382.312 91.287

Table 7.4 SRDESIGN simulated data for the 5-phase short flux loop motor (shared

switch converter).
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Finally it must be pointed out that the D112 frame supplied by Electrodrives Ltd

is designed to dissipate approximately 800W when cooled by a shaft mounted fan

at the rated speed of 1500rpm [63]. SRDESIGN simulated data suggests that

power losses are maintained below 400W, irrespective of the type of power

converter employed. It therefore follows that the 5-phase prototype is capable of

producing in excess of 4kW at rated speed.

7.6 Experimental arrangement.

The simulation program dictated that the 5-phase switched reluctance drive,

employing either an asymmetric half-bridge or a shared switch converter, is capable

of delivering 4kW at 1500rpm with a motor efficiency in excess of 90%. This

prediction was based on the assumption that the power converter dc link voltage

was 600V (3 - 0, 415V, rectified).

A SORENSEN DCR 600V-16A power supply, capable of meeting the converter

requirement, was available in the laboratory. However, it was (repeatedly!) found

that this power supply could not cope with the dv I dt rates imposed by this type

of load. The next option available was the Electronic Measurements TCR power

supply. This supplied a maximum of 2.25kW at 300V (1 - 0, 240V, rectified) and

proved reliable in operation. At higher speeds two TCR power supplies were

connected in parallel ('master' / 'slave' configuration) to increase the supply of

current. However, the 'master' did not share current equally with the 'slave'. A

peak power of approximately 3.5kW could be drawn from the power supplies. The

available dc power supplies therefore imposed a limitation in testing the motor

above 3.5kW input power.

The load machine (dc generator) was capable of generating 7.5kW at 1500rpm.

Large resistor banks were connected across the armature terminals of the dc

machine.

A schematic from the experimental 5-phase switched reluctance drive is illustrated
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in fig. 7.13a. A photograph of the drive is also shown in fig. 7.13b. The drive

employed an asymmetric half-bridge power converter with ten SKM181F MOSFET

devices and associated freewheeling diodes. This arrangement provided the

flexibility in operation needed to optimise the efficiency of the motor at the

reduced supply voltage of 300V. Increasingly important became the ability of

impressing full negative volts across the commutated phase winding, especially at

higher running speeds. The shared switch converter can only supply full negative

volts interspersed with zero volts upon commutation. The commutation point must

therefore be advanced in order to avoid regeneration. The SRDESIGN simulation

program predicted that at 173. = 300V and 1m = 15A, the 5-phase drive would not

deliver the rated torque of 25.5Nm at high speeds if a shared switch converter was

employed.

All logic functions were performed in XlLINX. Five optoelectronic devices in

conjunction with a shaft mounted slotted disk provided rotor position feedback to

the XILINX control board. The resolution of this system was 4.5°. Phase current

was measured by an LEM Hall effect transducer. The current demand was

compared with the measured value and the error signal was converted to a digital

PWM signal and passed to the XILINX control board. The correct switching

signals were subsequently fed from the control board to the gate drivers.

7.7 Test presentation.

Measurements were taken on the 5-phase motor for a range of torque loadings and

operating speeds up to 1500rpm. At each running speed and torque loading, the

total input power to the drive was measured in order to compute the drive

efficiency. The phase current waveform and rms phase current value were also

recorded. A thermocouple, fitted on the surface of a motor coil, provided an

approximate value of winding temperature.

Short and long flux loop winding configurations were examined for comparison

purposes. At each running speed and torque loading, the efficiency of the short
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and long flux loop motor configurations was recorded for two on-state angles (ref.

fig. 6.3), eon = 13.5° and 18°. This choice of on-state angles was dictated by the

resolution of the position sensing system. However, it was possible to alter the

firing angle, Of (and hence the commutation point) by changing the position of the

shaft mounted slotted disk with respect to the optoelectronic devices.

7.7.1 On-state angle analysis.

In order to assess the implications in drive performance of changing the on-state

angle from 13.5° to 18°, measurements at a constant torque of 5Nm, 10Nm and

12.5Nm (half-load torque) were taken for the short and long flux loop

configurations. Operating points of equal efficiency were joined on a torque /

speed diagram. Figures 7.14a,b illustrate the performance of the 5-phase drive

(configured for long or short flux loops respectively) for the on-state angle of 18°.

Drive efficiency contour plots for 00n = 13.5° are shown in fig. 7.15a,b for long

and short flux paths respectively. It is demonstrated that the long flux path

configuration operates inefficiently when an 18° on-state angle is adopted. The

long flux loop drive efficiency increases when 0 is set to 13.5°. The short flux

path configuration maintains high efficiency at e on 18°, though performance is

still improved by reverting to e o„ = 13.5°. This trend can be understood by

examining the static torque profile of the 5-phase motor, shown in fig. 7.10. It is

shown that, although short flux paths result in higher static torque output at any

rotor position, the benefit is more significant as the rotor poles move toward

alignment with the excited stator poles (i.e. at rotor positions toward the end of the

excitation cycle). The static torque profile and the (dynamic) experimental results

presented suggest that, in the short flux path configuration, performance may be

improved even further (depending on speed) by choosing an on-state angle in

between 13.5° and 18°. However, such resolution was not offered by the present

slotted disk and optical sensor arrangement.
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FIG. 7.14a EFFICIENCY CONTOURS AT HALF LOAD (LONG LOOPS, COND.=18 DEG)
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FIG. 7.14b EFFICIENCY CONTOURS AT HALF LOAD (SHORT LOOPS, COND.=18 DEG)
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FIG. 7.15a EFFICIENCY CONTOURS AT HALF LOAD (LONG LOOPS, COND.=13.5 DEG)
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FIG. 7.15b EFFICIENCY CONTOURS AT HALF LOAD (SHORT LOOPS, COND.=13.5 DEG)
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7.7.2 Maximum drive efficiency analysis.

Following on from the on-state angle analysis, measurements at higher torque

loadings (15, 20 and 25Nm) were taken to examine the variation of the 5-phase

drive efficiency with torque and speed. The maximum torque / speed profiles

(within the constraints of the power supplies) obtained by configuring the 5-phase

motor for long or short flux paths are shown in fig. 7.16a,b respectively. The

profiles were obtained for a firing angle, Of , of 1.5° and an on-state angle, 0, of

13.5°. This firing angle was chosen because it was found that for Oon = 13.5°,

higher efficiency was obtained by retarding the excitation (making Of > 0).

At operating speeds ranging from 200rpm to approximately 1000rpm, the current

chopping level, /„„ was set to the value necessary to maintain full load torque

(25Nm). Beyond 1000rpm there was not enough time for the current to rise to /„,

before the onset of overlap because the drive operated from a reduced dc link

voltage of 300V. In the overlap region, the back-emf severely limited the rate of

rise of current and hence the torque developed. Therefore, beyond 1000rpm the

average torque developed by the motor fell rapidly from 25Nm to less than 15Nm.

In the 1000 to 1500rpm region, where the current followed its 'natural' profile

higher torque was developed when the motor was configured for short flux paths.

At lower speeds, a lower current chopping level was required to produce 25Nm

when the motor was configured for short flux paths. This is confirmed by

experimental current profiles shown in fig. 7.17; these were obtained at an

operating speed of 900rpm. The lower current chopping level implies reduced

copper loss. In addition, at any speed iron losses are decreased when the motor

is configured for short flux paths hence resulting in a significant increase in motor

efficiency.

In addition to the maximum torque profiles, the graphs of fig. 7.16 show contours

joining the operating points of equal drive 4 efficiency and thus indicate the

'Drive efficiency includes the losses in the power converter.
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Fig. 7.17a Experimental current profile at 900rpm, 25Nm (long loops).

Fig. 7.17b Experimental current profile at 900rpm, 25Nm (short loops).
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variation of efficiency with torque and speed. At any operating point, higher

efficiency is obtained from the short flux loop configuration. At the [1300rpm,

20Nm] operating point the 5-phase drive configured for short flux loops achieves

an efficiency of 87%. There is also a general tendency (subject to experimental

error) for the efficiency to increase slightly with torque, but more significantly with

speed. Hence, the 5-phase drive efficiency is likely to increase further as the full

load [1500rpm, 25I\Im] operating point is approached.

In order to develop higher torque beyond 1000rpm the firing angle, Of, was set to

00 (firing at the unaligned position). This allowed more time to increase the

current to in, before the onset of overlap. The result of this exercise is shown in

fig. 7.18. Comparison of the maximum torque profiles of figures 7.16b and 7.18

reveals that the experiment was successful. However it was still not possible to

reach the 4kW [1500rpm, 25Nrn] operating point. Beyond 1100rpm output power

was limited by the maximum input power of 3.5kW that the two TCR supplies
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could deliver when connected in parallel. Beyond approximately 1300rpm the

reduced voltage of 300V was not enough to force maximum phase current before

the onset of overlap. A maximum drive efficiency of 87.5% was recorded in this

experiment at the [1450rpm, 16.8Nm] operating point.

The motor frame was cooled with a shaft mounted fan. At low speeds though, fan-

forced cooling is minimal. Losses are therefore dissipated through 'natural

convection'. At low speeds and rated (25Nm) torque output, the temperature in the

motor winding attained a steady state at approximately 80°C. This is well within

the Class B operating specifications, which dictate that the winding temperature

should not exceed 105°C. The temperature rise in the coil would be even further

decreased, had the winding been impregnated. Winding impregnation significantly

increases the rate of heat transfer from the copper to the iron. The steady state

temperature of the frame at low speeds and rated torque was found to be

approximately 50°C. At 1500rpm, 15Nm a steady-state coil temperature of

approximately 58°C was recorded. Temperature measurements were cross-checked

by measuring the resistance of the phase winding at the operating temperature, and

comparing this with the room temperature resistance. This all implies that the

motor is capable of producing more than 25Nm without exceeding Class B

temperatures.

7.7.3 Drive and motor efficiency considerations. 

Although the maximum drive efficiency contour was not reached, it was shown

that the 5-phase prototype drive configured for short flux paths did achieve an

efficiency of 87% at approximately 1300rpm, 20Nm. This figure is higher than the

efficiency of all known prior art switched reluctance drives of the same rating. It

is known that a 3-phase 12/8 switched reluctance design, currently manufactured

in industry, achieves a drive efficiency of 85% at full load (1500rpm, 25Nm).

In order to obtain an approximate figure for the 5-phase motor efficiency, an

estimation of the power converter loss component has been made. As an example,
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cond

1.9 = rotor pole pitchrp
45°

Fig. 7.19. Representation of the phase current pulse at
w= 1283rpm, T = 21.7Nm.

the analysis for the operating point [0) = 1283rpm, T = 21.7Nm, 8 = 0°, 0 =

13.5°] will be presented. At this operating point the phase current followed its

'natural' profile, as it was limited by the motor back-emf. Both switching devices

connected across each phase winding were therefore continually conducting during

the angular period TheThe current chopping regulator was inactive and hence

switching losses were small and can be neglected.

The current profile can be divided into two periods: the switch conduction period

and diode conduction period, as shown in fig. 7.19. The area A enclosed by the

current profile, the horizontal datum and the vertical limits of 0 = Of and e =
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can be used to compute the rms current, Inns, 'seen' by the switching devices as

follows:

=

(7.9)on

rms aye

rp

where

lave =

Asw (7.10)
• 0	 - Ofcom

The nns current can then be squared and multiplied by the on-state resistance of

the MOSFET to yield the on-state power loss in each MOSFET. The power loss

in each freewheeling diode was computed by the BYT230 power loss formula (ref.

Appendix B). Switching losses in the power devices and the snubbers were

neglected to make this a conservative estimation. In this example, the losses in the

power converter total approximately 108W. The drive efficiency at this operating

point approaches 87%; the corresponding motor efficiency is therefore

approximately 89.7%. Motor efficiency is known to increase with speed and

therefore at 1500rpm it is expected to comfortably exceed 90%.

7.8 Comparison of experimental results with

simulated data.

SRDESIGN was used for the dynamic simulation of the prototype 5-phase short

flux path motor. This section aims at drawing a brief, sample comparison between

experimental results and simulation data obtained from SRDESIGN, in order to re-

assess the accuracy of the computer program. For precise simulation, the X, /i

diagram at the 'extreme' rotor positions was imported from finite element analysis

to SRDESIGN.

Figure 7.20 shows the maximum torque produced by the shOrt flux path motor, for

a range of speeds up to 1500rpm. The profile was obtained at the reduced supply
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voltage of 300V, and for 01 = 1.5°, 0,„ = 13.5°. Also shown in fig. 7.20 is the

torque profile predicted by SRDESIGN. At each running speed, the current

chopping level (recorded during the experiment), firing and commutation angles

were keyed in SRDESIGN. The simulation program yielded average torque within

a 10% accuracy, though there was a general tendency to underestimate

experimental torque values. The experimental and predicted torque profiles

converged at higher running speeds. An experimental current pulse, recorded at

800rpm is compared with the SRDESIGN simulated pulse in fig. 7.21.

SRDESIGN simulates the experimental phase current profile with sufficient

accuracy. The rms current estimation at any speed also compares favourably with

the digital oscilloscope recording. Therefore, copper loss computation within

SRDESIGN is expected to be accurate. However, only motor (and not drive)

efficiency can be estimated in SRDESIGN, because an algorithm has not been

written to compute losses in the power converter. No comparison can therefore be

drawn with experimental drive efficiency figures. SRDESIGN simulated ?t, / 0 and



11111111111111111111111111rillill11111111111111Ell/	 E

2A/div

GND

1

Fig. 7.21a Experimental current profile at 800rpm (short loops).

Current
A

15.00-

10.00

5.00

0.00 Angle
0.00 :10 0.120 0:30 0.40 rad
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X / i characteristics at 800rpm are given in fig. 7.22 for reference.

7.9 Market applications of the 5-phase switched

reluctance drive.

The switched reluctance motor is identical in construction to a single stack variable

reluctance stepping motor (VRM). As the name suggests, in a stepping motor the

rotor moves in discrete steps. The angular rotation is determined by the number

of current pulses fed to the stator winding during each revolution. There are two

further stepping motor arrangements: the permanent magnet (PM) stepping motor

and the hybrid stepper. The basic operating principles and characteristics of these

motors are described in Appendix E.

The physical construction and / or operating characteristics of the VR, PM and

hybrid stepping motors make them differ from the switched reluctance in the

applications they are suited for (ref. Appendix E). In fact, the constructed 5-phase

switched reluctance prototype is targeting the industrial variable speed drive market

which is currently dominated by the 3-phase induction motor.

The 3-phase inverter-fed induction motor, described in Appendix F, is now well

established as an industrial variable speed drive. The rugged rotor structure and

simple power electronic converter have contributed significantly to its success. In

terms of performance, polyphase excitation of appropriately designed stator

windings produces a symmetrical rotating field which leads to smooth torque

development and low noise levels. However, the stator end winding in the

induction motor is long and contributes significantly to copper losses. In addition,

copper losses are incurred in the rotor and are more difficult to dissipate.

'Standard efficiency' 4kW 3-phase induction machines develop 26.5Nm at

1420rpm, with a motor efficiency of 83%. The 'energy efficient' design, which

uses low-loss steel laminations, achieves an efficiency of 85.3% at full load [63].
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The switched reluctance motor structure is rugged and potentially cheaper to build

in comparison to the induction motor. The salient pole stator has concentrated

excitation windings with short end turns. The phase winding resistance is therefore

reduced and the active core length occupies a higher proportion of the overall

frame length than in the induction motor. There are no windings on the rotor and

therefore rotor losses are lower than in induction motors. The bulk of the losses

occur in the stator and can be dissipated easily through the motor frame.

5-phase 10/8

prototype

(measured)

1300rpm

20Nm

5-phase 10/8

prototype

(projected)

1500rpm

25Nm

Most

efficient

3-phase 12/8

motor design

known

150Orpm

25Nm

Energy

efficient

3 - 0

induction

motor

Motor

efficiency

89.75%

(appr.)

above 90% 85.3%

Drive

efficiency

87% above 88% 85% 81%

(appr.)

Table 7.5 Comparison of the 5-phase drive efficiency with competing induction

motors and switched reluctance drives. (All constructed in D112 frames).

In addition to the switched reluctance motor advantages mentioned above, the

proposed 5-phase drive offers the significant advantages associated with short flux

paths. Short flux paths reduce the MMF required to establish the flux in the airgap

and hence decrease copper losses. Hysteresis and eddy current losses are also

decreased as the 'active' iron volume is reduced. The 5-phase switched reluctance

motor was constructed inside a standard D112 induction motor frame. SRDESIGN

simulation data suggested that, at the rated supply voltage of 600V and a peak

phase current of approximately 13.5A, the 5-phase prototype would develop
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25.5Nm at 1500rpm with a motor efficiency in excess of 90%. Experimental

results demonstrated that, at the reduced supply voltage of 300V, the 5-phase motor

developed 20Nm at 1300rpm with a drive efficiency of 87% and a corresponding

motor efficiency of approximately 89.75%. The 5-phase prototype therefore

achieved far superior performance in comparison with the 'energy efficient'

induction motor before reaching the maximum drive efficiency operating point(s).

Table 7.5 summarises efficiency figures for the 5-phase prototype and competing

induction motors and switched reluctance drives of the same frame size.

With eight poles on the rotor low ripple torque can be achieved with the 5-phase

motor. The high starting torque available shall be most useful in traction

applications (crane and lift drives). The high efficiency also makes the 5-phase

drive suitable for battery operated vehicles or other applications where the power

/ weight ratio is important and permanent magnet motors are not appropriate.

However, the fundamental excitation frequency of the drive increases significantly

at higher speeds and exaggerates the eddy current loss component. It is for this

reason that it is thought the 5-phase drive can be established more comfortably as

a variable speed drive running up to 3000rpm. In general, specialised applications

are more likely to employ switched reluctance drives. This is because a dedicated

power converter and control system must be designed for a switched reluctance

motor. In contrast, any induction motor can operate from a standard 3 - 0

inverter. This makes the induction motor particularly attractive, as a general

purpose variable speed drive.
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Chapter 8

CONCLUSION

8.1 Main conclusions and author's contribution to

knowledge.

A new configuration of switched reluctance motor has been described, in which the

windings are arranged to encourage short flux paths within the motor. Short flux

paths reduce the MMF required to establish the B-field pattern in the motor,

leading to a significant reduction in copper losses. In addition, iron losses are

decreased because the volume of iron in which hysteresis and eddy current losses

are generated is reduced.

It has been demonstrated that short flux paths can be encouraged if the phase

windings of a switched reluctance motor with an odd number of phases are

arranged so that adjacent stator poles have opposite magnetic polarity. In the

proposed configuration, the B-field associated with two adjacent phase windings

simultaneously excited forms a short magnetic circuit, linking adjacent stator poles

via the rotor teeth.

A thorough electromagnetic analysis of doubly excited systems, which relates to

switched reluctance motors operating with two phase windings conducting at any

time, has been proposed. The analysis includes the effects of mutual coupling and

the increased flux density, present in some parts of the steel when two phases are

excited simultaneously. This electromagnetic theory of doubly excited systems was

used to accurately model switched reluctance machines configured for short flux

loops, as well as the more common 4-phase 8/6 machine. It has been demonstrated

that the virtual work principle, applied to doubly excited systems as proposed in

this thesis, yields average torque values which consistently compare favourably
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with torque computed using the Maxwell stress tensor. It has also been shown that

significant errors can arise if mutual interaction effects, frequently neglected by

previous researchers, are not accounted for. A performance optimisation study on

the 4-phase motor was undertaken. The design of 4-phase motors for low torque

ripple has been proposed. A smooth torque characteristic was achieved by correct

specification of critical motor dimensions (stator yoke thickness and rotor pole arc)

coupled with an appropriate phase current conduction period.

Switched reluctance motor structures have been modelled using two and three-

dimensional finite element analysis. Three-dimensional effects, i.e. anisotropy, end

winding flux and axial fringing have been investigated. An extensive discussion

into modelling of anisotropic material structures has been put forward. A series

of correction charts account for end-core flux at a range of rotor positions and

excitations. The value of end-core flux has been found to be heavily dependent on

rotor position, excitation and magnetic saturation. The percentage increment in

flux linkage due to 'end effects' was found to be maximum when the excited stator

poles face the interpolar airgap depth. The percentage increment in flux linkage

due to 'end effects' decreased linearly in the overlap region to reach a minimum

at alignment.

The 'back bone' structure of SRDESIGN, a computer simulation program written

in Turbo Pascal to characterise the dynamic performance of switched reluctance

drives, has been presented. Fundamental mathematical formulations supported in

SRDESIGN have been described. The accuracy of dynamic simulation data

obtained from SRDESIGN was verified by testing switched reluctance drives that

were available in the laboratory. In order to obtain accurate simulation data for

doubly excited switched reluctance motors, X / i diagrams at 'extreme' rotor

positions (computed by implementing the proposed electromagnetic theory for

doubly excited systems) were imported from finite element analysis. SRDESIGN

estimated the magnetisation curves at intermediate rotor positions and yielded

values for average torque and motor losses, always within 10% of the measured

value. It was also asserted that the performance of singly excited switched

216



reluctance motors could accurately be simulated in SRDESIGN, with the 2 n., / i

diagrams at unaligned and aligned rotor positions computed within the program.

The design and development of a 5-phase 10/8 switched reluctance drive, which

exploited the advantages of short flux paths, has been described. The 5-phase

motor design procedure, which included new proposals for motors with two phases

simultaneously excited, has been thoroughly presented. The static performance of

the 5-phase motor, with the windings configured for short or long flux paths, was

modelled using finite element analysis. It was shown that, for equal copper loss

and reduced iron loss, the short flux loop motor configuration developed 16%

higher average torque. In addition, the 5-phase motor configured for short flux

paths was found to develop 20% higher torque per unit volume, when compared

to a 4-phase machine based on the design of the Oulton motor.

Although the maximum drive efficiency contour was not reached, it has been

demonstrated that the 5-phase prototype drive, with the motor configured for short

loops, achieved an efficiency of 87% at the [1300rpm, 20Nm] operating point.

This figure, which corresponds to a motor efficiency in excess of 89.7%, is

significantly higher than the efficiency of all known prior art switched reluctance

drives and induction drives of the same frame size.

8.2 Areas of further work.

The principal aim of this project was the electromagnetic design of a high

efficiency switched reluctance motor. This aim has been achieved. However,

further work is needed to realise the full potential of the 5-phase drive.

A more advanced control system ought to be designed for the 5-phase motor. The

angular resolution of the position sensor ought to be improved in order to optimise

the drive efficiency. In addition, speed feedback could be provided. These

functions can be performed within a microprocessor-based controller.
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The available dc power supplies imposed a limitation in testing the motor above

3.5kW input power. Measurements ought to be taken to establish the maximum

power output of the 5-phase drive. A power supply capable of delivering 600V -

16A would be required to perform these tests. In addition, the 5-phase drive

employing six power switches in the shared switch converter configuration ought

to be experimentally evaluated. However, the dc link voltage impressed across the

shared switch converter would need to be increased beyond 300V 5 for the drive

to develop 25Nm at a phase current chopping level of 15A.

Further work is needed to improve the computer simulation program SRDESIGN.

Thermal modelling could be added to help predict the maximum continuous rating

of a motor. Some form of model should be developed to predict the losses in the

power converter. Information on the drive efficiency (rather than just motor

efficiency) can then be conveyed to the user. An analytical procedure of predicting

2. / i diagrams for doubly excited switched reluctance motors should also be

developed.

5The EM TCR power supply that was available in the laboratory could supply a maximum of
300V.
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APPENDIX A

Electromagnetic equations governing the finite

element analysis software.

A.1 The two-dimensional finite element code (OPERA-2D). 

A magnetic vector potential, A, may be defined such that

B Vx A
	 (A.1)

Maxwell's first law (eqn. 2.4) may be rewritten in terms of the magnetic vector

potential as

Introducing the electrostatic potential, V, the electric field strength is expressed as

Current density, J, may be separated into two components, namely the source

current density, L, and induced current density, Je, where

• -VV	 (A.4)

The term a denotes conductivity. Expanding the source and induced current

density components in eqn. 2.8 and expressing the magnetic field strength in terms

of the flux density gives

This equation describes eddy current phenomena in terms of a specified source
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current density and relevant material properties. The magnetostatic model of the

switched reluctance motor has coils with known current density. The current

density is therefore prescribed and the conductivity is set to zero. In OPERA-2D,

the equation to be solved for the static magnetic field using the magnetic vector

potential, is derived by substituting for the flux density, B, in eqn. A.6 [43]. In

two dimensions, this simplifies to

Vx(
1

__ VxA z ) =
	 (A.7)

A.2 The three-dimensional algorithm (OPERA-3D / TOSCA). 

Stationary magnetic fields consist of both solenoidal and rotational components.

The field produced by electric currents has a rotational component inside the

volumes where currents flow. In the exterior space the field is solenoidal but the

scalar potential is multi-valued. The field produced by magnetised volumes is

solenoidal. It is convenient to separate the total field into two parts in order to

obtain a description of the field in terms of the scalar potential. The total field

intensity H may be expressed as the sum of the source field intensity Hs and the

reduced field intensity Hill

H Hs + Hm	(A.8)

The source field can be obtained directly from the Biot-Savart law by integration

over the region SI j containing current

Hs 1

J x R 

, I R 1 3 " j

The field satisfies

(A.9)

V x Hs J	 (A.10)

so that
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V x Hm = 0	 (A.11)

The reduced field intensity can now be represented using the reduced scalar

potential, 4),

HM = -V4)	 (A.12)

The divergence of the flux density B is always zero. Introducing the permeability

tensor, p, and combining the expressions for the source and reduced field

intensity, gives the partial differential equation for the reduced scalar potential

v r.fxR 
do„) = °v.i_cvq) - 	

IR13
(A.13)

This equation can easily be solved using the finite element method. However, in

magnetic materials the two parts of the field HM and Hs tend to be of similar

magnitude but opposite direction. Therefore, cancellation occurs in computing the

field intensity H, that results in a loss in accuracy [44]. The errors can be

completely avoided by combining the total and reduced scalar potential

representations. Hence, exterior to the volumes where currents flow the total field

can be represented using the total magnetic scalar potential IP

	

H = -VT
	

(A.14)

where the total magnetic scalar potential satisfies

	

= 0
	

(A.15)

The minimal combination consists of using the reduced scalar potential only inside

volumes where current flows and the total potential everywhere else.
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APPENDIX B

Data sheets for power semiconductor devices

used in this project

SIEMENS

SIMOPAC* MOSFET Modules 	 BSM 181 F (C)
BSM 181 FR

Ifos = 800 V
= 34 A

RDS(onl = 0.32 0

• Power module
• Single switch
• FREDFET
• N channel
• Enhancement mode
• Package with insulated metal base plate
• Circuit diagram: Fig. la')

1VP•
	

Ordering code 

BSM 181 F(C)
	

C67076-A1052-A2

BSM 181 FR
	

C67076-A1057-A2

Maximum Ratings

Parameter Symbol Values Unit

Drain-source voltage VD* 800 V

Drain-gate voltage, R05 off 20 kO VEKAR 800

Gate-source voltage Vos ± 20

Continuous drain current, Tc = 25 °C ID 34 A

Pulsed drain current Tc xi 25 °C /ow. 136

Operating and storage
temperature range

Ti
7",,, —55...+150

''C

Total power dissipation, Tc = 25 °C P,,,,, 700 W

Thermal resistance
Chip-case
Case- heat sink

Ri ti jc
R,,, c,,

5 0.18
IS 0.05

KM

Isolation test voltage), t = 1 min. V, 2500 Vic

Creepage distance, drain-source — 16 film

Clearance, drain-source	 . — 11

DIN humidity category. DIN 40 040 — F —

IEC climatic category, DIN IEC 68-1 — 55/150/56

See chapter Package Outlines.
2) Isolation test voltage between drain and base plate referred to standard climate 23/50 In ace. with DIN 50014.

IEC 146, pars 492.1.
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rim"14. SGS-THOMSON
Gammocupori pcs	 BYT 230 PI(V)-1000

FAST RECOVERY RECTIFIER DIODE

• VERY HIGH REVERSE VOLTAGE CAPABILITY
• VERY LOW REVERSE RECOVERY TIME
• VERY LOW SWITCHING LOSSES
• LOW NOISE TURN-OFF SWITCHING
• INSULATED : Capacitance 45pF

DESCRIPTION

Double rectifiers suited for switching mode power
supply.

ABSOLUTE RATINGS

Symbol Parameter Value Unit

VI:11:mA Repetitive Peak Reverse Voltage 1000 V

VFism Non Repetitive Peak Reverse Voltage 1000 V

I FR0,4 Repetitive Peak Forward Current	 tp 5 10u.s 375 A

Innms RMS Forward Current	 per leg 70 A

I F(AV) Average Forward Current TC810 . 50°C
5 .0.5 per leg

30 A

I Fsm Surge Non Repetitive Forward Current tp .10ms
Sinusoidal

200 A

P Power Dissipation Teals. ... 50°C
per leg

60 W

Ts t g
T,

Storage and Junction Temperature Range — 40 to 4. 150 °C

THERMAL RESISTANCES

Symbol Parameter Value Unit

Rth (1-C) Junction-case per leg 1.6 °C/W
total 0.8

Coupling 0.1 °C/W

June 1989
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APPENDIX C

Comparison on the basis of equal copper losses.

The switched reluctance motor copper losses Pci, may be computed from

Pc. = 1.2 s R
	

(C.1)

where I denotes the rms value of the phase current and R the resistance of the

phase winding. Assuming square pulses, the rms phase current can be expressed

in terms of the peak phase current, I,,,, as

Ton	 (C.2)

where T denotes the period (1 /f) of the current pulse train and Tc,„ represents the

on-state time. The following relations also hold

= J.A	 (C.3)

and

R = 
p Aw
	 (C.4)

where A., denotes the cross-sectional area of copper and l,, the length of copper

wire. Equation C.1 can therefore be rewritten as

2 2 4 T	 lwPc. = JA1
(C.5)

=	 (q
To

T
n)(I)

w
)

The conductor length can be assumed constant in motors of equal stack length,

though the length of the end winding is dependent on the stator tooth width. As
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an approximation, the resistivity p is taken as constant. It is known however that

p is temperature dependent, and the rate of temperature rise in the phase windings,

which plays a significant role in the copper loss, increases with current density.

In addition, the heat transfer coefficient from the conductor to the iron is higher in

machines that exhibit lower iron losses. It is evident that an accurate loss model

can only be obtained by conducting a thorough thermal analysis of the switched

reluctance motor. This is beyond the scope of this argument, therefore

P c. c.= (4,A) (q
To

T
n )

(C.6)

In finite element modelling, area A„, is taken to be that of the largest rectangular

(single turn) coil that can be slipped over the pole without interfering with its

neighbouring coils.
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APPENDIX D

Loss data and BH curves for LOSIL 500-50.
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APPENDIX E

Operating principles of stepping motors.

E.1 The variable reluctance stepping motor. 

The construction of a single-stack variable reluctance stepping motor is identical

to that of the switched reluctance motor. However, the VRM is designed to

operate 'open loop' (i.e. without position sensing) and maintain accurate position-

control. In contrast, switched reluctance machines operate with position feedback.

This is needed to produce a variable speed drive of high efficiency.

A multi-stack type of variable reluctance stepping motor is also manufactured.

Each stack corresponds to a phase and is misaligned with respect to its

neighbouring stacks. The stator and rotor have the same tooth pitch.

E.2 The permanent magnet (PM) stepping motor. 

A stepping motor that uses a permanent magnet in a cylindrically shaped rotor is

called a permanent magnet stepping motor. The operating principle of this type

of motor can be illustrated by means of a cross-section of a 2-phase structure,

shown in fig. E.1. The rotor consists of four radially magnetised permanent

magnet sections, namely N-S-N-S. The stator has eight poles around which coils

are wound to make up two phase windings. The phase windings need to be

excited with positive and negative current polarities, and hence the requirement for

a bipolar power converter circuit arises. This type of converter utilises more power

devices than unipolar configurations and suffers from the danger of shoot-through

faults.

Rotation in one direction can be achieved if the excitation sequence

jA+ iB+ IA- iB- jA+
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Fig. E.1. A 2—phase PM stepping motor.

is adopted. Electromagnetic torque is produced by the interaction of the magnetic

fields produced by the stator windings and the permanent magnet sections

comprising the rotor. This gives rise to 'excitation' forces acting on the structure.

The phase windings are excited in turn to produce the correct magnetic polarities

in the stator poles which pull the rotor in place. The stepping action is illustrated

in fig. E.1. The step angle of this motor is 45°.

The PM stepping motor exhibits good torque per unit volume and high efficiency.

The main disadvantage associated with the use of a permanent magnet is the

additional cost and weight penalty that is incurred. The torque / inertia ratio of the

PM stepping motor is low.

E.3 The hybrid stepping motor. 

Hybrid stepping motors are operated under the combined principles of the variable

reluctance and the permanent magnet type of stepping motors. The construction

of a 4-phase hybrid stepper is illustrated in fig. E.2. A cylindrically shaped

permanent magnet lies in the core of the rotor and is magnetised along the length

of the machine (axially). Two end sections, consisting of equal numbers of poles,

are fitted on each end of the magnet. The teeth of the two sections are misaligned
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stator core	 windings

Fig. E.2. A 4—phase hybrid stepper motor.
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with respect to each other by half a tooth pitch. The stator structure is similar to

that of the switched reluctance type, though the winding connections are different.

In the hybrid stepper, coils of two different phases may be wound on one pole.

T. Kenjo [64] demonstrates most effectively the operating principles of the hybrid

stepper with the aid of a 'split-and-unrolled' model of a 4-phase motor, reproduced

in fig. E.3. Dotted curves represent flux due to the magnet. Field distributions

produced by excitation of phase windings are represented by solid curves. When

pole II is excited as a north pole N, and pole IV as a south pole S, a driving force

toward the left appears in the south pole cross-section because in the toothed

structure under pole II the fields produced by the excitation windings and the

permanent magnet sections act in the same direction. Field components oppose

one another in the toothed structure under pole IV hence weakening the right-

oriented force. A left-oriented force is also produced in the north pole cross-

section. An equilibrium position is reached after the rotor has moved by one

quarter tooth pitch. The stator excitation -can now be transferred to poles I and III

so as to maintain rotation.
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Fig. E.3. Hybrid stepper operating principles.
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The tooth structures on the rotor and stator of the hybrid stepper are designed to

realise small step angles which alleviates the need for position feedback. This type

of stepping motor has been used extensively in positioning applications i.e. robot

arms and XY tables. A high level torque output is achieved from a small volume,

though the cost and weight of the permanent magnet has limited production to

machines rated at only a few kW (maximum).
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Fig. F.1. The 3—phase inverter—fed induction motor.

APPENDIX F

A brief description of the induction motor.

In the induction motor, the coils forming the stator winding are arranged so that

conductors are distributed in slots around the stator periphery. The rotor can be

of the 'wound' or (more commonly) 'squirrel cage' type. In the 'squirrel cage'

type, solid aluminium bars are cast into the rotor slots and short circuited. This

type of rotor construction is more rugged and reliable than the 'wound' type.

Power electronic circuits are used to control rotor speed.

In the induction motor, alternating current is supplied directly to the stator

windings and by induction (or transformer action) to the rotor windings. The stator
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produced magnetic field interacts with the currents induced in the rotor windings

and gives rise to excitation forces according to Lorenz's law

F = JxB
	

(F.1)

Simple single phase motors are used extensively in industry, where rugged fixed

speed drives are required. The 3-phase inverter-fed induction motor, shown in fig.

F.1, holds a significant share of the variable speed drive market. Torque and speed

control can be achieved in an inverter-fed induction motor by varying the voltage

and frequency respectively.
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