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Summary

Positron emission tomography (PET) is an in vivo tracer kinetic technique. This

thesis is concerned with the analysis of data derived from PET studies in humans.

There are two related themes in the thesis. Firstly, the derivation of mathemati-

cal models with particular reference to the modelling of radiolabelled metabolite

formation in plasma and tissue. Secondly, the identifiability of model structures

is examined, and a method for the reparameterisation of unidentifiable models

is derived. Compartmental models describing the accumulation of radiolabelled

metabolites in plasma following the intravenous administration of ["C]flumazenil

and [11 C]diprenorphine are presented. A theorem is presented which gives condi-

tions for a unique solution to the spectral analysis approach (a kinetic modelling

technique used in PET which is based on the a priori definition of a large set of ba-

sis functions). Mathematical techniques are presented for the analysis of expired

a major labelled metabolite in many PET studies. This range of ana-

lytical and modelling techniques is then applied to the analysis of ["C]thymidine

scans. [11 Cl Thymidine is a PET tracer being developed for the measure of tumour

proliferation in cancer patients. The techniques developed in the thesis allow for

the removal of the confounding labelled metabolite signals from both plasma and

tissue data.



Chapter 1

Introduction

This thesis will consider the mathematical modelling of biomedical systems in the

field of positron emission tomography (PET). PET is an in vivo tracer technique

which allows the measurement of tissue functions in humans and as such is a

unique clinical research tool. The method employs radiolabelled compounds to

study the kinetics of selected biochemical and pharmacological functions. The

technique relies on the quantitative modelling of the kinetic behaviour of the

injected tracer and therefore a substantial part of PET research considers mathe-

matical models and their application. Important topics include model formulation,

model selection, identifiability and parameter estimation techniques. PET relies

heavily on mathematical methods, not just for modelling but also for tomographic

reconstruction, image analysis and image realignment. For quantification of tissue

function (with tracer kinetic modelling) input and output data are a prerequisite.

These data are obtained by blood sampling from the PET tomograph respectively.

These data allow for the creation of plasma and tissue time courses of the con-

centration of tracer. A major problem in PET is the metabolism of the injected

tracer. Consequently, the measured data is usually contaminated by the presence

of labelled metabolites. Techniques for the correction of the plasma and tissue

data are essential such that accurate model parameters can be estimated. This

0
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thesis is concerned with the development of mathematical models for both plasma

and tissue data and their application to PET.

The three inter-related themes to this thesis will be identifiability analysis, tracer

kinetic modelling and metabolite contamination of the data. An outline of the the-

sis is illustrated in Figure (1.1). Following the two introductory Chapters (2 and

[	 Chapter 1
LIntroduction

Chapter 2
Positron Emission Tomography

Chapter 3
Modelling and Identifiability

Chapter 4
Unidentifiable Models

and Reparameterisation

Chapter 8
	

Chapter 9
Carbon Dioxide
	 Modelling of Thymidine

in Plasma and in Tissue

(	
Chapter 10

Conclusions and Future Work

Figure 1.1: Thesis Structure
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3) on PET and modelling Chapter 4 considers identifiability and unidentifiable

systems. The process of identifiability allows for the theoretical investigation of

model structures to determine whether they are robust when utilised for parameter

estimation from input output data. A method for reparameterising unidentifiable

systems is investigated and this is applied to a model for the metabolite correction

of plasma input functions in Chapter 5. The theme of tracer kinetic modelling is

apparent throughout the thesis, a review of available techniques is presented in

Chapter 3 and one method (spectral analysis) is examined in detail in Chapter 6

with particular reference to the uniqueness of the solution. Applications of com-

partmental modelling and spectral analysis as tools for the investigation of tracer

kinetics are considered in Chapters 5, 8 and 9. The theme of metabolite correc-

tion via the application of mathematical mddels will be considered in Chapters

5, 8 and 9 with reference to the tracers [' 1 C]flumazenil, [11 C]diprenorphine and

[11C] thymidine. A conclusion will be presented in Chapter 10 together with future

work arising from this thesis.



Chapter 2

Positron Emission Tomography

2.1 Overview

PET is a unique tool for studying pharmacokinetic, physiological and biochem-

ical processes in vivo iii humans. The ability of PET to acquire non-invasive

functional images makes it an unprecedented tool for the study of neurology, car-

diology, and oncology. Its principle roles include the in vivo measurement of blood

flow, metabolism and receptor concentrations [1]. PET has been used widely by

neurologists with respect to brain mapping of cognitive function [2] and the study

of neurological diseases such as Parkinson's disease [3], epilepsy and Alzheimer's

[4]. Cardiologists use PET to measure myocardial blood flow, metabolism and

receptor concentrations [5] [6]. Oncologists are now increasingly using PET to

investigate the biochemistry of cancers and their response to anti-cancer agents

and other forms of therapy [7] [8] [9]. Psychiatrists use PET to study the neu-

roreceptor systems in brain disorders such as depression and schizophrenia [10].

The technique is making use of an increasing variety of radiolabelled tracers. The

fundamental mechanism of PET is the emission of a positron from an unstable

nucleus and the consequent annihilation with a nearby electron. This annihilation

produces two almost collinear gamma rays of 5llkeV each which can be detected

in coincidence on either side of the active volume. The localisation of the an-

3
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nihilation allows the tracers spatio-temporal distribution to be determined. In

addition, the detection of the two gamma photons as opposed to single photons

as in conventional nuclear medicine facilitates the determination of absolute tracer

concentrations [11]. This enables functional parameters to be accurately derived

and increases detection sensitivity.

2.2 Tracers

The use of positron emitters that are isotopes of commonly occurring elements

facilitates the use of many different tracer compounds of biological significance

[12]. A tracer should not disturb the underlying biological system, that is the

amount of non-radioactive material is required to be small. The compounds are

administered in minute quantities and this radiation dose corresponds to approx-

imately one year's normal background radiation. The tracers are produced by

chemical reactions involving one of the several common isotopes. Isotopes that

are frequently used as positron emitters are listed with their physical half-lives in

Table (2.1). The short half-lives of the isotopes reduces the dose of radiation to

the subject and allow for repeat studies to be performed.

0_Radionuclide Half-Life (mins)

11 Carbon	 20.4

13Nitrogen	 9.96

'5 Oxygen	 2.05

18Fluorine	 109.7

Table 2.1: Half-lives of commonly used isotopes

These radioisotopes are produced with a particle accelerator (a cyclotron). The
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cyclotron produces the isotopes by accelerating a beam of charged atomic particles

(protons, alpha particles or deutrons) under the influence of electric and magnetic

fields. The beam irradiates a target (solid, liquid or gas) causing a nuclear reaction

to take place, producing the raw radioisotope. The short physical half-lives of

positron emitting tracers necessitates the presence of an on-site cyclotron (or

nearby - i.e. .' 1-2 hours journey for ' 8F is reasonable) for their production. The

radioisotope then undergoes chemical synthesis producing the required compound

incorporating a positron emitting label. High initial yields of positron emitters and

fast subsequent synthesis produce tracers with high specific activity. The specific

activity of a compound is defined to be the ratio of radioactivity to mass of the

compound. This must be high to ensure that the concentrations of the unlabelled

compound do not interfere pharmacologically with the in vivo measurement of

the radioligand kinetics [13]. In essence, a high specific activity compound meets

the criterion for an ideal tracer.

2.3 Physical Principles

Positron emission involves the decay of certain proton-rich nuclides by the emis-

sion of a positron, a positively charged electron, to leave an extra neutron and

one less proton [14]. The total kinetic energy released by this process is shared

between the pdsitron and a neutrally charged particle, a neutrino. The compet-

ing decay scheme for nuclides having an extra proton is capture of an inner shell

electron.

p - n + /3 + v (Positron Emission)

p + e -* n + v	 (Electron Capture)
(2.1)

On emission, the positron loses kinetic energy via collisions with electrons from

surrounding atoms until its energy is about a few electron volts, at which point its
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collision with an electron results in annihilation of the electron pair and conversion

of their total mass to energy (via Einstein's equation the energy released is E =

2m0 c2 ). Conservation of energy yields two photons each of energy 5llkeV which

are emitted in close to opposite directions, the small non-collinearity arising from

possible non-zero momentum on annihilation.

An emitted positron travels a short distance (up to a few mm in tissue) until it

annihilates with a stationary electron and this introduces a spatial blur in the

distribution of the compound. This and the non-collinearity define the intrinsic

maximum resolution that one can achieve with a PET system.

2.4 Detection of Gamma Rays

Positron

________ Ganuna
Detector	 Detector

Electron

Coincidence

Figure 2.1: Scheme of basic PET principle

The principle behind the gamma ray detection involves the use of scintillation crys-

tals [11]. When a gamma ray interacts with a crystal, such as bismuth germanate

(BGO), the motion energy is converted into light which is then transformed into

an amplified electrical pulse by a photo multiplier tube (PMT) attached to the

rear of the crystal. The PMTs are wired up to electronic hardware that allows

for rapid recording of the detected events. Using a pair of gamma detectors, the
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occurrence of an annihilation can be ascertained (Figure (2.1)). By connecting a

pair of gamma detectors in a coincidence circuit the occurrence of single nuclear

disintegrations can be accounted for. The coincidence unit behaves similarly to a

logical AND gate, if both input pulses are registered within a small time window

(coincidence window < 20 ns) then a coincidence count or event is recorded.

2.5 PET Camera

A commercial PET tomograph [15] [16] usually consists of multiple crystal PMT

modules, or detector blocks arranged in rings surrounding the subject which are

connected up to detect coincidences, as in Figure (2.2). The tomograph localises

Figure 2.2: PET tomograph

disintegrations by means of electronic collimation. When two gamma rays are

detected within the coincidence time window an event is recorded. The spatial

position of the disintegration can be localised to a straight line joining the two
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coincident detectors, termed a line of response (LOR). During a PET scan events

are recorded between the currently many millions of detector pairs which rep-

resent line integrals or projections at different angles around the subject. The

raw data set is termed a sinogram (a matrix of angle vs. projection LOR). Us-

ing tomographic reconstruction techniques an image of the tracer distribution

can be obtained (localisation is effected by the intersection of many LOR's pass-

ing through a particular source location). There are two favoured reconstruction

techniques; Filtered back projection [17] and iterative reconstruction [18]. The

spatial resolution is primarily determined by the dimensions of the detector ele-

ments and can be as high as 3mm for modern scanners. The temporal resolution

or frame rate that can be used is limited by the radioactivity in the field of view

and the decay of the radionuclide.

2.6 Sinogram

Each disintegration event is recorded by coincidence processing hardware and

stored in a 2-D matrix, or sinogram [14], as in Figure (2.3). A sinogram is an

Tomograph Geometry 	 Sinogram

Figure 2.3: Composition of a sinogram
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array that consists of the coincidence LOR's reformatted into sets of parallel

projections at different angles or views. The value in each element of the sinogram

is the number of counts for each LOR, i.e. a line integral.

2.7 Mispositioning of Events

There are three types of coincidence events recorded, see Figure (2.4); i) a true

event, from an annihilation lying within the detection channel, ii) a random event,

two uncorrelated photons from separate annihilations detected within the coinci-

dence time window, iii) a scattered event, when one or both gamma ray interact

with an atomic electron in the medium the direction of the gamma ray changes

as a result of losing some energy (by the principle of conservation of momentum)

[14].

Scattered Event

Gamma	 Gamma
Detector_	

rue Event	
DetectoP

Random Events

Coincidence
Circuit

Figure 2.4: Possible coincidence detections

The raw counts measured by a PET camera are defined by the following equation;

Cmeasured = Cirue + Crandom + Cscatter 	 (2.2)

So to obtain the true counts the measured signal must be corrected for randoms
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and scatter.

Randoms are normally measured by delaying the signal on one of the detector

pairs so that just randoms are recorded, i.e. all the true coincidences have been

removed from the signal. Alternatively one can use Crandom = 2rN 2 N where 2r

is the length of the coincidence time window and N and N are the singles count

rates from the two coincident detectors. However, the width of the time window

needs to be known very accurately for such a technique to be used.

The counts in a detector channel must be corrected for counts lost due to scatter

out of the LOR and in addition for photons absorbed by the medium.

The following equation defines the number of photons lost due to the traversal

through a medium.

I = Io&
	

(2.3)

where I = number of photons after traversal, 10 = number of photons before

traversal, x = the total thickness of the medium, ji = the attenuation coefficient

of the medium.

Unlike single photon emitters the detection of the two photons in PET means

the attenuation is not dependent on the depth of the source in the medium and

only depends on the thickness of the medium. This greatly simplifies the process

of attenuation correction. A transmission scan is acquired with the patient in

the scanner, and involves the measurement of attenuation by utilising an external

long-lived positron emitting source (normally 68 Ge). A blank scan is similarly

acquired but without the patient in the scanner. The ratio of blank scan to

transmission scan is then used as the attenuation correction. There are various

methods for scatter correction such as convolution subtraction or the dual energy

window approach [19] {20].The accurate correction for attenuation and scatter is

essential for the production of quantitative functional images.
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2.8 2D and 3D Acquisition

Data can be collected in. two different geometries; In 2-D, events within narrow

axial acceptance angles are recorded, these being restricted by the presence of

inter-ring lead or tungsten septa which are used to remove scatter and randoms.

In 3-D, septa are removed and any detector ring can be in coincidence with any

other ring (unlimited acceptance angle) [21]. 3-D mode is more sensitive (more

events are recorded per activity) and this allows for a reduction in the amount

of radioactivity administered to a subject. The reduction in dose is becoming

increasingly important as the advisory boards are lowering the allowable doses of

activity.

2.9 Resolution of PET

The data collected from the scanner is a temporal and spatial distribution of

the tracers' concentration. For each measured time frame of data a discretised

volume of the tracers concentration is obtained. The maximal spatial resolution

of any PET system is limited, this results from a positron travelling up to a few

mm before annihilating with an electron and also non-collinearity (the bigger the

detector ring the bigger the blur due to this) [11]. However in practise the size of

the detector elements is the limiting factor, although modern technology means

that PET cameras are now approaching their maximal spatial resolution.

2.10 Quantification

Studies are performed where the activity concentration in a test cylinder or phan-

tom, can be determined by placing samples of the activity in a calibrated sodium

iodide well counter [11]. This enables accurate factors to be obtained which

produce cross calibration between the PET camera and the well counter, i.e.
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Counts/voxel Ci/ml. The BGO blood detection system (see below) is also

calibrated with the same well counter (counts/mi -* aCi/ml), and this facili-

tates the calculation of a linear factor which calibrates the PET data to the blood

data. To achieve quantitative measures of tissue function it is necessary to acquire

several associated measurements. In addition to normalisation (for detector ineffi-

ciencies and geometrical effects) and calibration data for the scanner the following

measures are required;

. Spatio-temporal measure of concentration of tracer in tissue

. Attenuation data

. Concentration of the label in blood

. Distribution of label between plasma and whole blood

. Metabolite measurements of the parent tracer in plasma

During a PET scan, aliquots of blood are drawn from the subject and counted in

the well counter which enables a direct quantification of the activity in the PET

images.

2.11 Blood Sampling

To acquire quantitative information from the tissue of interest it is essential to

know the temporal concentration of the compound in plasma. The most robust

method of acquiring these data involves utilising continuous on-line blood sam-

pling throughout the scan [22]. The subject's radial artery is cannulated and a

pump is used to withdraw blood at a constant rate through a BGO detector block

which continuously measures the activity in the blood, see Figure (2.5). Discrete

samples of blood are taken for calibration, plasma to whole blood calculations and
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Waste Blood

Figure 2.5: Blood sampling system

for metabolite analysis. The tubing passes through the BGO detector block in

the shape of a hairpin, this maximises the volume of blood which can be detected,

increasing sensitivity.

Both lO22keV "sum" coincidences and 5llkeV "singles" events are recorded giving

extra sensitivity (heavy lead shielding of the equipment is employed to minimise

background counts). The continuous sampling contains a series of "blips" in the

data due to the flushing of the line with saline which ensures that the blood does

not clot in the tubing. The background count rate needs to be removed from the

data. The true background count rate is related to the activity surrounding the

detector and theoretically this will depend on the activity in the subject, however

with suitable lead shielding this problem can be minimised.
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2.12 Tracer Metabolism

One of the most challenging problems in PET results from any metabolism of the

injected compound. Metabolism refers to the degradation of the parent compound

into various smaller component parts. As a consequence of the parents positron

label some of it's associated metabolites will have an inherent label as well [13].

These metabolites which also produce annihilation events confound the signal of

the compound of interest. When metabolism of a compound occurs mathemat-

ical models of the metabolism are necessary to account for the contribution of

metabolites.

2.13 Metabolite Analysis

To ascertain the contribution of metabolites to the plasma input function discrete

plasma samples are analysed for their parent and metabolite composition. Various

methods for the analysis of samples exist of which the two most common are

High Pressure Liquid Chromotography (HPLC) and Thin Layer Chromotography

(TLC) [23] [24].

2.14 Summary

This chapter has explained the principles and methodology in obtaining quanti-

tative tracer concentrations in tissues of interest and plasma. The next chapter

considers how these data may be transformed using mathematical models to pro-

vide physiological "functional" parameters.



Chapter 3

Modelling and Identifiability

3.1 Overview

This chapter reviews the topics of modelling and identifiability which form the

two main aspects of this thesis. The two topics are intrinsically linked. A model

defines some form or structure with which parameters are associated. Parameter

values are obtained so that the model output matches the measured data as closely

as possible. Identifiability refers to the process of assessing whether it is possible

to obtain unique values for these parameters from experimental data.

3.2 Modelling

Mathematical modelling techniques are applied to PET data in order to produce

relevant functional parameters of the body's physiology, biochemistry and phar-

macology. The raw data often gives little insight into the parameters of interest

and this is why it is necessary to use tracer modelling techniques so as to ex-

tract a more comprehensive description of the underlying physiological processes.

Hence, rather than just recording the integrated radioactivity counts, it is pos-

sible to derive various important functional parameters such as the distribution

volume (VD), blood flow, concentrations of binding sites, binding affinities and

15
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mean residence times, etc [25].

3.2.1 Introduction

The information obtained from a PET scan is a temporal and spatial measure

of the tracer concentration in the tissue of interest. A simultaneous measure of

the tracer concentration in plasma can be obtained and the acquisition of both

plasma and tissue time courses allows for the investigation of plasma to tissue

transfer of the compound, as in Figure (3.1). The frame durations for which

Plasma(t)

'1'
Blood Sampling

Physiological
Transfer Function

Tissue -.

Tissue(t)

1'
PET Scanner

Tissue(t) = Physiological Model® Plasma(t)

Figure 3.1: Modelling scheme

tissue data are collected are variable and a typical protocol would consist of short,

initial time frames (typically 5-60 secs) to characterise the fast, initial stages of

the distribution of the tracer in tissue and longer, later time frames (typically 5-15

mins) to capture the uptake or washout from the tissue. The protocol for data

acquisition should consider the important parameters to be estimated and tailor

the experimental design to maximise the accurate estimation of these parameters

[26] [27].
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3.2.2 Tissue Data

The kinetic data obtained from a PET camera can be either analyzed at the single

pixel level (i.e. at the order of the spatial resolution of the camera - e.g. 6mm

x 6mm x 6mm [15]) or on the basis of a so called region of interest (ROT) which

is taken to mean a larger region defined by the user (e.g. 50 mm x 50 mm x 30

mm). There are advantages to analysis at both levels with a trade-off having to

be made between statistical noise and resolution. Pixel by pixel analysis gives

detailed spatial information, that may be obscured at the ROT level. This allows

for the generation of "functional" or "parametric images", where each pixel in the

image contains the parameter value at that spatial location (it should always be

emphasised that image "pixels" are not statistically independent - i.e. anything

with dimensions < resolution of the camera). However, the data are noisy at the

pixel level compared to the low noise properties of ROT-generated curves, and

the noise levels determine the number of viable parameters that are numerically

identifiable.

An ROT is drawn on a reference image which is usually the integral of the dy-

namic image sequence. The reference image is chosen such that it maximises the

delineation of the structures of interest. The ROT is then applied to the dynamic

image sequence and all pixel values within the ROT are averaged for each time

frame resulting in a complete time activity curve for the ROT.

3.2.3 Plasma Data

The simultaneous measure of continuous on-line blood radioactivity, the plasma

to blood partition, and metabolite analysis of plasma assays allow for the genera-

tion of a plasma metabolite-corrected input function. This provides a continuous

measure of the parent compound's concentration in plasma and this process is

described in more detail in Chapter 5.
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3.3 Modelling Techniques

Typically in PET we are concerned with single-input single-output (SISO) systems

and the system identification problem. There are various different modelling ap-

proaches which can be used to examine the data, ranging from data-led techniques

to ones incorporating more a priori assumptions, or model-led techniques (Figure

(3.2)). The more data-led techniques minimise a priori assumptions and instead

(DATA-LED)	 ASSUMPTIONS	 (MODEL-LED)

Noise

Parameterisation
>.

Principal

I Components

[_
Analysis

[ Cluster]	 J SpectraJ	 ' Weighted

[_
Analysis]	 (Analysis] 

f 
Integration

Multivariate	 Compartmental
Framework
	

Framework

Figure 3.2: Spectrum of modelling techniques

interrogate the measured data to ascertain the characteristics of the system. An

example of this is principal components analysis (P CA) [28] which considers the

variance-covariance structure of the tissue data. The model-led (or constrained)

techniques utilise knowledge of the underlying system and involve an increased

degree of parameterisation. This corresponds with a loss in the number of degrees
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of freedom in the system which makes them increasingly susceptible to noise. A

model-led technique is exemplified by compartmental analysis and may not be

robust at the pixel level if the model is too complex.

With an increase in model structure, the problems of theoretical and numerical

identifiability become more important. The data-led techniques dictate what can

be identified from the data themselves, whereas the structures of the more model-

led techniques require investigation in order to validate their applicability. Data-

led techniques often fail to fully characterise the parameters of interest, however

they are extensively used as first pass analyses with new tracers when little is

known about the tracer's behaviour. Their important advantage here is that they

make few a priori assumptions.

Model-led techniques, such as compartmental analysis, are far more involved with

processes such as model selection, identifiability, and model validation is required.

Compartmental analyses normally requires a metabolite-corrected plasma input

function to give truly quantitative parameter estimates. If compartmental tech-

niques are successful they provide a greater understanding of the system.

Data-led techniques lend themselves to noise reduction, whereas more structured

models can be more easily related to physiologically interpretable parameters.

3.3.1 Multivariate Based Techniques
Principal Components Analysis

PCA [28] is a technique which extracts the key temporal components from a dy-

namic data set. The method is based on an orthonormal transformation of the

standard coordinate axes. The method is frequently used to obtain components

for the purpose of factor analysis, see below. The number of significant compo-

nents can be assessed by choosing components whose eigenvalues account for a

significant proportion of the variance (typically 70-90%). The method is limited to
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extracting the fundamental components and any small pockets of distinctly differ-

ent behaviour may be ignored. The method of principal components examines the

variance-covariance structure of the data via a linear combination of the original

data. Interpretation of the factors is the difficult and involved part of the process.

The factors obtained often need to be transformed to produce intelligible phys-

iological factors. This is normally performed by a rotation of the factors which

constrains them to be positive (physiologically plausible) [29]). These factors may

then be used as part of a factor analysis [30]

Factor Analysis

Factor analysis is performed by fitting a linear combination of temporal com-

ponents to the tracer time course. The distinct temporal components can be

obtained from time activity curves derived from ROT's, by PCA, or other kinetic

techniques such as cluster analysis. Factor analysis has recently been applied to

cardiac PET data [31] [32].

Cluster Analysis

Cluster analysis is a data-led technique. It attempts to identify clusters of pixels

in feature space (the n-dimensional time activity curves are treated as points in n -

dimensional space) by fitting a small number of multi-normal distributions which

encompass most of the data. The probability of a pixel lying within each of these

clusters may be calculated and this gives the weightings for the contribution of

each identified shape. Cluster analysis has a potential as a segmentation technique

and relies on distinct temporal shapes existing in the data [33].
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3.3.2 Compartmental Based Techniques

With the acquisition of an input function, modelling techniques which propagate

from a compartmental framework can be applied. These methods address the

general modelling problem in PET, that of system identification which involves

identifying a tissue response function from measured input (plasma) and output

(tissue) data.

Spectral Analysis

Spectral analysis was first applied to PET data by Cunningham and Jones [34],

and is a technique which lies in between data-led and model-led techniques. It

assumes that the tissue impulse response function can be constructed from a

sum of nonnegative exponential terms. By taking a discrete spectrum of possible

exponentials (/3 ), which are pre-chosen and fixed, from the fastest (blood effects)

to the slowest (decay of the isotope), the problem can be linearised, i.e.

PET0bS(tk) C(t) ®	 ae 13t	 (3.1)

given k E 1, 2, ..., N} and the non-negativity constraint a ^ 0 and where,

PETobs(t) : Tissue time course

C(t) : Plasma time course

The problem is then solved using a nonnegative least squares algorithm. By defi-

nition of the impulse response the method is able to characterise both irreversible

and reversible systems with many compartments. Spectral Analysis has been

used at the pixel level to produce functional images [35]. This thesis deals with

a particular aspect of the method (the uniqueness of the solution) that was orig-

inally perceived as a problem [36]. Chapter 6 presents a novel proof which gives

conditions for a unique solution.
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Patlak Analysis

Patlak or graphical approaches [37] [38] [39] were first used by Rutland [40] and

developed in a more theoretical framework by Patlak , and can be used to measure

the irreversible uptake rate of a tracer. The basic method involves a transforma-

tion of the tissue and plasma data.

PETobs(t)	 Cfr)dr 
+ 0 + Vp	(3.2)

C(t)	 C(t)

where

PETobs(t) : Tissue time course

C(t)	 Plasma time course

K : Irreversible uptake rate constant

14, : Volume of plasma in sampled tissue region

Vo : Volume of distribution

This relationship approaches linearity after a certain amount of time when the

exchangeable compartments approach a pseudo-equilibrium. The irreversible up-

take rate, K2 , can then be measured by fitting a straight line to the data after

this time. The advantage of this method is that the number of intermediate re-

versible compartments is unimportant and just the overall uptake rate constant

from plasma , into the irreversible compartment is obtained. Logan extended the

graphical approach to consider reversible systems [39].

Weighted Integration

Weighted integration is a technique that was originally developed in PET for

analysis of blood flow and can be applied at the pixel level [41] [42]. The method

requires two or more weighted count rate integrals, depending on the number of

parameters that are to be estimated. The particular advantage of this technique
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is that it can be used during data acquisition, thus providing a reduction in the

size of acquired data sets. The weighted count rate integrals are defined as

= 1T 
w1(t)CpET0b(t)dt (i	 1,.. . , n)	 (3.3)

where

PETobs(t) : Tissue time course

w(t) : Weighting functions

T : Time at the end of the scan

n : Number of distinct integrals

The weighting functions w must be distinct and typical functions include unity,

exponential decay and time [43]. Equation (3.3) can also be defined in terms of

the model parameters,

I = (1 - T) f w1 (t).C(t) 0 IR(t)dt + Vbw(t)Cb(t) (i = 1,.. . , n)	 (3.4)

where

IR(t) : Impulse response function

C(t) : Plasma time course

Cb(t) : Whole blood time course

Vb : Blood volume

The parameter values are then obtained by setting (3.3) and (3.4) equal to each

other and then solving for the parameter values. Weighted integration has been

used to calculate [11 C]flumazenil binding parameters, Bma(receptor concentra-

tion) and Kn(equilibrium dissociation constant), using a single compartment

model and a dual study, steady-state protocol [44]. The method can be extended

to consider the two compartment (3 parameter) model for ['8F]fluorodeoxyglucose

(FDG) producing effective images of K, which represents the irreversible uptake

of FDG and is proportional to the tissues utilisation rate of glucose [43J.
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Linear Compartmental Systems

A system is defined as a complex entity consisting of interacting parts [45]. In

compartmental modelling a complex system is constructed from a series of inter-

acting compartments. Each individual compartment obeys a simple set of rules

and these compartments are combined to form a complex system which describes

the whole biological process. General systems theory has its origins in the 1940's.

A description of compartmental analysis in medicine and biology can be found in

Jacquez [46] . The processes which will be examined will all contain some form

of input to the system and some form of output. Compartmental modelling is

a technique involving a simplification of the underlying physiological processes,

instead taking into account the principal dynamic elements.

Each compartment is considered as a homogeneous well mixed entity with its own

distribution volume. The distribution volume is defined by the ratio at equilibrium

of the concentration of tracer in tissue divided by the concentration in plasma, and

has units of (ml plasma)(ml tissue)'. Compartments can be spatially distinct or

they can denote the same physical space occupied by different chemical species.

The term linear refers to the fact that the rate at which material is transferred

between compartments is linear, that is proportional to the amount of material

in the compartment and hence the transfer rates are called rate constants.

Initially the model may be constructed in terms of interacting compartments which

convey the appropriate biological processes. The compartmental system is then

transcribed into the appropriate system of ordinary linear differential equations.

In compartmental modelling, one derives a set of equations which are obtained

from the theory of conservation of mass. A set of first order ordinary linear

differential equations are obtained.

In the limit, at equilibrium or steady-state, the quantities and concentrations of

the tracer in the compartments remains unchanged.
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There are certain assumptions which a linear compartmental system imposes:-

• the tracer mixes uniformly in each compartment

• the tracer mixes instantaneously in each compartment

• the rate constants between compartments are constant

• the amount of tracer must be very small compared to the system it is to

measure.

The Laplace transform [47] provides a very effective and established method for

solving a set of ordinary linear differential equations.

Nonlinear Compartmental Systems

The rate constants for compartmental systems are not always constant (the rate

may depend on time or a system variable), producing nonlinear compartmental

models. Nonlinear models are more complicated to solve with a general analytical

solution rarely available (Laplace transforms only apply to linear systems) and

numerical methods are normally required. An example of a nonlinear compart-

mental model in PET is a saturable ligand binding model with the injection of a

low SA labelled ligand such as fiumazenil [48].

3.4 Identifiability

Structural identifiability refers to the theoretical process of ascertaining whether

a model is well defined when fitting to experimental data. Theoretical structural

identifiability analysis is the process of examining the model in the case of per-

fect data and determining whether model parameters can be obtained. Many

models have parameters which cannot be determined given perfect data [49] [50],

so it is very important to establish whether a model is robust before fitting to
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Figure 3.3: Identifiability

any data. An experiment is declared uniquely (globally) identifiable if all the

parameter values are uniquely determined from noiseless input-output data. It is

locally identifiable if a finite discrete set of parameter values are determined and

unidentifiable if an infinite number of possible parameter sets exist.

The method of structural identifiability is directly applicable to compartmental

models, and has been used extensively to examine the viability of compartmental

systems [51] [52] [53] [54]. The methods available examine the properties of the

mapping of the parameters onto the system response. This mapping is defined by

the chosen model.

The scheme of structural identifiability is described in Figure (3.3). By postulating

a model, a map, M, is defined which maps from the parameter space,P, onto the

system response space,IR.

M:P—IR	 (3.5)
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If the mapping M is injective, i.e.

if P1 P2 implies M(pi ) M(p2 )	 ( 3.6)

then the model is globally (uniquely) identifiable. Essentially this means that

given two distinct system responses they are parameterised by different parameter

sets. A criterion for an ideal model would be that all the required parameters are

uniquely (globally) identifiable. However, in cases where the model is only locally

identifiable, it is possible to work out the finite number of parameter sets which

give rise to the system data. It may then be possible to discard some of these

parameter sets due to additional constraints that are known about the various

parameters or the system as a whole. Care can be taken to start fitting routines

in the neighbourhood of the required solution.

3.4.1 Introduction to Identifiability

Structural identifiability analysis is a technique which should be applied to model

structures to determine whether the unknown, independent, model parameters

can be deduced if perfect input-output data is available. The identifiability prob-

lem is fundamentally concerned with the uniqueness of solutions of a certain class

of mathematical models. Bellman and Aströrn in 1970 [55] were the first to put

identifiability analysis into a rigorous framework and they coined the term "struc-

tural identifiability". The expression "deterministic identifiability" is sometimes

used to avoid problems with the term structural when the identifiability properties

of the system are influenced by the type of input. When the model is deterministic

and the data are noise-free, the problem is generally a nonlinear algebraic one.

However, the solution to this problem is generally both nontrivial and nonunique.

With the addition of noise to the data the problem becomes extremely compli-

cated and is referred to as a problem of "numerical identifiability". One method

of analyzing numerical identifiability is to examine the standard deviation of each
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parameter estimate [56]. Another example of numerical identifiability is ensur-

ing that the number of measurements exceeds the number of parameters to be

estimated.

3.4.2 The Laplace Transform Approach

By employing the Laplace transform to differential equations generated by a par-

ticular model this enables the process of identifiability of the system parameters to

be undertaken. For (SISO) linear systems the identifiability analysis is performed

by examining the transfer function, TF(s), of the system. The system variables

are defined in the following manner,

Y(s) TF(s)U(s)	 (3.7)

where Y defines the observation and U defines the input.

For linear compartmental systems the transfer function is a quotient of polyno-

mials in s. Interrogation of the coefficients in the transfer function allows the

identifiability properties of the parameter vector to be established. Given perfect

data one would be able to measure the values of the coefficients in the measurable

transfer function, Y(s)/U(s), and so these values can be considered as measured

constants. The investigation of the identifiability of the system is concluded by

examining the' solution of a system of generally nonlinear equations. These equa-

tions are determined from the coefficients in the numerator and denominator of

the transfer function which are equal to measured arbitrary constants.

Establishing the system of nonlinear equations is straightforward, but the problem

with this method is that the solution is often difficult to determine when more

than a few equations exist, due to the nonlinearity. However the use of symbolic

manipulation packages [57], such as MATHEMATICA, often simplify this process.

The Laplace transform approach for identifiability analysis has been applied to
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many linear systems [58] [59] [60] [61] [62].

3.4.3 The Taylor Series Approach

This method involves expressing the observation, Y(t), as a Taylor series about

some known time point, say t = 0+ for an impulse response, with the successive

coefficients being constructed from the unknown model parameters [53] [51], i.e.

(t) = Y(o) + t(o) +	 (0k) +...	 (3.8)

The successive derivatives are measurable, given perfect data, and unique and

contain information about the unknown parameters which are to be identified.

Chapter 4 describes the Taylor series method in more depth and goes on to intro-

duce a novel method for the reparameterisation of unidentifiable systems.

The principal advantage of the Taylor series method is its applicability to nonlin-

ear and time varying systems as well as linear systems. It suffers from the same

problems as the Laplace transform method in that the algebraic equations con-

structed are often difficult to solve for all but the simplest of systems. Once again

the use of a symbolic manipulation package becomes invaluable. A drawback in

the method is that no upper bound exists on the number of coefficients that need

to be calculated for nonlinear models. For linear systems an upper bound can

be obtained by utilising the Cayley-Hamilton Theorem which declares that there

are, at most, 2n-1 independent equations required in this set [63]. It is important

to note that this is a necessary but not sufficient condition for identifiability.

3.4.4 The Similarity Transform Approach

The similarity transform, or exhaustive modelling, approach [52] [54] [64] proceeds

by generating all output indistinguishable models which are compatible with the

assumptions of the model. The method is most easily defined in terms of matrix
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notation. The system can described by

*(t,p)	 A(p)x(t,p) + B(p)u(t)	 (3.9)

with

x(0,p) = xo	 (3.10)

y(t,p) = C(p)x(t,p)	 (3.11)

with t E [0,T],x(t,p) E J,y(t,p) E m ,p E l C and u(t) E U[0,T]. A is

the system matrix (n x n), B is the input matrix (n x noinputs), and C is the

output matrix (m x n).

All equivalent models must have corresponding matrices A', B', C' related to A,

B, C by a similarity transform.

A' = TAT-'

B'=TB
	

(3.12)

C' = CT-'

A necessary condition for applicability of the similarity transform approach is

that the model is both structurally controllable and also structurally observable.

If these conditions are met, then the method is employed by applying (3.12) and

known constraints on A, B, C to determine the unknown elements of T [65].

The identifiability properties are then determined by the dimension of the set

of possible matrices, T. If T=I the system is uniquely (globally) identifiable, if

there is a finite set of possible matrices, T, the system is locally identifiable and

when the set has infinite dimension the system is unidentifiable. Examples of the

similarity transform approach as applied to linear systems are given by Chapman

and Godfrey [66]. The similarity transform approach may also be applied to

nonlinear models [52] [64].
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3.4.5 Other Identifiability Techniques

The Volterra series approach [67] extends the Laplace transform method to con-

sider nonlinear systems. Ljung and Glad have presented a differential groups

approach [68]. The method examines for global structural identifiability by con-

sidering whether the model can be rearranged as a linear regression. Both of these

methods are extremely difficult to apply for all but the simplest systems, due to

the complex algebraic equations generated.

3.4.6 Summary

This chapter has briefly reviewed some modelling approaches applicable to PET

and has presented various methods for performing identifiability analysis. The

choice of which method makes the identfiability analysis simplest is not straight-

forward and a certain amount of trial and error is normally required [54] [64]. In

the next chapter, novel work is presented which considers what can be done when

a system is unidentifiable. The system is reparameterised in terms of a reduced

parameter set, which guarantees the system to be locally identifiable.
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3.4.5 Other Identifiability Techniques

The Volterra series approach [67] extends the Laplace transform method to con-

sider nonlinear systems. Ljung and Glad have presented a differential groups

approach [68]. The method examines for global structural identifiability by con-

sidering whether the model can be rearranged as a linear regression. Both of these

methods are extremely difficult to apply for all but the simplest systems, due to

the complex algebraic equations generated.

3.4.6 Summary

This chapter has briefly reviewed some modelling approaches applicable to PET

and has presented various methods for performing identifiability analysis. The

choice of which method makes the identfiability analysis simplest is not straight-

forward and a certain amount of trial and error is normally required [54] [64]. In

the next chapter, novel work is presented which considers what can be done when

a system is unidentifiable. The system is reparameterised in terms of a reduced

parameter set, which guarantees the system to be locally identifiable.



Chapter 4

Unidentifiable Models and
Reparameterisation

4.1 Overview

This chapter considers a novel method of locally reparameterising unidentifiable

systems. This reparameterisation reduces a system to its minimal form (in the

sense of the number of parameters in the reparameterisation) and ensures that all

the parameters are (at least) locally identifiable. The chapter presents a theorem

which gives conditions for the existence of a reparameterisation. A theorem is

also presented which shows how a reparameterisation may be calculated. In the

second part of the chapter examples of four unidentifiable systems are given for

illustrative purposes. The examples consist of two standard PET compartmental

models (a reference region model and a nonlinear ligand binding model) and two

other examples (a linear system and a nonlinear batch reactor model). This

method of reparameterisation is applied to a metabolism model in Chapter 5.

4.2 Introduction

The determination of the structural identifiability of system parameters is an im-

portant procedure since it is a necessary prerequisite for experimental design. Over

32
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recent years a large amount of work has centred on the development of analyti-

cal methods and approaches for the determination of the identifiability of system

parameters both for linear and nonlinear models (see for example [51] [52] [53]

[54] [68] [64] [69] [70]). An important question is 'what can be done with uniden-

tifiable parameters and systems ?'. Aside from obvious model simplification or

redesign of the experiment considered, little has been conjectured theoretically

except for the ideas presented in [71] [72] [73] [74]. Milanese and Sorrentino [71]

consider a method for analysing unidentifiable linear models which involves clas-

sifying the parameters as identifiable or having some degree of freedom. This is

achieved by looking at the coefficients yielded by the transfer function. Rothen-

burg [72] considers how the rank of the system's Jacobian matrix can be utilised

in assessing the identifiability of the system parameters. Cobelli and Toffolo [73]

consider how parameter bounds can be derived for linear systems by using con-

straints implicit in a compartmental structure. Walter and Lecourtier [74] use the

exhaustive modelling approach to obtain the whole set of output indistinguishable

linear compartmental models.

In this chapter, a method is presented which offers criteria for the existence of a

locally identifiable reparameterised version of an unidentifiable system. A method

for determining the reparameterisation using identifiable parameter combinations

and a state space transformation is introduced. This reparameterised system is

essentially a reduction of the original system to its minimal locally identifiable

form (with respect to the parameterisation). The Taylor series approach [53] and

Pohjanpalo's Jacobian rank test [75] are employed which means that the approach

is applicable to both linear and nonlinear systems and also systems with specified

inputs.
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4.3 Background Theory

4.3.1 General System

Consider a system of the form

f(x,u,O,t,)

y(t) = g(x,O,t)
	

(4.1)

x(0) = Xo(9)

where x e , y E u E U (an appropriate space of input functions: usually

piecewise continuous functions on an interval U[O, TJ which have infinitely many

derivatives with respect to t) and 9 E I C P where 1L. is the feasible parameter

region and 9 is a p-dimensional parameter vector. The functions f and g are

assumed to be analytic in each component.

4.3.2 Structural Identifiability

The identifiability of system (4.1) is examined at some parameter value 9 E	 in

the experiments specified by (x0 , U[O, T]), where the initial conditions x 0 are well

defined once 0 is selected [64]. The notation 9 r' 0 denotes that the parameter

values 9, 0 e	 are indistinguishable in the experiments (x 0 , U[O, T]). System

(4.1) is defined to be globally identifiable at 0 E	 if 0 U, 0 1, implies 0 = U,

and it is defined as locally identifiable if there exists an open neighbourhood ,,

of 9 in such that 0 i-..' 0 for 9 E fZ implies 9 = 0. These definitions can be

extended generically so that (4.1) is globally (locally) structurally identifiable if

it is globally (locally) identifiable at all 0 E 1, except (at most) the points of a

subset of zero measure in c. Furthermore (4.1) is unidentifiable if the system is

neither locally or globally identifiable.
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4.3.3 Taylor Series Approach

The Taylor series approach [53] examines for the structural identifiability of a

parameterised system assuming that y and its derivatives, evaluated at some t =

are available and perfect (noiseless), i.e.

(0)	 (1)	 (2)	 (n)

	

Yi (to)	 Yi (to)	 (t0)	 Yi (ta)

,...

	

(to)	 (to)	 yS, (to)	 (to)

These are essentially measurable constants (and in particular are independent of

0). Denote these coefficients by

(0)	 (1)	 (2)	 (n)
Yi	 Yi	 Yi	 Yi

:	 ,	 :	 ,	 ,...,	 :

(°)	 (1)	 ?I(2)Y,m	 Y7.	 .Jm

Then the Taylor series approach involves comparing

(0)	 (0)	 (1)	 (1) (0)	 (2)	 (2)	 (n)	 (n)
y	 =g (0),y	 =g	 ,y	 =g (0),...,y	 =g2 (0),...

fori=1,...,m

in order to solve for 0. The number of solutions for 0 defines the identifiability

structure of the system.

4.3.4 Pohjanpalo's Rank Test

For some 00 E	 consider the infinite Jacobian matrix of derivatives of the Taylor

series coefficients of y with respect to the parameter vector 0, i.e.
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0g(° ) (00 )	 •

aoi

50

5g(k)(OO)

'90i

ög(°) (00)

'90p

'90p

ôg(k) (o0)

(4.2)

Pohjanpalo's result [75] states that the parameters 9 = (0k, °2 ..., 0) are locally

identifiable if and only if G (00) has rank p. This follows from the rank theorems

provided by Rothenburg [72].

In order to extend the result of Pohjanpalo to consider unidentifiable systems the

Implicit function theorem, and a corollary of the Rank theorem are required [76].

Theorem 1 (Implicit Function Theorem [76]). Let A c	 x m be an open

set and let F : A _ m be a function of class cr (that is F has r continuous

derivatives where r is a positive integer). Suppose (xo,yo) A and F(xo,yo) = 0.

Form the determinant of the submatrix given by

8Ym

(4.3)

...
'9y1
	

8Ym

evaluated at (x0 , y0), where F = (Fi ,.. . ,Fm ). Suppose that L	 0. Then there is

an open neighbourhood U C	 of x0 and a neighbourhood V of Yo in m and a

unique function f : U -* V such that
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F(x,f(x))	 0
	

(4.4)

for all x E U. Furthermore, f is of class cT.

A corollary of the Rank theorem is also required.

Corollary 1 [76] Let G: A C	 (where A is open in ) be a function

of class CT such that DG(0) has rank q for all 0 in a neighbourhood of 00 E A.

Then there is an open set U1 C	 an open set U2 C J' with 00 E U2 , an open

set V1 around G(0°), an open set V2 C	 and functions h U1 -p U2 and

f: V1 -^ V2 of class CT with inverses of class CT such that f o Go h(01 ,. . . , O) =

(oi,...,Oq,O,. ,O).

4.4 Existence of a Reparameterisation

Theorem 2 Given a function Y(01 ,. . . , 0, t) whose Taylor series expansion gives

rise to the coefficients gi(0),. . . ,g,(0) where gi : A C	 -* for i	 1,... ,p.

Define C = (gi,. . . ,g). Suppose that the Jacobian matrix DG(0) with respect to

0 has rank q(< p) for all 0 in a neighbourhood of 0° E A then the function Y may

be locally reparameterised in terms of a set of q of the Taylor series coefficients,

ci =gji ,.., q q gjq}	 (45)

i.e.

(4.6)

Furthermore the reparameterised system is locally identifiable.

Proof : If DC (0°) has rank q for some q < p then by Corollary 1 there exists

an open set U1 C	 an open set U2 C R' with 00 E U2 , an open set V1 around
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an open set V2 C P, and functions Ii: U1 -* U2 and f : V1 - V2 of

class C' with inverses of class Cr such that

foGoh(Oi,...,Op)(Oi,...,Oq,O,...,O).	 (4.7)

Let M :	 -* p-q be the last p - q components of f, hence,

Mi (gi ,.. . , gp )	 = 0

(4.8)

Mp_q (gi ,.. .,g,) = 0

Since f is invertible, the Jacobian matrix DM with respect to gi,.. . ,gp} must

have rank equal to p - q where

oM1 (O°)	 8M1(O°)

agp

DM=	 :
	

(4.9)

t9Mp_q(90 )	 ôMp_q(00)

'9gi	 9g

Now by the definition of the rank being the number of linearly independent rows

or columns of a matrix there exists a partitioning of C =	 . , gp} into two sets

A and B where A =	 . . ,gjp_q} c G, B = 19ip_q+i . . ,g} C C, AflB	 0}

and A U B = C such that the determinant, , is

0M1 (o°)
	

aM1(o°)

ôgj1	 '9gip_q

ôMp_q(00 ) . . • ôMp_q(00)

0.	 (4.10)
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Now by invoking the implicit function theorem it follows that we can locally solve

Mi(gi,...,g)	 = 0

(4.11)

MN_q(gl ,. . . ,gp) = 0

for

gj1	 =	 L j (gip_q1 ,. . . , g)

(4.12)

gipq = Lp_q (gip_qi ,. . . , gd,,)

where L : -p p-q Now

	

G(01,. .., O ) = (gi,.. .,gp)	 (4.13)

and from equation (4.12) this can be represented as

G(0 1 ,. . . , O,)	 =	
(4.14)

where q'i	 gip_q1 ,. . . ,	 =

Finally by application of Pohjanpalo's rank test the parameters i,. . . ,	 are

(at least) locally identifiable.

0

Remark : The reparameterisation deriving from the implicit function theorem is

only guaranteed in a neighbourhood of 00. The theory also applies to the Nth

order Taylor expansion of the function Y.
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As an extension to Theorem 2 let us consider the conditions on for a reparame-

terisation to exist, i.e what are the "new" parameters (h,. . . , q) with which the

system can be reparameterised.

Theorem 3 Given

C(01,. . . ,O) =	 . . ,q)	 (4.15)

as in Theorem 2 where q <p such that rank (DG(O°)) q and let the kernel, NG,

of(DG(O°)) be given by,

NG = I 8 E RYIDG(O°).6 = 0}. 	 (4.16)

Now given

(4.17)

Suppose that

<D(9°),N>	 0	 (4.18)

where <,> is the Euclidean inner product on 	 and that

rank(D(O°)) = q	 (4.19)

then there exists a O such that

G(91,...,O) = Ô(ci,...,qq)	 (4.20)

Furthermore if (.18) and (.19) are not met then no such O exists. (i.e. the

function ,G , can be reparameterised in terms of the parameter set (& . , q) if

and only if conditions ($.18) and (4.19) are true).

Proof: If

G(01,. . .,O) =	 (4.21)
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then

DG(0) = DO((0)).DI(0) 	 (4.22)

Given

DG(0).NG =

D(t9).NG = 0,

rank(D(0)) = q,

(4.23)

let MG be the q dimensional complement of NG such that MG fl NG 4 0} and

MG e NG = Then

DG(0).NG = DG((0)).D(0).NG	 (4.24)

which implies that

0 = DO((0)).0	 (4.25)

and this is satisfied for all O. But O must also satisfy

DG(0).MG = DO((0)).D(0).MG.	 (4.26)

Now D(0).MG is a qxq matrix with rank q and therefore has an inverse such

that

DG(0).MG(D'(0).MG)1 DO(''(0)).	 (4.27)

Hence there exists a function	 such that (4.22) is satisfied. Furthermore it is

trivial to show that if NG N (where	 = 40 E	 lD(0°).0 = 0}) then (4.22)

is false and no G exists. Choose D(0).N = 0 which implies that DG(0).N	 0

and hence
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DG(0).N = DO(4(0)).D4(0).N	 (4.28)

which implies

DG(0).N = 0	 (4.29)

and the desired result is achieved by contradiction.

4.4.1 Reparameterisation

This section briefly describes the methodology for reparameterising an unidentifi-

able system. Firstly the nullspace,NG , of the Jacobian matrix C is calculated and

it is spanned by

NG = [a1,... ,ap_q]	 (4.30)

where the vectors a, for i = 1,.. . , p - q are p dimensional. The locally identifiable

parameters for the reparameterisation may be calculated from the conditions given

in Theorem 3, i.e. the new parameters = ( q i,. . . , q) must satisfy,

< [f- ' . . . , fLF, [ai,.. . ,ap_q] > = 0.	 (4.31)

for i = 1,. . . , q. This produces a partial differential equation whose solution yields

the required functions qj. For the case p - q = 1 the partial differential equation

is given by

ôqj
fli 1 + ... +	 = 0	 (4.32)

9O

Once q solutions have been found such that rank (D) =q then by Theorem 3

there exists a reparameterisation of the system involving just these q parameters.
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The final stage involves finding a state space transformation of the original dif-

ferential equations such that the system may be reparameterised in terms of the

new parameter set . This step is nontrivial and the choice of simple functions

for gives the best chance of finding a simple state space transformation.

4.5 Method of Reparameterisation

The idea behind reparameterising the system involves finding locally identifiable

parameter groupings and then a state space transformation such that the trans-

formed equations only involve these identifiable parameter groupings. Firstly, a

simple way of obtaining identifiable parameter combinations from the nullspace of

the Jacobian matrix is described. To illustrate the situation consider the problem

geometrically for a three parameter system, see Figure (4.1). Henceforth examples

will only be considered for systems where the Jacobian matrix is rank deficient by

1,(i.e q = p - 1) although the ideas presented here apply for higher dimensions of

rank deficiency. If the system under consideration is locally identifiable (i.e. full

rank Jacobian, q = p) then a set of experimental data will map back to a distinct

point or finite number of points in parameter space. However in the case where

the Jacobian is rank deficient by 1, (q = p - 1) the experimental data will map

back to a curve in parameter space.

Let the nhllspace of the corresponding Jacobian matrix C be spanned by those

vectors	 which satisfy,

Gn=	 (4.33)

For q p - 1 the nulispace of the Jacobian matrix is spanned by a vector which is

tangent to the solution curve at all points in parameter space. Hence the nulispace

gives the local direction in which a solution for the parameters may be perturbed

such that the observation y is unaffected. If the nullspace has any zero entries the

corresponding parameter is identifiable because the nullspace is orthogonal to this
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Identifiable System: G has Full Rank	 Unidentifiable System: G is Rank Deficient by 1

03
	

93

01
	

01

Figure 4.1: Parameter space for a three parameter system

parameter axis. However for a non-zero entry this implies that it is possible to

perturb this and other parameters in a way such that the observation, y, remains

unchanged.

Consider a family of functions, (0k , 02 , 03) where qj : -p (i=1,2), such

that the image of qj is a locally identifiable combination of the parameters. Any

function 4j will have a directional derivative in the direction of the nulispace

equal to zero, see Figure (4.2), i.e. moving in parameter space in such a way

that the observation y remains unchanged, the function 1i has a constant value.

To calculate the functions qj whose directional derivative in the direction of the

nulispace vector is zero requires that,

<Dq,> =0	 (4.34)

where Dq(0) is the gradient of the function q5.

For our three dimensional example the partial differential equation which provides

solutions for q is
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Unidentifiable System: G is Rank Deficient by 1

03

1

Figure 4.2: Parameter space for a three parameter system

Dq	
= 0.	 (4.35)—ni+----n2+	 ri3

D0	 302	 303

Any new parameter defined by the image of çj which solves equation (4.35) is

locally identifiable, as the directional derivative in the direction of the nullspace is

zero and hence this parameter must be fixed for each distinct observation. There

is no unique solution for qj to equation (4.35).

To reparameterise the system it is necessary to find a set of q(= 2 in this case)

identifiable parameter combinations which span the manifold in parameter space

describing all possible system responses. Firstly, 2 locally identifiable parame-

ter groupings q and q are deduced from the partial differential equation in qj

(equation (4.35)), such that these parameters are independent (see Theorem 3).

Normally the boundary values in (4.35) are chosen to be zero and this is the case

in the following illustrative examples. The final step in the reparameterisation

involves finding a state space transformation which reconstructs the original set

of equations such that they only involve these 2 identifiable parameter group-
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ings. The new parameter groupings and the state space transformation constitute

the reparameterisation of the system. By determining the identifiable parameter

groupings first it facilitates the discovery of an appropriate state space transfor-

mation by inspection.

4.5.1 Summary of Reparameterisation Process

• Calculate the Taylor series

The Taylor series of the observation is evaluated at some t = to
from the system equations and initial conditions.

• Calculate the Jacobian matrix and its associated rank

Calculate the partial derivatives of the Taylor series coefficients
(see Discussion).

• Determine the identifiable parameter combinations

Calculate the nullspace of the Jacobian matrix G by employing
row operations. Utilise the nullspace to calculate locally identi-
fiable parameter combinations using Theorem (3).

• Determine the state space transformation

By inspection of the system equations construct a state space
transformation which converts the system into a form which is
parameterised by just q locally identifiable parameter combina-
tions which span the viable parameter space. The state space
transformation must preserve the input-output map of the sys-
tem.



4.6 Examples
	

47

4.6 Examples

To illustrate the methodology and results presented for minimally locally identifi-

able forms of parameterised systems four examples are considered. Example 1 is a

standard 2-dimensional linear system in which observation is of one compartment

only. Examples 2 and 3 are standard PET models for ligand binding. The repa-

rameterisation of example 3 puts into a more rigorous context the parametrisation

that has previously been applied empirically [77]. The 4th example does not re-

late directly to PET studies but is included as an example to demonstrate the

methods full power with a non-trivial reparameterisation of a nonlinear system.

For the purpose of the examples the parameters are assumed to be dimensionless,

the dimensions having no effect on the reparameterisation process.
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4.6.1 Example 1 : Linear System

Consider a two dimensional linear system defined by,

dxi(t)
= 01 x 1 (t) + 02 x 2 (t) + u (t)

dt

dx2(t)
= 03x 1 (t) + 04 x 2 (t)

dl

y(t)=x2(t)

x 1 (0) = 0

x 2 (0) = 0

(4.36)

The experiment considered is for a unit impulsive input, u (t) = S (t), with oh-

servation of x 2 only. Thus the system can be considered to have zero input and

non-zero initial conditions, i.e.

u(t) = 0

x 1 (o+) = 1

x 2 (o+) = 0

(4.37)

For this system it is a straightforward procedure to generate the Taylor Series co-

efficients of the observation function y of which the first three non-zero coefficients

are given by :-

(l) (o+)	 03



4.6 Examples
	 49

(2)(of) =03(01+04)

(3)(o+ ) = 03 (o + 02 03 + 004 + o)

(4.38)

By taking partial derivatives of the Taylor series coefficients of y with respect to

the parameter vector 0 (0k , 02, 93 ,04) the following Jacobian matrix is obtained,

0	 0

03	 0

03 (201 + 04) 2
3

1

0 + 04

O + 200 + 004 + 0

0

93	 (4.39)

03 (0+ 204)

By a process of row reduction the matrix can be reduced to

100	 1
G' (o°)	 0 1 0 - +	 (4.40)

001	 0

It follows that the matrix,G (00), has rank 3, since using Vajda's result [63] con-

cerning structural identifiability of linear systems, we know that there are at most

3 (2n-1) independent equations that can be obtained from the Taylor coefficients

(where n is the dimension of the state space of the system). Hence it is implicit

that no more terms need to be calculated as the matrix will only ever have rank

less than or equal to 3. Using Theorem 2 there is 1 (p - q) redundant param-

eter and there exists a reparameterisation of the system in terms of just three

parameters which is locally identifiable.

Reparameterisation of the System

For the Jacobian matrix G (00) the nullspace is spanned by the vector,
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[_i, 
01-04 

o, i]	 (4.41)

To solve for functions q whose images are identifiable combinations of the param-

eters consider,

1aq	 öq	 oq	aql I	 0j-04

L'	 '	 '	 ' L'	 03	
o, i] > = 0	 (4.42)

Hence the following partial differential equation in q is obtained,

aq	 o1 —o4 aq	 o

+ 03	
+	 = 0	 (4.43)

Possible solutions for are,

0104
ql(Ol, O2, O3, O4) = 02 -

2(01,02, 03 , 04 ) =

3 (01 , 02 , 03 , 04 ) = 0 + 04

(4.44)

where = 1, 2, 3} and rank DJ? = 3.

The original system (4.36) may now be rearranged to include just these three

parameter groupings as and hence may be reparameterised in terms of them. Let

= x(t) - -x2(t)

Substituting into the original pair of equations yields,

dxi ( t)* 	0 dx2(t)	 0i(xi(t)* + x2 (i)) + 02 x2 (t) + u (t)+-
03 dt

dx2(t) = 03 (xj (t) + x2 (t)) + 04x2(t)
dt

(4.45)
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Subtracting - times the second equation from the first and simplifying yields,

dxi(t)*	 0104

dt = (
02 - —)x2(t)+u(t)

03

dx 2 (t) -
cit - 03x1(t)* + (0 + 04)x2(t)

(4.46)

Hence a reparameterised version of system (4.36) which is a locally identifiable

system is given by,

dx1 (t)*
= q i x 2 (t) + U (t)

dt

dx2(t)
dt - q2xi(t)* + cb3x2(t)

y (t) = X2 (t)

Xi (o+)* = 1

X2 (o+ ) = 0

(4.47)

where q = 02 -	 -, q 2 03 , and	 = 0 + 04 are locally identifiable. Note that

the reparameterisation is not unique and that the parameterisation of the system

has been reduced from p(=4) to q(=3) parameters.
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4.6.2 Example 2 : Nonlinear Saturable Ligand Binding
Model

A typical example of a ligand whose kinetics are accurately described by the

model shown in Figure (4.3) is flumazenil which binds reversibly tO benzodiazepine

receptors [78]. Flumazenil is an ideal ligand because it has a high blood brain

barrier permeability and a high specific to non-specific ratio [79].

A model for the binding kinetics of flumazenil has been described by Delforge

[56] and Price [48] and derives from the pioneering work of Mintun [80]. The

model is based on Mintun's receptor binding model which contains free ligand,

nonspecifically bound ligand and specifically bound ligand. In this model, the free

and non-specifically bound ligand are assumed to be in rapid equilibrium allowing

the model's complexity to be reduced by considering the free and nonspecifically

bound pools as one. The model is described by the compartmental form given in

Figure (4.3), and the following nonlinear system equations can be derived:-

P1asma,

IK
CAEJ

flk2

Tissue
I-------------------------------1

Li	 ik3JflCf[Cb

(B A)
max SA

Figure 4.3: Ligand binding compartmental model
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dCf(t) - K1Ca(t) (k
	

konBmax \	 kQCf(t)Cb(t)
dt -	 - 

2 + --- ) 
C1 (t) + k0ffCb (t) +	

V.SA

dCb (1)	 konBmaxCf (i) -	 - konCf(t)Cb(t)
dt -	 Vr	

/coffCb(t)	
VrSA

y(t) = Cf (t) + Cb(t)

(4.48)

where

K	 is flow x extraction

k2	 is the efflux rate constant

Bma is the maximum concentration of available binding sites

is the volume of reaction

k0	 is the apparent 2nd order association rate constant

k0ff	 is the dissociation rate constant

SA	 is the specific activity of the compound

A nonlinear term is an intrinsic part of the model because the rate at which the

free ligand binds to the receptors depends on the concentration of available binding

sites. The rate at which the free ligand binds is defined by Ic3 
= kpBp where the

concentration of available binding sites,B a , is determined by the nonlinear term

Ba	 Bn,a - . j-. It should be noted that the constant V. is composed of two

factors; i) the volume within which the free ligand exists, and ii) the fraction of

ligand which is free to bind.

The rate constants k0 and k0ff in the model derive from theory first applied to

pharmacological systems by Clark [81] (cited in [82]) in which he laid down the
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foundations for receptor occupancy. The equations are defined as,

[L]+[R]	 [LR]	 (4.49)
koff

where
[L}	 is the concentration of free ligand
[R]	 is the concentration of receptors
[LR] is the concentration of bound ligand
k0	 is the 2nd order association rate constant
k0ff is the dissociation rate constant

By introducing a dose of high specific activity to the system the model can be

approximated by a linear system where k3 = konBrnar . This results from the fact

that the large value of specific activity renders the nonlinear term in the equation

negligible. However when a low specific activity dose of the compound is admin-

istered the system is nonlinear. The nonlinearity derives from the large amount

of cold compound available to bind to the receptors. The more available cold

compound reduces the number of available binding sites. Delforge has shown that

only five parameters are identifiable from this model because lc0 and Vr always

occur together in the system equations [83]. The reparameterisation process is

applied to this model showing how a simple reparameterisation is obtained.

The specific activity of the compound is known prior to administration and this

measured constant is removed from the following calculations without loss of gen-

erality by assuming that SA=1. The experiment is considered for a unit impulsive

input, Ca(t) = 8(t), with observation of the sum of C1 + Cb . Hence the system

can be considered as having zero input and non-zero initial conditions, i.e.

C1 (0) = K1

Cb(0) = 0

(4.50)
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It is then possible to calculate the Taylor Series coefficients of the observation

function y(t). The first five Taylor series coefficients are :-

y(0) (o+) = K1

y(1 )(o+) =—(K1k2)

(2) (o+)	
K1k

(k2 V7. + kBma)
Vr

(3) (o+)	
I( k2

= - TT 
2 (k22V7.2 + Ki kon 2 Bmax + 2k2 k0 VrBma + kon2Bmax2

r

+k0 VrBmaxkoø)

(4) (o+)	
I(1k2

- V3 
(k23Vr3+Ki2kon3Bmax +4Ki k2 kon 2 VrBmav +3k22konVr2Bmaa+

I.

41(1 k 3B 2 +3k2 1CO 2 VB 2 k 3B 3 +21(J kon 2 Vr Bma ICoffr moz U on mazon maz

+2kkon. V7. 2 Bmakoff + 2kon 2 Vr Bmaa?koff + k0 Vr 2 Bmaz koff 2 )	 (4.51)

The Jacobian matrix is obtained by taking partial derivatives of the Taylor series

coefficients with respect to the parameter vector 0 (Ki , k2 , k0 , V., Bmax, k0ff).

The Jacobian matrix, 0(00), is given in Appendix A.1. By a process of row

reduction, within MATHEMATICA, the Jacobian matrix can be reduced to,

100
010
0 0 1
000
000

0	 00
0	 00

—00
o	 10
0	 01

(4.52)
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Therefore the rank of the Jacobian matrix, C (0°), is at least 5. Using Theorem

2 there is 1 (p - q) redundant parameter and there exists a reparameterisation of

the system in terms of just five parameters which is locally identifiable.

Reparameterisation of the System

To consider what reparameterisation of the system will render the model identifi-

able it is necessary to calculate the nulispace of the Jacobian matrix, G (0°), given

by 4.52. The nulispace of G (0°) is spanned by the vector,

n= [oO1,o,O]	 (4.53)

Applying Theorem 3 the locally identifiable parameter groupings are determined

from,

1 dq	 dçb dçb dçb	 dq	 dq5l

L''''dBmax'dkoijj	
> = 0	 (4.54)

This yields a partial differential equation in qf(0) such that all solutions 4(0)

satisfying this equation are locally identifiable. The partial differential equation

in this case is given by,

L dc/	
-	 (4.55)

VrdkomdVr

Solutions to (4.55) are found by inspection. The following simple locally identifi-

able parameter combinations are obtained,

1 (K1 , k2 , k0 , Vr, Bmav, k011 ) = i(i

cj 2 (Ki ,k2 ,kon ,Vr ,Bmac,koff ) = k2

3(Ki,k2,kon,Vr,Bmax,koff)

q 4 (Kj ,1c2 ,k0 ,Vr,Bmax,koff) Bmaz
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c/5(Kl,k2,kon,Vr,Bma,koff) = koff

(4.56)

where =	 2, 3, 4, q} and rank D1' = 5.

This leads us to a simple reparameterisation of the model in which the parameter

combination k0/V is introduced as a new parameter. This illustrates the method

of reparameterising an unidentifiable system even though the reparameterisation

for this example is simple and could have been deduced fairly easily from close

inspection of the original equations. Hence the locally reparameterised version of

system (4.48) which is locally identifiable is given by,

dCf (t)

	

	 ____
= K1 Ca(t) - (k2 + k:nBmax) Cf (t) + koff Cb (t) +

dt

dCb - k* B Cf(t) - k0ffCb(t) --	 ma

y(t) = Cf (t) + Cb(t)

(4.57)

where k

Note that the reparameterisation is not unique and that the parameterisation

of the system has been reduced from p (= 6) to q (= 5) parameters. Sometimes

a vascular component is included in the model to take into account a blood vol-

ume component in the region of interest [84]. The inclusion of this vascular term

in the observation function y(t) yields the same result as before with the blood

volume term being identifiable and hence no further reparameterisation is neces-
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sary. Often this component is fixed using a priori knowledge arid hence reduces

the number of kinetic parameters to be estimated. Further analysis of this model

with respect to numerical identifiability and different protocols is described by

Delforge [84].

The parameters of interest generally are Bmaz, and Kd the maximum concentra-

tion of binding sites and the equilibrium dissociation constant (or half saturation

concentration, Kd = ----), respectively. B,-,.ax is locally identifiable from a single

experiment, given that the specific activity is suitably small and the experiment

can be considered nonlinear. Hence to identify the parameter Kd it is necessary

to either know Vr a priori or to perform an in vitro experiment to ascertain its

value [481 [85] [83].
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4.6.3 Example 3: Reference Region Model

Tissue

iIiil

CfLCb

CA

Figure 4.4: Reference region compartmental model

A reference region model described by Blomqvist [86] and Cunningham [77] pro-

vides a method of avoiding arterial blood sampling. The method relies on the

fact that there exists an area in which little or no specific binding is present. A

region of interest is defined on this reference region such that the kinetics of the

free ligand can be obtained. The model is illustrated by the compartmental model

given in Figure (4.4).

The compartmental model is described by the following set of ordinary linear dif-

ferential equations,

dCref (t)

dt	
= K5 Ca (t) - k6Crej(t)

dCf(t)
= K1 Ca (t) - (k2 + k3) Cf (t) + k4Cb(t)

dt
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dCb(t)
dt = 

k3 C1 (t) - k4Cb(t)

y(t) = Cf (t) + Cb(t)

(4.58)

where

Crei (t) is the concentration of label in the reference region
Cf (t)	 is the concentration of label in the combined free and nonspecifically

bound pools
Cb(t)	 is the concentration of label in the specifically bound pooi
Ca(t)	 is the concentration of parent ligand label in plasma
K1	 is flow x extraction

is the efflux rate constant
is the product of the association rate constant and the maximum
specific binding capacity (tracer conditions only)

Ic4 	 is the dissociation rate constant
is flow x extraction in the reference region

k6	is the efflux rate constant for the reference region

Transformation of the system equations (4.58) allows us to remove the presence

of the term Ca (t). Rearrangement of the first equation gives,

dCref(t) + k6Cref(t)
Ca(t)

K5	
(4.59)

Substituting this equation into the second of (4.58) eliminates Ca(t) yielding,

dCf (t)	 ii9ref (t) K1k6 Cref (t) - (k2 + Ic3 ) Cf (t) + k4Cb(t)
dt	 K5 dt

dC&(t)	 ksCf (t) - k4Cb(t)
dt

Cf(t) + Cb(t)

(4.60)
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Cref (t) may now be treated as the input for this system. The system is examined

for a constant input,

0 t<O
Cre1(t)1 1 t>O

dCref (t) -

dt	
- 6(t).

(4.61)

This system can be considered as having zero input and non-zero initial conditions,

i.e.

dCf(t) - K1k6
_______ _____ - (k2 + k3 ) Cf (t) + lc4Cb(t)

dt - K5

dCb (t) -
k3 Cf (t) - k4Cb(t)

dt -

y(t) = Cf (t) + Cb(t)

K1
Cf (0) =

Cb(0) = 0

(4.62)

The Taylor series of the observation function y(t) expanded about t = 0 can now

be calculated. The first five Taylor series coefficients are :-

(°) (o	 =" I K5
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(l) (o+) 
= K1 (k6 - k2)

K5

(2) (o+) 
= K1 k2 (k2 + k3 - k6)

K5

(3)
 (o+) 	

K1k2 ( k22 + 2k2 k3 + k3 2 + k3 k4 - k2 k6 - 1c31c6)

-	 K5

(4) (o+) 
K1 k2 (14 + 314k3 + 3k2 14 + 14 + 2k2 k3 k4 + 214k4 + k3 k - 14k6

K5

—2k2 k3 k6 - 14k6 - k3k4k6)

K5

(4.63)

The Jacobian matrix G (00), consisting of the partial derivatives of the Taylor

series coefficients with respect to the parameter vector 0 (K1 , k2 , k3 , k4 , 1(5 , k6),

can then be obtained. This process was performed using MATHEMATICA and

the coefficients are given in Appendix A.2. A process of row reduction of the

Jacobian matrix yields,

10
01

G(00) = 0 0
00
00

0 0 -f 0
00	 0	 0
10	 0	 0
01	 0	 0
00	 0	 1

(4.64)

It follows that the matrix,G (0°), has rank 5, since using Vajda's result [63] con-

cerning structural identifiability of linear systems, we know that there are at most

5 (2n-1) independent equations that can be obtained from the Taylor coefficients

(where n=3 is the dimension of the state space of the system). Using Theorem 2

there is 1 (p - q) redundant parameter and there exists a reparameterisation of

the system in terms of just five parameters which is locally identifiable.
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Reparameterisation of the System

Calculation of the nulispace of G (00) yields,

1= [--,O,O,O,1,O]	 (4.65)
115

By application of Theorem 3 the locally identifiable parameter groupings can be

derived by solving for in,

I dçb dq dçb dq dq dq1 {K1
Lk ,0,0,0,1,0] > = 0	 (4.66)

K1 dçb	
-o	 467K5 dK1 + dK5_	(. )

Solution of the differential equation yields the following simple locally identifiable

parameter combinations,

- K1
q i (K1 , k2 , k3 , k4 , K5 , k6)

q 2 (Ki ,k2 ,k3 ,k4 ,K5 ,k6 ) = k2

3 (K1 , k2 , k3 , k4 , K, k6 ) =

4 (K1 , k2 , k3 , k4 , K5 , k6) = k4

qs(K1 ,k2 ,k3 ,k4 ,K5 ,k6) = k6

(4.68)

where = 1, 2, 3, Q4, qs} and rank D = 5.

This leads us to a simple reparameterisation of the model in which the parameter

combination Rinflux = '- is readily introduced as a new parameter. Hence the

reparameterised system is defined by,
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dCf(t) - RflflXt)
di -	 dt	

+ Rinfluxk6Cref(t) (k 2 + k3 ) C1 (i) + k4C&(t)

dCb(i)

di = k
3 Cf (t) - k4Cb(t)

y(t)	 Cf (t) + Cb(i)

(4.69)

Note that the reparameterisation is not unique and that the parameterisation of

the system has been reduced from p (= 6) to q (= 5) parameters.
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4.6.4 Example 4: Batch Reactor Model

A model of microbial growth in a batch reactor was introduced by Holmberg [87]

and further analysed by Chappell and Godfrey [501. The batch reactor model is

defined by the equations,

dx i (t)	 01x1(t)x2(i)
______ ___________ - 03 x 1 (i) + 04u 1 (I)

di - 02+x2(t)

dx 2 (t)	 - 01x1(t)x2(t)
+06u2(i)

dt	 05(02+x2(t))

y(t)=xi(t)

x 1 (0) = 0

x 2 (0) = 0

(4.70)

where

x1 is the concentration of micro-organisms
x2 is the concentration of growth limiting substrate

is the maximum velocity of the reaction
02 is the Michaelis-Menten constant
05 is the yield coefficient
03 is the decay rate coefficient
04 is the initial concentration of micro-organisms
06 is the initial concentration of substrate.

The experiment considered is for impulsive inputs to both compartments, u1 (I) =

S (I) and u2 (i) = S (I), with observation of x 1 . Thus the system can be considered

to have zero input to both compartments and non-zero initial conditions, i.e.

ui (i) = 0
u2 (i) = 0

xi (0) = 04

x 2 (0) = 06
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The first five Taylor coefficients of the observation are obtained (within MATHE-
MATICA).

(o) (of) = 04

(l) (of ) = - (03 04 ) + 
010406

02 + 96
01 2 04 2 06 2 	 01204206	 91204962	 201030406

y(2) (of) = 93294 
+ 05(02 + 06) - 05(02 + 96)2 + (

02 + 06 )2 - 92 +96

y(3) (o) = - (03394) - 
01 302 04306 2 	 2010406	 01302042063
92(9 + 06) + 052(02 + 06) 

+ 
95(02 + 06) 

+

3 3a201 304 2 964	 01020406	 20 04 V6	 01302042062

05(02 + 06) 
+ 92(9 + 06) - 02(9 + 96) - 05(02 + 06) -

01 2 029304 2 06 2 	201 3 04 2 063	 01203042063	 012020394206

05(02 + 96) 
+ 

05(02 + 96) - 05(02 + 96) 
+ 

05(02 + 96) -

301 3 94 2 06 2 	201203942062	 010406	 30120304206

05(02 + 06) - 05(02 + 06) + (02 + 06) + 05(02 + 06) -

301 2 030406 2 	3910320406

(02+06)2 + 
02+06

15010406	 491030406	 _1101293294206 + 60120320405062
y(4) (of) = 03 04 + 

05(02 + 06) - 02 +06 +
	

95(02 + 06)2	 +

—701 03 04 06 + 2201 3 03 04 2 05 06 2 + 1101 2 03 2 04 2 05 06 2 - 40139304052063
02(0 + 06)

—250 1 04 06 + 2501040506 +
+

O5(02 + 06)
2 2n 41101 4 04 4 06 2 - 369 4 33 - 2191 93 04 05 06 + 11004 5 6

+
05(02 + 96)

- (o1 04 O6) + 1191 4 04 3 05 06 2 + 280139394305962

_1101 4 04 2 05 2 06 3 _22030029203 + 9149596

95(02 + 06)

Now for some 00 E	 consider the Jacobian matrix of derivatives of the Taylor

series coefficients of y with respect to the parameter vector 0 =(0, 02, 03 , 04 , 05 , 06).

The coefficients of the Jacobian matrix are obtained using MATHEMATICA as
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the expressions involved are very large, the coefficients are listed in Appendix A.3.

Using MATHEMATICA it can be shown by a process of row reduction that the

matrix reduces to,

	

10000	 0
o i 0 0 0 -

	

G' (00) = 0 0 1 0 0	 06	 (4.71)

	

00010	 0

	

00001	 -
66

Hence Rank C (0°) = 5.

In [50] Chappell and Godfrey have shown that this model is unidentifiable and

hence the rank of the infinite Jacobian matrix must be less than 6. Using this

result and the previous calculations the infinite Jacobian must have rank 5 almost

always which implies that q = 5. Using Theorem 2 there is 1 (p - q) redundant

parameters and there exists a reparameterisation of the system in terms of just 5

parameters which is locally identifiable.

Reparameterisation of the System

For the Jacobian matrix G (00) the nullspace is spanned by the vector,

= [o	 , 0, 0, -, 1]	 (4.72)

To solve for functions q1 whose images are identifiable combinations of the param-

eters consider,

[0,	 : 0
	

05	 1

<[-,	 -,	 -,	 -,	 -,	 -j ,	-	 , 0, --, lj>=o (4.73)

Hence the following partial differential equation in q is obtained,

o6aO2o6a+a960	 (4.74)



2z
96

03
0405

0506

(4.75)
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Some possible solutions for are,

q i( Oi, 02 , 03 , 04 , 05 , 06)
2(01, 02, 03 , 04 , 05 , 06)

53( O1, 02, 03 , 04 , 05 , 06)
(0k , 02, 03 04 , 05 , 06)

5 (01 , 02, 03 , 04 , 05 , 06)

where = 1, 2, 3, 4, q s} and rank D't = 5.

The original system (4.70) may now be rearranged to include just these five pa-

rameter groupings and hence may be reparameterised in terms of them. Let

=

Substituting into the original pair of equations yields,

dx i (t) - O106x1(t)x2(t)* - 
03 x 1 (t) + 046 (t)

dt - 02+06x2(t)*

dx 2 (t)* -	 0106x1(t)x2(t)* + 
066(t)06 dt

	 - 05(02 + 06x2(t)*)

(4.76)

or after rearrangement,

dx i (t) = Oixi(t)x2(t)* - 0
3x 1 (t) + 04 6 (t)

dt
06

dx 2 (t)* - - Oixi(t)x2(t)*

dt	 - 02 05 + 0506x2(t)*

(4.77)

This system then simplifies to,

dxi (t) = 0iai(t)x2(t)* - 0
3x 1 (t) + 04 8 (t)

dt	 Z+x2(t)*
06

dx 2 (t)* - _______________
dt	 0s06(+x2(t)*) +6(t)

(4.78)
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giving the following locally identifiable system,

dxi(t) - ___________ -
4)3 x 1 (t) + 4)46 (t)

dt - 4)2 +X2(t)*

dx2 (t)*	 4)ixi(t)x2(t)* 
+6(t)

dt -

y(t)=xi(t)

xi (0) - 0

X2 
(0)* = 0

(4.79)

where 4) = O, 4)2	 P-, 4) = 03 , 4)4	 and q = 0506 are locally identifiable.

Note that the reparameterisation is not unique and that the parameterisation of

the system has been reduced from p (= 6) to q (= 5) parameters.

4.7 Discussion

A method has been provided for reparameterising unidentifiable systems. The-

orem 2 presented here states that the rank of the appropriate Jacobian matrix

determines the number of locally identifiable parameters. Theorem 3 gives the

necessary and sufficient conditions for a set of parameters to provide a reparam-

eterisation. A simple method for determining identifiable parameter groupings

based on the nullspace of the Jacobian matrix has been presented. A reparam-

eterisation of the system is obtained by performing a state space transformation

which converts the system into a form in which only identifiable parameter group-

ings occur. It is then a relatively straightforward procedure to reparameterise the

system. As the method is based on the Taylor series approach it is applicable to

linear and nonlinear systems and also to systems with specified inputs. In order



4.7 Discussion	 70

to calculate the minimal form of the system it is necessary to know the rank of

the infinite Jacobian matrix. To determine if the rank of the infinite Jacobian

matrix is rank deficient by (at least) 1 this is accomplished in two parallel steps:

1) the system is shown to be unidentifiable (e.g. by employing, say, the Similarity

transform approach). Hence the Jacobian matrix must be rank deficient by at

least 1 (by Pohjanpalo's rank test). 2) a subset of the infinite Jacobian matrix

is shown to be rank deficient by 1 . Hence the infinite Jacobian matrix is rank

deficient by 1. In cases where the rank of the Jacobian is further deficient it may

only be possible to get a lower bound on the rank of this matrix. The difficulty

arises from the fact that there is no theoretical bound on the number of Taylor

series coefficients which need to be considered in order that the Jacobian matrix

has maximal rank. Other constraints, such as Vajda's result [63], for linear sys-

tems, may also prove useful in determining the rank of the Jacobian matrix. To

reparameterise the system, identifiable parameter combinations are established

via examination of the nulispace of the Jacobian. Then a state space transfor-

mation is searched for such that the resulting system's parameters only occur in

identifiable groupings. It should be stressed that the reparameterisation obtained

is not unique. Although a state space transformation is usually required this is

not always the case, as in Example 2. By performing the reparameterisation a

more valjd model is. obtained for the experiment considered. The reparameterised

model is locally identifiable, by the theory given, and in addition may be globally

identifiable.



Chapter 5

Modelling of Labelled Tracer
Metabolites in Plasma

5.0.1 Overview

This chapter investigates the metabolism of two ligands used in PET brain scan-

ning to measure receptor binding; [ 11 C]diprenorphine and [' 1 C]flumazenil are

markers for the opiate receptor and benzodiazepine site, respectively. Changes

in density or affinity of these receptor systems may be important for the study of

addiction, neurological and psychiatric disorders [88] [89] [90]. Both these com-

pounds produce radiolabelled metabolites, which being polar contribute to the

total blood but not the cerebral radioactivity as they do not cross the blood

brain barrier. Two different approaches for the correction of signal from tracer

metabolism are considered. The first involves defining an arbitrary functional

form that describes the fraction of labelled metabolite in plasma and the second

approach employs a compartmental description of the underlying metabolism.

5.0.2 Introduction

Quantification of parent drug in a tissue of interest requires correction for metabo-

lites. The majority of PET tracers produce labelled metabolites in the body,

thus accurate methods for metabolite correction are required. Two situations are

71
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observed:-

1. Only the blood data contain a signal due to labelled metabolites, as in

Figure (5.1). Typical examples of this situation are [ 11 C}flumazenil and

[' 1 C]diprenorphine brain studies, in which the metabolites are too polar to

cross the blood brain barrier at a significant rate and the tissue signal is

dominated by the parent drug.

2. Both the tissue data and blood data contain labelled metabolites, a typical

example being [' 1 C]thymidine uptake in tumours. This case is considered

in Chapter 9. (Figure 5.1).

Plasma
	

Tissue of Interest

Brain Scan

e.g. Flumazenil,

Diprenorphine

P M

M'

P M

P P
PP

P

Body Scan
	

M
	

MM

e.g. Thymidine	 Mp
	 pP

5-Fluorouracil	 M
	

M

P = Parent
	

M = Metabolite

Figure 5.1: Metabolite distribution

It is known that both [' 1 C]diprenorphine and [11 Cjflumazenil fall into the first cate-

gory. Sadée et al [91] have shown that 1 hour after the injection of ["C]diprenorphine

at least 90 % of the label in brain is attributable to the parent compound. Simi-

larly the metabolites of [11 C]flumazenil make a negligible contribution to the total

label signal in the brain [92] [93].
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5.0.3 {11C]Diprenorphine

['1C] Diprenorphine is a PET ligand that binds to 1u-, 8-, and i-opiate receptor sub-

types with similar affinities for each [94]. One way to quantify the parameters spe-

cific to the binding of [11 C]diprenorphine in brain requires a metabolite-corrected

plasma [11 C]diprenorphine input function. However two radiolabelled metabolites

that can be detected in plasma using solid phase extraction followed by HPLC

[24] are produced by the liver. Previous methods of correcting [11C]diprenorphine

plasma time courses have involved fitting an arbitrary functional form to the

metabolite data, and then to interpolate and extrapolate the fitted metabolite

fraction to correct the plasma input function for metabolites over the whole time

course of the scan [95].

5.0.4 {11C]Flumazenil

Quantitative analysis of the volume of distribution of the central benzodiazepine

receptor in vivo also requires the determination of the unmetabolised radioligand

in plasma[86]. Liver metabolism [96] [97] of [N-methyl- 11C]flumazenil however

leads to the formation of the free acid, Ro 15-3890, and the alcohol, Ro 15-4965

[98] [99]. Indeed HPLC analysis of plasma samples indicates the presence of three

metabolic products, two of which are expected to be the alcohol and the free acid.

All the peaks are more hydrophyllic than the parent compound. Previous methods

for correcting [11 C]fiumazenil plasma time courses for the presence of metabolites

have involved the fitting of an exponential functional form [83] [48] [100].

5.0.5 Plasma Metabolite-Corrected Input Functions

The main processes involved in calculating a plasma metabolite corrected input

function are shown in Figure (5.2). This modelling scheme also indicates that the

blood data are combined with the tissue data to calculate tissue specific functional
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parameters. The modelling of the blood data can be split into two parts;

• Obtain a continuous time course for the concentration of total label in

plasma.

• Obtain a continuous time course for the parent compound in plasma.

The temporally sparse metabolite data are a major problem in the creation of an

accurate metabolite-corrected plasma input function. This is one of the weakest

links in the overall modelling of PET data, see Figure (5.2) since the fraction

of labelled metabolites in a plasma sample is normally measured oniy at 5 or 6

time points for a ligand scan usually lasting 60-120 minutes. Metabolite data are

limited by the length of time required for HPLC analysis since the concentrations

are very small and an accurate sensitive measure is thus required. To overcome

the sparsity of the metabolite data, some form of model is required to interpolate

and extrapolate the data and provide a continuous measure of the fraction of

metabolites in plasma.

5.1 Methods

An on-line measuring system which allows for the collection of discrete blood

samples was used to record the concentration of label in blood [22]. Measurements

of the counts in whole blood were taken over one second intervals. This temporal

resolution is especially important at the start of the scan to enable the delineation

of the rapidly changing arterial blood curve. Separate analysis of the discrete

blood samples was also carried out to calibrate the radioactive counts (n=5), to

measure the relative amounts of parent and metabolite (n=5) compounds in the

plasma and the distribution of counts between plasma and red cells (n=5). The

technique of HPLC was utilised to give chemical resolution of these discrete plasma
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Whole
Blood

1-Hct [ Plasma

[ Red
Hct	 Cells

L-

Figure 5.3: Whole blood constituents

samples (for details see Luthra et al. [24]). Hence, the measurements obtained

were:

. A second by second measurement of the total arterial blood radioactivity

collected on-line from the subject under investigation calibrated separately

in a well counter. ( 4aCi/ml Blood)

• A measurement of the distribution of counts between plasma (obtained by

centrifugation) and whole blood taken at various time points during scan-

ning.

• A measurement of the metabolite fraction in plasma, obtained by HPLC

analysis of discrete blood samples taken at various time points during scan-

ning.

In addition the haematocrit, Hct , was measured in some cases, (the fraction of

the blood which is made up from red cells, see Figure (5.3)). The haematocrit as

measured will be a slight over-estimation due to entrapped plasma. The presence

of white cells is ignored since their volumetric component is less than 1 percent.
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These assays allow the conversion of whole blood activity to plasma activity using

the following equation,

Plasma (t) = pbr(i)WB(t)
	

(5.1)

where,
Plasma(t) : concentration of tracer in plasma
WB(t)	 concentration of tracer in whole blood
pbr(t)	 : Ratio of counts in 1 ml of plasma to counts in 1 ml of whole blood

To create a continuous function for the ratio of counts in plasma to whole blood a

function was fitted to the discrete data obtaining a least sum of squares solution.

Normally the plasma to blood ratio, pbr(t), can be represented by a straight line

or an exponential function [95] [101] (cited in [44]). Examples for the ligands

diprenorphine and flumazenil can be seen in Figures (5.5) and (5.6), respectively.

5.1.1 Preliminary Processing of Blood Data

The whole blood arterial time course was corrected for flushing periods, which

occur when the arterial line is flushed with saline, and background radioactivity.

These processes are independent of the ligand used.

Removal of Flushing Periods

Every 15-20 minutes the continuous counting of blood data is stopped while the

tubing which connects the radial artery to the BGO detection system is flushed

with heparinised (an anticoagulent) saline to prevent clotting in the system. This

results in the loss of data for approximately 15-30 seconds. The data for these pe-

riods is extrapolated by manually selecting the beginning and end of each flushing

period on the continuous blood radioactivity counts plot. A straight line was then

fitted through a small portion of the data prior to and post flushing (normally

about 15 seconds each side) by means of linear regression (see Figure 5.4).
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Figure 5.4: Section of whole blood curve

Background Correction

Background may be removed from the blood curve by subtracting the mean of the

pre-injection value of the blood curve. The background correction must be done

before any decay correction, otherwise the resulting blood curve is incorrect. This

method of background subtraction provides a reasonable correction and effective

lead shielding of the blood counter reduces this problem. However, the true back-

ground is a function of time and will depend on the activity distribution in the

subject. If this correction is inaccurate the tail of the curve for long scans (-.2hrs)

will start rising when decay correction has been applied, although this was not

observed for the studies corrected in this way.

Calibration

The on-line blood detection system was cross-calibrated using discrete blood sam-

ples taken from the arterial line and counted in a sodium iodide well counter, which

is regularly calibrated with germanium sources of known activity

Interpolation and Extrapolation of the Plasma to Blood Ratio

Plasma to blood ratios from for all the [' 1 C]diprenorphine scans are illustrated in

Figure (5.5). A linear fit (equation (5.2)) was found to produce a better fit to the
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Diprenorphine Plasma to Blood Ratio

1000	 2000	 3000	 4000	 5000	 6000
time (secs)

Figure 5.5: Plasma to blood ratio for the cohort of [11 C]diprenorphine scans

data than an exponential approach to a constant.

pbr(t)	 a + /3t
	

(5.2)

The mean and standard deviation for the parameters in (5.2), calculated over all

available studies, was a = 0.990 ± 0.112, and /3 = 1.27€ - 05 + 1.79€ - 05.

Plasma to blood ratios from the set of [11 C]flumazenil scans are shown in Figure

(5.6). The plasma to blood ratio was fitted with an exponential function pbr(t),

pbr(i) = a (i - €_/3t) + 1	 (5.3)

The exponential function produced a better fit to the data than the linear fit.

The mean and standard deviation for the parameters in (5.3), calculated over all

available studies, was a = 0.434 + 0.0778, and /3 = 0.00290 ± 0.000780.
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Figure 5.6: Plasma to blood ratio for the cohort of {' 1 C]flumazenil scans

5.2 Results

5.2.1 ["C]Diprenorphine

A cohort of 72 [ 11 C]diprenorphine data sets was used to examine the accuracy of

the different methods of metabolite correction. The mean metabolite fraction for

the cohort (E 1 s.d.) is shown in Figure (5.7).
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Figu 5.7: Metabolite data for the cohort of [' 1 C]diprenorphine scans
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Functional Forms

Observation of the metabolite measurements shows that a saturating function is

required to describe the metabolite fraction as a function of time. A number of

saturating functions were applied to investigate which describes most accurately

the measured metabolite fraction (see Table (5.1)). Characteristics of each of

these functions can be visualised in Figure (5.8).

Model 1 Exponential	 a (i -
Model 2 Rectangular Hyperbola
Model 3 Sigmoid

Table 5.1: Functional forms for the metabolite fraction

Figure 5.8: Functional forms for the metabolite fraction

The exponential model has been used previously to correct for the presence of

labelled metabolites in plasma [95] [102] [83] [48] [100].

The functions were fitted to the available metabolite data (equal weighting was

employed) by a simplex optimiser that attained the least sum of squares solution

[103]. The results are given in Tables (5.3-5.6).

To determine which of the models provides the best segmentation of the plasma

input function, the residual sum of squares was considered. This is sufficient

because all models have the same number of degrees of freedom. It was decided
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Figure 5.9: Number of studies producing best fit for [11C]diprenorphine

that the best model would be the one which produced the smallest sum of squares

most consistently. Figure (5.9) shows for each function the number of studies for

which it produced the best fit. The exponential form for the metabolite fraction

produced the best results followed closely by the hyperbolic function, with the

sigmoid function giving the least satisfactory results.

Since a simple exponential function best described the metabolite data, this sug-

gested that a simple compartmental structure could be used to describe the

metabolism process.

Compartmental Metabolism Model

The simplest compartmental model for describing the metabolism of a compound

is illustrated in Figure (5.10). This is a simplification of the body's complex

metabolic system but it describes the important factors; the metabolite is cre-

ated at a rate proportional to the concentration of the parent in plasma and the

metabolite is eliminated from the plasma at a rate proportional to the concentra-
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Input
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Figure 5.10: [fl CJ Diprenorphine metabolism model

tion of metabolite in plasma. The model illustrated in Figure (5.10) is described

by the following differential equation,

dt	
k1P(t) - (k2 + A) M(t)	 (5.4)

The system variables are defined by,

T(t) - Total plasma concentration
P(t) - Parent plasma concentration
M(i) - Metabolite plasma concentration

Mf(t) - Metabolite fraction in plasma

The parameter A represents the decay of the radioisotope and is a known pa-

rameter. The model as postulated does not restrict the metabolism to occur in

the plasma; the metabolism will also occur in the body's metabolising tissues

(principally liver). The effective transfer rate between the tissue compartment

and plasma is assumed to be fast and this allows a tissue compartment to be

neglected.

Equation (5.4) is solved to give the metabolite concentration as a function of the

parent concentration,

M(t)	 kie('c2')i ® P(t)	 (5.5)
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where ® represents the convolution operator. The following are deduced from the

variable definitions.

T(t) = P(t) + M(t),	 (5.6)

Mf(t) = T(t)	
(5.7)

Equation (5.5) can be transformed to give the metabolite fraction Mf(t) in terms

of the total plasma concentration T(t). Eliminating P(t) from equation (5.5)

gives,

M(t) = k16(k2+A)t ® (T(t) - fiv[(t))
	

(5.8)

Taking Laplace transforms yields

k1 _________	
(5.9)

which, after rearrangement, gives

k1 	\	 k1

or

lcr= (
_s+k2+	 \ Ik1

\s+ki+k2+A)
Hence

\s + k1 + k2 + ))
and taking inverse Laplace transforms gives,

(5.10)

(5.11)

(5.12)

.11/1(t) = k	 i+k2+))t ® T(t),	 (5.13)
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Figure 5.11: Fit and metabolite contribution for p02447 (['1C]diprenorphine)

Thus the metabolite fraction Mf(t) is given by

- kie_(d1+k2 )t ® T(t)
Mf(t) -
	 T(t)

(5.14)

Examination of equation (5.12) reveals that both k1 and k2 are uniquely (globally)

identifiable (via the Laplace transform approach). The fitting procedure involves

obtaining 2 parameter values from 5 observations. Figure (5.11) illustrates a

typical fit to the metabolite fraction, the second and third graph showing the total

plasma activity and the metabolite contribution. The plasma metabolite-corrected

input function is simply obtained by subtracting the metabolite component from

the total plasma activity. This technique of manipulating the equations allows the

metabolite component to be described as a function of the known total plasma

activity. This approach has been used by Huang et al. [104] to describe the

conversion of the injected tracer to its metabolites for [18F]fluoro-L-dopa and 1502.

Tables (5.3-5.6) list the parameter values and residual sums of squares for the

different models. The fitting of the compartmental model is robust and little cor-

relation between the two parameters is observed (correlation coefficient : mean

0.8770 ± 0.0539sd) (ranging from .625 to .965). Thus this demonstrates that the

model parameters are numerically identifiable. The distribution of the parameter
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Figure 5.12: Histograms of parameter values for all studies
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Figure 5.13: Plot of parameter values against scan number

values k1 and k2 obtained for all the studies is displayed in Figure (5.12). Both

parameters appear to be approximately normally distributed apart from a group

of outliers. After further investigation of various factors (patient age, weight, con-

dition, clinician, study no.) the outliers were found to correspond to a particular

period in time. This was indicated by the study number which lists the scans in

chronological order 	 no. 2000).

The parameter values are plotted against study number in Figure (5.13). It is

likely that an error had occurred in one of the measuring systems. One possible

explanation is that a faulty column was installed on the HPLC system. Once the

scans around this period have been removed the parameter distributions appear
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Figure 5.14: Histograms of parameter values for reduced set of studies

to be approximated by a normal distribution, see Figure (5.14).

5.2.2 Discussion

An important feature of these models is the ability to extrapolate the data well

after the final data point, especially for the case where no late metabolite data

exists. This fact is implicit in the functional forms which are all saturating func-

tions, and effect an asymptote which is determined reasonably accurately from

just the early time points (up to 1800 seconds). The compartmental model also

handles the extrapolation effectively with the model tending towards an equilib-

rium in which the distribution between parent and metabolite is a constant factor

which is determined by (k1k2)' and these values can be seen in Tables (5.5-5.6).

The advantage of using the compartmental approach is its flexibility in dealing

with different forms of input and its parameter values having a more physiolog-

ical interpretation. When the injection does not approximate a bolus the corn-

partrnental approach is more applicable, relying on an underlying physiological

model rather than the arbitrary functional forms. In conclusion the metabolism

of [1C]diprenorphine can be adequately accommodated in terms of a simple pre-

cursor product relationship. This is not the case for the next example.
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5.2.3 [11C}Flumazenil

The blood curves obtained from ["C]flumazenil scans suggests the presence of

metabolite by exhibiting a non-monotonic decrease from the peak plasma radioac-

tivity, see Figure (5.15). It was hypothesised that this bump may give important

IIme(sec.)

Figure 5.15: Typical [11 C]flumazenil whole blood time activity curve

information about the metabolism in the system. Inspection of the metabolite

fraction indicated a delay in the production of metabolites (see Figure(5.16)).

This delay being the key factor which causes a bump to appear in the blood
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Figure 5.16: Metabolite data for the cohort of [11 C]flumazenil scans
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curve. The inherent delay implies an apparently more complex model than the

one used for [ 11 C]diprenorphine. The delay was approximately 90 seconds and

this was established by inspection of metabolite time course data obtained from

plasma samples. A cohort of 32 ["C]fiumazenil studies was considered to evaluate

the effectiveness of a series of postulated models for metabolite correction. The

mean metabolite fraction for the cohort (± 1 s.d.) is shown in Figure (5.16).

Initially the metabolite data were fitted to the functional forms used previously,

(5.1), with the addition of a delay term. The results of fitting the functional forms

are listed in Tables (5.7-5.8). The exponential function again proved to be the

most successful approach and this is demonstrated in Figure (5.17).

25

20

15

5

10

•0

Exponential	 Hyperbola	 Sigmoid

Figure 5.17: Number of studies producing best fit for ['1C]fiumazenil

Compartmental Metabolism Model

System identification of an appropriate metabolism model is more readily achieved

by examining the metabolite as a function of parent. Examination of possible

models was initially investigated by segmenting the plasma curve into parent and
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Flumazenil Metabolism Model
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Figure 5.18: [11 C]Flumazenil metabolism model

metabolite time courses (using the exponential functional form). It was discovered

that the simple model used previously was insufficient to describe the metabolism

of ["C}flumazenil. A more comprehensive metabolism model, including the addi-

tion of a tissue compartment for metabolism, was thus chosen (Figure (5.18)). The

observed • delay in the formation of metabolite also necessitated the introduction

of a delay term in the model.

Segmentation of the plasma time activity curve produces a parent in plasma time

activity curve P(t) and a metabolite in plasma time activity curve M(t). These

two functions were fitted to the equations derived from the compartmental model

illustrated in Figure (5.18). This model describes the exchange of parent drug

between plasma and the body's metabolising tissues (principally liver), the elim-

ination of compound from this tissue and the transfer of metabolite from the
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metabolising tissue back into plasma. The model includes a delay ,S, and A repre-

sents the decay of the isotope, with a known value. The following set of ordinary

differential equations describes the system,

dT(t)
dt

dM(t)
dt

= kiP(t - S) (k2 + km + A)T(t)

= kmT(t) - (kern + A)M(t)

(5.15)

where

P(t)
T(t)

M(t)

k2

km

kern

- Parent plasma concentration
- Metabolising tissue concentration
- Metabolite plasma concentration
- Rate constant for transfer of parent from plasma to metabolising tissue
- Rate constant for transfer of parent from metabolising tissue to plasma
- Rate constant for transfer of metabolite from metabolising tissue to plasma
- Rate constant for elimination of metabolite from plasma
- Decay constant (0.0005663 sec')

Identifiability and Reparameterisation

Identifiability analysis and a subsequent reparameterisation was performed on

the system (5.15) using the methods presented in the previous chapter. The

identifiability analysis was performed using the Taylor series method. Without loss

of generality, A is set to 0 for the identifiability analysis and the reparameterisation,

and it is readily reintroduced at the end. The first 3 Taylor series coefficients of

the observation evaluated about 5 are given by;

(l) (+) = kikm

(2) (+) 
= ki km ( kem + k2 + km)
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(3) (s+) = ki km(k + 2k2 km + k2 ' k2 + k2 kem + km kern)m em

(5.16)

The Jacobian matrix defined by the partial derivatives of the Taylor series coeffi-

cients with respect to the parameters is,

km	 0	 k1	 0

G(O°) =	 km (k2 + kern + km)	 ki km —k1 (k2 + kern + 2km )	 kikm

Cl	 C2	 C3	 C4

(5.17)

where

C1 km (k2 + km) 2 + kern km (k2 + kern + km)

C2=kikm(2k2+kem+2km)

C3 = k (k + k2 kem + k m + 4k2 km + 2kem km + 3k)

C4 = ki km (k2 + 2kern + krn).

(5.18)

The infinite Jacobian matrix, G(9°), can be shown to have rank less than or

equal to 3 by considering the transfer function for M when Laplace transforms

are applied to (5.15) yielding,

k1 km
M=

	

	 P	 (5.19)
(s + kern)( + k2 + km)

It can readily be seen that the 4 parameters k1 , k2 , krn, kern are combined together

in just three coefficients in the transfer function. Therefore G(O°) can have, at

most, rank 3. By considering the rank of (5.17) this implies that G(O°) has rank
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equal to 3.

To calculate the identifiable parameter groupings it is necessary to consider the

nulispace of the Jacobian matrix (5.17). The nulispace is spanned by,

= {__, —1, 1, 0}	 (5.20)

Applying Theorems 2 and 3 enables the calculation of identifiable parameter

groupings from

< D(9°),n> = 0.	 (5.21)

The simplest identifiable parameter groupings are

{kem , k2 + km, kikm}

N.B. It should be noted that these identifiable parameter groupings are also readily

established from the transfer function defined in (5.19). A suitable state space

transformation can be obtained by making the following substitution for the state

variable T in equation (5.15),

T* kmT.	 (5.22)

This yields the following state space transformation for the system which provides

a locally identifiable reparameterisation.

= -

M=T*_3M

(5.23)
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where q i ki km, q = k2 + km, and	 kern. The parameter A may readily be

reintroduced to obtain the true reparameterisation of system (5.15), given by

1* = i P -

M=T*43M

(5.24)

where i = ki km, q = k2 + km + A, and q 3 = kem + A. This system is then solved

using the method of Laplace transforms, i.e. taking transforms of (5.24) gives

ST*lP_ç2T*

.sM=T*_3M,

(5.25)

whereby

M= T*

S +
*_

.9 + 2
(5.26)

and solving for M gives

M= (s + 3)(S+ '72)
(5.27)

By employing the inverse Laplace transformation,

M(t) = { 0 , (- i - est) 0 P(t - ) (5.28)

The data were then fitted to this equation using a simplex optimiser to obtain the

least sum of squares fit, data being weighted as the reciprocal of the dependent

variable.



5.2 Results
	

95

Fitting of Model to Metabolite Data

The next step was to rearrange this model in terms of the total plasma activity.

There is no explicit solution for the metabolite fraction in terms of the total

plasma activity because of the delay in the model, thus a novel fitting procedure

was proposed.

Iterative Method

The delay in the production of the metabolites averages approximately 90 seconds

and so the initial part of the plasma curve is simply parent drug. This measure

of the initial amount of parent compound allows the employment of an iterative

procedure to calculate the full time courses of parent and metabolite. Given a

set of parameter values and numerically convolving the initial parent concentra-

tion with the metabolism model provides the initial, delayed, metabolite signal.

This metabolite signal is then subtracted from the subsequent total plasma con-

centration to give the second segment of parent concentration. This procedure is

repeated, calculating the parent and metabolite concentrations in segments whose

lengths are equal to the delay. The parameters for the metabolite model are op-

timised using a simplex method until the metabolite fraction best represents the

measured fraction, in a least sum of squares sense. Each data point is weighted

equally. The iterative scheme was found to be robust for delays that occur with

[il Ciflumazenil's metabolites (50 - 200 seconds).

It was necessary to fit for the delay in formation of the metabolite. This process

could not be included easily in the parameter fitting routine because the total

plasma curve is sampled every second and this would mean that the total plasma

curve would have to be resampled every iteration. This problem was eliminated

by employing a golden ratio search [105], on top of the simplex fitting routine to

find the delay that minimised the residual sum of squares. A typical fit is shown
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in Figure (5.19) and the results are listed in Tables (5.7 and 5.9).

Plasma Metabolite Fraction
ii	 III

Plasma Activity
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Figure 5.19: Fit and segmentation for n00296 ([liCiflumazenil)

5.2.4 Discussion

Prediction of the metabolite component from the non-monotonicity in the curve

is very difficult because to fit to solely the total plasma time course, a functional

form for the parent is required. Any functional form for the parent requires many

parameters [106], and coupling this with the four parameters in the metabolism

model, any subsequent fitting becomes unfeasible.

5.2.5 Partition Coefficient Model

Inspection of the plasma to blood ratio revealed that there was a simple rela-

tionship with the metabolite fraction, see Figure (5.20). This indicated that the

parent and metabolite components had significantly different partition coefficients

between red cells and plasma. The correlation coefficient for the metabolite frac-

tion and the blood to plasma ratio was significant at the 5% level for 21 of the 32

studies, see Figure (5.21). For the studies in which this correlation was not signif-

icant the plasma to blood ratio measured at the late time point (' 5000 secs) was

different from the equilibrating trends of the previous points. This suggested that
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Figure 5.20: Plot of blood/plasma partition and metabolite fraction

the assay of the blood samples at later times was inaccurate, and that the samples

should have been counted for a longer period (see Discussion that follows).

—1	 -.0.9	 —0.8	 —0.7	 —0.6	 -0.5
Correlation Coefficient

Figure 5.21: Correlation coefficients for a cohort of 32 scans (blood/plasma vs
metabolite fraction)

Model

A linear relationship as seen in Figure (5.20) was therefore predicted. At equilib-

rium, the partition of parent [' 1 C]flumazenil and its labelled metabolites between
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plasma and red cells can be considered to be:

PLPar(t)a = Rc.Far(t)

Plit/let(t)/3 RcJVIet(t)

(5.29)

Concentration of label in plasma	 P 1(t)
Concentration of label in red cells 	 Rc(t)
Concentration of label in blood 	 W1(t)
Fraction of rnetabolite in plasma	 Mf(t)
Haematocrit	 h
Concentration of parent in plasma	 PLPar(t)
Concentration of metabolite in plasma PlJVIet(t)
Concentration of parent in plasma Rc_.Par(t)
Concentration of metabolite in plasma Rc_Met(t)
Partition coefficient for flumazenil
Partition coefficient for metabolites	 /3

Table 5.2: Parameters for partition coefficient model

The variables used in the model postulated are given Table (5.2). The metabolite

fraction, the concentration in plasma and the concentration in red cells are defined

by

Flit/let (t)
Mf(t) =

P1(t)
P1(t) = PLPar(t) + PlJVlet(t)

Rc(t) = RcPar(t) + RcMeL(t)

(5.30)

Given these definitions one can proceed to derive a linear relationship between

the metabolite fraction and the whole blood to plasma ratio.
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Since

Wl(t) = hRc(t) + (1 - h)Pl(t)	 (5.31)

using (5.30) this gives

W1(t) = h(Rc...Par(t) + RcJ[et(t)) + (1 - h)(PLPar(t) + P1Jk[et(t))

= h(aPLPar(t) + /3P1JVIet(t)) + (1 - h)(PLPar(t) + PLMet(t))

Pl(t)(1 - h + ah) + h(j3 - a)Pl_Met(t)

(5.32)

Dividing through by P1(t) yields

Wl'(t)
= (1 - h + ah) + h(/3 - a)Mf(t)	 (5.33)

P1(t)

or
Mf(t) - W1(t)	 1	 1 - h + ah

(5.34)
P1(t) h(/3—a)	 h(/3—a)

Model Results

For the (32) data sets considered, time points were chosen which comprised both

a whole blood to plasma ratio and a metabolite fraction, producing data sets

containing between 3 and 5 data points. These data sets were fitted to equation

(5.34) using a measured haematocrit value (1 to 17) and a standard hameatocrit of

0.4 when no haematocrit was measured (18 to 32). The parameter values obtained

for the partition coefficients a and ,8 are listed in Table (5.10) and histograms of

the parameters are illustrated in Figure (5.22).

Examination of the histograms reveals that the partition coefficients a and are

approximately normally distributed with mean values of 0.84 and 0.036 respec-

tively. The significance of this result is the distribution of the metabolite, which

is predominantly in the plasma (96% of metabolite in plasma).



I • • Ij _ I	 I I

alpha beta

15

'10

5

1	 2
alpha

"0	 0.5
haematocrit

10

2

0
0

0

5.2 Results
	

100

Figure 5.22: Histograms of calculated partition coefficients

At first a number of the fitted values for 3 were negative, which is physiologically

impossible, hence the model was refitted fixing /3 and allowing a and h to vary.

This process was repeated, varying /3 each time, until the fitted values for h

most closely matched the measured h in a least squares sense. This process was

carried out for data sets in which the haematocrit had been measured. A value

of /3 = .036 minimised the difference between the haematocrits, see Table (5.11).

The correlation between the two haematocrits can be seen in Figure (5.24) and

the correlation coefficient was 0.77. A histogram of the a and h values for all the

studies with /3 = .036 is shown in Figure (5.23).

Figure 5.23: Histograms of fiumazenil partition coefficients and haematocrits
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Fitted Haematocrit

Figure 5.24: Correspondence between measured and calculated haematocrit

5.2.6 Prediction of Metabolite Data

The data sets were investigated to see if early metabolite and plasma to blood

ratio data could be used to predict the late metabolite points simply from the

plasma to blood ratio. A typical example can be seen in Figure(5.25) where the

predicted values are 0.5% and 5.4% different from the measured values. This

prediction was applied to all the studies and the percentage error was calculated

for the final data point. It was found that 62.5% of the studies were within 10%

error at this time point. Inspection of the data again emphasised the need for

more accurate measurement of blood data towards the end of the scan.

5.2.7 Discussion

To summarise, two results have been obtained. Firstly, the accurate correction of

the [' 1 C]flumazenil blood input function for metabolites has been achieved using

a compartmental model. Secondly, a partition model has been applied to the

plasma/blood data to produce additional metabolite measurements. A novel pro-

posal for the accurate creation of a metabolite corrected plasma input function

for [11 C]flumazenil is summarised by Figure (5.26). The proposed scheme involves

collecting more plasma to blood partition data later in the scan and counting the
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+	 1

x0

x : Measured metabolite fraction

o : Fit of pbr to metabolite data
x

+ Predicted metabolite from pbr data

500	 1000 1500 2000 2500 3000 3500 4000
time(secs)

Figure 5.25: Prediction of late metabolite data using blood/plasma data and
partition model

samples for a much longer period to increase accuracy. This data in conjunction

with the partition model will then allow for the creation of accurate metabolite

data later in the scan. This process is less complicated than the HPLC procedure

and it is predicted that it will be more accurate at these late time where the HPLC

method is inaccurate due to the very small concentrations of parent and metabo-

lites. The plasma to blood ratio is interpolated with an exponential function and

multiplied with the continuous blood radioactivity time course to create a total

plasma radioactivity time course. Finally the compartmental model, shown ear-

lier, is applied to the composite metabolite data to create a metabolite corrected

plasma input function. This proposal would involve no increase in complexity of

the blood analysis, the metabolite analysis being the most laborious step, and it

is hypothesised that a more accurate metabolite correction would be obtained.
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Metabolite Data	 Plasma/Blood Ratio	 Blood Time Course

Metabolite Corrected Plasma Input Function

Figure 5.26: Proposed method for metabolite correction of [11 C]fiumazenil blood
data
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Table 5.3: Diprenorphine metabolism model results
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Table 5.4: Diprenorphine metabolism model results
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Table 5.5: Diprenorphine metabolism model results
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Table 5.6: Diprenorphine metabolism model results
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Table 5.7: Flumazenil metabolism model results
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Table 5.8: Flumazenil metabolism model results
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Table 5.9: Flumazenil compartmental model parameter values
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Table 5.10: Calculated partition coefficients for ["C]flumazenil and metabolites
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Table 5.11: Calculated partition coefficient for ["Cjflumazenil and haematocrit



Chapter 6

Spectral Analysis

6.1 Overview

This chapter contains an introduction to spectral analysis and its implementation.

A novel proof is presented that shows that the problem is well defined. This

proof may also be interpreted in an identifiability framework and, as such, gives a

sufficient condition for a uniquely (globally) identifiable solution. To understand

the solution of the problem more fully, the nonnegative least squares algorithm is

considered in conjunction with the Kuhn Tucker theorem [107]. Novel extensions

of the basic method involving different basis functions and multiple inputs are

investigated. These methods of spectral analysis are applied to the tracer kinetics

of carbon dioxide and thymidine in Chapters 8 and 9.

6.2 Introduction and Background

Spectral analysis is a kinetic modelling technique that lies between the strictly

data-led and highly structured methods. It is based on the a priori definition of a

relatively large set of basis functions which are used in the fitting of PET data, the

fit consisting of a small subset of these. Spectral analysis is the least structured

technique to employ an input function (see Figure 3.2 in Chapter 3) and gives

113
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quantitative measures of physiological parameters, e.g. K 1 , VD etc. The method

is based on a constrained linear optimisation problem and is a further development

of an approach used by Tobler and Engel [108], who used a set of hyperbolic

basis functions to investigate in vitro binding data. Cunningham and Jones [34]

chose a set of exponential functions convolved with the plasma input function

to form a set of basis functions facilitating the analysis of PET tissue data. The

choice of exponential basis functions stemmed from the theory of first order tracer

kinetics. Most linear compartmental structures used for the analysis of PET data

produce a series of first order differential equations whose solution is a sum of

positive exponentials. (Note that the original assumption by Cunningham and

Jones [34] that all first order tracer kinetic models satisfy a nonnegative sum of

exponentials is incorrect. Cases exist which have negative coefficients and others

with repeated eigenvalues). Components are obtained by fitting a large set of these

basis functions to the tissue time activity curves with suitable system parameter

constraints. The linear optimisation problem is however highly underdetermined

and a constraint is essential to construct a robust framework, see Figure (6.1).

The technique employs a nonnegativity constraint that makes the problem well

defined (see section 6.4). This chapter considers why constraints are required and

how they ensure that the problem is well defined. Spectral analysis can be con-

sidered as a constrained deconvolution technique that avoids the problems that

many direct deconvolution techniques encounter in the presence of noisy data. By

deconvolving the input from the observed tissue signals, variations due to differ-

ent types of injections and plasma characteristics are removed and the resulting

function becomes a plasma independent measure of the tissue's behaviour. Since

the deconvolution process is badly determined, the method of spectral analysis

produces a more robust deconvolution by restricting the possible deconvolution

to a nonnegative sum of exponentials. This, by definition, forces the impulse
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Non-Negative Least Squares (NNLS) Problem

1 xN
	

MxN	 lxM

b=Ax

2

	

m;nimize	 Ax -b	 subject to x1>O

Figure 6.1: The matrix problem

response of the system to be a monotonically decreasing function. The basis func-

tions are chosen so that they span all possible dynamics from fast blood effects to

irreversible binding.

Once a solution has been obtained from the spectral analysis process the spectrum

of chosen exponentials may give important kinetic information about the system

(Figure (6.2)). The various components can be interpreted to give an understand-

ing of the physiological, pharmacological and biochemical processes involved. Fast

kinetics wjth a large 9 value correspond to blood effects, intermediate kinetics to

reversible kinetics, and slow kinetics to irreversible kinetics of the tracer.

Lack of structure restriction by the method results in the obtained spectra hav-

ing a number of possible interpretations. This refers to the problem of indistin-

guishability of models. For example, the method will not distinguish between two

parallel or catenary compartments, both of which contain an indistinguishable

sum of positive exponentials. However since both systems have an equal volume

of distribution determined by the area under the tissue response function extrap-
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Fast	 Intermediary	 Slow

1	 13

Figure 6.2: Spectrum interpretation

olated to infinity, VD is a robust parameter estimate independent of structural

interpretation. The method is a good process for investigating appropriate model

order.

Spectral analysis has been applied successfully to PET data [34] [35], although

there is a problem as to whether the solution obtained is unique. A condition

for uniqueness is presented in section 6.4 . The non-negative least squares algo-

rithm used to solve the problem is presented and discussed in the context of the

Kuhn Tucker Theorem which guarantees that a local minimum is obtained on

termination of the algorithm.

6.3 Methods

The method of spectral analysis involves finding a solution to the problem (as in

Figure(6.3)),

PETol.s(tk) = Input(t) ®	 (6.1)

given ic E {1, 2, ..., N} and the non-negativity constraint a 	 0, aj
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PET Data
	

Input Function
	

Impulse Response

®	 c1ejt

Figure 6.3: Spectral analysis

The /3's are chosen in a logarithmic range and n > N. In practice n = 100 is

found to be an acceptable number providing a good kinetic resolution. The values

for /3 are normally chosen in a logarithmic range so that the linear dependence

between the basis functions is similar.

6.3.1 Functional Parameters

Key characteristics of a system can be obtained by various manipulations of the

impulse response function. The delivery rate constant, K 1 , of the compound cor-

responds to the intercept of the impulse response at t = 0 in the absence of blood

volume and dispersion. The area under the impulse response function extrapo-

lated to infinity equals the volume of distribution in the tissue of interest. Often,

the most important measure is the volume of distribution, VD, that quantifies the

ratio of concentration of compound in tissue to the concentration of compound

in plasma which would pertain at equilibrium. The mean residence time of the

compound in tissue can be calculated as the ratio of the VD over the delivery

K1 . In ligand studies it is possible to show that the volume of distribution is

proportional to the number of available binding sites [109].

6.3.2 Non-Negative Least Squares Algorithm (NNLS)

Before considering the algorithm for NNLS [110], the method is presented graphi-

cally for the case where three data points exist. This simplification of the method
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allows us to visualise it in three dimensions, Figure (6.4). In the diagram the

vectors are the basis functions ranging from fast to slow dynamics. The circle

represents a noisy data set generated from a single exponential. If there was no

noise in this data set the circle would lie on the surface defined by the basis vec-

tors. The solution to the NNLS problem is obtained by minimising the distance

between the data point and a point in the volume defined by a non-negative span

of the basis vectors. In this case the solution is a single basis function whose mag-

nitude is given by the distance along the vector on which the data point projects

orthogonally.

NNLS Fit to Basis Functions

0.6

0.4

0.2

0
0., - rame 1

1

u.o	 U.D	 0.4	 0.3	 0.2	 0.1	 0
Frame 2

Figure 6.4: Solution to NNLS problem

The nonnegative least squares algorithm [110] determines the least sum of squares

solution given the nonnegativity constraint on the parameter vector. The algo-

rithm proceeds by maximising the dual problem which corresponds to a minimi-

sation of the primal problem [110], these are given by
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Primal J = (Ax - )T (Ax - tb), x > 0	 minimise J
Dual	 - 2A(Ax - i, w < o maximise w	

(6.2)
U) = --

The dual gives the derivative of the sum of squares with respect to the introduc-

tion of each component. The algorithm proceeds by calculating the dual vector,

w, and introducing a component whose dual value is a maximum. The prob-

lem is then solved for just this component and the dual is recalculated. A new

component is then introduced in the same manner. However, if at any stage the

introduction of any components causes the regular least squares fit to produce

negative coefficients, these components are eliminated such that the positivity

constraint is upheld. This process continues until the introduction or deletion of

any component can only increase the residual sum of squares. At this point the

algorithm stops and a local minimum has been found. The following algorithm is

taken from Lawson and Hanson [110].

NNLS(A,m,n,b,x,w,z,P,Z) [110]
1 SetP=q,Z={1,2,...,n},andx=0.
2 Compute the n - vector w = AT (b - Ax).
3 IfthesetZisemptyorifw < O forallj E Z, gotoStepl2.
4 Find an index t Z such that Wt max{w : j E Z}.
5 Move the index t Z from set Z to set P.
6 Let A denote the m x n matrix defined by

f' 7	 - f colttmnjof A ifjEPLoLumn2oJEip\ 0
	 ifjEZ

Compute the n - vector z as a solution of the least squares problem Az b.
Note that only the components z, j E P, are determined by this problem.
Define zj = 0 for j E Z.

7 If z > Oforallj E P, setx = zandgotostep2.
8 Find an index q E P such that 	 = min{ 1i . : zj <0,j E P}.
9 Seta=

ZgZq

10 Setx_—x+a(z—x).
11 Move from set P to set Z all indices j E P for which x = 0. Go to step 6.
12 Computation Complete.



6.4 A Well Defined Problem
	

120

6.3.3 Kuhn Tucker Conditions

The NNLS algorithm terminates with a solution vector x which satisfies

	

x >0, j E P
	

(6.3)

	

= 0, j E Z
	

(6.4)

and x solves the least squares problem

Ax
	

(6.5)

The dual vector w satisfies

= 0, j E P
	

(6.6)

^ 0, j E Z
	

(6.7)

and

w_AT(1_Ax)	 (6.8)

Equations (6.3,6.4,6.6,6.7, and 6.8) constitute the Kuhn Tucker conditions [110].

The essential point is that the dual is the (negative of the) gradient vector of

the residual sum of squares, and, given that this is less than or equal to zero

no component can be introduced without increasing the residual sum of squares.

Hence in parameter space any perturbation of the solution x causes an inferior fit

and therefore x is a local minimum (for proof see [110], pg 160).

6.4 A Well Defined Problem

A problem exists concerning whether the solution obtained is unique due to the

underdetermination of the system (see Figure (6.1)). This section provides a proof

to show that the problem is well defined. The proof is based on an identifiability

framework and considers whether a given spectrum obtained from the described

form of spectral analysis is a unique solution to the problem.
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Spectral analysis concerns the solution of an underdetermined system of linear

equations. If no constraints are employed the method yields a solution which is

unidentifiable (as the number of equations is less than the number of unknowns)

and infinitely many solutions exist. However this is not the case with the intro-

duction of a non-negativity constraint. This section gives conditions such that the

problem postulated is well defined, and yields a unique solution.

To establish a condition for uniqueness the system is considered for a bolus input

and perfect input-output data. This gives rise to a problem whereby a non-

negative sum of exponentials is to be fitted to the system's impulse response

function.

n
Iri-lpulseResponse(t k) =	 ce'	 (6.9)

i=1

given k E {1, 2, ..., N} for some N E N subject to the non-negativity constraint

6.4.1 Uniqueness of the Solution

The problem is constructed in an identifiability context and is examined for the

case where perfect data is available. The proof considers a spectrum that has been

obtained from the algorithm and determines whether this solution is uniquely

(globally) identifiable.

Brief Overview of Proof

• Lemma 1. Show that for rational 's any /3 can be constructed as the

product of a natural number and a chosen constant. The proof's restriction

to rational values for /3 is consistent with a computer implementation.

• Lemma 2. Show that number of positive real roots of a polynomial is con-

ditional on the number of sign changes in the polynomial (Descartes Rule
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of Signs).

• Theorem 4. Show that a sum of exponentials can be mapped onto a poiy-

nomial and deduce that no positive sum of exponentials can be made up

from any other under appropriate conditions. The theorem considers the

maximum number of time points for which two different positive sums of

exponentials can be equal.

The following two results will be required.

Lemma 1 Given B = {3 : E Q for i = 1,. . . , N}, then there exists

E Nsuchthat/3 = n2 &fori =

Proof Choose 6 E	 to be the greatest common divisor (GCD) for all ,8 E B.

eGCD(/3)

Hence /3	 nje for all i.

Lemma 2 Descarte's Rule of Signs [111]

Given a polynomial of the form,

a) + a_1 A 1 + ... + ai) + a0 = 0	 (6.10)

Let S be the number of sign changes in the sequence of coefficients {a, an_i, ..., a 1 , ag}

ignoring any which are zero. Then there are at most S roots of (6.10) which are

real and positive. Furthermore there are either S,S-2,S-,... positive real roots of

the polynomial.
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Theorem 4 Given that the impulse response is a realisation for some in <

then
7Th	 fl

(6.12)
i=1	 j=1

for any given Ic E {1, 2, ..., N}, and subject to the non-negativity constraint a, ,8, y, Sj >

0, except the degenerate solution m = n,cr = y ,13 = for alli,j.

Proof To prove the Theorem by contradiction, let us assume there exists an in <

such that,

m	 Th

ce1	 = Eyje &2tk .	 (6.13)
i=1	 j=1

Define f(tk ) by
7Th	 Th

f(tk) =	 ae_ tk -	 0	 (6.14)
i=1	 j=1

Using Lemma 1, define e E Q such that

0	 = GCD (9, 8)

and such that for all i,j

/9=n,E for somenEN

and

Sj = nje for some fl2 E N.

Let

=
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which implies that

= )(t)'
	

(6.15)

eSitk =	 (6.16)

Substitution of equations (6.16) and (6.16) into equation (6. 1) yields

m	 n

f(tic)	 g(A) =	 - >
yj A (tk) i	 0	 (6.17)

i=:1	 j=1

such that for each i,j,nj,nj EN and so equation (6.17) is a polynomial in A.

Using Lemma , the polynomial g(A) = 0 has at most 2m changes of sign, which

implies g(A) = 0 has at most 2n-i positive real roots of the form

A(t) = e_etk

This implies that

A(tk) E	 if and only if tk E

and

+ if and only if tj

Hence f(tic) = 0 is satisfied for at most 2m distinct values of tk

Therefore if rn < then

m	 n

ye 5'	 (6.18)
i=1	 j=1

except for the degenerate case in = n,a = 'yj,,I3i = 'y for all i,j.

Remark : This Theorem guarantees that, if a solution to the spectral analysis

problem with N data points has m components and in < then the solution is

unique.
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6.4.2 Example

Flumazenil is a 11 C-labelled PET radioligand for the study of the central benzodi-

azepine site (CBZR) in humans and primates [48] [85]. In PET studies, as carried

out in the MRC Cyclotron Unit, Hammersmith Hospital, the drug is intravenously

injected for a short period (approximately 20 seconds), and during the scan the

arterial blood is sampled once a second. The arterial blood curve is converted

into a plasma activity curve and corrected for plasma metabolites (see Chapter

5) to give the input function for the tracer kinetic analysis (Figure (6.5)). The

scan contains 28 time frames of data, these frames becoming longer as the scan

progresses due to the slowing of the dynamics in the data and the loss of counts

as a result of the isotope's decay. A region of interest (ROT) is then applied to

the dynamic tissue data to obtain a time activity curve for the particular region.

The ROT used in this particular example contains 36 pixels and the ROT covers

1.45cm2 (36(2.006) 2 mm2 ). This gives us a time activity curve containing 28 data

points, i.e. N = 28.

Flumazenil input Function

time (secs)

Figure 6.5: Flumazenil metabolite corrected plasma input function
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NNLS fit obtained

time (secs)

Figure 6.6: PET data (x) and spectral analysis solution (-)

Figure (6.6) shows the spectral analysis solution to the measured tissue data and

Figure (6.7) gives the spectrum of kinetics obtained. The fitting procedure pulls

out 5 components for the impulse response function. This is effectively three

exponentials because two pairs are observed for adjacent /3 values, which is the

result of the algorithm trying to pick an exponential in between the discretised

values.

The data consists of 28 points (N) and the solution has 5 components (m), so the

inequality m < is satisfied and hence, by the Theorem, the solution is unique.

The spectrum obtained can be interpreted as a two compartment model with a

blood volume component. This is consistent with the known kinetics of fiumazenil

in the brain [109].
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Log (Beta)

Figure 6.7: Spectrum defined by the solution to the NNLS fit

6.5 Extensions of Spectral Analysis

6.5.1 Basis Functions for Displacement Studies

Flumazenil is a ligand which binds to benzodiazepine receptors in the brain and

this binding can be reduced by introducing a competing non-radioactive ligand

into the system [83]. The endogenous or exogenous ligand competes for the same

receptor type lowering the permissible binding of the radiolabelled PET ligand

and causes a decrease in the tracer's signal.

Experiments were performed using an adapted whole body gamma counter [112].

Two detectors were wired in coincidence above and below the patient's head allow-

ing for the acquisition of a whole head tissue time course. Due to the sensitivity of

the large gamma detectors and the lack of tomographic information, counts thus

being summed from the whole volume of interest (head), it was possible to obtain

highly accurate time courses for very low doses of administered radioactivity (-

8OCi). The system has a very high temporal resolution and the spatial resolu-



6.5 Extensions of Spectral Analysis	 128

tion is limited to the number of detectors [113]. High temporal resolution results

from the trade-off in spatial resolution. The head curve data is acquired every

5 seconds. Initially labelled fiumazenil is administered and, after 30 minutes, an

exogenous dose of cold flumazenil is injected to displace the signal.

Method

A representative ' 1 {C]flumazenil input function was calculated from a population

of (n=32) plasma metabolite corrected input functions (no increase in plasma

concentration was observed after displacement in similar PET studies with arte-

rial sampling). Flumazenil's kinetics in the brain can be approximated by a single

compartment with specifically bound, non-specifically bound and free ligand com-

partments all equilibrating quickly [109]. The system characteristics are allowed

to change at the time of displacement and the problem is analysed by constructing

a set of displaced basis functions, given by

BF

	 {

>ii:;'= e2it1c	 if tk < td

I2i e_k2itde_/2i(ttd) otherwise
(6.19)

where i = 1,.. . , 100 and Ic21 is chosen in a logarithmic range between the fastest

and slowest possible dynamics 1 > k21 > .0005663. In this system DF is a

displacement factor which accounts for the change in the system characteristics

and td is the time of displacement. If DF = 1 there is no displacement and the

basis set corresponds to using a set of exponentials as described earlier in this

Chapter. When DF> 1 the basis set describes a displaced system.

The system corresponds to generating a model of heterogeneous single compart-

ments, Figure (6.8). The model makes the assumption that all compartments are

displaced by the same fraction. This may not always be the case, however the

model approximates the overall behaviour of the system.
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System 2 : Post-Displacement

Ti.

L1
Lri

T2

k22DF

Figure 6.8: Displaced system structure

where

T, - the i th tissue compartment
I	 - the delivery rate constant for compartment i
k21 - the efflux rate constant for compartment i

The volume of distribution of system 1 is given by,

VD1
i=1 2

and the volume of distribution of the second system is defined by,

n
v-'

and hence the following relation is obtained,

(6.20)

(6.21)

DF.	 (6.22)

Using the approximate change in Volume of Distribution, an index of occupancy

can be obtained. The occupancy represents the fraction of sites which are filled

by the exogenous dose of cold flumazenil. The occupancy index is calculated as,
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VD1 - VD2 = -
	 (6.23)0cc =

VD1

Interpreted in a compartmental framework the system corresponds to a sum of

ri. single compartments with influx rates K1 and efflux rates k2. At the time of

displacement the system's characteristics change; the influx remains constant but

the efflux changes by a factor equal to DF. When DF > 1 the basis functions

possess a "kink" and allow for the description of a displaced system. Figure (6.9)

illustrates a set of basis functions with a displacement factor DF = 2.

Basis Functions
60
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	a 	 I

	

0	 500	 1000	 1500 . 20)0	 2500	 3000	 3500	 4000
time (secs)

Figure 6.9: Basis functions for displacement study

A golden ratio search [105] is employed to find the value of DF which minimises

the least sum of squares fit to the data. The approach optimises DF within the

range 1 DF 10. An example of a fit obtained to a particular data set is

shown in Figure (6.10). The data is integrated over time intervals of 50 seconds

to reduce the size of the basis function matrix without a significant effect on the

solution.
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Displaced Flumazenil Curve (5 micro gJKg @ 1560 secs)

Th	 500	 1000	 1500 . 20D0	 2500 3000 3500 4000
time (secs)

Figure 6.10: Typical fit (-) to displaced head curve data (x)

Results

A cohort of 12 patients was considered with 8 patients each receiving a different

dose of cold flumazenil, {2.5, 5, 7, 10, 12.5, 15, 20, 3Otg/kg}, at 20-30 mins after

the injection of the radiotracer. Four studies with no displacement were used

to calculate a baseline value for the occupancy index (0cc = .039 ± .011(lsd)).

Figure (6.11) illustrates the occupancy indices obtained from the eight doses of

cold flumazenil. The index of occupancy is plotted against the normalised dose

illustrating a saturation effect. It is evident that not all the signal can be displaced

and this is because some of the signal represents non-specifically bound ligand.

6.5.2 Discussion

This chapter has presented two novel additions to spectral analysis. The first, a

theoretical consideration, is a proof which gives conditions under which a unique

solution is guaranteed. The second, an application, extends the original technique

of Cunningham and Jones [34] to take account of systems involving displacement
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Occupancy Index Vs Dose
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Figure 6.11: Plot of dose against occupancy index for [11 C]flumazeuil displaced
with cold flumazenil

of the labelled compound. Another basis set with useful properties is tet, this

basis set allows for a different range of kinetic behaviour for our system response

which the traditional set of exponentials prohibits. It allows for impulse response

functions whose initial values are zero. The method of spectral analysis may also

be extended to consider the case of two input functions. In this case both the

inputs are convolved with a set of exponentials and then fitted to the data. The

scheme of this approach as might be applied to a system involving metabolites

is shown in Figure (6.12). This novel approach is applied to ' 1 [C]thymidine in

Chapter 9 to try and predict the parent and metabolite contributions to the tissue

signal.
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Figure 6.12: Multiple input spectral analysis applied to a system with labelled
metabolites in plasma and tissue



Chapter 7
[11 

C]Thymjdjne

7.1 Overview

In this chapter, observations of data derived from clinical [' 1 C]thymidine stud-

ies are presented. The behaviour of the tracer is investigated in tumours and

it is seen that some encouraging results are obtained. Metabolic breakdown of

[11 C]thymidine in plasma and tissue during the course of the study contributes to

the PET signal and as a result these metabolites must be defined to allow ade-

quate interpretation of the data. This is studied in detail in the two subsequent

Chapters.

7.2 Introduction

[i lciThyrnidine is currently under investigation as an in vivo marker of cell pro-

liferation in tumours [114] [115] [116] [117] [118]. It is proposed that the tracer

[11C] thymidine is taken up into proliferative tissues and incorporated into DNA,

providing a measure of DNA synthesis from which cell proliferation can be in-

ferred. To date the assessment of anti-cancer therapies rely on crude clinical

response markers. The ability to measure cell proliferation in vivo would pro-

vide clinicians with a more sensitive marker of response to therapy which may

134



7.3 Methods	 135

be achievable at a preclinical level. Thus allowing great individualisation of the

therapeutic regime. These measures would enable the monitoring of tumours with

respect to radiotherapy, anti-cancer drugs, etc.

7.3 Methods

Nine patients were scanned with [11 C]thymidine and an independent ex vivo mea-

sure of tumour proliferation was obtained. Each 1 hour thymidine scan consisted

of 30 dynamic frames and the frame durations are given in Table (7.1). Following

each of these thymidine scans, the tumour was removed and stained with a molec-

ular immunology borstal 1 antibody (MIB 1) to produce a histological measure

of cell proliferation [119] [120] [121]. In this case the MIB 1 index was expressed

as the number of labelled cells out of a total of 2000 tumour cells counted. The

MIB 1 values are shown in Table (7.2).

10 x 30	 secs
5	 x 60	 secs
5	 x 120 secs
5	 x 180 secs
5	 x 300 secs

Table 7.1: Frame lengths for thymidine scans

'I'able 7.2: MIB 1 antibody staining results from nine patients scanned with
['C]thymidine

he 2-D dynamic data sets were reconstructed using filtered back-projection (Han-

t&ing filter: cut-off 0.5xNyquist frequency) and a measured attenuation correction
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"0	 500	 1000	 1500	 2000	 2500	 3000	 3500
time(secs)

Figure 7.1: Decay-corrected tumour time activity curves from the nine
[11 C ] thymidine scans

was applied. ROT's were drawn around tumour rims on an "add" image (0-60

ruins) from each of the [11 C]thymidine studies. These regions were then applied

to the dynamic data sets and tumour time activity curves obtained. The tumour

time activity curves were corrected for the decay of the isotope and are illustrated

in Figure (7.1).

7.4 Results and Discussion

The terminal half-life in tissue was calculated by fitting an exponential to the tail

of the tumour time activity curves (between 1800 and 3600 seconds), i.e.

TAC18o0_36o0(t) =	 ( 7.1)

from which,

log(2)	
(7.2)

5
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where ti is the terminal half-life of label in the tissue. The terminal tissue half-life
2

was calculated for the nine patients and the results are tabulated in Table (7.3).

Study 3 tj. (secs)
p03059 1.23e-04 5.62e+03
p03206 8.38e-05 8.27e+03
p03494 2.24e-04 3.09e+03
p03726 1.70e-04 4.09e+03
p03737 7.73e-05 8.96e+03
p03766 9.59e-05 7.22e+03
p03847 1.17e-04 5.91e+03
p03898 1.58e-04 4.37e+03
p03946 1.55e-04 4.46e+03

Table 7.3: Terminal tissue half-life of label in tumour for the nine patients

If, as hypothesised, [' 1 C]thymidine is retained by proliferative tissues, then the

terminal tissue half-life of label may correlate with the degree of proliferation. By

plotting the terminal tissue half-life of the total tumour radioactivity, it becomes

apparent that the half-life of label in tissue is indeed correlated to the independent

measure of cell proliferation, as shown in Figure (7.2). The correlation coefficient,

0.754, was significant (p < 0.02 for n 9).

This result suggests increased retention of the label in highly proliferative tissues.

This may reflect either increased incorporation into DNA or slower turnover of

label due to higher intracellular concentrations of endogenous thymidine in highly

proliferative tissues. These results illustrate the potential of [ 11 C]thymidine as a

marker of cell proliferation. However, in the set of studies presented, only the

behaviour of total label in tissue was analysed. To obtain a more comprehen-

sive understanding of the mechanisms involved it is necessary to take account

of the contribution of labelled metabolites to the signal. The metabolism of

["C}thymidine, of which the major labelled metabolite produced is "CO 2 is con-
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MIB 1

Figure 7.2: Correlation between MIB 1 and terminal tissue half-life

sidered in Chapter 9. A series of bicarbonate studies was therefore proposed in

order to investigate the behaviour of carbon dioxide and enable clarification of

the [11 Cjthymidine signal. Before returning to modelling of [11 C]thymidine the

measurement and modelling of labelled carbon dioxide is dealt with in the next

chapter.



Chapter 8

Carbon Dioxide

8.1 Overview

11 CO 2 is the predominant metabolite for many "C labelled PET tracers [122].

["C]Thymidine is a typical example and is studied in detail in the next chap-

ter. To assess the contribution of labelled carbon dioxide in the thymidine scans,

a series of bicarbonate studies were proposed. These studies were to be per-

formed in conjunction with ["CJthymidine scans to enable characterisation of the

carbon dioxide system and subsequent "CO 2 correction of the thymidine data.

Extra information was obtained by monitoring the expired "CO 2 activity during

these studies. In this present chapter the analysis of the CO 2 data in both the

expired air and blood is described along with the calculation of tissue impulse

response filnctions. In this chapter refers to either in expired air or

"CO 2 /H"CO in blood (bicarbonate equilibrates rapidly with CO 2 in blood, see

chemical reaction scheme (8.1)).

112 0 + CO2 H + HCO	 (8.1)
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8.2 Methods

8.2.1 Monitoring of Exhaled Activity

A sensitive monitoring system which allows the continuous monitoring of the

levels of expired CO 2 and CO 2 during a PET scan was developed in response to

problems identified with the tracer [ 11 C]thymidine (Ranicar et aL, in preparation).

The expired air is sampled via a pair of soft plastic nasal prongs which are inserted

into the nostrils of the patient prior to scanning. As a result a proportion of the

expired air was drawn through a /+ plastic detection chamber to monitor labelled

11 CO2 and subsequently through a capnograph to monitor the stable CO 2 . Both

time courses are sampled at 10 Hz providing a good characterisation of each

breath.

8.2.2 Bicarbonate Scans

The data analysed here were taken from an ongoing programme of bicarbonate

studies. ' 1 CO 2 was injected intravenously as ["C]bicarbonate solution over a 30

second period. The time course of CO 2 in the subject was monitored in expired

air, blood and tissues of interest for the duration of the scan (1 hour). Tissue data

were collected according to the protocol of frame lengths given in Table (8.1). A

high temporal sampling rate was used initially to characterise the delivery and

distribution stages, followed by longer frames to characterise the tracer uptake.

8.3 Results

8.3.1 Exhaled Activity as a Measure of Blood and Plasma
Activity

Typical examples of the time courses of exhaled 11 CO 2 and CO 2 are shown in

Figures (8.1) and (8.2), respectively. These data were collected following intra-
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1 x 30	 secs
6 x 5	 secs
6 x 10	 secs
6 x 20	 secs
6 x 30	 secs
3 x 300 secs
4 x 600 secs

Table 8.1: Frame lengths for bicarbonate scans

venous administration of [11 C]thymidine (see Chapter 9). 11 CO 2 was detected in

the breath almost immediately, reflecting the rapid whole body catabolism of the

parent tracer. Inspection of this type of data suggested that the "envelope" may

provide a suitable description and measure of the underlying time course of 11CO2

in the blood.

timc (secs)

Figure 8.1: Exhaled "CO 2 data

A magnified version of the exhaled ' 1 CO 2 data is shown in Figure(8.3). The

respiratory oscillations in the raw data are clearly defined. The raw data were

characterised by examining it's power spectral density, as calculated by the Welch

method [123]. The corresponding power spectral density of the exhaled "CO2
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lime (secs)

Figure 8.2: Exhaled CO 2 data

data is shown in Figure (8.4). A power spectrum defines the power of the signal

at each frequency. The method provides a more robust spectral estimate than

a Fourier transform of the autocorrelation function by averaging across adjacent

records. The Welch method has the advantage that the variance of the power

spectral density estimate tends to zero with increasing signal length. The process

may be summarised as follows;

• Separate the sequence into sections of length 256.

Multiply each section by the Hanning window (window length 256).

• Take Fourier transform of the sections.

• Accumulate results for all sections and then normalise.

The power spectrum yields two important pieces of information. Firstly, in the

example shown it can be seen that the power of the signal decreases above 2 Hz,

and secondly, the maximum energy of the signal occurs at a frequency of 0.186

Hz. This suggested that the raw data could be smoothed with a low pass filter

with a cut-off frequency of 2 Hz. A 4th order Butterworth filter was applied and
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I19	 1200	 1202	 1204	 1206	 1208	 1210	 1212	 1214	 1216
tIme (secs)

Figure 8.3: Exhaled "CO 2 data (+) together with low pass filtered signal (-)

the smoothed time course is shown as a solid line in Figure (8.3). This allows the

peak value of each breath to be used as a more robust measure of the envelope.

Figure 8.4: Power spectral density of labelled CO 2 data

The power spectral density may also be used to obtain the frequency for which

the signal has maximal energy. This corresponds to the average respiration rate

of the subject. The maximum energy of the signal has a frequency of 0.186 Hz

which corresponds to a respiratory cycle of 5.40 seconds, see Figure (8.4). Having
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determined the average period of the respiratory cycle, (rc), this length was used

as a window with which to search the filtered ' 1 CO2 data for maximum. Once

a maximum has been found at t the next maximum is obtained in the interval

[t + , t + 2]. This procedure may then be carried out for the whole curve to yield

a peak exhaled ' 1 CO 2 curve, see Figure (8.5). The same procedure of filtering and

000

bOo

6000

50O0

'z.

2000

1000

0	 500	 1000	 1500	 2000	 2500	 3000)	 3500	 4000
time (sees)

Figure 8.5: Peak exhaled 11 CO 2 data

peak finding was applied to the stable CO 2 to produce a peak exhaled CO 2 curve,

Figure (8.6). A point by point ratio of the two curves was then obtained. The

stable CO 2 curve was used to normalise for varying breath volumes, see example

in Figure (8.7), and by inspection this is a smoother curve than the labelled CO2

(see example in Figure (8.5)).
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Figure 8.6: Peak exhaled CO 2 data

.4

500	 1000	 1500	 2000	 2500	 3000	 3500	 4100)
lime (sees)

Figure 8.7: Normalised exhaled ' 1 CO 2 data

Blood CO 2 Time Course

The next stage was to establish a relationship between the normalised exhaled

11 CO 2 (e.g. Figure (8.7)) and the time course of ' 1 CO 2 activity in blood. Ex-

periments were therefore carried out in which the subjects received 11 CO 2 alone,

as an intravenous injection of 11 C bicarbonate. These experiments were carried

out in conjunction with [11 C]thymidine scans as described in the next chapter.
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Bicarbonate solution was intravenously injected over a 30 sec period and the time

course of 11 CO 2 was continuously monitored in breath, as described previously.

Total radioactivity was also assayed on-line in blood, and discrete blood samples

were assayed for the fraction of '1 CO 2 . The results for a typical scan are shown

in Table (8.2).

Time (secs) % HCO
0	 100

100	 99.19
309	 97.81
640	 97.30
1817	 95.68
3614	 92.32
4708	 89.96

Table 8.2: Fraction of blood activity due to HCO for p4161 bicarbonate study

Figure 8.8: Blood activity and exhaled activity from bicarbonate scan (p4161)

The discrete measurements of the fraction of 11 CO 2 in the blood allowed the

creation of an 11 CO 2 blood input function. A linear interpolation of the discrete

measurements was employed to fit a gradual decrease in the percentage of 11CO2
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(to approximately 90% at 1 hour). The ' 1 CO 2 blood and ' 1 CO 2 exhaled curves

were matched allowing for a time delay (*.# 30 secs) between them and a simple

scaling factor based on the total collected counts. The result for one example is

shown in Figure (8.8). This shows that the two measurements are indeed very

similar and by plotting these two measures against each other the relationship is

more clearly defined, as shown in Figure (8.9). The two measures are very well

matched except for small differences around the initial part of the curves. These

differences may be due to a small amount of dispersion of the two measures.

Blood Activity

Figure 8.9: Correspondence plot of blood 11 CO 2 activity against exhaled '1CO2
activity (Line of identity is also shown)

Plasma CO 2 Time Course

Figure (8.10) shows that the relationship between total label in plasma and that

in whole blood for the 11 CO 2 scans was linear. Hence, a plasma 11 CO 2 input

function was created by multiplying the blood 11 CO 2 time course by a factor of

1.62. Analysis of this equilibration in terms of a partition model and an average

haematocrit of 0.4 ,as described in Chapter 5, suggests that 96% of the label was

present in the plasma.
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Figure 8.10: Plot of "CO 2 activity in 1 ml of whole blood versus "CO 2 activity
in imi of plasma for four studies (Different symbols represent separate scans)

8.3.2 Tissue Kinetics of 11CO2

The second purpose of the "C bicarbonate scans was to determine the unit impulse

response functions of various tissues to the "CO 2 in plasma, with a view to

subsequent correction of tissue data for the presence of "CO 2 in plasma, deriving

from whole body metabolism of parent tracers such as ["C]thymidine as described

in chapter 9. Analysis of the plasma to tissue dynamics of CO 2 was examined

using spectral analysis. An impulse response function IRFo2 (t) was obtained

such that,

Turnourco2(t) IRFc02 (t) ® Plasmaco2 (t)	 (8.2)

The CO 2 plasma input function was convolved with a series of exponentials and

these functions, considered as basis functions, were subsequently fitted to the

tissue time activity curves as described in Chapter 6. A fit obtained to a typical

tumour time activity curve is illustrated in Figure (8.11). Results obtained for



0

DO

8.4 Summary
	

149

Fit To Tissue CO2 Time Course

Time (sees)

Figure 8.11: Spectral analysis fit (-) to tumour time activity curve (o) for bicar-
bonate data (p416l)

the four bicarbonate scans are given in Table (8.3) and the impulse responses

are shown in Figure (8.12). Analysis of the spectra obtained revealed three key

kinetics components. A blood volume component, a flow component and a small

amount of trapping. The impulse responses returned for the tumours in either

study show different behaviour. These initial results indicate the variability of the

system response in tumour which may reflect differing pH of the tumours [124]

[125].

8.4 Summary

The measured exhaled "CO 2 can be transformed to give a continuous measure

of "CO 2 in blood or plasma. The application of the tumour impulse response

functions will be discussed in the next chapter.
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"-3

time(secs)

Figure 8.12: CO 2 impulse responses in tumours obtained from spectral analysis
of bicarbonate data (for all four studies)

Study no. /(s') a(s')
p4060 l.Ole-3 4.53e-5

2.36e-3 4.46e-5
1.67e-2 5.85e-4

___________ 3.94e-1 2.98e-2
p4161

	

	 5.75e-4 1.09e-5
3.97e-3 4.56e-4

___________ 1.22e-2 2.51e-3
p4132 5.75e-4 1.31e-5

2.65e-3 3.26e-4
1.09e-2 1.79e-3

___________ 1.00	 1.08e-1
p4213 5.75e-4 1.13e-5

4.75e-3 3.14e-4
1.76e-2 4.44e-3
3.12e-2 2.31e-4
1.00	 7.92e-2

Table 8.3: Spectral analysis of tumour data from four bicarbonate scans



Chapter 9

Modelling of [ 11 C]Thymidine in
Plasma and in Tissue

9.1 Overview

This chapter considers [2-"C]thymidine as a PET tracer, its degradation pathway,

modelling of plasma metabolites, and methods for analysis of the time course of

label in tissues of interest. CO 2 is identified as the major metabolite in plasma

and a method for correcting the tissue signal for 11 CO 2 deriving from plasma is

presented. This method involves a 11 CO 2/[' 1 C]thymidine two scan protocol. A

dual input spectral analysis was also considered.

9.2 Introduction

The principal problem inherent in the use of radiolabelled thymidine as a PET

tracer in tumour studies is the contamination of signal due to labelled metabolites,

not only in plasma but also in the tissues in the field of view. This contrasts

with the radiolabelled ligands discussed previously, such as diprenorphine and

fiumazenil, whose metabolites would not be expected to cross the blood brain

barrier and the tissue signal is not contaminated by metabolites [91] [92].

[3H]Thymidine has been used in vitro and in animal work [126], [127] to investigate

151
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tumour proliferation. On administration thymidine is either directly incorporated

into DNA or rapidly metabolised. However initial studies using tritiated thymidine

in mouse, rat and dog tumour models demonstrated a high tumour to tissue uptake

ratio with prolonged retention in tumour [126] [128]. In mouse tumour models a

significant correlation has been shown between [ 3H]thymidine uptake and tumour

grade [126]. Absolute quantification of thymidine incorporation into DNA might

not be possible simply by using a plasma born tracer, because of endogenous tissue

synthesis of thymidine and reutilisation of thymidine from dying cells. However

it may prove of great value as a quantitative index of tumour status as suggested

by the results presented in Chapter 7.

9.2.1 Labelling of Thymidine

Thymidine has been labelled with 11 C in two different ring positions, [2-11C]

[129] and [methyl- 11C] [130]. With thymidine labelled in the C-2, position the

label follows a catenary metabolic path through thymine, dihydrothymine, N-

Carbamoylisobutyrate (intermediary metabolites) before the label is lost in the

form of CO 2 [122] [131], as shown in Figure (9.1). Advantages gained in labelling

thymidine in the C-2 position are the presence of fewer labelled metabolites and a

larger proportion of labelled DNA in tumour [114]. Further advantages include the

major labelled metabolic component being 11 CO 2 ; extra 11 CO 2 measurements can

be obtained via the measurement of expired labelled "CO 2 , as has been described

in the previous chapter. When [ 11 C]thymidine is labelled in the methyl position

more labelled metabolites are produced creating a more complex system and the

proportion of labelled DNA in tumour is significantly smaller [114]. Vander Borght

et al. [132] have demonstrated the advantages of using [2- 14 C]thymidine as a po-

tential index for liver regeneration, they also concluded that the 2-C label was

preferable (no accumulation of labelled metabolites) to the methyl label (labelled
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Figure 9.1: Catenary metabolism of [2-'1C]thymidine

metabolites in tissue). For thymidine to become a useful PET tracer it is

sary to quantify the behaviour of its metabolites in both plasma and tissue. The

studies analysed in this thesis consider thymidine labelled in the 2-C position.

9.3 Modelling

11 CO 2 is the major labelled metabolite of ["C]thymidine and an accurate descrip-

tion of its time course in tissue and plasma is essential for the quantification of the

behaviour of thymidine in tumour and tissue. The purpose of this chapter is to
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describe models which attempt to take into account the contribution of labelled

rnetabolites to the plasma and tissue signals following intravenous injection of

['1 C]thymidine. The availability of discrete measurements of the metabolites in

plasma allows for correction of the plasma time course. In tissue the correction

is more complicated as no chemical resolution is possible. Methods for correction

must rely on the actual kinetics of thymidine and its metabolites being identifiable

from the total label time course, or the performance of additional experiments.

An approach to the modelling of [ 11 C]thymidine kinetics has been presented by

Mankoff [133] which extends the method of graphical (or Patlak) analysis to con-

sider systems containing labelled metabolites. This method applies if the tracer

[11 C]thymidine is irreversibly trapped in tissue but the labelled metabolites are

not.

9.4 Methods

Four [11 C]thymidine scans (paired with [11 C]bicarbonate scans) were performed.

The [11 C]thymidine scans were initiated 10-20 minutes after the end of the bicar-

bonate scans (described in Chapter 8). The tracer was injected intravenously as a

smooth bolus over 30 seconds. Dynamic data sets were acquired and reconstructed

as described previously (section 7.3). A simultaneous measure of the expired ra-

dioactive attd stable CO 2 was collected together with a continuous measure of the

whole blood activity. Discrete samples of blood were removed during the scan for

three purposes; namely calibration, calculation of the fraction of label in the blood

due to HCO (Blood samples were divided into two. The first sample was added

to NaOH to trap the 11 CO 2 and this test tube was rapidly capped to avoid any loss

of 11 CO 2 . The second sample was added to isopropanol followed by HC1 to release

' 1 CO 2 . Nitrogen gas was then bubbled through each sample to help this process

before both samples were assayed for radioactivity [122] [131]) and calculation of
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the fraction of label due to thymidine after the removal of 11 CO 2 in plasma (Blood

was centrifuged and a plasma sample obtained was added to methanol to precip-

itate proteins. The thymidine and metabolite components were then obtained in

the methanol which was injected into the HPLC system for analysis).

0.5 Results

9.5.1 Plasma Time Courses

The time course of radioactivity in blood was segmented to give time courses of

[' 1 C]thymidine, ["Cjintermediary metabolites and 11 CO 2 in plasma. A diagram-

rxiatic representation of this process is shown in Figure (9.2). A plasma '1CO2

time course was generated using the exhaled 11 CO 2 activity, the continuous mea-

sure of whole blood activity and discrete measures of the fraction of total label in

blood as HCO (see section 8.3.1). A typical example of an 11 CO 2 time course

and fit to the discrete blood measurements is illustrated in Figure (9.3). This

measure was scaled by a factor of 1.62 to give a plasma 11 CO 2 time course (see

section 8.3.1). The whole blood time course was converted into a plasma time

course using a linear interpolation and extrapolation of the plasma to blood ratio.

The 11 CO 2 plasma time course was subtracted from this measure to leave just

labelled thymidine and intermediary metabolites. The remaining segmentation of

the plasmacurve was achieved by fitting a functional form to the measured frac-

tion of thymidine in plasma (CO 2 had been removed from the plasma samples).

The functional form used was,

Thymidine Fraction(t) =	 - _____	 (9.1)
I'	 (t-6)+c	 -

This function was fitted to the metabolite data and a typical fit can be seen in

Figure (9.4). This function was used as it extrapolates the thymidine fraction to

zero and also fitted better than an exponential approach to a constant. This gave
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Figure 9.2: Scheme of plasma input function generation
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Figure 9.3: Calibration of exhaled 11 CO 2 using direct blood assays

Fit to Thymidine Fraction

time (sees)

Figure 9.4: Fit to thymidine fraction in plasma (excluding CO 2 ) using functional
form
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Figure 9.5: Distribution of label in plasma (p4161)

three plasma input functions; [ 11 C]thymidine, [11 C]intermediary metabolites and

11 CO 2 . Typical time courses for these plasma time courses are shown in Figure

(9.5). It is obvious from these data that thymidine disappears very quickly from

the plasma. After approximately 15 minutes the thymidine level in plasma is so

small it is difficult to measure.

Initial investigations were carried out in an attempt to derive a compartmental

relationship between ["C]thymidine, 11 CO 2 and ['C]intermediary metabolites,

the latter being considered as a single compartment. This was performed with a

view to obtaining a function describing the [' 1 C]thymidine and ' 1 CO 2 fractions

in terms of the total label time course. Unfortunately, it was found that models

describing such a relationship were numerically unidentifiable with a high degree of

parameterisation required. However it is interesting to consider the relationship

between labelled [' 1 C]thymidine and the major metabolite, labelled "CO 2 , in

plasma.
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9.5.2 [ 11 C]Thymidine and 11 CO 2 in Plasma

To investigate the metabolism of ["C]thymidine further, the plasma "CO 2 con-

centration was examined as a function of the plasma [C]thymidine concentration

using the method of spectral analysis. The "CO 2 plasma time course was fitted

as a linear combination of a set of basis functions, which comprised different ex-

ponentials convolved with the plasma thymidine input function. A typical fit

is shown in Figure (9.6), and the components chosen by the NNLS method are

presented in Table (9.1).

time(secs)

Figure 9.6: Spectral analysis fit (-) to exhaled 1 'CO 2 data (0) (p4161)

p4161 f3(s') [o(s')

Exhaled 6.08e-04 9.22e-04
"CO2 2.21e-03 1.98e-03

1.80e-02 2.24e-03
_________ 1.00	 9.43e-03

Table 9.1: Spectral analysis of exhaled "CO 2 as a function of plasma thymidine
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The presence of fast components in the spectrum indicates that the metabolism

of ["C]thymidine to " CO 2 is very rapid and this is reflected by the concentration

time course of	 in plasma.

Summary

A method has been presented for the correction of the contribution of labelled

metabolites to the plasma signal. It is now necessary to consider techniques for

similarly correcting the tissue signal.

9.5.3 Correction for [' 1 C]Carbon Dioxide in Tissue

The problem of identifying the tissue kinetics of [' 1 C]thymidine is complicated by

the presence of the confounding metabolite signal in the tissue of interest. Res-

olution of the tissue signal requires kinetic models or additional experiments to

be performed. To obtain additional information on the behaviour of CO 2 in tis-

sue a set of "CO 2 scans in conjunction with [' 1 C]thymidine scans was proposed.

The scheme is shown in Figure (9.7). The bicarbonate scans allowed for plasma

to tissue dynamics of CO 2 to be identified. This information was then used in

conjunction with the ["Cthymidine scan to remove the contribution of "CO2

in tissue originating from the plasma. The carry over of radioactivity from the

["C]bicarbonate scans to the ["C]thymdine scans was monitored using a back-

ground frame and was negligible.

Removal of CO 2 Tissue Contribution using Paired Scans

The four bicarbonate scans were analysed with spectral analysis, as described in

the previous chapter, creating impulse response functions (IRFc02 (L)) for CO 2 in

the tumours (see Figure (8.12)).

Plasma input functions were obtained for the ["C]tbymidine scans using the meth -

ods presented in section (9.5.1). The 11 CO 2 plasma input function was convolved
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Thymidine Scan
Plasma	 Tissue

Thy ________ Thy

Met ____________ Met
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Figure 9.7: Dual scan method enabling correction of CO 2 in tissue

with the CO 2 impulse response for the system, producing the component of 11Q2

in tissue due to the exchange of 1 CO 2 between plasma and tissue. This CO2

component may then be removed from the total label time course by subtraction,

i.e.

Turnourco2 correcjed(t) = TumourLabel (t) - IRFc02 (t) 0 Plasrnaco2 (t) (9.2)

The time courses of total label in tumour and the appropriate 11 CO 2 corrections

for the four studies are shown in Figures (9.8 - 9.11).

It is evident that the contribution of carbon dioxide to the signal is significant.

The percentage contribution of carbon dioxide at 1 hour is given in Table (9.2).

These results are consistent with work performed by Shields et al. in animals who

found that 80% of label in animal tumours one hour post injection was accounted

for by labelled DNA [114]. They also found that methyl labelled thymidine gave

only 40% as labelled DNA at one hour, again demonstrating the advantages of
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Study % CO 2 at 60 mins
p4060	 30.3k

p4161	 14.4
p4132	 28.7
n4213	 37.2

Table 9.2: Contribution of carbon dioxide in tumour at 60 minutes (extrapo1ated,
see Figure (8.8))

using the [2-' 1 C] label. Under the assumption that the animal results can be ex-

trapolated to human studies it would suggest that there is little or no contribution

from the intermediary metabolites in tumour.

Initial results suggest that a standard correction for carbon dioxide may be difficult

to apply due to the variability in impulse responses. However, the dynamics of

carbon dioxide are very fast and a model could approximate the contribution

simply as a plasma or blood volume term in any modelling procedure.

9.5.4 Dual Input Spectral Analysis

To assess whether the kinetics of [ 11 C]thymidine and 11 CO 2 could be distinguished

implicitly from the tumour time activity curves, the method of dual spectral

analysis was implemented and applied. This technique is an extension of the

standard spectral analysis technique involving just a single input function (see

Chapter 6). The problem is considered such that the tissue constitutes labelled

thymidine and carbon dioxide. Plasma input functions were identified for these

two compounds as described previously. The tumour time activity curves were

then fitted to a composite function of possible thymidine and carbon dioxide

behaviour. This is described mathematically by,
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100	 100

PETtumour (t) = Plasmathymidine (t)® aje1t+PlasrnacQ2(t)® 7•6--/31t (9.3)

1=1	 j=1

subject to the non-negativity constraint aj , 'i ^ 0.'

This equation was applied to the tumour time activity curves utilising the NNLS

algorithm described in Chapter 6. This was applied to all four studies and the pre-

dicted components (Spectral analysis approach) are compared with the measured

components (two scan approach) in Figures (9.12 - 9.15).
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Figure 9.12: Prediction of carbon dioxide contribution in tumour using spectral
analysis (p4060)

Unfortunately the spectral analysis fails to characterise the different kinetics.

However, the shapes of the curves are correct and if further constraints could

be applied it might be possible to predict the curves (i.e. if the ' 1 CO 2 fraction in

tissue was known at 60 mins).
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Figure 9.14: Prediction of carbon dioxide contribution in tumour using spectral
analysis (p4132)
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Figure 9.15: Prediction of Carbon dioxide Contribution in tumour using spectral
analysis (p4213)

Parametric Images

The correction of [11 Cjthymidine scans using a [11 Cjbicarbonate scan and equation

(9.2) may be applied at a single "pixel" level. This method was applied to create a

' 1 CO 2-corrected dynamic data set. Spectral analysis was then applied to both the

uncorrected and corrected data sets using a [' 1 C]thymidine plasma input function

and the impulse response functions were derived at 60 minutes. These images

are representative of the retention of the total uncorrected and corrected tracer

signal. A transaxial slice through the abdomen is shown in Figure (9.16). It is

clear from the images that the 11 CO 2 correction removes a large part of the diffuse

' 1 CO 2 signal thus enabling the production of more accurate functional images of

thymidine retention.
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Figure 9.16: Thymidine impulse response functions imaged at 60 minutes with
and without correction for the contribution of carbon dioxide in tissue

9.6 Discussion

The first clinical application of [ 11 C]thymidine uptake in tumours using PET was

described by Martiat et al. [134] using thymidine labelled in the methyl position.

In this work a relatively simple compartmental model was employed and it was

argued that the signal due to labelled metabolites was unimportant. They showed

a correlation between the uptake of [' 1 C]thymidine in lymphoma and histological

grade. The advantages of thymidine labelled in the 2-C position was first proposed

by Vander Borght [129] and its application to PET was studied further by Shields

[114] who drew attention to the need to take the contribution of metabolites

into account in any subsequent analysis. A plausible compartmental model for

the analysis of the behaviour of [ 11 C]thymidine and its labelled metabolites was
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also proposed by Shields [114]. However, as the author commented the model

is over-parameterised and numerically unidentifiable from the PET data. More

recently Mankoff et al. [133] from the same group have suggested a graphical

Patlak approach. The technique assumes that none of the metabolites involve an

irreversible step, such an assumption would be invalidated by any fixation of CO2.

Although Mankoff et al. do consider the case where there is a "small" amount of

metabolite trapping, they agree that it is difficult to mathematically separate the

contribution of [11 C]thymidine and its labelled metabolites in this case. In this

thesis I have demonstrated that the determination of the relative contributions of

["C]thymidine and metabolite components, simply from the total label in tissue,

is non trivial with the application of dual input spectral analysis. Both this

technique and that of Mankoff et al. stem from basically the same model and are

therefore likely to suffer from similar inherent problems.

The approach used in the present work has been to address the metabolite prob-

lem directly, and to conduct an additional scan aimed at characterising the be-

haviour of the principal labelled metabolite, namely 11 CO 2 . The advantages of

this approach are simply that it allows for the removal of 11 CO 2 from the tissue

signal, enabling subsequent modelling techniques to be simplified. A disadvantage

arises from the need for an additional scan. For example, it may also be neces-

sary in some cases to combine the thymidine scans with an HO blood flow scan

to investigate delivery. However, the consecutive acquisition of all three studies

would rarely be feasible. The work presented in this chapter has been based on

four paired scans. These preliminary data are insufficient to examine whether

population data could be used to correct for the "CO 2 contribution in tissue in

the general case. On the basis of the present analyses further paired scans are

therefore being carried out in the Unit.

The present analyses were carried out as part of a programme investigating the
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potential use of [11 C]thymidine in PET as a marker of tumour cell proliferation. In

this context the present work establishes an experimental approach to the removal

of the confounding signal from the major metabolite. The next steps will involve

the investigation of the corrected signal to see if it provides a more robust index of

cell proliferation. Clearly this presents a difficult exercise in validation - a possible

approach however is suggested by the results presented in Chapter 7 on MIB 1.

With the benefit of hind sight it may be profitable to repeat these studies coupled

with the two scan approach presented here.



Chapter 10

Conclusions and Future Work

10.1 Conclusions

This thesis has considered three main themes; identifiability analysis, tracer ki-

netic modelling and contamination of the data by labelled metabolites. After

an introduction to PET, modelling and identifiability analysis (Chapters 2 and

3) the thesis considered unidentfiable systems in Chapter 4. A new method has

been presented which allows for the reparameterisation of unidentifiable systems.

The method was based on the Taylor series approach to identifiability analysis

and enables the original unidentifiable system to be reduced to a locally identi-

fiable system. Furthermore this reparameterisation may be globally identifiable.

Theorems have been presented, firstly to give conditions for the existence of a

reparameterisation of an unidentifiable model and secondly to dictate how a repa-

rameterisation must be constructed. This reparameterisation method was then

applied to a metabolism model in Chapter 5 which considered methods for the

correction of the plasma input function due to labelled metabolites. Chapter 5 has

considered using compartmental models for the description of metabolite foria-

tion and two models were presented for the metabolism of ["C]diprenorphine and

[11 C}flumazenil. A partition coefficient model was applied to ["C]fiumazenil blood

data which allowed for the creation of metabolite data solely from the distribution

171
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of label between plasma and red cells. These findings spawned a proposal for a

future blood sampling protocol involving fewer metabolite samples. This would

enable metabolite correction of the plasma curve using the compartmental and

partition coefficient models.

Chapter 6 considered a tracer kinetic modelling technique (spectral analysis) with

reference to the problem of the uniqueness of the solution. A Theorem was pre-

sented which gives a sufficient condition for a unique solution to the spectral

analysis problem. This condition is normally satisfied in practice. The method of

spectral analysis was extended to consider systems involving displacement of the

tracer signal. This method was applied to a set of head displacement data, from

a whole body counter, utilising a novel set of basis functions. This allowed for the

change in occupancy to be inferred.

Chapter 7 investigated [' 1 C]thymidine, a possible tracer for the (in-vivo) mea-

sure of tumour cell proliferation. PET derived indices of tumour cell proliferation

were found to correlate with an ex-vivo histological measure. The PET tracer

['1C] thymidine suffers from the metabolism of the injected compound, the major

rnetabolite being "CO 2 . Therefore dual experiments were proposed and per-

formed using both 11 CO 2 and [11 C]thymidine. This novel dual scan approach al-

lowed for the removal of the contaminating 11 CO 2 contribution to the tissue data.

This correction was performed using spectral analysis to characterise the carbon

dioxide tissue dynamics and then convolution with the carbon dioxide plasma

time course to establish the contribution to the tissue signal. The "CO 2 plasma

time course was obtained using a novel breath sampling and analytical technique

for characterising expired radioactivity. The applicability of a dual input spectral

analysis method was investigated as a kinetic modelling technique to distinguish

between the ["C]thymidine and "CO 2 signals in tissue. Unfortunately this failed

to resolve the two time courses.
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10.2 Future Work

It is anticipated that the following work will be carried out in the future.

A revision of the [11 C]flumazenil protocol will be implemented as proposed at

the end of Chapter 5. This will utilise the partition coefficient model to enable

accurate estimation of metabolite data at late time points.

The method of spectral analysis for displacement studies will be extended to

consider data on a tomographic scale. The technique will necessitate statisti-

cal considerations at this resolution, and a proposed method involving an F-test

of displaced and undisplaced spectral methods will be investigated to determine

whether individual pixels contain a displaced signal.

[ C] Thymidine experiments will be carried out as proposed at the end of Chapter

9, further examining the possibility of a standard ' 1 CO 2 correction. 11 CO 2 correc-

tj0 of the [11 Cjthymidine data will allow for a more comprehensive investigation of

["C] thymidine kinetics. Experiments involving ["C] thymidine, [11 C]bicarbonate

nd MIB 1 measures are being planned to validate the use of ["C]thymidine as

in vivo marker of cell proliferation.



Bibliography

[1] J Nuci Med, 32:559-752, 1991.

[2] R. S. J. Frackowiak and K. J. Friston. Functional neuroanatomy of the hu-

man brain : positron emission tomography - a new neuroanatomical tech-

nique. JAnat, 184:211-225, 1994.

[3] R. A. Weeks and D. J. Brooks. Positron emission tomography and central

neurotransmitter systems in movement disorders. Fundam Clin Pharmacol,

8:503-517, 1994.

[4] R. E. Butler, D. C. Costa, and C. L. E. Katona. PET and SPECT imaging

in the dementias. In I. P. C. Murray and P. J. Eli, editors, Nuclear medicine

in clinical diagnosis and treatment, pages 613-627. Churchill Livingstone,

1994.

[5] R. de Silva and P. G. Camici. Assessment of myocardial perfusion,

metabolism and pharmacology using positron emission tomography. Car-

dioscience, 3(4) :205-216, 1992.

[6] V.J. Cunningham, S.D. Rosen, H. Boyd, S. Osman, R.J. Davenport, R.N.

Gunn, V.W. Pike, and P.G. Camici. Uptake of [N-methyl-Cu] propionyl-

L-carnitine in human myocardium. J Pharm Exp Therap, 227(1):511-517,

1996.

174



BIBLIOGRAPHY
	

175

[7] R. L. Wahi. Positron emission tomography : applications in oncology. In

I. P. C. Murray and P. J. Eli, editors, Nuclear medicine in clinical diagnosis

and treatment, pages 801-820. Churchill Livingstone, 1994.

[8] D. W. 0. Tiisley, R. J. A. Harte, Jones. T., F. Brady, S. K. Luthra,

G. Brown, and P. M. Price. New techniques in the pharmacokinetic analysis

of cancer drugs IV positron emission tomography. Cancer Surveys, 17:425-

442, 1993.

[9] P. Wells, R. J. A. Harte, and P. Price. Positron emission tomography : a

new investigational area for cancer research. Clin Onc, 8:7-14, 1996.

[10] P. F. Liddle, K. J. Friston, C. D. Frith, S. R. Hirsch, T. Jones, and R. S. J.

Frackowiak. Patterns of cerebral blood flow in schizophrenia. Br J Psychi-

atry, 160:179-186, 1992.

[11] E. J. Hoffman and M. E. Phelps. Positron emission tomography: principles

and quantitation. In M. E. Phelps, J. C. Mazziotta, and H. R. Schelbert,

editors, Positron emission tomography and autoradiography: principles and

applications for the brain and heart, pages 237-286. Raven Press, 1986.

[12] J. S. Flower and A. P. Wolf. Positron emitter-labeled compounds: priorities

and problems. In M. E. Phelps, J. C. Mazziotta, and H. R. Schelbert,

editors, Positron emission tomography and autoradiography: principles and

applications for the brain and heart, pages 391-450. Raven Press, 1986.

[13] R. Myers, T. J. Spinks, S. K. Luthra, and D. J. Brooks. Positron emission to-

mography. In M. G. Stewart, editor, Quantitative methods in neuroanatomy,

pages 117-161. John Wiley and Sons, 1992.



BIBLIOGRAPHY
	

176

[14] S. R. Meikie and M. Dahlbon. Positron emission tomography. In I. P. C.

Murray and P. J. Eli, editors, Nuclear medicine in clinical diagnosis and

treatment, pages 613-627. Churchill Livingstone, 1994.

[15] T. J. Spinks, T. Jones, M-C. Gilardi, and J. D. Heather. Physical perfor-

mance of the latest generation of commercial positron scanner. IEEE Trans

Nucl Sci, 35:721-725, 1988.

[16] T. J. Spinks, T. Jones, D. L. Bailey, D. W. Townsend, S. Grootoorik, P. M.

Bloomfield, M-C. Gilardi, M. E. Casey, B. Sipe, and J. Reed. Physical

performance of a positron tomograph for brain imaging with retractable

septa. Phys Med Biol, 37:1637-1655, 1992.

[17] T. F. Budinger, G. T. Gullberg, and Huesman R. H. Image reconstruction

from projections. In G. T. Herman, editor, Emission computed tomography,

pages 147-245. Springer-Verlag, 1979.

[18] Y. Vardi, A. Shepp, and L. Kaufman. A statistical model for positron

emission tomography. J American Statistical Association, 80:8-37, 1985.

[19] M. Bergstrom, L. Eriksson, C. Bohm, G. Blomqvist, and J. Litton. Correc-

tion for scattered radiation in a ring detector positron camera by integral

transformation of the projections. J Comput Assist Tomogr, 7(1):42-50,

1983.

[20] S. Grootoonk, T. J. Spinks, T. Jones, C. Michel, and A. Bol. Correction for

scatter using a dual energy window technique with a tomograph operated

without septa. In IEEE Nuclear Science Symposium and Medical Imaging

Conference, volume 3, pages 1569-1573, 1991.

[21] D. W. Townsend, A. Geissbühler, M. Defrise, E. J. Hoffman, T. J. Spinks,

D. L. Bailey, M-C. Gilardi, and T. Jones. Fully three-dimensional recon-



BIBLIOGRAPHY
	

177

struction for a PET camera with retractable septa. IEEE Trans Mcd Imag-

ing, 10:505-512, 1991.

[22] A. S. 0. Ranicar, C. W. Williams, L. Schnorr, J. C. Clark, C. G. Rhodes,

P. M. Bloomfield, and T. Jones. The on-line monitoring of continuously

withdrawn arterial blood during PET studies using a single BGO photomul-

tiplier assembly and non-stick tubing. Med Proc Tech, 17:259-264, 1991.

[23] B. Mazière, R. Cantineau, H. H. Coenen, M. Guillaume, C. Haildin,

A. Luxen, C. Loc'h, and S. K. Luthra. PET radiopharmaceutical

metabolism - plasma metabolite analysis. In G. Stöcklin and V. W. Pike,

editors, Radiopharmaceuticals for positron emission tomography : method-

ological aspects, pages 151-178. Kluwer Academic Publishers, 1993.

[24] S. K. Luthra, S. Osman, D. R. Turton, V. Vaja, K. Dowsett, and F. Brady.

An automated system on solid phase extraction and HPLC for the routine

determination in plasma of unchanged [ 11 C]-L-deprenyl, ['1C]diprenorphine,

[' 1 C]flumazenil, ["C]raclopride and [11C]scherring 23390. J Labelled Compd

Radiopharm, 32:518-520, 1993.

[25] S. C. Huang and M. E. Phelps. Principles of tracer kinetic modelling in

positron emission tomography and autoradiography. In M. E. Phelps, J. C.

Mazziotta, and H. R. Schelbert, editors, Positron emission tomography and

autoradiography: principles and applications for the brain and heart, pages

287-346. Raven Press, 1986.

[26] S. C. Huang, D. G. Feng, and M. E. Phelps. Model dependency and esti-

mation reliability in measurement of cerebral oxygen utilization rate with

oxygen-15 and dynamic positron emission tomography. J Cereb Blood Flow

Metab, 6(1):105-119, 1986.



BIBLIOGRAPHY
	

178

[27] J. Delforge, A. Syrota, and B. M. Mazoyer. Experimental design optimisa-

tion : theory and application to estimation of receptor model parameters

using dynamic positron emission tomography. Phys Med Biol, 34(4):419-

435, 1989.

[28] I. T. Joliffe. Principal components analysis. Springer-Verlag, 1986.

[29] M. Samal, M. Karny, H. Surova, P. Penicka, E. Marikova, and Z. Diensbier.

Rotation to simple structure in factor analysis of dynamic radionuclide stud-

ies. Phys Med Biol, 32(3):371-382, 1987.

[30] J. T. Yap, M. Cooper, C. T. Chen, and V. J. Cunningham. Generation of

parametric images using factor analysis of dynamic PET data. In R. Myers,

V. J. Cunningham, D. L. Bailey, and T. Jones, editors, Quantification of

brain function using PET, pages 292-296. Academic Press, 1996.

[31] F. Hermansen and A. A. Lammertsma. Linear dimesion reduction of

quences of medical images : I. optimal inner products. Phys Med Biol,

40:1909-1920, 1995.

[32] F. Hermansen, P. M. Bloomfield, J. Ashburner, P. G. Camici, and A. A.

Lammertsma. Linear dimesion reduction of sequences of medical images

II. direct sum decomposition. Phys Med Biol, 40:1921-1941, 1995.

[33] F. O'Sullivan, M. Muzi, M. M. Graham, and A. Spence. Parametric imag-

ing by mixture analysis in 3D validation for dual-tracer glucose studies. In

R. Myers, V. J. Cunningham, D. L. Bailey, and T. Jones, editors, Quantifi-

cation of brain function using PET, pages 297-300. Academic Press, 1996.

[34] V.J. Cunningham and T. Jones. Spectral analysis of dynamic PET studies.

J Cereb Blood Flow Metab, 13:15-23, 1993.



BIBLIOGRAPHY
	

179

1135] M. Tadoroko, A. K. P. Jones, V. J. Cunningham, D. Sashin, S. Grootoonk,

J. Ashburner, and T. Jones. Parametric images of 11 C-diprenorphine bind-

ing using spectral analysis of dynamic PET images acquired in 3D. In

K. Uemura, N. A. Lassen, T. Jones, and I. Kanno, editors, Quantification

of brain function : tracer kinetic and image analysis in brain PET, pages

289-294. Elsevier Science Publishers, 1993.

[36] V. J. Cunningham, J. Ashburner, H. Byrne, and T. Jones. Use of spectral

analysis to obtain parametric images from dynamic PET studies. In K. Ue-

mura, N. A. Lassen, T. Jones, and I.. Kanno, editors, Quantification of brain

function tracer kinetic and image analysis in brain PET, pages 101-111.

Elsevier Science Publishers, 1993.

[37] C. S. Patlak, R. G. Blasberg, and J. D. Fenstermacher. Graphical evaluation

of blood-to-brain transfer constants from multiple-time uptake data. J Cereb

Blood Flow Metab, 3:1-7, 1983.

[38] A. Gjedde. High- and low-affinity transport of d-glucose from blood to brain.

J Neurochem, 36:1463-1471, 1981.

[39] J. Logan, J. S. Fowler, N. D. Volkow, A. P. Wolf, S. L. Dewey, D. J. Schyler,

R. R. MacGregor, R. Hitzemann, B. Bendriem, S. J. Gatley, and D. R.

Christman. Graphical analysis of reversible radioligand binding from time-

activity measurements applied to [N- 11 C-methyl]-(-)-cocaine PET studies in

human subjects. J Cereb Blood Flow Metab, 10:740-747, 1990.

[40] M. D. Rutland. A single injection technique for subtraction of blood back-

ground in l3l lhippuran renograms. Br J Radiol, 52:134-137, 1979.



BIBLIOGRAPHY
	

180

[41] s-c Huang, R. E. Carson, and M. E. J. Phelps. Measurement of local blood

flow and distribution volume with short-lived isotopes : a general input

technique. J Cereb Blood Flow Metab, 2:99-108, 1982.

[42] N. M. Alpert, L. Eriksson, 3. Y. Chang, M. Bergstrom, J. E. Litton, J. A.

Correia, C. Bohm, It. H. Ackerman, and J. M. Taveras. Strategy for the

measurement of regional cerebral blood flow using short-lived tracers and

emission tomography. J Cereb Blood Flow Metab, 4:28-34, 1984.

[43] H. lida, P. M. Bloomfield, S. Miura, I. Kanno, M. Murakami, K. Uemura,

M. Amano, K. Tanaka, Y. Hirose, and S. Yamamoto. Effect of real-time

weighted integration system for rapid calculation of functional images in

clinical positron emission tomography. IEEE Trans Med Imaging, 14:116-

121, 1995.

[44] N. A. Lassen, P. A. Bartenstein, A. A. Lammertsma, M. C. Prevett, D. It.

Turton, S. K. Luthra, S. Osman, P. M. Bloomfield, T. Jones, P. N. Patsalos,

M. T. O'Connell, J. S. Duncan, and J. Vanggaard Andersen. Benzodiazepine

receptor quantification in vivo in humans using [11 C]flumazenil and PET:

application of the steady-state principle. J Cereb Blood Flow Metab, 15:152-

165, 1995.

[45] P. Doucet and P. B. Sloep. Mathematical modelling in the life sciences. Ellis

Horwood, 1992.

[46] J. A. Jacquez. Compartmental Analysis in Biology and Medicine. University

Press, Ann Arbor, Michigan, second edition, 1985.

[47] D. A. Sanchez, R. C. Allen, and W. T. Kyner. Differential equations. Ad-

dison Wesley Publishing Company, second edition, 1988.



BIBLIOGRAPHY
	

181

[48] J. C. Price, H. S. Mayberg, R. F. Dannals, A. A. Wilson, H. T. Ravert,

B. Sadzot, Z. Rattner, A. Kimball, M. A. Feldman, and J. J. Frost. Mea-

surement of benzodiazepine receptor number and affinity using tracer ki-

netic modelling, positron emission tomography, and ["C]flumazenil. J Cereb

Blood Flow Metab, 13:656-667, 1993.

[49] M. J. Chappell. Structural identifiability of compartmental models charac-

tensing saturable binding: comparison between pseudo-steady state and

non-pseudo steady state model formulations. Math Biosci, 133(1):1-20,

1996.

[50] M. J. Chappell and K. R. Godfrey. Structural identifiability of the param-

eters of a nonlinear batch reactor model. Math Biosci, 108:241-251, 1992.

[51] K. R. Godfrey and III DiStefano, J. J. Identifiability of model parame-

ters. In E. Walter, editor, Identifiabilit1j of Parametric Models, pages 1-20.

Pergamon Press, 1987.

[52] 5. Vajda, K. R. Godfrey, and H. Rabitz. Similarity transformation approach

to structural identifiability of nonlinear models. Math Biosci, 93:217-248,

1989.

[53] H. Pohjanpalo. System identifiability based on the power series expansion

of the solution. Math Biosci, 41:21-33, 1978.

[54] S. Vajda, H. Rabitz, E. Walter, and Y. Lecourtier. Qualitative and quan-

titative identifiability analysis of nonlinear chemical kinetic models. Chem

Eng Comm, 83:191-219, 1989.

[55] R. Bellman and K. J. Aström. On structural identifiability. Math Biosci,

7:329-339, 1970.



BIBLIOGRAPHY
	

182

[56] J. Delforge, A. Syrota, and Mazoyer B. M. Experimental design optimi-

sation: theory and application to estimation of receptor model parameters

using dynamic positron emission tomography. Phys Med Biol, 34:419-435,

1989.

[57] A. Raksanyi, Y. Lecourtier, E. Walter, and A. Venot. Identifiability and

distinguishability testing via computer algebra. Math Biosci, 77:245-266,

1985.

[58] S. M. Skinner, R. E. Clark, N. Baker, and R. A. Shipley. Complete solution

of the three compartmental model in steady-state after single injection of

radioactive tracer. Amer J Physiol, 196:238-244, 1959.

[59] J. J. DiStefano, K. C. Wilson, M. Jang, and P. H. Mak. Identification of

the dynamics of thyroid metabolism. Autornatica, 11:149-159, 1975.

[60] M. Milanese and G. P. Molino. Structural identifiability of compartmental

models and pathophysiological information from the kinetics of drugs. Math

Biosci, 26:175-190, 1975.

[61] J.P. Norton. Sources of nonuniqueness in deterministic identfiability. Math

Biosci, 60:89-108, 1982.

[62] K. R. Godfrey. Compartmental Models and their Applications. Academic

Press, New York and London, 1983.

[63] S. Vajda. Structural identifiability of linear, bilinear, polynomial and ratio-.

nal systems. In 9th IFAC World Congress, Budapest, Hungary, 1982.

[64] M. J. Chappell, K. R. Godfrey, and S. Vajda. Global identifiability of

the parameters of nonlinear systems with specified inputs: a comparison of

methods. Math Biosci, 102:41-73, 1990.



BIBLIOGRAPHY
	

183

[65] E. Walter and Y. Lecourtier. Global approaches to identifiability testing for

linear and nonlinear state space models. Math and Comput in Simulation,

24:472-482, 1982.

[66] M. Chapman and K. R. Godfrey. Some extensions to the exhaustive-

modelling approach to structural identifiability. Math Biosci, 77:305-323,

1985.

[67] Y. Lecourtier, F. Lamnabhi-Lagarrigue, and E Walter. Volterrra and gener-

ating power series approaches to identifiability testing. In E. Walter, editor,

Identifiability of Parametric Models, pages 50-66. Pergamon Press, 1987.

[68] L. Ljung and T. Glad. On global identifiability for arbitrary model

parametrizations. Automatica, 30(2) :265-276, 1994.

[69] M. Berman. A postulate to aid in model building. J Theoret Biol, 4:229-236,

1962.

[70] K. Glover and J. C. Willems. Parameterization of linear dynamical systems:

canonical forms and identifiability. IEEE Trans Automatic Control, AC-

19(6):640-645, 1974.

[71] M. Milanese and N. Sorrentino. Decomposition methods for the identifia-

bility analysis of large systems. International Journal of Control, 1:71-79,

1978.

[72] T. J. Rothenburg. Identification in parametric models. Econometrica,

39(3):577-591, 1971.

[73] C. Cobelli and G. Toffolo. Theoretical aspects and practical strategies for

the identification of unidentifiable compartmental systems. In E. Walter,



BIBLIOGRAPHY
	

184

editor, Identifiability of Parametric Models, pages 85-91. Pergamon Press,

1987.

[74] E. Walter and Y. Lecourtier. Unidentifiable compartmental models: what

to do ? Math Biosci, 56:1-25, 1981.

[75] H. Pohjanpalo. Jdentifiability of deterministic differential models in state

space. Technical report, Technical Research Centre of Finland, 1982.

[76] J. E. Marsden and M. J. Hoffman. Elementary Classical Analysis. W. H.

Freeman and Company, second edition, 1993.

[77] V. J. Cunningham, S. P. Hume, G. R. Price, IR. G. Ahier, J. E. Cremer,

and A. K. P. Jones. Compartmental analysis of diprenorphine binding to

opiate receptors in the rat in vivo and its comparison with equilibrium data

in vitro. J Cereb Blood Flow Metab, 11:1-9, 1991.

[78] S. Pappata, Y. Samson, C. Chavoix, C. Prenant, M. Mazière, and J. C.

Baron. Regional specific binding of [ 11 C]RO 15 1788 to central type hen-

zodiazepine receptors in human brain: quantitative evaluation by PET. J

Cereb Blood Flow Metab, 8(3):304-313, 1988.

[79] P. Abadie and J. C. Baron. In vivo studies of the central benzodiazepine re-

ceptors in the human brain with positron emission tomography. In M. Diksic

and R. C. Reba, editors, Radiopharmaceuticals and Brain Pathology Studied

with PET and SPECT, pages 357-379. CRC Press, 1991.

[80] M. A. Mintun, M. E. Raichie, M. R. Kilbourn, G. F. Wooten, and M. J.

Welch. A quantitative model for the in vivo assessment of drug binding sites

with positron emission tomography. Ann Neurol, 15:217-227, 1984.

[81] A. J. Clark. The mode of action of drugs on cells. Edward Arnold, 1933.



BIBLIOGRAPHY
	

185

[82] R. W. Kerwin and Pilowsky L. S. Traditional receptor theory and its ap-

plication to neuroreceptor measurements in functional imaging. Eur J Nuci

Med, 22(7):699-709, 1995.

[83] J. Delforge, S. Pappata, P. Millet, Y. Samson, B. Bendriem, A. Jobert,

C. Crouzel, and A. Syrota. Quantification of benzodiazepine receptors in

human brain using PET, [ 11 C]flumazenil, and a single experiment protocol.

J Cereb Blood Flow Metab, 15:284-300, 1995.

[84] J. Delforge, A. Syrota, and Mazoyer B. M. Identifiability analysis and pa-

rameter identification of an in vivo ligand-receptor model from PET data.

IEEE Trans Biomed Eng, 37:653-662, 1990.

[85] N. Lassen. Neuroreceptor quantitation in vivo by the steady-state principle

using constant infusion or bolus injection of radioactive tracers. J Cereb

Blood Flow Metab, 12:709-716, 1993.

[86] G. Blomqvist, S. Pauli, L. Farde, L. Ericksson, A. Person, and C. Haildin.

Dynamic models of reversible ligand binding. In C. Beckers, A. Goflinet,

and A. Bol, editors, Clinical Research and Clinical Diagnosis, pages 35-44.

Kluwer Academic Publishers, 1989.

[87] A. Holmberg. Qn the practical identifiability of microbial growth models

incorporating michaelis-menten type nonlinearities. Math Biosci, 62:23-43,

1982.

[88] D. J. Nutt. Addiction: brain mechanisms and their treatment application.

Lancet, 347:31-36, 1996.

[89] A. L. Malizia and M. P. Richardson. Benzodiazepine receptors and positron

emission tomography : ten years experience, a new beginning? J Psy-

chopharmacol, 9(4) :355-368, 1995.



BIBLIOGRAPHY
	

186

[90] P. A. Bartenstein, J. S. Duncan, M. C. Prevett, Cunningham V. J., D. R.

Fish, A. K. Jones, S. K. Luthra, G. V. Sawle, and D. J. Brooks. Investigation

of opiod system in absence seizures with positron emission tomography. J

Neurol Neurosurg Psychiatry, 56:1295-1302, 1993.

[91] W. Sadée, D. C. Perry, J. S. Rosenbaum, and A Herz. [3H]diprenorphine

receptor binding in vivo and in vitro. Eur J Pharmacol, 81:431-440, 1982.

[92] D. Inoue, Y. Akimoto, K. Hashimoto, and T. Yamasaki. Alterations in

biodistribution of [3H]RO 15-1788 in mice by acute stress: possible changes

in in vivo binding availability of brain benzodiazepine receptor. mt J Nuci

Mcd Biol, 12:369-374, 1985.

[93] A. Persson, S. Pauli, C. G. Swahn, C. Halldin, and G. Sedvall. Cerebral

uptake of 11 C-RO 15-1788 and its acid metabolite 11 C-RO 15-3890; PET

study in healthy volunteers. Human Psychopharmacology, 4:215-220, 1989.

[94] A. K. P. Jones, S. K. Luthra, B. Mazière, V. W. Pike, C. Loc'h, C. Crouzel,

A. Syrota, and T. Jones. Regional cerebral opioid receptor studies with

[11 C]diprenorphine in normal volunteers. J Neurosci Methods, 23:121-129,

1988.

[95] A. K. P. Jones, V. J. Cunningham, S. Ha-Kawa, T. Fujiwara, Q . Liyii,

S. K. Luthra, S. Osman, and T. Jones. Quantitation of [11C]diprenorphine

cerebral kinetics in man acquired by PET using presaturation, pulse-chase

and tracer-only protocols. J Neurosci Methods, 51:123-134, 1994.

[96] U. Klotz, G. Ziegler, and I. W. Reimnan. Pharmacokinetics of the selective

benzodiazepine antagonist RO 15-1788 in man. Eur J Clin Pharmacol,

27:115-117, 1984.



BIBLIOGRAPHY
	

187

[97] G. Pommier-layrargues, J. F. Giguere, J. Lavere, B. Willems, and R. F.

Butterworth. Pharmacokinetics of benzodiazepine antagonist RO 15-1788

in cirrhotic patients with moderate or severe liver dysfunction. Hepatology,

10:969-972, 1989.

[98] C. Haildin, S. Stone-Elander, J. 0. Thorell, A. Persson, and G. Sedvall. "C

labelling of RO 15-3890, for PET studies of benzodiazepine receptors. Appi

Radiat Isot, 39:993, 1988.

[99] L. Barre, D. Debruyne, P. Abadie, M. Moulin, and J. C. Baron. A compar-

ison of methods for the separation of ["C]RO 15-1788 (flumazenil) from its

metabolites in the blood of rabbits, baboons and humans. Appl Radiat Isot,

42:435-439, 1990.

[100] D. Debruyne, P. Abadie, L. Barre, F. Alberssard, M. Moulin, E. Zariflan,

and J. C. Baron. Plasma pharmacokinetics and metabolism of the benzo-

diazepine antagonist 1 'C RO 15-1788 (flumazenil) in baboon and human

during positron emission tomography studies. Eur J Drug Metabol Phar-

macol, 16:141-152, 1991.

[101] A. A. Lammertsma, C. J. Bench, G. W. Price, J. E. Cremer, S. K. Luthra,

D. Turton, N. D. Wood, and R. S. J. Frackowiak. Measurement of cerebral

monamine oxidase B activity using L[1C]deprenyl and dynamic positron

emission tomography. J Cereb Blood Flow Metab, 11:545-556, 1991.

[102] C-Y. Shiue, L-Q. Bai, R-R. Teng, C. D. Arnett, S. L. Dewey,

A. P. Wolf, D. W. Mcpherson, J. S. Fowler, J. Logan, M. J. Hol-

land, and E. J. Simon. A comparison of the brain uptake of

N- (cyclopropyl[' 'C]methylnorbuprenorphine ([11 Cjbuprenorphine) and N-



BIBLIO GRAPIIY
	

188

(cyclopropyl [' 1 C]metbylnordiprenorphine (["C] diprenorphine) in baboon

using PET. Nuci Med Biol, 18(3):281-288, 1991.

[103] J. A. Nelder and R. Mead. A simplex method for function minimization.

Comput J, 7:308-313, 1965.

[104] S. C. Huang, J. R. Barrio, D. C. Yu, B. Chen, S. Grafton, W. P. Mel-

ega, J. M. Hoffman, N. Satyamurthy, J. C. Mazziotta, and M. E. Phelps.

Modelling approach for separating blood time-activity curves in positron

emission tomographic studies. Phys Med Biol, 36(6):749-761, 1991.

[105] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Nu-

merical Recipes : The Art of Scientific Computing. Cambridge University

Press, 1989.

[106] D. G. Feng, S. C. Huang, and X. Wang. Models for computer simulation

studies of input functions for tracer kinetic modeling with positron emission

tomography. mt J Biomed Comput, 32:95-110, 1993.

[107] D. G. Luenberger. Optimisation by Vector Space Methods. Wiley, 1969.

[108] H.J. Tobler and G. Engel. Affinity spectra: a novel way for the evaluation

of equilibrium binding experiments. Arch Pharmacol, 322:183-192, 1983.

[109] It. A. Koeppe, V. A. Holthoff, K. A. Frey, M. R. Kilbourn, and D. E.

Kuhl. Compartmental analysis of ["C]flumazenil kinetics for the estimation

of ligand transport rate and receptor distribution using positron emission

tomography. J Cereb Blood Flow Metab, 11:735-744, 1991.

[1101 C. L. Lawson and R. J. Hanson. Solving least squares problems. Prentice-

Hall, 1974.

[111] J.D. Murray. Mathematical Biology. Springer-Verlag, second edition, 1990.



BIBLIOGRAPHY
	

189

[112] A. Malizia, G. Forse, R. N. Gunn, L. Schnorr, S. Rajeswaran, K. Poole,

D. Nutt, and T. Jones. The MOC counter: a pharmacological tool for the

in vivo measurement of ligand occupancy indices in the human brain. In

R. Myers, V. J. Cunningham, D. L. Bailey, and T. Jones, editors, Quantifi-

cation of brain function using PET, pages 20-25. Academic Press, 1996.

[113] A. Malizia, 0. Forse, A. Haida, R. Gunn, J. Melichar, K. Poole, D. Bateman,

D. Fahy, L. Schnorr, D. Brown, C. Rhodes, D. J. Nutt, and T. Jones. A

new human (psycho)pharmacology tool : the multiple organs coincidences

counter (MOCC). J Psychopharrnacol, 9(4):294-306, 1995.

[114] A. F. Shields. Measurement of tumour proliferation using [C-11]thymidine

and PET. In Clinical PET in Oncology, Proc. Of the 2nd Int'l Symp. on

PET in Oncology, Sendai, Japan, volume 2, pages 41-45, 1993.

[115] A. F. Shields, D. V. Coonrod, R. C. Quackenbush, and J. J. Crowley. Cel-

lular sources of thymidine nucleotides : studies for PET. J Nucl Mcd,

28(9):1435-1440, 1987.

[116] H. Thierens, M. Van Eijkeren, and P. Goethals. Biokinetics and dosimetry

for [methyl-"C]thymidine. Br J Radiol, 67:292-295, 1994.

[117J A. F. Shields, S. M. Larson, Z. Grunbaum, and M. M. Graham. Short-term

uptake in normal and neoplastic tissues : studies for PET. J Nuci Mcd,

25:759-764, 1984.

[118] R. N. Gunu, P. Wells, V. J. Cunningham, T. Jones, and P. Price. An

investigation into the use of {2-C 11 }thymidine as a noninvasive index of cell

proliferation in tumours in human subjects using PET. In A. M. J. Paans,

J. Pruim, E. J. F. Franssen, and W. Vaalburg, editors, Metabolic imaging

of cancer, pages 123-125. PET-Centrum AZG, 1996.



BIBLIOGRAPHY
	

190

[119] 0. Cattoretti, M. H. G. Becker, G. Key, M. Duchrow, C. Schiuter, J. Galle,

and J. Gerdes. Monoclonal antibodies against recombinant parts of the

Ki-67 antigen (MIB 1 and MIB 3) detect proliferating cells in microwave-

processed formalin-fixed paraffin sections. J Pathol, 168:357-363, 1992.

[120] J. Gerdes, M. H. Becker, G. Key, and G. Cattoretti. Immunohistological

detection of tumour growth fraction (Ki-67 antigen) in formalin-fixed and

routinely processed tissues. J Pathol, 168(1):85-86, 1992.

[121] M. Alison, Z. Chaudry, J. Baker, I. Lauder, and H. Pringle. Liver regenera-

tion: a comparison of in situ hybridization for histone mRNA with bromod-

eoxyuridine labelling for detection of S-phase cells. J Histochem Cytochem,

42(12):1603-1608, 1994.

[122] A. F. Shields, M. M. Graham, S. M. Kozawa, L. B. Kozell, J. M. Link,

E. R. Swenson, A. M. Spence, J. B. Bassingthwaighte, and K. A. Krohn.

Contribution of labeled carbon dioxide to PET imaging of carbon-il-labeled

compounds. J Nuci Med, 33(4):581-584, 1992.

[123] A. V. Oppenheim and R. W. Schafer. Digital Signal Processing. Prentice-

Hall, 1975.

[124] B. B. Buxton, N. M. Alpert, V. Babikian, S. Weise, J. A. Correia, and R. H.

Ackerman. Evaluation of the 11 co2 positron emission tomographic method

for measuring brain pH. I. pH changes measured in states of altered PCO2.

J Cereb Blood Flow Metab, 7:709-719, 1987.

[125] D. J. Brooks, R. P. Beaney, D. 0. T. Thomas, J. Marshall, and T. Jones.

Studies on regional cerebral pH in patients with cerebral tumours using

continuous inhalation of "CO 2 and positron emission tomography. J Cereb

Blood Flow Metab, 6:529-535, 1986.



BIBLIOGRAPHY
	

191

{126] S. M. Larson, P. L. Weiden, Z. Grunbaum, J. S. Rasey, H. Kaplan, M. M.

Graham, G. D. Harp, G. E. Sale, and D. L. Williams. Positron imaging

feasibility studies. I : characteristics of [ 3h]thymidine uptake in rodent and

canine neoplasms : concise communication. J Nuci Med, 22:869-874, 1981.

[127] S. M. Larson, Z. Grunbaum, and J. S. Rasey. Positron imaging feasibility

study: selective tumor concentration of 3H-thymidine, 3H-uridine, and ' 4 C-

2-deoxyglucose. Radiol, 134:771-773, 1980.

[128] A. F. Shields, S. M. Larson, Z. Grunbaum, and M. M. Graham. Short-term

thymidine uptake in normal and neoplastic tissues: studies for PET. J Nuci

Med, 25:759-764, 1984.

[129] V. Vander Borght, D. Labar, S. Pauwels, and L. Lambotte. Production of

[2-"C]thymidine for quantification of cellular proliferation with PET. mt J

Rad Appi Instrum A, 42(1):103-104, 1991.

[130] B. jyl. Sundoro-Wu, B. Schmall, P. 5. Conti, J. R. Dahl, P. Drumm, and

J. K. Jacobsen. Selective alkylation of pyrimidyldianions : synthesis and

purification of 11 C labeled thymidine for tumor visualization using positron

emission tomography. mt J Appi Radiat Isot, 35(8):705-708, 1984.

[131] A. F. Shields, D. MankofF, M. M. Graham, M. Zheng, S. M. Kozawa, J. M.

Link, and K. A. Krohn. Analysis of 2-carbon-il-thymidine blood metabo-

lites in PET imaging. J Nuci Med, 37(2):290-296, 1996.

[132] T. M. Vander Borght, L. E. Lambotte, S. A. Pauwels, and C. C. Dive.

Uptake of thymidine labeled on the carbon 2 : a potential index of liver

regeneration by positron emission tomography. Hepatology, 12(1): 113-118,

1990.



BIBLIOGRAPHY
	

192

[133] D. A. Mankoff, M. M. Graham, and A. F. Shields. A graphical method

of determining tracer influx constants in the presence of labelled metabo-

lites. In R. Myers, V. J. Cunningham, D. L. Bailey, and T. Jones, editors,

Quantification of brain function using PET, pages 312-316. Academic Press,

1996.

[134] P. Martiat, A. Ferrant, D. Labar, M. Cogneau, A. Bol, C. Michel, J. L.

Michaux, and G. Sokal. In vivo measurement of carbon-il thymidine uptake

in non-hodgkin's lymphoma using positron emission tomography. J Nuci

Med, 29(1O):1633-1637, 1988.



Appendix A

Jacobian Coefficients

A.1 Example 2 : Nonlinear Saturable Ligand
Binding Model

The jacobian matrix is defined by,

G11 G12 G13 C14 G15 C16
C21 C22 G23 C24 C25 C26

C (a) = G31 G32 C33 C34 G35 C36	 (A.1)
C41 C42 C43 C44 C45 G46
G51 C52 C53 G54 C55 C56

The following output was generated using MATHEMATICA, a mod- em symbolic

manipulation package.

G11=1

C12 =0

C13 = 0

193
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C14 0

C15 = 0

C16 0

C21 = —k2

022 = - 1(1

023=0

024=0

025=0



A. 1 Example 2: Nonlinear Saturable Ligand Binding Model 	 195

G26=:O

C31 = k2 + 
k2konBmax

Vr

K- konBma
G32 = 2K1 k2 +

Vr

K1 k2Bmax
G33 =

Vr

- K1lC2komBmav
G34--	

V2r

K k21v0
G35 -

Vr

G36=O

k2 (k2 2 17r 2 + 2Ki kon 2 Bmax + 2k2 kon Vr Bma + kon 2 Bmax 2 + konVrBmaxkoff
G41 =—

G42 = -
K1 (31 2 2 Vr 2 + Ki kon 2 Bmax + 4k2 kom Vr Bmax +L 2 Bmax 2 + konVrBrnaxkof I

Vr
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Ki k2 Bmax (2K1 k0 + 2k2Vr + 2kon Bmar + Vrkoff)
C43 = -
	 V2

Ki k2 kon Bma (2K1 k0 + 2k2 Vr + 2kon Bmax + Vrkoff)
C44 =
	 v

K1 k2 k0 (K1 k0 + 2k2 Vr + 2kon Bmax + Vrkoff)
C45 = -
	 V2r

K1 k2konBmax
G46 - _______________

Vr

C51 =
k2 (k2 3Vr 3 + 3K1 2	+ 8K1 k2 k0 2 VrBmax + 3k2 2 kon Vr 2Bmacb0fl -'-'max

Vr

+8Ki kon 3Bmax 2 + 3k k 2VB 2 + kon3B7nax3 + 4Ki kon 2 Vr Bmax kojj + 2k2konVr 2 Bma2 on r max
V3r

+2/02T7 D 2 k0ff + konVr2Bmaxkoff2)'r -'-'max

V 3r

i	 + K1 2 kon 3Bmax + 8K1 k2 kon 2 Vr Bmax + 9k2 2 konVr 2 -'--'max
G52 =
	 V3r

+4Ki kon3 Bmax 2 + 6k2 kon 2 Vr Bmax 2 + kon3 Bmax3 + 2Kl kon2 VrBmaxkoff + 4k2konVr2B,

+2kon 2 Vr Bma 2 koff +1C v 2	 kf)on r -'--'max o

V 3r
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G53 =
Ki k2 Bma (3Ki 2 kon 2 + 8K1 1c2 k0 V + 3k2 2 V 2 + l2Ki kon 2 Brna + 6k2konVrBmax

VT

+3kon 2Bmax 2 + 4K1 k0 Vk0 + 2k2 V 2 k0ff + 4kon Vr Bmax koff + V2k0ff2

Kik2konBrn (3K12k02 + 8K1 k2 k0 V + 3k2 2 V 2 + 12K1kon2B.jmcx
G54 = -
	 V4

+6k2 konVrBmax + 3kom 2 Bmav 2 + 4Klk0flV1c0f I + 2k2 V 2 k0ff + 4kon Vr Bmax koff + V2k0

TI4
VT

K1 k2 k0 (K1 2 k0 2 + 4K1 k2k0 V + 3k2 2 V 2 + 8Ki kon 2 Bmar + 6k2konVrBmax
C55	

V3

+3korj 2Bmax 2 + 2Kl kon VT koff + 2k2 VT 2 k0ff + 4kon Vr Bmax koff + V2k0ff

T/ 3
VT

- 2Ki k2 kon Bma ( K1 k0 + k2V + konBmax + Vkoff)
C56 -	 T/2

VT

A.2 Example 3 : Reference Region Model

The jacobian matrix is defined by,

C11
G21

C(a)= C31
G41
C51

G12 G13
C22 G23
G32 C33
G42 G43
C52 G5

G14 G15 G16
G24 C25 C26
G34 C35 G36
C44 C45 C46
G54 C55 G56

(A.2)

The following output was generated using MATHEMATICA,
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1
G11= k-

G13=O

K1
G15 =

115

C16 = 0

—k2 + k6
C21 

= K5

K1
C22 = --i:;-

115

C23 = 0
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G24=O

K1 (k2 - k6)

=	 K52

K1
C26 =

115

k2 (k2 + k3 - k6)
C31

K5

K1 (2k2 + k3 - k6)
C32 =

K5

K1 k2
G33 

= K5

G34=O

K1 k2 (k2 + k3 - k6)
G35 =-

115
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K1 k2
036 = - K5

k2 (k22 + 2k2 k3 + k3 2 + k3k4 - k2 k6 - k3k6)
G41 = -

K5

i (2 2 + 4k2 k3 + k3 2 + k3 k4 - 2/c2 k6 - k3k6)
042 = -

K5

043 
= K1 k2 (2k2 + 2k3 + k4 - k6)

K5

K1k2k3
044=— K5

- K1 k2 (k22 + 2k2 k3 + k3 2 + k3k4 - k2 k6 - k3k6
045 -

115

K1 k2 (Ic2 + k3)
G46 -
	 K5

Ic2 (1c23 + 3k2 2 1c3 + 3k2 k3 2 + Ic33 + 2/v2 k3 1c4 + 2k32k4 + 1c3k4 2 - Ic2 Ic - 2/c2k3k6
G5j =

.L 5

—k3 2 k6 - Ic3 Ic4 Ic6)

K5
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i ('i 2 + 9k2 2 k3 + 6k2 k32 + k33 + 4k2 k3 k4 + 2k3 2 k4 + k3 k42 - 3k2 2 k6 - 4k2k3k6
G52 = 115

—k32 k6 - k3k4k6)

K5

K1 k2 (3k2 2 + 6k2 k3 + 3k32 + 2k2 k4 + 4k3 k4 + k42 2k2 k6 - 2k3 k6 - k4k6
G53 =

K5

= K1 k2 k3 (2k2 + 2k3 + 2k4 - k6)
K5

K1 k2 (k2 3 + 3k2 2 k3 + 3k2 k3 2 + k33 + 2k2 k3 k4 + 2k32 k4 + k3 k42 - k2 2 k6 - 2k2k3k6
G55 =-

115

—k32 k6 - k3k4k6)

K52

K1 k2 (k22 + 2k2 k3 + k3 2 + k3k4)
C56 = -

K5

A.3 Example 4: Batch Reactor Model

The jacobian matrix is defined by,

G11

G21
G(a)= G31

G41

G51

G12 G13 C14
G22 C23 C24
C32 C33 C34
G42 G43 C44
C52 C53 G54

G15 C16
C25 C26
C35 C36
C45 C46
C55 C56

(A.3)
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The following output was generated using MATHEMATICA,

G11=O

G13=O

G14=1

G15=O

G16=O

0406

G21 = 02 +06

010406
G22 =

(02+06)2

G23 = 04
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G24 = 03 + 
0106

02 + 06

C25 = 0

010204
G26=	 2(02 + 06)

20406 (- (01 02 04) - 0220305 + 01 02 05 06 - 202 0305 06 + 0 1 05 06 2 - 030506)
C31 =

05(02 + 06)

C32 -
01 04 06 (-201 02 04 - 20220305 + 01 0406 + 201 02 05 06 - 402 03 05 06 + 201 05 06 2 - 20305062

05 (02 + 06)

2010406
G33 = 203 04 - _______

U2 + 6

20 1 2 04 06 2	 20120406	 012062	 2010306
G34 = 92 

+
05(02+06) - 05(02+06) + (02 +06 ) 2 02 +06

- 0120204206

G35 - 052(02 + 06)
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0 1 0204 (019204 + 20220305 - 201 0496 - 201 02 05 06 + 492939596 - 20105062 + 20305062
G36 = -

05(02 + 06)

C41 0406 (3012022042 + 801 02 030495 + 30 2 403 2 05 2 - 601 2 92 942 06 - 12012022040506+

160 1 02 2 03 04 05 06 - 601 02 39305 2 06 + 1202 3 93 2 05 2 06 1201 02 0405 06 + 801 02 03 94 05 06 2 +

301 2 02 2 0 5 206 2 - 180192203052062 + 1802 2 03 2 05 2 06 2 + 601 2 02 05 2063 1801 02 0395 2 063 +

1202 03 2 05 2 063 + 301 2 95 2 064 - 60103052064 + 30 20 29 4)/ (92(9 
+ 06))

C42	 91O4O6 (3920202 + 801 02 0304 O 5 + 392 03 95 - 1001 2 0204 2 06 - 12012022040506+

1201 02 2 03 04 05 06 - 6010230305206 + 1202303205206 + 20 1 2 04 2 06 2 - 801 2 92 94 05 06 2 +

301 2 02 2 95 2 06 2 - 1801 02 2 0305 2 06 2 + 18022032052062 + 40120405063 - 49 1 03 0405 06 +

2 2360 1 2 92 05 2 063 - 18010293952963 + 1202 03 05 V6 + 301 2 05 2 064 - 60103052064 +

303 2 05 2 064) /052(02 + 06)6

G43 —04 (302 303 2 05 - 401 2 02 0406 - 691022030506 + 99220320506 + 30 1 2 02 05 96 2 - 1201020305062.
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9 0203205062 + 301205063 - 60 1 03 05 96 + 303 2 05 06 3)/05 (02 + 06)

30 1 3 02 042 06 2	 6013042063	 201020406	 2010406	 30130204206
= —03 - ____________ ____________ ___________ ___________ ____________

05 (02 + 06) + 02(0 + 06) 
+ 0

5 (02 + 06) 
+ 0

5 (02 + 06) 
+ 0

5 (02 + 0) -

pii3i2,2	 c)fl3flhjLi2	 3n,3OUi U4 U6	 bV1 V2U4U6	 "1 23'46	 '1 46	 '1 '3'4'6

052(02 + 06) - 0 5 (02 + 06 ) - 05 (02 + 06) + 05(02 + 06) - 05 (02 + 06) +

1 234'6	 iv1 416	 '±V1 V3U4V6	 V V6	 0171 346

05 (02 + 06 ) - 05 (02 + 06) - 05(02 + 06) 
+ 

(02 + 06) + 05(02 + 06) -

301 2 0306 2	 30103206
+

(02 +06 )	 02 +06

G45 = _20 1 2 0 2 04 2 06 (0 1 02 04 + 20220305 - 201 04 06 - 201 02 05 06 + 402 03 05 06 - 20105062+

203 05 062 ) /05 (02 + 06)

G46 = 01 02 04 (012022042 + 40 1 02 03 0405 + 302 403 2 05 2 - 80 1 2 02 042 06 - 8012022040506_

6010230305206 + 1202 03 05 06 + 601 2 04 2 06 2 - 1201 02 0304 0 5 06 2 + 301 2 02 2 05 2 062 -

180102203052062 + 18022032052062 + 801 2 0405 063 - 80 1 03 04 05 06 + 60 1 2 02 05 2 063 -

18010203052063 + 1202032052063 + 301 205 2064 - 60103052064 + 303 2 05 2 06 4) /052(02 + 06)
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G51 = 04 06 (-4G1O204 - 2101 2 02 40304 2 05 - 2201 02 503 2 0405 2 - 4026033053 + 3201302204306+

440130230420506 + 6601 2 024 0304 05 2 06 - 88010240320405206 + 1201 02 5 03 2 05 3 06 -

'- AIl3nLI3n2	 '-n3n2n2LIn2	 2fl2LI,12Lifl224u2 t73 V5 V6 - Ll V2V4 V - lhV l V2 174 175 U6 + 1)0171 72 (73174 56 -

4401302304052062 + 19801 2 023 0304 05 2 062 - 13201 02 3 032 0405 2 06 2 - 1201202403053062 +

	

' i- n i'l 4,i 2j 3 2	 tt-ii 4 n 3n 3j 2	 ,j 3 L jJ 2 j] a 3 i AcLi 2,j LI LI 2 fl /1 3

	

173 175 6	 173 175 6 -	 '24	 1 '±hV1 234 56 -

3338801302204052063 + 1989 1 2 02 2 0304 05 2 063 - 880102203204052063 + 401 92 05 06 -

A0n21)311Li3113	 o33ii33	 AAI]311111i2114'01 2 173(75 6 + lhUU l(1 2 (/3 175 6 - 01) 172 (/3 175 6 - '''1 245 6 +

2,i 3n 46601 202 0304 95 2 06 4 - 2291 02 93 2 9405 206 4 + 1201 02 '5 V6 - 7201 2 02 2 03 05 3 96 4 +

120010220 2 3 405 06 - 60022033053064 + 1201 02 05 06 - 480120203053065 +

600102032053065 - 2402 03 05 06 + 401 3 05 3 066 - 1201203053066 + 1201 03 2 05 3 066 -

4033 05 3 06 6) /05 (02 + 06)

G52 = 01 0406 (-4O1 O204 - 2101 2 02 403 04 2 05 - 2201 02 5 03 2 0405 2 - 4026033053+

4301302204306 + 440130239420596 + 280 1 2 92 3 93 04 2 95 06 + 6601 2 92 403 04 95 2 06 -
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'77I] n 4n 2	 j	 i i'n n 5n 2 3 n	 '-,in 5 3ii 3n	 rzc)1) 3n Li 3n 2( 12 (/3 (/4115 6 1 1L111112 113 115 116 L'±112 113 (15 6 - UZ.V	 24 6 -

4801 30 2 2 94 2 05 06 2 + 1050129220304205062 - 44939399202 + 17601 2 02 3 03 04 05 2 062 -

4 3 3'28801 9 2 3 032 04 05 2 062 - 1201 2 02 4 0305 396 2 + 6001 02 4 932 05 3 062 - 6002 03 05 6 +

691 04 06 - 7801 3 92 942 05 063 + 4201 2 02 0304 2 05 063 - 7701302204052063 +

33313201 2 022 030 4 0 5 2 063 - 220 1 02 2 03 2 0405 2 063 + 401 02 05 0 - 4801 2 02303053 063 +

12001 023 03 2 0 5 3 063 - 8002 03 0 5 06 + 1401 3 042 0 5 064 - 1401 2 0304 2 05 064 -

2201 302 0405 2 06 4 + 22019203204052064 + 120 1 302 2 05 3 064 - 7201 2 02 2 0305 3964 +

2j3 3j412001 92 2 0 2 a 3 4
3 v5 6 - 6092 v3 95 '-6 + 1191 3 04 05 2 06 5 - 2201 2 9394 95 2 06 5 +

1101 03 2 04 05 2 06 5 + 1291 02 05 06 - 480120293053065 + 600 1 02 03 2 95 3 06 5 -

111)31)31)5	 n3n36	 1n2LlLI3n6	 1cni12n3L]6h'±C7 2(73 115 6 + 4vi (/5 6 - 1W1 113115 6 + lhVj(73 (75 V6 -

403 3 053 066) /o(o + 06)8

G53 = 04 (402 5 033 95 2 - 701 392 2 04 2 06 - 2201 2 023 03 9405 06 - 129102403205206+
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2002403305206 + 1401302042062 + 220 1 3 02 2 04 05 06 2 - 44020200002 +

jc,j2/)3flL)2fl2	 Ao1fl3112112L12	 4fl3fl32fl2	 cu13nnnn3
ILV1 V2 U3V5 V6 - 'OV1U2 V3 175 6 + '±U172 173 175 V6 + LVl 2456

223220 1 2 02 0304 05 063 - 40102 05 06 + 3601 2 02 203 05 2 063 - 7201022032052063 +

4002 2 033 05 2 063 - 801 302 05 2 064 + 3601 2 02 0305 2 064 - 480102032052064 +

2002 033 05 2 064 - 4013052065 + 120 1 2 0305 2 06 5 - 1201032052065 +

4033 05 2 06 5 )105 2 (02 +

2 03 05 - 401 02 04 06 - 210 1 3 02 4 0304 2 05 06 - 220120250320405206_G54	 (07 4 3

2 3240 1 02 6033 05 3 06 + 702 6 034 053 06 + 320 1 02 04 6 + 3301402304205062 +

A4L 3 4	 n 2i 2	 2, 4 2	 2fl 2	 ,j 2, 5 2 3n 2
'''1	 173174175	 OOU 2 173 174175 6 + U I/ i V 173 175	 -

'iAflflSLI3fl3LI2	 'iiii433	 -,i4n2n2nn3
L'±171172 173 175 6 + h117 2 (/3 175 6 -	 '2'4 6 - :7Ui 2 (74 56 +

i	 2n n 2 n 3	 ')'1L) 4n 3n	 2 3	 1rL) 3 3	 2n 3
UJI/[ 2 (73(74	 -	 '1 2 (741/5 6 + lOLL/i 2 173(74175 6 -

1'- n 2 3n 2n n 2n 3	 AL) 3fl 4 1 3I 3	 2j 4fl 2 3n 3	 Lrfl n 4n 3n 3n 3
lOhUi 2 (/3 174175 6 - ''i "2 173175 6 + t)U Vi 2 "3 175 6 - UU(/ i (7 2 173 175 V6 +

oL) 4n 411 3n 3	 4(11) 4n ñ 2i1 n 4 i A o l] 3,i n	 21) j 4	 AAL) 4n 2 n 2 4
001/2 173	 6 - 'ILl/i 24 56 1 '±L17[ 23"4 56 - ''I '1 2 (/4175 6
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1ocn 3n 2ii n n 2,i 4	 oon 2ii 2n 2ii ii 2n 4	 n 4ii 3n 3n 4	 in 3n 3n n 3n 41OhU1 '2 (73V4U5 V6 - OOV1 '2 (/3 V4V5 6 + 1 2 (/5 6 - 10V1 2 V3V5 6 +

L:n 2,j 3n 2j 3n 4	 Of/I n 3n 3n 3n 4	 ')/) 3ii 4n 3n 4	 41) 1) 1) 2 5UUV V2 (/3 V5 v6 - O UV 1 V 2 (73 (/5	 + t:hiv2 (73 (75 V6 - hhVl v2v4v5 6 +

2 354401 302 03 04 95 2 065_ 2201 2 0203 20405 2 06 5 + 301 02 05 "6 - 2401 302 203 05 306 5 +

6001 2 02 2 03 2 053 06 5 - 6001 92 2 03305 3 065 + 2102 2 034 053 06 5 + 301 4 02 05 3 066 -

4 f 3,i 6160 1 3 02 0305 306 6 + 3001 2 0203 2 05 3066 - 2401 02 03305 3 066 + 702 03 "5 V6 + 01 05 06 -

2 3e74O1 0305 06 + 601 2 03 05 6 - 401 03 O5 06 + 03 05 06 ) /05 ( 02 + 06)

C55 = 0000 (3012022042 + 1401 02 03 0405 + 1102 03 2 05 2 - 240120204206_

2201 202 2 04 05 06 - 2201 02 303 05 2 06 + 4402 303 205 2 06 + 18012042062 + 601 2 92 04 05 06 2 -

4201 02 03 04 05 06 2 +1102 2 02 2 05 2 062 _660102203052062 + 6602 2 03 2 05 2 06 2 +

280120405063 - 280 1 03 0405 06 + 2201 2 02 05 2 063 - 6601 92 03 05 2 063 + 4402032052063 +

1101 2 05 2 064 - 2201 0305 2 06 4 + 1103 2 05 2 064) /05 (02 + 06)

C56 = —01 02 04 (91 0204 + 70120240304205 + 1101 02 5 03 2 0405 2 + 4026033053_
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CC)fl 34 2j 3	 C)flfl 3 3ii 2i	 Ac)n	 3ai , 2ii n	 4411 2 4n fl /j 2flhLU1 112 114 116 - Ui	 - 'kLV1 112 '3l4 115116 - ''1 U 113114115

2201 02 4 03 2 04 05 2 06 - 1201 02 5 032 05 3 96 + 2402 03 05 06 + 5801302043062 +

1Afl 3 fl 2 L1 2 flfl2	 1211211fl211112	 rj.-fl3fl3flfl2/2	 0o112113nn121]2U'±V V2 114 115116 - U)V1 112 (/3114	 + 00111 2 114115 6 - 00111 2 1131/4115 6 -

4 3n3,i22201 023 03 2 0405 2 06 2 + 1201 2 02 4 03 05 3 96 2 - 6001024032053062 + 6002 03 V5 V6 -

2401 04 06 + 4401 302 04 205 06 3 + 2801 2 02 03 042 05 063 + 4401 3 92 2 04 05 206 3 -

8801 02 2 03 2 0405 2 063 - 401 02 5 '6 + 4801 2 923 03 05 3 063 - 1200 1 023 032 05 3 063 +

8002 03 05 06 - 4201304205064 + 420 1 2 0304 2 05 064 - 1101 3 92 04 05 2 064 +

2348801 2 02 03 04 05 2 064 - 7701 02 03 2 0405 2 064 - 1201 02 05 06 + 7201 2 02 2 03 053 064 -

120010220 2 3 43 0 06 + 6002 2 033 05 3 06 4 - 2201 3 04 05 2 065 + 4401 2 0304 05 2 06 5 -

220193204052065 - 129 1 92 05 06 + 4891 2 02 03 05 306 5 - 6001 02 93 2 05306 5 +

2402 03 05 06 - 4013053066 + 1201 2 03053 066 1201032053066 +

4033 05 3 06 6) 10s(O2 + 06)
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