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Abstract
Glaucoma is the second leading cause of blindness worldwide. The primary glaucoma risk factor is
elevated intraocular pressure. Topical β-blockers are affordable and widely used to lower intraocular
pressure. Genetic variability has been postulated to contribute to interpersonal differences in efficacy
and safety of topical β-blockers. This review summarizes clinically significant polymorphisms that
have been identified in the β-adrenergic receptors (ADRB1, ADRB2 and ADRB3). The implications
of polymorphisms in CYP2D6 are also discussed. Although the candidate-gene approach has
facilitated significant progress in our understanding of the genetic basis of glaucoma treatment
response, most drug responses involve a large number of genes, each containing multiple
polymorphisms. Genome-wide association studies may yield a more comprehensive set of
polymorphisms associated with glaucoma outcomes. An understanding of the genetic mechanisms
associated with variability in individual responses to topical β-blockers may advance individualized
treatment at a lower cost.

Keywords
β-adrenergic receptor; β-blocker; CYP2D6; glaucoma; IOP; polymorphisms; timolol

Glaucoma
Glaucoma is a group of heterogeneous ocular diseases defined by a progressive loss of the
retinal ganglion cells, excavation or cupping of the optic nerve head, visual-field defects and,
ultimately, blindness. With 70 million people affected with various forms of glaucoma, it is
the second leading cause of blindness worldwide [1]. The primary risk factors include elevated
intraocular pressure (IOP), aging, race and family history. In the general US population, it has
been estimated that glaucoma affects 1–1.5% of people aged over 40–65 years, and 2–7% of
those aged over 65 years. Prevalence varies with ethnicity; for example, the percentage of
African–Americans affected with glaucoma ranges from 1.5 to 3.6% for those aged 40–65
years, and from 4.6 to 9.8% in individuals aged over 65 years [2].
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Although glaucoma is defined as a progressive optic neuropathy, it is associated with functional
and structural impairments of the trabecular meshwork, optic nerve head and retinal ganglion
cells (Figures 1 & 2). The ciliary body, positioned behind the iris, secretes aqueous humor that
flows into the anterior chamber (Figure 2). The role of the aqueous humor is to nourish the
avascular ocular tissues of the anterior segment: the posterior cornea, the trabecular meshwork
and the lens. In addition, the aqueous humor collects metabolic biproducts and drains out into
the trabecular meshwork at the periphery of the anterior chamber, called the anterior chamber
angle (Figure 2). In total, 10% of the aqueous humor outflows from the anterior chamber
through the ciliary body via uveoscleral outflow. The IOP is a measurement of the aqueous
humor pressure inside the eye and ranges from 10 to 21 mmHg. Elevated IOP is the most
common clinical risk factor associated with the onset and progression of glaucoma, and
generally results from compromised drainage via the trabecular meshwork.

The broad clinical classifications of glaucoma are based on anatomical characteristics of the
anterior chamber angle or the age of onset. Classifications as open-angle glaucoma and closed-
angle glaucoma are based upon the status of the anterior chamber angle. Each category is then
further divided into primary and secondary subtypes. Primary open-angle glaucoma (POAG)
is the most common subset, representing over 70% of all cases of glaucoma [3], and is
characterized by an open anterior chamber angle, elevated IOP and glaucomatous optic nerve
changes. Although elevated IOP is a major risk factor for development of POAG, a great deal
of investigation has recently focused on normal-tension glaucoma, where the progressive
damage to the optic nerve occurs even with normal IOP [4]. In contrast to POAG, primary
angle-closure glaucoma (PACG) refers to a condition where the anterior chamber angle is
closed, resulting in elevated IOP and glaucomatous optic nerve changes; PACG is more
common in Asian populations [5]. Primary congenital glaucoma is an inherited structural
anomaly within the trabecular meshwork and the anterior chamber angle [6]. Secondary
glaucoma is commonly associated with clinical syndromes such as Axenfeld–Rieger syndrome
and Peters’ anomaly [7]. Despite our ability to discriminate these glaucoma subtypes clinically,
the pathophysiologic mechanisms underlying the onset and progression of most types of
glaucoma remain unclear.

The molecular etiology of glaucoma, and the molecular mechanisms governing the disease’s
onset and progression, are vastly unknown. There is strong evidence that glaucoma has a
genetic basis. To date, at least 14 candidate POAG loci have been identified [101]; however,
causative alleles associated with glaucoma have been defined for only a few genes. Mutations
in the myocilin gene were initially identified in families segregating juvenile-onset primary-
angle glaucoma [8]. However, subsequent analysis of patients with POAG also identified
myocilin mutations in approximately 3–5% of POAG patients [8-10]. Similarly, mutations in
the optineurin [11] and WDR36 genes [12] have also been demonstrated to lead to glaucoma,
although the mechanism of action of these genes is not yet well understood. Mutations in
CYP1B1 have been associated with primary congenital glaucoma [6], whereas mutations in
the Pitx2, Foxc1 and Pax6 genes have been identified in patients with Axenfeld–Rieger
syndrome and Peters’ anomaly [7]. Despite these observations, the genetic cause associated
with glaucoma remains unknown in most clinical situations. A better understanding of the
onset and progression of glaucoma is needed at the molecular level. Such an understanding
would likely open the door to novel strategies for the management of this potentially
debilitating disease.

Current glaucoma therapy
At present, there are no therapies available that prevent the development of glaucoma.
Similarly, no therapies are available to reverse glaucoma-induced vision loss. However, a
reduction of the IOP has been shown to protect against further damage to the optic nerve head
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[13]. As such, early diagnosis and proper treatment allow most glaucoma patients to retain
good visual function. Unfortunately, glaucoma is initially asymptomatic. There have been no
studies to assess population screening for open-angle glaucoma as a means to prevent vision
loss, and the US Preventive Services Task Force found insufficient evidence to recommend
for or against routine glaucoma screening in primary-care practices [14]. Once diagnosed, drug
efficacy is a pivotal concern, since treatment has the capability to slow and/or arrest the
progression of the glaucoma-associated irreversible vision loss.

Current treatment of POAG, the most common form of glaucoma, as well as ocular
hypertension, focuses on the reduction of IOP. Drugs are usually administered topically to
lower IOP. If necessary, additional topical agents and/or systemic drugs can be added. Drug
management of glaucoma commonly includes five classes of drugs: α-adrenergic agonists, β-
adrenergic antagonists, cholinergic agonists, prostaglandin analogs and carbonic anhydrase
inhibitors [5]. Table 1 summarizes the available glaucoma drug treatments. The two most
commonly prescribed drug groups are prostaglandin analogs, such as latanoprost, and β-
blockers, such as timolol maleate [15]. If drugs fail to reduce IOP, laser therapy
(trabeculoplasty) is applied to the trabecular meshwork to increase aqueous outflow. In the
event that the laser trabeculoplasty fails to control the IOP, surgical procedures are applied to
create a new route for aqueous humor outflow [5].

In pediatric cases of primary or secondary congenital glaucoma, medical therapy often plays
a supportive role to surgery [16]. In this context, topical β-blockers (first line) and topical
carbonic anhydrase inhibitors (second line) are preferred [16]. Prostaglandin analogs have
limited efficacy for lowering IOP in pediatric patients [17].

Efficacy & safety of β-blockers in glaucoma treatment
β-blockers are one of the most commonly prescribed groups of drugs in the USA [18]. They
are prescribed for the treatment of a number of vascular (e.g., coronary artery disease) and non-
vascular (e.g., glaucoma) diseases. In the treatment of glaucoma, when applied topically,
nonselective β-blockers, such as timolol maleate, reduce IOP by 27–35% [19]. β-blockers
reduce IOP by inhibition of aqueous humor production [20] and not by increasing aqueous
humor outflow [21,22]. The population-based efficacy of timolol has been well documented
in the treatment of glaucoma [19,23]. However, two recent studies reported that timolol was
less effective in lowering IOP in black patients than in non-black patients [24,25]. Although
the molecular mechanisms responsible for the lower efficacy of timolol in black patients remain
unknown, it has recently been suggested that iris pigmentation and differential nonspecific
binding of the drug may play a role [26]. Alternatively, polymorphisms in the drug target genes
may be associated with variable clinical responses to timolol [26].

When β-blockers are topically administered, they can be absorbed through the conjunctival
epithelium, lacrimal channels, nasal mucosa and GI tract into the systemic circulation [27]. As
a result, topical β-blockers can induce systemic adverse drug reactions, including contraction
of the bronchial smooth muscle, bronchospasm, respiratory failure and death. In addition,
cardiac side effects include bradycardia, hypotension, decreased myocardial contractility, and
heart failure [28-29]. Adverse ocular affects of topical β-blockers are minimal, but in some
cases timolol was reported to cause hyperemia of the conjunctiva, burning, stinging or
superficial punctate keratitis [30,31], and reduced tear flow [32].

Economic implications
Currently, in the USA, over 2 million people are affected with POAG. By 2010, that number
is expected to grow to over 3 million [2]. In recent years, topical prostaglandins have become
a common first-choice glaucoma therapy, partly owing to their relatively consistent clinical
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efficacy, and partly owing to their lower frequency of adverse effects [19]. However, topical
prostaglandin analogs are expensive, ranging from US$0.90 to US$1.25 per day [33]. The least
expensive option for the medical therapy of glaucoma, generic timolol products, has been
shown to cost between US$0.38 and US$0.50 per day [34]. In a study considering cost, efficacy
and safety of ocular β-blockers, it was concluded that timolol maleate should be the formulary
agent of choice because other agents have not shown an outstanding advantage for the cost
difference [35]. Understanding the molecular mechanisms guiding variability in response to
topical β-blockers will be critical for advancing a more personalized and less expensive
approach to the treatment of glaucoma.

ADRB genes as pharmacodynamic candidates
The interindividual variability in IOP response to β-blockers is unclear. It has been well
established that, for most therapeutics administered at standard doses, a substantial proportion
of patients do not respond to drug treatment. While some patients respond only partially, others
experience adverse drug reactions [36]. Genetic variability contributes a great deal to
population-based differences in drug efficacy and safety [37]. The ADRB1, ADRB2 and
ADRB3 adrenergic receptors are highly expressed in the eye [102], whereas ADRB1 and
ADRB2 were specifically identified in the ciliary body, trabecular meshwork and optic nerve
head [38]. Therefore, adrenergic receptors were proposed as pharmacodynamic candidate
genes potentially associated with the interpersonal variability of IOP response to topical β-
blockers.

Adrenergic receptors are members of the large superfamily of G-protein-coupled receptors.
Epinephrine and norepinephrine are the primary endogenous agonists, but other endogenous
catecholamines (e.g., dopamine) and a variety of exogenous ligands (e.g., isoproterenol) are
also known to interact with these receptors. Historically, the adrenergic receptors have been
subdivided into β1 and β2 subtypes, based upon their relative binding affinity for various
catecholamines. In general, β1 adrenergic receptors demonstrate highest affinity for
norepinephrine, intermediate affinity for epinephrine and lowest affinity for isoproterenol,
whereas β2 adrenergic receptors demonstrate highest affinity for isoproterenol, intermediate
affinity for epinephrine and lowest affinity for norepinephrine. Each subtype is then further
subdivided according to known physiologic function (e.g., β1 receptors activate intracellular
pathways with both chronotropic and inotropic cardiac effects).

Molecular biological techniques have revealed that there are at least three distinct β-adrenergic
receptors, encoded by three separate genes (ARDB1, ARDB2 and ADRB3) located at different
chromosomal loci (chromosomes 10q25.3, 5q33.1 and 8p12, respectively). ADRB1 and
ADRB2 are single-exon genes; the former is ultimately translated into a 477 amino acid protein,
and the latter into a 413 amino acid protein. ARDB3 has two exons and encodes a 408 amino
acid protein. All three ADRB genes have a similar structure, comprising seven transmembrane
domains, an extracellular amino terminus and an intracellular carboxy terminus [39].
ADRB1 and ADRB2 are expressed in the heart, and polymorphisms in both genes have been
linked to hypertension and cardiovascular disease. In addition, genetic variations in ADRB2
have also been linked to obesity and metabolic diseases. ADRB3 is predominantly expressed
in adipose tissue and is involved in lipolysis and thermogenesis.

All known ADRB genes contain functionally relevant polymorphisms. Sequence evaluation of
ADRB1 specifically identified two polymorphisms, Ser49Gly [40] and Arg389Gly [41]. In
vitro functional analysis of ADRB1 polymorphisms revealed that Ser49Gly is associated with
the agonist-promoted downregulation of receptor expression and altered glycosylation [42].
The Arg389Gly ADRB1 polymorphism, located within the intracellular domain near the
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seventh transmembrane span, is in a region important for receptor G-protein coupling and the
subsequent agonist-stimulated adenylyl cyclase activation [41].

Like ADRB1, the sequence evaluation of the ADRB2 gene also identified two polymorphisms,
Arg16Gly and Gln27Glu [43]. In vitro functional analyses of ADRB2 polymorphisms have
revealed that Arg16Gly is associated with the agonist-promoted downregulation of receptor
expression, whereas the Gln27Glu polymorphism is resistant to receptor downregulation
[43]. Both ADRB1 and ADRB2 polymorphisms have been associated with altered receptor
function in a variety of clinical settings, including patients with congestive heart failure
[44-45], nocturnal asthma [46], hypertension [47] and acute coronary syndromes [48].

Recently, a single polymorphism in the ADRB3 gene has been associated with body
composition in at least three separate populations [49-51]. In all three contexts, effect size was
small and detection required adjustment for environmental covariates (e.g., gender and/or
sedentary versus active lifestyle). This SNP, T727C, encodes an amino acid substitution
(Trp64Arg) in the first transmembrane-spanning region of ADRB3, near its N-terminus. In a
series of 695 adult Chinese subjects, this ADRB3 SNP was associated with weight and BMI in
men but not in women [52]. A similar effect was observed in 295 adult Japanese men, but only
when the data were adjusted for energy intake [51]. In a study of 643 American women
(representing both European and African heritage), no association was observed between this
ADRB3 SNP and any obesity phenotypes (i.e., BMI, waist circumference and waist:hip ratio
[50]). The reason for gender discrepancy remains unclear and requires further characterization,
since emerging data indicate that gender may impact phenotype in the context of glaucoma
treatment [52].

The role of adrenergic receptor polymorphisms in variability of IOP response to β-blockers
has recently been investigated. In healthy subjects, the Arg389Gly polymorphism in ADRB1
has been associated with a higher baseline IOP and a greater reduction in IOP following topical
betaxolol therapy [53]. Although the Ser49Gly polymorphism in ADRB1 does not predict IOP
response, it has been associated with higher systolic and diastolic blood pressure following
treatment with topical timolol in healthy subjects and glaucoma patients [54].

Recent data indicate that ADRB2 polymorphisms also influence clinical outcomes related to
topical β-blockers. Our group evaluated the medical records of more than 18,000 adult subjects
participating in a large population-based biobank [55-56]. Topical β-blockers had been
prescribed for over 300 of these subjects, and over 200 of them had sufficient IOP data for the
conduct of a pharmacogenetic association study. Males were significantly more likely than
females to have a 20% or greater drop in IOP (p < 0.01). After adjusting for gender (and for
family history of glaucoma), subjects with a homozygous major allele (CC) genotype at the
Gln27Glu coding SNP in ADBR2 were significantly more likely to experience a 20% or greater
decrease in IOP (OR: 2.41; 95% CI: 1.00–5.82) [55]. It is noteworthy that ADRB2 is the
predominant adrenoceptor subtype in the iris–ciliary body [38]. To date, polymorphisms in the
ADRB3 gene have not been associated with β-blocker variability in glaucoma therapeutic
response or etiology of glaucoma.

Since ADRB2 is the predominant adrenoceptor in the iris–ciliary body, polymorphisms in
ADRB2 have also been hypothesized to play a role in the development of glaucoma as a disease
process (i.e., in both the onset and rate of progression). In a Japanese cohort, POAG carriers
of the Gly16 allele showed an earlier onset of the disease, and carriers of the Glu27 allele
showed a higher IOP at the time of diagnosis [57]. However, these findings failed to replicate
in a Turkish cohort [58], and in two ancestral US populations [59]. All clinically relevant
polymorphisms identified in ADRB genes are summarized in Table 2.
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CYP2D6 gene as a pharmacokinetic candidate
In general, many β-blockers are metabolized by a highly polymorphic drug-metabolizing
enzyme, CYP2D6. The gene encoding the CYP2D6 enzyme is located on chromosome 22
q13.2; it contains eight coding exons, and it encodes a 446 amino acid protein. A total of 122
SNPs and/or short insertion/deletion polymorphisms have been reported within the CYP2D6
genomic locus in human populations, resulting in at least 70 unique CYP2D6 haplotypes
[103].

Phase I oxidation by CYP2D6 inactivates many drugs within the β-blocker class. However,
nearly 10% of the general population have a measurable deficit in their ability to metabolize
CYP2D6 substrates. Patients with two functional copies of the CYP2D6 gene (e.g., CYP2D6*1/
*1 homozygotes or CYP2D6*1/*2 heterozygotes) are often referred to as extensive
metabolizers. Poor metabolizers have two copies of a null allele. Intermediate metabolizers
have at least one copy of an allele with reduced enzymatic activity. Gene duplication also
occurs (e.g., *2XN), and these subjects are often referred to as having an ultrarapid metabolizer
phenotype.

Clinically, ultrarapid metabolizers (e.g., CYP2D6*2XN) have been shown to have lower plasma
concentrations of metoproplol than extensive metabolizers [60], and poor metabolizers
(expression of several potential variant genotypic combinations introduced above) exhibit
several-fold higher plasma concentrations of metoproplol than extensive metabolizers [61]. A
decade ago, investigators showed that CYP2D6 poor metabolizers have higher circulating
timolol levels and correspondingly lower heart rates following systemic absorption of topical
timolol therapy [62]. Despite these observations, very few reports have directly addressed the
impact of CYP2D6 gene variants on the IOP-lowering efficacy of topical β-blockers.

Recently, it has been reported that CYP2D6 poor metabolizers demonstrate altered serum
kinetics following administration of the aqueous formulation of timolol (0.5% aqueous
timolol), but not for the hydrogel formulation (0.1% timolol hydrogel) [54]. These findings
suggest that, in the absence of knowledge regarding a patient’s CYP2D6 genotype, it may be
safer to prescribe the formulation (hydrogel) with the less variable kinetic profile. Further
studies are needed to characterize the potential utility of prospective knowledge regarding
CYP2D6 genotype prior to initiating these drugs.

Conclusion & future perspective
It has been estimated that, worldwide, 60.5 million people will be affected with POAG and
PACG by the year 2010, and this number will likely increase to 79.6 million people by the
year 2020 [63]. The least expensive options for the medical therapy of glaucoma are topical
β-blockers, such as timolol maleate. Results are emerging in support of ADRB2 gene
polymorphisms in predicting therapeutic response to topical β-blockers [56]. Future studies
need to consider other polymorphisms in both pharmacodynamic and pharmacokinetic
candidate genes, and the impact of variability in their gene products should be considered
specifically within the context of their respective intracellular signaling pathways. Growing
information regarding signal transduction networks activated by topical β-blockers (e.g.,
downstream effectors of ADRB), and expert knowledge regarding the absorption, distribution,
metabolism and elimination of these drugs (e.g., biotransformation mechanisms beyond phase
I oxidation by CYP2D6), will likely prove useful for informing the analysis of large datasets,
as the pharmacogenetics community moves towards the scanning of whole genomes [64,65].

Executive summary

Glaucoma
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• Glaucoma is the second leading cause of blindness worldwide.
• Elevated intraocular pressure (IOP) is the primary risk factor associated with

glaucoma.

Current glaucoma therapy
• Topical β-blockers are widely used to lower IOP.

Efficacy & safety of β-blockers in glaucoma treatment
• Genetic variability contributes to population-based differences in drug efficacy

and safety.

Economic implications
• Topical β-blockers are the least expensive option for treatment of glaucoma.

ADRB genes as pharmacodynamic candidates
• An ADRB1 gene polymorphism has been associated with a higher baseline IOP

and a greater reduction in IOP following topical betaxolol therapy.
• A recent study suggests that ADRB2 gene polymorphisms may predict therapeutic

response to topical β-blockers.

CYP2D6 gene as a pharmacokinetic candidate
• None of the CYP2D6 polymorphisms have been found to be associated with

interindividual variability in IOP response to β-blockers.

Conclusion & future perspective
• Additional genes and polymorphisms likely contribute to efficacy and safety of

β-blockers in glaucoma treatment.
• Novel approaches, such as genome-wide association studies, will identify gene

variants that are predictive of the individual drug efficacy and toxicity of β-
blockers.

• Understanding the molecular mechanisms underlying variability in response to
topical β-blockers will be critical for advancing a more personalized approach to
glaucoma.
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Figure 1.
Human eye anatomy
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Figure 2.
Anterior chamber Structures involved in aqueous humor production and outflow in the eye
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Table 1
Current pharmacologic options for the treatment of glaucoma.

Drugs Mechanism of action

β-adrenergic antagonists (β-blockers) Decrease in aqueous humor production by blocking adrenergic β-receptors in the ciliary body

Prostaglandin analogs Increase of aqueous humor uveoscleral outflow by decreasing the extracellular matrix in the
ciliary body

α-adrenergic agonists Both decrease of aqueous humor production and increase of aqueous humor outflow

Carbonic anhydrase inhibitors Decrease of aqueous humor production by inhibition of carbonic anhydrase and decrease of
bicarbonate production in the ciliary body

Cholinergic agonists Increase of trabecular meshwork outflow by stimulating parasympathetic receptors at
neuromuscular junctions
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Table 2
Common functional polymorphisms due to coding SNPs in the ADRB genes.

Gene Identified polymorphisms Clinical relevance Associated with
interindividual
variability in IOP
response to β-blockers

Ref.

ADRB1 Ser49Gly Yes Yes [53]

Arg389Gly Yes No [54]

ADRB2 Arg16Gly Yes No [56]

Gln27Glu Yes Yes [56]

ADRB3 Trp64Arg Yes No [51]

IOP: Intraocular pressure.
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