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ABSTRACT	 xiii

Abstract

This thesis presents the study of the static behaviour of stud shear connectors

welded through profiled sheeting and the fatigue resistances of the connectors in

composite bridges.

In the presence of profiled sheeting in a composite beam, the resistance of

stud connectors to static shear is influenced by the geometry of the ribs and the

position of the studs within them. This is allowed for in the existing methods

by applying a reduction factor to the resistance of the stud in a solid slab, but

a study of the results of 203 push-out tests showed that the influences are not

taken into account properly. The reason, revealed by 16 new push-out tests with

transverse sheeting and 18 with parallel sheeting, is that the existing methods do

not distinguish between the various failure modes.

New conceptual and mathematical models are developed with respect to the

different failure modes. For transverse sheeting, up to nine parameters are in-

volved, among which five are shown by statistic analyses to have negligible in-

fluence. Based on the other four, simpler expressions for reduction factors are

derived, and the characteristic resistances (5% fractile) are given. For parallel

sheeting, however, it is found that the reduction factor method used in the exist-

ing models is not suitable, because the mechanism of load transfer is different. On

a whole, the new models improve the prediction of 95% of all the valid reported

test results, from a range -40% to +100% to within +11%.

The fatigue resistances of stud connectors in composite bridges are studied

statistically using 115 sets of reported data. It is found that the testing methods

have significant influence on the results, and are the reason for the discrepancies

between the existing models. A new model is proposed, based on the most reliable

group of data.
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Notation

A	 area of the surface of a concrete cone

Ar	 cross section area of the transverse reinforcement per unit

longitudinal length of the crack plane in the concrete slab

A	 cross section area of the shank of a stud connector

bEG, b11 , bL correction factors for the theoretical functions given by

Eurocode 4, by Lawson and by Hanswille, respectively,

as used in the statistical analyses

be	 width of a patch or strip load

b,1, b,0	 widths of the inner and outer prisms, respectively

be	 effective upper width of the trough of steel sheeting; for

single or staggered studs, be = b; for two transverse

studs, be	 b/2

average width of the trough of steel sheeting

upper width of the trough of steel sheeting

B, B	 widths of stress regions in the concrete an the steel sheet-

ing

d	 diameter of the shank of a stud connector

d	 depth of a concrete prism

dr	 diameter of a reinforcing bar

e	 distance from the centre of a stud to the mid-depth of

the nearer web of the trough of steel sheeting

ef, er for one stud per trough, the average covers of concrete in

the trough in front and at the rear of the stud connector

distance from the centre of a stud to the nearer top flange

of the trough of steel sheeting

Ecm, E	 elastic modulus of concrete and the stud, respectively



NOTATION
	

xvii

f, f	 cylinder and cube strengths of concrete, respectively

splitting tensile strength of concrete

fy, fyci	 yield strengths of studs and steel sheeting

f,3	 ultimate tensile strength of stud connectors

F, F 5%	 F values found from a sample and at 5% significance

level, respectively

g, G	 failure function in X-space and in Z-space, respectively

h	 overall height of a stud connector

ha	 depth of a patch load

h	 overall depth of the concrete slab

heff	 effective depth of the patch load, taking into account the

vertical dispersal of the patch load; heff = Q ha

hes, hep	 effective depths of the bearing area for splitting failure

and for pulling out failure, respectively

h	 depth of the trough of steel sheeting

hr	 distance from the reinforcement to the base of a stud

H	 height of the fix-ended concrete beam, Figure 5.3

H0 , Ha	 null and alternative hypotheses in the statistical analyses

k	 shear-friction factor

k, k, kd	 fractile factors for a, characteristic and design resis-

tances, respectively

Kd, K	 factors used in the splitting theory of Oehlers, equations

(2.19) and (2.20)

k, k	 reduction factors for stud connectors with transverse and

parallel sheeting; the other subscripts are for:

c	 -- concrete pulling out failure;

f	 -- the stud on the favourable side;

r	 -- rib punching failure;

u	 - the stud on the unfavourable side.
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upper limit for k as given by Hanswille [16]

in, K	 factors for predicting the fatigue resistances of studs

n	 sample size

Nr, Nrs	 number of studs per trough and per specimen

P, Pt	 compressive and tensile forces in the concrete slab

Fe	 resistance of a stud connector found from a push-out test

Pf,r, P1,	 failure probabilities of the resistance and the load effects,

respectively

Pr	 predicted resistance of a stud connector with profiled

sheeting; the other subscripts are:

EC - Eurocode 4 model [7];

H	 -- Hanswille's model [16];

L	 Lawson's model [26];

p,i	 --	 splitting resistance of the inner prism given

by Oehlers;

p,o -

	

	 splitting resistance of the outer prism given

by Oehlers;

ps	 - post-splitting resistance given by Oehlers;

u

	

	 - for two studs per trough, the stud on the

unfavourable side;

f

	

	 - for two studs per trough, the stud on the

favourable side.

Prs	 predicted resistance of a stud in a solid slab

PS
	 strip or patch load on a concrete prism

PSy	 resistance of a stud connector to pure shear

Q
	

proportional increase in resistance due to the vertical dis-

persal of the patch load
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r	 resistance function; subscripts are:

a - value with failure fractile a;

k - characteristic value;

d - design value;

t - mean value;

e	 value found from tests.

load effect

s 1 , 2	 variances of two samples

weighted variance of two samples

Sr

St, S

t, t=5%

T,Td

T8 , T

T

V

x 1 , X2

transverse spacing of reinforcing bars

transverse and longitudinal spacings of stud connectors

I values found from a sample and at 5% significance level,

respectively

tensile forces in the stud and the steel sheeting, respec-

tively

for two staggered or transverse studs, tensile forces in the

studs on the unfavourable and favourable sides, respec-

tively

resistance of a stud connector to uniaxial tension

central torque on a beam

coefficient of variation; subscripts are the variables stud-

ied

means of two samples

a	 significance level or failure fractile with subscript r for

resistance and s for load effect

/3	 safety index
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6	 error terms of a resistance function; subscripts are:

EC -- Eurocode 4 model [7];

H	 Hanswille's model [16];

L	 - Lawson's model [26].

a.	standard deviation; subscripts are the variables studied

tensile stress in the shank of a stud connector

7i, jsj	 conversion factors for the tensile strength and the elastic

modulus of lightweight concrete, respectively

factor for the height of a stud connector (equation 2.6))

77f	 friction factor between steel and concrete

thickness factor for steel sheeting

ij, )	 the two factors for calculating the reduction factors for

studs with transverse sheeting, as given by the new mod-

els; subscripts are:

c	 concrete pulling out failure;

f - the stud on the favourable side;

r - rib punching failure;

u	 the stud on the unfavourable side.

shear stress on stud connectors

torsional shear stress in the concrete slab

torsional shear strength of concrete

ii	 degree of freedom

'nvi	 partial safety factor

0 slope of the trough of steel sheeting, in degree

slope of the sides of a concrete cone, in degree

mean of a population

p	 measured density of concrete

Pu	 upper limit of a density class (table 7.1)



Chapter 1

General introduction

Steel-concrete composite beams with profiled steel sheeting as permanent form-

work for composite floor slabs have been used in building construction for some

considerable time. To ensure the composite action between the steel beams and

the concrete slabs, stud shear connectors are used. They are placed in the troughs

of the sheeting and welded onto the top flanges of the steel beams through either

sheeting or pre-cut holes in the sheeting.

In the design of such composite beams, the strength of the stud shear con-

nectors is of great importance. Much of the research into the behaviour of stud

shear connectors are based on push-out tests. Usually, there are two types of

push-out specimens. One is the specimens simulating a shear connection in an

interior composite beam, and the other is those simulating a shear connection

in an exterior beam of a composite floor system. The research presented in this

thesis concerns only the former.

The research consists of two parts. The first part is the static behaviour of stud

shear connectors welded through profiled sheeting. It is based on experimental

work, the object of which is to obtain physical understanding of load transfer and

the failure criteria of the connectors, and hence to predict the shear resistance

1
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of the connectors more rationally, compared with the existing models. This part

of the research is presented in Chapters 2 to 9. The second part is the fatigue

resistance of stud connectors in composite bridges. It is a conceptual study on

the reported test results, aimed at revealing the reasons for the discrepancies in

the existing models. Details are given in Chapter 10.

For the static resistance of stud connectors with profiled sheeting, the devel-

opment of the existing models is briefly reviewed in Chapter 2. The most recent

ones, Eurocode 4 model [7], Lawson's model [26] and Hanswille's model [16] are

compared in Chapter 3 with a total of 183 reported results of push-out tests.

This reveals the gaps in these reported data and the inappropriate regions of the

three models.

Therefore, two series of push-out tests, altogether 34, were carried out. They

were designed, according to the analyses of Chapter 3, to add fresh informa-

tion in the gaps and the inappropriate regions. Details of the specimen layouts,

manufacture, testing procedures, material properties, maximum loads and failure

modes are described in Chapter 4. Compared with the three models mentioned

above, these 34 tests show that none of them is appropriate, because they do not

distinguish the various failure modes found in the tests.

The following work is to find new models. It is presented in Chapter 5 for

transverse sheeting and in Chapter 6 for parallel sheeting. The most significant

characteristic of these new models is that they are developed with respect to the

different kinds of failure modes. For stud connectors with transverse sheeting,

there are five kinds of failure modes: shank shearing, concrete pulling out, rib

punching, rib punching combined with shank shearing and rib punching combined

with concrete pulling out. The first two are predicted by a rotation model, the

third by an arch model, and the last two combined failure modes by a combined

model. For stud connectors with parallel sheeting, the two failure modes, splitting

and pulling out, are predicted by a splitting model with a shear-friction concept.
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These models are only for stud connectors in normal weight concrete. In the

following chapter, Chapter 7, the influence of the density of concrete is studied.

It proves that the models can still be used to predict the resistances of stud

connectors in lightweight concrete, by introducing the conversion factors for the

strengths and the elastic modulus of concrete, as given by Eurocode 2: Part 1-4

[5].

However, it is noted that the theoretical models are very complicated, es-

pecia]Jy those for transverse sheeting, with as many as nine variables involved

simultaneously. A series of simplifications is carried out on the three models de-

scribed in Chapter 5, by first finding out which variables have the most significant

influence and then applying regression analyses. The results, with oniy three or

four variables, are simple and straightforward. Details are given in Chapter 8.

As all of the new models described in Chapters 5 to 8 are developed to predict

the mean resistances of the connectors, the partial safety factors 'y are studied

in Chapter 9, by means of the new statistical concept of Johnson and Huang [23],

based on which the design resistance (0.1% fractile) for one stud per trough is

given.

For the fatigue resistance of stud shear connectors, the study is presented in

Chapter 10. A total of 115 data are selected, and are analysed by statistical meth-

ods of F-tests and two-sample t-tests to reveal the reasons for the discrepancies

in the existing models.

The final chapter, Chapter 11, summarises the results of this research and

gives suggestions for further studies.



Chapter 2

Literature review

2.1 Stud connectors with transverse sheeting

There are mainly two kinds of methods in predicting the shear resistances of stud

connectors with transverse sheeting. One is the reduction factor method, and the

other is the shear cone method.

The reduction factor method, as it is named, is characterised by a reduction

factor relative to the resistance of the connector in solid (unsheeted) slab of

uniform thickness. The factor is a function of the geometry of profiled sheeting,

and does not exceed unity. This method stems from the research of Robinson [39]

in 1967, and was formulated by Fisher in 1970 [12]. Since then, arguments have

usually been over the function for the reduction factor. There are now models

by Grant et al. [14] (commonly used in codes of practice USA and Canada),

and those recommended by Eurocode 4 [7] and by BS 5950 [2], as well as some

alternative models as given by Lawson [26] and by Hanswille [16].

The shear cone method assumes a kind of shear friction failure of the concrete

over the surface of the shear cone developed around a stud connector. It was first

4
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proposed by Hawkins and Mitchell [18]. Further efforts made by Jayas and Hosain

[21] and by Lloyd and Wright [27] were to adjust either the shear-friction stress

or the shape of the shear cone.

2.1.1 Reduction factor method

The reduction factor method can be expressed in a common form as

Pr=kt P
	

(2.1)

where Pr and Prs are the resistances of stud connectors with profiled sheeting

and in a solid concrete slab, respectively; k is the reduction factor which is a

function of rib geometry. The following are a number of different proposals for

the function of the reduction factor.

Model of Grant et al.

In 1967, Robinson carried out 15 beam tests and 39 push-out tests [39], and

concluded that for deep and narrow ribs the shear resistance of stud connectors

is a function of the rib geometry, and is substantially less than that in a solid

concrete slab. This observation was studied by Fisher in 1970 [12] with some other

tests, which led to the finding that the function was the ratio of the average width

of the trough of steel sheeting, b0 , to the depth of the trough, h:

(2.2)

Recognising the many uncontrolled and ill-defined variables in the early investi-

gations, Grant et al. carried out 17 full scale beam tests [14]. The results showed

that k was related not only to b0 and h but also to the overall height of the stud

connector, h. Supplemented by 58 beam tests of other investigators, the function

was found to be
0.85 b0 h

=	 --(- - 1) ^ 1.0	 (2.3)
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which was based on Pr6 in equation (2.1) as given by equation (2.4).

Prs = 0.5As fc Ecm	 (2.4)

in which Nr is the number of studs per trough; A5 the cross section area of the

shank of a stud connector; f, the cylinder strength of concrete; E the elastic

modulus of concrete.

Equation (2.3) was widely accepted by the Standards of many countries, such

as USA, Canada, the U.K., and in draft Eurocode 4.

BS5950: Part 3

After many years of application and especially after the appearance of the modern

profiled sheeting, it is recognised that equation (2.3) is unconservative for:

. more than one stud in a trough;

. ribbed sheeting with off-centre studs.

Therefore, in the revised British Standard, BS 5950: Part 3 [2], additional limits

were set on the application of equation (2.3). For more than one stud in a trough,

the upper limit of the reduction factor k is lowered to 0.8 for Nr = 2 and 0.6 for

Nr=3.

For a stud in the trough with a central rib, there are two positions known

as favourable and unfavourable. They are shown in Figures 4.7 and 4.8. In the

direction of the shear force, when the stud is behind the central rib, it is in a

favourable position, otherwise in an unfavourable position. The beneficial effect

of the favourable position is taken into account in BS 5950: Part 3 by replacing b,

in equation (2.3) with 2(b0 - e), where e is the distance from the centre of the stud

to the mid-depth of the nearer web. When a stud is placed on the unfavourable

side, b0 is replaced by 2e.
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Eurocode 4

This model was the result of the statistical analyses by Stark and von Hove [45]

on four groups of data which were divided according to the following rules:

Group 1: through-deck welding and Nr = 1 (22 data);

Group 2: through-deck welding and Nr = 2 (14 data);

Group 3: through-hole welding and Nr = 1 (16 data);

Group 4: through-hole welding and Nr = 2 (4 data).

The analyses examined the use of equation (2.3), and found that the factor 0.85

in the equation should be reduced to 0.81 for Group 1, 0.72 for Groups 2 and 3

and 0.71 for Group 4. To make it safe, Eurocode 4 [7] adopted the lowest value

0.71 and simplified this to 0.7:

k= 
0.7 b0 h
	

1.0 Nr1	
(2.5)

0.8 Nr^2

with the reference resistance P given by

Prs = 0.2917iid2/fcEcm ^
	

(2.6)

where

77h=0.2[+1]	 3^^4

?7h',

in which d is the diameter of the shank of a stud, and f its ultimate tensile

strength.

Equation (2.5) was recognised as being a poor approximation, because the

factor 0.7 was based on only 4 sets of data (Group 4), which, from the statistical

point of view, inevitably resulted in high scatter, but no better one was found.
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Lawson's model

A detailed study was carried out by Lawson [26] to examine the use of BS 5950:

Part 3 [2], which revealed problems in the following regions:

. wide trough profiles;

. two studs per trough;

• one stud per trough in the unfavourable position.

The reason for the problems was believed to be due to the effects of the various

kinds of stud positions. Therefore, new models were proposed accordingly:

k	
0.75b0	h

- /fi.ç hh + h ^ 
1.0, for

	

1.5	 h

JN h + h(2h/b0) 
1.0,

b0 ^ 2h;
	

(2.7)

for b0 ^ 2h
	

(2.8)

Both equations are for single or pairs of stud connectors placed centrally in a

trough.

For one stud in the favourable position, as in BS 5950: Part 3, b in the two

equations is replaced by 2(b0 - e), while in the unfavourable position, equation

(2.7) is used with b0 replaced by (e + h) or equation (2.8) if e> h.

For two studs per trough, if they are transverse to the trough, equation (2.7)

or (2.8) is used with Nr = 2; if they are in-line along the trough off-centrally, the

method is as for one off-centre stud but with Nr = 2.

The reference resistance of the stud connectors, P, is the tabulated value as

given ir BS 5950: Part 3 [2] (Clause 5.4.6).

Hanswifle's model

In Hanswille's model [16], the effect of the thickness of steel sheeting was con-

sidered. A total of 46 reported results of push-out tests was collected, and was
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classified into several groups according to the thickness of the sheeting, t, and

the welding methods. Statistical analyses were then carried out on each group to

examine the use of the Eurocode 4 model [7]. It was found that equation (2.5)

is unconservative, especially for profiles with thickness less than 1.0 mm and for

studs welded through pre-cut holes.

An alternative proposal to the function was given by Hanswille [16] by lowering

the limits of equation (2.5) as follows:

0.7 b0 h
= ____	 - 1)	 kt,iimit	 (2.9)

in which	 is as given in Table 2.1.

Table 2.1: Hanswille's model for

Number of studs Through-deck welding Through-deck welding Through-hole welding

per trough	 1.2 mm	 t < 1.0 mm

Nr	 1	 0.90	 0.85	 0.75

Nr	 2	 0.75	 0.70	 0.60

2.1.2 Shear cone method

The shear cone method is restricted to failure by the stud(s) pulling out from

the concrete. It assumes a kind of shear and friction failure precipitated on the

surface area of a concrete cone or pyramid around the stud connector. It is

expressed in a common form as

Pr k/Ac	 (2.10)

where ',./7 represents the shear-friction stress, in N/mm 2 units, over a surface

area A of the shear cone, as defined later, and k is an empirically derived shear-

friction factor.
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The method was first proposed by Hawkins and Mitchell in 1984 [18]. They

obtained a value of k as 0.45 from eight push-out tests. In 1988, Jayas and Hosain

[21] carried out 18 push-out tests and found that for 38-mm deck with b0fh from

1.6 to 4.2, k is 0.61, and for 76-mm deck with b0/h = 2.0, 0.35. Apart from this,

they introduced another factor )., varying according to the type of the concrete

used: 1.0 for normal density concrete, 0.85 for semi-low density concrete and 0.75

for structural low density concrete. The definition of the density is as given in

the CPCI Metric Design Manual (Canadian Prestressed Concrete Institute 1982)

[3].

Both methods assumed a 45° pyramid-shaped failure surface intersecting with

the profiled sheeting, as shown in Figure 2.1. Details of the calculation of A were

given in [18] for single or double studs placed in a variety of metal deck geometries.

Figure 2.1: The 450 pyramid-shaped shear cone.

The most recent study on a shear cone method was done by Lloyd and Wright

[27], in which 42 push-out specimens with 50-mm deck were tested. Checking with

the methods mentioned above found k a value of 0.36 for these tests (b0/h around

3.1). Clearly, there are considerable differences in the value of k. The reason for

this, explained by Lloyd and Wright, is that approximating the concrete shear

failure to a 45° cone is too insensitive to variations in rib geometry and the height
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of the stud. Based on the dimensions of the failure cones measured from the 42

tests, a wedge-shaped concrete pyramid was proposed, as shown in Figure 2.2.

The shear strength was then found to be

Pr =	 (2.11)

in which /J is the shear-friction stress, in N/mm 2 units; f the cube strength

of concrete; A the area of the wedge-shaped concrete cone, in mm2 units.

The factors 0.92 and 0.34 in equation (2.11) were the results of the regression

analysis of log Pr on 1og(A/J) on the 42 data and those from [18] and [21].

+	 +

Figure 2.2: Wedge-shaped shear cone.

2.2 Stud connectors with parallel sheeting

There is limited experimental work on stud connectors with parallel sheeting.

Based on it, studies have been mainly empirical, in order to find a reliable function

for the reduction factor, as has been done for studs with transverse sheeting. Here

there are two main models, Eurocode 4 [7] and Lawson's model [26].

Since 1981, a series of theoretical analyses has been carried out by Oehlers



(2.12)

(2.13)

I 0.67 . - < 1.0
up

I' 1.0

^ 1.5h

b0 > 1.5h
(2.14)
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to study the behaviour of stud connectors in composite beams [38]. They were

based on finite element analyses [35].

2.2.1 Empirical studies - Reduction factor method

Eurocode 4 model

In 1977, Grant et al. found from beam tests with transverse sheeting that the

reduction factor is in proportion to two ratios, b0/h and h/hr , as given by

equation (2.3). The model was found to be applicable also to stud connectors

with parallel sheeting. For wide troughs with b0/h > 1.5, no reduction was

required. In other cases, a single constant 0.6 was used to replace 0.85/N in

equation (2.3), and this gave:

k = 1.0,	 > 1.5;
h

k = 0.6-(-- - 1)	 1.0,	 <1.5.
h	 lz,

For studs with parallel sheeting, Eurocode 4 [7] gives oniy equation (2.13), with-

out the condition on b0/h, due to the fact that some push-out tests showed that

= 1.0 for b0/h > 1.5 was unconservative.

Lawson's model

In Lawson's study [26], the reduction factors were found to depend on the ar-

rangement of the stud connectors within a trough, and to be related to the rib

geometry in terms of only b0/h. The functions proposed are as below:

For a single central line of studs in a trough,
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For pairs of studs in a trough,

k = 0.4-- < 1.0	 (2.15)-

2.2.2 Oehlers' theory

A series of systematic studies has been carried out by Oehlers since 1981. They

started with shear resistance of stud connectors in solid concrete slabs, then in

concrete slabs with haunches, and finally extended the idea into shear resistances

of stud connectors welded through parallel sheeting, based on the assumption

that the sheeting in the last case has a similar effect on the shear resistance of

stud connectors as haunches and the reinforcement have in the other two cases.

These studies were summarised in [38].

For stud connectors with parallel sheeting, three kinds of failure modes were

identified. They were dowel failure, splitting failure and post-splitting failure.

Dowel failure

The dowel failure is the shearing of the shank of the stud connector with local

damage to the surrounding concrete. It has the highest resistance, and usually

occurs when wide-trough decking is used. In this case the rib geometry has

no negative influence on the resistance, so the mean dowel strength for stud

connectors in a solid concrete slab, P, as proposed by Oehlers and Johnson [22],

can be used, that is,

P =	 (2.16)
f	 E5

where A and E are the cross section area and the elastic modulus of the shank

of a stud, respectively.
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Splitting failure

Splitting failure is by the tensile cracks in the concrete slab in some regions. The

transfer of the shear force into the concrete through stud connectors develops

transverse tensile force in the slab. When the tensile strain of concrete reaches

the ultimate value, the concrete slab splits and fails immediately if there is no

effective reinforcement crossing the cracking region. This mode is very brittle.

The transfer of the shear forces through stud connectors is regarded as a

concentric patch load with width ba and depth h, as shown in Figure 2.3.

cracks

____ 0	 çi-'
	

oo

ba

b,1

Figure 2.3: The concentric patch action of stud connectors.

The patch load is dispersed into the concrete in three dimensions: horizontal,

vertical and in the direction into the paper. To simplify this three-dimensional

problem, the patch load is assumed to be acting on two prisms, the inner one

with width and the outer one with width b,0, as shown in Figure 2.4. It is

also assumed that the width of the patch load ba is the diameter of the stud for

one line of connectors or the edge distance between the two or multiple lines of

connectors. Shown in Figure 2.3 is the definition of ba for two lines of studs.

The beneficial effect of vertical dispersal of the patch load is taken into account
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III'eff
ba

I	 b,0	 I

Figure 2.4: Oehlers' splitting analyses: inner and outer prisms.

by the effective depth heff of the patch load by defining

heff =Qha= Q .'1.8d	 (2.17)

where Q is the proportional increase in resistance due to vertical dispersal. It is

given as

Q = 1 + Kd7rK	 (2.18)

The factors Kd and K are determined by equations (2.19) and (2.20):

1 
1	

b 2

[ -	
(2.19)

and

K = 
[[1_ 

L8d]2L8d]l	
(2.20)

where h is the overall height of the concrete slab.

If Prp,i and Prp,o are the splitting resistances of the inner and outer prisms,

respectively, the resistance of splitting failure is determined by:

Pip = Prp,i +	 (Prp,o -	 (2.21)

where 0 is in degree. Details of calculating Prp,i and P,0 are given in [38] (Section

11.5.3) for various stud arrangements: single line, two lines and multiple lines.
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Post splitting failure

After splitting occurs, if there is reinforcement across the splitting zone, the

released tensile force is taken by the reinforcement. Therefore, the resistance of

the connector depends on the amount and position of the reinforcement. With

sufficient reinforcement the dowel strength of the stud connector may be reached.

The difference between this mode and dowel failure is the severe damage of the

concrete in a wider region, due to the deformation of the reinforcement.

If Ar is the area of the transverse reinforcement per unit longitudinal length of

the crack plane, and s is the longitudinal spacing of a longitudinal line of shear

connectors, the post-splitting resistance of a shear connector P was found [38]

to be
3Arv

Prps = P(O.6 + ' 2 	 (2.22)

in which P is from equation (2.16), and ha (= 1.8d) is the depth of the patch

load.

Equation (2.22) requires the diameter dr of the reinforcing bar not greater

than O.4ha , and the distance hr of the bar from the base of the shear connection

not greater than l.7ha, as shown in Figure 2.5.

d
Sr	 dr	 i

0 0110 0 0110 0 0110 0	
J/Zr

LJ
Figure 2.5: Distribution of transverse reinforcement.

In the absence of reinforcing bars in the splitting zone, as is the case for

composite slabs, the haunch is fully encased by a trough of profiled sheeting of

thickness t. Therefore, it is reasonable to assume the effective area of reinforce-

ment Ar for use in equation (2.22) as iitt, in which 71t is an influence factor for
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the thickness of decking. From equation (2.22), the post-splitting resistance for

a haunch formed by steel sheeting is

Prps = Prs(0.6 + 
3lltt;sv)	 (2.23)

ha

The value of can be determined from push-out tests, and Prs from equation

(2.16).

2.3 Summary

As this review has shown, design rules given by Eurocode 4 [7] are much more

reliable than by BS 5950: Part 3 [2] and the one used in the USA (equation

(2.3)), in that they are based on more recent test results.

Proposals for modification given by Lawson [26], Hanswille [16], Lloyd and

Wright [27] and others concern the following problems in the design rules:

1. various positions of stud connectors in the modern profiled sheeting;

2. effects of the thickness of profiled sheeting;

3. various failure modes.

However, the physical understanding of the mechanism of load transfer and the

failure criteria of stud connectors is still missing. Therefore, the most recent

models: the Eurocode 4 model [7], Lawson's model [26] and Hanswille's model

[16], are re-examined by reported results of push-out tests to find gaps and the

inappropriate regions, as will be shown in the next chapter.



Chapter 3

Analyses of reported results of

push tests

3.1 Introduction

Among a large number of reported push-out test data, 203 were selected with

respect to their reliabilities, for the analyses carried out in this chapter.

Apart from the variables in concrete, steel decking and stud connectors, these

selected data are also different in welding methods and specimen layouts (or

numbers of studs per specimen). Naturally, questions are raised - are these test

results affected by the welding methods or by the specimen layouts, and if they

are, to what extent? In order to solve these problems, statistical methods for

testing means and standard deviations were applied. It was found that welding

methods have significant influence on test results. As to specimen layouts, the

influences are negligible only when the number of studs in a specimen is greater

than six.

According to the statistical results, the 203 data were re-divided into seven

18
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significantly different groups. Two of these, with studs welded through pre-cut

holes, were not studied, because the influence of welding methods is beyond the

range of this research. The other five groups were analysed to examine the use of

the reduction factors as given by Eurocode 4 [7], by Lawson [26] and by Hanswille

[16].

The results show that none of the three models is satisfactory, especially

for steel sheeting with the thickness less than 1.0 mm and for one stud in the

unfavourable position, as well as for two studs in a trough.

3.2 Selection of data

The 265 sets of push-out test data are outlined in Table 3.1, in which the Roman

numbers I, II and III denote the rows of studs per slab.

As mentioned earlier in Chapter 2, the shear resistances of stud connectors

with profiled sheeting in Eurocode 4 are given in the form of reduction factors

relative to those in solid concrete slabs P, where P is assumed to be controlled

by the weaker of the concrete or the stud connectors (equation (2.6)). This is

shown schematically in Figure 3.1, where f is the strength of concrete, and f, the

ultimate tensile strength of the stud. With low strength of concrete, an unknown

f does not affect the estimation of P. On the contrary, it may result in big

errors when concrete strengths are higher. Therefore, for tests with unknown f,

a careful check is needed.

Among the 42 tests reported by Lloyd and Wright [27], 30 have plain decking

without embossment. These data are excluded from the analyses, because the

embossment is needed to provide additional friction between the steel and the

concrete, as is usually the case in the other reported push-out tests. The other

12 tests have stud connectors imported from Germany with an estimated range
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of f from 450 to 470 N/mm 2. The cube strength of concrete is from 33.1 to 43.4

N/mm2 (26.5 to 34.7 N/mm 2 if converted to cylinder strength). The shear resis-

tances, then, are between 94.9 and 112.7 kN when f controls (0.29d2'/fcEcm),

and are greater than 102.1 kN when f controls (0.8rd2f/4). So, only those with

resistances controlled by f are selected.

For the same reason, eight of the 16 tests reported by Roik and Hanenkamp

[41] are selected.

Figure 3.1: Resistances of studs in solid concrete slabs.

The 10 tests of Bode and Künzel [9] with relatively stronger concrete show the

uncertainties from f much more clearly. Again, all these data have an estimated

f from 450 to 470 N/mm2. With the cylinder strengths from 36.5 to 39.1 N/mm2,

the shear resistance controlled by the stud connectors is 136.8 kN for f = 450

N/mm2 and 142.9 kN for f, = 470 N/mm 2, well below the resistances controlled

by the concrete which is from 156.4 kN to 163.5 kN. So, these data are rejected.

For the Canadian tests with transverse sheeting, [18] to [21] and [40], though

was not reported, it is known to be 415 N/mm 2 for the commonly avai1ab1

stud connectors in Canada [11]. Comparing the shear resistances governed by

the concrete and by the stud connectors, it is found that the concrete is always

on the weaker side. Therefore, these data are selected.
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____ Table 3.1: The outline of 203 reported results of push-out tests. -

Transverse deck	 Parallel deck	 No.

	

Ref	 One stud per trough	 Two studs per trough	 Total	 of

Hole	 Deck	 Hole	 Deck	 Gap Deck	 data

II	 I	 II	 III	 II	 I	 II	 III	 used

	

[18]	 3	 4	 1	 8	 8

	

[21]	 2	 2	 2	 2	 (5)	 13	 8

	

[27]	 9	 (3)	 42	 9

(30)

	

[41]	 2	 3	 1	 2	 16	 8

(4)	 (1)	 (2)	 (1)

[9] (10)	 10	 -

	

[42	 5	 5	 5

	

[34]	 28	 12	 40	 40

[10] 6	 6	 12	 12

	

[20]	 8	 8	 8

	

[40]	 12	 11	 8	 31	 31

	

[17]	 10	 5	 3	 18	 18

	

[47]	 3	 3	 12	 6

(3)	 (3)

	

[29]	 23	 27	 50	 50

	

Total	 22	 14	 70	 49	 8	 44	 23	 7	 8	 20	 265

	

Used	 8	 14	 66	 19	 6	 44	 19	 7	 -	 20	 203

Group G12H Gil G12 G13 G22H G21 G22 G23

	

&Ec	 0.82	 1.19	 1.02	 1.01	 0.71	 1.08	 1.03	 1.12

	

°bEc	 0.10	 0.17	 0.21	 0.09	 0.03	 0.23	 0.36	 0.26

Note: I, II and III are the rows of studs per slab.
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Among these reported results of push tests, the types of failure mode were

shank shearing, concrete pulling out, rib punching, welding and tension cracking.

The first three types are the modes usually observed in full-scale beam tests.

Failure in welding can be prevented by controlling the quality of welding. One

result reported by Wright and Gallocher [47] that failed by this mode is rejected.

Tension cracking is the transverse tension cracks developed on the outer con-

crete surface at the thinner section. It is due to the narrow width of the concrete

slab in a push specimen, so it is unlikely to happen in a composite beam where the

concrete slab is usually very wide. Five results reported by Wright and Gallocher

[47] that failed by this type of mode are rejected.

When a parallel sheeting is used, it can be continuous across the beam or

discontinuous with one sheet on each side of the beam. This allows several options

for the welding of the studs:

(a) continuous sheeting with stud connectors welded through it;

(b) continuous sheeting with stud connectors welded through holes in it;

(c) discontinuous sheeting with stud connectors welded through it;

(d) discontinuous sheeting with stud connectors welded directly on the

steel beam through the gap between the sheeting.

These four options are illustrated in Figure 3.2.

A continuous sheeting can provide effective lateral restraints to the sides of the

concrete haunch, as in cases (a) and (b). Similar restraint can also be achieved

in case (c), because the sheeting is fixed to the beam by the stud connectors.

However, in case (d), as the sheeting is only lightly fixed to the steel flange, it

provides little lateral restraint to the concrete haunch. The shear resistance of

stud connectors in this case is beyond the range of this study. Cases (a), (b)

and (c) are denoted as through-deck welding, and case (d) through-gap welding.
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Five tests reported by Jayas and Hosain [21] and three by Lloyd and Wright [27]

belong to the latter case, so they are rejected.

(a)	 (b)

(c)	 (d)

Figure 3.2: The options for stud connectors with parallel sheeting.

Altogether, 203 data are selected, among which 183 have transverse sheeting,

and the other 20 parallel sheeting.

3.3 Statistical analyses of the data selected

3.3.1 Random variable bEG

Variables in the selected 203 data can be classified into five areas:

1. concrete (strength and density);

2. stud connector (diameter, height, ultimate tensile strength, number per

trough and position);

3. steel sheeting (thickness, width and depth of the trough, and orientation);

4. testing method (base conditions);
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5. specimen layout (width, height of the specimen);

6. welding method (through pre-cut hole or through decking).

The first three areas are where the behaviour of stud connectors in a composite

beam has been studied. Data with variables within these areas are compatible.

Among the selected 203 data, there are mainly two kinds of base condition of

the push specimen. One is the friction base of British style, where the base of the

specimen was bedded down on dental plaster directly onto the floor. The other

is the friction recessed base of German style, where there was a small recession

at the base of the specimen. The influences of these two base conditions were

studied by Hicks and McConnel [19]. They concluded that the German style

push tests gave only marginally smaller capacities than the British style tests.

Considering that there are only 25 data (out of 203) with the base condition of

German style, the influence of testing methods can be neglected.

As explained in Section 3.2, data with failure mode that associates with the

width of the specimen have been rejected, the influence of the width can also be

neglected.

The height of a push specimen usually depends on the rows of studs per slab.

Up until now no standard form has been specified for push-out tests on stud

connectors with profiled sheeting. The number of rows of stud connectors per

slab has been chosen randomly by the researchers, usually from one to three.

Therefore, the effects of different rows of studs need to be clarified.

As to the welding methods, though there is experimental evidence that studs

welded through profiled sheeting tend to be stronger, Eurocode 4 gives a conser-

vative recommendation on the reduction factors, based on the statistical analyses

for two studs per trough welded through pre-cut holes. Their effects also need to

be clarified.
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Therefore, the selected data are analysed. Because there are only 20 data with

parallel sheeting, the analyses are carried out on the 183 data with transverse

sheeting.

As shown in Table 3.1, these 183 data are divided into eight groups, according

to the number of studs per trough, welding methods and the rows of studs per

slab. The names of the groups are defined in such a way that th first chgit

represents the number of studs per trough, and the second is the rows of studs

per slab. For example, G12 means the Group of data with 1 stud per trough and

2 rows in each slab.

Comparing the experimental resistance Fe with the theoretical one PrEC from

the Eurocode 4 model (equations (2.1), (2.5) and (2.6)), the correction factor b5cJ

is given by:
Fe

bEc
.trEC

The mean and the standard deviation of bEG, bEc and 0bc, for each group are

also given in Table 3.1. Differences are obvious among the groups. But are the

differences due to welding methods and rows of studs per slab or only to chance?

In order to solve this problem, statistical methods for testing means and standard

deviations are applied.

3.3.2 Mean of bEc

The statistical method of two-sample t-test is to test the significance of the means

of two independently drawn random samples. If and IL2 are the means of the

populations from which the samples are drawn, the null hypothesis is

H0 : 121 = /12

(3.1)

against the alternative hypothesis

Ha:
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When H0 is accepted, it means the two populations have equal means, and the

difference in the sample means is purely by chance. When H0 is rejected, Ha

is automatically accepted, that is, the two samples are from populations with

significantly different means. However, there is a probability of rejecting a true

null hypothesis, which is called the significance level a. For example, when a =

5% and we come to the decision of p p2, this means that there is 5% probability

that p is actually equal to p2 and we make a wrong decision.

For the eight groups in Table 3.1, they can be treated as eight independent

random samples, one from each of eight populations. The base samples are chosen

as G12 for groups with one stud per trough, and G22 for two studs per trough,

because they have similar specimen layouts to that recommended by Eurocode

4 for push-out tests with stud connectors in solid concrete slabs. Two-sample

t-tests are carried out between the base sample and any other sample for groups

with one and two studs per trough, respectively.

From the way bpc is defined, as given in equation (3.1), it is rational to

assume that bEC is a randomly distributed variable with normal distribution.

The differences caused by the concrete, steel decking and stud connectors are

only by chance. Therefore, if the t-test shows significant difference in the means

of bEc of two groups with the same theoretical resistance function PrEC, it can be

concluded at 95 per cent confidence level that the variable investigated, either the

welding method or the number of rows of studs per slab, has significant influence

on the test results Fe. Otherwise, the influence is negligible, with 5 per cent risk

of a wrong conclusion.

3.3.3 Standard deviation of bEG

In the two-sample t-test, an assumption about the equality or inequality of the

standard deviations is necessary, because two different ways of testing are fol-
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lowed. Therefore, the relation between the standard deviations of the two samples

are determined by applying the F-test prior to the two-sample t-test.

The F-test is to test the significance of the variations. It follows similar rules

to the two-sample t-test, except that the null hypothesis is H0: o = a2, and

the alternative hypothesis is Ha: o a2, where o and a2 are the standard

deviations of the two underlying populations from which the samples are drawn.

The acceptance of the null hypothesis means the two populations have the

same variance, and the difference in the two samples is due to chance only. On

the contrary, the rejection of it proves with 95 per cent confidence level that some

real cause is responsible for the difference in the variances of the two samples.

For the eight groups concerned here, the F-test is carried out on the base sam-

ple and one other sample. From equation (3.1), it can be seen that the variance of

bc is due to partly to the randomness of the variables in concrete, steel decking

and stud connectors, and partly to the imperfection of the theoretical models.

The former is virtually the same for all theoretical models, so the differences in

abEc come mainly from the latter.

If the F-test shows significant differences in abEc for the two groups tested,

it means the theoretical model is less appropriate for the group with higher £TILEC

than for that with lower one. In other words, the variable investigated (either

welding methods or rows of studs per slab) has significant influence on the test

results, but is not taken into account by the theoretical model. In this case, a

new theoretical function is needed.

If the F-test shows no significant difference in abEc of the two groups, it

only means the theoretical model predicts the two groups of tests with the same

accuracy, with respect to their means. The significantly different means of the

two groups, therefore, is due to the welding methods or rows of studs per slab,

and it can be concluded that the influence is very simple: the tested values are
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either higher or lower by a certain percentage.

3.3.4 Procedures of the statistical analyses

The procedures of the testing on the base sample and any other sample are as

follows:

1. Calculating the value of bEC (equation (3.1)) for each set of data of the two

samples.

2. Finding out the mean and the standard deviation of &EC for each sample.

3. Performing the F-test to test the significance of the standard deviations of

bEc of the two samples, with the null hypothesis H0 : o i = a2 against the

alternative hypothesis Ha: a1 O2 at the 5 per cent significance level.

If Si and s2 are the standard deviations computed from the two samples,

the random variable

F—"°
- s/a	

(3.2)

follows a distribution called the F distribution, with the degrees of freedom

vi =	 - 1 and v2 = n2 - 1, where i and n2 are the sizes of the two

samples, respectively [24].

Invoking the null hypothesis H0 , equation (3.2) is reduced to

F= 2'	 S i >	 (3.3)

The value of F is compared with the one found from the F distribution at 5

per cent level, given in Table A.14 of [24]. If F is greater than the tabulated

value, the null hypothesis H0 is rejected, and it is concluded with 95 per

cent confidence level that the influence of welding methods or specimen

layouts is significant. If, otherwise, F is less than the tabulated value, the

null hypothesis is accepted, and step 4 is performed.
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4. As a1 = o 2 is accepted, the two-sample t-test is performed for equal stan-

dard deviations, with the null hypothesis H0 :	 = /12 against the alterna-

tive hypothesis Ha: it i	 at the 5 per cent significance level, where /i

and u2 denote the means of the underlying populations.

If i and 2 are the means of bEc of the two samples, the statistic

2I

+	
(3.4)

has a t distribution with (n1 + n2 - 2) degrees of freedom, where

2	 (ni - l)s + (n2 - 1)s	
(3.5)ni + n2 - 2

Comparing I from equation (3.4) with the value in Table A.7 of [24] at 5 per

cent level, if t is smaller, the null hypothesis is accepted, and the conclusion

is that the influence of welding methods or specimen layouts is negligible.

Otherwise, the null hypothesis is rejected, and the difference in the two

samples is believed with 95 per cent confidence level to be the result of

different welding methods or specimen layouts.

3.3.5 Results of the statistical analyses

The results are listed in Tables 3.2 and 3.3, relative to the number of studs per

trough.

The influence of welding methods is significant for both one and two studs in

a trough, and is found that studs welded through decks are stronger than through

holes. This might be because the decking fixed by the weld collar stiffens the studs

around the base area, though the weld collar itself is less pronounced, compared

to the case of through-hole welding. However, the effect of welding methods is

beyond the scope of this research, so the following analyses concern only studs

welded through decking.
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In the sequence of Gil, 012, 021, G13, G22 and G23, the numbers of studs

per specimen, N, are 2, 4, 4, 6, 8 and 12. From both Tables 3.2 and 3.3, the F-

and t-tests show that their influence on test results can oniy be neglected when

there are more than six studs in a push-out specimen. So, 022 and G23 with 8

and 12 studs per specimen are combined into one single group, denoted as G223.

The significantly different groups are:

Gil: one row of one stud per trough;

012: two rows of one stud per trough;

013: three rows of one stud per trough;

G21: one row of two studs per trough;

0223: two or three rows of two studs per trough.

	

Table 3.2: F- and i-tests for	 with one stud er lrougn.

Group n N	 bEc	 abEC
	

F-test
	

t-test

F
	

Fa=5 % t

G12	 66	 4	 1.0187 0.2093

Gil	 14	 2	 1.1911 0.1740 1.45 <	 2.25	 2.87 >	 1.98

G13	 19	 6	 1.0052 0.0927 5.09 >	 2.02

GI2H	 8	 4	 0.8274 0.0968 4.68 >	 3.30

fl - size of group; Nrs - number of studs per specimen.

3.4 Discussion

The above five groups of test results are analysed to examine the use of the

Eurocode 4 model and the alternative models given by Lawson and by Hanswille.
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Table 3.3: F- and t-tests for	 with two studs per trot

Group fl Nrs bEG	 0bEC
	

F-test	 t-test

F
	

F 5% t

G22	 19	 8	 1.0292 0.3606

G21	 44	 4	 1.0764 0.2303	 2.45	 >	 1.84

G23	 7	 12	 1.1249 0.2588	 1.94	 <	 3.87	 0.37 <	 2.06

G2211	 6	 8	 0.7071 0.0296 148.17 >	 4.56

fl	 size of group; N - number of studs per specimen.

In Chapter 2, it was shown that compared to the Eurocode 4 model, Lawson's

model is characterised by the consideration of different stud positions within a

trough, and Hanswille's model by the introduction of a new variable, the thickness

of the sheeting.

As explained in Section 3.3.3, the accuracy of the theoretical model is reflected

by the standard deviation of bEG. If, for each group, let t5EC = bEc/bEc, noting

that 6EC = 1, then OSEC are compatible among the groups, and hence the effects

of stud positions and the thickness of sheeting can be studied on a more general

basis.

For the two alternative models, the corresponding variables are developed in

the same way, that is:

for Lawson's model
Fe	 bL

bL,	 L=7-;

for Hanswille model
Fe	 bH

	

&H =-- , 6H Th	 (3.7)

Comparing these variables will show the improvements and also the problems of

the two alternative models.

(3.6)
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3.4.1 Stud positions

For one stud per trough, the stud connectors can be in three positions: central,

favourable and unfavourable, and for two studs per trough, the positions are

much more complex. In the direction of the troughs, they are centre, favourable,

unfavourable, transverse and staggered.

These positions are not distinguished by Eurocode 4. For one stud in the

central or favourable position, as shown respectively in Figures 3.3 and 3.4, when

b0/h < 1.4, Eurocode 4 is over conservative, and the scatter is from 0.9 to 2.0.

In the region of 2 < b0/h 3.2, the scatter is still very high, from 0.7 to 1.1

for the central position and 0.9 to 1.4 for the favourable position. Figure 3.5

shows the results of one stud in the unfavourable position. The unconservatism

of Eurocode 4 is very obvious, especially when b0/h ^ 2.6. The scatter still

keeps at the high level, from 0.7 to 1.1.

For two studs per trough, similarly, Eurocode 4 is rather inappropriate for

any position of the studs in narrow troughs, say b0/h 2.0, as shown in Figures

3.6 and 3.7. The scatter is as low as 0.6 and as high as 1.6. For wider trough with

b0/h ^ 2.4, most of the points fall below 1.0, which means Eurocode 4 is unsafe,

especially when studs are in favourable, unfavourable and staggered positions.

On the whole, Lawson's model which allows for studs in different positions

more or less reduces the scatter, as shown in Figures 3.8 to 3.12, but the problems

are still the same: for one central stud (Figure 3.8), the model is over conservative

when b0/h < 1.4, and unsafe when b0/h ^ 2.0; for one unfavourable stud

(Figure 3.10) with b0/h 2.4, over conservative; little improvement for two

central studs (Figure 3.11) in the range of b0/h ^ 2.4; unconservative for two

favourable, staggered or transverse studs in wide troughs with 2.4 <	 3.2

(Figures 3.11 and 3.12).
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3.4.2 Thickness of sheeting

Unlike Eurocode 4 or Lawson's model, Hanswille's model takes into account the

effects of the thickness of sheeting, by limiting the reduction factor of Eurocode

4 in accordance with several thickness groups. It does reduce the scatter for one

stud per trough with reported thickness (Figure 3.13), but not for two studs per

trough (Figure 3.14). Clearly, Hanswille's model is still inappropriate.

Examining Lawson's model against the thickness of sheeting, as shown in

Figure 3.15 for one stud per trough, it can be seen that the resistances of studs

increase as the thickness increases. The behaviour is the same for two studs per

trough when 1.0 mm. However, for t = 1.2 mm, all the points are on the

unsafe side (Figure 3.16), which is due to the inappropriateness of the model.

To summarise, the influences of the thickness of sheeting and stud positions

are significant, and are not properly taken into account by the current models.

3.5 Conclusions

1. Welding methods and number of studs per specimen ( 6) have significant

influence on the results of push-out tests.

2. Neither the reduction factors as given by Eurocode 4 nor those proposed

by Lawson and by Hanswille are appropriate. The problems are in the

following areas: influence of the thickness of steel sheeting; behaviour of

studs in narrow troughs with b0/h ^ 2.0; behaviour of studs in different

positions within a trough.

3. For one stud per trough, there are only three data with b0/h <2.0.

4. Considering the above three reasons, there is a need for further testing to

focus on the problems and to fill in the gaps of existing data.
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Figure 3.4: Eurocode 4: One favourable stud.
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Figure 3.6: Eurocode 4: Two in-line studs.
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Figure 3.10: Lawson's model: One unfavourable stud.
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Figure 3.12: Lawson's model: Two transverse or staggered studs.
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Figure 3.16: Lawson's model: Effects of for two studs per trough.



Chapter 4

Push-out tests and their results

4.1 Introduction

Two series of push-out tests were carried out. They were designed, in accordance

with the conclusions of the previous chapter, to fill in the gaps in the 203 data

and to add fresh information in the regions where the existing models (Eurocode

4, Lawson's model and Hanswille's model) are inappropriate.

Series 1 consists of 16 specimens with transverse sheeting, and series 2 of

18 with parallel sheeting. Details of the specimen layouts, manufacture, testing

procedures, material properties, maximum loads and failure modes of the two

series are described in this chapter.

As found out from these tests, for transverse sheeting with one stud per

trough, the failure modes can be shank shearing, concrete pulling out or rib

punching, while with two studs per trough, rib punching combined with either

shank shearing or concrete pulling out. For parallel sheeting, the modes of failure

are splitting and pulling out.

Compared with the three existing models, the inappropriateness is obvious.

41
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This is due to the fact that none of the previous models are sensitive to the

variety of the failure modes. Apparently, new models are needed. In Chapters

5 to 8, several new models are developed based on these 34 test results together

with the existing 203 data.

4.2 Preparation of specimens

4.2.1 Variables investigated

According to the analyses on the 203 data in Chapter 3, the new push-out tests

were designed to investigate the following variables:

1. rib orientation: transverse sheeting (series 1) and parallel sheeting (series

2);

2. rib geometry: mainly concerning b0/h ^ 2.0 and the thickness t ^ 1.0

mm;

3. number of stud connectors per trough: one or two;

4. stud positions: for series 1 with one stud per trough, centre, favourable

and unfavourable, and with two studs per trough, transverse, in-line and

staggered; for series 2, transverse and staggered;

5. concrete density: normal weight and lightweight concrete.

Altogether, there were 34 specimens. They were divided into 17 groups, each of.

which had two identical specimens in order to provide checks on the test results.
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Series 1 - transverse sheeting

The 16 specimens of series 1 are outlined in Table 4.1 (all the tables and figures

are given at the end of this chapter), where Nr is the number of studs per trough;

f, 100-mm cube strength of concrete, N/mm 2 ; p, density of concrete, kg/rn 3; b0

and h, average width and overall depth of the trough of steel sheeting, mm; t8,

thickness of the sheeting, mm; h, height of studs, mm; e, distance of the stud to

the mid-depth of the nearer web of the trough, mm.

Three kinds of decking, PMF CF6O, PMF CF7O and Multideck 80 were tested.

They were chosen to provide more information in the region of b0/h ^ 2.0 in the

existing data, and to check the effect of the thickness of profiled sheeting. Details

of the decking are shown in Figure 4.1.

The influence of rib geometry was studied against the position of the stud:

central and favourable position, G2C and G1F, unfavourable position, G5U and

G6U, and against concrete density, G3FL and G4FL, as well as the number of

studs in a trough, G7D and G8D.

Series 2 - parallel sheeting

The 18 specimens of series 2 are outlined in Table 4.2. All the symbols are the

same as for Table 4.1, except that N is the number of studs per specimen.

As there are very few data available to study the behaviour of stud connectors

with parallel sheeting, five kinds of sheeting were tested. They were PMF CF46,

PMF CF6O, Multideck 80, Aiphalock and Ribdeck 60. Details are shown in

Figure 4.1.

G9P to G12PL were focussed on narrow and deep sheeting against the con-

crete density. The stud connectors were arranged in two rows, each with two

connectors transverse to the trough. The transverse spacing was 2.8d for PMF
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CF6O sheeting and 3.4d for Multideck 80 sheeting, respectively. As Eurocode 4

[7] requires the spacing of two transverse studs not less than 4d, studs in G13P

and G14P with the same sheeting PMF CF60 and Multideck 80 were arranged

staggered with the diagonal spacing meeting the requirement of 4d.

The longitudinal spacings for G9P to G16P were all greater than 6d, as re-

quired by Eurocode 4. In G17P, it was reduced to 5.8d, which was intended to

check the effect of the narrow spacing.

4.2.2 Specimen configuration

Figures 4.4 to 4.18 show the details of the configuration for all the 34 specimens.

The basic layout, similar to that recommended by Eurocode 4 [7], consisted of

two composite concrete slabs 620 mm wide, with one layer of A142 mesh in each

slab. Two rows of studs were used to connect the slab to a 205 x 205 x 52 kg/rn

universal column. The heights of the slabs varied with the decking used: 900

mm for PMF CF7O and Multideck 80, and 620 mm for PMF CF6O. For parallel

sheeting, a uniform 620-mm height was used. The thicknesses of concrete slabs

were all chosen to provide a 25-mm cover of concrete over the heads of the studs,

except a 15-mm cover for G2C and G14P.

4.2.3 Welding of studs

All of the studs were 19 mm in diameter, and were provided by TRW Nelson

Ltd in batches, with data on the mechanical properties. For the 95-mm studs,

the ultimate tensile strength was 486 N/mm 2, and for the 125-mm studs, 472

N/mm2.

Stud welding was performed by the technicians in the Department of Engi-

neering of the University of Warwick.
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The quality was controlled by the shape of the weld collar and the reduction

of the height of stud. A good quality of welding has relatively large and uniform

weld collar and about 5-mm reduction in the height after welding, which was

achieved by most of the studs. However, the eight studs in specimens G1F and

G5U did not satisfy this requirement. They were then bent over 15°, among

which one in G1F-1 broken off. So the broken one and the other unbroken ones

on the same side were removed. The sheeting was then turned around to provide

fresh positions for the studs to be welded on the favourable sides.

4.2.4 Casting

All the specimens were cast horizontally. The edge trims for the sheeting served

as form work. Initially one slab was cast. After 24 hours curing, the specimens

were turned over and the slabs on the other sides were cast. Six or eight batches

of concrete were needed for each set of four specimens (eight slabs). Two 100-mm

concrete cubes were cast from each batch.

Trial mixes were made for an assumed 30 N/mm2 strength at 28 days. It was

intended to do each push-out test between 14 and 21 days after the casting of

the first slab. But all the mixes gained strength more rapidly than expected. It

was then necessary to test at an age of less than 14 days.

Ordinary Portland cement was used in all the specimens. For the normal

weight concrete, the concrete strength was produced with the aggregate of max-

imum particle size 10 mm. For the lightweight concrete, Lytag Granular 12 mm

with sand was used to provide the concrete density around 1900 kg/rn 3 , and with

Lytag fines to provide the concrete density around 1600 kg/rn3.

The specimens and the cubes were cured togetherunder wet hessian until the

day of testing.
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4.3 Test procedure

4.3.1 Setting up of the specimen

Just before the specimen was set in position for testing, edge trims on G4FL,

G6U, G7D, G1OP and G12PL were pulled away to allow the propagation of the

cracks on the sides of the slabs to be observed. The test rig with a specimen is

shown in Figure 4.2. The slabs were bedded to the strong floor of the structures

laboratory using dental paste. The spreader beams, which were simply supported

by the flanges, were bolted against the web and the ball joint was placed above the

centre of the web. Load was applied through a manually operated hydraulic jack

and monitored with a 100-tonne capacity load cell for specimens with transverse

sheeting and with a 200-tonne capacity load cell for those with parallel sheeting.

4.3.2 Instrumentation

Two linear voltage displacement transducers (LVDT's) placed at the base of the

specimen were used to monitor the slip between the steel and concrete surface, as

shown in Figure 4.2. They were connected to a Spectra Data Acquisition System

(DAS) which also recorded the applied load from the jack.

4.3.3 Loading sequence

All tests were performed first under load control in 50-kN increments and then

under deforthation control in about 0.25-mm increments after the first crack ap-

peared. When the load-slip curve progressed into the falling branch stage, a

0.5-mm increment of deformation was used for several increments, and then 1-

mm increment until the specimens completely failed.
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4.4 Test results

4.4.1 Transverse sheeting

The results of the 16 push-out tests are listed in Table 4.3, and their load-slip

curves are given in Figures 4.19 to 4.26. These figures also show the loads at

which cracks of types a, b or c, defined below, first appeared.

Crack patterns and load-slip curves

All the 16 tests behaved in a generally similar manner. The crack pattern is

illustrated in Figure 4.3(a).

One stud in a trough

At about 70-80% of the maximum load, a transverse crack a was developed

at the thinner section between the two rows of studs, but much closer to the

upper row. It opened up with further loading. At about the maximum load, a

longitudinal crack b appeared, from the centre of crack a up beyond the upper row

of studs. The load dropped slightly, and then went up to about the maximum

value again at which another longitudinal crack c appeared, from the centre

of crack a down to the bottom of the slab. G2C and G6U had this kind of

behaviour. Their load-slip curves cle&ly showed the down and up performance

of the loads. There is an alternative that the longitudinal cracks b and c appeared

simultaneously at the maximum loads, as observed in G1F, G3FL and G4FL.

The behaviour after the maximum load depends on the density of concrete.

G3FL and G4FL with lightweight concrete showed quite brittle load-slip perfor-

mances, especially for G3FL of which the slip at 80% of the maximum load was

only 1.5 mm. This might be due to the fact that this group had very low concrete

density, only 1640kg/m3.
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For G4FL, the failure was due to the studs pulling out of the slabs, carrying

away wedge-shaped portions of concrete, and the failure surfaces were entirely

below the reinforcement. However, for G3FL with the centre of the mesh 40 mm

lower than the heads of the studs, there was no sign of the pulling out of the

studs.

For normal weight concrete, when studs were placed on the favourable side

or at the centre of the decking, G1F-1 and G2C showed good ductility, with over

10-mm deformation when loads dropped to about 80% of the maximum values.

They ended up by the shearing off of the studs along the sections just above the

weld collars, with little damage to the surrounding concrete.

The different behaviour of G1F-2 was the result of poor welding of the stud

connectors. The four studs in this specimen were welded in the same batch as

those in G1F-l. The welding problem in the latter was spotted before the casting

of concrete, but not in the former (Section 4.2.3).

Two studs in a trough

With two studs in a trough, 07D and G8D behaved in a different way.

The longitudinal cracks b and c appeared long before the maximum loads were

reached. The dropping parts of the load-slip curves were gradually decreasing

and smooth, but less ductile, with about 5-mm deformation at 80% of the maxi-

mum loads. G7D showed the similar failure to that observed in G4FL, in that the

studs were pulled out with a portion of concrete around. G8D failed by severe

deformation of the studs, showing much higher shear resistance than G7D.

In both groups, severe damage in the concrete between the stud connectors

and the ribs of the profiled sheeting on the unfavourable sides were observed, and

the ribs were found to be fractured to the mid-depth of the rib.
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Failure modes

Three kinds of failure modes were observed in the tests with one stud per trough.

They are shank shearing, concrete pulling out and rib punching. For two studs

per trough, G7D showed a combined failure mode of rib punching with concrete

pulling out, and G8D a combined failure mode of rib punching with shank shear-

ing.

Shank shearing

This kind of failure has the highest resistance. As the head of the stud is

deeply embedded in the upper slab, its rotation is restrained. This allows a

plastic zone to be developed in the shank of the stud just above the weld collar.

The stud first yields, then shears off. There is little damage to the surrounding

concrete, because there is stronger restraint to the concrete in this area from the

sufficient cover of concrete in front of the stud, such as G2C with wider troughs

and G1F with studs in the favourable position. The load-slip curve for this kind

of failure shows high ductility, maintaining about 80% of the maximum load at

10-mm deformation. A typical failure is shown in Figure 4.36.

Concrete pulling out

The movement of the base of the stud develops a bending moment on the head,

which is resisted by the surrounding concrete. When the resistance is small, the

head of the stud rotates. Finally, it is pulled out of the slab, carrying away a

wedge-shaped portion of concrete. This is concrete pulling out failure, as shown

in Figure 4.37.

Rib punching

Rib punching occurs when there is insufficient cover of concrete in front of

the stud. In this case, the limited cover of concrete offers little restraint to the

movement of the base of the stud. The concrete crushes, and the base of the stud
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moves forwards, torn away from the deck at the weld collar. The rib in front of

the stud first bulges, then tears as the stud pushes the crushed concrete through

it. Finally, the stud is broken at the section iust above the weld collar. This kind

of failure is usually observed in the tests with narrow troughs or with studs on

the unfavourable side, such as G5U and G6U, as shown in Figure 4.38.

4.4.2 Parallel sheeting

The results of the 18 push-out tests with parallel sheeting are listed in Table 4.4,

and their load-slip curves are given in Figures 4.27 to 4.35.

Crack patterns and load-slip curves

Almost all the specimens showed longitudinal cracks along the two lines of the

connectors in each slab at about 95% of the maximum loads. These cracks

opened up quickly with further loading. Meanwhile, for the specimens with two

connectors transverse to the trough, there were transverse cracks between the two

connectors. A typical pattern is shown in Figure 4.3(b). When the connectors

were staggered to the trough, as in G13P and G14P, there was no sign of the

transverse cracks.

At the maximum loads or shortly after the maximum loads, local buckling of

the profiled sheeting was observed in all the other specimens except G1OP and

G12PL. The buckling was in the area around the stud connectors, as shown in

Figure 4.39.

For G1OP and G12PL, before the occurrence of the longitudinal cracks, at

about 80% of the maximum loads, the upper parts of the slabs started to separate

from the main body, and the separation expanded very quickly. At the end of

the tests, it was the completed separation that dominated the failure, not the
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longitudinal cracks as observed in the other tests. The upper parts of the slabs

were very easily removed, exposing cone-shaped failure surfaces of the concrete

around the stud connectors.

The falling branch part of the load-slip curves for all the specimens showed

good ductility, with the deformation over 5 mm when the loads dropped to about

80% of the maximum values.

Failure modes

Two kinds of failure modes were observed. One is splitting failure and the other

is pulling out failure.

Splitting failure is the consequence of the laterally dispersed shear force in

the concrete within the troughs of the profiled sheeting. First, the dispersal is

just around the base of the connector. As the narrow haunch of the concrete in

this area holds little resistance, concrete splits, but the expansion of the splitting

cracks is resisted by the profiled sheeting. Therefore, the shear force is gradu-

ally transferred and dispersed deep into the concrete, until the profiled sheeting

bulges, releasing the restraint.

Pulling out failure occurs when the stud connectors are arranged closely in

relatively narrow troughs of the profiled sheeting. The dispersal of the shear force

is provided by the axial stiffness of the connectors, which develops corresponding

tensile forces. It is unlikely that the connectors fail in tension. But, because of

the closely arranged connectors in narrow troughs, the surface of the concrete to

resist the pulling action is small, the result of which is the pulling out of the stud

connectors, carrying away a cone-shaped portion of concrete, as shown in Figure

4.40.
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4.5 Discussion

4.5.1 Eurocode 4

Shear resistance

Figures 4.41 and 4.42 show the results of these 34 tests, Pe, compared with

Eurocode 4 model, PrEC.

On the whole, Eurocode 4 becomes overconservative as b0/h reduces, espe-

cially when b0/h < 2.0. The scatter is very high, from 0.8 for unfavourable

position to 1.9 for two transverse studs. The inappropriateness of the model for

parallel sheeting is also very obvious, in that the tested resistance can be as high

as three times the predicted one.

The main reason for this is that Eurocode 4 model does not distinguish be-

tween the seven different failure modes found in these tests.

Spacing between stud connectors

As recommended by Eurocode 4, the centre-to-centre spacing between stud con-

nectors transverse to the shear force should not be less than 4d, and the one in

line with the shear force should not less than 6d. This is not quite the situation

for the 18 tests with parallel sheeting.

For G15P and G16P, the spacing in both directions was as required by Eu-

rocode 4. There was no sign of reduction in shear resistance, and the connectors

showed good ductility. When the longitudinal spacing dropped below 5.8d, as

in G17P, there was still no penalty on the resistance of the connectors, nor any

change in the ductility.

For G9P and G1OP, the longitudinal spacings were as required by Eurocode 4,
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but the transverse spacings were 3.4d and 2.8d, respectively. However, the shear

resistances of the connectors in G9P were about twice the predicted values, and

in G1OP about 17% higher. The ductility of G1OP had a little change, showing

brittle behaviour to some extent, which is due to the change in failure mode.

Minimum width of a push-out specimen

The influence of the width of a push-out specimen is significant when it is below

the limit beyond which rib shearing failure replaces concrete pulling out failure.

The rib shearing failure is the shearing of the concrete slab along a plane level

with the upper flange of the trough. It was found by Lloyd and Wright [27] from

their tests that the limit was 415 mm.

In the 16 new push-out tests with transverse sheeting, all of the specimens had

620mm-wide slab. As shown in Figure 4.37, the cone in a concrete pulling out

failure extended almost to the edges of the slab, which suggest that to prevent the

rib shearing failure from occuring, the minimum width of a push-out specimen

should be 620 mm.

4.5.2 Two alternative models

Though Lawson's model (equations (2.7) and (2.8)) considers the effects of dif-

ferent positions of studs within a trough, it is still not satisfactory, as shown

in Figures 4.43 and 4.44, in that one unfavourable or two transverse studs are

overpredicted, while central or favourable stud(s) with parallel sheeting are un-

derpredicted.

As found in Chapter 3, Hanswille's model (equation (2.9)) makes certain

improvement for one stud per trough by introducing different upper limits to the

reduction factors given by Eurocode 4, but Figure 4.45 shows that only two tests
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with wide troughs, b0/h = 2.9, are affected by Hanswille's upper limits. The

other 14 tests with b0/h < 2.0 are well below the limits, which means Hanswille's

model is no better than that of Eurocode 4 for studs in narrow troughs.

4.6 Conclusions

1. For transverse sheeting with one stud per trough, the failure modes are

shank shearing, concrete pulling out and rib punching.

2. For transverse sheeting with two studs per trough, the failure modes are

either rib punching with shank shearing or with concrete pulling out.

3. For parallel sheeting, there are two failure modes. One is splitting failure,

the other is pulling out failure.

4. The 34 push-out tests are not well predicted by Eurocode 4, or other alter-

native models, such as those by Lawson and by Hanswille. This is because

they do not distinguish between the seven different failure modes mentioned

above. New models are needed.
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Table 4.1: Specimens with transverse sheeting.

Group	 Concrete	 Decking	 Studs (d=l9mm)	 Figure

	

______ fcu	 p	 Type	 b0 h	 t	 h Nr	 Position	 e

G1F	 35.0	 Multideck 80 140 80	 1.2 125	 1	 favourable	 37.5	 4.4

G2C	 27.3	 PMF CF7O	 162 55 0.9 125	 1	 centre	 81.0	 4.5

G3FL 29.6 1640 Multideck 80 140 80 	 1.2 125	 1	 favourable	 37.5	 4.6

G4FL 36.9 1900	 PMF CF6O	 113 60 0.9	 95	 1	 favourable	 30.0	 4.7

G5U	 35.0	 Multideck 80 140 80	 1.2 125	 1	 unfavourable 37.5	 4.8

G613	 27.3	 PMF CF6O	 113 60 0.9	 95	 1	 unfavourable 30.0	 4.9

G7D	 32.3	 PMF CF6O	 113 60 0.9	 95	 2	 transverse	 30.0	 4.10

G8D	 32.3	 Multideck 80 140 80	 1.2 125	 2	 transverse	 37.5	 4.11

Table 4.2: Specimens with parallel sheeting.

Group	 Concrete	 Decking	 Studs (d=l9mm)	 Figure

_______	 p	 Type	 b0 h	 t	 h N	 Position	 e

G9P	 35.8	 Multideck 80 140	 80	 1.2 125	 8	 transverse 37.5	 4.12

G1OP	 32.3	 PMF CF6O	 113 60 0.9	 95	 8	 transverse 30.0	 4.13

G11PL 41.2 1580 Multideck 80 140 80	 1.2 125	 8	 transverse 37.5	 4.12

G12PL 36.9 1900	 PMF CF6O	 113 60 0.9	 95	 8	 transverse 30.0	 4.13

G13P	 31.4	 PMF CF6O	 113 60 0.9	 95	 8	 staggered 30.0	 4.14

G14P	 29.4	 Multideck 80 140 80	 1.2 125	 8	 staggered 37.5	 4.15

G15P	 37.8	 PMF CF46	 132 46 1.0	 95	 8	 transverse 33.3	 4.16

G16P	 41.5	 Alphalock 50 160 50	 1.0	 95	 8	 transverse 37.5	 4.17

	

G17P-1 27.7	 Ribdeck 60	 173 60 1.2	 95	 12	 transverse 36.3	 4.18

	

G17P-2 30.2	 Ribdeck 60	 173 60 1.2	 95	 12	 transverse 36.3	 4.18
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Table 4.3: The results of the 16

Group[ ______________

G1F-1	 1.75

G1F-2	 1.75

G2C-1	 2.95

G2C-2	 2.95

G3FL-1	 1.75

G3FL-2	 1.75

G4FL-1	 1.88

G4FL-2	 1.88

G5U-1	 1.75

G5U-2	 1.75

G6U-1	 1.88

G6U-2	 1.88

G7D-1	 1.88

G7D-2	 1.88

G8D-1	 1.75

G8D-2	 1.75

h-out tests with transverse sheeti
Fe/Stud (kN)	 Failure mode

	

93.1	 stud

	

90.6	 stud

	

88.8	 stud

	

88.0	 stud

	

86.3	 stud

	

87.0	 stud

	

64.7	 concrete

	

68.9	 concrete

	

70.9	 rib punching

	

67.5	 rib punching

	

51.3	 rib punching/concrete

	

53.8	 rib punching/concrete

	

49.8	 rib punching/concrete

	

51.6	 rib punching/concrete

	

61.4	 rib punching/stud

	

60.1	 rib punching/stud



Failure mode

splitting

splitting

pulling out

puffing out

splitting

splitting

puffing out

pulling out

splitting

splitting

splitting

splitting

splitting

splitting

splitting

splitting

splitting

splitting

Table 4.4
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Table 4.4: The results of the 18 push-out tests with
Group	 Pc/stud (kN)

G9P-1	 1.75	 131.1

G9P-2	 1.75	 126.2

G1OP-1	 1.88	 70.3

G1OP-2	 1.88	 72.1

G11PL-1	 1.75	 124.2

G11PL-2	 1.75	 129.8

G12PL-1	 1.88	 77.6

G12PL-2	 1.88	 82.9

G13P-1	 1.88	 92.1

G13P-2	 1.88	 91.8

G14P-1	 1.75	 112.1

G14P-2	 1.75	 114.2

G15P-1	 2.87	 101.9

G15P-2	 2.87	 96.3

G16P-1	 3.20	 108.8

G16P-2	 3.20	 114.5

G17P-1	 2.88	 87.8

G17P-2	 2.88	 85.7
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Figure 4.1: Details of the profiled sheeting.
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Figure 4.2: Test rig.
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Figure 4.3: Crack patterns: (a) transverse sheeting; (b) parallel sheeting.
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Figure 4.4: Test configuration of G1F.

Figure 4.5: Test configuration of G2C.
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Figure 4.6: Test configuration of G3FL.

Figure 4.7: Test configuration of G4FL.



620

Figures 4.8 arid 4.9
	

62

stud A142 mesh

75

350

- __- (H---___

900
300

- -	 ___

250

620	 -1	 Lo.i7oi

Figure 4.8: Test configuration of G5U.
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Figure 4.10: Test configuration of G7D.

Figure 4.11: Test configuration of 08D.
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Figure 4.14: Test configuration of C13P.

100

150

70

Ai4s

	

	
80

LcuLcJ
620

stud

Figure 4.15: Test configuration of G14P.
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Figure 4.16: Test configuration of G15P.

25L... -f70

11150
620

Figure 4.17: Test configuration of G16P.
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Figure 4.18: Test configuration of G17P.
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Figure 4.19: Load-slip curve of G1F.
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Figure 4.20: Load-slip curve of G2C.
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Figure 4.21: Load-slip curve of G3FL.
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Figure 4.22: Load-slip curve of G4FL.
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Figure 4.23: Load-slip curve of G5U.
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Figure 4.24: Load-slip curve of G6U.
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Figure 4.25: Load-slip curve of G7D.
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Figure 4.26: Load-slip curve of G8D.
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Figure 4.27: Load-slip curve of G9P.
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Figure 4.28: Load-slip curve of G1OP.
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Figure 4.29: Load-slip curve of G11PL.



Figures 4.30 and 4.31
	

73

200.
- GI2PL-1

100....-.,&12PL2 ...........................

I0	 2	 4	 6	 B	 10	 12
Mean eli) for GI2PL-1

Figure 4.30: Load-slip curve of G12PL.
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Figure 4.31: Load-slip curve of G13P.
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Figure 4.33: Load-slip curve of G15P.
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Figure 4.37: Concrete pulling out failure.
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Figure 4.38: Rib punching failure.
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Figure 4.39: Local buckling.



;,

J

.d 1'.

I

I

Figures 4.40 and 4.41
	

78

Figure 4.40: Pulling out failure.
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Figure 4.41: Eurocode 4 model for new tests with transverse sheeting.
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Figure 4.42: Eurocode 4 model for new tests with parallel sheeting.
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Figure 4.43: Lawson's model for new tests with transverse sheeting.
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Figure 4.44: Lawson's mode' for new tests with parallel sheeting.
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Figure 4.45: Hanswille's model for new tests with transverse sheeting.



Chapter 5

Theoretical analyses on push-out

tests with transverse sheeting

5.1 Introduction

In a composite beam, stud connectors are used to transfer shear force from the

steel beam to the concrete slab. Where profiled steel sheeting is present, the

connectors can be welded onto the top flange of the beam either through the

sheeting or through pre-cut holes in the sheeting. As discussed in Chapter 3,

these two welding methods have significant influence on the test results. The

following studies concern only the stud connectors welded through profiled steel

sheeting.

The 16 push-out tests described in Chapter 4 (Table 4.3) showed five possible

failure modes for studs with transverse sheeting. They are shank shearing, con-'

crete pulling out, rib punching, and two combined modes of rib punching with

either shank shearing or concrete pulling out.

81



5.2 Yield criterion for stud connectors
	

82

In this Chapter, based on the hypothesis of a modified yield criterion for

the connectors, either the upper bound or the lower bound theory is applied to

the three basic failure modes, as well as the two combined failure modes. The

solutions fit a total of 126 data very well. Compared with the Eurocode 4 model,

the coefficient of variation is reduced from 17.1% to 10.9% for shank shearing or

concrete pulling out failure, from 13.1% to 7.4% for rib punching failure and from

20.3% to 7.2% for two combined failure modes.

5.2 Yield criterion for stud connectors

'if	 1
R PcnPcL
±T1 ER

II	 IPr Pc 1 rI 	 I1Pc"r

THJT

t	 At	 At	 At
2J.	 2J.	 2J.	 2P

Figure 5.1: Forces on studs in a push-out test.

In order to simplify the problem, a push-out specimen on roller supports is con-

sidered, as shown in Figure 5.1. The vertical load 4Fr is borne evenly by the

four stud connectors. The movement of the steel beam under the vertical load

generates tensile force T in the shank of the connectors. For equilibrium, there

must be a compressive force P between each trough and the steel beam.

Because a stud connector is under a combination of shear and tensile forces,
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it is rational to assume that it follows von Mises' yield criterion:

O. + 3Tr2 = fy2
	

(5.1)

where Tr and o are the shear and tensile stresses on the connector, and f, is the

yield strength. If both Tr and o are assumed to be uniformly distributed over the

cross section, equation (5.1) can be expressed in terms of the shear and tensile

forces, Pr and T:

(1)2 + (i)2	 1	 (5.2)

where T is the resistance of a stud connector to uniaxial tension,

T = fyird2/4
	

(5.3)

and	 is the resistance of the connector to pure shear,

Psy= I d2	
(5.4)

It is specified in Eurocode 4 [7] that the ultimate tensile strength of the stud

connector f is not less than 1.2f. So, f is taken as f/1.2, and equation (5.3)

becomes

T = 1.24	
O.8f	 (5.5)

According to the test result of G2C, as shown in Figure 4.36, the shank

shearing failure is dominated by the severe shear deformation at the base of the

stud connector, and its failure surface is quite similar to that of the pure shear

failure. Therefore, it is assumed that the shank shearing failure happens when a

stud connector is under pure shear force.

Considering that a shank shearing failure is the main failure mode when a

solid concrete slab is used [22], it is further assumed that the shank shearing

resistance equals that when the stud is in a solid concrete slab, P,, as given by

Eurocode 4 [7],

Prs min{ 

o.29d2/fcEczn
=	 (5.6)

O.87r&f/4
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The two assumptions mean P, in equation (5.2) can be replaced by P1.5 from

equation (5.6). Therefore, the yield criterion given by equation (5.2) is modified

as:
Pr2	 T

(, ) +( f=i	 (5.7)
1rs

The main characteristic of this modified yield criterion is to take into account

the influence of the concrete on the resistance of a stud connector to pure shear.

5.3 Concrete pulling out failure

5.3.1 One stud per trough

Failure mechanism

As observed in the push-out tests, concrete pulling out failure is due to the

movement of the base of the stud and the rotation of the head developed by this

movement. When the resistances to the movement and the rotation are small,

the stud connector rotates, carrying away a wedge-shaped portion of concrete. A

typical form of the failure surface is shown in Figure 4.37.

This failure mode is modelled by the mechanism shown in Figure 5.2, in which:

All materials are rigid-plastic;

. Part I gets a vertical displacement '5;

. Part II slides 51 from B to B1 and 52 from D to D1 , and the stud connector

extends 8 at its base;

. Part 111 slides 2 horizontally;

. The influence of the decking is neglected.
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h

Figure 5.2: Rotation model for concrete pulling out failure.

Relation between the displacement of each part

The relation between 5 and 52 can be determined geometrically. As BD =

B1 D1 , there is

(D1C)2 + (B1 C) 2 = (DC) 2 + (BC) 2	(5.8)

Substituting in D1 C = 52+h and B1 C = b0-51 , and regarding that 52 = 52 = 0

as they are very small, equation (5.8) is simplified into

'52	 -5i	 (5.9)

The displacement of part II relative to III is a rotation 9 around D, which

depends on 51 and 52:

9y512+622	 Vsi2i522

-	 BD	 - Ib2jh2v ol p

Substituting in 52 from equation (5.9),

51
0 =	 (5.10)
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In a similar way, it can be found that the displacement of part II relative

to I is also a rotation 0 but around B. The extension of the stud connector

therefore is easily determined by:

53 = erO = 
er	

(5.11)
np

Work equation

The work equation is to equate the external work to the internal work. In

the mechanism illustrated in Figure 5.2, the external work is Pr t5i . The internal

work consists of two parts. One arises from the rotation 6 of part II, wc, and the

other from the extension of the stud connector under a tensile force T:

Pro1 =	 + TO3
	 (5.12)

Reference is now made to the picture of concrete pulling out failure shown in

Figure 4.37. If we neglect the part of concrete slab which is above the head of the

stud connector, the failure surface is rather similar to that found in a fixed-ended

concrete beam subjected to a central torque T, as shown in Figure 5.3. Based on

this similarity, it is assumed that the concrete cone in Figure 5.3 dissipates the

same amount of work as the cone in Figure 5.2. Then, it is easy to get a relation

between	 and T:

= T,0
	

(5.13)

Referring to the plastic theory for concrete beams in torsion, if the torque T

in Figure 5.3 produces complete plasticity, then the torsional shear stress t on

the cross section is everywhere equal, and can be expressed as

T
Vt 

= H2 (b0 - H/3)' 
for H ^ b0 . (5.14)

Here, further assumption is made that when Ut reaches vt,1, the torsional shear

strength, a complete failure cone (part I) as shown in Figure 5.3 is developed.
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The relation between v and the cube strength of the concrete f is quoted from

[25], with fcu in N/mm2 units:

14u 0.8/ < 5 N/mm2.

From equations (5.13) and (5.14),

= 0.8 .,/7iH2 (b0 - H/3)-- 	(5.15)
lip

where f ^ 40 N/mm2, H ^ b0.

-I

L H=O.75h

Figure 5.3: Fix-ended beam with central torque.

Though the concrete cone in Figure 5.3 rotates around the centre of the cross

section, and the cone in Figure 5.2 rotates around the corner D, the assumption

stated by equation (5.13) relates well to the test results, as will be shown later

in Section 5.3.3, if the height of the beam in Figure 5.3 is given by H = 0.75h,

where h is the overall height of the stud connector.

Substituting equations (5.15) and (5.11) into equation (5.12), and considering

that H = O.75h,

Pr 
0.45v'Jh2 (bo - 0.25h) + Ter	

(5.16)
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Introducing in Prs and T,
Pr	 T	

(5.17)
1 r8	 .Ly

if

7/C

	 0.45s/fh2 (bo - O.25h)	
(5.18)

and

A	
erTy

- h P
(5.19)

where T and P,.9 are as given by equations (5.5), (5.6), and f ^ 40 N/mm2,

h^4b0/3.

By now, the shear resistance of a stud connector Pr is determined, by corn-

bining equation (5.17) with (5.7).

5.3.2 Two studs in-line along the trough

When two studs are used within a trough, and they are placed in-line along the

trough at the centre or on the favourable side, the failure mechanism is the same

as that found for one stud, except that the shear and tensile forces are shared by

the two studs. In this case, Pr and T in equation (5.12) are replaced by 2Pr and

2T, respectively, and so on and so forth. Finally, equation (5.17) is changed into

Pr	 77c	 T
(5.20)

Introducing a new factor N,., the number of studs per trough, into equation (5.18),

a more general expression can be obtained:

_ 0.45 ./f h2 ( b0 - 0.25h)
7/c -	 (5.21)

hpN1.P1.9

Here, N1. ^ 2.

Replacing equation (5.18) with (5.21), the whole process for one stud per

trough is also valid for two in-line studs.
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5.3.3 Comparison with test results

Among the selected 183 data (Table 3.1) and the 16 new tests with transverse

sheeting, there are 107 with one or two studs welded through the centre or the

favourable side of the trough in normal weight concrete, in which 70 are used to

check the new theoretical models developed in the preceding. The other 37 data

are unused, because they are either with unreported f ( 9 from [27] and 5 from

[41]) or with re-entraint Holorib steel decking (14 from [34] and 3 from [10]) or

with unclear failure mode (5 from [18] and 1 from [21]).

Table 5.1 lists the results of the comparison of the 70 data, where Nr is the

number of studs per trough; b0 , average width of a trough; h, depth of the trough;

h, overall height of a stud; t, thickness of steel sheeting; Pe, tested resistance;

P, theoretical resistance of the stud in a solid concrete slab; Prt and PrEC, the

resistances of a stud from the new model and the Eurocode 4 model, respectively;

pb, same as Fra , but with h - 2h when h/hr ^ 2.0.

On the whole, the new theoretical models (Pr) are better than the Eurocode

4 model, in that the coefficient of variation is reduced from 17.1% to 12.9%.

For data 1-2, 5-9, 14-16, 28-30 and 53-54, the tested resistance Fe is much

higher than that expected in a solid concrete slab Prs. it is unreasonable to

contribute this beneficial effect to the steel decking. What is most likely is that

the steel decking has no influence on the connectors, and the connectors failed

by shank shearing. This agrees with the theoretical model. For these data, the

predicted resistances Pr by the model are near or equal to the shank shearing

resistances P,. Therefore, it is considered that the lower predicted shear resis-

tance P is the initial error, and is the reason for the overconservatism of the

theoretical model for these data.

Between each pair of data 33-34, 51-52 and 57-58, the differences of tested

resistances are from 12% to 17%. This might be the reason of the scatter of the
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prediction for these data. The reason for the unsafe prediction for data 23 and

24 is unclear.

The ratios of h/hr for data 1-2, 35-47, 51-54 and 68-70 are all greater than 2.0,

and the prediction for these data seems slightly unconservative. The reason for

this is the contineous positive influence of h, the height of the stud connector, on

the value of i (equations (5.18) and (5.21)). The tested resistances of these data

suggested that when h/hr ^ 2.0, the influence of h is less significant. Therefore,

an upper limit for h is introduced into the new theoretical models, i.e., when

h/hr ^ 2.0, h is taken as 2h9 . Considering this limit for h and re-checking all

the 70 data, the results shown by Fe/F1? are much more better, reducing the

coefficient of variation from 12.9% to 10.9%. The comparison of 1? with Fe is

shown in Figure 5.4.

Fe/F1?

1.2......................................-0	 :	 0:
Q 0	 :0

Li ...............................8' .....
0	 Q	 :8

o	 $	 0
I ..........................o

9	
0	 o

8
0.............................................................................-

R
. ............................................................

-i-- data 23-24

:....................................... 	 ...

1.2	 1.4	 1.6	 1.8	 2	 2.2	 2.4	 2.6	 2.8	 3	 3.2

b0/h

Figure 5.4: Predictions for concrete pulling out failure.
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Table 5.1: Predictions for shank shearing or concrete pulling out failure.

	Ref Nc	 Tests	 Nr b0 h	 h	 ts Pe Prs Fr fr /e	r 	 rEC

________	 (mm)	 (kN)	 _____

New	 1	 G2C-1	 1C	 162	 55	 125	 0.9	 88.8	 81.1	 81.1	 1.09	 1.09	 1.09

	

2	 G2C-2	 (PMF CF7O)	 88.0	 1.08	 1.08	 1.08

	

3	 G1F-1	 iF	 140	 80	 125	 1.2	 93.1	 94.6	 82.3	 1.13	 1.43	 1.13

	

4	 G1F-2	 (Multideck 80)	 90.6	 1.10	 1.39	 1.10

[47]	 5	 6OSS-1	 iF	 151	 60	 100	 1.2	 113.0	 100.5	 95.0	 1.19	 1.12	 1.19

	

6	 6OSS-2	 (Multideck 60)	 95.5	 1.00	 0.95	 1.00

	

7	 6OSS-3	 110.3	 1.16	 1.10	 1.16

[17]	 8	 PMF-NW	 iF	 135	 46	 95	 0.9	 93.8	 82.2	 77.1	 1.22	 1.14	 1.22

	

-0.9-R-26.2	 (PMF CF46)

	

9	 QL-N-1T	 1C	 150	 60	 95	 1.15	 87.1	 82.2	 78.8	 1.11	 1.06	 1.11

	

10	 MET-N-2T 2C	 75	 55	 95	 1.0	 59.3	 82.2	 60.8	 0.98	 1.47	 1.05

[40]	 11	 QI-A	 1C	 152.5	 76	 116	 -	 83.6	 91.4	 86.5	 0.97	 1.24	 0.97

	

12	 QI-B	 81.4	 0.94	 1.20	 0.94

	

13	 QI-C	 80.0	 0.92	 1.18	 0.92

	

14	 TI-A	 iF	 181.5	 76	 116	 -	 106.4	 91.4	 89.6	 1.18	 1.32	 1.18

	

15	 TI-B	 104.9	 1.17	 1.30	 1.17

	

16	 TI-C	 105.2	 1.17	 1.31	 1.17

	

17	 RI-A	 1C	 101.8	 51	 91	 -	 82.0	 91.4	 79.8	 1.03	 0.90	 1.03

	

18	 RI-B	 81.1	 1.02	 0.89	 1.02

	

19	 RI-C	 86.0	 1.08	 0.94	 1.08

	

20	 TII-A	 2F	 181.5	 76	 116	 -	 64.3	 84.8	 68.6	 0.94	 1.22	 0.94

	

21	 TII-B	 64.2	 0.94	 1.22	 0.94

	

22	 TI1-C	 65.2	 0.95	 1.24	 0.95

	

23	 QII-A	 2C	 152.5	 76	 116	 -	 53.2	 91.4	 76.8	 0.69	 1.11	 0.69

	

24	 QII-B	 53.8	 0.70	 1.13	 0.70

	

25	 Rh-A	 2C	 101.8	 51	 91	 -	 76.6	 91.4	 72.2	 1.06	 1.08	 1.06

	

26	 RII-B	 75.3	 1.04	 1.06	 1.04

	

27	 Rh-C	 72.1	 1.00	 1.02	 1.00

[34]	 28	 R30-1-FA	 iF	 170	 60	 95	 1.2	 113.4	 94.0	 94.0	 1.21	 1.21	 1.21

	

29	 R30-1-FB	 (Ribdeck 60)	 115.2	 1.23	 1.23	 1.23

	

30	 R30-1-FC	 114.3	 1.22	 1.22 • 1.22

	

31	 HD3O-1-A	 1C	 162	 76	 120	 1.2	 83.9	 91.1	 89.3	 0.94	 1.07	 0.94

	

32	 HD3O-i-B	 86.6	 0.97	 1.10	 0.94

[29]	 33	 D2	 iF	 152.4 50.1	 88.9	 0.81	 99.4	 106.4	 94.3	 1.05	 0.93	 1.05

	

34	 D3	 82.2	 0.87	 0.77	 0.87

	

35	 D6	 IF	 152.4 50.1	 101.6 0.81	 94.0	 106.4 100.3	 0.94	 0.88	 0.95

	

36	 D7	 iF	 152.4 50.1	 114.3 0.81	 96.2	 106.4 104.9 0.92	 0.90	 0.97

	

37	 D8	 92.6	 0.88	 0.87	 0.93

	

38	 D9	 97.6	 0.93	 0.92	 0.98
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Table 5.1: Continuing.

	

Ref N	 Tests N1.	 b0 	h	 h	 ts	 Fe	 Frs	 P1.	
Pc

_____	 (mm)	 (kN)	 _____ _____ _____

	

[29]	 39	 D10	 iF	 152.4 50.1	 127	 0.81	 93.5	 103.9	 103.9	 0.90	 0.90	 0.96

	

40	 Dli	 95.3	 0.92	 0.92	 0.97

	

41	 D12	 99.9	 0.96	 0.96	 1.02

	

42	 D13	 iF	 152.4 50.1	 140	 0.81	 91.3	 103.9	 103.9	 0.88	 0.88	 0.94

	

43	 D14	 97.6	 0.94	 0.94	 1.00

	

44	 D15	 89.9	 0.87	 0.87	 0.92

	

45	 D33	 2F	 152.4 50.1	 101.6	 0.81	 83.1	 90.9	 75.6	 1.10	 0.91	 1.12

	

46	 D34	 2F	 152.4 50.1	 114.3	 0.81	 81.3	 90.9	 77.6	 1.03	 0.89	 1.09

	

47	 D37	 2F	 152.4 50.1	 127	 0.81	 74.9	 90.9	 79.8	 0.91	 0.82	 1.01

	

48	 D73	 2F	 152.4 50.1	 88.9	 0.81	 71.7	 76.6	 65.1	 1.11	 0.94	 1.11

	

49	 D74	 68.1	 1.06	 0.90	 1.06

	

50	 D75	 70.8	 1.10	 0.92	 1.10

	

51	 D82	 2F	 152.4 50.1	 101.6	 0.93 76.7	 93.3	 76.6	 1.00	 0.82	 1.02

	

52	 D83	 88.1	 1.15	 0.94	 1.17

	

53	 D86	 2F	 152.4 50.1	 114.3 0.93 94.9	 93.3	 79.4	 1.18	 1.02	 1.24

	

54	 D87	 94.0	 1.17	 1.01	 1.24

	

55	 D52	 iF	 152.4 76.2	 114.3	 0.93 79.0	 88.5	 77.0	 1.03	 1.26	 1.03

	

56	 D54	 83.5	 1.08	 1.34	 1.08

	

57	 D55	 iF	 152.4 76.2	 127	 0.93	 82.6	 88.5	 81.7	 1.01	 1.00	 1.01

	

58	 D56	 70.4	 0.86	 0.85	 0.86

	

59	 D58	 iF	 152.4 76.2	 140	 0.93 84.9	 88.5	 85.9	 0.99	 0.96	 0.99

	

60	 D59	 89.0	 1.04	 1.01	 1.04

	

[21]	 61	 JDT-i	 2C	 60.6	 38	 76	 -	 41.1	 64.5	 45.8	 0.90	 0.80	 0.90

	

62	 JDT-2 2C	 91.8	 38	 76	 -	 58.6	 64.5	 55.5	 1.06	 0.91	 1.06

	

63	 JDT-3 2C	 60.6	 38	 76	 -	 37.4	 64.5	 45.8	 0.82	 0.73	 0.82

	

64	 JDT-4 2C	 91.8	 38	 76	 -	 54.0	 64.5	 55.5	 0.97	 0.84	 0.97

	

65	 JDT-5 2C	 60.6	 38	 76	 -	 44.8	 76.7	 50.0	 0.90	 0.74	 0.90

	

66	 JDT-6	 2C	 91.8	 38	 76	 -	 62.9	 76.7	 62.9	 1.00	 0.82	 1.00

	

67	 JDT-8	 1C	 152.5	 76	 127	 -	 74.5	 85.8	 83.2	 0.90	 0.91	 0.90

	

[10]	 68	 T-4	 1C	 104	 40	 100	 0.88 90.2	 95.2	 91.4	 0.99	 0.94	 1.02

	

69	 T-5	 1C	 104	 40	 100	 0.88 85.1	 91.8	 88.4	 0.96	 0.93	 1.00

	

70	 T-6	 1C	 104	 40	 100	 0.88 88.3 100.5	 95.9	 0.92	 0.88	 0.96

	

- - _______ -

	 Mean	 1.03 1.03

Coefficient of variation	 12.9% 17.1% 10.9%

C - central position; F - favourable position;

P' - resistance calculated from the new models (equations (5.2) and (5.17) to (5.21));

P - same as P, but h - 2h when h/hr ^ 2.0;

PrEC - resistance calculated from the Eurocode 4 model.
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5.4 Rib punching failure

5.4.1 Lower bound solution

The two groups with studs on the unfavourable sides, G5U and C6U described

in Chapter 4 (table 4.3), all failed by rib punching failure. Similar phenomena

were also observed in the tests reported by Lyons and Easterling [29]. The main

reason for this kind of failure is the insufficient cover of concrete in front of the

stud connector. In this case the concrete crushes easily, and the base of the

stud moves forwards, torn away from the deck at the weld collar. With further

deformation, first the rib in front of the stud bulges, and usually near the end of

the tests, the bulges are broken by the thrusting of the connector and the crushed

concrete in front of it. The rib punching failure is defined by this state (Figure

4.38).

For this kind of failure, a lower bound solution can be very easily derived.

As shown in Figure 5.5, the stresses in the concrete are distributed mainly in

three regions, ABF, FBCE and CDE, which act as an arch. The region FBCE

is in uniaxial compression. The shear and tensile forces Pr and T in the stud

connector, and the tensile force Td in the steel decking are transferred to the arch

through the regions ABF and CDE, which are in hydrostatic pressure. Both

the hydrostatic and the uniaxial stresses are assumed to be equal to the concrete

strength f . Therefore, the angle FBC is ir/2. It is also assumed that the tensile

stress in the steel decking reaches its yield strength fyd.

If the width of the stressed region in the concrete is B, the equilibrium of

the vertical force gives

Fr - Td = Bxf	 (5.22)

This equation implies that the maximum shear force Pr can be obtained when x
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Figure 5.5: Arch model for rib punching failure.

is as large as possible. As LFBC = r/2, a geometrical equation is found,

(h—x)2+ef2=x2+y2+h2+(ef—y)2
	

(5.23)

Developing and simplifying,

h	
(5.24)

p
It is not difficult to show that when y = ef/2, z has its maximum value which is

x = eç2/(4h). Substituting it into equation (5.22),
172

,	 ,,	 _____Fr1d	 ,	 Jc

The equilibrium of horizontal forces is

T=C=Byf=

combining with equation (5.25),

PrTd+T

(5.25)

(5.26)

(5.27)



where

and

Pr	 T

.Urs

1.8(ef + h - h)tfd

Prs

efT

- 2h P

(5.32)

(5.33)

(5.34)
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If the width of the stressed region in the steel sheeting is B, and the thickness

of the sheeting is t, then,

Td = Bt5 fyd
	

(5.28)

Study of the push-out test results showed that the shear resistance of a stud

connector which failed by rib punching depends to a great extent on the em-

bedment of the head of the stud and the cover of the concrete in front of the

connector. According to the mechanism in Figure 5.5, it is clear that the rib

punching resistance increases with the width of the stressed region B. So, if

the embedment is expressed as (h - h) and the cover as e, B is a function of

(h—hr ) and Cf,

B	 f(h,hp ,ei )
	

(5.29)

It is found from the test results shown in Section 5.4.2 that the function can be

expressed as

B = 1.8(er + h - Iz)
	

(5.30)

so, the tensile force in the steel decking

Td = 1.8(e + ii -	 (5.31)

Substituting it into equation (5.27) and introducing two factors P and T which

are as given by equations (5.6) and (5.5):

Combining equations(5.7) and (5.32), the shear resistance of a stud connector

failed by rib punching is obtained.
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5.4.2 Comparison with test results

Except six data reported by Robinson 14°1 which had unreported 1, all the other

25 data with normal weight concrete, out of the selected 183 and the 16 new

tests, are used to check the new model developed. The results are shown in Table

5.2 and in Figure 5.6. Symbols are as for Table 5.1.

Pe/Pr

1.2 ....................: 	 .....................................................................

1.15 ....................................................................................
8	 o

1.1 ..............................................................0 ..........................
o	 °!

0	 :	 :	 :	 :	 :	 :
1.05....... .0 ...................................................:............ ......................

:0

1 ...........................................................................................:0

0.95 ...............................................................................................:
:0
:o

0.9 ....................................................................................... 0 .......

.6	 1.8	 2	 22	 2.4	 2.6	 2.8	 3	 32

b0 / h

Figure 5.6: Predictions for rib punching failure.

Apparently, the new model is much better than the Eurocode 4 model, in

that the coefficient of variation is reduced from 13.1% to 7.4%.

It should be mentioned that for these 25 data, the yield strengths of the steel

sheeting are unknown for the new tests and those 11 from [34] and one from [17],

but the minimum value is known to be 280 N/mm2. For the nine tests from [29],

the values of fyd are all higher than 280 N/mm2. In order to be comparable, for

all the 25 tests the minimum value of fyd is taken, that is, 280 N/mm2.
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Table 5.2: Predictions for rib punching failure.

	Ref No.	 Tests	 Nr	 b0 	 h	 h	 ts	 Fe Prs Pr	 ic
____	 ________	 (mm)	 (kN)	 ____ _____

New	 1	 G5U-1	 1U	 140	 80	 125	 1.2	 70.9 94.5 67.5	 1.05	 1.09

	

2	 G5U-2	 67.5	 1.00	 1.04

	

3	 G6TJ-1	 1U	 113	 60	 95	 0.9	 51.3 80.8 50.4	 1.02	 0.83

	

4	 G6U-2	 53.8	 1.07	 0.87

[29]	 5	 D40	 1U	 152.4 50.1 88.9 0.77 50.8 78.0 55.0 	 0.92	 0.65

	

6	 D41	 49.9	 0.91	 0.64

	

7	 D42	 56.8	 1.03	 0.73

	

8	 D43	 1U	 152.4 50.1 88.9 0.92 52.7 78.0 58.7	 0.90	 0.68

	

9	 D44	 58.1	 0.99	 0.74

	

10	 D45	 62.2	 1.06	 0.80

	

11	 D47	 IU	 152.4 50.1 88.9 1.23 67.2 78.0 65.7	 1.02	 0.86

	

12	 D48	 61.7	 0.94	 0.79

	

13	 D49	 1U	 152.4 50.1 88.9 1.53 68.6 78.0 76.6	 0.96	 0.88

[34]	 14	 R30-1-UA	 1U	 164	 60	 95	 1.2	 73.2 94.0 71.8	 1.02	 0.78

	

15	 R30-1-UB	 81.3	 1.13	 0.86

	

16	 R30-1-TJC	 79.5	 1.11	 0.85

	

17	 R30-1-TJDA 1U	 164	 60	 120	 1.2	 92.9 97.7 82.5	 1.13	 0.95

	

18	 R30-1-TJDB	 91.1	 1.10	 0.93

	

19	 R30-1-UDC	 89.3	 1.08	 0.91

	

20	 P30-1-hA	 1U	 135	 46	 95	 1.2	 88.1 96.1 81.8	 1.07	 0.92

	

21	 P30-1-UB	 91.1	 1.11	 0.95

	

22	 A30-1-hJA	 1U	 160	 50	 95	 1.2	 82.2 88.8 76.4	 1.08	 0.93

	

23	 A30-1-TJB	 77.7	 1.02	 0.88

	

24	 A30-1-UC	 83.0	 1.09	 0.93

[17]	 25	 PMF-NW	 1U	 135	 46	 95	 0.9	 76.9 81.4 65.0	 1.18	 0.94

-0.9-F-25.7

Mean	 1.04	 0.86

	

Coefficient of variation	 7.4% 13.1%

U - unfavourable position;

- the resistance calculated from the new model;

PrEC - the resistance calculated from the Eurocode 4 model.
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5.5 Combined failure modes

5.5.1 Theoretical approach

When two studs are placed staggered or transverse to the trough, test results give

two different types of failure modes, and these mostly depend on the transverse

spacing between the two studs. As there is always one stud on the unfavourable

side, both of the failure modes include rib punching failure for this stud. For the

stud on the other side, when it is far enough away from the other, shank shearing

is observed. Otherwise, when it is too close, both of the studs are pulled out

of the concrete slab, carrying away a wedge-shaped concrete cone, showing the

typical form of concrete pulling out failure.

Clearly, the stud on the unfavourable side yields first, because the concrete

arch in front of the stud can carry relatively lower shear force. After the yielding

of this stud, further shear force is transferred to the stud on the favourable side,

until it fails either by shank shearing or by concrete pulling out.

Considering this failure mechanism, the trough with two studs is divided into

two parts, each with one stud, as shown in Figure 5.7. The first part is the stud

on the unfavourable side with the concrete cover in front of it. The resistance

P is calculated by equations (5.7) and (5.32), with 1.8(ef + h - h) replaced by

(e+h— hr ); in other words, P and T5 , are given by equations (5.35) and (5.36):

( 1 U)2 + ()2 =1	 (5.35)
Prs	 T

and
Pru (5.36)
Prs	 T

where
(e + h - h)tfyd

77u =

	

	 (5.37)
Prs
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and
e T

2hpPrs

Again, fyd is taken as 280 N/mm 2 for all the tests.

(5.38)

L±
'I,

efl

s1
leH

[	 h	 j

rf	
b0

:	 e

Figure 5.7: Combined model for two transverse or staggered studs.

The second part is the stud on the favourable side with the remainder of the

concrete rib. The shear resistance Pd is calculated by equations (5.7) and (5.17),

with b0 replaced by (e + .s t), and is given by equations (5.39) and (5.40):

(&)2(TSf)21	
(5.39)

Pd	 T	
(5.40)

-i rs	 ly
where

{ 0.45v'7h2 (e + t - 0.25h)/(hP)	 h <4(e + s)/3
Tif	 (5.41)

0.8 i /J(e + St) 2 [0.75h - (e + s )/3} /(hP) (e + St) 0.75h
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and
e

rs

The shear resistance of each stud Pr is assumed to be the mean value of P and

Prf:

Pr 
= Pfl + P1.f	

(543)

5.5.2 Comparison with push-out test results.

The preceding approach for two transverse or staggered studs gives much better

predictions than the Eurocode 4 model, as shown in Table 5.3. The coefficient of

variation is reduced from 20.3% to 7.2%. The comparison is also shown in Figure

5.8.

Fe/Pr
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1.05.
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0.95.............................................................
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0	 :	 :

0.9.. ..............................................
0	 :
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o	 :	 :	 :	 :

0

06	 I	 I	 I	 I	 I
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Figure 5.8: Predictions for combined failure modes.
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Table 5.3: Predictions for combined failure modes.

	Ref Nc	 Tests	 Nr b0	 h	 h	 is	 Fe Prs Pr

_____	 _________	 (mm)	 (kN)	 _____ ______

New	 1	 G7D-1	 2T	 113	 60	 95	 0.9	 49.8 89.9 59.8	 0.83	 1.02

	

2	 G7D-2	 51.6	 0.86	 1.06

	

3	 G8D-1	 2T	 140	 80	 125	 1.2	 61.4 89.9 66.9	 0.92	 1.40

	

4	 G8D-2	 60.0	 0.90	 1.37

[34]	 5	 R30-2-SSA	 2S	 164	 60	 95	 1.2	 70.5 90.9 77.1	 0.91	 0.98

	

6	 R30-2-SSB	 79.5	 1.03	 1.11

	

7	 R30-2-SA	 2T	 164	 60	 95	 1.2	 75.0 90.9 77.1	 0.97	 1.05

	

8	 R30-2-SB	 75.9	 0.98	 1.06

	

9	 A30-2-SA	 2T	 160	 50	 95	 1.2	 85.7 91.1 81.5	 1.05	 0.94

	

10	 A30-2-SB	 83.9	 1.03	 0.92

	

11	 A30-2-SS	 23	 160	 50	 95	 1.2	 83.0 91.1	 81.5	 1.02	 0.91

[47]	 12	 60-SS-1	 23	 151	 60	 100	 1.2	 70.8	 96.0 79.1	 0.90	 0.89

	

13	 60-SS-2	 69.9	 0.88	 0.88

	

14	 60-SS-3	 - __________________________ 65.1 	 0.82	 0.82

[29]	 15	 D62	 2S	 152.4 50.1	 88.9	 0.81	 69.5 88.6 72.6	 0.96	 0.78

	

16	 D63	 67.2	 0.93	 0.76

	

17	 D71	 2S	 152.4 50.1	 127	 0.81	 69.0	 76.9 68.9	 1.00	 0.90

	

18	 D72	 61.7	 0.90	 0.80

	

19	 D79	 2S	 152.4 50.1	 114.3 0.77 73.5 93.2 77.2	 0.95	 0.79

	

20	 D81	 77.6	 1.01	 0.83

	

21	 D67	 2S	 152.4 76.1	 140	 0.93 63.6 76.6 63.4	 1.00	 1.00

	

22	 D68	 68.1	 1.07	 1.07

	

23	 D69	 67.6	 1.07	 1.07

	

24	 D64	 2S	 152.4 76.1	 127	 0.93 62.2 76.6 62.0	 1.00	 1.22

	

25	 D65	 64.0	 1.03	 1.26

	

26	 D66	 56.8	 0.92	 1.12

	

27	 D76	 2S	 152.4 76.1	 114.3 0.93 60.4 93.3 64.7 	 0.93	 1.30

	

28	 D77	 68.1	 1.05	 1.47

	

29	 D78	 65.8	 1.02	 1.42

	

30	 D20	 2S	 152.4 50.1	 101.6 0.81	 69.5	 86.5	 72.6	 0.96	 0.80

	

31	 D23	 2S	 152.4 50.1	 114.3	 0.81	 69.9 86.5	 73.7	 0.95	 0.80

	

Mean	 0.96	 1.03

Coefficient of variation	 7.2% 20.3%

T - two studs transverse to the trough; S - staggered;

Pr - the resistance from the new model; PrEC - the resistance from the Eurocode 4.
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5.6 Discussion

5.6.1 Upper limit for i

The previous sections have shown that the shear resistance of stud connectors in

a composite beam with transverse sheeting can be determined theoretically by

equations (5.44) and (5.45):

Pr2	 T
(D	

+ ()2 = 1	 (5.44)
1 rs	 Ly

and
Pr	 T

(5.45)
2rs

where Fr and T are the shear and tensile forces in the stud connectors, and P

and T are as given by equations (5.6) and (5.5). With different positions and

numbers of the stud connectors, the expressions for i and ). are different.

Among the three failure modes, i.e., shank shearing, concrete pulling out and

rib punching, the shank shearing failure has the highest resistance. As assumed

in Section 5.2, it is equal to the resistance of the stud connector in a solid concrete

slab P, which means the shear force in the connectors Pr cannot be greater than

P1.8 , that is:

-	 <1.0	 (5.46)Prs_ 71+ T

From the expressions for (equations (5.18), (5.21), (5.33), (5.37) and (5.41)), it

is clear that i depends to a great extent on the geometry of the decking. In the

process of comparing the models with the push-out test results, j was found to be

greater than 1.0 for wide and shallow troughs, such as the tests with b0/h ^ 2.9.

In this case i was taken as 1.0, and the calculation showed that T = 0 and.

Pr P, in consistent with the test results.

Apparently, there are two conditions for the occurrence of the shank shearing

failure:
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1.

2. i ^ 1.0.

Therefore, the upper limit for ij is 1.0.

5.6.2 Influence of the transverse reinforcement

A new point was raised by Mottram and Johnson [34] that the location of the

mesh below the heads of the studs would increase the push strengths, because

most of the failure surfaces observed in the tests were entirely below the mesh.

This was considered in the new 34 push tests described in Chapter 4. For trans-

verse sheeting, the locations of the mesh were at the tops of the studs (Figures

4.5, 4.7, 4.9 and 4.10), below them (Figures 4.4 and 4.8) or on the flanges of

the sheeting (Figures 4.6 and 4.11). Comparing G3FL (Figure 4.6) with G4FL

(Figure 4.7) and G5U (Figure 4.8) with G6U (Figure 4.9), it seems that the lower

location of the mesh prevented the occurrence of concrete pulling out failure.

Now let us consider the rotation model for concrete pulling out failure shown

in Figures 5.2 and 5.3. By taking into account the presence of the transverse

reinforcement within the failure surface, the torsional resistance T in equation

(5.13) is increased, so is the factor in equation (5.17), which means the studs

can be stronger.

Both the test evidence and the theoretical model suggest a positive influence

of the transverse reinforcement, but neglecting it, as the model does, still gives

satisfactory solutions. This might be because the amount of the reinforcement

intersecting the failure surface is insufficient. To obtain further understanding,

more tests are needed.
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5.7 Conclusions

The shear resistances of stud connectors welded through transverse sheeting have

been predicted theoretically by applying the upper or the lower bound theory. In

a common form, they are expressed as

Pr=kt Pr
	 (5.47)

in which P15 is the resistance of a stud to shank shearing failure, which is assumed

to be equal to the resistance of the stud in a solid concrete slab (equation (5.6));

and the reduction factor k is determined by:

2
k 
= +Av'1-2+A 

^ 1.0	 (5.48)
1 + A2

1. For one stud per trough, k is the smallest of 1.0 for shank shearing failure,

for concrete pulling out failure and ktr for rib punching failure, in which

is calculated from (equation (5.18)) and A (equation (5.19)); k 1 from

7r (equation (5.33)) and Ar (equation (5.34)).

2. For two in-line studs, the behaviour is similar to one stud per trough, but

with lower resistance. This is taken into account by a factor Nr, the number

of studs per trough, in the calculation of as given by equation (5.21).

3. For two transverse or staggered studs, Ict is the average of k1, the reduction

factor for the stud on the favourable side, and	 the one for the stud

on the unfavourable side. ktf is calculated from 1)f (equation (5.41)) and

Af (equation (5.42)), and 1c from	 (equation (5.37)) and A (equation

(5.38)).

4. The predictions are valid for 19-mm stud(s) with in-line spacing (centre t

centre) between 2.8d and 5d.

5. Because of the insufficient information on the yield strengths of the steel

sheeting, fyd, it is taken as 280 N/mm2 for all the tests.



Chapter 6

Theoretical analyses of push-out

tests with parallel sheeting

6.1 Introduction

From the 14 push-out tests with normal weight concrete described in Chapter 4

(Table 4.4), two kinds of failure modes were observed for stud connectors with

parallel sheeting. They are splitting failure and pulling out failure.

In this chapter, theoretical models for the two failure modes are developed,

based on the splitting theory of Oehlers [38] and the shear-friction theory of

Hawkins and Mitchell [18].

The splitting theory assumes that the shear force transfered by the stud con-

nectors is resisted by two prisms which fail simultaneously by splitting. It is used

to model the splitting failure. However, for narrow troughs, due to the weakness.

of the concrete around the stud, one of the prisms could not reach its splitting

strength, and fails prematurely by a different mode. This mode is pulling out fail-

ure, which is modelled by introducing the shear-friction concept into the splitting

theory.	
105
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The significant characteristic of the models is the different mechanism of load

transfer compared with the Eurocode 4 model. Therefore, the connectors with

parallel sheeting can be stronger than in a solid concrete slab, which agrees with

the test results. In other words, it is inappropriate to apply the reduction factor

method for studs with parallel sheeting, as in Eurocode 4.

The prediction fits a total of 31 data very well. Compared with the Eurocode

4 model, the coefficient of variation is reduced from 28.4% to 5.6% for splitting

failure and from 40.7% to 10% for pulling out failure.

6.2 Splitting theory

A series of studies on the resistance of a prism to strip or patch load was reported

by Oehlers [38]. Here is the summary of the general analyses for both types of

the loads.

6.2.1 Local splitting

Figure 6.1(a) shows a concentric strip load of width ba on a prism of width b and

depth ha. From finite element elastic analyses, as reported in [35], the vertical

strip load P8 develops high compression stresses over a short length adjacent to

the strip load and tensile stresses over a much greater length.

If the strip load is within the prism, as shown in Figure 6.1(b), the distribution

of the lateral stresses is anti-symmetrical, with the shape of the part of the

compressive stresses identical to the part of the tensile stresses.

The finite element analyses also showed that the tensile force P or the corn-

pressive force P can be determined as

Pt =	 = 0.6bc hafct 	(6.1)



C

'C

(a)

PC

Pt

ha

(b)
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where	 is the splitting tensile strength of concrete, and is assumed to be related

to the cylinder strength f, by:

=	 N/mm2.	 (6.2)

PS

a

Figure 6.1: Central strip load on a prism.

The ratio of the tensile or compressive force to the strip load P was derived

theoretically in [38]:
,.	 P	 1(1	 ba\2

= -
-Is	 ir

Equations (6.1) and (6.3) give the following general expression for local splitting

due to a strip load:

PS 
= O.6bchafctir	

(6.4)
(i_)2
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When a concentric patch load ba X ha is applied to a prism b x d, as shown in

Figure 6.2, it is assumed to be supported by both prisms ABHG and CDFE, and

the strip load P is the sum of the splitting resistances of the patch on each prism

when the ratio of the area of patch load to b x d is between 0.04 and 0.36. The

resistance of prism CDFE can be determined directly by equation (6.4), while for

prism ABHG, it is calculated with b, ha and ba in equation (6.4) replaced by d,

ba and ha. Hence,

	

0.6bchafct7r	 0.6badcfctir
+	 (6.5)

	(1_)2	 (1_)2

*11

Figure 6.2: Central patch load on a prism.

6.2.2 Global splitting

If there are several strip loads along a certain length of a prism, as shown in

Figure 6.3, the lateral stress zones will overlap with each other, and hence will
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affect the loads at which splitting occurs. In this case, the splitting is called

global splitting.

For a group of strip loads with uniform value P8 and even spacing s.,, according

to [38],
.Syhafct	 .Svhafct7r

(1_)2	

(6.6)

Comparing equation (6.6) with equation (6.4), it is easy to find that the occur-

rence of global splitting requires s	 O.6b.

For a group of patch loads, the strip load P8 can be determined in a similar

way as for single patch load, which is simplified into a group of strip loads on two

prisms,
= Syh7rf	 8ybafctT

	

(1_)2(1_)2	

(6.7)

Apparently, global splitting occurs on the first prism when Sv ^ O.6ba, and on

the second prism when s, ^

baE

Ps PS PS

sv	 sv

Figure 6.3: Global splitting.
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6.3 Splitting analyses on stud connectors

6.3.1 Splitting resistance

As observed in the 14 push-out tests with normal weight concrete described in

Chapter 4, all the other tests except G1OP showed splitting failure, with longitu-

dinal cracks that occurred at the maximum loads, and local buckling in the ribs

of the profiled sheeting.

II—Pc
flT

h

A BC D

____	 Jhpjh h

[.eJeJ

Lb

Figure 6.4: Patch load from the stud connector (parallel sheeting).

Figure 6.4 shows a push-out specimen with parallel sheeting. The shear force

Fr is assumed to be transferred into the concrete in terms of a bearing pressure

between the connector and the concrete over the area d x hes, where d is the

diameter of the shank of a stud and hes is the effective depth of the bearing area.

At first, the bearing area is just around the base of the connector, causing

the concrete in this area to split, but the expansion of the splitting cracks is

restrained by the ribs of the profiled sheeting. Therefore, with the increase of the



(6.8)

(6.9)
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shear force Pr, the bearing area increases, until yielding of the ribs releases the

restriction.

Due to the flexible behaviour of the stud connector, the bearing pressure is

greatest adjacent to the base of the connector, and is gradually reduced to zero

over hes. However, we assume that the pressure is uniformly distributed. In this

case, the resistance of the prism ADLI in Figure 6.4 to the pressure over d x hes

determines the shear resistance of the stud connector Pr, ignoring the restraint

of the concrete to both sides Al and DL..

The prism ADLI can be regarded as the upper half of the prism above rn - rn

in Figure 6.2. The discrepancy between the two cases is that the dispersal of the

splitting force in the prism of ABHG in Figure 6.2 is provided by the restraint

along m - m, while in Figure 6.4 the concrete slab is only restrained by the axial

stiffness of the stud connectors, which develops tensile forces T in the studs. As

this tensile force is unlikely to cause the studs to fail in tension, the prisms EHLI

and BCKJ in Figure 6.4 are assumed to fail simultaneously in splitting. This is

not a bad assumption, especially for stud connectors with wide troughs, but for

narrow troughs, it needs to be revised, as will be discussed in Section 6.4.

To equate the tensile forces T, there are compressive forces P distributed

behind the studs. Clearly, the tensile and compressive regions are unlikely to

overlap with each other. So, the prisms ERLI and BCKJ will be controlled

only by local splitting. If, Fri and Pr 2 are the resistances of the two prisms,

respectively, the above assumption becomes

PrPri+Fr2

Referring to equation (6.4), Fri and Pr2 can be determined as follows:

1.2hesfct
Pri

Ad

and

Pr2 - 
O.6dhesfct

-	
(6.10)
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where Kd is as given by equation (6.11), and K by (6.12):

Kd = .-(1 - 
d\2	

(6.11)
2e

and

= .-(1 -	 )21S	 (6.12)
h h

in which e is the distance from the centre of the stud to the mid-depth of the

nearer rib, and h the overall depth of the concrete slab. The splitting tensile

strength of the concrete	 is as given by equation (6.2).

It was found from push-out tests [38] that K defined by equation (6.12)

underestimates the test results, and that a better estimation can be obtained by

replacing h with 2h, that is,

	

= .(l - 
heS)2hS	

(6.13)
ir	 2h 2h

Substituting it into equation (6.10), equation (6.8) then becomes

2.4ie3h/J	 2.47rdhWJ	
(6.14)

(2e—d)2 + (2hches)2

The effective depth of the bearing area h is determined based on the obser-

vation of the test results. As shown in Figure 4.39, the bulging in the sheeting is

over the full depth of the rib, so h is assumed to be

hes	
h + h	

(6.15)

where h is the overall height of the stud connector, and h, the depth of the ribs

of the profiled sheeting. This assumption gives very good prediction, as will be

shown next by the comparison with the test results.

6.3.2 Comparison with test results

The shear resistance P for a stud connector with parallel sheeting is determined

by equation (6.14). Among the 20 selected data (Table 3.1) and the 18 new tests,
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there are 22 with normal weight concrete which failed by splitting. One result

reported by Harding [17] is unused because of insufficient information. Details of

the other 21 push-out tests and their comparison with the prediction are listed

in Table 6.1, e the distance from the centre of the stud to the mid-depth of the

nearer rib, mm; h the overall height of the stud, mm; h the depth of the trough,

mm; h the overall depth of the concrete slab, mm; be the effective upper width of

the trough, mm, as defined below; Pe the tested resistance, kN; Pr the predicted

resistance from equation (6.14), kN. Also shown in this table is the resistance of

the stud in a solid concrete slab, P (kN), which is specified in Eurocode 4 [7]

as the upper limit for the resistance of stud connectors with parallel sheeting.

Clearly, this upper limit is too conservative.

The comparison is also shown in Figure 6.5. The predicted resistances for

tests 13 to 15 are much higher than the tested values ('stars' in the figure). This

is because the stud connectors in these tests are at the centres of relatively wide

troughs, with 2e/h = 2.0 for test 13, and 2.39 for tests 14 to 15. In this case, the

effective depth of the bearing area hes given by equation (6.15) is overestimated.

If he8 in equation (6.15) is replaced by equation (6.16) for stud connectors

with 2e/h ^ 2.0, the results, as shown in Table 6.1 in curved brackets, are very

good, especially for tests 14 and 15 with 2e/h = 2.39 ('circles' in Figure 6.5).

For test 13, hes from equation (6.16) seems underestimated.

hes = h
	

(6.16)

Considering that hes = (h + h)/2 gives better prediction for the other tests with

2e/h from 0.94 to 1.5, a linear interpolation between [1.5, (h + h)/2] and [2.4,

h] will give

	

hes h + (2.4— 
2e ) h - h	

(6.17)
lz,	 1.8

The value of hes from equation (6.17) fits test 13 quite well, as shown in square

brackets and the 'circle' in Figure 6.5.
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Therefore, the assumption for h 8 given by equation (6.15) is revised as:

h - h + li	
1.5;	 (6.18)e8	

2	 '
2eh - h	

-> 1.5.	 (6.19)hes = lip + (2.4 -
	 ' 1.8 ' h -

Equations (6.14), (6.18) and (6.19) predict the results much better than the

Eurocode 4 model, as shown in Table 6.1. The coefficient of variation is reduced

from 28.4% to 5.6%.

The comparison is also shown in Figure 6.5 in 'circles'. However, equations

(6.18) and (6.19) is based on very few data (21 altogether). More tests are needed

to check the assumption made for hes.

Pe/Pr

1 .4 .................................................................................

1.3 ............................................................................

1 .2 ...............................................................................

11

3 ....i........
8	 o

0.9 .........................................................................................

08

0.7 .................................................................................................

0 .6 .................................................................................................

1.2	 1.4	 1.8	 1.8	 2	 2.2	 24

2e/h

Figure 6.5: Splitting model for splitting failure.



	

6.3 Splitting analyses on stud connectors
	

115

Table_6.1: Comparison of splitting model with tests that failed by_splitting.

Tests	 e	 h lip h	 be Fe	 Pr	 Prs	 ____

1	 New G9P-1	 37.5 125	 80	 150	 90	 131.1	 131.5	 106.8	 1.00	 2.08

2	 G9P-2	 126.2	 0.96	 2.00

3	 GI3P-1	 30.0	 95	 60	 120	 136	 92.1	 91.2	 88.2	 1.01	 1.58

4	 G13P-2	 91.8	 1.01	 1.58

5	 G14P-1	 37.5 125	 80	 150	 180 112.1	 119.2	 84.5	 0.94	 2.25

6	 G14P-2	 114.2	 0.96	 2.29

7	 G15P-1 33.3	 95	 46	 120	 79	 101.9	 91.9	 99.1	 1.10	 1.03

8	 G15P-2	 96.3	 1.05	 0.97

9	 G16P-1	 37.5	 95	 50	 120	 90	 108.8	 100.5	 105.0	 1.08	 1.04

10	 G16P-2	 114.5	 1.14	 1.09

11	 G17P-1	 36.3	 95	 60	 120	 98	 87.8	 87.0	 81.6	 1.01	 1.08

12	 G17P-2 36.3	 95	 60	 120	 98	 85.7	 90.9	 82.4	 0.94	 1.05

13	 [18]	 7M	 76.2 114	 76	 140	 178 156.8	 172.9	 112.9	 0.91	 2.31

	

(139.8 )	 1.12

	

[154.8]	 1.01

14	 [40]	 TVI-A	 91	 114	 76	 141 203 128.4	 159.8	 91.2	 0.80	 1.97

	

(127.8)	 1.00

15	 TVI-B	 91	 114	 76	 141	 203 124.3	 159.8	 91.2	 0.78	 1.90

	

(127.8)	 0.97

16	 TV-A.	 38	 116	 76	 141	 203 117.0	 118.7	 91.2	 0.99	 1.70

17	 TV-B	 128.9	 1.09	 1.87

18	 TV-C	 129.3	 1.09	 1.88

19	 QIV-A	 38	 116	 76	 141	 184 114.3	 112.0	 84.7	 1.02	 2.13

20	 QIV-B	 121.1	 1.08	 2.27

21	 QIV-C	 120.1	 1.07	 2.34

Mean	 1.03	 1.73

	

Coefficient of variance	 5.6% 28.4%

Pr, PrEC - the resistances from equations (6.14), (6.18) and (6.19), and the Eurocode 4 model.
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6.4 Pulling out failure of stud connectors

The failure mode of G1OP shown in Figure 4.40 is quite similar to the one found

by Hosain in his eight push-out tests with stud connectors in narrow sheeting[20].

The latter is shown in Figure 6.6.

It is a kind of pulling out failure. One of the characteristics is that the

separation of the upper parts of the slabs from the main body starts at about

80% of the maximum load, and extends quickly until the separation is complete.

At the end of the tests, the upper parts of the slabs are very easily removed,

exposing cone-shaped failure surfaces of the concrete around the stud connectors.

Figure 6.6: Hosain's test result.
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Details of 10 tests with this failure mode are listed in Table 6.2, where is

the tensile strength of the concrete, MPa, and the other symbols are as for Table

6.1. Also shown in this table is the splitting resistance Pr given by equation

(6.14), kN, as well as the comparison with the test results. Evidently, pulling out

failure has much lower resistance than splitting failure, especially for tests 1 to

6. It cannot be predicted simply by the splitting model.

Table 6.2: Splitt
	

model for tests that failed
	

out.

No. Ref. - Tests	 fct	 e	 h h	 h	 3v be PePrPrs

1	 New G1OP-1 2.46 30.0	 95	 60	 120	 125	 68 70.3	 92.3 90.7 0.76

2	 G1OP-2	 72.1	 0.78

3	 [20]	 A-S	 2.51 30.0 125	 76	 150 63d 65 45.3	 99.7 92.3 0.45

4	 A-6	 54d	 50.0 112.6	 0.44

5	 A-7	 4•5d	 62.5 122.1	 0.51

6	 A-8	 46d	 66.2 122.1	 0.54

7	 B-5	 2.51 28.3	 76	 38	 103 73d 70 44.4	 52.9	 65.5 0.84

8	 13-6	 (d= 16 mm)	 64d	 48.9	 59.5	 0.82

9	 B-7	 55d	 55.4	 59.5	 0.93

10	 13-8	 46d	 61.6	 59.5	 1.04

Pr - the resistance from equations (6.14), (6.18) and (6.19).

The failure surfaces in Figures 4.40 and 6.6 suggest that the concrete around

the head of the stud has an important influence. It is further found that this

influence can be reflected by the effective upper width of the trough be by defining

be	 b for single or staggered studs or be	 b/2 for pairs of studs which ar

transverse to the shear force, where bu is the upper width of the trough. As shown

clearly in Figure 6.7 where the 'stars' are tests 1 to 10 from Table 6.2 and the

'circles' the 21 tests from Table 6.1, when be 70 mm, the pulling out failure

controls.
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Figure 6.7: Splitting model for pulling out failure.

6.4.1 Mechanism of pulling out failure

The splitting model illustrated in Figure 6.4 is based on the assumption that the

tensile forces developed in the stud connectors, T, due to the dispersal of splitting

forces in the prism BCKJ, are unlikely to cause studs to fail in tension, and

hence splitting failure governs the two prisms EHLI and BCKJ. This assumption

is workable for stud connectors in wide troughs (be ^ 80 mm in Figure 6.7),

because the concrete around the studs provides sufficient restraint to prevent the

studs being pulled out of the concrete slab.

For stud connectors in narrow troughs, the shear force Pr still acts as a concen-



6.4 Pulling out failure of stud connectors
	

119

trated patch load on the prism ADLI, and is resisted by the two prisms EHLI and

BCKJ. With the increase of the shear force Pr, the effective depth of the bearing

area increases, and so does the tensile force T in the studs and the splitting force

in the prism EHLI. When T reaches the tensile resistance of the concrete, cracks

appear around the stud connectors, the result of which will be the pulling out

of the stud with a portion of concrete around, as observed in test G1OP (Figure

4.40) and in Hosain's test (Figure 6.6).

If hep is the effective depth of the bearing area at which the premature failure

of concrete occurs, and Fri and Pr2 are the corresponding shear forces taken by

prisms EHLI and BCKJ, then the shear resistance of pulling out failure Fr is the

sum of r1 and Pr2:

Fr = Pr1 + Pr2	 (6.20)

in which Pr1 is as given by equation (6.9) with hes replaced by hep.

slip

n

'r2

fT

t

Figure 6.8: Shear-friction concept

The shear force taken by prism BCKJ which causes the tensile force in the

studs to exceed the resistance of the concrete can be predicted by introducing

the 'shear-friction concept' reported by Hawkins and Mitchell [18]. In Figure 6.8
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a stud is shown, embedded in concrete and under a shear force Pr2. The slip

caused by this shear force develops a tensile force T in the stud. In order to

equilibrate T, compression also of magnitude T exists at the interface between

the steel beam and the concrete slab. Therefore, the resistance to the shear force

Pr2 can be thought of as the frictional force arising from the normal force, T, and

the coefficient of friction, , of the concrete-steel interface, that is,

Pr2 =i iT
	

(6.21)

The tensile force T acting on the stud can cause the stud to be pulled out of

the concrete. The common approach to calculate T is to assume that the tensile

strength of the concrete, acts on a cone-shaped failure surface around the

stud, and is related to the cylinder strength of the concrete, f, in N/mm2 units,

by:

=
	

(6.22)

If A is the area of the failure surface,

TocAf
	

(6.23)

so, using equation (6.22), the shear force Pr2 to cause the stud to be pulled out

of the concrete can be expressed as Pr2 OC i,rA/J, or

Pr2 = kA .J'i 	(6.24)

in which k is a coefficient to be determined from the tests.

From the mechanism of pulling out failure described early in this section, it

is clear that when Pr2 from equation (6.24) is smaller than the resistance from

equation (6.10), pulling out failure controls, otherwise, splitting failure contro1s

Therefore, by equating equation (6.24) with (6.10) in which K5 is as given by

equation (6.13), the effective depth of the bearing area hep for pulling out failure

is obtained:
fo.6dh

hep = 2h(1 - 
V kA.	

(6.25)



A	
{ 2A1+b0,

= 2A2+bo,
(6.26)

A1^A2

A1>A2
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The failure surface for each row of stud(s) is assumed to be a wedge-shaped

cone, as shown in Figure 6.9 (a). All the four surfaces have the same slope, which

is controlled by e. The cone is unsymmetrical, with the surface behind the stud

(in the direction of shear force) extending to the bottom of the trough and the

one in front to the top flange of the sheeting. Under the combined action of shear

and tensile forces in the shank of the stud, the cone rotates around AB. This is

not a bad assumption, as will be shown later in Section 6.4.2.

When the rows of stud(s) are placed closely together, with the longitudinal

spacing .s less than 2e, the slope of the front and rear surfaces of the cone is

controlled by The slope of the other two surfaces is as before, as shown in

Figure 6.9 (b). When the studs are placed off-centrally, the slope of the larger

side surface is then controlled by (st + en), as shown in Figure 6.9 (c).

Therefore, the area of the wedge-shaped failure surface A for each row of

stud(s) is calculated as below:

and A1 and A2 are the areas of surface ABCDEF controlled by 01 and 02,

respectively, which are determined by:

h-

A1	
{ (s + 2e) sin01

=	 h—hr	 h—hr(s.+3e) 2 . 0 +e j -

stud(s) placed symmetrically

stud(s) placed unsymmetrically

(6.27)

and

( h—h	 h—h

A2 = { 
s,	 + (St + )	

stud(s) placed symmetrically

4 sin j + ( S t + 2e) 2sin0 + Sy	
stud(s) placed unsymmetrically

(6.28)

where
h—hr	 h_hp	 h—h
_______	 (6.29)tan 

0 - e	
tan 02	

tan 03 =

sv/2	 'St + e
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/
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With hes replaced by hep, Pr2 can be calculated from equation (6.10), so

equation (6.20) becomes	

2.4e3hep	 + 2.4dhfl	 (6.30)
Pr = (2e- d) 2	(2h - hep)2

Table 6.3: Friction-splitting model for tests that failed by pulling out.

N ReL Tests	 fct	 d b	 t sv h	 k Fe Fr fl
______ (MPa)	 (mm)	 (mm)	 (kN)	 _____

1	 New G1OP-1	 2.46	 19 136 53	 125	 56.9	 0.58 70.3 66.4 1.06	 1.18

2	 G1OP-2	 55.7	 0.58 72.1	 1.09	 1.21

3	 [20]	 A-5	 2.51	 19	 65	 -	 63d	 22.6	 0.53 45.3	 51.9	 0.87	 1.61

4	 A-6	 5•4d	 28.1	 0.50 50.0 63.1	 0.80	 1.78

5	 A-7	 4.5d	 42.5	 0.56 62.5 63.1	 0.99	 2.22

6	 A-8	 4•6d	 46.7	 0.58 66.2	 63.1	 1.04	 2.35

7	 B-5	 2.51	 16	 70	 -	 73d	 39.4	 0.58 44.4 42.0	 1.06	 0.76

8	 B-6	 64d	 44.9	 0.53 48.9 52.8	 0.93	 0.84

9	 B-?	 5•5d	 52.5	 0.55	 55.4	 56.7	 0.98	 0.95

10	 B-8	 4•6d	 59.5	 0.60	 61.6	 56.7	 1.09	 1.05

Mean	 0.99	 1.40

	

Coefficient of variation 	 10% 40.7%

Pr	 the resistance from equation (6.31);

PrEC - the resistance from the Eurocode 4 model.

Replacing Pr with the tested resistance Fe, values of hep for tests that failed

by pulling out mode &e obtained, denoted as in Table 6.3, where the symbOls

are the same as for Table 6.1, except that d is the diameter of the shank of a

stud; s and s., are the transverse and longitudinal spacings between the studs,

respectively. Substituting these 	 into equation (6.25) finds the k value for each

test which is also shown in the table.
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The mean value of k is 0.56, so the pulling out strength is finally deduced:

2.4 ire3
 hepff + 0.56A/Pr=

(2e—d)2

where_________

hep = 2h(1 - 
V11

(6.31)

(6.32)

6.4.2 Comparison with test results

As described in the preceding section, the occurrence of splitting or pulling out

failure is controlled by the effective depth of the bearing area:

S If hes from equation (6.18) or (6.19) is less than hep from equation (6.32),

splitting failure controls, and the shear strength is determined by equation

(6.14).

• Otherwise, pulling out failure controls with the strength determined by

equation (6.31).

The comparison is shown in Figure 6.10. For the 21 tests in Table 6.1, hes

is always smaller than hep (neither of the values are given in the table). This

corresponds to the test results, in that all these specimens failed by splitting.

The ten test resultes given in Table 6.2 are all governed by pulling out failure.

Compared with the Eurocode 4 model, the new theoretical model for pulling out

failure reduces the coefficient of variation from 40.7% to 10%.

The two points in Figure 6.10 with Fe/Pr less than 0.9 are tests A-S and A-6

which had the spacing between the studs less than 5d and had no second identical

tests to check the results. It is the author's opinion that tests No 3-10 in Table

6.1 are not as reliable as the others.
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Figure 6.10: Comparison of both splitting and pulling out model with test results.

6.5 Discussion

As discussed in Section 6.3, the splitting occurs first at the base of the stud,

but its development is restrained by the ribs of the profiled sheeting. When

the cracks reach the surface of the concrete slab, the transverse reinforcement

can provide additional restraint, as suggested by Oehlers [38] (Figure 2.5). If

the reinforcement is below the head of the stud, pulling out failure might be

prevented, depending on the amount of the reinforcement.

The occurrence of splitting and pulling out failure depends to a great extent

on the upper width of the trough (Figure 6.7). Among the 31 tests studied in

this chapter, only 09P in Table 6.1 has the reinforcement below the head of tle

stud. As it has profiled sheeting with relatively wide troughs, the splitting failure

can hardly be attributed to the lower location of the reinforcement. For further

understanding, more tests are needed.
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6.6 Conclusions

1. The shear force on a composite beam with parallel sheeting is assumed to be

transfered into the concrete slab in terms of a bearing pressure between the

stud connector and the concrete over an certain height of the stud, defined

as the effective depth of the bearing area. Based on this assumption, two

models for splitting failure and pulling out failure have been found, and the

shear resistances are predicted.

If hes denotes the effective depth for splitting failure (equations (6.18) and

(6.19)) and hep for pulling out failure (equation (6.32)), the occurrence of

failures will follow the following rules:

• when heg	 hep, splitting failure controls, and the resistance is deter-

mined by equation (6.14);

• when hes > hep, pulling out failure controls, and the resistance is

determined by equation (6.31).

2. The predictions have been found to be satisfactory for:

• 16- and 19-mm studs with f from 410 to 470 N/mm2;

• the cylinder strength of concrete f from 20 to 35 N/mm2;

• b0/h from 0.8 to 3.2;

• h - lii, ^ 35 mm;

• the centre-to-centre spacing between studs is from 2.8d to 4d in the

direction transverse to the shear force, and from 3d to 6d inline along

the shear force;

• the centre-to-centre spacing between the studs greater than 4d.

3. The two models were based on only 31 push-out data. More tests are

needed for the further knowledge of the mechanism of load transfer, the

failure modes and the influence of the transverse reinforcement.



Chapter 7

Push-out tests with lightweight

concrete

7.1 Introduction

Among the 34 push-out tests described in Chapter 4, eight were carried out to

study the behaviour of studs in lightweight concrete, four with transverse sheeting

and the other four with parallel sheeting (Tables 4.3 and 4.4).

The behaviour, compared with that in normal weight concrete, can be charac-

tensed as similar failure modes and less ductility. In other words, the density of

the concrete has little influence on the mechanism of load transfer. This will be

proved in this chapter, by applying those theoretical models for transverse sheet-

ing (Chapter 5) and for parallel sheeting (Chapter 6) to a total of 15 push-out

tests with lightweight concrete (8 new tests and 7 from [17]).

The compressive strengths and the densities of the concrete for these 15 spec-

imens were measured from air-dry concrete cubes. The conversion factors for

tensile and shear strengths and for elastic modulus are assumed to be the same

127
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as those for oven-dried concrete of the same density class as given by Eurocode

2: Part 1-4 [5].

It will be shown that the models developed in the previous chapters are also

satisfactory for lightweight concrete by introducing material conversion factors.

However, because there are only 15 data, it is suggested that more tests be carried

out for further understanding.

7.2 Properties of lightweight concrete

Material properties for lightweight concrete in this chapter is indicated by the

subscript ic.

Density

Density of concrete can contribute significantly to the loads that structural

members are required to carry and therefore changes in this property can have

important effects structurally and economically.

For lightweight aggregate concrete, the porosity of the coarse aggregates re-

sults in differing densities at different curing stages or for different curing meth-

ods. So, there are fresh density, air-dry density and oven-dry density. In Eurocode

2: Part 1-4, oven-dry density is the basis of the density classes (Eurocode 2: Part

1-4: Table 3.5-C [5]), which feature in the conversion of several other properties

such as tensile strength and elastic modulus. Table 7.1 is a copy of part of Table

3.5-C.

For push-out tests using concrete with non-oven-dry density, the same classes

in Table 7.1 are used, so that the conversion for other non-oven-dry properties

can be obtained referring to Eurocode 2: Part 1-4. For example, if the air-dry

density is 1700 kg/rn3 , the concrete is assumed to belong to class 1.8, for which

the conversion factors for tensile strength or elastic modulus are calculated. This
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Table 7.1: Density classes as given by Eurocode 2: Part 1-4.

I
Density class	 II i.o	 f 1.2	 I 1.4	 1.6	 1.8	 2.0

Oven-dry	 901-	 1001- 1201- 1401- 1601- 1801-

density Pu (kg/rn3) 1000 1200	 1400	 1600	 1800	 2000

will be explained below.

Elastic modulus

The mean value of the elastic modulus for normal weight concrete, Ecm, is

given in Eurocode 2 [4] by the following equation, in N/mm 2 units:

	

Ecm = 95OOf3
	

(7.1)

in which f is the mean cylinder strength of concrete.

For lightweight concrete [5], it is estimated by multiplying the value from the

above equation by a factor

	

11E = ( 2o ) 2	(7.2)

where Pu iS the upper limit of the oven-dry density for the relevant class in Table

7.1.

For non-oven-dry concrete, in the absence of better information it is now

assumed that equation (7.2) is still valid, provided that the non-oven-dry density

is classified using Table 7.1. Hence,

Ecm1c = 95OOEf., N/mm2 .	 ( 7.3)

Tensile and shear strength

For normal weight concrete, the tensile strength, fct, is estimated from the

cylinder strength, f, by:

= O.5\/, N/mm2 .	 (7.4)
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When calculating the tensile strength of lightweight concrete, fct—ic, a conversion

factor 77i is introduced into the above correlation:

f-i = 0.577i / 1 	 N/mm2 ,	 (7.5)

where fc-i is the cylinder strength of lightweight concrete, and ii is as given by

Eurocode 2: Part 1-4:

77i = 0.40 + 0.60	 (7.6)
2200

in which p is the upper limit of the density for the relevant class in Table 7.1.

To obtain the torsional shear strength of lightweight concrete, l—lc, the same

conversion factor i is applied:

Vtu_Ic =	 N/mm2.	 (7.7)

7.3 Transverse sheeting with lightweight con-

crete

Two groups of specimens in Table 4.1, G3FL and G4FL, were tested to study

the influence of lightweight concrete. Both groups had stud connectors in the

favourable position, but the density of the concrete and the profiled sheeting

were different.

The obvious effect of lightweight concrete was the brittle behaviour after the

maximum loads, as shown in Figures 4.21 and 4.22 compared with Figures 4.19.

This resulted in abrupt failure, but the failure modes showed no difference from

those with normal weight concrete of similar cube strengths, because G3FL failed

by shank shearing, while G4FL by concrete pulling out. Therefore, it can be as-

sumed that the mechanism of load transfer is the same as for normal weight con-

crete, and hence the shear resistance can be predicted by the theoretical models

described in Chapter 5.
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Introducing the properties of the lightweight concrete (Section 7.2) into those

models, the shear resistance of a stud connector with lightweight concrete, Pr_ic,

is predicted by equation (7.8):

Pric	 k_1P1.8_i 	(7.8)

where Pro_ic is the resistance of a stud to shank shearing failure, as given by

equation (5.6) with Ecm replaced by Ecm_jç from equation (7.3).

The reduction factor k_1 is still the same as given by equation (5.48), but

with i and A slightly different, due to the influences of lightweight concrete on

the strengths of materials. Details are as follows:

Concrete pulling out failure

0.45i71/J_1h 2 (b0 - 0.25h)
7c-ic =

	

	 (7.9)
Nr hpPrs_ic

and
eT

Ac_ic (7.10)
h

in which i is as given by equation (7.6). Except where modified in this chapter,

all the other symbols are as defined in Chapter 5.

Rib punching failure

l.8(ef + h - h)tfd
7r-1c =

	

	 (7.11)
P1c

and
eiT

Ar_ic = (7.12)
2h P_1

For G3FL with measured density as 1640 kg/rn3 , equations (7.8) to (7.12) are

slightly conservative, while G4FL is well predicted, as shown by the comparison

of Pr_ic with the tested value Pe in Table 7.2, where p is the measured density

and p the upper limit of the density obtained from Table 7.1.
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Table 7.2: Theoretical models for transverse sheeting with lightweight concrete.

Fe	 FeTest	 Ref.	 b0	h	 h	 t	 P	 Pu	 Pe Prs-lc Pr...ic	
PrEC_1C

________	 (mm)	 (kg/rn3)	 (kN)	 ______ ________

G3FL-1 New 140 125	 80	 1.2	 37.5 1640 1800 86.3	 86.4	 72.6	 1.19	 1.45

G3FL-2	 one favourable stud	 87.0	 1.20	 1.46

G4FL-1	 113	 95	 60	 0.9	 30.0 1900 2000 64.7	 91.0	 68.3	 0.95	 0.92

G4FL-2	 one favourable stud	 68.9	 1.01	 0.98

QL6O	 [17]	 150	 95	 60	 1.15 30.0 1880	 2000 81.9	 79.7	 76.5	 1.07	 1.03

-iT	 one central stud

MET	 75	 95	 55	 1.0	 37.5 1891 2000 58.0	 76.9	 54.6	 1.06	 1.54

-2T	 two in-line studs

PMF-R	 132	 95	 46	 0.9	 33.3 1889 2000 85.1	 74.8	 69.6	 1.22	 1.14

-24.8	 one favourable stud

PMF-R	 132	 95	 46	 1.2	 33.3 1897 2000 88.2	 78.9	 72.6	 1.21	 1.12

-27.0	 one favourable stud

PMF-F	 132	 95	 46	 0.9	 98.7 1881	 2000 65.9	 79.6	 64.5	 1.02	 0.83

-26.2	 one unfavourable stud

PMF-F	 132	 95	 46	 1.2	 98.7 1876 2000 66.8	 76.0	 71.4	 0.94	 0.88

-25.4	 one unfavourable stud

Mean	 1.09	 1.13

	

Coefficient of variation	 10.2%	 22.9%

Pr_ic - the resistances from the new models;

PrEC ..lc - the resistances from the Eurocode 4 model;
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Apart from G3FL and G4FL, Table 7.2 also shows the details and the corn-

parison of six more data reported by Harding [17]. These six specimens had

similar density (around 1900 kg/rn3), but varied in stud position and profiled

sheeting. Again, the predictions, are satisfactory, except a little conserva-

tive for specimens PMF-R-24.8 and PMF-R-27.0, which had 46-mm-deep deck

and favourable stud position.

Another reason for the conservatism of the prediction might be the original

errors in Prs-ic the resistance of a stud to shank shearing failure which is assumed

to be equal to the shear resistance of the connectors in solid concrete slabs (Chap-

ter 5). For example, Pr_ic is 74.8 kN for tests PMF-R-24.8, and 78.9 kN for tests

PMF-R-27.0. As ^ 1.0 results in Pr1c ^ P_1, the errors in P1._1 will

be added onto P_1 . However, on the whole, the predictions are satisfactory,

reducing the coefficient of variation to 10.2%.

7.4 Parallel sheeting with lightweight concrete

Among the nine groups of specimens with parallel sheeting described in Chapter

4 (Table 4.4), G11PL and G12PL were carried out to study the behaviour of stud

connectors in lightweight concrete. They were companion specimens for G9P and

G1OP which had normal weight concrete.

Comparing these four groups found that neither the load-slip curves (Figures

4.27 to 4.30) nor the final failure modes show any differences. The relatively

narrow trough (PMF CF6O sheeting) caused G1OP and G12PL to fail by the

pulling out of studs, while G9P and G11PL with wide trough (Multideck 80

sheeting) failed by splitting. These two failure modes for normal weight concrete

have already been satisfactorily predicted in Chapter 6. So, in a similar way as for

transverse sheeting with lightweight concrete described in the previous section,

the resistances for the two failure modes can be predicted by equations (6.14) and
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Fe/Pr-ic

ansverse sheeting

1.4. '---,aralleI sheeting:.........

1.3.

1.2.. .......................................................0....

11	 °

1.21.4	 1.6	 1.62	 222.42.62.8

b0 / h

Figure 7.1: Predictions for studs in lightweight concrete.

(6.31), respectively, with iJj replaced by 77l\/Jj. This modification is given

by equations (7.13) and (7.14):

Splitting failure

2.47re3hes
Pric = (2e - d)2''	

2.4irhd 17i/1
	 (7.13)

(2h - hes)2

Pulling out failure

- 2.4?re3he	
/T + O.56A 1 Ji 	 (7.14)r—ic - 

(26—d)2

in which is from equation (7.6), and all the other symbols are as in Chapter 6.

Apart from G11PL and G12PL, only two additional results have been reported

by Harding [17], in which one is not used because of insufficient information.

Details of the other five sets of data are given in Table 7.3, where the symbols

are as used in Chapter 7 or as defined for Table 7.2.

Figure 7.1 shows the comparison of the models with all the 15 test results.
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They fit data very well. Compared with the Eurocode 4 model, the coefficient of

variation is reduced from 44.3% to 5%. However, general conclusions can hardly

be drawn from such a small set of data; more tests are needed.

Table 7.3: Theoretical models for parallel sheeting with lightweight concrete.

	

Test	 G11PL-1 GIIPL-2 GI2PL-1 GI2PL-2 PMF-25.2P

	

Ref.	 New	 {17J

(mm)	 140	 140	 113	 113	 132

(mm)	 180	 180	 146	 146	 158

e	 (mm)	 37.5	 37.5	 30	 30	 32.5

(mm)	 57.5	 57.5	 41.5	 41.5	 46.5

h	 (mm)	 125	 125	 95	 95	 95

(mm)	 80	 80	 60	 60	 46

(mm)	 140	 140	 120	 120	 120

(mm)	 250	 250	 250	 250	 114

	

f-i	 (Mpa)	 41.2	 41.2	 36.9	 36.9	 25.2

p	 (kg/rn3)	 1580	 1580	 1900	 1900	 1840

	

Pu	 (kg/rn3)	 1600	 1600	 2000	 2000	 2000

	

Pc	 (kN)	 124.2	 129.8	 77.6	 82.9	 83.4

	

Pm-ic	 (kN)	 75.9	 75.9	 88.5	 88.5	 72.6

	

Pr_ic	 (kN)	 129.8	 129.8	 77.4	 77.4	 77.6

Pe/Pr1c	 0.96	 1.00	 1.00	 1.07	 1.07

Pe/PrEC1c	 2.78	 2.89	 1.33	 1.42	 1.14

Pr_ici PrECIc - the resistances from the new models and the Eurocode 4, respectively.
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7.5 Conclusions

1. Density of concrete, within the classes from 1.6 to 2.0, has no influence on

the mechanism of load transfer. It only affects the resistance of the stud

connector, in the following ways:

(a) For transverse sheeting with one stud or two in-line studs in lightweight

concrete, the shank shearing strength of a stud can be determined as

for normal weight concrete by equation (5.6), but with Ecm replaced

by Ecm_ic from equation (7.3).

The resistance for concrete pulling out or rib punching failure relates

to the shank shearing strength in lightweight concrete (equation (7.8)).

The reduction factor follows the same function as for normal weight

concrete with /Jj replaced by i1/f1 (equations (7.8) to (7.12)),

where ij is the factor taking into account the influence of the density

of concrete, as given by equation (7.6).

(b) For parallel sheeting with lightweight concrete, the resistances are as

given by equations (6.14) for splitting failure and (6.31) for pulling out

failure, with	 replaced by ii/fj.

2. The predictions have been found to be satisfactory for:

• 19-mm studs (UTS f1. ^ 450 MPa);

• concrete with air-dry density of classes from 1.6 to 2.0 and cube

strength from 25 to 40 MPa.

3. The models were supported by only 15 data. More tests are needed in the

following regions:

For transverse sheeting

• concrete with air-dry density in classes 1.6 and 1.8 (according to Table

7.1);
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PMF CF46 sheeting, with stud connectors in favourable position;

. transverse, in-line or staggered position for two studs per trough.

For parallel sheeting

• concrete with air-dry density in classes 1.6, 1.8 and 2.0 (Table 7.1);

• all kinds of profiled sheeting available in the market;

• staggered stud position;

• different stud spacing.



Chapter 8

Reduction factors for transverse

sheeting

8.1 Introduction

In Chapter 5, the five failure modes for studs with transverse sheeting were pre-

dicted theoretically by means of upper or lower bound theory. The solutions

were given by a reduction factor relative to the shank shearing resistance of a

stud. The reduction factor for each failure mode is a function of such variables as

strengths of materials and geometry of studs and the steel sheeting. Although,

the models were shown to fit a total of 172 sets of data satisfactorily, they are

too complicated for practical use.

In order to solve this problem, in this chapter simplifications are carried out,

by first finding out which variables are the most significant influence factors and

then applying regression analyses. The results, simple and straightforward, are

better than the Eurocode 4 models, in that the coefficient of variation for a total

of 103 data (reported t) is reduced from 17.5% to 9.1%.

138
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8.2 One stud in a trough

For one stud in a trough, it can be at the centre, on the favourable side or on the

unfavourable side. The notations are as shown in Figure 8.1

er	 ef

Figure 8.1: One stud in a trough.

8.2.1 Shank shearing or concrete pulling out failure

As found in Chapter 5, the reduction factor is determined by

2

1.0	 (8.1)
1-i-A2

For shank shearing failure or concrete pulling out failure,

0.45/Jh2 (b0 - 0.25h)
=	 ^ 1.0	 (8.2)

hP

and

A = --	 (8.3)

in which f is the cube strength of the concrete. T is the resistance of a stud

connector to uniaxial tension, as given by equation (5.5), and P is the shank

shearing resistance of a stud, as given by equation (5.6).
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Introducing	 = d2 /7/Prs into equation (8.2), in which d is the diameter

of the shank of a stud connector:

= 045 
( h )2 bo - 0.25h

(8.4)

For data with one stud per trough in Table 5.1 (altogether 45), the values of ,j are

plotted against 0.45(h/d) 2 (b0 -0.25h)/h in Figure 8.2, where the circles have P

controlled by the concrete and the stars by the stud connectors. The regression

of on O.45(h/d) 2 (b0 - 0.25h)/h finds ' a constant 0.022.

17

0.9..

0.8..

0.7. :° .....................

0.6..........

0.5.a....................................................

0.4.

0.3.

9
0.2.. ..

0.1 .- - - I I

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	 50

0.45(h/d) 2 (b0 - 0.25h)/h

Figure 8.2: Slope	 found from test results.

These 28 data have	 ranging from 25 to 40 N/mm 2 and f,. from 400 to

470 N/mm2 . For a wider range of f, say from 25 to 50 N/mm2, .P will always

be governed by the concrete if f,. ^ 546 N/mm2, and hence will fall in the

region from 0.021 to 0.023. This means Tjo = 0.022 is acceptable, as long as

is controlled by the concrete.

If P is governed by the stud connector , it can be seen from the expression

for that	 controls the increase of m The commonly used stud connectors
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are the 19-mm Nelson studs with a guaranteed minimum f,. of 460 N/mm2,

corresponding to = 40 N/mm2 (from equation (5.6)). When ^ 40 N/mm2,

Prs is governed by studs. It is easy to find that ?7 from 0.021 to 0.023 requires

f to be not greater than 45 N/mm2, and this upper limit will increase as f

increases.

Stud connectors used in Canada usually have f around 415 N/mm 2 [11]. So,

ii h is limited to not lower than 400 N/mm2, i will range from 0.021 to 0.023

when f 35 N/mm2, and i, = 0.024 when f 40 N/mm2. The difference is

acceptable.

Therefore, 7o = 0.022 is correct for f from 25 to 40 N/mm2, and fu ^ 400

N/mm2. Considering the upper limit for f, specified for use in calculations in

Eurocode 4 [7], here the range of f, is narrowed as 400 ^ f, 500 N/mm2.

Substituting i 0 0.022 into equation (8.4),

77 = 0 
()]( h )2 bO - 0.25h	

(8.5)

In a similar way, introducing 	 = TY /PrS into equation (8.3),

(8.6)

When P is governed by studs, )	 1.0, otherwise ) changes with the ratio

of f//fE, but always greater than 1.0. Apparently, strong studs with weak

concrete give high ). For the ranges required by , i.e., 25 N/mm 2 f

40 N/mm2 and 400 N/mm2 ^ f ^ 500 N/mm2, changes from 1.0 to 1.42.

If A0 = 1.0, from equation (8.5) and A = er/hp, the reduction factor k,1.o is

calculated by equation (8.1). It relates data very well (Figure 8.3). In the same

way, the results of k,1.42 with ) 1.42 are shown in Figure 8.4. The difference

is negligible. For simplification, ) is taken as 1.0, and equation (8.6) becomes

(8.7)
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Figure 8.3: Results of comparison when A0 = 1.0.
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Figure 8.4: Results of comparison when A = 1.42.
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Though i and ). are simplified, the calculation for the reduction factor is still

too complicated. Further simplification is needed.

Between the simplified i and .A, it is found that the reduction factor k depends

to a great extent on ij (Figure 8.5), while the influence of ). is not significant

(Figure 8.6).

Equation (8.5) is a complex function of b0 , h and h. It can be simplified

into a line (Figure 8.7). The variable [0.5ef + 3(h - hr )] can be approximated

by the non-dimentional variable 0.5e+ 3h The relation between k and ij and

[0.Sef + 3(h - hr)] suggests that k must be related to 0.5e+ 3h as shown in

Figure 8.8. The relation is found to be

=	
+ 3h 

+ 0.7 ^ 1.0	 (8.8)

Figure 8.9 shows the comparison of equation (8.8) with the test results. The

coefficient of variation is 12.7% and p = 1.03, while the Eurocode 4 model gives

p = 1.05 and the coefficient of variation 16.3% (the comparison is not shown in

the figure).
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Figure 8.5: Relation between 77 and k for concrete pulling out failure.
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Figure 8.7: The relation between i and O.5ef + 3(h - hr).



8.2 One stud in a trough

1.1

1 ..................................................................
0	 0

00
%	 0 0
a

0.9 ........................................................................... Q ................

0.8 ................................................................................................

0.7 ................................................................................................

0.6 ................................................................................................

2	 3	 4	 5	 6	 7	 8

(O.5ef + 3h)/h
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Figure 8.9: The simplified reduction factor for concrete pulling out failure.
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- 2h P1.8
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8.2.2 Rib punching failure

The theoretical reduction factor for rib punching failure is also determined by

equation (8.1), but with i and ) replaced by equations (8.9) and (8.10):

1.8(ef + h -
77 =

	

	 (8.9)
Prs

Similarly, i and ). depend on the strengths of concrete, f, stud connectors, f

and steel decking, fyd. Again, their influences are studied first, by comparing i

with (ef + h - h)t8 in Figure 8.10 and ). with	 in Figure 8.12.

77

0.9..................................................................................
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00.7..................................................................................
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o
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0.2...............................................................................................

0.1 ................................................................................................

20	 40	 60	 80	 100	 120

(ef + h - h)t8 mm2

Figure 8.10: The influence of fyd/Prs on 77.

For the 25 data in Table 5.2 with f from 20 to 30 N/mm 2 and fu ^ 470

N/mm 2 , Figure 8.10 clearly shows the linear relationship between i and (ef + h -

h)t8 , that is, the influences of material strengths f and f in the above range

are negligible. Here, it should be noted that the yield strengths of steel sheeting
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fyd are taken as a constant 280 N/mm 2 for all of the 25 data, because some of

them were not measured. If compared with those measured fyi which were as

high as 430 N/mm 2 , the constant value of 280 N/mm2 means the influence of fyd

can also be neglected.

From the relationship shown in Figure 8.10, it is clear that an increase of h

reduces the value of i, so (ef + h - h)t is replaced by	 as shown in

Figure 8.11, where 17t is the thickness factor with its value equal to the value of

the thickness of sheeting. The relation between i and	 h 
1h is still linear, and

is found to be:

=	 h	
(8.11)

For the 25 data,	 ranges from 0.77 to 1.53.

1

0.9...

0.5	 1	 1.5	 2	 2.5	 3	 3.5	 4

iit(ef + h)/h

Figure 8.11: Relation between and jt( ef + h)/h.

Also, for the value of )¼, the material strengths can be proved to have negligible

effects by plotting ) directly against L, as shown in Figure 8.12. So, ) is found
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to be:

A=0.7
	

(8.12)

A

0.9.

0.8.

eí/hp

Figure 8.12: Relation between A and ef/h.

The reduction factor k for rib punching failure can now be calculated by

equation (8.1) with and A from equations (8.11) and (8.12). This is proved to

be very good, as shown in Figure 8.13, with errors within ±10.5%.

However, the expression for JCt is still too complicated. Further simplification

is made on the terms of 'i - i 2 +X and 1 + A 2 in equation (8.1).

First, let us consider /1 - i 2 + X2 . As shown in equations (8.11) and (8.12),

both i and A consist of ef/h, so the most significant influence on s/F— 2 
+ A2

comes from	 as illustrated in Figure 8.14. The regression of ,/F— 2 
+ A 2 on

i gives:

- i 2 + A 2 = —O.25i + 1.24	 (8.13)
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Figure 8.13: Comparison of the reduction factor with the test results.
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As A relates directly to ec/h, therefore, 1 + A 2 is also a function of ef/h.

Within the range of the studied 25 data, the function is approximately a line

(Figure 8.15), that is,

1 + A2 - 0•6L + 0.8	 (8.14)

1 + A2
- ---- - ______ -

Ô0
G	

°

0
0.

0.5.

00	 0.1	 02	 03	 0.4	 05	 0.6	 0.7	 0.8	 09

ef/h

Figure 8.15: Relation between 1 + A 2 and e1/h.

Substituting equations (8.11) to (8.14) into equation (8.1),

- 0.02ç 77t + 0.2hlit + 0.87ei
(8.15)

-	 O.6ef + 0.8h

Because O.O2e is much smaller than the other parts, it is neglected. Equation

(8.15) turns out to be:

k - 
lit h + 4.3ef	

(8 16)
3e1+4h,

It gives very good predictions for the tests that failed by rib punching failure, as

shown in Figure 8.16, in that p = 1.01 and the coefficient of variance is 6.2%,

while the Eurocode 4 model gives p = 0.86 and the coefficient of variation 13.1%

(the comparison is not shown in the figure).
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Figure 8.16: The simplified reduction factor for rib punching failure.

8.2.3 Discussion

Equations (8.8) is based on the concrete pulling out failure or the shank shearing

failure, and equation (8.16) based on the rib punching failure.

For the steel sheeting commonly used in practice, the values of h/hr ranges

from 1.5 to 2.1. If the thickness of the decking is 1.0 mm, equation (8.8) gives

the curves in Figure 8.17, and equation (8.16) the straight lines, where the solid

lines have h/hr = 1.5 and the dashed lines have h/hr = 2.1.

The intersection of the solid lines is at ei/h = 1.35. When ef/h < 1.35,

the reduction factor is determined by the curve, in other words, the failure mod'e

of the stud connector is controlled by the rib punching failure. When ef/h ^

1.35, the concrete pulling out failure is the dominant failure mode until the line

reaches lCt = 1.0 where the failure mode is replaced by the shank shearing failure.

Therefore, the lower boundaries of the solid lines determine the failure mode of
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the stud connector, and the intersection of the lines is the control point for the

failure modes.

For h/hr 2.1, the dashed lines show similar behaviour, with the failure

modes controlled by the lower boundaries. Also, it is noted that the intersection

of the lines, at ef/h = 1.33, is almost the same.

When the thickness of the decking t8 = 0.8 mm (17t = 0.8), the control point

is 1.56 for h/hr = 1.5 and 1.66 for h/hr = 2.1, and for t = 1.2 mm, it is 1.14 and

1.02, respectively. The influence of the height of the stud connector is negligible.

Therefore, the control point for the failure modes depends on the position of the

stud connector and the thickness of the steel decking.
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Figure 8.17: The control point for rib punching and concrete pulling out failure.
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8.2.4 New reduction factor for one stud per trough

Because the lower boundaries of equations (8.8) and (8.16) control the failure

mode of the stud connector, the reduction factor for one stud per trough is

proposed as

- .	 3e1+4h
k	

mln{ 

iith+4.3ef

-	 0040.5e + 3h + 0.7
(8.17)

where i is the thickness factor, with its value equal to the thickness of the

sheeting.

There are 60 data in Tables 5.1 and 5.2 which have one stud per trough with

reported t. For these 60 data, the above simplified method gives satisfactory

predictions, as shown in Figure 8.18, with t = 1.02 and the coefficient of variance

10.9%. The Eurocode 4 model for these data (not shown in the figure) gives

0.98 and the coefficient of variation 18.2%.

Pe/(Prskt)

1.2

	 8	
o o

1.1
	 . ..................................... .............................i

0	 a..: ..................
O0

0.5
1.6	 1.8	 2	 2.2	 2.4	 2.6	 2.8	 3	 32

Figure 8.18: The simplified reduction factors for one stud per trough.
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8.3 Two studs per trough

When two studs are used per trough, they can be arranged in three ways:

(a) in-line along the trough;

L	 ]eef

(b) transverse to the trough;

(1	 I
e	 e

(c) staggered.

I	 ii
ese

AD

0

0

II
eef

I	 ,,
00

e s

0

0

Li H

8.3.1 Two in-line studs

For two in-line studs, according to the theory described in Chapter 5, the re-

duction factor is only slightly different from that for one stud per trough, with
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equation (8.2) replaced by equation (8.18):

0.45../jh2 (b0 - 0.25h)
(8.18)

NrhpPrs

where Nr(^ 2) is the number of studs per trough. Again, is simplified according

to the relation shown in Figure 8.19.

0.01 h 2 - O.25h
77 =	 h,	

(8.19)

77
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Figure 8.19: The effects of the strengths of materials on

In a similar way as for one stud at the centre or on the favourable side, i from

equation (8.19) is found to be in relation with O.5e f + 3(h - h)//N, and the

reduction factor lCt a function of (0.5ei + 3h/./N)/h, as shown in Figure 8.20.

0.5ef+ 3h//N
k = 0.1	 + 0.3 ^ 1.0, Nr ^ 2	 (8.20)

The comparison with the test results is shown in Figure 8.21 (p = 1.04, coefficient

of variation=12.5%). For these data, the Eurocode 4 model (not shown in the

figure) gives p = 0.98 and the coefficient of variation 18%. Because of insufficient

number of test data, equation (8.20) is only valid for b0/h ^ 2.4 with the two

studs on the favourable side or at the centre.
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Figure 8.20: The reduction factor k for two in-line studs.
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Figure 8.21: The simplified reduction factor for two in-line studs.
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8.3.2 Two transverse or staggered studs

For two transverse or staggered studs, as found in Chapter 5, the reduction factor

is the combined effect of the unfavourable position with the favourable position.

So, from equations (8.8) and (8.16), the reduction factor for two transverse or

staggered stud connectors is found to be

k = 
028 2 t + 1.5ih <1.0	 (8.21)

1.5e+h -

Figure 8.22 shows that equation (8.21) is very good ( 	 1.02 and the coeffi-

cient of variation=7.2%). The Eurocode 4 model (not shown in the figure) gives

= 1.03 and the coefficient of variance 20.3%.
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Figure 8.22: The simplified reduction factor for two transverse or staggered stud.
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8.4 Conclusions

By applying regression analyses on the reduction factors obtained from the the-

oretical models in Chapter 5, it is found that the following factors have the

strongest influence: height of stud, h; depth of the trough, h; thickness of the

decking, t5 , in terms of the thickness factor i with the value equal to the thick-

ness; concrete cover in front of the stud, e for one stud or two in-line studs, or e

for two transverse or staggered studs; transverse spacing between the studs, s.

The reduction factors for transverse sheeting are, therefore, proposed as follows:

1. For one stud per trough,

k = mm {

rich + 4.3ef
3ef+4h	

^ 1.0
004 0.5e + 3h + 0.7

(8.22)

(8.23)

which is only valid for two central or favourable studs in a wide trough with

b0/h ^ 2.4.

3. For two transverse or staggered studs,

k 
= 028 2 t + 1.577th ^ 

1.0
1.5e + h

(8.24)

The proposals are satisfactory for f from 25 to 40 N/mm 2, and f not less than

400 N/mm2.

Among the 126 data studied in this chapter, 102 have reported values for t,

the thickness of sheeting. For these 102 data, the new models give predictions

with i = 1.02 and the coefficient of variance as 9.1%, much lower than 17.5%

which is from the Eurocode 4 model which gives p = 0.98.



Chapter 9

Design resistances of studs with

transverse sheeting

9.1 Introduction

So far, three theoretical models have been developed to predict the shear resis-

tances of stud connectors with transverse sheeting in respect of different failure

modes. As shown in previous chapters, the coefficient of variation of the pre-

dictions for a total of 102 data is 9.1%. From the statistical point of view, the

scatter is inevitable, because those basic variables in the theoretical models are

random variables. Apart from this, the imperfection of the models themselves

also contributes to the variations.

In Eurocode 4, where ultimate limit design is specified for stud connectors,

such kinds of uncertainties on the resistance side are represented by a single

safety factor applied to characteristic resistances (5% failure fractile) to give

design resistances corresponding approximately to the 0.1% lower fractile. It was

obtained from a new statistical concept [45] and [23].

159
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In this chapter, this new concept is applied to the theoretical models for

transverse sheeting. Data on parallel sheeting are not sufficient for statistical

analyses.

The redistribution of the shear force in a push-out specimen is studied by

dividing the available data into several groups according to the number of studs

in the specimen. Though most of the groups are of relatively small size, the

results are of use conceptually. It is found that for one stud per trough, the

design resistances increase as the number of the studs increases, while for two

studs in a trough, with the same number in a specimen, the design resistance is

higher for staggered studs than for transverse ones. This confirms Oehlers and

Johnson's conclusion [36] that due to the redistribution of the shear force, the

characteristic and design resistances of a group of studs depend on the number in

the group, or in other words, that the probability of failure at a given load/stud

increases as the number of studs in a shear span reduces.

The design resistance is given here only for one stud per trough, based on the

results for the group with four studs/specimen, because, on the one hand, the

large size of this group (51 data) ensures higher accuracy. On the other hand,

four could be the minimum number of studs in a shear span in practice, so the

results are on the conservative side.

The analyses also suggest that the number of studs in a specimen should be

treated as a variable in future studies.

9.2 New concept for reliability analyses

Since the 1920s, structural reliability has been studied extensively, and the most

famous and influential theory is Hasofer and Lind's reliability index method, or

more precisely, the advanced first order second moment method [30]. It treats all
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the basic variables (generic symbol X) involved in the theoretical failure function,

such as material strengths and geometric dimensions, as uncorrelated random

basic variables. The reliability index is calculated from the first order Taylor

expansion of the failure function around the design point.

Recently, a new concept was developed for the statistical determination of

the design values of structural resistances [45], and was improved by Johnson

and Huang [23J into a general calibration procedure for partial safety factors for

resistances of composite members. The most significant characteristic of this

new concept is that the resistance as a whole and the load effect as a whole

are regarded as two uncorrelated random variables with log-normal distributions.

Their coefficients of variations are determined from the first order Taylor pa1-

sion around the mean points.

In the following sections, Johnson and Huang's method for determining the

partial safety factor will be used for stud connectors. Here is a summary of some

basic concepts of the method.

If r and .s are the resistance and the load effect, as they are two uncorrelated

random variables with log-normal distributions (the fundamental assumption of

the method), the failure function or g-function can be simply expressed as

>0 safe

g ln r - in	 = 0 critical
	

(9.1)

<0 unsafe

The measure of risk is the probability of the 'unsafe' event (g < 0),

Pf=P{g<0}
	

(9.2)

Let

(9.3)

then g < 0 gives

(9.4)
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Thus

Pf P{Z < fi} =	 (9.5)

where (x) is the cumulative probability of the standard normal distribution; /1g

and 0g are the mean and the standard deviation of the g-function, respectively;

8 is the safety index.

Referring to equation (9.1): because r and s are log-normal variates N(jiinr, crinr)

and	 it is easy to find that /Lg = /2lnr - ji and 7 = nr +	 So,

jilnrjilns	 (9.6)
0•g	 \/hir + his

Let

IZr = 
lilT

0hir	 (9.7)

i	
= lns—jii8

0 1n s

The g-function (9.1) is then transformed into Z-space:

>0 safe

G(Zr, Z) = (Zrinr + /iinr) - (Zs o ins + jis) = 0 critical	 (9.8)

<0 unsafe

Equation (9.8) is illustrated as in Figure 9.1, and it is easy to prove that the

distance from point 0 to the failure surface, OA, is the safety index 8. As

given in equation (9.5), the failure probability reduces as the safety index or OA

increases. Therefore, point A is defined as design point. Its coordinates are

where

J
Z = —a,13

1	 =	
(9.9)

{ ar =
	 ____________

\/C inr +
1ns	 (9.10)

= \/1nr1ns
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zs

G=O (failure surface)

G<O (unsafe region)

	

A/ I	 G>O (safe region)

0	 Zr

Figure 9.1: G-Function in Z-space.

The failure probability given by equation (9.5) then can be split into two

parts. One is for the resistance:

	

Pf,r P{Zr <	 =	 ( 9.11)

and the other for the load effect:

Pf, P{Z >	 =	 = 1 -	 (9.12)

Considering the resistance side alone, and noting that 1Inr = In - O•5Or,

X-space equation (9.11) becomes

Pf,r = P{r < r} =	 =	 (9.13)

where

ra = Fexp(—kcr - O.5cT r)	 (9.14)

and kc( = r/3 is a factor with failure fractile a; is the mean resistance. Therefore

equation (9.13) defines the resistance ra as the value which the probability of the

resistance failing to reach is (—k) = a.

To calculate the characteristic resistance r j , a is prescribed as 5%, with k in

equation (9.14) replaced by k:

= exp(—ksor - O.5cr r )	 (9.15)
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and for the design resistance 7'd, a = 0.12%, and ka replaced by lcd:

r = Fexp(—kdcrinr - 0.5O r)	 (9.16)

Both k8 and kd depend on the sample size ii. For large size with n> 60, k8 = 1.64

and lcj = 3.04. The calculation of oinr will be explained later.

9.3 Design resistances of stud connectors from

the new method

Idealised case

The design of stud connectors, as recommended in Eurocode 4, is based on the

characteristic resistances with a single partial safety factor. First let us consider

the idealised case to apply the new method on stud connectors. A set of push-out

tests (total number n > 60) is carried out. All the basic variables are measured

and their intended values are the same for all specimens. Such a set is defined as

a sample with size n.

If X	 (X1, X21 ,.. , X 1 ) are the basic variables, for each specimen, the

theoretical resistance of a stud connector is

= rt (X,j), i = 1 to n.	 (9.17)

Comparing r 1 with the experimental resistance rej, the correction factor for each

specimen

=	 (9.18)

then the corrected theoretical resistance function is

= 6jrtj(Xmj)	 (9.19)

where is the mean of the correction factors, and öj is the error term for each

specimen, given by:

(9.20)
b	 brt1



i
= ____ (9.23)
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Using the first order Taylor expansion around the mean point, {(= 1),X},

and assuming X1 , • , Xj to be mutually uncorrelated, the mean value of the

corrected theoretical resistances

;=	 (9.21)

and the coefficient of variation of r depends on the coefficients of variations of

the error term, V5 , and of the theoretical function, Vrt:

=	 + v1.;
	

(9.22)

l4, as suggested by the new method, can be determined by the first order Taylor

expansion of the theoretical function around the mean point:

As the resistance as a whole is treated as a random variable with log-normal

distribution, so the mean and the standard deviation of in r are

/1xtr = ln,	 O•571nr	 (9.24)

and

1nr = /1n(i + V.2)
	

(9.25)

For the design of stud connectors, a single partial safety factor -y is used in

relation to the characteristic resistance:

Td -
	

(9.26)

From equations (9.15) and (9.16),

YM = exp [( kd - ks)oinr]	 (9.27)
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Practical case

The practical laboratory work is much more limited due to the cost of testing.

The available test data are the results of a group of n specimens from different

samples with sizes n from 1 to 3. None of the statistics deduced in the preceding

can be obtained from the samples or the group. Therefore to apply the above

statistical methods to the available test data, the following assumptions are made:

1. All the specimens with the same resistance function is called a group. Its

size n is the number of the specimens. The correction factor b for the group

is a random variable with normal distribution.

2. Each sample in the group represents the population of that particular de-

sign, so the coefficients of variation of the basic variables Vxj in equation

(9.23) are estimated from practice, not from variability in the laboratories

where the test specimens were made.

3. The correction factors b for all the samples within a group are from a single

population. Therefore, V8 in equation (9.22) is determined from the n

specimens in the group:

1
V52 =	 (?-)	 (9.28)

4. The fractile factors for characteristic and design resistances, k and kd in

equation (9.27), are replaced by:

k 
= 1.64V + ICs,gV&	

(9.29)

and

	

k	
3.O4V + kd,g V82

	

d	 1/2	
(9.30)

where ks,g and kd,g are the factors with 5% and 0.1% fractiles, respectively,

found from one tail i-distribution with the degree of freedom v = n - 1.



9.4 Results of the analyses
	

167

Therefore, from equations (9.17) to (9.27) together with the four assumptions,

the partial safety factor 'yM for stud connectors can be found from the push-out

test results.

9.4 Results of the analyses

9.4.1 One stud per trough

The theoretical model simplified in chapter 8 for one stud per trough is expressed

as a reduction factor k relative to the shank shearing resistance of the stud. It was

assumed in chapter 5 that the shank shearing resistance equals to the resistance

of the connector in a solid concrete slab P given by Eurocode 4 (equation (5.6)).

As for all the data considered, P is controlled by concrete, so the function is

Pr =	 0.29d2fiEcm	 (9.31)

where k is given by equation (8.17), and is:

- .	 3ei+4h
k	 min{ 

h17t-I-4.3ef

-	 004O.Set + 3h + 0.7lip

(rib punching controls)

(concrete pullout controls) ^ 1.0
	 (9.32)

Symbols are shown in Figure 8.1. The elastic modulus Ecm is determined with

equation (9.33) in N/mm 2 units, which is given in Eurocode 2 [5]:

E = 9500f'3	(9.33)

Therefore, when concrete pulling out failure controls, the basic variables are (ej,

h, h, d, he). According to equation (9.23),

2 
"OPr	 \21

v2 
= 1 I(ÔPrV ci) + (Vhh) 2 + (vhhP) 2 +	 Vdd) + (\ j-Vfc fc)rt	 ef

(O.02 P	 kh /	 [	 kh	
]+(2Vd)2+(VfC)

	Vt ef ) 2	 f O.l2Vhh\ 2	I0.04Vh(0.5ef+3h)
kh	 ) +

(9.34)
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When rib punching failure controls, one more variable, t 5 , is involved, in terms

of 77t which has the same value as t:

v2	 1 [(9PrVh)2 + (vt6t) 2 + ( ve1 ef) 2 + (vhh) 2 +	

2

0höefrtp2

+ (vfC)2]

[	 t5h	 12

= (3ei
+ 4hp)kt] (V + V) + [(17.2hP-3hts)Ve1efl2 + 

I 4hV	 2

(3er + 4h) 2 k	 ]	 3e + 4h) + (2Vd)2

(9.35)

The coefficients of variation of the basic variables, V, V, Vh, 14 and Vf , are

given in Table 9.5, which relies on the values given in Table A.1 of [23].

There are a total of 71 data. They are divided into three groups in accordance

with the number of studs in a specimen, these being 2, 4 and 6. The group

properties, b, V6 , ks,g and lCd ,g are listed in Table 9.1, where n is the group size

and N is the number of studs per specimen. Each group consists of several

samples, on which the statistical analyses described in the previous section are

carried out. Details are given in Table 9.3, where Rk is as defined below.

Table 9.1: Properties of groups with one stud per trough

Group fl Nrs	 Vs	 ks,g kd,g Rk	 YM bRk/7M

01 I 9	 2 I 1.0717 0.1286 2.306	 5.041 0.6892 1.4520	 0.5087

G2	 I 51	 4 I 0.9989	 0.0906	 2.010	 3.510	 0.7464	 1.2559	 0.5937

G3	 L	 6	 1.0691	 0.0609 2.228 4.587 0.7713	 1.2520	 0.6586

= exp(—ksr - O.5ajr)

The partial safety factor for two studs/specimen (Gi) is 1.45, much higher

than the other two cases. The smaller group size is one of the reasons. The

other reason is the higher values of alnr, which is controlled by V8 , or o as
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5 = 1. Usually, the tested resistance of a stud connector in a push-out specimen is

obtained by dividing the total shear force by the number of studs in the specimen.

Therefore, a test of Group 1 gives the mean resistance of two studs, so does Group

2 of four studs and Group 3 of six. If 6 is denoted as the standard deviation of

the total population of stud connectors, it can be estimated as 	 =	 x

0.1286 = 0.1819 from Group 1,	 = /x 0.0906 = 0.1811 from Group 2 and

= x 0.0609 = 0.1491 from Group 3. This means the standard error

of the mean predicted resistance reduces as the number of studs per specimen

increases, which inevitably results in the higher partial safety factor for Group 2

than for the others, even if all the other properties in the three groups are the

same. So, the conclusion is that the design resistance increases with the number

of studs per specimen.

According to equations (9.15) and (9.26), the design resistance for stud con-

nectors can be expressed as

PdPr
'YM

(9.36)

where Rk exp(—ks ciinr - 0.5c jr). Comparison of the means of bRk/'yr I of the

three groups, as also shown in Table 9.1, confirms the above conclusion.

In practice, the number of studs used in a shear span varies in a broad range,

from about 5 to over 100. It is not practicable to take account of this variable in

design. Therefore, for one stud per trough, the design resistance is given based

on the results of Group 2, as this group has the largest size (n = 51), which

increases the reliability. Besides, considering that four could be the minimum

number of studs in a shear span in practice, the design resistance such developed

will give conservative prediction.

Though the calculated partial safety factor for Group 2 is 1.26, it is taken

as 1.25 to achieve a uniform value for all types of connection, as was done in
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Eurocode 4. So, the design resistance for one stud per trough is given by:

0.75 k Prs
Pd =

	

	 (9.37)
7M

where YM = 1.25, and k from equation (9.32). P is the shank shearing resistance

of a stud, as given by equation (5.6).

9.4.2 Two studs per trough

As found in Chapters 5 and 8, the shear resistances for two studs per trough can

still be predicted by equation (9.31), but with the reduction factor k replaced

by equations (9.38) and (9.39). Symbols are as used in Section 8.3.

For two transverse or staggered studs,

2 t + 1.5hi7 <1.0
	 (9.38)k = 0.28

1.5e+h -

for two in-line studs,

0.Sef + 3h/J
k=0.l	 +03<10	 (9.39)-

With Ecm as given by equation (9.33), the resistance of two staggered or

transverse studs becomes

Pr = Pr( St, h , ts,6, hp, d,fc).	 (9.40)

Its coefficient of variation of the resistance is

	

V2=±.'1	 )2 'lap

	r L' as	 Vhh) + ( vt)2 
(DPr 

\2

I(—Vs +
I

+(

2 (
öPr Vd) 2 +—Vhhp) +

p	/

[__0.56Vs	 12	 10.42th	 12	 1.5Ve 
\2

= (1.5e + h)kt] + {(1.5e + hp)kt] (V + v) + (lS e + h)

Vhh 
\2

	

1.5e + h) + (2Vd)
2 + ( vc) 2	 (9.41)
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For two in-line studs,

Pr = Pr(ef, h, h, d, f)	 (9.42)

and its coefficient of variation is determined by:

V2 .--- ["ôPr	
\2 (9P)2 

(vhhP) 2 + ( Vd) 2(—Ve1 ei ) +rt - 
p12	 I

+ (çV1f) 
2]

-
 (

O.O2Veref" 
2 

+ fO.O8Vhh\ 
2 IO.04(O.5ef + 2.12h)14 12

hk )	 ( hk ) +
	

hk

+(2Vd ) 2 + (v) 2	 (9.43)

The coefficients of variation of the basic variables are taken frorti Table 9.5.

Table 9.2: Properties of groups with two studs per trough

Group 
]_
Ti Nrs [ Ii	 V6	 ks,g kd,g	 Rk	 7M	 bRk/7M

G4	 11	 8	 0.9823	 0.0863 2.228 4.587 0.7262 1.3236 	 0.5390

G5	 17	 4	 1.0296	 0.0630 2.120 4.015 0.7481 1.2695 	 0.6067

G6	 13	 0.9676	 0.0845 2.179 4.318 0.7501	 1.2820	 0.5661

Rk = exp(—ksair - O.5Tiir)

The available data are divided into three groups, as shown in Table 9.2 to-

gether with the group properties. Group 4 consists of 11 specimens, each with

eight studs staggered or transverse in four troughs, while all the 17 specimens in

group 5 have four studs staggered in two troughs. Group 6 are those with four

studs in line in two troughs.

Similarly, the statistical analyses are carried out on each sample in the groups.

Details of the results are given in Table 9.4, and the mean values of 11k, YM and

bRk/yM for each group are shown in table 9.2. It can be seen from G5 and G6
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that with the same number of studs, the partial safety factor is higher for in-line

studs than for staggered ones.

In G4, the larger number of studs (Nr8 = 8) results in a higher partial safety

factor 'M, which is inconsistent with the conclusion for one stud per trough. This

is because eight out of 11 specimens in G4 have transverse studs. So, the results

suggest that the failure probability at a given load/stud is higher for transverse

position than for staggered or in-line position.

9.5 Discussions

As the shear resistances of stud connectors obtained from experiments are treated

as estimates of the means of the populations, the theoretical functions to be

evaluated by the new statistical method described in Section 9.3 should represent

predicted means. However, in Section 9.4 those theoretical functions studied do

not give mean predictions, because they are based on the characteristic P1 from

Eurocode 4 (equation (5.6)). For example, equation (9.31) is in fact a prediction

about of the predicted mean of the population with one stud per trough, in

which (> 1) is unknown. Here, we will prove that the partial safety factors

'YM and the design resistance function given in equation (9.37) do not depend on

any assumed value for jig, that is, the statistical results given in Section 9.4 are

reliable.

For the theoretical function given by equation (9.31), if P is the tested resis-

tance, the statistical analyses in Section 9.4 were actually based on the corrected

theoretical resistance function:

FRI = BLI1 Pr1 	 (9.44)

where

(9.45)
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and
B1

B
If P is the predicted mean estimated from equation (9.31), there is

Prm=I2oPr

(9.46)

(9.47)

Based on the estimated mean Pc and the predicted mean P, equation (9.18)

becomes

b_Prn	 lPei	 1
' 

Prmi - /o Prj = 
B

and

b= --B
ft0

The error term, then, is the same as given by equation (9.46):

b 1B B

and so is the corrected theoretical resistance function:

= b5iPrjpj =	 /toPri = B iPri = 'Ri
'to

(9.48)

(9.49)

(9.50)

(9.51)

This means that the corrected theoretical resistance function from the predicted

mean (equation (9.47)) is the same as from equation (9.31). So, none of those

variables obtained from the corrected function, such as the coefficient of the

resistance function, 1/,. from equation (9.22) and the standard deviation 71x1r from

equation (9.25), and the partial safety factor yyj from equation (9.27), are affected

by a.

9.6 Conclusions

The three theoretical models developed in previous chapters for stud connectors

with transverse sheeting have been evaluated by the new concept of the statistical

method from [23].
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1. The number of studs per specimen has significant influence on the charac-

teristic and design resistances.

2. The design resistance for one stud per trough is recommended as:

0.75kP
Pd =	 (9.52)

YM

where the partial safety factor 'y is 1.25, and k and	 are as given in

equations (9.32 and (5.6)), respectively.

This recommendation is based on four studs per specimen, which is believed

to be on the conservative side. It is valid for:

. 19-mm studs with the ultimate tensile strength greater than 450 N/mm2;

the cylinder strength of concrete from 20 to 35 N/mm2.

3. With the given load/stud for the same number of studs, the failure proba-

bility is higher for in-line studs than for staggered ones.

4. The partial safety factor for two transverse studs per trough (7M = 1.32)

is higher than for the other two stud positions. Further study is needed to

verify whether the higher 'YM is due to the inappropriate theoretical model

or to the stud position.



k8	 kd	 'YM

1.9728 4.0399	 1.4520

1.9726 4.0393	 1.4521

1.9724 4.0388	 1.4521

1.7620	 3.1950	 1.2519

1.7626	 3.1957	 1.2513

1.7621	 3.1951	 1.2518

1.7618 3.1948	 1.2520

1.7615 3.1940	 1.2524

1.7612 3.1957 12527

1.7626	 3.1957 1.2512

1.7623	 3.1954	 1.2515

1.7622	 3.1952	 1.2516

1.7626	 3.1957	 1.2512

1.7625 3.1956	 1.2513

1.7529 3.1834 1.2624

1.7523 3.1826	 1.2632

1.7533	 3.1839	 1.2619

1.7540 3.1849	 1.2610

1.7549 3.1860	 1.2599

1.7552 3.1864 1.2596

1.7544 3.1853	 1.2606

1.7549	 3.1859	 1.2600

1.7562	 3.1876	 1.2584

1.7556 3.1869 1.2591

1.7470 3.3214 1.2505

1.7470 3.3214 1.2505

1.7470 3.3214 1.2505

1.7470 3.3214 1.2505

1.7399 3.3030	 1.2579
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Table 9.3: Results for one stud r
Group Sample Ti	 Vrt	 Vr	 °lnr	 Rk

Gi
	

1
	

3
	

0.1287 0.1819	 0.1804 0.6892

2
	

3
	

0.1287	 0.1819	 0.1805	 0.6892

3
	

3
	

0.1288 0.1820	 0.1805 0.6891

G2
	

1
	

2
	

0.1291 0.1577 0.1568 0.7494

2
	

2
	

0.1287 0.1574 0.1564 0.7498

3
	

1
	

0.1291 0.1577	 0.1567 0.7495

4
	

3
	

0.1293 0.1578	 0.1569 0.7493

5
	

3
	

0.1295 0.1580	 0.1570 0.7490

6
	

3
	

0.1298 0.1582	 0.1573 0.7488

7
	

2
	

0.1287 0.1574	 0.1564 0.7498

8
	

2
	

0.1289 0.1575	 0.1566 0.7497

9
	

3
	

0.1290 0.1576	 0.1566 0.7496

10
	

3
	

0.1287 0.1574 0.1564 0.7498

11
	

3
	

0.1287 0.1574 0.1564 0.7498

12
	

2
	

0.1367 0.1640	 0.1629 0.7417

13
	

2
	

0.1372 0.1644 0.1623 0.7412

14
	

3
	

0.1363 0.1637 0.1626 0.7421

15
	

3
	

0.1357 0.1631	 0.1621 0.7427

16
	

2
	

0.1349 0.1625	 0.1615 0.7435

17
	

1
	

0.1347 0.1623	 0.1612 0.7438

18
	

3
	

0.1354 0.1629	 0.1618	 0.7430

19
	

3
	

0.1350 0.1626	 0.1615 0.7435

20
	

2
	

0.1339 0.1616	 0.1606 0.7446

21
	

3
	

0.1343 0.1620	 0.1610 0.7441

G3
	

1
	

3
	

0.1291 0.1427 0.1420 0.7725

2
	

3
	

0.1291	 0.1427	 0.1420 0.7725

3
	

3
	

0.1291 0.1427 0.1420 0.7725

4
	

1
	

0.1291 0.1427 0.1420 0.7725

5
	

1
	

0.1345 0.1476	 0.1468 0.7663
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Table 9.4: Results for two studs per
Group Sample	 I Vr	 Vr	 °lnr	 Rk	 k8	 kd	 YM

G4	 1	 2	 0.1475 0.1709 0.1697 0.7275	 1.7899 3.4344 1.3219

	

2	 2	 0.1459 0.1695	 0.1683 0.7292	 1.7924 3.4410	 1.3198

	

3	 2	 0.1502 0.1733	 0.1720 0.7248	 1.7859 3.4238	 1.3254

	

4	 2	 0.1513	 0.1729	 0.1729 0.7236	 1.7843	 3.4197	 1.3268

	

5	 3	 0.1491	 0.1723	 0.1711	 0.7259	 1.7875 3.4280	 1.3240

G5	 1	 2	 0.1535 0.1659 0.1647 0.7444 1.7091	 3.1804 1.2743

	

2	 2	 0.1510	 0.1636	 0.1626	 0.7472	 1.7110	 3.1843	 1.2706

	

3	 2	 0.1520 0.1646 0.1635 0.7461	 1.7103	 3.1827 1.2721

	

4	 3	 0.1472 0.1601	 0.1591 0.7518 1.7142 3.1908	 1.2648

	

5	 3	 0.1477 0.1605	 0.1595 0.7512	 1.7138	 3.1899	 1.2655

	

6	 3	 0.1483	 0.1611	 0.1601	 0.7505	 1.7133	 3.1889	 1.2664

	

7	 2	 0.1525 0.1650 0.1639 0.7455	 1.7099 3.1820	 1.2728

G6	 1	 1	 0.1285 0.1538 0.1529 0.7503	 1.8028 3.4260	 1.2817

	

2	 1	 0.1287 0.1540 0.1531 0.7500 1.8024 3.4251 	 1.2820

	

3	 1	 0.1288 0.1541 0.1532 0.7499	 1.8023 3.4247	 1.2821

	

4	 3	 0.1289 0.1541 0.1532 0.7499	 1.8021	 3.4243	 1.2822

	

5	 2	 0.1286 0.1539 0.1530 0.7501	 1.8026 3.4255	 1.2819

	

6	 2	 0.1286 0.1539	 0.1530	 0.7501	 1.8026	 3.4255	 1.2819

	

7	 3	 0.1287 0.1540	 0.1531	 0.7500	 1.8024 3.4251	 1.2820

Table 9.5: Coefficients of variation of basic variables.
Variable	 Coefficient of variation

Dimensions of studs	 d	 0.04

	

h	 0.04

Position of studs	 ef	 0.10

	

e	 0.10

	

St	 0.10

Dimensions of sheeting	 0.04

0.04

	

Compressive strength of concrete f	 0.15



Chapter 10

Fatigue strength of stud

connectors

10.1 Introduction

In the design of composite beams for railway and road bridges or for indus-

trial construction exposed to cyclic loads, such as cranes and fork-lift trucks,

the endurance of stud connectors under repeated loading becomes the principal

problem.

Usually, fatigue failure of stud connectors is regarded as a fatigue phenomenon

in a welded detail of a steel structure. The mean strength is given by relating

the constant range of shear stress Lr caused by loading cycles to the number of

cycles N of that range that result in fatigue failure:

NLrm K
	

(10. 1')

where m and K are the constants found from fatigue push-out tests.

177
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A review of recent researches and Standards finds wide discrepancies in the

values of both in and K. For example, the British Code for Bridges, BS 5400:

Part 10 [1] has the value of in as 8, while Roik gives 9.2 [44] and Oehlers gives 5

[37].

This chapter presents a study of F-tests and t-tests of the available test results,

and reveals the reasons for the discrepancies as the influences of different specimen

layouts and test procedures.

A new proposal for design is then developed, based on the most reliable set

of data.

10.2 Models for the design of stud connectors

to fatigue

BS 5400: Part 10

The method was based on a study on 67 fatigue push-out tests [1]. It was found

that the endurance of stud connectors N was governed by the stress range of

unidirectional cyclic loading, and was influenced by the static strength of the

connectors. Regression analyses found the relation (in N/mm 2 units) to be

No = 2.08 x 1022,	 (10.2)

where

= 425 ! , N/mm2	(10.3)

and P is the range of the cyclic load applied on the stud connectors with'

ultimate static strength Prs which is as given by BS5400: Part 3 [1].

Equation (10.2) gives characteristic values which ensure a less than 2.3% fail-

ure probability during the design life. It was derived from mean minus two
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standard deviations. The partial safety factor 'YM is taken as 1.0, because the

design is based on calculations of cumulative damage on a bridge, and on an

estimated or specified spectrum of design loads that makes some provision for

changes of traffic in the future.

Eurocode 3

In the draft of Eurocode 3 [6] for the design of composite bridges, the endurance

of stud connectors is assumed to be controlled only by the stress range, T, and

takes no account of the strength of the concrete. The characteristic values in

N/mm2 units are given by:

NT5 = 6.554 x 1015	 (10.4)

where LT is calculated from the load range LiP on the nominal cross sectional

area A of the stud connectors, that is,

LiP
A' N/mm2	 (10.5)

A similar method, with 'y = 1.0, is used by Eurocode 3 for the design purpose.

Oehlers' method

Realising the discrepancies between the predicting methods, Oehlers [37] carried

out a series of regression analyses to determine the endurance of stud connectors

failing by dowel action under fatigue.

The multi-variable regression analyses revealed the significant influence fac-

tors on the endurance to be the static dowel strength P, the range of unidirec-

tional cyclic loading LiP and the peak of the cyclic load Pm. The endurance

was predicted in terms of mean values as

Pmax
N() = 1000(1 -	 )	 (10.6)

Prs	 Lrs

where PrS is as defined by Oehlers in [22].
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Roik's method

A series of studies on 62 fatigue push tests were carried out by Roik and Hanswille

[44] to examine the use of Eurocode 3 (equation (10.4)), leading to the following

conclusions:

1. the endurance increases with the higher concrete grade;

2. stud connectors behave more favourably under reversal of loading than

under unidirectional loading;

3. the peak of the cyclic load has no influence on the endurance if it is less

than 60% of the static strength.

Characteristic values of the endurance were derived by means of regression anal-

yses on 18 data (out of 62) which had unidirectional cyclic loading with the peaks

less than 60% of the static strengths, as given by equation (10.7) in N/mm 2 units:

Nr92 = 1.88 x 108	 (10.7)

The concrete strengths for all these 18 data were between 20 and 30 N/mm2,

so equation (10.7) was believed to give conservative predictions (according to

Conclusion 1).

These four methods for predicting the endurance of stud connectors vary

widely. One obvious reason is the different parameters that are assumed to gov-

ern the endurance. Apart from this, it is also noticed that the fatigue push-out

tests studied by the four methods are quite different in specimen geometry, re-

inforcements, restraints at the bottom of the slabs, casting of the concrete and

testing methods. The question now is whether these factors are responsible for

the discrepancies between the four methods. If they are, are they statistically

significant? Before further statistical analyses to solve the problem, the reported

data are checked and several rules for selecting data are prescribed, as explained

in the following section.
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10.3 Data selecting

A total of 211 reported results of fatigue push-out tests is collected, among which

115 ([13], [15], [ 28], [31], [32], [33] and [37]) are selected according to the following

rules.

Testing methods

Push-out tests are the main testing method used through out the world. Usually,

the concrete slabs in a push-out specimen are restrained at their bottoms to

provide a pair of forces F which oppose the compressive forces C, as shown in

Figure 10.1(a). In this way, it is believed that the behaviour of stud connectors

in a composite beam is closely represented.

L

P12f	 f P12
	 (b)

(a)

Figure 10.1: (a) Standard test arrangement; (b) Slutter and Fisher's specimen.

In the absence of a more reliable method, this kind of test arrangement is

recommended by Eurocode 4 [7], and was used by most of the researchers. How-

ever, Slutter and Fisher [46] used a quite different test arrangement in that the

concrete slabs were free to separate. This induced additional tensile forces T in

the stud connectors, as shown in Figure 10.1(b). These tests are not selected.
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Cyclic loads

There are two kinds of cyclic loads. One is reversed loading, where the shear forces

applied to the stud connectors repeat in opposite directions, while the other is

unidirectional loading, where the shear forces repeat only in one direction. From

the reported studies, a common conclusion has been reached that stud connectors

behave more favourably under reversed loading than under unidirectional loading.

As design is based on the most critical state, only those tests under unidirectional

loading are selected.

Peaks of cyclic loads

As mentioned in Section 10.2, the influence of the peak loads was considered by

Oehlers as a governing factor for determining the endurance of stud connectors,

while it was neglected by Roik, provided that the peak loads were less than 60%

of the static strength of the connectors. In the following study, Roik's conclusion

is accepted with the conditions that the concrete strengths f are between 15 and

50 N/mm 2, and the static strengths are as given by Eurocode 4 [7] (equation

(2.5)). Therefore, only those data meet this rule are selected.

Casting of concrete

The fracture of stud connectors is initiated by the damage of concrete at the base

of the stud, so the quality of concrete in this area is of great importance. One

significant influence factor is the casting of concrete slabs. The best way is to cast

them horizontally as in practice for a composite beam. However, some reported

tests had concrete slabs cast vertically. With this position, an air pocket or weak

concrete may establish around the base of stud, which have an unfavourable

effect. These tests are not selected.
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Failure modes

Three kinds of failure modes were reported in the previous studies. These are:

Type A: Cracks starts at the base of the stud shank, and gradually extend

through the base or through the weld collar (Figure 10.2);

+

Figure 10.2: Type A fatigue failure.

Type B: Cracks start at the base of the weld collar and extend through the region

of welding influence in the flange material (Figure 10.3);

Figure 10.3: rrype B fatigue failure.

Type C: Cracks start at the base of the weld collar, and developed either directly

through the flange or first alongside the welding influence zone and then

through the flange (Figure 10.4).

_n<P

Figure 10.4: Type C fatigue failure.
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Types A and B are due to the shear forces only. Type C has the lowest endurance,

and is usually observed in beams with high tensile stress in the flange or with

flanges of thickness much less than the diameter of the stud, which is beyond the

range of this study. So, tests failed by Types A and B are selected.

10.4 Statistical analyses

The study is based on the design method of Eurocode 3. Expressed in terms of

mean values, equation (10.4) becomes

NLTm=K
	

(10.8)

or

log N = — m log Lr + Ic	 (10.9)

In graphical form, equation (10.9) is known as the T-N line for stud connectors.

All logarithms used in this chapter are to base 10.

The selected 115 data are divided into six types, as shown in Figure 10.5,

according to their dimensions, reinforcement in concrete slabs and testing meth-

ods. Type 1 groups the tests reported by Mainstone and Menzies ([32], [33]),

which were conducted with the concrete slabs bedded in mortar over papers laid

on the greased steel base-plate of the loading frame. Type 2 are those reported

by Hallam [15]. The basic specimen used differed from the other types mainly by

casting a rod into the slabs at the base of the specimen to prevent separation of

the slab from the joist. Types 3 and 4 are different from the others in that studs

were arranged in two rows (type 3) and that the two concrete slabs were replaced

by an un-reinforced one (type 4). Foley's tests (type 5) had the standard form of

push-out specimens as recommended by Code of Practice CP 117. The difference

in type 6 (tests reported by Maeda [31]) is that in these tests the bond between

steel and concrete was not broken before testing began.



I1

2 2

H	 11	
9
	

[15]

4
	

[36]

34
	

[27]

ft::i	 6
	

[13]

I	 300	 I

54
	

[30]

13
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Number	 Ref

[31]
8	

[32]
457

251 	 _____

	

d	 12281

25

ilol

	

1102 I	 11021

11501

602

HT __

L_LJ	 11301

H_
I 150	 11501

121

4701

I lsol	 I iso

Figure 10.5: Classification of specimens for fatigue push tests.
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The corresponding mean r-N lines for all the types are shown in Figure 10.6.

Except for type 3 where LT was not a variable, the differences between the

other types are clear. To clarify whether the influence of specimen dimensions,

reinforcement and testing methods are significant or only by chance, statistical

methods for testing means and standard deviations are applied.

log N

8

..

6..:..

5.

4.

3.2 
I

1.9	 2	 2.1	 2.2	 2.3	 2.4	 2.5

log Lr

Figure 10.6: r-N lines for all the types.

10.4.1 Variable tested

The six types are regarded as six uncorrelated samples. If one of them is chosen

as the base sample, according to equation (10.9) the r-N line for this sample is

log N = — m log Lr + kb	 (10.10)



10WS:v

1ogi
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then for each data in a sample with size n, the error between the tested endurance

and the theoretical one from equation (10.10) can be found as

= log N - log N = log N1 + mb log r - kb, (i =	 . , n).	 (10.11)

For the base sample, the mean and the standard deviation of Z are (ItZb = 0,

7zb), and for another sample, or called compared sample, they are	 o-z).

Suppose the r-N line for the compared sample (me , lc) is parallel to the one

for the base sample, that is, = m and kb Ice , as shown in Figure 10.7(a).

It is clear that the closer k is to kb, the smaller is the difference between tz

and /tZb. Now, suppose mb m while kb = as shown in Figure 10.7(b). In

this case, the difference between /2z and Ilzb will reflect the difference between

m and mb. Therefore, if tz and PZb are significantly different, then the two

samples come from distinct populations. The difference between iz and Zb can

be tested by the two-sample t-test.

log

+ compared sample log

base sample
( mb ,kb)	 __________

logV	 lo$

(a)

compared sample
(m .k)

+

*

log'V	 logV

(b)

Figure 10.7: (a) mb = m and lCb 1cr; (b) /ci = k and mb m.

However, there exists another case that the r-N lines for the two samples in-

tersect at a point as shown in Figure 10.8. Suppose the test data of the compared

sample are evenly distributed above and below the T-N line for the base sample.

Then,	 may be so close to ItZb that the two-sample t-test will conclude that
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there is no significant difference between the two samples, even though k and

k13 are different. However, the difference can be reflected by cr and 02b, in that

oz becomes close to 5Zb as the acute angle between the two lines reduces. The

closeness can be tested by the F-test.

log

compared sample
basesample	 (m .k)
(mb.kb)	

C C

loi
zi

logy1	logy

Figure 10.8: mi	 m and kt, k.

In summary, the provision for testing differences due to specimen dimensions,

reinforcement and testing methods is that there is no significant difference be-

tween the two types of specimens compared, only when both F-tests and t-tests

prove it.

10.4.2 Procedures

1. Choose a sample with large size (n > 30) as the base sample, and find its

r-N line:

logN= —mblogr+kb	(10.12)

2. Let

= log N - log N = log N1 + rni log L - kb	 (10.13)

and calculate the values of Z for the base sample and another sample

(compared sample).
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3. Use the F-test to compare the standard deviations OZb and	 of the two

samples, with the null hypothesis H0 : O Zb = ° z against the alternative

hypothesis Ha: 0 Zb °z at the 5% level of significance.

When the null hypothesis is rejected, the conclusion is, with 95% confidence,

that the two samples (or two types) are from distinct populations affected

by certain reasons. When the null hypothesis is accepted, it only means the

two samples have homogeneous standard deviation. To establish if they are

from the same population, two-sample t-tests are needed.

4. Use the two-sample t-test to compare the means iZb and	 of the two

samples with homogeneous standard deviation (0zb = crz) . The null hy-

pothesis is H0 :	 iiz and the alternative hypothesis Ha: Zb

Tests are done at the 5% level of significance.

At this stage, the acceptance of the null hypothesis means the two samples

(or two types) are from the same population, and the influences of the

differences between the two types are only by chance, while the rejection

of the null hypothesis means the two samples are from distinct populations

which are characterised by the differences between the types.

10.4.3 Results of F-tests and t-tests

Type4	 A	 ft	 A	 -	 ft	 ft

Type6	 R	 R	 R	 R	 R	 -

A - accept the null hypothesis;

ft - reject the null hypothesis.

Among the six types, only types 4 and 6 have sizes greater than 30. Each of
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them is selected as the base sample, and the results are listed in table 10.1, in

which A means the acceptance of the null hypothesis that the two types are from

the same population, while R the rejection of the null hypothesis. Details of the

testing are given in Tables 10.3 and 10.4.

It can be concluded at the 5% level of significance that the 115 data fall into

four significantly different groups, as shown in Table 10.2 and also in Figure 10.5.

Table 10.2: Four sinificant1y different groups.

Group Type in the group I n	 r-N line

Group 1 Types 1, 3 and 4 46 log N = —5.4 log Lr + 17.1

Group 2	 Type 2	 9 logN = —4.5logLT + 14.7

Group 3 J	 Type 5	 6 logN = —3.4logLr + 12.5

Group 4	 Type 6	 54 J logN = —6.61ogLr + 20.0

10.5 A new approach to a design method

According to the results of statistical analyses given in Table 10.2, the significant

differences among the groups are due to the bond between steel and concrete

(Group 4) and the restraint to the separation of the slabs (Group 2), while the

differences due to different dimensions, rows of studs and reinforcement (the

three types of Group 1) are only by chance. The low influence of reinforcement is

probably because the peaks of cyclic loads for all those six types are less than half

of the static streugths, under which the transverse tensile strain in the concrete

slabs could not reach the ultimate value. For the same reason, the bond between

steel and concrete could not be broken at the low peak loads, so that it plays a

significant part in the endurance of the studs.

From the classification shown in Figure 10.5, Group 3 and Group 1 are only
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different in dimensions, so there must be some unclassified factors to cause the

two groups to be significantly different.

As mentioned in Section 10.2, Oehlers found the peak of the cyclic load

had significant influence on the endurance of stud connectors, while Roik con-

cluded that the influence can be neglected if it is less than 60% of the static

strength P1.8 . Re-examining the data in each of the four groups, it is found that

Group 3 has very high peak loads with Px/P from 0.55 to 0.6, while all the

other groups have Pmax/Prs ^ 0.5. It is therefore the author's oppinion that the

difference between Group 3 and the other Groups could be due to the higher peak

loads.

To establish a design method, Groups 2 and 3 are excluded because of the

small size. Group 4 is also excluded, even though it has the largest size, because

it is very difficult to know if the bond between steel and concrete in a composite

bridge stays unbroken in the whole life. To make it safe, design method is based

on test results without the influence of the bond, so only Group 1 is considered.

Its i--N line gives mean values of the endurance as

logN —5.4logr+ 17.1	 (10.14)

The characteristic values are the values below which the probability is 2.3%, and

are obtained from the mean minus two standard deviations:

log N = —5.4 log Lr + 16.5	 (10.15)

or expressed as

Nr54 = 1016.5, in N/mm2 units	 (10.16)

To reduce the scatter, the design method should be based on data from one

population. So, the two alternative methods proposed by Oehlers (equation

(10.6)) and by Roik (equation (10.7)) are believed to be unreliable. The data

used by Oehlers were from types 1, 2, 3 and 6 and were from three populations
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(Groups 1, 2 and 4), while those used by Roik were from two different populations

(Groups 1 and 2). Another point to be mentioned is that 7 data from Hallam

[15} used by Roik were the failure results of both slabs of the push-out specimens.

Hallam continued his tests on the other slab after one slab had failed. It is the

author's opinion that data from the second slabs should be excluded, since failure

in the first slab may alter the range of stress applied.

Clearly, the reason for the discrepancies in the existing methods is the different

extent of the mix of data from the four distinct Groups.

10.6 Conclusions

Statistical analyses of testing means and standard deviations have proved that

fatigue push-out tests are significantly influenced by the testing methods, such

as the bond between steel and concrete and the restraints on the concrete slabs.

Another influence factor is the peak of the cyclic load, but it can be neglected,

provided that the peak load is not more than half of the static strength of the

connector.

The existing methods are unreliable, due to the fact that they were not de-

duced from the data of a single population. In other words, they are affected to

some extent by different testing methods.

To reduce the scatter, the design method should be based on data from a

single population. This leads to the characteristic values of the endurance with

2.3% failure probability to be,

NI.r 4	 in N/mm2 units	 (10.17)
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____	 Table 10.3: Type 4 as base sample

Type n	 ,uz	 °z	 F-test	 t-test

F	 F5% t

4	 34	 0.00	 0.27

1	 8	 0.11	 0.32 1.34 <	 2.25	 1.02	 <	 2.02

2	 9 -0.45 0.22 1.58 <	 3.04	 4.53 >	 2.02

3	 4 -0.16 0.45 2.71	 <	 2.84	 1.72 <	 2.02

5	 6	 -0.42 0.64 5.49	 >	 2.53

6	 54	 0.42 0.39 2.03 >	 1.79

In tables 10.3 and 10 4 F	 - °i ^ o; Fa 5 % is the value found from

Table A.14 [24] at 5% level with v 1 = n 1 - 1 and v2 = - 1; t	 -/22

sc\/rl	
1

-+-
nl n2

wheres- (ni-1)o+(n2-1)o
-	 1 + 2 - 2	

is the value found from Table A.7 [24]

at 5% level with ii = ni + n2 - 2.

____	 Table 10.4: Type 6 as base sample

Type fl	 /2	 o	 F-test	 t-test

F	 F5% t	 ta_S%

6	 54	 0.00 0.37

1	 8 -0.35 0.27 1.89	 <	 3.30	 2.58	 >	 2.00

2	 9 -1.00 0.30 1.51	 <	 3.01	 7.62	 >	 2.00

3	 4 -0.65 0.45 1.44 <	 2.84	 3.30 >	 2.02

4	 34 -0.44 0.32 1.36 <	 1.64	 5.70 >	 2.00

5	 6	 -0.98 0.71 3.61	 >	 2.37



Chapter 11

Conclusions

11.1 Static resistance of studs welded through

profiled sheeting

The resistance of stud shear connectors welded through profiled sheeting is in-

fluenced by the geometry of the ribs and the position of the studs within them.

This is allowed for in codes by applying a reduction factor to the resistance of

the stud in a solid slab.

The apparent inappropriateness of the current reduction factors is shown by

a study of 183 reported results of push-out tests, in that the errors between the

predicted and tested values in some situations exceed 60%. The reason, revealed

by 34 new push-out tests, is that they do not distinguish between the various

modes of failure.

There are five possible failure modes for stud connectors with transverse sheet2

ing and two with parallel sheeting. New models are developed with respect to

each of these failure modes.

194
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Transverse sheeting with one stud per trough

For transverse sheeting with one stud per trough, the failure modes can be shank

shearing, concrete pulling out and rib punching.

Shank shearing failure is fracture of the shank of a stud above its weld collar,

with a smooth failure surface and hardly any permanent deformation of the shank.

In the slab, there is only local damage at the front of the stud (Figure 4.36).

Concrete pulling out failure is the pulling out of the stud from the concrete

slab, together with a wedge-shaped portion of concrete. The damage in the slab

extends to a much larger area (Figure 4.37).

Rib punching failure is also fracture of the shank of a stud above its weld collar,

but with large amount of deformation in the shank and crushing of concrete at

the front of the stud. Also, the rib in front of the stud tears up to its mid-depth

(Figure 4.38).

The occurrence of these three failure modes depends on the tensile force devel -

oped in the shank of the stud, which follows the criterion expressed by equation

(5.7). In graphic form, this criterion is schematically shown in Figure 11.1, where

Pr and T are the shear and tensile forces in the stud, respectively. P is the

shank shearing resistance (equation (5.6)), and T is the resistance of the stud to

uniaxial tension (equation (5.5)). At point A, with no tensile force in the stud,

shank shearing failure occurs. When the tensile force T increases, the failure

mode changes from concrete pulling out to rib punching.

The mean resistances for these three failure modes can be predicted with a

reduction factor /q relative to the shank shearing resistance P,; that is,

PrktP
	

(11.1)

where the reduction factor k is given by equation (11.2):

= + /1-2+A2 1.0
	 (11.2)

1 + )¼2
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Factors and \ reflect the different failure modes. They are functions of the

material strengths and the geometry of the ribs, as given by equations (5.18)

and (5.19) for concrete pulling out failure, and (5.33) and (5.34) for rib punching

failure.

PIP

Figure 11.1: Failure criterion for stud connectors with transverse sheeting.

For the commonly used materials (20 ^ f,	 35 N/mm2 and f ^ 400

N/mm2), the influences of the strengths are negligible, in that the strength ra-

tios (equation (8.4)), ) (equation (8.6)), fyd/P (equation (8.9)) and TSY/PrS

(equation (8.10)) are found to be constants, as shown correspondingly in Figures

8.2, 8.3, 8.10 and 8.12. The failure modes are controlled only by four factors

(equation (8.17)): concrete cover in front of the stud e ' , height of the stud h,

thickness of the sheeting in terms of the thickness factor 77t and depth of the

trough h. These symbols are as shown in Figures 5.2 and 5.5.

When determining the characteristic and design resistances of a stud con-

nector, the number of studs per shear span is of great importance, because the

resistances reduce as the number decreases (Table 9.1). However, it is not prac-

ticable to take account of this variable in design. Considering that four is the

minimum number of studs per shear span in practice, to make it safe, design
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resistance is given based on the data with four studs per specimen (equation

(9.37)).

Transverse sheeting with two studs per trough

For two studs per trough, the failure criterion as given by equation (5.7) is still

followed, so the resistance can also be predicted by a reduction factor relative to

the resistance to shank shearing failure as given by equation (11.1).

If the two studs are in-line along the trough, they behave in much the same

way as one stud per trough, except with lower resistances (equation (5.20)),

because the resistance of the concrete to the pulling out action of the two studs

is reduced, and hence the tensile forces in the shanks of the studs increase.

If the two studs are staggered or transverse to the trough, redistribution of

shear forces occurs until the average resistance of the two studs is reached. The

failure mode is rib punching (for the stud on the unfavourable side) combined

with either shank shearing or concrete pulling out (for the opposite stud). Similar

to one stud per trough, the influence of the strengths of the materials is negligible,

so the redistribution is actually governed by: transverse spacing of the studs .st,

height of stud h, thickness of sheeting in terms of the thickness factor it and

depth of the trough lii,, as given by equation (8.21). The symbols are as shown

in Figure 5.7.

Parallel sheeting

The behaviour of stud connectors with parallel sheeting is unlike that with trans:

verse sheeting, in that there is no plastic hinge developed in the shank of the

stud, and the studs do not follow the failure criterion given by equation (5.2),

because the mechanism of load transfer is completely different.
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With parallel sheeting, the shear force is dispersed into the concrete in terms

of a bearing pressure between the concrete and the stud connector over a certain

height of the stud. The dispersal is three-dimensional, which develops tensile

forces in both the concrete and the shank of the stud. The resistances of the

concrete to the tensile forces and the pulling action of the studs govern the failure

modes, either splitting or pulling out.

When the tensile strain of concrete reaches its ultimate value, concrete slabs

split longitudinally, usually along the lines of the studs or between them. This is

splitting failure. The resistance relates to: side cover of concrete to the stud e,

height h and diameter d of the stud, depth of the trough h, overall depth of the

slab h and strength of the concrete f, as given by equation (6.14).

The pulling out failure is due to the low resistance of the concrete to the

pulling action of the stud. It depends mainly on the projection of the stud above

the flanges of the sheeting (h—hr ) and the top width of the trough b (= st+2e)

(equations (6.26) to (6.28) and (6.31)).

Lightweight concrete

The use of lightweight concrete has no effect on the mechanism of load transfer.

It affects only the ductility of the stud (Figures 4.21 and 4.22 cf. Figures 4.19 and

4.20) and the material properties, such as the strengths and the elastic modulus

of the concrete.

Therefore, the resistances of stud connectors with lightweight concrete can be

predicted by all the models for normal weight concrete by using the conversion

factors as given by Eurocode 2: Part 1-4 [5]: 7i for concrete strengths (equation'

(7.6)) and iE for the elastic modulus (equation (7.2)).
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Scopes of the results

The results summarised above are valid for:

. 16- and 19-mm stud connectors with the ultimate tensile strengths not less

than 400 N/mm2;

. centre-to-centre spacing between the studs is from 2.8d to 5d in the direction

transverse to the shear force, and not less than 3d in-line along the shear

force;

. concrete strengths from 20 to 35 N/mm 2 and the air-dry densities in the

classes not less than 1.6 (the density classes (Table 7.1) are as given by

Eurocode 2: Part 1-4 [5]);

. the projection of the head of the stud above the flanges of the decking

(h - h) not less than 35 mm;

trapezoidal profiled sheeting with thickness from 0.7 to 1.5 mm and the

ratio of the average width of the trough b0 to the depth h from 0.8 to 3.2;

. not less than four stud connectors per shear span.

11.2 Fatigue resistances of stud shear connec-

tors in composite bridges

Push-out tests are the major method to study the resistance of stud connec-

tors to fatigue. The testing methods, such as the presence or absence of bond

between steel and concrete under low peak loads (less than 20% of the static

strengths), and the restriction to the separation of concrete slabs from the steel

beam, have significant influences on the results. Therefore, data with different

testing methods and restraints should not be considered as a single population.
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The current methods for predicting the fatigue resistances of stud connectors

(Eurocode 3 [6], Oehlers' method [37] and Roik's method [44]) are unreliable,

because they are affected to some extent by different testing methods and re-

straints.

A new method based on the data from a single population is derived (equation

(10.16)). It is valid for cyclic loads with the peaks not greater than 50% of the

static strengths of the connectors.

11.3 Suggestions for further studies

The statistical analyses (chapter 9) have shown that the number of stud con-

nectors per specimen has significant influence on the characteristic and design

resistances of stud connectors. As push-out tests are the major method to study

the behaviour of stud connectors in composite beams, the number of studs per

specimen should reflect the minimum possible number per shear span in practice.

However, the available data from push-out tests that meet this requirement are

very limited, especially for those with transverse sheeting (two studs per trough),

parallel sheeting and lightweight concrete. The new models based on these data,

though satisfactory, can only be of use conceptually.

For further understanding, more tests are needed to clarify the following un-

certainties:

1. For transverse sheeting with two in-line studs, the spacing at which the

two studs can be treated as two single studs. The new model developed

in chapter 5 which allows for the reduction in strengths due to the in-line

position is valid for the spacing not more than 5d, but it is based on only

13 data.

2. For transverse sheeting with two studs per trough, the effects of the two
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positions: transverse or staggered. The statistical analyses carried out in

chapter 9 show that the partial safety factor 'y is higher for transverse

studs than for staggered ones (table 9.2). It is based on only 28 data, among

which there are eight with eight transverse studs per specimen, three with

eight staggered studs and 17 with four staggered studs. This results in

uncertainties as whether or not the higher 'y is due to the inappropriate

theoretical model.

3. For parallel sheeting, the assumption of the failure surface of the concrete

cone. The two new models are based on a total of 41 data with number of

studs per specimen ranging from 2 to 12.

4. The effects of lightweight concrete. Though the analyses presented in chap-

ter 7 have proved that the new models are also valid for stud connectors in

lightweight concrete, they are based on only 15 data, with the number of

studs per specimen ranging from 2 to 6.

5. The influence of the transverse reinforcement on the failure modes.
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