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Automated SNP Genotype Clustering Algorithm to Improve Data
Completeness in High-Throughput SNP Genotyping Datasets
from Custom Arrays

Edward M. Smith, Jack Littrell, and Michael Olivier”
Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, W1 53226, USA.

Abstract

High-throughput SNP genotyping platforms use automated genotype calling algorithms to assign
genotypes. While these algorithms work efficiently for individual platforms, they are not compatible
with other platforms, and have individual biases that result in missed genotype calls. Here we present
data on the use of a second complementary SNP genotype clustering algorithm. The algorithm was
originally designed for individual fluorescent SNP genotyping assays, and has been optimized to
permit the clustering of large datasets generated from custom-designed Affymetrix SNP panels. In
an analysis of data from a 3K array genotyped on 1,560 samples, the additional analysis increased
the overall number of genotypes by over 45,000, significantly improving the completeness of the
experimental data. This analysis suggests that the use of multiple genotype calling algorithms may
be advisable in high-throughput SNP genotyping experiments. The software is written in Perl and is
available from the corresponding author.
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Introduction

Single nucleotide polymorphisms (SNPs) are the most common form of genetic variation in
the human genome, and are the marker of choice for disease association studies due to their
prevalence and ease of genotyping. Large-scale SNP genotyping arrays are improving the
speed and volume of genomic research. Whilst these techniques are highly accurate and
efficient, there remains a desire to maximize the amount of data obtained.

In recent years, a number of reports have described algorithms that can be used to replace or
supplement Affymetrix genotype calling algorithms (1-6). However, these algorithms are all
designed to be used with data generated from genome-wide SNP arrays, and are not compatible
with other genotyping platforms or formats. As specific chromosomal regions are identified
as being linked to a phenotype of interest, there is an increasing need to target high-density

*Corresponding author. E-mail: molivier@mcw.edu.

Authors’ contributions

EMS supervised and coordinated the collection of the datasets, conducted data analysis, and prepared the manuscript. JL contributed to
the data analysis and data management, and was responsible for modifying the code of the cluster algorithm. MO conceived the idea of
using this approach, critically reviewed the data analysis, and assisted with manuscript preparation. All authors read and approved the
final manuscript.

Competing interests
The authors have declared that no competing interests exist.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Smith et al.

Page 2

genotyping to these loci. The Affymetrix custom-designed SNP panels based on molecular
inversion probe technology (7,8) allow for such an approach. One major difference in the output
from this assay is that there is only one chip feature per SNP rather than multiple averaged
sites as generated with the genome-wide arrays. Thus, it is difficult to assess the accuracy and
reliability of genotype calls from the analysis software without additional experimental work,
and some SNPs result in poor call rates in the automated analysis although manual inspection
of the data suggests clear distinction of three different genotype clusters. For custom high-
resolution SNP genotyping, data completeness is essential, and a high percentage of missed
calls for an individual SNP or the complete lack of data for any SNP significantly impedes the
subsequent analysis.

To overcome this challenge in the automated data analysis and to improve overall data quality,
an in-house clustering algorithm designed for analysis of single SNP assays was modified to
analyze the data from genotyping 1,560 individuals of 261 families on an Affymetrix GeneChip
custom 3K array. As shown below, the combined analysis using both the commercial algorithm
and the custom supplementary clustering algorithm (MCW_CA\) significantly improves the
overall call rate, and “rescues” individual SNPs eliminated in the initial analysis using the
commercial algorithm alone.

Results and Discussion

In total, 3,345 SNPs were genotyped using 1,560 samples from the MRC-OB cohort using an
Affymetrix GeneChip custom 3K array. Initially, data were analyzed using the commercial
analysis tools provided by Affymetrix. In this analysis, 99.6% of all SNPs successfully passed
the quality control criteria. However, our subsequent analysis revealed that not all passed SNPs
were informative. Based on the Affymetrix genotype calls, 41.8% (345/825) of SNPs assayed
on Chromosome 3 were identified as monomorphic following determination of allele
frequencies (Table 1), supporting the anecdotal evidence that SNP failures are due to under-
calling of heterozygotes. This percentage was significantly reduced to 1.1% (9/825) when
based on the MCW_CA results, and it was possible to rescue 15 SNPs previously identified
as monomorphic. Based on this analysis, the genotype distribution was in Hardy-Weinberg
equilibrium (HWE), and greater than 80% of the cohort were successfully genotyped. Further
four SNPs on Chromosome 3, which were identified as polymorphic by the Affymetrix
genotype calling algorithm but not in HWE, were also rescued (passed HWE and greater than
80% genotyped) by MCW_CA (Table 1). In addition, of the 250 SNPs that passed both forms
of analysis, it was possible to improve the call rate of 148 (59.2%) SNPs using MCW_CA.
This supplementary analysis resulted in a total of 29,683 additional genotypes identified on
Chromosome 3.

Corresponding values for the remaining chromosomal regions investigated are presented in
Table 1. Similar to the analysis described for Chromosome 3, it was possible for MCW_CA
to rescue further five SNPs and increase the call rates for another 1,086 SNPs. In total it resulted
in an extra 47,578 genotypes identified, an average of 30 genotypes per individual tested. This
number of genotypes would correspond to an additional 15 SNP arrays worth of data.

Overall, our analysis strongly suggests that it is highly beneficial to re-analyze high-throughput
SNP genotyping data with more than one genotype calling algorithm. A significant number of
additional genotype calls can be made, and more complete data are obtained, a result essential
for fine-mapping studies. While several algorithms have been developed to help in the analysis
of genome-wide 100K and 500K SNP arrays, our algorithm is also suitable for use with custom
3K, 5K, or 10K arrays. Furthermore, a significant advantage of MCW_CA over other clustering
algorithms is the ability to set a user-defined confidence threshold. This allows users to select
their own cut-off value depending on individual requirements. Altering the threshold level will

Genomics Proteomics Bioinformatics. Author manuscript; available in PMC 2009 September 20.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Smith et al.

Page 3

have an effect on both the number of genotypes per SNP and on the number of SNPs that remain
in HWE. For example, on Chromosome 7, at a confidence level of 0%, 50%, 90%, and 95%,
the number of SNPs with a call rate above 80% were 1,023, 1,020, 824, and 772, and the number
of SNPs in HWE were 633, 633, 615, and 605, respectively. Thus, users can select and
statistically define the confidence of genotype calls. If the sample set only includes unrelated
individuals, the confidence level can be set conservatively to only include genotypes called
with high accuracy and confidence. Alternatively, if family-based samples are used, an initial
analysis with a lower confidence level followed by a comprehensive analysis of Mendelian
errors in individual families may result in a higher rate of genotype calls.

Materials and Methods

Population and genotyping

Algorithm

The 1,560 individuals studied were a subset of the MRC-OB population recruited from the
TOPS membership as described previously (9,10). All individuals were genotyped on a 3K
custom-designed SNP chip, with 3,345 SNPs distributed across 5 chromosomal regions: one
on Chromosomes 3, 7, and 14, respectively, and two on Chromosome 12. The SNP selection
strategies have been described previously (11). Briefly, for the regions on Chromosomes 3 and
14, SNPs were selected using a gene-centric approach with an emphasis on putative functional
SNPs; those on Chromosome 7 were selected based on the linkage disequilibrium (LD) patterns
of the CEPH population of the HapMap; and those on Chromosome 12 were located within
known genes, based on LD patterns and putative functionality.

The algorithm was initially described by Olivier et al (12). Briefly, each datapoint is assigned
to one of four clusters: 1, 2, 3, or 4, representing no-target (negative) controls (NTCs),
homozygotes one (XX), homozygotes two (YY), and heterozygotes (XY), respectively.
Clusters are described by an ellipse whose major and minor axes are the standard deviations
in the x and y directions of the component points, which are rotated so that their covariance is
equal to zero.

Fluoresence values are extracted from the MegAllele results for all samples and SNPs. Initially,
fluorescence values for each SNP are scaled to between 0.05 and 0.95, and four negative control
values are appended to the data to provide a reference start point for the analysis.

An ellipse containing the negative control datapoints is determined, and the probability of other
datapoints belonging to this cluster is calculated using an empirically determined cut-off value.
The ellipse is then redefined to include any new points.

The center of the genotype cluster locations is determined by a two-step process. Initially, a
Cartesian coordinate system is overlaid on the data with its origin at (0.55, 0.55). The center
of each quadrant is identified by averaging the component points. New coordinate systems are
drawn in each quadrant with their origin at each quadrant's center. This process continues
outward—towards the upper left corner, upper right, and lower right—until one point remains
in each quadrant. Secondly, circles are drawn around the extreme point(s). The average location
of the points inside the circle is computed and the circle center moves to this position. This
process repeats until the circle center moves negligibly.

If either of the homozygote clusters are missing, the existing homozygote cluster center is
mirrored to create the missing datapoint. If the heterozygote cluster is absent, the x axis
coordinating from one homozygote cluster and the y axis coordinating from the other are used
to determine the cluster center.
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Cluster center locations are then separated by lines drawn through the NTC cluster center and
exactly halfway between the identified cluster centers. All points above or to the left of the
uppermost line are considered to be homozygote cluster one; the points between the lines are
heterozygotes; and the points to the right or below the bottommost line are homozygote cluster
two.

Based on the determination of cluster centers and bisecting lines, ellipses are calculated for
each cluster. The probability that an individual datapoint belongs to each cluster is calculated
using the two-dimensional normal distribution function represented by the probability ellipses.
New ellipses are then created to reflect the new datapoints in the cluster, and this is repeated
for three times. The p-value for a point belonging to a particular cluster is equal to the
probability that it is in that cluster, which is divided by the summation of the individual
probabilities of the point being in each of the four clusters.

The results are output depending on the p-value selected by users, and points are assigned to
one of the four regular clusters or are considered as a no call.

Data analysis

Once genotypes were determined for all SNPs and individuals at a confidence level of 99.0%,
data accuracy was checked by ensuring that the allelic distribution for all loci does not
significantly differ from HWE. As family-based samples were used, a modified allele
frequency estimation method taking account of family relationships was employed (13).
Predicted genotype frequencies were then compared with the observed values and statistically
significant (p < 0.05) differences were determined by a Chi-squared test. Only SNPs with a
call rate greater than 80% were described, and the data below this threshold were classed as
insufficiently informative. A Bonferroni correction was applied to the data to account for
multiple testing. SNPs with predicted allele frequencies of 1.0 or 0.0 were classed as
monomorphic.
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