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Abstract

This thesis describes a number of algorithms and propertiesrelating to Gromov’s

word-hyperbolic groups. A fuller outline of the thesis is given, and a number of

basic concepts relating to metric spaces, hyperbolicity and automaticity are first

briefly detailed in Chapter 1. Chapter 2 then details a solution to the conjugacy

problem for lists of elements in a word-hyperbolic group which can be run in linear

time; this is an improvement on a quadratic time algorithm for lists which con-

tain an infinite order element. Chapter 3 provides a number offurther results and

algorithms which build upon this result to efficiently solveproblems relating to qua-

siconvex subgroups of word-hyperbolic groups – specifically, the problem of testing

if an element conjugates into a quasiconvex subgroup, and testing equality of dou-

ble cosets. In Chapter 4, a number of properties of certain coset Cayley graphs are

studied, in particular showing that graph morphisms which preserve edge labels and

directions and map a quasiconvex subset to a single point also preserve a variety of

other properties, for instance hyperbolicity. Finally, Chapter 5 gives a proof that all

word-hyperbolic groups are 14-hyperbolic with respect to some generating set.
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Symbols and Notation

Below is a summary of notation used throughout the thesis. This notation is ex-

plained more verbosely in the introduction.
Symbol Denotes

1 The identity element of a group.

d(x,y) The distance operator in a metric space.

(x,y)z The hyperbolic inner product,d(z,x)+d(z,y)−d(x,y)
2 .

â
w→ The path in anX-graph starting at ˆa and labelled byw.

â·w The vertex at the end of ˆa
w→.

∆(u,v) For wordsu andv, the inner product(â·u, â·v)â.

dγ(x,y) The length of the subpath of a pathγ between pointsx andy.

[x,y] A path between pointsx andy.

X∗ The set of words with letters in a setX.

X±1 The set of elements of a setX along with their symbolic in-

verses.

|w| The length of a word or path.

|w|G The length of the shortest word representing the same element

of G asw.

w−1 The symbolic inverse of a word or the reversal of a path.

wu For a wordu, the wordu−1wu.

wn For an integeri, the word formed by concatenatingn copies of

a wordw.

w(i) The initial subword of a wordw of lengthi.

w(i : j) The subword of a wordw which skips the initiali letters and

ends at thejth letter.

w[i] The ith letter of a wordw.

wL The wordw(
⌊
|w|
2

⌋
).

wR The wordw(
⌊
|w|
2

⌋
: |w|).

wC The wordwRwL.

w∞(i) The wordwi(i), or wi(−i) if i is negative.
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w̃∞ The two-way infinite path defined by repeatingw indefinitely,

passing through the base point.

O( f (n)) Computational complexityf (n), ignoring contributions from

fixed structures.

A-FSA A finite state automaton which recognises words inA∗.

A-DFA A deterministicA-FSA.

x=y z Shorthand for|x−z| ≤ y.

u=G v Wordsu andv represent the same group element.

u=F v Wordsu andv represent the same free group element.

π(w) The short-lex reduction of a wordw.

viii



Chapter 1

Introduction

The concept of a word-hyperbolic group was explored by Gromov in [12] where he

brought much previous work in the area together using some definitions involving

groups with left-invariant hyperbolic metrics, the word-hyperbolic case of which

will be given later. He shows among other things that in some sense “most” finite

presentations define word-hyperbolic groups and that certain types of small cancel-

lation group are word-hyperbolic.

It turns out that word-hyperbolic groups admit simple solutions to the first two

problems outlined by Dehn in [5] for finitely presented groupsG generated by a set

X:

The word problem: Given a wordw ∈ (X±1)∗, determine ifw represents the

identity element ofG.

Theconjugacy problem: Given wordsu,v∈ (X±1)∗, determine ifu andv are

conjugate elements ofG.

In fact, there is a solution to a problem which generalises both of these in the

torsion-free word-hyperbolic case, that of deciding whether a system of equations

over elements in such a group admits a solution. This result is due to Sela in [22],

although more general statements have since been proved.

An efficient solution to the word problem due to Shapiro is stated in Section 1.5,

and a solution to the conjugacy problem is the topic of Chapter 2.

The third problem proposed by Dehn, theisomorphism problem of determin-

ing whether two such groups are isomorphic has also been shown to be solvable at

least for torsion free word-hyperbolic groups. Sela first showed in [21] that this is

1



2 CHAPTER 1. INTRODUCTION

solvable for torsion free word-hyperbolic groups with no essential small action on a

real-tree and he has an unpublished proof for arbitrary torsion-free word-hyperbolic

groups; Dahmani and Groves proved in [4] that the problem is solvable in the more

general class of torsion free relatively hyperbolic groupswith abelian parabolics (a

class which in particular includes torsion free word-hyperbolic groups).

All three of these problems are known to admit no solution in the setting of

general finitely presented groups.

The reader may notice that torsion in word-hyperbolic groups appears to lead

to complications which are often hard to work with. The isomorphism problem for

arbitrary word-hyperbolic groups remains open at the time of writing, and torsion

plays a part in complicating some of the proofs given in this thesis.

In Chapter 2 we present a solution to the conjugacy problem for finite lists of

elements of an arbitrary word-hyperbolic group which will run in timeO(mµ)where

m is the number of words in each list andµ is an upper bound on the length of

said words. This is an improvement upon a quadratic time algorithm for lists which

contain an infinite order element given in [3] - and an exponential time algorithm for

lists of torsion elements outlined in the same paper. Our solution will in fact produce

a complete description of the set ofall conjugating elements, and in particular the

centraliser of a given list of elements.

In Chapter 3 we show that given a quasiconvex subgroupH of a word-hyperbolic

group, there is an algorithm which checks whether an input word represents a con-

jugate of an element ofH, and again, this algorithm will run in linear time if both

the group and the subgroup are held constant. We also show that it is possible, again

in linear time, to test if two double cosetsHuK andHvK are equal for quasiconvex

subgroupsH andK, providedH andK are held constant.

Chapter 4 expands upon some work by Foord in [9], and gives some properties

of certain coset Cayley graphs of subgroups of word-hyperbolic groups, specifically

giving some bounds on hyperbolicity and the distance from the base point before

which they become “eventually homogeneous” in the torsion free case, going on to

show some simple facts about words which label geodesics distant from the base

point.

Finally, in Chapter 5 we present a proof that there is a upper bound on themini-

mumconstant of hyperbolicity of a word-hyperbolic group over all finite generating

sets of said group.
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The rest of this chapter outlines the definitions which will apply during the rest

of the thesis.

1.1 A Note on Computational Complexity

A number of results in the thesis make reference to running times of algorithms.

These are normally stated in terms of a number of “fixed” entities, for instance

some word-hyperbolic group. Where a quantity is described as being inO(n) for

somen, any part of the runtime which depends on these fixed entitiesis ignored:

we presume that there is some constantK depending only on the fixed entities such

that the runtime isO(Kn).

Unless noted otherwise, we will assume that the algorithms in question are to

be run under a RAM model of computing; that is, one in which seeking to arbitrary

locations of memory and basic arithmetic can be performed inconstant time. This

is a sensible model for any algorithm being implemented uponmodern computers

provided the input is small enough that processing it will not exhaust the system

RAM.

The run-time of the algorithms detailed here appears to be unchanged when they

are run on a Turing machine, provided the machine is given a sufficiently large num-

ber of states, symbols, heads and tapes (the number of states, symbols, heads and

tapes will be dependent only on the ambient groups picked, however) and provided

one is rather more careful in cases where it appears arithmetic is needed to be per-

formed. We use a RAM model in the text to avoid having to repeatedly deal with

these technicalities.

1.2 Metric Spaces and Paths

We assume the reader has at least a basic understanding of metric spaces.

Definition 1.2.1. Let Γ be a metric space.

A path α in Γ is a natural (ie. arc length) parametrizationα : [0, l ]→ Γ of a

rectifiable curve inΓ. We will write x∈ α to denote that x lies in the image ofα. If

α maps from[0, l ], define the length|α| of α to be l.
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A two-way infinite pathα in Γ is defined in the same way, except thatα maps

fromR instead of an interval.

A subpathα′ of a (finite or two-way infinite) pathα is any restriction ofα to a

bounded subinterval of its domain, ie.α|[a,b], reparametrised so thatα′(0) = α(a).
The reversalα−1 : [0, l ]→ Γ of a pathα is the map which sends t∈ [0, l ] to

α(l − t).

For points x,y∈ Γ, we will often pick a specific pathα : [0, l ]→ Γ between x and

y, ie. withα(0) = x andα(l) = y. Where such a path has been explicitly picked, we

will write [x,y] as a shorthand.

Further, when such a path has been picked, suppose that c= α(a) and d= α(b)
for 0≤ a≤ b≤ l. We will write [c,d] to refer to the subpathα|[a,b] between c and d,

and define dα(c,d)= b−a. Often we will simply pick the points c and d to construct

such a path. Whenever this is done, we are implicitly pickingvalues a and b in[0, l ]

so that this operation is well defined even whenα is not injective.

We are now in a position to define a number of concepts relatingto shortest

paths.

Definition 1.2.2. Supposeα is a path in some metric spaceΓ.

For anyλ ≥ 1 andε ≥ 0, we defineα to be a(λ,ε)-quasigeodesicif given any

subpath[a,b] of α we have dα(a,b)≤ λd(α(a),α(b))+ ε.

α is a geodesicif it is a (1,0)-quasigeodesic (that is, an isometry). Ageodesic

metric spaceis a metric space in which every pair of points in the space have a

geodesic connecting them.

For L > 0 defineα to have a property L-locally if every length L subpath ofα
has that property. So for example, L-local quasigeodesics are paths for which each

length L subpath is a quasigeodesic.

Finally, a two-way infinite path has one of the above properties if every bounded

subpath does. Thus we may describe an infinite path as a quasigeodesic and so on.

1.3 X-graphs

Some of the definitions in this section will be used exclusively in Chapter 4. How-

ever, as they relate to Cayley graphs it is convenient to define them now to avoid

defining a number of other concepts twice.
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The metric spaces which are dealt with in this thesis will allbe labelled directed

graphs, where the labels obey the criteria below.

Definition 1.3.1. SupposeΓ is a directed graph which is connected ignoring edge

directions, and has all edges labelled by elements of some finite set X. ThenΓ is an

X-graph if, for each vertexp̂∈ Γ and each x∈ X, there are unique edges e and f

labelled by x, so that e starts atp̂ and f terminates at̂p. An X-graph will always be

endowed with a distinguished base vertex.

Thus, anX-graph is a pointed labelled directed graph in which any wordwhose

letters are inX∪X−1 defines an edge path starting from any vertex, formalised as

follows:

Definition 1.3.2. For a finite set A, let An be the set of tuples(a1, . . . ,an) where each

ai ∈ A. We define the set A∗ =
⋃∞

n=0An and write elements of A∗ without brackets

and commas, that is, in the form a1a2 · · ·an. If u,v ∈ A∗ we define uv to be the

element of A∗ defined by the concatenation of these strings.

Suppose X is a finite set. Define X±1 to be the union of X with the set{x−1 : x∈
X} where x−1 is assumed to never be an element of X.

An X-word is an element of(X±1)∗. We will normally have a fixed set X; where

this is the case, unless specified otherwise we will often simply describe an X-word

as a word.

We define(x−1)−1 to be just x for any x∈ X and then define(a1 · · ·an)
−1 =

a−1
n · · ·a−1

1 for any X-word a1 · · ·an. An X-word isreducedif it contains no subword

of the form xx−1 or x−1x where x∈ X.

Given a vertexp̂ in an X-graphΓ, and some x∈ X, let p̂ · x be the terminal

vertex of the edge labelled x which starts atp̂, and letp̂ ·x−1 be the initial vertex of

the edge labelled x which ends atp̂.

For any X-word w= a1 · · ·an there is thus defined a unique vertexp̂·w= (. . .(w·
a1) ·a2 . . .) ·an, and a unique patĥp

w→: [0,n]→ Γ labelled by w which picks each

intermediate vertex and edge in the obvious way.

Theword metric on anX-graphΓ is the metric which gives every edge length

1, so that the distance between two vertices is the shortest length of a word labelling

a geodesic inΓ which connects them. We will assume allX-graphs are given this

metric. Clearly, the resulting space is geodesic.
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Given a groupG generated by a setX, the Cayley graph ofG with respect toX

has vertex setG and edges connectingg to gxwith labelx for eachg∈G andx∈ X.

This is anX-graph, and the base vertex in this case will be taken to be thevertex

representing the identity ofG.

Similarly, the coset Cayley graph (sometimes called a Schreier diagram or rela-

tive Cayley graph) of a subgroupH ≤G with respect toX has vertex setV = {Hg :

g∈G} (ie. the set of right cosets ofH), and edges connnectingHg to Hgx for each

Hg∈V andx∈ X. Again, this is anX-graph, and we take the base vertex to be the

vertex representing the trivial cosetH.

In fact, anyX-graphΓ is just a coset Cayley graph of a subgroup of the free

group onX. To see this, let ˆp be the base vertex ofΓ. Let G be the free group

generated byX with elements represented by reducedX-words, and letH be the set

of reducedX-wordsw such that ˆp ·w= p̂. ThenH is a subgroup ofG whose coset

Cayley graph with respect toX is Γ. In this construction, ˆp is the vertex representing

the trivial cosetH. Much of Chapter 4 could therefore be equivalently restatedin

terms of coset Cayley graphs.

Definition 1.3.3. If p̂ is a vertex in an X-graphΓ and k≥ 0, the k-ball around p̂,

or BΓ
k (p̂), is the set containing all verticeŝq with d(q̂, p̂) ≤ k. The superscript will

often be omitted where the X-graph is clear from the vertex.

Later on, we will often use the concept of a mid-vertex of a geodesic path in a

graph. We define this now.

Definition 1.3.4. Supposêx andŷ are vertices in some graphΓ, and [x̂, ŷ] is some

geodesic path connecting them. Letp̂ be some vertex on[x̂, ŷ] such that|d(p̂, x̂)−
d(p̂, ŷ)| ≤ 1. Then we saŷp is amid-vertexof [x̂, ŷ].

Note that if the distance between two vertices is even, therewill be one mid-

vertex; if it is odd there will be two.

1.4 More aboutX-words

We will often be concerned with various subwords ofX-words; the following defi-

nitions outline some shorthands to define these.
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SupposeG is a finitely generated group. We will use the notation=G to repre-

sent equality of elements ofG, and simply= to represent equality of words. When

we wish to represent equality of words allowing cancellation of letters with their

inverses (ie. under the free group), we will write=F .

Definition 1.4.1. Suppose w= a1a2 . . .ak is some X-word.

Denote thelength, k, of w as|w|, and if G is a group generated by X then denote

by |w|G the smallest length of an X-word equal in G to w.

Let w(i) := a1a2 . . .ai for 0≤ i ≤ |w|. If i < 0 let w(i) be the empty word and if

i > |w| let w(i) := w.

This definition can be extended to the integers by considering w(i) to be a sub-

word of wn or w−n for large enough n. In order to avoid confusion, we use w∞

to represent this extension in the following notation: if i∈ N and n=
⌊

i
|w|

⌋
then

w∞(i) = wnw(i−n|w|), and if−i ∈ N, w∞(i) = (w−1)∞(−i).

WhereΓ is an X-graph with base point̂a, define the two-way infinite path̃w∞ :

R→ Γ by settingw̃∞(i) := â ·w∞(i) for any integer i and extending toR in the

obvious way.

Next, for0≤ i≤ j ≤ k we let w(i : j) :=ai+1 . . .a j =F w(i)−1w( j). Let w[i] :=ai .

If f =
⌊
|w|
2

⌋
, we define wL := w( f ), wR := w( f : |w|) and wC := wRwL.

Note that if w labels a geodesic path inΓ then wL labels a path to a mid-

vertex andw = wLwR always. As an example, letw = abcde. Thenw∞(11) =

abcdeabcdea, w∞(−3) = w−1(3) = e−1d−1c−1, wL = w(2) = ab, wR = w(2 : 5) =

cdeandwC = cdeab.

We can now define a “straight” word.

Definition 1.4.2. Given an X-graphΓ and with base vertex̂a, a non-empty word w

is straight if w̃∞ is a geodesic.

By fixing some ordering on X±1 we can produce a lexicographic ordering on

X-words. We say w is ashort-lex least representativeif w labels a geodesic at̂a

and no other geodesic connectingâ to â·w has a label lexicocgraphically less than

w.

A non-empty word isshort-lex straightif wi is a short-lex least word for each

i > 0.
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y

z

x

cz
q

p

cy cx

Figure 1.1: A thin triangle, and a 3-correspondance

Those definitions above which relate to the base point will only be used in the

case whereΓ is the Cayley graph of a group. As Cayley graphs are homogenous,

they are therefore independent of the base point chosen.

1.5 Hyperbolicity

There are a number of equivalent definitions of hyperbolicity of a given space, many

of which are for example given in [2] or [1]. The definition we will be using is that

of having thin triangles.

Definition 1.5.1. Let Γ be a geodesic metric space.

For points x,y,z∈ Γ, define thehyperbolic inner product

(x,y)z=
d(x,z)+d(y,z)−d(x,y)

2
.

Given three points x,y,z∈ Γ, we define atriangle to be a choice of paths[x,y],

[y,z] and[z,x]. We say the triangle is geodesic (resp. quasigeodesic, local geodesic,

. . . ) if each of the three paths which make it up are geodesic (resp. quasigeodesic,

. . . ).

On a triangle connecting these three points, define themeeting pointon the side

[x,y] to be the point cz∈ [x,y] such that

d[x,y](x,cz) =
d[x,y](x,y)+d[x,z](x,z)−d[y,z](y,z)

2
.

Notice that this meeting point may be on an edge whenΓ is a graph. Define cx
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and cy similarly as in Figure 1.1. Note that in the case of a geodesictriangle,

d(x,cz) = (y,z)x.

Suppose that p is a point on[x,cz]. We say the point q∈ [x,cy] such that

d[x,cy](x,q) = d[x,cz](x, p) correspondsto p and vice versa. By relabelling the cor-

ners, we may find a corresponding point to each point on each ofthe three sides

of the triangle. Observe that the meeting points all correspond to each other and

hence have two corresponding points (except in degenerate cases where the meeting

points are equal), and that all other points have one corresponding point (except in

similar degenerate cases).

The triangle isδ-thin if d(p,q) ≤ δ for all such corresponding points p and q.

It is δ-vertex-thin if d(p̂, q̂)≤ δ for all corresponding verticeŝp andq̂.

A geodesic space isδ-hyperbolic if all geodesic triangles in it areδ-thin. A

graph isδ-vertex-hyperbolicif every geodesic triangle in the graph whose corners

lie on vertices isδ-vertex-thin andδ is an integer. In either case we will assume

δ≥ 1 to avoid complications in run times and so on.

A finitely generated group G=<X > is δ-hyperbolicwith respect to X if its

Cayley graph with respect to X isδ-hyperbolic.

In a construction involving many triangles sharing common sides, we will use

the phrase p n-correspondsto q if there is a sequence p= r0, r1, r2, · · · , rn = q of

points such that ri corresponds (via a previously constructed triangle) to ri+1 for all

i. More generally, we will say that pointschain-correspondif there exists an n∈ N
such that they n-correspond. This is illustrated on the right hand side of Figure 1.1.

Notice that for any pointsx,y,z∈ Γ we have(x,z)y+(y,z)x = d(x,y). This fact

is used in many places to produce bounds ond(x,y).

For anX-graph Γ with base vertex ˆa, if we haveX-words u,v which label

geodesics at ˆa then the value of(â · u, â · v)â in some sense measures the amount

of cancellation in the wordu−1v when it defines a path starting at ˆa · u. When

Γ is a Cayley graph, notice that(â · u, â · v)â = |u|G+|v|G−|uv−1|G
2 is independent of

the specific vertex ˆa. Thus, when some groupG has been picked, we will write

∆(u,v) = (â·u, â·v)â.

It is perhaps unclear whether or not a vertex-hyperbolic space is hyperbolic

(although a hyperbolic space is clearly vertex-hyperbolic). In Section 5.2 we show

that these properties are indeed equivalent. Theδ associated to vertex-hyperbolicity

is rather more relevant to a word-hyperbolic group as we are mostly concerned
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with words – that is, labels of paths which connect vertices.Most of the literature,

however, uses the hyperbolicity constant rather than vertex-hyperbolicity constant,

so we will for the most part be using this constant also to simplify the use of results

from elsewhere.

The property of beingδ-hyperbolic forsomeδ is a property of the group and

not just the generating set (see [12]), although the particular value ofδ will likely

change depending on the particular generating set used.

Of course, knowing that such a constantδ exists is not particularly helpful for

writing explicit algorithms which will often use thevalueof δ. In [7] an algorithm is

given (and in fact implemented in D. F. Holt’s KBMAG package)which can, given

a finite presentation for a word-hyperbolic group, compute such a constant. In fact,

the algorithm computes the minimum vertex-hyperbolicity constant for the Cayley

graph relative to the given generating set.

This algorithm terminates if and only if the presentation defines a word-hyperbolic

group, and has no bound on its running time: It is impossible to predict when the

algorithm will complete, only that it will at some point do so. We will therefore

assume that for any word-hyperbolic group mentioned in thisthesis, the algorithm

hasalready been executedand thus the constantδ is known.

Note that this indeterminate runtime is the best that we can hope for. Given a

δ-hyperbolic group, it is rather easy to test if that group is trivial: use the solution

of the word problem to show that each generator is equal to theidentity. In fact,

the trivial group is 1-hyperbolic with respect to any generating set. If there were

an efficient algorithm which determined whether or not a given presentation was

hyperbolic, it would therefore be able to determine whetheror not a given finite

presentation is a presentation of the trivial group. This iswell known to be impos-

sible.

We noted earlier that the word problem was solvable in the setting of word-

hyperbolic groups. In [8] a solution to the word problem due to Shapiro is given

which runs in linear time on a Turing machine with two tapes, as follows.

Lemma 1.5.2.Suppose that G is aδ-hyperbolic group. Then there is an algorithm

which, given a word w in the generators of G will return the short-lex least repre-

sentative of w in time O(|w|).

We will denote use of this lemma (ie. the act of finding short-lex reduced words)
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by π operating on elements, words and lists of elements or words in the obvious

way. Of course, we will also use it implicitly, since it implies that operations like

finding the length|g|G of an elementg, or deciding equality of two elements can be

performed in time linear in the length of the input words.

1.6 FSAs, DFAs and Automatic Groups

Another class of finitely generated groups which is of computational interest is the

class of automatic groups, which are defined by certain finitestate automata. A lot

of detail in these definitions and results will be omitted; Chapter 13 of [14] gives a

rather fuller outline of the theory of automatic groups and regular languages.

Definition 1.6.1. Given a set A, let A′ = A∪{ε} whereε is assumed not to be in A.

A finite state automatonM on an alphabet A (or A-FSA) is a finite set S of

states, a subset X⊂ S ofstart states, a subset Y⊂ S ofaccepting statesand a set

τ⊂ S×A′×S oftransitions.

The set of transitions allow us to regard M as a directed graphG with vertex

set S and an edge connecting s to t with label a whenever(s,a, t)∈ τ. An edge with

labelε is called anε-transition.

We say M isdeterministic, or M is an A-DFA, if X has only a single element

s0 ∈ X, there are noε-transitions and for all s∈ S and a∈ A there is at most one

edge in G labelled a which starts at s.

We say an element w∈ A∗ is accepted byM if there is a path in G starting

at an element of X and ending at an element of Y whose label, after deleting all

occurrences ofε, is w.

A subset of A∗ is called alanguage. The set of all words accepted by M is the

language ofM.

A language isregular if it is the language of an A-FSA.

In the deterministic case, notice thatτ defines a partial functionσ : S×A→
S. By adding a “reject” stater to S, we can makeσ a full function σ′ by setting

σ′(s,a) = r wheneverσ′(s,a) is not defined. We can extend this to atransition

function σ : S×A∗→ Sby lettingσ(s,w) := σ′(σ′(σ′(s,a1),a2), . . . ,an) whenever

w = a1a2 · · ·an ∈ A∗. Thusw is accepted if and only ifσ(s0,w) ∈ Y, and one can

test membership in time linear in input length.
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Every regular language is in fact accepted by a DFA. In section 13.1.6.1 of [14],

for instance, a method is given to produce a DFA from any FSA.

A basic property of regular languages is that they obey thepumping lemma

(see [15], Lemma 3.1 for example). A quick sketch proof is given here, as a similar

technique is used in Section 2.3.1.

Proposition 1.6.2.Suppose M is an A-DFA. Then there is a constant K such that

for any word w in the language of M with|w| ≥ K there are words a,b,c∈ A∗ such

w= abc,|b|> 0 and abnc is in the language of M for all n> 0.

Proof. Let K be the number of states inM, let s0 be its start state and letσ be

its transition function. If|w| ≥ K then when readingw, some state is hit twice,

ie. there is some states with s= σ(s0,w(i)) = σ(s0,w( j)) for somei < j. Then

σ(s,w(i : j)) = s, so leta := w(i), b := w(i : j) andc := w( j : |w|) and for anyn≥ 0

we haveσ(s0,abnc) = σ(s0,abc) = σ(s0,w). In particular,abnc is also accepted by

M. �

There are many other definitions of a regular language which are equivalent to

this, for instance, regular expressions. We will not need these definitions, however,

so we omit them. We do, however, make use of (synchronous)n-variable FSAs

which we now define.

Definition 1.6.3. For this definition, given a set A, let A′ = A∪{$} where$ is some

symbol which is not in A.

Given a tuple T= (w1, . . . ,wn) of words with letters in A, let l be the length of

the longest word in T . For each i, let w′i be wi with a string of$ symbols added

onto the end so that each w′i has length exactly l. Now let̃T = a1 · · ·al where

a j := (w′1[ j], . . . ,w
′
n[ j]) so thatT̃ , thepaddingof T , is an element of(A′n)∗.

An n-variable A-FSA M is now defined to be simply an A′n-FSA. The language

of M is the set of elements of(A∗)n which, after padding, are accepted by M.

We say that a subset of(A∗)n is a regular n-variable languageif it is the lan-

guage of an n-variable A-FSA.

Notice that a 1-variableA-FSA simply defines anA-FSA (the symbol $ will

never be needed, so any edge with that label may be ignored). We now state some

simple results involving regular languages and provide a brief proof skipping some

details.
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Proposition 1.6.4.Suppose A is a finite set containing l elements.

(1) The empty set is the language of an A-DFA with 1 state.

(2) A∗ is the language of an A-DFA with 1 state.

(3) For any word y∈ A∗, the set{y} is the language of an A-DFA with|y|+1

states.

(4) For any non-empty word y∈ A∗, the set{yn : n∈ Z,n≥ 0} is the language of

an A-DFA with|y| states.

Now suppose that there are are n1-variable and n2-variable A-FSAs which have

languages L1 and L2, and have k1 and k2 states respectively.

(5) Projection of L1 to any its first factor is the language of an A-FSA with k1

states.

(6) L1×L2 is the language of an n1+n2-variable A-FSA with k1k2 states.

Suppose that n1 = n2.

(7) L1∪L2 is the language of an n1-variable A-FSA with k1+k2 states.

(8) L1∩L2 is the language of an n1-variable A-FSA with k1k2 states.

Finally, suppose that n1 = n2 = 1.

(9) {(w,w) : w∈ L1} is the language of a2-variable A-FSA with k1 states.

(10) The concatenation L1L2 = {w1w2 : w1 ∈ L1,w2 ∈ L2} of L1 and L2 is the

language of an A-FSA with k1+k2 states.

All of the automata above can be computed in time O(l2s), where s is the number

of states in the new automaton.

Proof. For (1) letS= X = Y = {1} andτ be the empty set. For (2), letS= X =

Y = {1} and letτ = S×A′×S.

For (3) and (4), supposey= a1 · · ·an. For (3), letS= {0, . . . ,n}, X = {0} and

Y = {n}. Let τ = {(i−1,ai, i) : 1≤ i ≤ n}. For (4), letS= {1, . . . ,n}, X = {1} and

Y = {1}. Let τ = {(i,ai, i +1) : 1≤ i ≤ n−1}∪{(n,an,1)}.
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For the remainder of the examples, assume the FSAs have statesetsSi , start

statesXi, accept statesYi and transitionsτi . For convenience, assume thatS1∩S2 =

φ.

For (5) letS= S1, X = X1, Y =Y1 andτ = {(s,a1, t) : (s,(a1, . . . ,an1), t) ∈ τ1},
replacing any transitions labelled $ with transitions labelled ε.

For (6) if both automata have one variable, letS= S1×S2, X = X1×X2 and

Y =Y1×Y2. Let τ′i = τi ∪{(s,$,s) : s∈ Si} for eachi and then let

τ = {((s1,s2),(a1,a2),(t1, t2)) : (s1,a1, t1) ∈ τ′1,(s2,a2, t2) ∈ τ′2}.

The multiple variable case is similar but requires that one be a little careful with

transitions labelled $.

For (7) letS=S1∪S2, letX =X1∪X2 and letY =Y1∪Y2. Finally, letτ= τ1∪τ2.

For (8) letS=S1×S2, letX =X1×X2, letY=Y1×Y2 and letτ= {(s1,s2,a, t1, t2) :

(s1,a, t1) ∈ τ1,(s2,a, t2) ∈ τ2}.
For (9) letS= S1, X = X1, Y =Y1 andτ = {(s,(a,a), t) : (s,a, t)∈ τ1}.
For (10) letS= S1∪S2, X = X1 andY =Y2 and letτ = τ1∪ τ2∪{(y,ε,x) : y∈

Y1,x∈ X2}.
In each case, the setsS,X,Y andτ define the required automaton and can be

computed in the required time. �

We now define various types of automatic groups.

Definition 1.6.5. Suppose that G is a group generated by a set X.

A language W⊂ (X±1)∗ is across-section ofG if each element of G is equal to

at least one element of W. If W is regular, we say W is aregular cross-section of

G.

Suppose that W is a regular cross-section of G. Let A be the setcontaining all

of X±1 as well as the identity in G.

If the set{(u,v) ∈W2 : ux=G v} is a regular 2-variable language for each

x∈ A then we say G isautomatic with respect toW. A group isautomaticif it is

automatic with respect to some regular cross-section.

If the set{(u,v)∈W2 : ux=G xv} is a regular2-variable language for each x∈A

then we say G isconjugacy automatic with respect toW. A group isconjugacy

automaticif it is automatic with respect to some regular cross-section.
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P. Papasoglu proved in [19] that a group is word-hyperbolic if and only if it is

automatic with respect to the setW of all words labelling geodesics in the Cayley

graph (that is, if the group is strongly geodesically automatic). In fact a word-

hyperbolic group is automatic with respect to the set of short-lex least representa-

tives of elements (this is Theorem 3.4.5 of [6]).

Word-hyperbolic groups are also conjugacy automatic with respect to the set

of geodesic-labelling words (see Lemma 4.2 of [11] for a proof of this fact which

uses the fact that word-hyperbolic groups arebiautomaticwith respect to the set

of geodesics). Since the language of short-lex least representatives is regular and

the intersection of two regular languages is regular, word-hyperbolic groups are

conjugacy automatic with respect to the set of short-lex least representatives as well.

In particular, for a word-hyperbolic group generated by a set X, there is anX±1-

DFA whose language is the set of all short-lex least words, the short-lex word

acceptor, and anotherX±1-DFA whose language is the set of words which la-

bel geodesics in the group’s Cayley graph, thegeodesic word acceptor. We will

assume therefore that these automata have already been computed for any word-

hyperbolic group we are given.

Much like with hyperbolicity, it is impossible to determinewhether or not an

arbitrary finitely presented group is automatic – in fact, the problem here is made

even more difficult as one must search for a regular cross-section W, which might

not be something easily described like the set of geodesic-labelling words.

1.7 Other Notation

We close this chapter with some other miscellaneous notation which is used through-

out.

Many of the results in the thesis relate to conjugacy. We adopt a shorthand to

express conjugation.

Definition 1.7.1. Supposing g,h∈ G, we will denote conjugation of g by h using

superscripts, so that gh = h−1gh.

Finally, many of the results below attempt to express thingsas being “equal plus

or minus delta,” so to avoid lots of duplicate inequations, we define a symbol to

express this.
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Definition 1.7.2. If a,b,c∈ R satisfy a+c≥ b≥ a−c then we write a=c b.



Chapter 2

The Conjugacy Problem for Lists

2.1 Introduction

In [3], Bridson and Howie give a solution of the conjugacy problem for finite lists

A= (a1, . . . ,am) andB= (b1, . . . ,bm) of elements in a word-hyperbolic group – in

fact, they prove that the problem is solvable in timeO(mµ2) for a torsion free group,

whereµ is an upper bound on the length of elements in both lists.

The aim here is to both improve the bound on running time toO(mµ), and to

tie up the rather limp conclusion in part 2 of Theorem B of [3],in which their

algorithm simply terminates when the lists contain entirely elements of finite order

without giving any results on the conjugacy.

The ideas used here closely relate to the ideas in [8], in which Epstein and Holt

show that the conjugacy problem for single elements in a word-hyperbolic group

can be solved in linear time if one assumes a RAM model of computing. They

do so by showing that infinite order elements tend to be well-behaved when raised

to large powers, and finite order elements can be conjugated to elements of short

length whose conjugacy can be precomputed. In fact, we use a number of results

from that paper which relate to these facts in order to establish the result here.

We will presume for the duration of this chapter that the ambient finitely gen-

erated groupG has been fixed along with a finite generating setX, and thatG is

δ-hyperbolic for someδ with respect to this generating set (we will assumeδ is an

integer andδ > 0 to simplify some reasoning later on). All words in this chapter are

X-words, and all geometric constructions occur inside the Cayley graphΓ of G with

17
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respect toX, inside which we will assume that the vertex ˆe represents the identity

element ofG.

We will also assume that an ordering on the generators has been picked, so that

the notion of a short-lex least representative word for eachelement exists and that

the short-lex word acceptor forG has been computed.

The technicalities behind the proof in the case where one element, saya1, has

infinite order are largely covered by solving the conjugacy problemah
1 =G b1 for h

as in [8]. In the process of doing so, we can find a useful description of elements

of the centraliserC of a1 and then test if for somec ∈ C we haveAch =G B. Of

courseC is infinite, so it is important to perform this testing efficiently. Section 2.3

describes a way of doing so.

Unfortunately, since we can only obtain this form of the centraliser for infi-

nite order elements we run up against problems when we consider lists of torsion

elements. It is, however, possible to show that provided we bound the number of el-

ements in our lists, we can efficiently find a pair of listsA′ andB′ such thatAh =G B

if and only if A′h =G B′ and such that eitherA′ or B′ contains an infinite order ele-

ment, or each element inA′ andB′ is of bounded length for some elementg. In the

latter case, one may simply use the exponential algorithm given in [3] to finish the

solution.

The disadvantage of computing in this way is that for lists with more elements,

the amount of computation required grows in at least exponential fashion. However,

it can be shown that if there are sufficiently many finite orderelements in the list then

its centraliser is finite. In particular, there are only a finite number of elements which

can simultaneously conjugate the initial elements of one list to the initial elements

of the other, so we need only test these centralising elements on the remainder of

the elements of the lists to complete the procedure.

In fact, all of the methods we use above will produce a complete description of

the set ofall conjugating elements as a regular set. Thus we have:

Theorem 2.1.1.Given integersδ ≥ 1 and l, there is an algorithm which, given

a δ-hyperbolic group G=< X|R> with |X| ≤ l, a number m≥ 0 and lists A=

(a1, · · · ,am) and B= (b1, · · · ,bm), each containing words in the generators of G,

can find a (non-deterministic) X±1-FSA whose language L satisfies:

• Aw =G B for any w∈ L, and
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• for any g∈G such that Ag =G B there is an element w∈ L with w=G g.

If |ai| ≤ µ and|bi | ≤ µ for each1≤ i ≤ m then the algorithm will run in time

O(mµ). It can be modified to return a single conjugating element g∈G with Ag =B,

if one exists, without affecting the running time.

Because the methods here express all conjugating elements,they additionally

allow computation of the centraliser of a list of elements.

2.2 Notation

In this section, we provide some notation which is used during the remainder of

the chapter. We start by suggesting that the reader familiarise themselves with the

definitions in Section 1.4.

Next, recall Lemma 1.5.2, that we have a functionπ which returns the short-lex

least representative inG of any word and can be computed in time linear in input

word length. We extendπ to operate on lists and sets in the obvious way.

There are a number of constants which will be used throughoutthis chapter (as

well as some points in later chapters where this chapter’s results are used). These

are:

• L := 34δ+2

• V, the number of vertices inB2δ(ê)

• Q, the number of vertices inB4δ(ê)

• M := 103δ2V3L2

2.3 The Infinite Order Case

In this section, we will assume that we are given two equal length listsA andB

whose elements areX-words, and that all elements ofA andB have length at most

µ. We will also assume that the first element ofA is of infinite order.

The aim of the section is to test which elementsg ∈ G haveAg =G B. The

method is something of a combination of those methods outlined in [8] and [3].
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We begin with several sections which bring together resultsfrom other sources

and then put those results together to give an algorithm which finds elements which

conjugateA to B.

2.3.1 Results From [8]

In [8] (Section 3), it’s proved that the conjugacy problem for single elements is

linear in the total input element length. The proof has several steps. The first few

will be followed here as well.

The first step is to show that elements that are “difficult to shorten” are actually

of infinite order, and behave nicely when raised to large powers. This result is

Lemma 3.1 of [8].

Proposition 2.3.1.Let w be some short-lex least word. Let u be the short-lex least

representative of wC. If u has length strictly greater than2L, then all positive powers

of u label L-local(1,2δ)-quasigeodesics.

In Proposition 2.3 of [8] it is proved that such a local quasigeodesic lies close to

a geodesic.

Proposition 2.3.2.If w is an L-local(1,2δ) quasigeodesic inΓ, and u is a geodesic

connecting its endpoints, then every point on w is within4δ of a point on u and vice

versa. Also, if|w| ≥ L then|u| ≥ 7|w|
17 .

In particular, if|wC| > 2L thenw is of infinite order as there is no bound on the

length of shortest representatives of its powers. We will use this fact extensively in

the next section also.

The next step is to show that such a wordu can be equated with some root of a

conjugate of a short-lex straight word. The following two results summarise Section

3.2 of [8].

Proposition 2.3.3. Suppose u is some short-lex least word such that all positive

powers of u label L-local(1,2δ)-quasigeodesics and|u| > L. Then there exists

some integer0< k≤ Q2 and some word a whose length is less than or equal to4δ
such thatπ(a−1uka) is short-lex straight.

Proposition 2.3.4.Given a short-lex least word u, testing if u is short-lex straight

takes time at most O(|u|).
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The second proposition can be proved in a similar way to the Pumping Lemma,

Proposition 1.6.2. Repeatedly readu through the short-lex word acceptor until some

state is hit for the second time after reading a complete copyof u. In this case,

readingu again will just cycle over previous states sou must be short-lex straight.

Thus we have the following code to test for short-lex straight-ness:

Algorithm 2.3.5. Test if anX-word is short-lex straight

1: function TESTSLS(u)

Input: An X-wordu.

Output: True if a is short-lex straight; false otherwise.

2: WA← SHORTLEXWORDACCEPTOR(G)

3: S← STATES(WA)

4: w← u|S|

5: for s∈ Sdo

6: visited[s]← f alse ⊲ States hit after reading complete copies ofu

7: end for

8: s← STARTSTATE(WA)

9: f ← TRANSITIONFUNCTION(WA)

10: visited[s]← true

11: for i := 1 to |w| do

12: s← f (s,w[i])

13: if ¬ ISACCEPTSTATE(WA,s) then

14: return false

15: end if

16: if i = 0 mod|u| then

17: if visited[s] then

18: return true

19: end if

20: visited[s]← true

21: end if

22: end for

23: end function

And we can find a short-lex straight power as follows:

Algorithm 2.3.6. Find a short-lex straight power



22 CHAPTER 2. THE CONJUGACY PROBLEM FOR LISTS

1: function FINDSLSPOWER(a)

Input: An X-worda for which ã∞ is aL-local (1,2δ) quasigeodesic.

Output: An X-wordh and an integeri with π((ai)h) short-lex straight.

2: for h∈ B4δ(1) do ⊲ Find straight power using Proposition 2.3.3

3: for i ∈ {1, . . . ,Q2} do

4: if TESTSLS(π(h−1aih)) then ⊲ Must happen at least once

5: return h, i

6: end if

7: end for

8: end for

9: end function

Once a word is short-lex straight, it is easier to test conjugacy against it. The

next result summarises Section 3.3 of [8].

Proposition 2.3.7.If u is short-lex straight and v is a word such that̃v∞ is a (1,2δ)
L-local quasigeodesic with|v|G > L, and g−1vg=G u for some g, then there exists

a word h with|h| ≤ 6δ such thatπ(h−1vh) is a cyclic conjugate of u.

One can test if a wordu is a cyclic conjugate of another wordv by testing if

v appears as a substring ofu2, which can be done for instance using the Knuth-

Morris-Pratt algorithm which runs in time1 O(|u|+ |v|). We denote the use of this

algorithm by FINDSUBSTRING and later, FINDSECONDSUBSTRING.

The following pseudocode will test conjugacy of such wordsu, v:

Algorithm 2.3.8. Test if a short-lex straight word is conjugate to a “long” word.

1: function TESTCONJUGACYSLSLONG(u,v)

Input: A short-lex straightX-wordu and anX-wordv for which ṽ∞ is aL-local

(1,2δ) quasigeodesic.

Output: An X-wordg with ug =G v or null if no suchg exists.

2: for h∈ B6δ(1) do ⊲ Test conjugacy using Proposition 2.3.7

3: i← FINDSUBSTRING(u2, π(hvh−1))

1Strictly speaking, the standard KMP algorithm will run in worse than linear time on a Turing
machine, due to construction of a table whose length dependson the input. However, the algorithm
can be modified to generate the table in a more tape-friendly way; [10] offers an implementation
which will test for substrings in linear time (actually, that paper’s method runs in real-time given a
suitably arranged input).
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4: if i is not nullthen

5: return u(i)h

6: end if

7: end for

8: return null

9: end function

A refinement of the proof of the above statement gives a nice form for elements

of the centraliser of a short-lex straight word. This resultsummarises Section 3.4

of [8].

Proposition 2.3.9.If z is short-lex straight and yl = z with l maximal, then g∈CG(z)

implies that g=G yiy1h, with y1 a prefix of y, i∈ Z and|h| ≤ 2δ. Further, y1 depends

only on h.

l, y and the set of words y1h can be computed in time O(|z|).

Again, here is the algorithm in pseudocode:

Algorithm 2.3.10. Find a “nice” superset of the centraliser of a short-lex straight

word.

1: function FINDSLSCENTRALISERSUPERSET(z)

Input: A short-lex straightX-wordz

Output: A short-lex straight wordy with yl = z for somel and a setS with

CG(z)⊂ {yns : n∈ Z,s∈ S}.
2: i← FINDSECONDSUBSTRING(z2, z)

3: y← z(i)

4: S←{}
5: for h∈ B2δ(1) do ⊲ Find centraliser ofa using Proposition 2.3.9

6: i← FINDSUBSTRING(z2, π(hzh−1))

7: if i is not nullthen

8: S← S∪{z(i)h}
9: end if

10: end for

11: return y,S

12: end function
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Suppose thatz= π(a−1(uC)
ia) is short-lex straight, thatyl = z with l maximal,

that ṽ∞ is anL-local (1,2δ) quasigeodesic, thatb−1zb=G vi and thatg−1ug=G v.

Note that

zb =G vi

=G (ui)g

=G (ui
C)

(uL)
−1g

=G za−1(uL)
−1g

so thata−1(uL)
−1gb−1 ∈ CG(z), and so is equal inG to yny1h wheren is some

integer,h is a word of length at most 2δ andy1 is a prefix ofy that depends only on

h. Thereforeg=G uLayny1hb.

This fact is used in the following algorithm which returns a word p of length

O(|u|), a short-lex straight wordy of lengthO(|u|) and a setSof at mostV words

each of lengthO(|u|+ |v|) such that ifg−1ug=G v theng=G pyns for somen∈ Z
and somes∈ S.

Algorithm 2.3.11. Find a “nice” set of candidates for conjugating elements.

1: function GETCONJUGATIONCANDIDATESEH(u,v)

Input: Two X-wordsu andv which label geodesics inΓ and have|uC|G > 2L

and|vC|C > 2L

Output: An X-word p, a short-lex straight wordy and a setSwith (up)i = y j for

somei, j ∈ Z and such thatπ(w) ∈ {π(pyns) : n∈ Z,s∈ S} wheneveruw =G v.

2: a, i← FINDSLSPOWER(π(uC))

3: z← π(a−1(uC)
ia)

4: b← TESTCONJUGACYSLSLONG(z,π((vC)
i))

5: if b is null then

6: return 1,1,{}
7: end if

8: y,S← FINDSLSCENTRALISERSUPERSET(z)

9: return uLa,y,{sb(vL)
−1 : s∈ S}

10: end function

It is at this point that we break from the method in [8].
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2.3.2 Finding Long Powers of Infinite Order Elements

In this section, we will show that given anX-word w which represents an infinite

order element ofG, we can find a short-lex reduced wordw′ which is conjugate in

G to a power ofw and for whichπ(w′C) is longer than 2L. Thus given two infinite

order wordsu andv we may find conjugates of powers ofu andv to which we may

apply GETCONJUGATIONCANDIDATESEH.

We begin by recalling some well-known properties of word-hyperbolic groups

and hyperbolic spaces; these results are taken from [1] although similar results ap-

pear in many other expositions of the subject area. The exactvalues in the state-

ments are taken from the proofs in [1] (the statements generally simply state that

the constants in question exist). The first is Proposition 3.2 of [1].

Proposition 2.3.12.For any X-word w which is of infinite order in G and labels a

geodesic inΓ, the two way infinite path̃w∞ in Γ is a (λ,ε)-quasigeodesic, where

λ = |w|V andε = 2|w|2V2+2|w|V.

The next is Theorem 2.19 of [1].

Proposition 2.3.13.The function e: R≥0→ R≥0 with e(0) = δ and e(l) = 2
l
δ−2 for

l > 0 is a divergence function for anyδ-hyperbolic space (ie. given geodesicsγ =
[x,y] andγ′ = [x,z], if r,R∈ N with r+R< min{|γ|, |γ′|} and d(γ(R),γ′(R))> e(0),

if α is a path fromγ(R+ r) to γ′(R+ r) lying outside the ball of radius R+ r around

x, then|α|> e(r)).

Finally, Proposition 3.3 of [1].

Proposition 2.3.14. In a hyperbolic space with divergence function e, given con-

stantsλ ≥ 1 and ε ≥ 0, there exists D= D(λ,ε,e) such that ifα is an (λ,ε)-
quasigeodesic andγ is a geodesic starting and ending at the same points asα then

every point onγ is within a distance D of a point onα. It suffices to take D satisfying

e(D−e(0)
2 )≥ 4D+6λD+ ε.

We now use these results to find some powern of an infinite order wordw such

that|(wn)C|G is large. RecallM from Section 2.2.

Proposition 2.3.15.Let w be any X-word which is of infinite order in G, labels a

geodesic inΓ and has|w| ≤ 2L. Then|(π(wM))C|G > 2L.



26 CHAPTER 2. THE CONJUGACY PROBLEM FOR LISTS

Proof. By Proposition 2.3.13, the functione(0)= δ, e(l) = 2
l
δ−2 for l > 0 is a diver-

gence function forΓ. By Proposition 2.3.12 we see that̃w∞ is a(λ,ε)-quasigeodesic

γ, whereλ = |w|V andε = 2|w|2V2+2|w|V. The first aim is to find a suitableD for

Proposition 2.3.14.

Let D := 104δ2LV. Then

e

(
D−δ

2

)
= 2

D
2δ−

5
2

=
1

4
√

2

(
e

D
2δ

)log2
,

butex > x3

3! >
( x

3

)3
for anyx> 1, so noting that 3 log2≥ 2, we have

e

(
D−δ

2

)
≥ 1

4
√

2

(
D

3×2δ

)3log2

≥ 1

4
√

2

(
D
6δ

)2

and by substituting inD

e

(
D−δ

2

)
≥ 1

4
√

2

(
104δLV

6

)2

=
108

36×4
√

2
δ2L2V2

≥ 480000δ2L2V2
.

Recall that|w| ≤ 2L, λ = |w|V andε = 2|w|2V2+2|w|V, so

e

(
D−δ

2

)

≥ (12+12+12+12)104δ2L2V2

= 12×104δ2L2V2+12×104δ2L2V2+12×104δ2L2V2+12×104δ2L2V2

≥ 4×104δ2LV +12LV×104δ2LV +8L2V2+4LV

≥ 4×104δ2LV +6|w|V×104δ2LV +2|w|2V2+2|w|V
= 4D+6λD+ ε.
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x̂
p̂′

p̂ ŷ

q̂′

q̂

ẑ

γ

u
u

Figure 2.1: Cutting across a long quasigeodesic

Thus picking a geodesic pathα := [ê, ê·wM], by Proposition 2.3.14 each point

onα lies withinD of some point onγ = w̃∞.

Let x̂ := ê, ŷ := x̂ ·wM andẑ := ŷ ·wM, recalling thatM = 103δ2V3L2. Let [x̂, ŷ]

and[ŷ, ẑ] be labelledu := π(wM) and letp̂ := x̂·uL andq̂ := ŷ·uL. See Figure 2.1.

There exists a point̂p′ := x̂·wM(i) on γ wherei ≤M|w| which is withinD of p̂,

and lettingq̂′ := ŷ·wM(i) we find thatd(q̂′, q̂)≤ D also. Now

|uC| = d(p̂, q̂)

≥ d(p̂′, q̂′)−2D

≥ dγ(p̂′, q̂′)
λ

− ε−2D

=
|w|M

λ
− ε−2D.

Substitute in the values ofM, λ andε to find

|uC| ≥
|w|LV2D
20|w|V −2|w|2V2−2|w|V−2D

=
LVD
20
−2|w|2V2−2|w|V−2D,

and by recalling thatD = 104δ2LV and|w| ≤ 2L we see that

|uC| ≥ 500δ2L2V2−8L2V2−4LV−20000δ2LV

= LV(500δ2LV−8LV−4−20000δ2).

Now, V is the number of vertices in the 2δ-ball in Γ, soV ≥ 2δ+ 1≥ 5. Also,
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L = 34δ+2≥ 36 soVL≥ 180 and

|uC| ≥ LV((8+6+486)δ2LV−8LV−4−20000δ2)

= LV(8δ2LV−8LV +6δ2LV−4+486δ2LV−20000δ2)

> LV((8LV−8LV)+(6−4)+(87480δ2−20000δ2))

> 2L

as required. �

Remark 2.3.16.The value of M used above is of course by no means optimal. If

nothing else, the powers of L, V andδ used in D can be reduced at the cost of a

potentially larger constant by increasing the degree in thepolynomial bound for en,

and in any case for a particular group and presentation, it islikely that a much

lower bound can be obtained by solving the problem algorithmically. However, the

above bound illustrates that there is a definite computable value.

By Proposition 2.3.12, short infinite order words can be raised to large powers

to get an appropriate input for GETCONJUGATIONCANDIDATESEH. We also wish

to confirm that words which are already appropriate inputs stay appropriate when

raised to the power ofM.

Proposition 2.3.17.Suppose that w is a word labelling a geodesic inΓ and|wC|G >

2L. If n≥ L then|(π((wC)
n))C|> 2L. In particular, |(π((wC)

M))C|> 2L.

Proof. Letu := π((wC)
n), and letγ be the path starting at ˆx := ê labelled by(π(wC))

2n.

Let ŷ := x̂ ·u and letẑ := ŷ ·u. Now let p̂ := x̂ ·uL and letq̂ := ŷ·uL so thatp andq

are mid-vertices on the short-lex geodesic paths[x̂, ŷ] and[ŷ, ẑ] respectively anduC

labels a path from ˆp to q̂. Figure 2.1 provides a suitable diagram once again.

Note thatγ is anL-local (1,2δ)-quasigeodesic by Proposition 2.3.1, so Proposi-

tion 2.3.2 applies. Then there is a vertexp̂′ = x̂· (wC)
n(i) for somei with d(p̂′, p̂)≤

4δ. Let q̂′ := ŷ · (wC)
n(i) so thatd(q̂′, q̂) ≤ 4δ also. Sincedγ(p̂′, q̂′) = n|wC|G≥ L,
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Proposition 2.3.2 also gives a lower bound ond(p̂′, q̂′) as follows:

d(p̂, q̂) =8δ d(p̂′, q̂′)

≥ 7
17

dγ(p̂′, q̂′)

=
7
17

n|wC|G

>
14
17

Ln.

But then

|(π((wC)
n))C| = |uC|

= d(p̂, q̂)

≥ 14
17

Ln−8δ

≥ 14
17

L×34δ−8δ

≥ 2L

as required. �

By the above two results|(π((uC)
M))C|G > 2L for any infinite order wordu

which labels a geodesic inΓ. In particular, if u and v label geodesics inΓ and

are of infinite order inG then GETCONJUGATIONCANDIDATESEH can be applied

to π((uC)
M) andπ((vC)

M) by executing GETCONJUGATIONCANDIDATES(u,v) as

defined in the following pseudocode:

Algorithm 2.3.18. Find candidates for conjugation elements.

1: function GETCONJUGATIONCANDIDATES(u,v)

Input: Two X-wordsu andv which are of infinite order inG.

Output: An X-word p, a short-lex straight wordy and a setS such thatw is

equal inG to an element of{π(pyns) : n∈ Z,s∈ S} wheneveruw =G v.

2: u′← π(u)
3: v′← π(v)
4: c← π((u′C)

M)

5: d← π((v′C)
M)

6: g,y,S← GETCONJUGATIONCANDIDATESEH(c,d)
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7: return uLg,y,{sv−1
L : s∈ S}

8: end function

For convience in later chapters, we at this point summarise the above results.

Corollary 2.3.19. Suppose u is an X-word which is of infinite order in G.

(1) There exists an integer k≤ MQ2 and an X-word w whose length is at most

M|u|+4δ such that z:= π((uk)w) is short-lex straight. Both k and w can be

found in time O(|w|).

(2) If v is another X-word then any element g∈G with ug =G v has g=G uih where

i is an integer and h is an X-word of length at most4MQ2(|u|+ |v|)+16δ.

Proof. Let u1 := π(u), letu2 := π(((u1)C)
M) and letu3 := π((u2)C). By Proposition

2.3.15 or Proposition 2.3.17 we know that|u3|> 2L.

By Proposition 2.3.1, all positive powers ofu3 labelL-local(1,2δ)-quasigeodesics

and then by Proposition 2.3.3 we know thatu4 := π(k−1ul
3k) is short-lex straight for

somel ≤ Q2 and someX-word k of length at most 4δ. Notice thatu4 =G (ulM)wu

wherewu := (u1)L(u2)Lk so that|wu| ≤ (M+1)|u|
2 +4δ. This proves the first part.

We now need to prove the second part, so suppose some suchg has been picked.

Supposeu4 = uc
5 for some integerc (which we assume is maximal for this prop-

erty). By Proposition 2.3.9 there is a setS containing elements of the formyp,

wherep is anX-word of length at most 2δ andy is a prefix ofu5 which depends

only on p, such that every element of the centraliser ofu4 is of the formun
5yp for

someyp∈ S. This is equal toua
4ub

5yp for some integersa andb with 0≤ b < c.

Notice that|ub
5yp| ≤ |u4|+2δ.

Constructv1, v2 andv3 in the same way asu1 throughu3, settingwv :=(v1)L(v2)L.

Sinceu andv are conjugate, so areu4 andvl
3, so by Proposition 2.3.7 there is an

X-wordq with |q| ≤ 6δ such that(vl
3)

q is a cyclic conjugate ofu4. Now any element

G conjugatingu4 to vl
3 is of the formua

4r wherer =G ub
5ypu4(m)q−1 for someyp∈S

and some integersa, b andmwith b< c. Note that|r|G≤ 2|u4|+8δ.

Now, g must be equal towuua
4rw−1

v wherer is some element as described in the

previous paragraph. Usingu4 =G (ulM)wu, we see thatg=G uih wherei = lMa and
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h=G wurw−1
v is a short-lex reduced word. Using the bounds above,

|h| ≤ |wu|G+ |r|G+ |w−1
v |G

≤ (M+1)|u|
2

+4δ+2MQ2|u|+8δ+
(M+1)|v|

2
+4δ

≤ 4MQ2(|u|+ |v|)+16δ.

�

We also have a method of checking whether an element is of finite order.

Corollary 2.3.20. There is an algorithmTESTINFORDER which tests whether or

not an input word w is of infinite order in G and runs in time O(|w|).

Proof. First replacew with π(w). Now if |(π(wM
C ))C|G > 2L thenwM

C and therefore

w is of infinite order by Proposition 2.3.1 and we return true. If not, w cannot be of

infinite order by Proposition 2.3.15 or Proposition 2.3.17 and we return false.

Since|wM
C | ≤M|w|, this test takes time at worstO(|w|). �

Using GETCONJUGATIONCANDIDATES we will later reduce the conjugacy prob-

lem for lists to testing, for input wordsu andv, which powers of a short-lex straight

word conjugateu to v. This testing process is the concern of the next two subsec-

tions.

2.3.3 Conjugating by a Power of a Short-lex Straight Word

In this subsection, we suppose that we are given anX-wordgwhich labels a geodesic

in Γ and a short-lex straight wordy. We wish to find a useful description of the con-

jugatesgyn
.

We begin by proving a result which is true of general vertex-hyperbolic graphs.

Lemma 2.3.21.Let â, b̂, ĉ andd̂ be vertices inΓ such that l:= d(â, b̂) = d(ĉ, d̂).

Letα1 : [0, l ]→ Γ be a geodesic path from̂a tob̂ and letα2 : [0, l ]→ Γ be a geodesic

path fromd̂ to ĉ as in Figure 2.2.
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b̂

ĉd̂ N1

â

α1

α2

N2

Figure 2.2: A geodesic quadrilateral

α1

α2 p̂

q̂′′

q̂ q̂′

K

Figure 2.3: A thin part of a quadrilateral

ĉ p̂′ b̂

q̂
p̂

q̂′

Figure 2.4: Points after the meeting points are distant
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Define the constants

K := d(â, b̂)−d(b̂, d̂)

N1 := (â, b̂)d̂

N2 := (b̂, ĉ)d̂.

For i ∈ N:

1. If N1≤ i ≤ N2 then

d(α2(i),α1(i +K))≤ 2δ.

2. If N1+K ≤ i ≤ N2+K then

d(α2(i−K),α1(i))≤ 2δ.

3. If l ≥ i ≥max{N1+K,N2,N2+K} then

d(α1(i),α2(i)) =
3δ d(b̂, ĉ)−2(l − i).

If l ≥ i ≥ d(â, d̂) then at least one of these three cases applies.

Proof. Pick a geodesicγ := [b̂, d̂] so that we have two geodesic triangles, one with

corners ˆa, b̂, andd̂; the other with cornerŝb, d̂ andĉ; both sharing a common side

v. Also, let p̂ := α2(i) andq̂ := α1(i).

Suppose thatN1≤ i ≤ N2. Note that ˆp corresponds to some pointq̂′′ on γ which

in turn corresponds to some pointq̂′ onα1 as illustrated in Figure 2.3. Observe that

d(â, q̂′) = d(â, b̂)−d(b̂, q̂′)

= d(â, b̂)−d(b̂, q̂′′)

= d(â, b̂)−d(b̂, d̂)+d(d̂, q̂′′)

= d(â, b̂)−d(b̂, d̂)+d(d̂, p̂)

= K +d(d̂, p̂)

= K + i

= K +d(â, q̂),
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so q̂′ = α1(i +K), and a geodesic path between ˆp andq̂′ has length at most 2δ as

required in the first case.

For the second case, just use the first case withi−K in place ofi.

For the final case, note that

N1+K =
d(d̂, â)+d(d̂, b̂)−d(â, b̂)

2
+d(â, b̂)−d(b̂, d̂)

=
d(â, d̂)+d(â, b̂)−d(b̂, d̂)

2
= (b̂, d̂)â, (*)

the distance from ˆa to the meeting point onα1.

Now suppose thati ≥max{N1+K,N2,N2+K}. Letβ be a geodesic from̂b to ĉ.

Thend(d̂, p̂)≥ N2, so p̂ corresponds to a vertex̂p′ on β. Similarly, d(â, q̂) ≥ N1+

K = (b̂, d̂)â by (*) so q̂ corresponds to a vertex̂q′′ on γ with d(d̂, q̂′′) = i−K ≥ N2,

which in turn corresponds to a vertexq̂′ on β. This is illustrated in Figure 2.4.

Now,

d(p̂′, q̂′) = d(b̂, p̂′)−d(b̂, q̂′)

= d(b̂, ĉ)−d(ĉ, p̂)−d(b̂, q̂′)

= d(b̂, ĉ)−d(b̂, q̂)−d(b̂, q̂)

= d(b̂, ĉ)−2d(b̂, q̂)

= d(b̂, ĉ)−2(d(â, b̂)− i),

sod(α1(i),α2(i)) =3δ d(b̂, ĉ)−2(l − i) as required.

For the last statement, assume thati ≥ d(â, d̂) and that the first two cases do

not apply. Sincei ≥ d(â, d̂) ≥ (â, b̂)d̂ = N1, we havei > N2 or we are in Case 1.

Similarly, (*) gives usi ≥ d(â, d̂) ≥ (b̂, d̂)â = N1+K, so i > N2+K or we are in

Case 2. Thereforei ≥max{N1+K,N2,N2+K} and we are in Case 3; in particular

l ≥ i ≥ d(â, d̂) implies that one of the three cases applies. �

This lemma allows some results about conjugates to be shown.In particular,

simply building the construction above in the group for somelarge power of a con-

jugating word gives computable estimates on the lengths of all smaller power con-

jugates, and a constraint on the form of those conjugates which are “short.” Recall



2.3. THE INFINITE ORDER CASE 35

that∆(u,v) = (â·u, â·v)â for X-wordsu andv.

Lemma 2.3.22.Suppose that y is a straight word and that g labels a geodesic in Γ.

Let n∈ N, let K := |y|n−|gyn|G and let0≤ j ≤ n.

1. If ∆(g,gyn)≤ |y| j ≤ ∆(gyn,yn) then gy
j
=G h(y∞(K))−1 for some word h with

|h| ≤ 2δ.

2. If ∆(g,gyn)+K ≤ |y| j ≤ ∆(gyn,yn)+K then gy
j
=G y∞(−K)h for some word

h with |h| ≤ 2δ.

3. If |y|n≥ |y| j ≥max{∆(gyn,yn),∆(g,gyn)+K,∆(gyn,yn)+K} then|gy j |G =3δ

|gyn|G−2|y|(n− j).

If |y| j ≥ |g| then at least one of the three cases applies.

Proof. Let ĉ := â·g, d̂ := ĉ ·yn, ê := â ·yn and f̂ := â, and note that the three cases

of Lemma 2.3.21 (withi = |y| j) correspond exactly to the three cases here.

In the first case, we know thatd( f̂ · yn(i), ĉ· yn(i +K)) ≤ 2δ so there is a word

h of length at most 2δ with f̂ · yn(i)h= ĉ · yn(i +K). By definition,yn(i) = y j and

yn(i+K) =F y jy∞(K). Now, sincegy j
labels a path from ˆc·yn(i) to f̂ ·yn(i), we see

thatgy j
=G h(y∞(K))−1 and we are done.

For the second case,yn(i−K) =G y jy∞(−K) so by a similar argumentgy j
=G

y∞(−K)h for some wordh of length at most 2δ as required.

For the third case, sinced(d̂, ê) = |gy j |G andd(ĉ, f̂ ) = |y|n, the third part of this

lemma is proved by the third part of Lemma 2.3.21.

Noting that|g| = d(ĉ, f̂ ), the last statement again corresponds to the last state-

ment of Lemma 2.3.21. �

Recall that we are trying to find a useful description of the conjugatesgyn
. We

will start by determining whether a power ofy centralisesu, and thus establish

whether or not the set of conjugates is infinite.

Since the conjugates in the first range in Lemma 2.3.22 are parametrised by a

word of length at most 2δ, if a large number ofj in this range can be found, some

conjugate will repeat and some power ofy will indeed be in the centraliser ofg. The

next lemma states this more precisely.
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Lemma 2.3.23.Suppose that y is a straight word, that g labels a geodesic inΓ, and

that N∈ Z. If N−
⌊
|g|+|gyN |G

2|y|

⌋
> V then there exist constants d,e with |g| −2δ≤

d≤ |g| and1≤ e≤V such that

|gyi |G =2δ d

for all i ∈ Z, and

ye∈CG(g).

Proof. The number of conjugatesgy j
in the first case of Lemma 2.3.22 is at least

⌈
∆(gyN

,yN)−∆(g,gyN)

|y|

⌉

=

⌈
|gyN|G+ |y|N−|gyN|G

2|y| − |g|+ |gyN|G−|y|N
2|y|

⌉

=

⌈
2|y|N−|gyN|G−|g|

2|y|

⌉

= N−
⌊
|g|+ |gyN|G

2|y|

⌋
.

Let p := ∆(gyN,yN)
|y| and letK := |y|N− |gyN|G as in Lemma 2.3.22. Since the

conjugatesgyn
for p≤ n≤ p+K are all of the formh(y∞(K))−1 for wordsh ∈

B2δ(1), if there are more thanV of them there must be at least one duplicate, say,

gyi
=G gy j

for some integersi and j with p+V +1> j > i ≥ p. Let e := j− i ≤V,

so thatg=G gyiy− j
=G gye

, andye is in the centraliser ofg as required.

Since all conjugatesgyk
can now be written in the formgyl

for somep≤ l ≤
p+e≤ ∆(gyN

,yN), Lemma 2.3.22 implies that they are all of the formh(y∞(K))−1,

so in particular|gyi |G =2δ |K|. Sinceg = gy0
we have|g| ≤ |K|+ 2δ, and finally

|K|=
∣∣|y|N−|gyN|G

∣∣≤ |g| so we may taked := |K| and we are done. �

The following lemma illustrates that we can test whether some power ofy is in

the centraliser ofg by finding the length of a single group element.

Lemma 2.3.24.Suppose that y is a straight word and that g labels a geodesic in Γ.

If N >V +
⌊
|g|+δ
|y|

⌋
and|gyN|G≤ |g|+2δ then N−

⌊
|g|+|gyN |G

2|y|

⌋
>V.
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In particular |gyN|G≤ |g|+2δ if and only if some power of y is in the centraliser

of g.

Proof. The first part is just straightforward evaluation:

N−
⌊
|g|+ |gyN|G

2|y|

⌋
> V +

⌊ |g|+δ
|y|

⌋
−
⌊
|g|+ |gyN|G

2|y|

⌋

≥ V +

⌊ |g|+δ
|y|

⌋
−
⌊

2|g|+2δ
2|y|

⌋

= V.

For the second part, note that the first part covers the only ifcase by Lemma

2.3.23, so it remains to prove the if case. Suppose thatyn is in the centraliser ofg

for somen> 0. LetN1 := n(V + |g|+1). ClearlyyN1 centralisesg, so in particular

|gyN1|G = |g| ≤ |g|+2δ. Also

N1−
⌊
|g|+ |gyN1|G

2|y|

⌋
= N1−

⌊
2|g|
2|y|

⌋

≥ nV+ |g|n+n−|g|
> V,

so by Lemma 2.3.23 we have|gyN|G≤ |g|+2δ as required. �

Since we can now detect when some power ofy centralisesg, and since we know

the behaviour of conjugatesgyk
in this case, it remains to analyse the behaviour of

the conjugates when no power ofy centralisesg. We now show that if no power of

y centralisesg then the length of conjugatesgyn
for largen is very predictable.

Lemma 2.3.25.Suppose that y is a straight word and that g labels a geodesic in

Γ. If N >
|g|
|y| and |gyN|G > |g|+2δ then|gyn|G =3δ |gyN|G+2|y|(n−N) for n∈ N

satisfying n≥ N.

Proof. Apply Lemma 2.3.22 withj = N. SinceN|y| > |g|, at least one of the three

cases applies. Because|gyN|G > |g|+2δ≥ K+2δ, the first two cases cannot apply,

so the third case must apply and|gyN|G =3δ |gyn|G−2|y|(n−N), which can easily

be rearranged to the required equation. �
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The next result is simply a summary of the above results.

Proposition 2.3.26.Let g∈ G and let y be some straight word. Let N> V +⌊
|g|G+δ
|y|

⌋
. One of the following is true:

1. |gyN|G≤ |g|G+2δ and there is some0< i ≤V such that yi ∈CG(g).

2. |gyN|G > |g|G+2δ and |gyn|G =3δ |gyN|G+2|y|(n−N) for any n≥ N.

In the next subsection, we use this information to solve the conjugacy problem

in the special case where the conjugating element is required to be a power of a

short-lex straight word.

2.3.4 Testing Conjugacy by Short-lex Straight Words

In this subsection, we suppose we are givenX-wordsu andv and a short-lex straight

wordy, and wish to test whetheruyn
=G v for some integern.

Proposition 2.3.27.Let u,v∈ G and let y be some straight word. In time O(|u|+
|v|+ |y|) it is possible to find r, t ∈ Z∪{∞} such that either

1. 0≤ r < t ≤V and uy
j
=G v if and only if j≡ r modt,

2. r ∈ Z, t = ∞ and r is the unique integer such that uyr
=G v, or

3. r = ∞, t = ∞ and there is no integer n such that uyn
=G v.

Proof. First, letN :=V +1+
⌊
|u|G+|v|G+δ

|y|

⌋
and letlg := |gyN|G, whereg is eitheru

or v.

If lu ≤ |u|G+2δ but lv > |v|G+2δ then by Proposition 2.3.26, the conjugates

uyn
have bounded length whereas the conjugatesvyn

do not. Thus there can be no

n∈ Z such thatuyn
=G v. The same is true if these two inequalities are reversed, so

if we find thatu andv lie in different cases of Proposition 2.3.26 then we may set

r = t = ∞ and stop.

Otherwise, it can be assumed that bothuandv lie in the same case of Proposition

2.3.26.

Now suppose thatlu ≤ |u|G+ 2δ. By Proposition 2.3.26, some poweryn for

n≤ V centralisesa, so in particular Case 2 does not apply. SinceV is dependent
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only on the chosen presentation forG, it is possible to check for each 0≤ r ′< t ′≤V

if uyt′
=G u or uyr′

=G v in timeO(|u|+ |v|+ |y|). If no r ′ is found, Case 3 holds so

let r = t = ∞, otherwise Case 1 holds so pick the lowest values found forr ′ andt ′

asr andt respectively.

Finally, suppose thatlu > |u|G+2δ. Proposition 2.3.26 implies that|uyn|G =3δ

lu+ 2|y|(n−N) for largen, so Case 1 cannot apply and no power ofy is in the

centraliser ofu. In fact, by Proposition 2.3.26, ifuyr
=G v then

lu+2|y|(n+ r−N) =3δ |uyn+r |G
= |vyn|G
=3δ lv+2|y|(n−N)

for all largen. Rearranging,lv− lu =6δ 2|y|r, so lv−lu−6δ
2|y| ≤ r ≤ lv−lu+6δ

2|y| . Because

no power ofy centralisesu, there can only be onen such thatuyn
=G v and to find it,

we must simply check eachr in this range. If someyr conjugatesu to v then Case 2

holds so sett = ∞ and stop, otherwise Case 3 holds so setr = t = ∞. At most 6δ+1

checks of conjugatesuyn
need to made to distinguish between these two cases, and

each check takes timeO(|u|+ |v|+ |y|) as required. �

We summarise this information in the following algorithm.

Algorithm 2.3.28. Test which powers of a short-lex straight are conjugating ele-

ments.

1: function TESTCONJUGACYBYSLS(u,v,y)

Input: Two X-wordsu andv and a short-lex straightX-wordy

Output: Valuesr andsas in Proposition 2.3.27

2: N←V +
⌊
|u|G+|v|G+δ

|y|

⌋
+1

3: lu← |uyN|G
4: lv← |vyN|G
5: if lu≤ |u|G+2δ then

6: if lv > |v|G+2δ then

7: return ∞,∞
8: else

9: r← ∞
10: s← ∞
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11: for i ∈ {1, . . . ,V} do

12: if uyi
=G u then

13: s←min{i,s}
14: end if

15: if uyi
=G v then

16: r←min{i, r}
17: end if

18: end for

19: if r = ∞ then

20: return ∞,∞
21: else

22: return r,s

23: end if

24: end if

25: else ⊲ If we get here thenlu > |u|G+2δ
26: if lv≤ |v|G+2δ then

27: return ∞,∞
28: else

29: l ←
⌈

lv−lu−6δ
2|y|

⌉

30: m←
⌊

lv−lu+6δ
2|y|

⌋

31: for r ∈ {l , . . . ,m} do

32: if uyr
=G v then

33: return r,∞
34: end if

35: end for

36: return ∞,∞
37: end if

38: end if

39: end function

In the next subsection, we complete a solution to the conjugacy problem where

we know an element is of infinite order by putting together allof the tools we have

so far in this section.
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2.3.5 Testing Conjugacy ofA and B

We are now in a position to test if there is an element ofG which conjugates the

entire listA = (a1, . . . ,am) to B = (b1, . . . ,bm). Recall thata1 is assumed to be of

infinite order. Letµ be an upper bound on the length of elements in either list.

Use Corollary 2.3.20 (TESTINFORDER) to test in timeO(|b1|) if b1 is of infinite

order. If it is not,a1 andb1 are not conjugate, so neither areA andB and we may

stop.

Next, apply Algorithm 2.3.18 (GETCONJUGATIONCANDIDATES) on a1 andb1

to obtain anX-word p, a short-lex straight wordy and a setS of X-words with at

mostV elements such thatag
1 =G b1 only if g=G pyns for somen∈ Z ands∈S. All

returnedX-words have lengthO(|a1|+ |b1|) and this step takes timeO(|a1|+ |b1|)
and in particularO(µ).

We repeat the remaining steps for each elements∈ S. Since there are at mostV

elements inS, we can do this without affecting the overall runtime of the algorithm.

For eachi ∈ {1, · · · ,m}, apply Algorithm 2.3.28 (TESTCONJUGACYBYSLS) to

ap
i , bs−1

i andy to obtain valuesr i andti. This takes timeO(mµ).2

If r i = ∞ for somei thenap
i can’t be conjugated tobs−1

i for any power ofy, so

the same is true ofAp andBs−1
and we can move to the next element ofS.

Otherwise, a set ofm (possibly modular) equations must be solved simultane-

ously. If ti = ∞ for somei, this is simple; it suffices to check thatr i = r j for each

j , i wheret j = ∞, and thatr i ≡ r j modt j for each j , i wheret j , ∞. If all of

the equations are satisfied thenApyri s=G B andr i is the unique power ofy with this

property; otherwise there is no power ofy which conjugatesAp to Bs−1
. Either way

we may move onto the nexts and these checks take timeO(mµ) for eachs.

The remaining case is where allti and r i are finite, in which case the set of

equationsj ≡ r i modti must be solved simultaneously. First, note that ifd and

e are coprime natural numbers thenj ≡ c modde if and only if j ≡ c modd and

j ≡ c modeboth hold, so each congruencej ≡ r i modti can be split into a number

of congruences modulo prime powers. Asti ≤V for eachi, the time taken by this

operation is independent of input for eachi, so inO(m) overall.

For integersc andd, a prime numberp and natural numberse, f the two equa-

2As y was originally found as an element of the centraliser of a power of a1, it might seem
superfluous to testi = 1 here, but we only know at this point that a power ofy centralises apowerof
a1, and in any case it is not clear what power ofy this is the case for.
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tions a≡ c modpe and a≡ d modpepf are equivalent to the second ifc≡ d

modpe and have no solution if not. Thus the equations can be either shown to be

inconsistent, or reduced to a set of at mostV equations modulo prime powers where

each prime is distinct and each prime power is at mostV. By allocating an array

with an element corresponding to each prime belowV, this will take constant time

per starting prime power equation, so again timeO(m) overall.

Finally, the well-known Chinese Remainder Theorem yieldsr ′ andt ′ such that

j ≡ r ′ modt ′ if and only if Apyjs =G B. Since at this point there are at mostV

congruences modulo pairwise coprime numbers less than or equal toV, the running

time of this final step is independent of input length.

Thus we have an algorithm SOLVESIMULTANEOUSMODULAREQUATIONS which

takes as input a list of integer pairs(r i ,si) and solves the set of modular equations

u≡ r i modsi simultaneously. We will suppose that it returns integersr ands such

thatu≡ r mods if and only if u was a solution to the original set of equations, and

returns∞,∞ if there is no solution.

To summarise, here is the full algorithm in pseudocode.

Algorithm 2.3.29. Test conjugacy of lists where the first element ofA is known to

have infinite order.

1: function FINDCONJUGATINGELEMENTSINF(A, B)

Input: ListsA= [a1, . . . ,am] andB= [b1, . . . ,bm] with a1 of infinite order.

Output: A set of all elementsg∈G such thatg−1Ag=G B.

2: if ¬TESTINFORDER(b1) then

3: return {}
4: end if

5: p,y,S← GETCONJUGATIONCANDIDATES(a1,b1)

6: O←{}
7: for s∈ Sdo

8: E←{} ⊲ Any modular equations go here

9: n← null ⊲ Set tor i if si = ∞ for somei

10: for i ∈ {1, . . . ,n} do

11: a← π(ap
i )

12: b← π(bs−1

i )

13: r i , ti← TESTCONJUGACYSLS(a,b,y)
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14: if r i = ∞ then

15: next s

16: end if

17: if ti = ∞ then

18: n← r i

19: end if

20: E← E∪{(r i, ti)}
21: end for

22: if n= null then

23: (r, t)← SOLVESIMULTANEOUSMODULAREQUATIONS(E)

24: O←O∪{pyrytks : k∈ Z}
25: else

26: for (r, t) ∈ E do

27: if t = ∞ andr , n then

28: next s

29: else ift < ∞ andr . n modt then

30: next s

31: end if

32: end for

33: O←O∪{pyns}
34: end if

35: end for

36: return O

37: end function

Since |y| ∈ O(|a1|) and |s| ∈ O(|a1|+ |b1|), the loop on line 10 takes time

O(|ai|+ |bi |+ |a1|+ |b1|) per iteration, so timeO(mµ) in total. By the discus-

sion above, line 23 runs in timeO(m) and returnsr ands whose value is bounded

above byV, so this section runs within timeO(mµ). Finally, then on line 33 has

|yn| ∈O(µ) so the last section also runs in timeO(mµ).

Notice that on line 33 the wordpyns has lengthO(µ) so is the language of an

X±1-DFA with O(µ) states which can be computed in timeO(µ) by Proposition

1.6.4.

Similarly on line 24 the set{pyrytks : k ∈ Z} is the concatenation of the sets

{pyr}, {ytk : k∈ Z} and{s} and that each of these is accepted by anX±1-FSA with
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O(µ) states (the language of powers can for instance be represented by{ytk : k≥ 0}
union{y−tk : k≥ 0}).

We now know that each set added toO is accepted by anX±1-FSA with O(µ)

states, which can be computed in timeO(µ) by Proposition 1.6.4. A slightly more

careful argument would show that each FSA can in fact be chosen to be determin-

istic with number of states still inO(µ).

ThusO is the union of at mostV X±1-FSAs each withO(µ) states, so by Propo-

sition 1.6.4 it too is the language of anX±1-FSA with O(µ) states which can com-

puted inO(µ) time.

Instead of building the setO, we may instead simply returnpyns on line 33,

returnpyrs on line 24 or returnnull on line 36 - in this case, the algorithm will test

for the existence of a conjugating element and return one if such an element exists.

To summarise:

Theorem 2.3.30.Given integersδ ≥ 1 and l, there is an algorithm which, given

a δ-hyperbolic group G=< X|R> with |X| ≤ l, a number m≥ 0 and lists A=

(a1, · · · ,am) and B= (b1, · · · ,bm), each containing words in the generators of G

with a1 representing an infinite order element of G, can find a (non-deterministic)

X±1-FSA whose language L satisfies:

• Aw =G B for any w∈ L, and

• for any g∈G such that Ag =G B there is an element w∈ L with w=G g.

If |ai| ≤ µ and|bi| ≤ µ for each1≤ i ≤ m then the algorithm will run in time

O(mµ). It can be modified to return a single conjugating element g∈G with Ag =B,

if one exists, without affecting the running time.

Note that FINDCONJUGATINGELEMENTSINF(A,A) returns the centraliser ofA

in timeO(mµ).

2.4 Conjugacy of General Lists

In this section we will show that the conjugacy problem for lists is solvable in linear

time even if all elements of both lists are of finite order, by either finding an infinite

order element which is a multiple of some of the elements in one or the other list, or
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x̂

p̂

ŷ

ẑ

Figure 2.5: A midpoint on a geodesic triangle

by reducing the problem to testing the conjugacy of bounded length lists containing

only elements of bounded length.

2.4.1 Simple Results

We start by making an elementary observation about mid-vertices.

Lemma 2.4.1.Supposêx, ŷ andẑ are vertices inΓ and thatp̂ is a mid-vertex of a

geodesic path[x̂, ŷ]. Then

d(p̂, ẑ)≤ 2max{d(x̂, ẑ),d(ŷ, ẑ)}−d(x̂, ŷ)+1
2

+δ.

Proof. Let [x̂, ẑ], and [ŷ, ẑ] be geodesics so that we have a geodesic triangle with

corners ˆx, ŷ andẑ.

Assume thatd(x̂, ẑ)> d(ŷ, ẑ), as in Figure 2.5. Note that

d(x̂, p̂) ≤ d(x̂, ŷ)+1
2

≤ d(x̂, ŷ)+d(x̂, ẑ)−d(ŷ, ẑ)
2

= (ŷ, ẑ)x̂,
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so p̂ corresponds to a vertex ˆq on [x̂, ẑ]. Notice that

d(p̂, ẑ) ≤ d(p̂, q̂)+d(q̂, ẑ)

≤ δ+d(x̂, ẑ)−d(q̂, x̂)

= δ+d(x̂, ẑ)−d(p̂, x̂)

≤ d(x̂, ẑ)+δ− d(x̂, ŷ)−1
2

,

as required for this case. We proceed similarly ifd(x̂, ẑ)< d(ŷ, ẑ).

It remains to consider the case whered(x̂, ẑ) = d(ŷ, ẑ). If d(x̂, ŷ) is even then ˆp

must be the meeting point on[x̂, ŷ]. Otherwise, suppose thatd(p̂, x̂) = (ŷ, ẑ)x̂− 1
2.

In either case, ˆp corresponds to a vertex ˆq on [x̂, ẑ] which must be within1
2 of the

meeting point on that side, so

d(p̂, ẑ) ≤ d(p̂, q̂)+d(q̂, ẑ)

≤ δ+(x̂, ŷ)ẑ+
1
2

=
d(x̂, ẑ)+d(ŷ, ẑ)−d(x̂, ŷ)+1

2
+δ

=
2max{d(x̂, ẑ),d(ŷ, ẑ)}−d(x̂, ŷ)+1

2
+δ

as required. Ifd(p̂, x̂) = (ŷ, ẑ)x̂+
1
2 then interchange ˆx andŷ in the above argument

to get the same result. �

We also make a simple observation which will be used later to aid us in short-

ening list elements.

Lemma 2.4.2.Suppose g,a1,a2,b1,b2 ∈G. Then(a1,a2)
g = (b1,b2) if and only if

(a1a2,a2)
g = (b1b2,b2).

Proof. The proof is elementary; the forward implication can be derived from the

identity (a1a2)
g = ag

1ag
2 and the reverse fromag

1 = (a1a2)
g(a−1

2 )g. �

One can extend this to show that we can multiply any elements in a pair of lists

together without altering the set of conjugating elements,provided we do the same

in both lists.
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2.4.2 Bounding Element Length in Short Lists

In this subsection, we show that if the number of elements in alist is bounded, we

can find a related list in which either every element has bounded length or at least

one element has infinite order. We will describe in a later section how to use this

information to solve the conjugacy problem. The procedure to find such a list is

described below.

Proposition 2.4.3. There is an algorithmSHORTENL IST which, given a list A=

(a1, . . . ,am) of elements of G, will either:

• return some c∈G which for any1≤ i ≤m has

|c−1aiai+1 · · ·amc| ≤ 3m−i
(

7L+δ+
1
2

)

or

• return integers j and k such that j≤ k ≤ m and aja j+1 · · ·ak is of infinite

order.

Further, the algorithm will run in time O(m3µ), where µ is the maximum length

of the elements in A.

Proof. We first state the algorithm, and then prove that it works as advertised.

1: function SHORTENL IST([a1, . . . ,am])

2: c0← 1

3: for k := 1 to m do

4: for j ∈ {1, . . . ,k} do

5: if |(π(c−1
k−1a j · · ·akck−1))C|G > 2L then

6: return null, j,k ⊲ a j · · ·ak is of infinite order

7: end if

8: end for

9: ck← π(ck−1(π(c−1
k−1akck−1))L)

10: end for

11: return cm,null,null

12: end function
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ê

ck−1 akck−1
p̂

π(c−1
k−1akck−1)b̂ ĉ

Figure 2.6: Extendingc.

If the algorithm finds and returns integersj,k on line 6, then a conjugateg of

a j · · ·ak has|(π(g))C| ≥ 2L, and sog is of infinite order by Proposition 2.3.1. But

thena j · · ·ak has infinite order also and the algorithm is correct to returnj,k.

We may therefore assume that the assertion on line 5 always fails. It remains

to show that after the outer loop has runk times, the length ofc−1
k ai · · ·akck is less

than or equal to(7L+δ+ 1
2)3

k−i and that the algorithm has taken timeO(k3µ).

In order to show these facts, it is useful to show that|ck| ≤ k(µ
2 + δ+1). We

do this now. Consider a geodesic triangle with corners ˆe, b̂ := ê· ck−1 and ĉ :=

ê·akck−1. Label the sides with the short lex geodesics[ê, b̂], [b̂, ĉ] and [ê, ĉ]. Let

p̂ := b̂· (π(c−1
k−1akck−1))L, which is a mid-vertex of[b̂, ĉ] as illustrated in Figure 2.6.

Sinceck labels a geodesic from ˆe to p̂, by Lemma 2.4.1 we have

|ck| ≤
2max{d(ê, b̂),d(ê, ĉ)}−d(b̂, ĉ)+1

2
+δ

≤
2max{|ck−1|, |akck−1|G}−|c−1

k−1akck−1|G+1

2
+δ.

Suppose|ck−1| ≥ |akck−1|G. Notice that|c−1
k−1akck−1|G≥ |ck−1|− |akck−1|G by

the triangle inequality, so we find that

|ck| ≤
2|ck−1|− |ck−1|+ |akck−1|G+1

2
+δ

=
|ck−1|+ |akck−1|G+1

2
+δ

≤ 2|ck−1|+1
2

+δ

≤ |ck−1|+
|ak|
2

+δ+1.
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Similarly if |ck−1|< |akck−1|G then

|ck| ≤
2|akck−1|G−|akck−1|G+ |ck−1|

2
+δ

=
|akck−1|G+ |ck−1|

2
+δ

≤ |ak|+2|ck−1|
2

+δ

= |ck−1|+
|ak|
2

+δ+1.

In either case, then,|ck| ≤ |ck−1|+ |ak|
2 +δ+1.

By repeating this argument starting atc0 we find that|ck| ≤ k(µ
2 + δ + 1) as

required.

It can now be shown that the algorithm runs in timeO(m3µ). Note that|c−1
k−1a j · · ·akck−1| ≤

kµ+2|ck−1| ≤ 2k(µ+δ+1) so the checks on line 5 each run in timeO(kµ). There

arek such steps per loop and a total ofm loops, so the overall running time is in

O(m3µ) for this step.

Similarly, |ck−1c−1
k−1akck−1| ∈O(kµ) so line 9 runs in timeO(kµ) and the overall

time taken in this step is inO(m2µ). Therefore the whole algorithm runs in time

O(m3µ) as required.

It remains to show that the bound on the length of the elements(ai · · ·am)
cm is

satisfied. This can be shown by induction onm. Let us first, for eachk∈ {1, . . . ,m},
defineKk,k := 2L. Now let Ki,k+1 := 3Ki,k+10L+2δ+1 for any 1< i ≤ k. The

aim is to use induction onk to show that|c−1
k ai · · ·akck|G ≤ Ki,k for any 1≤ i ≤ k

and then show thatKi,m is within the required bound.

In thek = i case,ack
k =G ddL =F dC whered = π(ack−1

k ). Since we ensure that

|dC|G≤ 2L on line 5 we must have|ack
k |G≤ Kk,k = 2L.

Now suppose that the inequality|c−1
k ai · · ·akck|G ≤ Ki,k is satisfied for all 1≤

i ≤ k. We must show that|c−1
k+1ai . . .ak+1ck+1|G≤ Ki,k+1 for eachi.

Pick some specifici, and lete := π(c−1
k ai . . .ak+1ck) and g := π(c−1

k ak+1ck).
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Notice thatck+1 =G ckgL and so

(ai . . .ak+1)
ck+1 =G ec−1

k ck+1

=G egL

=G e
e−1

L gL
C

=G e
e−1

L g−1
R gC

C .

The checks on line 5 ensure that|eC|G ≤ 2L, and|gC|G ≤ 2L, so we know that

|ee−1
L g−1

R
C |G≤ 2|gReL|G+6L. In particular, we will be done if we can show that

|gReL|G≤
3
2

Ki,k+2L+δ+
1
2
. (2.1)

Let f := π(c−1
k ai . . .akck) =G eg−1 and recall that| f | ≤ Ki,k by our earlier as-

sumption. Consider a geodesic triangle with corners ˆe, b̂ := ê· g and ĉ := b̂ · eL

illustrated in Figure 2.7. Note that

d(ê, ĉ) = |geL|G
= | f−1eeL|G
≤ |eeL|G+Ki,k

= |eLeC|G+Ki,k,

but |eC|G≤ 2L so

d(ê, ĉ) ≤ |eL|+Ki,k+2L

≤ |e|
2
+Ki,k+2L

≤ | f |+ |g|
2

+Ki,k+2L.

Also, d(b̂, ĉ) = |eL| ≤ |e|2 ≤
| f |+|g|

2 .
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ê b̂

ĉ

eL

gp̂

π(geL)

Figure 2.7: BoundinggReL

Pick the mid-vertex ˆp := ê·gL on [ê, b̂]. Lemma 2.4.1 implies that

|gReL|G = d(p̂, ĉ)

≤ 2max{d(ê, ĉ),d(b̂, ĉ)}−d(ê, b̂)+1
2

+δ

≤ 2max{ | f |+|g|2 +2L+Ki,k,
| f |+|g|

2 }−|g|+1

2
+δ

=
2(2L+Ki,k)+ |g|+ | f |− |g|+1

2
+δ

≤ 2(2L+Ki,k)+ | f |+1
2

+δ

≤ 3
2

Ki,k+2L+δ+
1
2
,

as required by (2.1).

Therefore|(ai · · ·ak)
ck|G ≤ Ki,k for each 1≤ i ≤ k≤m and it remains to show

thatKi,k≤ 3k−i(7L+δ+ 1
2). But

Ki,k = 3Ki,k−1+10L+2δ+1

= 3k−iKi,i +(10L+2δ+1)
k−1

∑
n=i

3n−i

= 3k−iKi,i +(10L+2δ+1)
3k−i−1

3−1

= 3k−i×2L+(3k−i −1)

(
5L+δ+

1
2

)

≤ 3k−i
(

7L+δ+
1
2

)
,

and we are done. �
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We end this subsection by noting that by repeated application of Lemma 2.4.2,

the conjugacy problem remains unchanged between studying the lists(a1, . . . ,am)

and(b1, . . . ,bm), and the lists(a′1,a
′
2, . . . ,a

′
m) and(b′1,b

′
2, . . . ,bm)wherea′i =ai · · ·am

andb′i = bi · · ·bm. This is critical to our solution later.

2.4.3 Some Worse than Linear Time Algorithms

This subsection provides a small toolbox of results which solve various problems

involving lists in worse than linear time. They are useful, as the previous subsection

allows us to bound the lengths of elements in terms of the number of elements.

The following result is a restatement of Corollary 3.2 of [3].

Proposition 2.4.4.Let (a1, . . . ,am) be a list of m pairwise distinct finite order ele-

ments of G. Suppose that x∈G satisfies

|x|G≥ (2k+5)4δ+2(l +2δ)

where l= max{|a1|G, |ax
1|G, . . . , |am|G, |ax

m|G} and k is the number of generators of

G. Then m is less than or equal to Q2.

The statement in [3] says thatm≤ (2k)8δ, but the proof there is sufficient to

prove the statement here. Proposition 2.4.4 implies that the centraliser of a long list

of finite order elements is finite. Theorem III.Γ.3.2 of [2] then provides a bound on

the number of elements in a finite subgroup:

Proposition 2.4.5.If G is aδ-hyperbolic group and H is a finite subgroup of G then

there is an element g∈ G with Hg contained entirely within a ball in the Cayley

graph of G of radius4δ+2.

We can now prove the following corollary:

Corollary 2.4.6. There is a constant R and an algorithmFINDCENTRALISEREXP

which takes as input a list A consisting of n> Q2 words, all of which represent

pairwise distinct finite order elements of G, returns the centraliser C of A and runs

in time O(nµRµ) where µ is an upper bound on the length of words in A. All elements

of C have length in O(µ) and the number of elements in C is in O(1).
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Proof. Suppose thatA= (a1, . . . ,an) is such a list. Ifx is in the centraliser ofA then

ax
i = ai for all 1≤ i ≤ n, so in Proposition 2.4.4 we have thatl = µ. Sincen> Q2,

we have|x|G < R(µ+2δ), whereR := (2k+5)4δ+2.

Since all elements inC are of bounded length,C is finite. Proposition 2.4.5

implies thatC can be conjugated into a ball inΓ of radius 4δ+2, and in particular

the number of elements inC is bounded by a constant depending only onG.

Thus the algorithm FINDCENTRALISEREXP need now just check for each word

w of length at mostR(µ+2δ) whetherAw =G A. There are at mostRµ+2δ ∈O(Rµ)

such words, and checking each word takes timeO(nµ), so the algorithm runs in

timeO(nµRµ) as required. �

Thus we have a method of computing the centraliser of a long list of short finite

order words. We still need an algorithm which can be used on a short list of short

finite order words. Lemma 4.2 and Proposition 4.3 of [11] showthat the centraliser

of any finite list in a conjugacy automatic group is a regular language. A run-time

analysis of this algorithm is given below for completeness.

Proposition 2.4.7.If A = (a1, . . . ,am) is a list of words, there is a regular language

Z of short-lex least words which is exactly the centraliser of A.

Further, there is a constant R and an algorithmFINDCENTRALISERRATIONAL

which takes as input a list A= (a1, . . . ,am) of X-words returns an X±1-FSA which

accepts Z in time O(Rmµ), where µ is an upper bound on the length of words in A.

Proof. Let WA be the short-lex word acceptor forG and letW be its language.

Pick X±1 DFAs Mx for x ∈ X±1 or x equal to the identity to accept each language

L(x) = {(u,v) : u,v∈W,ux=G xv} in the conjugacy automatic structure forG with

respect toW. Let k be the maximum number of states in these DFAs.

Forw= x1 · · ·xn, let L(w) be the intersection of

L(x1)× . . .×L(xn)

and

{(u1,u2,u2,u3,u3, · · · ,un,un,u1) : u1, . . . ,un ∈W}.

By Proposition 1.6.4, both are regular 2n-variable languages, and are accepted

by a 2n-variable FSA withkn states (the second one is essentially the cartesian
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product of a number of copies of{(w,w) : w∈W}) soL(w) is accepted by an FSA

with at mostk2n states.

Notice that(u1,u2,u2,u3,u3, · · · ,un,un,un+1) ∈ L(w) for some set of wordsui if

and only ifuxi
i = ui+1 for each 1≤ i≤ n, and souw

1 = un+1 = u1. Thus the centraliser

of C(w) is just the projection ofL(w) to its first factor and is accepted by ak2n-state

FSA by Proposition 1.6.4.

The centraliser ofA is the intersection of the centralisersC(ai) of its elements

ai, which by Proposition 1.6.4 is accepted by ak2mµ-state FSA. Computation of this

FSA takes timeO(k2mµ) so it sufficies to letR= k2. �

The reader may notice that it would be possible to use this method instead of

FINDCENTRALISEREXP and the running time would not be dissimilar. We choose

not to in order to give better emphasis to the fact that the centraliser in that case is

finite and avoid the complications of finding the language of the FSA so-returned.

We now have enough information to compute centralisers of lists of short ele-

ments. To complete this section, we give a method of testing conjugacy between

lists of short elements. The main theorem regarding lists offinite order elements

in [3], Theorem 3.3, is restated below.

Proposition 2.4.8.Let A= (a1, . . . ,am) and B= (b1, . . . ,bm) be sets of torsion ele-

ments in G. If A and B are conjugate then there exists a word x with

|x|G≤ (2k+5)4δ+2(µ+2δ)+Q2Q2

where µ is the maximum length of an element in either list and kis the number of

generators of G.

Again, the statement in [3] uses(2k)8δ in place ofQ2, but the proof is sufficient

to prove the statement here. Thus by simply checking each element under the length

above, we have an algorithm TESTCONJUGACYEXP which takes as input two lists

of m words whose elements have length less thanµ and returns a wordw with

Aw =G B if one exists in time exponential inµ.

2.4.4 Ensuring Distinct Elements

Notice that to apply Corollary 2.4.6 to a listA = (a1, . . . ,am) we must ensure that

all of the elements of our input list are distinct. We will be applying the corollary to
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a list of lengthn= Q2+1 which has been returned by SHORTENL IST, so we need

to ensure that theai · · ·an are pairwise distinct group elements for eachi.

Notice that ifai · · ·an =G a j+1 · · ·an for somei ≤ j < n thenai · · ·a j is equal to

the identity inG. We thus need to ensure thatai · · ·a j is never the identity.

If B= (b1, . . . ,bm) then we may replaceai with a′i := ai · · ·a j and replacebi with

b′i := bi · · ·b j without changing the conjugacy problem betweenA andB by Lemma

2.4.2. If one ofa′i andb′i is the identity and the other is not, the lists cannot therefore

be conjugate. If both are the identity, they may be removed from their lists without

altering the conjugacy problem.

Thus the aim of this subsection is to produce a list of indicesi for whichai which

may be removed fromA using the above reasoning, and by doing so either shortenA

to less thann elements or replaceA with a list for whicha j · · ·an are distinct group

elements for eachj ≤ n. To do this efficiently, we will use a real-time solution to

the word problem.

A real-time Turing machine hask two-way infinite work tapes (for some in-

tegerk), one input tape and a finite set of states including a start state and a list of

accepting states. It must read the word on the input tape by reading one letter, then

for each work tape it may write a symbol to the current location and then move that

tape’s head one unit either left or right. The word is accepted if the machine is in an

accept state at the end of input.

The word-problem inG is real-time if there is a real-time Turing machine which

accepts exactly those words which are equal to the identity in G. In [13] it is proved

that the word problem for a word-hyperbolic group is indeed real-time.

We will createn copiesT1, . . . ,Tn of this Turing machine and attach to eachTi

a “logging machine”Ri which records a log of the machine’s behaviour which is

sufficient to “rewind”Ti . That is, it stores for each input letter the directions which

the work heads moved, the symbols which were under each work tape’s head and

the original state of the machine. One can thus rewind eachTi in constant time

by setting its state, moving each of its work heads in reverse, rewriting the stored

symbol for that tape and moving the input tape’s head back oneunit. When doing so

we move the head onRi ’s tape so that it is ready to rewindTi once more if required.

We let l = 0 andk = 1 and start eachTi with a blank input tape. At stepk we

perform the following actions:

1. Incrementl .
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2. Copyak to the end of the input tapes ofT1, . . . ,Tl .

3. AdvanceT1, . . . ,Tl by |ak| letters.

4. If someTi is in an accepting state fori ≤ l , then:

(a) Rewind eachT1, . . . ,Tl by |ak| letters.

(b) Clearak from the end of the input tapes ofT1, . . . ,Tl .

(c) Mark ak as an element which should be removed.

(d) Decrementl .

5. Incrementk.

6. If l ≤ n or k> m then stop.

Thus at stepk, we at worst readak into and then rewind at mostn real-time

Turing machines, which takes timeO(|ak|). We stop after at mostm steps, so the

algorithm runs in timeO(mµ).

After stepk, eachTi holds a the worda′i · · ·a′l where the list(a′1, . . . ,a
′
l) is the

list (a1, . . . ,ak) with the elements marked above skipped.Ti was not in an accept

state immediately after readinga′i · · ·a′j for eachi < j ≤ l so none of these words

is equal to the identity and we have the desired algorithm. Name this algorithm

DETECTIDENTITY.

We now describe a second algorithm. Given listsA andB of the same length,

execute DETECTIDENTITY on each list in turn. If the same set of element indices is

marked to be removed for both lists, remove those elements from both lists to create

lists A′ andB′, which are immediately returned. By the discussion above, if w∈ G

thenAw =G B if and only if A′w =G B′ so we may replaceA with A′ andB with B′

without changing the set of conjugating elements.

If the marked indices differ, returnnull. In this case we know thatA is not

conjugate toB. Name this algorithm ENSUREUNIQUENESS.

2.4.5 Solving the Conjugacy Problem

We are now ready to solve the conjugacy problem in the generalcase.
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SupposeA = (a1, . . . ,am) andB = (b1, . . . ,bm) are lists ofX-words. We wish

to test if one list is a conjugate of the other and return a regular language of words

which conjugateA to B in G, and contains a representative word for each element

with this property. Letµ be the maximum length of all elements inA andB.

First, execute ENSUREUNIQUENESS(π(A),π(B)). If the algorithm returnsnull

then stop and declare the lists not conjugate. If not, replace A andB with the lists

returned by this algorithm. This step takes timeO(mµ).

We now have two listsA andB, each of short-lex least words all of length at

least 1, and such that forn := min{Q2+1,m} the group elements represented by

ai · · ·an are distinct for alli ≤ n.

Let A′ andB′ be the sublists ofA andB respectively containing the firstn ele-

ments.

Apply SHORTENL IST to A′ andB′; this takes timeO(n3µ) = O(µ).

If the algorithm returns an infinite order elementai · · ·a j or bi · · ·b j for some

i ≤ j then addai · · ·a j to the start ofA and addbi · · ·b j to the start ofB (notice that

the set of conjugating elements is unchanged by this action). Now apply FIND-

CONJUGATINGELEMENTSINF, noting that the return value is already a regular lan-

guage, so we are done. The maximum length of an element in the lists is now

( j− i +1)µ≤ nµ, so this takes timeO(mnµ) = O(mµ).

If not, check, for eachi ≤ n if CHECKINFORDER(ai ) returns true. If so, let

j = n and continue as if SHORTENL IST had declaredai · · ·a j to be of infinite order.

Again, this step takes timeO(mµ).

If we have not yet stopped, we have conjugating elementscA andcB which were

returned by SHORTENL IST. Let A′ := (a′1, . . . ,a
′
n) wherea′i = π((ai · · ·an)

cA) and

defineB′ in the same way usingcB. Computing these lists takes timeO(n2µ) =

O(µ).

Use TESTCONJUGACYEXP to find anX-word u with A′u =G B′. If no u is

found,A andB were not conjugate, so we may stop. The time taken for this step is

independent of input.

Supposem> n. SinceA was processed by ENSUREUNIQUENESSandA′ with

TESTINFORDER all elements ofA′ are distinct finite order elements. We may there-

fore execute FINDCENTRALISEREXP to find a finite setC which is the centraliser

of A. Again the time taken is independent of input.

Now check ifAcAwu = BcB for eachw ∈C. Each check takes timeO(mµ) and
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the number of checks is independent of the input lists, so this part executes in time

O(mµ). Return the set of allcAwuc−1
B for which this check succeeds. As this is

a finite set, it is a regular language. In fact, it is a concatenation of the languages

{cA}, C′ and{ucB} whereC′ ⊂C.

By Proposition 1.6.4, the first and last languages are accepted byX±1-FSAs

with O(nµ) = O(µ) states, and the middle one is accepted by anX±1-FSA with

maximum number of states independent of input. The concatenation is accepted by

an FSA whose number of states is the sum of this, which is inO(µ). If only one

conjugating element is required, return the first elementcAwuc−1
B found such that

AcAwuc−1
B =G B, if any.

Finally, suppose thatn = m. Let C be the centraliser ofA′ found using FIND-

CENTRALISERRATIONAL . We have thatAcAwuc−1
B =G B for anyw∈C, so we need

simply return the setO := {cAwuc−1
B : w ∈C}. Notice thatC is recognised by an

FSA with number of states independent of input. Then as before O is the language

of an FSA withO(µ) states and we are done. If only one conjugating element is

required, simply returncAuc−1
B in this case.

This concludes the proof of Theorem 2.1.1.

2.5 The Final Algorithm

This section contains pseudocode for the main part of the algorithm, given input of

two listsA andB of m words.

Algorithm 2.5.1. Solve the list conjugacy problem.

1: function TESTCONJUGACY(A := [a1, . . . ,am],B := [b1, . . . ,bm])

Input: Two equal length lists ofX-words with maximum element lengthµ.

Output: A regular setL for whichπ(L) = {π(w) : w∈G,Aw =G B}.
2: A,B← ENSUREUNIQUENESS(π(A),π(B))
3: if A= null then

4: return {}
5: end if

6: n←min{Q2+1,m}
7: i← null

8: j ← null ⊲ These save indices for whichai · · ·a j is of infinite order
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9: A0← [a1, . . .an]

10: ca, i′, j ′← SHORTENL IST(A0)

11: if i′ , null then

12: i← i′

13: j← j ′

14: else

15: for i′ ∈ {1, . . . ,n} do

16: if TESTINFORDER(ai′ · · ·an) then

17: i← i′

18: j← n

19: end if

20: end for

21: end if

22: B0← [b1, . . .bn]

23: cb, i′, j ′← SHORTENL IST(B0)

24: if i′ , null then

25: i← i′

26: j← j ′

27: end if

28: if i , null then

29: A′← [ai · · ·a j ,a1, . . . ,ai−1,ai+1, . . . ,am]

30: B′← [bi · · ·b j ,b1, . . . ,bi−1,bi+1, . . . ,bm]

31: return TESTCONJUGACYINF(A′ ,B′)

32: end if

⊲ A′ must contain only distinct finite order elements of bounded length

33: A′← [c−1
a a1a2 · · ·anca,c−1

a a2a3 · · ·anca, . . . ,c−1
a anca]

⊲ B′ must contain only elements of bounded length

34: B′← [c−1
b b1b2 · · ·bncb,c

−1
b b2b3 · · ·bncb, . . . ,c

−1
b bncb]

35: g← TESTCONJUGACYEXP(A′ ,B′)

36: if g= null then

37: return {}
38: end if

39: if m> Q2 then

40: C← FINDCENTRALISEREXP(A′ ,B′)
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41: O←{}
42: for w∈C do

43: if Acawg =G Bcb then

44: O←O∪{cawgc−1
b }

45: end if

46: end for

47: return O

48: else

49: C← FINDCENTRALISERRATIONAL (A,B)

50: return {cawgc−1
b : w∈C}

51: end if

52: end function

Once again, we note that the centraliser ofA is returned by TESTCONJUGACY(A,A).

2.6 Conclusion and Possible Further Work

This chapter describes an algorithm which can efficiently solve the conjugacy prob-

lem for lists in the setting of a word-hyperbolic group. The method ties up the

inefficient cases from, and offers an improved asymptotic runtime over the method

described in [3]. It could also be regarded as an improvementover the run time

in [8] in the infinite order case (in the that paper, the authors require that the al-

gorithm checksV! conjugates in the infinite order case; for lists of length 1,the

method here requires onlyV checks although the words involved may be somewhat

longer).

Of course, as it is outlined here the algorithm is not suited for implementation

due to the sheer size of many of the constants. These constants are however rather

simplistic. For instance, where the constantV appears, we may use the number of

short-lex least representatives which can label a 2-correspondance in the Cayley

graph: the set of so-called word differences is typically rather smaller than the

number of words of lengthδ. Even this is likely to be an overestimate, however,

as we are interested in words which can label a specifictypeof 2-correspondance

(that is, one between two two-way infinite geodesics with thesame label).

In the rather simple case ofZ×Z2 with the obvious generating set, for example,
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we find that the Cayley graph is 2-hyperbolic andV = 8, so we might predict that we

must check 8 words to determine if a power of a short-lex straight word centralises

a given word as in Proposition 2.3.27. However, the group is abelian so every word

centralises every other! Similarly, for this group we find that we may takeM = 1,

which is much smaller than the value given above.

The algorithms outlined in this chapter all return non-deterministic FSAs, due

in part to the fact that the languages are the union of a numberof regular languages.

It is perhaps possible to modify these algorithms to insteadreturn a DFA (or at least

a list of DFAs where the number of DFAs depends only on the group and the set of

conjugating elements is the union of their languages).

Similarly, the FSAs returned do not necessarily accept a unique word for each

conjugating element; it should be possible to ensure this property. It also seems

possible that forX-words a, b and c whereb is short-lex straight, the language

{π(abnc) : n ∈ Z} is accepted by a (possibly even deterministic)X±1-FSA with

number of states linear in total word length.

There are a variety of similar questions one can ask along these lines.
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Chapter 3

Conjugacy and Quasiconvex

Subgroups

3.1 Introduction

In this chapter, we outline some algorithms which will test various conjugacy related

properties with respect to a quasiconvex subgroup of a word-hyperbolic group.

In general, word-hyperbolic groups may contain subgroups which are somewhat

difficult to work with. It is for this reason that we restrict to quasiconvex subgroups,

which we define now.

Definition 3.1.1. Suppose G is a group with Cayley graphΓ with respect to a gener-

ating set X. A subgroup H of G isε-quasiconvex if, for each X-word w∈H labelling

a geodesic inΓ, and for each0≤ i ≤ |w| there exists an h∈ H and an X-word a

with |a| ≤ ε such that w(i) =G ha.

In particular, quasiconvexity as above implies thatH is itself word-hyperbolic

(and so finitely presented) ifG is, andG has solvable generalised word problem

with respect toH (Proposition 1 of [16] in fact allows us to find anX±1-FSA whose

language is the set of short-lex leastX-words in the subgroup).

Some simple examples of quasiconvex subgroups are finite index subgroups and

finite subgroups of any group, and finitely generated subgroups of free groups.

There are in fact few examples in the literature of subgroupsof word-hyperbolic

groups which arenotquasiconvex. One can however use the construction by E. Rips

63
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in [20] to produce a word-hyperbolic group with finitely generated normal subgroup

which has unsolvable generalised word problem and is therefore not quasiconvex.

Examples have also been produced under rather stricter conditions, for instance

in [17], I. Kapovich gives an example of a finitely presented,freely indecomposable

non-quasiconvex subgroup of a torsion free hyperbolic group which coincides with

its own virtual normaliser.

It is impossible to determine whether a list of elements in a general word-

hyperbolic group generate a quasiconvex subgroup (again due to [20]). We will

therefore assume thatε has already been computed.

It may seem that quasiconvexity depends on the particular generating set cho-

sen for the larger group. This is not the case, however: whilethe constantε may

change under change of generating set, the existence of sucha constant does not

(see Proposition 2.6 of [11] for instance).

Throughout this chapter, unless stated otherwise, we will assume thatG is a

word-hyperbolic group generated by some setX, thatΓ is its Cayley graph which

has base vertex ˆa and isδ-vertex-hyperbolic and thatH is anε-quasiconvex sub-

group with coset Cayley graphΓ′ with respect toX. We will assume thatδ andε
are integers which are strictly greater than 0.

Recall from Lemma 1.5.2 that the mapπ which reduces words to their short-

lex least representatives can be computed in time linear in input length. We will

assume that anX±1-DFA HA has been computed which accepts all short-lex least

representatives inH so that a wordw can be tested for membership ofH in time

O(|w|) by testing ifHA acceptsπ(w).

3.2 Useful Results

We begin by providing some basic results in order to avoid distracting the reader

from the main results in each section.

3.2.1 Extending Geodesics

Recall that∆(u,v) = (â·u, â·v)â for X-wordsu andv, and is independent of ˆa.

A useful tool used throughout this chapter is the following one, which says that

if w is a long enough word which labels a geodesic inΓ′ at H andu is a label of a
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w′1

w′2

ê

d̂

ĉ

â

h1

d1
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d2

b̂

k

h2

w2

w1

Figure 3.1: Extending a long minimal coset representative

geodesic inΓ with ∆(w−1,u) small, thenwu labels something close to a geodesic

in Γ′ when started atH. The bounds can be slightly improved in the case where

∆(w−1,u) = 0 (that is,wu labels a geodesic inΓ), but the factor ofε is unchanged

so we will simply prove the more general statement.

Lemma 3.2.1.Suppose that w1 and w2 label geodesics inΓ. Let k:= ∆(w−1
1 ,w2),

and let w′1 and w′2 label geodesics inΓ′ connecting H to Hw1 and H to Hw1w2

respectively. If|w′1| ≥ 3δ+ ε+k+1 then|w′2| ≥ |w′1|+ |w2|−2k−3δ− ε.

Proof. Pick X-wordsh1 andh2 to label geodesics inΓ connecting ˆa to â ·w1w′−1
1

and â to â ·w1w2w′−1
2 respectively. Let̂b := â ·w1, ĉ := â ·w1w2, d̂ := â · h1 and

ê := â ·h2. Then we have a geodesic pentagon as illustrated in Figure 3.1. We let

d1 := (b̂, â)d̂ andd2 := (ĉ, â)ê, and letsi := |hi| −di for i equal to 1 or 2. These

numbers measure in some sense the length of various words whichH “cancels.”

Let i := ⌊d1⌋. Let x̂ := d̂ ·w′1(i) ∈ [d̂, b̂] so that ˆx corresponds to a vertex̂x′ on

[â, d̂]. SinceH is ε-quasiconvex, there is a vertex ˆy within ε of x̂′ representing an

element ofH such thatd(x̂, ŷ) ≤ d(x̂, x̂′)+d(x̂′, ŷ) ≤ δ+ ε. Let u be the label of a
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geodesic inΓ connecting ˆy to b̂, then sinceHu= Hw′1 we have

|w′1| = d(H,Hu)

≤ d(ŷ, b̂)

≤ |w′1|− i +δ+ ε,

so i ≤ δ+ ε and

d1≤ δ+ ε+
1
2
. (3.1)

Exchanginĝb for ĉ andd̂ for ê in this argument shows that

d2≤ δ+ ε+
1
2

(3.2)

as well.

Notice that

|w′2|=|w1w2|G+d2−s2

=|w1|+ |w2|−2k+d2−s2

=|w′1|+s1−d1+ |w2|−2k+d2−s2 (3.3)

so recalling thatd1 is bounded, we need only show thats2 is not much larger than

s1 to find a lower bound on|w′2|.

By definition, (b̂, ĉ)â = |w1| − (â, ĉ)b̂ = |w1| − k. Since|w1| = |w′1| −d1+ s1,

using|w′1| ≥ 3δ+ ε+k+1 from the hypothesis, we see that

(b̂, ĉ)â≥ s1+3δ+ ε−d1+1. (3.4)

Now let j := s1+3δ+ ε−d1 +1 and suppose for a contradiction thatj ≤ s2.

Notices1−d1 ∈ Z so thatj is an integer. Let ˆz := â·h2( j) and sincej ≤ s2 we see ˆz

corresponds to a vertex on[â, ĉ]. By (3.4) we know thatj ≤ (b̂, ĉ)â, so this vertex in

turn corresponds to a vertex on[â, b̂]. Finally, (3.1) implies thatj ≥ s1+2δ+ 1
2 ≥ s1,

so ẑ 3-corresponds to a vertex ˆp on [d̂, b̂]. Notice thatd(d̂, p̂) = j − s1 + d1 =

3δ+ ε+1 so thatd(p̂, b̂) = |w′1|−3δ− ε−1.

Since ẑ lies on [â, ê], it lies within ε of some other vertex ˆq representing an
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element ofH and we have

d(H,Hw′1) ≤ d(q̂, b̂)

≤ d(q̂, p̂)+d(p̂, b̂)

≤ (3δ+ ε)+(|w′1|−3δ− ε−1)

< |w′1|,

so w′1 cannot label a geodesic inΓ′ which starts atH, a contradiction. Thuss2 <

s1+3δ+ ε−d1+1.

To complete the proof, recall (3.3) to see that

|w′2| = |w′1|+s1−d1+ |w2|−2k+d2−s2

> |w′1|+ |w2|−2k−3δ− ε−1,

and so|w′2| ≥ |w′1|+ |w2|−2k−3δ− ε as required. �

This lemma in particular implies that if a word which labels ageodesic inΓ
labels a path starting atH which strays too far fromH, it can never go back. This

fact is especially useful in the next sections.

3.2.2 Other Useful Results

The next two results relate to words of minimal length under conjugation.

Lemma 3.2.2.Suppose that g∈ G, that |ga|G ≥ l for all X-words a, that w is an

X-word such that|gw|G = l and that w has minimal length over all X-words with

this property. Then
⌊
∆(gw,w−1)

⌋
≤ δ.

Proof. Suppose not. Letu = π(gw) andv := π(gw), and construct a geodesic tri-

angle inΓ with corners ˆa, b̂ := â ·u and ĉ := â ·w−1 and sides labelledw, u and

v as illustrated in Figure 3.2. Leti :=
⌊
∆(u,w−1)

⌋
and let x̂ := â · u(i). Then x̂

corresponds to a vertex ˆy on [â, ĉ] and

d(ĉ, x̂) ≤ d(ĉ, ŷ)+d(ŷ, x̂)

≤ |w|− i +δ.



68 CHAPTER 3. CONJUGACY AND QUASICONVEX SUBGROUPS

x̂

ŷâ

b̂

ĉ

u v

w

Figure 3.2: Finding a shortcut over a minimal conjugateu

Let w′ := π(wu(i)). Notice that

gw′ =G gwu(i)

=G uu(i)

which is a cyclic conjugate ofu. In particular,|gw′|G ≤ |u| = l so |gw′|G = l and

|w′| = d(ĉ, x̂) ≤ |w|− i +δ. Sincew had minimal length, we havei ≤ δ and we are

done. �

The following fact is perhaps obvious, but the rather short proof is included for

completeness.

Lemma 3.2.3.A straight word has minimal length under conjugation.

Proof. Suppose not. Then there exists a straight wordw and anotherX-worda such

that |wa|G ≤ |w| −1. But then|w3|G = |a(wa)3a−1|G ≤ 1+3(|w| −1)+1 < |w3|
andw was not straight, a contradiction which proves the lemma. �

Lemma 4.4.2, which will be proved in the next chapter, is useful for conjugacy

testing. We provide a special case of that lemma here.

Lemma 3.2.4.Suppose that w labels a geodesic inΓ′ starting at H, that u labels a

geodesic inΓ and that Hwu= Hw. Let v= π(wuw−1). Then either

1. 2|w| ≤ |u|− |v|+6δ+4ε+2 and2|w| ≤ |u|+3δ+2ε+1, or

2. |v| ≤ 3δ+2ε+1
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Figure 3.3: A large power ofx

3.3 An Upper Bound on Minimal Powers

In this section, we demonstrate that there if an element ofH is a large power of an

element ofG then it is a proper power of an element ofH. RecallM andQ from

Section 2.2.

Theorem 3.3.1.Suppose that g∈ G with gn ∈ H for some n∈ N. Then gl ∈ H for

some l≤MQ2R where R is the number of vertices in BΓ′
6δ+ε+1(H).

Proof. Supposeg has finite order. Theng generates a finite subgroupK which, by

Proposition 2.4.5, can be conjugated into a ball inΓ of radius at most 4δ+2. As

Q is the number of vertices in the 4δ-ball in Γ, the 8δ-ball in Γ must have less than

Q2 vertices and soK has less thanQ2 elements. But thengn is the identity for some

n≤Q2≤MQ2R. Since the identity is necessarily inH, we are done.

We may therefore assume thatg is of infinite order, so thatgm has a short-lex

straight conjugate for some 0< m≤ MQ2 by Corollary 2.3.19. Pick anX-word

a such thatπ(agma−1) is short-lex straight and the length ofa is minimal over all

words with this property. Letx := π(agma−1). We aim to bound∆(x−ia,x ja) for

largei and j in order to apply Lemma 3.2.1.

Notice thatxk has minimal length under conjugation for anyk≥ 1 by Lemma

3.2.3, and so Lemma 3.2.2 implies that
⌊
∆(xk,a)

⌋
≤ δ and

⌊
∆(x−k,a)

⌋
≤ δ whenever

k≥ 1.

Suppose for a contradiction thati≥3δ+2, that j ≥3δ+2 and that∆(x−ia,x ja)≥
3
2δ+1. Let b̂ := â·x j , ĉ := b̂·a, ê := â·x−i andd̂ := ê·a. Then we have a geodesic

pentagon inΓ as illustrated in Figure 3.3.
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Let x̂ := â·xi(l) andŷ := â·x−i(l) wherel :=
⌊3

2δ
⌋
+1. Notice thatx is infinite

order, so|x| ≥ 1. Then

(b̂, ĉ)â = ∆(x j
,x ja)

= |x j |−∆(x− j
,a)

≥ j|x|−δ−1

≥ 2δ+1

≥ l ,

sox̂ corresponds to a vertex̂x′ on[â, ĉ]. A similar argument shows that ˆycorresponds

to a vertexŷ′ on [â, d̂].

Since∆(x−ia,x ja) ≥ 3
2δ+1 we know thatl ≤ ∆(x−ia,x ja) = (ĉ, d̂)â, sox̂′ cor-

responds tôy′. In particular, ˆx 3-corresponds to ˆy, sod(x̂, ŷ)≤ 3δ and

|xi+ j | = d(ê, b̂)

≤ d(ê, ŷ)+d(ŷ, x̂)+d(x̂, b̂)

≤ |xi |− l +3δ+ |x j |− l

≤ |xi+ j |−1.

This is a clear contradiction, so∆(x−ia,x ja)≤ 3
2δ+ 1

2 whenever bothi and j are at

least 3δ+2.

Suppose thatd(H,Haxi) ≥ 6δ+ ε+2 for somei ≥ 3δ+2. Then for anyj ≥
3δ+2, Lemma 3.2.1 applies withw1 = a−1xi , w2 = x ja andk= 3

2δ+ 1
2, and implies

that

d(H,Hgm(i+ j)) = d(H,Ha−1xi+ ja)

≥ d(H,Ha−1xi)+ |x ja|G−2(
3
2

δ+
1
2
)−3δ− ε−1

= d(H,Ha−1xi)+ |x ja|G−6δ− ε−2

≥ j|x|− |a|

for large j. Since this impliesHgt is far fromH for large values oft, no power of

g can be inH. This is a contradiction. We must therefore haved(H,Ha−1xi) ≤
6δ+ ε+1 for eachi ≥ 3δ+2.
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If Ha−1xi = Ha−1x j for some integers 0≤ i < j thenHa−1xi+p = Ha−1x j+p

for any integerp. Settingp=−i we find thatHa−1x j−i = Ha−1 so thatgm( j−i) =G

a−1x j−ia is an element ofH.

As there areR elements inB6δ+ε+1(H), we can assume thatj − i ≤ R and we

are done. �

We close this section by making the observation thatgn ∈ H if and only if

(a−1ga)n =F a−1gna∈ a−1Ha. This implies that the bound in Theorem 3.3.1 de-

pends not onε but on theminimumquasiconvexity constant over all subgroups of

G which are conjugate toH and that there is a bound on the minimum power for

which a group element may beconjugatedinto H.

3.4 Testing Conjugacy with Elements of a Quasicon-

vex Subgroup

In this section, we will outline an algorithm which will testif a givenX-word is a

conjugate of an element ofH. We begin finding bounds on the lengths of eitherga

or a wheneverg is either short or of minimal length under conjugation.

Proposition 3.4.1. Suppose that g labels a geodesic inΓ and that ga ∈ H where

a−1 labels a geodesic inΓ′ starting at H. Then either

1. |ga|G≤ 3δ+2ε+1, or

2. |a| ≤ |g|+3δ+2ε+1
2 and if g has minimal length under conjugation in G then

|a| ≤ 3δ+2ε+1.

Proof. Note that Lemma 3.2.4 applies withw= a−1, u= g andv= π(ga).

The second case of Lemma 3.2.4 implies that|ga|G ≤ 3δ+2ε+1 so we have

the first inequality.

The first case of Lemma 3.2.4 implies that 2|a| ≤ |g|+3δ+2ε+1 which proves

the first inequality of the second case.

Finally, the first case of Lemma 3.2.4 also implies that 2|a| ≤ |g|− |ga|G+6δ+
4ε+2, and ifg has minimal length under conjugation then|g| ≤ |ga|G so that|a| ≤
3δ+2ε+1 as required for the final inequality. �
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We can now prove the result.

Theorem 3.4.2.Given a word g in the generators of G, it is possible to check if

there exists, and return, some a∈G such that ga ∈ H, in time O(|g|).

Proof. We first prove that we can find wordsw andx of lengthO(|g|) such that

whenevera−1 labels a geodesic starting fromH andgwa ∈ H we can bound either

|a|G or |xa|G. This fact is then used to complete the proof. Recall the notation gC

andgL from Definition 1.4.1. We break into cases depending on the length|gC|G.

First suppose that|gC|G ≤ 2L. Let w := gL and apply Proposition 3.4.1 tox :=

π(gC). We find that ifa−1 labels a geodesic inΓ′ starting atH andgwa =G xa ∈ H

then either|a| ≤ |x|+3δ+2ε+1
2 ≤ L+3δ+2ε+1 or |xa|G≤ 3δ+2ε+1.

Instead suppose that|gC|G> 2L so thatg is of infinite order by Proposition 2.3.1.

Corollary 2.3.19 withu= g implies that we can find a wordw of lengthO(|g|) and

an integerm≤MQ2 wherex := π(w−1gmw) is short-lex straight inΓ, and that this

operation takes timeO(|g|). Applying Proposition 3.4.1 tox (which is of minimal

length under conjugation by Lemma 3.2.3), we find that ifa−1 labels a geodesic in

Γ′ starting atH andgwa∈ H then(gm)wa=G xa ∈H and so either|a| ≤ 3δ+2ε+1

or |xa|G≤ 3δ+2ε+1.

In either case, ifa−1 labels a geodesic inΓ′ starting atH andgwa∈H then either

|a| ≤ L+3δ+2ε+1 or |xa|G ≤ 3δ+2ε+1. Also, |x| and |w| are inO(|g|). The

algorithm can therefore be implemented as follows.

For eachX-word a of length at mostL+3δ+ 2ε+1, test ifgwa ∈ H. If this

check succeeds for somea thenwa is a suitable conjugating element and can be

returned. If all checks here fail then continue to the next part. Each check can be

performed in timeO(|g|) and the number of checks is independent ofg so this case

can be tested for in timeO(|g|).
For all X-wordsh with |h| ≤ 3δ+2ε+1, test ifh ∈ H andxa =G h for some

elementa ∈ G. If such aa is found thenwa is a suitable conjugating element

and can be returned. If not then no conjugating element exists and we may return.

Again, each check can be performed in timeO(|g|) by Theorem 2.1.1, and the

number of checks is again independent ofg so this case can also be tested for in

timeO(|g|). �

We remark that this method can of course be modified to return arational lan-

guage which contains all such conjugating elements as in Chapter 2, and that it can
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likely be modified to test if a list of elements can be simultaneously conjugated into

the subgroup. This latter result would provide a method of testing whether or not

one quasiconvex subgroup is a conjugate of a subgroup of another.

3.5 Checking Equality of Double Cosets

In this section, we demonstrate that it is possible to efficiently determine if two

double cosets of quasiconvex subgroups are equal. We begin by showing that it’s

possible to efficiently find a double coset representative that’s “nearly optimal” in

both directions.

Proposition 3.5.1.Given an X-word w one can find an X-word u such that|u| ≤ |w|,
Hw= Hu and d(H,Hw)≥ |u|−3δ− ε in time O(|w|).

Suppose additionally that K is a fixedζ-quasiconvex subgroup. Then one can

find an X-word v with HwK=HvK such that d(K,Kv−1)≥ |v|−3δ−ζ and d(H,Hv)≥
|v|−8δ−2ε−ζ in time O(|w|).

Proof. Begin by replacingw with π(w) so thatw labels a geodesic inΓ.

Let R0 be the set containing the empty word and fori > 0 defineRi in terms of

Ri−1 byRi = {π(a) : |a| ≤ 3δ+ε,b∈Ri−1,bw[i]a−1∈H}. If Ri−1 is non-empty then

Ri is the set of short-lex least representativesr with Hr = Hw(i) and |r| ≤ 3δ+ ε
(this is clear wheni = 0 and can be seen by induction for larger values ofi).

To computeRi we at worst need to test ifuw[i]v∈ H for all wordsu andv of

length at most 3δ+ ε. Each of these tests is linear in word length and so takes

constant time – and the number of tests does not depend onw. Thus the time taken

to compute the setsRi is O(|w|).
WheneverRi is non-empty, letr i be the short-lex least element ofRi. Notice that

r i , if it exists, is the short-lex least word withHr i = Hw(i), so |r i| = d(H,Hr i) =

d(H,Hw(i))≤ |w(i)|.
Pick the largest value ofi such thatRi is nonempty. Letw0 := r i and notice that

d(H,Hw(i)) = |w0| ≤ 3δ+ ε. If i = |w| then letu = r|w| and we have|u| ≤ |w|,
Hu= Hw andd(H,Hw) = |u| so we are done.

Otherwise notice thatd(H,Hw(i + 1)) = 3δ + ε + 1 (or Ri+1 would be non-

empty). SinceHw0 = Hw(i) we haved(H,Hw0w[i +1]) = 3δ+ ε+1.
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Let u := π(w0w(i : |w|)) and we see that|u| ≤ |w| andHu = Hw. By Lemma

3.2.1 withw1 = w(i), w2 = w(i : |w|) andk= 0 we have

d(H,Hw) ≥ d(H,Hw(i +1))+ |w(i +1 : |w|)|−3δ− ε

= d(H,Hw0w[i +1])−3δ− ε+ |w(i +1 : |w|)|
= |w(i +1 : |w|)|+1

= |w(i : |w|)|
≥ |u|− |w0|
= |u|−3δ− ε,

sou satisfies the requirements of the hypothesis and is computedin time O(|w|) as

required for the first part.

For the second part, apply the first part as before onw to get a wordu with

|u| ≤ |w|, Hw= Hu andd(H,Hw)≥ |u|−3δ−ε. Now apply the first part a second

time using the subgroupK instead ofH and the wordu−1 instead ofw. The proof

gives us anX-wordv′= π(u0u−1(i : |u|)) such thatd(K,Kv′)≥ |v′|−3δ−ζ, wherei

is an integer andu0 is anX-word satisfying|u0|= 3δ+ζ. Notice that|v′| ≤ |u| ≤ |w|.
Letv := v′−1 and we find thatd(K,Kv−1)≥ |v|−3δ−ζ and|v| ≤ |w| as required,

so it remains to show thatd(H,Hv) is sufficiently large.

If |v| ≤ 8δ+ 2ε+ ζ then we are done, so suppose that|v| ≥ 8δ+ 2ε+ ζ+ 1.

Since|v| ≤ |u|, we have|u| ≥ 8δ+2ε+ζ+1 as well.

Let t label a geodesic inΓ′ connectingH to Hv. If |v| − |t| ≤ 5δ + 2ε then

d(H,Hv)≥ |v|−5δ−2ε so we are done. Thus assume that|v|− |t| ≥ 5δ+2ε+1.

Let j := 5δ+2ε+1.

Construct a geodesic triangle inΓ with corners ˆa, b̂ := â·u(|u|− i) andĉ := â·v
as in Figure 3.4. Noting thatu(|u| − i) =G u−1(i : |u|) =G u−1

0 v′ we may take the

side labels to beu(|u|− i), v andu0. Then

(b̂, ĉ)â ≥ d(â, b̂)−d(b̂, ĉ)

= |u|− |u0|
≥ (8δ+2ε+ζ+1)− (3δ+ζ)

≥ 5δ+2ε+1
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ĉ
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Figure 3.4: The double coset representatives

and p̂ := â ·u( j) corresponds to a point ˆq on [â, ĉ].

Construct a second geodesic triangle with corners ˆa, ĉ andd̂ := ĉ · t−1, picking

π(vt−1) as the side label for[â, d̂]. Then

(ĉ, d̂)â ≥ d(â, ĉ)−d(ĉ, d̂)

= |v|− |t|
≥ 5δ+2ε+1

≥ j

andq̂ therefore corresponds to a vertex ˆr on [â, d̂]. Sincevt−1 ∈H, r̂ is within ε of a

vertexŝ representing an element ofH so thatd(H,Hu( j))≤ d(p̂, ŝ)≤ 2δ+ ε. But

d(H,Hu( j)) ≥ d(H,Hu)−|u|+ j

≥ |u|−3δ− ε−|u|+ j

= 2δ+ ε+1

and we have a contradiction. Thus the proposition is proved. �

We now prove a brief lemma which essentially says that whenever g is close

to being a minimal representative for a cosetKg of a quasiconvex subgroupK, the

cancellation∆(k,g) is small for anyk∈ K.
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Lemma 3.5.2.Suppose that A is aσ-quasiconvex subgroup of G, that a and g are

X-words which label geodesicsα andβ in Γ respectively, such that a is mapped to

an element of A and|g|G ≤ d(A,Ag)+C. If α and γ start from the same vertex̂z

in Γ, are adjacent sides of some geodesic polygon inΓ and, after subdivision into

triangles, there exist verticeŝx ∈ α and ŷ ∈ β such thatx̂ n-corresponds tôy then

d(ŷ, ẑ)≤C+σ+nδ.

Proof. Notice that there is a vertex ˆawhich represents an element ofAwith d(â, x̂)≤
σ. But then

d(A,Ag) ≤ d(â, ẑ·g)
≤ d(â, x̂)+d(x̂, ŷ)+d(ŷ, ẑ·g)
≤ σ+nδ+ |g|−d(ŷ, ẑ)

≤ σ+nδ+d(A,Ag)+C−d(ŷ, ẑ),

and a quick cancellation and re-arrangement shows thatd(ŷ, ẑ) ≤ C+ σ + nδ as

required. �

Armed with this tool we can now test equality of double coset representatives.

Theorem 3.5.3.Suppose K is a fixedζ-quasconvex subgroup. If u and v are X-

words then it is possible to test whether HuK= HvK in time O(|u|+ |v|).

Proof. Let u1 andv1 be the words obtained by applying the second part of Proposi-

tion 3.5.1 onK with the wordsu andv respectively. Since these words are obtained

in timeO(|u|+ |v|) and satisfyHu1K = HuK andHv1K = HvK, we replaceu with

π(u1) andv with π(v1).

If HuK = HvK then there existX-wordsh andk which are mapped to elements

of H andK respectively and withuk=G hv. We will assume thath andk are picked

to label geodesics, and such that|h|+ |k| is minimised. Let̂b := â ·h, ĉ := b̂ ·v and

d̂ := â ·u. Then we have a geodesic quadrilateral inΓ with side labelsh, v, k and

u. Pick some geodesic connecting ˆa to ĉ to split this quadrilateral into two geodesic

triangles. This quadrilateral is illustrated in Figure 3.5.

We now aim to bound the lengths ofh andk by a value which does not depend

on u andv. Suppose thati is an integer and the vertex ˆpi := d̂ · k(i) 2-corresponds

to a vertex ˆqi := â ·h(i′). Notice thati′ := (ĉ, d̂)â− (â, ĉ)d̂+ i.
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Figure 3.5: The double coset representatives

There is a vertex ˆr i ∈ Γ representing an element ofK such thatd(p̂i, r̂ i)≤ ζ and

similarly there is a vertex ˆsi ∈ Γ representing an element ofH such thatd(q̂i, ŝi)≤ ε.

Let wi label a geodesic inΓ connecting ˆsi to r̂ i and observe that|wi | = d(ŝi, r̂ i) ≤
2δ+ ε+ζ. See Figure 3.6 for a complete picture.

Let P be the number of vertices inBΓ
2δ+ε+ζ(â). Suppose that more thanP(ε+ζ)

vertices on[d̂, ĉ] 2-correspond to vertices on[â, b̂] so that there exist integersi <

j−ε−ζ with wi =G w j . Let k1, k2 andk3 label geodesics inΓ connecting ˆa to r̂ i , r̂ i

to r̂ j and ˆr j to ĉ respectively. Defineh1, h2 andh3 to label geodesics connecting ˆa,

ŝi , ŝj andb̂ similarly.

Thenwi =G h2w jk
−1
2 = h2wik

−1
2 andwi =G h3vk−1

3 so that

u =G hvk−1

=G h1h2h3vk−1
3 k−1

2 k−1
1

=G h1h2wik
−1
2 k−1

1

=G h1wik
−1
1

=G h1h3vk−1
3 k−1

1 ,

but then|h1h3|+ |k1k3| ≤ |h|+2ε+ |k|+2ζ−2( j− i)< |h|+ |k| andh1h3v=G uk1k3

which contradicts minimality of|h|+ |k|. Thus at mostP(ε+ ζ) vertices on[d̂, ĉ]

can correspond to vertices on[â, b̂].

Applying Lemma 3.5.2 withσ = ε+ζ andC= 8δ+2ε+ζ, and using setting the

triple (A,g,a) to each of(H,u,h), (H,v,h−1), (K,u−1,k) and(K,v−1,k−1) we see
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Figure 3.6: Finding a shorterh andk

that vertices on the sides of the quadrilateral which chain-correspond to vertices on

adjacent sides must be at worst 10δ+3ε+2ζ from the common corner of those two

sides. For instance, any vertex on[d̂, ĉ] which 2-corresponds to a vertex on[â, d̂]

must be within 10δ+3ε+2ζ of d̂ (this upper bound is slightly larger than the one

given by the lemma, but works for all four corners giving a slightly simpler proof

here).

Now, all vertices on[d̂, ĉ] are either within 10δ + 3ε + 2ζ of ĉ or d̂, or 2-

correspond to a vertex on[â, b̂]. By counting vertices, we find that|k| = d(d̂, ĉ) ≤
10δ+3ε+2ζ+P(ε+ζ)+10δ+3ε+2ζ+1 = 20δ+6ε+4ζ+P(ε+ζ)+1. Sim-

ilarly, all vertices on[â, b̂] are either within 10δ + 3ε + 2ζ of ĉ or d̂, or are 2-

corresponded to by a vertex on[d̂, ĉ], so|h| ≤ 20δ+6ε+4ζ+P(ε+ζ)+1.

We thus test, for each pair ofX-wordsh andk with |h| and|k| both less than or

equal to 20δ+6ε+4ζ+P(ε+ ζ)+1 whetherh∈ H, k ∈ K anduk=G hv. If for

some pair of words all three of these checks succeed, the double cosets are equal.

If this never happens thenHuK , HvK. These checks can each be performed in

time O(|u|+ |v|) and the number of them is independent ofu andv, so the whole

operation takes timeO(|u|+ |v|). The theorem is proved. �
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3.6 Conclusion and Possible Further Work

Much of the further work for Chapter 2 can be generalised to the problem of testing

whether a list of words can be conjugated into a quasiconvex subgroup. One might

similarly wish to reduce the rather inefficient constant used in Theorem 3.3.1.

In the case of testing equality of double cosets, a method wasoutlined which

would find a near-minimal coset representative. A more careful argument might

show that it is possible to find the short-lex least representative for a given coset

or double coset in linear time. This would of course trivially solve the problem of

testing equality of double cosets.
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Chapter 4

X-graphs and Hyperbolicity

4.1 Introduction

This chapter is largely based on work by Foord in his PhD thesis [9]. Foord studies

some properties of coset Cayley graphs of word-hyperbolic groups with respect to

quasiconvex subgroups. The work here slightly generalisesthis as well as providing

some improved constants relating to these results. We will work with X-graphs, as

detailed in Section 1.3. The reader is invited to recap that section before continuing

as some of the definitions there have been neglected until now.

A rather vague outline of this chapter is given below. The statements will be

made rather more precise in the next section.

We first show that graph morphismsf betweenX-graphs which preserve edge

labels and directions (we call theseX-maps), and have quasiconvexf−1( f (ê)) for

some vertex ˆe, preserve hyperbolicity. We define a concept of “eventuallyisomor-

phic k-balls,” IB(k), and show that if theX-graphs are hyperbolic then IB(k) is

preserved by theseX-maps, too.

It turns out that if the domain has IB(k) for everyk≥ 0 (we use IB(∞) as a short-

hand) and the target has IB(k) for “large enough”k then the target also has IB(∞).

This fact is used to offer an alternative proof that coset Cayley graphs of word-

hyperbolic groups relative to torsion-free quasiconvex subgroups satisfy a slightly

stronger condition than IB(∞).

Finally, a simple implication of IB(∞) upon the set of words labelling geodesics

distant from base point of anX-graph is demonstrated.

81



82 CHAPTER 4. X-GRAPHS AND HYPERBOLICITY

4.2 Definitions

In this section, we define the constructions that we will be working with later.

Definition 4.2.1. Given a set of verticesΓ′ in a graphΓ, thesubgraph ofΓ induced

by Γ′ is Γ′ together with every edge inΓ which connects two vertices inΓ′.
A setΓ′ of vertices in an X-graphΓ is a connected vertex subsetor CVS if the

subgraph ofΓ induced byΓ′ is connected. Where we are not concerned with the full

X-graphΓ, we will simply say thatΓ′ is an X-CVS.

If Γ′ is an X-CVS,̂p∈ Γ′ and w is an X-word, w is aΓ′-wordat p if p·w(i) ∈ Γ′

for each i∈ {1, . . . , |w|}.

That is, aΓ′-word at p̂ is a word labelling a path starting at ˆp whose vertices

are all insideΓ′, and a CVS is a set of vertices which are pairwise connected by

Γ′-words. Notice that a finite ball is in particular a CVS.

Much of this section concerns the similarity of CVSs, which we define in terms

of graph morphisms.

Definition 4.2.2. Let Γ1 andΓ2 be X-CVSs. A map f: Γ1→ Γ2 is an X-map if it

can be extended to a graph morphism of the subgraphs induced by Γ1 andΓ2 which

preserves edge labels and directions.

The existence of an extension to the induced graph is enough to prove that an

X-map f is defined completely oncef (p̂) is known for any single vertex ˆp. We

prove this now.

Proposition 4.2.3.Suppose that bothΓ1 and Γ2 are X-CVSs and let f: Γ1→ Γ2

be any function which sends edges to edges and vertices to vertices. Then f is an

X-map if and only if f(p̂ ·w) = f (p̂) ·w for all Γ1-words w at verticeŝp in Γ1.

In particular, if f : Γ1→ Γ2 and g: Γ1→ Γ2 are X-maps and̂q is a vertex inΓ1,

then f= g if and only f(q̂) = g(q̂).

Proof. Supposef is an X-map and letf̃ be the extension off to the subgraphs

induced byΓ1 andΓ2.

Since f̃ preserves edge labels and directions, given a vertex ˆp in Γ1 and element

x∈ X, if there is an edgee which is labelledx and starts at ˆp, then f̃ (e) is labelled

x, starts atf (p̂) and ends atf (p̂) ·x. This implies thatf (p̂ ·x) = f (p̂) ·x. The same
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is true for edges labelledx which end at ˆp, so f (p̂ ·u) = f (p̂) ·u for anyΓ1-word u

at p̂ of length 1. Now for anyΓ1-word w at p̂,

f (p̂ ·w) = f ((. . .((p̂·w[1]) ·w[2]) . . .) ·w[|w|])
= (. . .(( f (p̂) ·w[1]) ·w[2]) . . .) ·w[|w|]
= f (p̂) ·w,

as required.

We now prove the converse. Suppose that for allΓ1-wordsw and vertices ˆp

in Γ1 we havef (p̂ ·w) = f (p̂) ·w. Notice that for anyx ∈ X, sincex andx−1 are

X-words, the endpoints and directions of any edges pointing into and out of ˆp with

labelx are preserved, thusf can be extended to a graph morphism and is therefore

anX-map.

For the last part, it is clear thatf , g if f (q̂) , g(q̂). Suppose thatf (q̂) = g(q̂).

For any vertex ˆr ∈ Γ1 there is aΓ1 word, sayw, with q̂·w= r̂. But then

f (r̂) = f (q̂·w)
= f (q̂) ·w
= g(q̂) ·w
= g(r̂)

and f = g as required. �

The first part of Proposition 4.2.3 will be used frequently without reference.

Another simple fact to note is thatX-maps, being restrictions of graph mor-

phisms, define contractions of metric spaces.

Proposition 4.2.4. Suppose thatΓ1 and Γ2 are graphs in which all edges have

length 1, that f: Γ1→ Γ2 is a morphism of graphs and thatâ andb̂ are vertices in

Γ. Then d( f (â), f (b̂))≤ d(â, b̂).

Proof. Note that any geodesic path connecting ˆa to b̂ must be mapped to a path con-

necting f (â) to f (b̂). Since edges are sent to edges and vertices are sent to vertices,

there is a path inΓ2 connectingf (â) to f (b̂) of lengthd(â, b̂), sod( f (â), f (b̂)) ≤
d(â, b̂). �
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Again, we will use this proposition often without reference.

When determining whether two balls are the “same,” it is convenient to ensure

that not only is there a bijectiveX-map between them, but that this map preserves

the centres.

Definition 4.2.5. If Γ1 andΓ2 are X-graphs then an X-map f: BΓ1
k (p̂1)→ BΓ2

k (p̂2)

is a morphism of ballsif f (p̂1) = p̂2. We say f is anisomorphism of ballsif f is

bijective, and in this case we say BΓ1
k (p̂1) and BΓ2

k (p̂2) areball isomorphic.

We can show that if anX-map either maps from anX-graph or is a morphism

of balls then it is surjective. In particular, injective morphisms of balls are isomor-

phisms of balls.

Proposition 4.2.6. Suppose that bothΓ1 and Γ2 are connected vertex sets of X-

graphs and f: Γ1→ Γ2 is an X-map.

1. If Γ1 is an X-graph then f is surjective.

2. If bothΓ1 andΓ2 are balls of the same radius and f is a ball morphism then

f is surjective.

Proof. Suppose thatΓ1 is an X-graph. Pick any vertex ˆq in Γ1. SinceX-CVSs

have connected induced subgraphs, given any vertex ˆr in Γ2 there is aΓ2-word at

f (q̂), sayw, with f (q̂) ·w = r̂. Thenw is a Γ1-word at q̂ (as anyX-word is), so

f (q̂) ·w= f (q̂·w) andq̂·w is a vertex inΓ1 which maps toΓ2. Thus f is surjective.

Similarly, suppose thatΓ1 andΓ2 are balls of the same radius,R say, thatf is

a ball morphism, that ˆq is the centre ofΓ1 and that ˆr ∈ Γ2. Then sincef is a ball

morphism,f (q̂) is the centre ofΓ2 so there is aΓ2-word at f (q̂), sayw, of length

at mostR which satisfiesf (q̂) ·w= r̂. But thenw is aΓ1-word (as anyX-word of

length at mostR is), so once againf (q̂) ·w= f (q̂·w) and f is surjective. �

The restriction that the centre of the ball is preserved is justified since one can

produce an example of anX-graph where two equal radius balls around different

points are equal as sets but not isomorphic as balls, illustrated below.

Example 4.2.7.Let G be the free group on the set{a,b}. Let H be the subgroup of

G generated by ba−1, b2a, b−2a and b−1a2, and letΓ be its coset Cayley graph with

respect to X, which is illustrated in Figure 4.1. The tree structures on the left and
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Figure 4.1: The 1-balls aroundH andHa are equal but not isomorphic

right of the illustration represent subgraphs of the Cayleygraph of G with respect

to {a,b}.
Notice that if x̂ is a vertex inΓ which is neither H nor Ha then d(H, x̂) =

d(Ha, x̂), so if k> 0 then Bk(H) = Bk(Ha) as sets. However, ab−1 labels a loop at

H but not Ha, so there is no X-map from Bk(H) to Bk(Ha) which sends H to Ha.

In particular, these balls are not ball isomorphic.

We now define a concept of “mostly homogeneous”. The GIB property and IB

property for a single graph correspond to the definitions by Foord.

Definition 4.2.8. Suppose thatΓ is an X-graph with base vertex̂b. Then for non-

negative k∈ Z we say:

Γ hasIB(k) if there exists some K such that Bk(p̂) and Bk(q̂) are ball isomor-

phic for any verticesp̂, q̂ ∈ Γ with d(b̂, p̂) ≥ K and d(b̂, q̂) ≥ K. Thus there is a

canonical k-ball ofΓ which balls of radius k which are sufficiently far from̂b are

ball isomorphic to. We label this ball̂Bk(Γ).
Suppose S is a collection of X-graphs which all satisfy IB(k). Then we say S

satisfies IB(k) if B̂k(Γ1) and B̂k(Γ2) are ball isomorphic for any two elementsΓ1

andΓ2 in S.

Suppose G is some group generated by X with Cayley graphΓG. ThenΓ has

GIB(k) with respect to G if{Γ,ΓG} has IB(k).

Where the presentation is understood, we will refer to a subgroup of a group as

having IB(k) or GIB(k) if its associated coset Cayley graph does.
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Denote byIB(∞) the property of having IB(k) for any k≥ 0 and defineGIB(∞)

similarly.

In other words, these properties imply that provided you can’t see more than a

given finite distance and are sufficiently far from the base point it is impossible to

tell where you are in the graph, or which graph you are in.

The concept of quasiconvexity of subgroups (Definition 3.1.1) is a special case

of a similar condition for subsets of a graph. We state this condition in terms of

X-graphs.

Definition 4.2.9. SupposeΓ is an X-graph. Then a set S of vertices inΓ is ε-

quasiconvex if whenever w is a word labelling a geodesic between two verticeŝs

andt̂ in S and i≤ |w| there is a vertex̂u∈ S with d(ŝ·w(i), û)≤ ε.

We will be studying the case of anX-map f where f−1(b̂) is quasiconvex for

the base point̂b of the targetX-graph.

In [9], Foord proves that for a quasiconvex subgroupH of a word-hyperbolic

groupG, the coset Cayley graph with respect to any finite generatingset ofG is

hyperbolic. He also shows that it has GIB(∞) if and only if the index|CG(h) :

CG(h)∩H| is finite for anyh ∈ H. In particular, this is true of any torsion free

quasiconvex subgroup. However, the hyperbolicity constant given there is rather

large, and no bounds on the constants involved in the GIB result are given.

It is the aim of this chapter to generalise this work somewhatby dropping some

of the restrictions that one graph be a Cayley graph, and to provide some rather

lower constants.

4.3 A Tighter Bound on the Thinness of Triangles

The aim of this section is to demonstrate that hyperbolicitycarries over through

X-maps whose inverse of a single vertex is quasiconvex, and inparticular that coset

Cayley graphs of quasiconvex subgroups of word-hyperbolicgroups are themselves

hyperbolic. This result is a generalisation of Theorem 4.1.3.3 from [9], with a rather

smaller constant (the constant given there was exponentialin δ andε). A similar

statement to Foord’s with a similarly exponential constantis given by Ilya Kapovich

in [18].

We begin by giving a simple condition which implies that a triangle is thin.
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Definition 4.3.1. A triangle in an X-graph is(δ,ε)-nearly thin relative toâ if â is

a vertex and given any pair̂p andq̂ of corresponding points on the triangle, one of

the following is true:

1. p̂ is within6δ of q̂,

2. p̂ is within5δ+ ε of â, or

3. there are corresponding verticesp̂′ andq̂′ on the same sides of the triangle as

p̂ andq̂ such that d(p̂, p̂′)≤ 3δ+1 and either property 1 or property 2 holds

for p̂′ and its corresponding vertex̂q′.

Lemma 4.3.2.SupposeΓ is a δ-vertex-hyperbolic X-graph with base pointê, that

Γ′ is an X-graph and that f: Γ→Γ′ is an X-map such that f−1( f (ê)) isε-quasiconvex.

If a geodesic triangle is(δ,ε)-nearly thin relative to f(ê) then it is16δ+2ε+2-

vertex-thin.

If all vertices on all sides of the triangle are further than5δ+ ε from f(ê) then

it is 12δ+2-vertex-thin.

Proof. Suppose that the geodesic triangle has cornersÂ, B̂ andĈ and thatP̂ is on

[Â, B̂] and correponds tôQ on [Â,Ĉ]. If P̂ satisfies property 3 then let̂P′ be a vertex

on [Â, B̂] which is within 3δ+1 of P̂ and satisfies property 1 or property 2; if not

then simply letP̂′ := P̂.

Suppose that̂P′ satisfies property 2. Sinced(P̂′, f (ê)) ≤ 5δ+ ε we need only

prove thatd(P̂,Q̂) ≤ 16δ+2ε+2. By swappingB̂ andĈ, we see that̂Q must also

satisfy one of the three properties in Definition 4.3.1. Pickthe vertexQ̂′ in the same

manner aŝP′ so thatd(Q̂,Q̂′)≤ 3δ+1.

If Q̂′ also satisfies property 2 then

d(P̂,Q̂) ≤ d(P̂, P̂′)+d(P̂′, f (ê))+d( f (ê),Q̂′)+d(Q̂′,Q̂)

≤ 3δ+1+5δ+ ε+5δ+ ε+3δ+1

= 16δ+2ε+2,

as required. If not,̂Q′ satisfies property 1; in this case swapP̂ andQ̂ so that the only

case left to deal with is the case whereP̂′ satisfies property 1.
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To finish off, then, suppose thatP̂′ satisfies property 1 so thatP̂′ is within 6δ of

its corresponding point̂R on [Â,Ĉ]. Notice thatd(R̂,Q̂) = d(P̂′, P̂)≤ 3δ+1, so

d(P̂,Q̂) ≤ d(P̂, P̂′)+d(P̂′, R̂)+d(R̂,Q̂)

≤ 3δ+1+6δ+3δ+1

= 12δ+2,

which completes the proof. �

We now prove the main result for this section.

Theorem 4.3.3.SupposeΓ is a δ-vertex-hyperbolic X-graph with base pointê,

that Γ′ is an X-graph and that f: Γ → Γ′ is an X-map such that f−1( f (ê)) is

ε-quasiconvex. ThenΓ′ is 16δ+2ε+2-vertex-hyperbolic and geodesic triangles,

with corners on vertices, in which all vertices on all sides are further than5δ+ ε
from f(ê) are12δ+2-vertex-thin.

Proof. Suppose we are given a geodesic triangle inΓ′ with cornersÂ, B̂ andĈ.

Supposef (ê) ·w = Â, â · u = B̂ and Â · v = B̂ · x = Ĉ, wherew labels a geodesic

starting atf (ê), andu, v andx label the sides of the triangle. The situation inΓ′ is
illustrated in Figure 4.2.

We aim to translate the construction intoΓ in order to use hyperbolicity ofΓ to

show that the triangle is(δ,ε)-nearly thin relative tof (ê) in order to use Lemma

4.3.2.

Let â := ê·w, b̂ := â · u, ĉ := b̂ · x, â′ := ĉ · v−1 and ê′ := â′ ·w−1. Let h la-

bel a geodesic inΓ connecting ˆe to ê′. See Figure 4.3 for an illustration of this

construction.

We know thatÂ ·uxv−1 = Â, so f (â′) = Â and thenf (ê′) = f (ê). Becausef is

ε-quasiconvex, each vertexf (ê·h( j)) must be within withinε of f (ê).

Including ê, these six points then form a geodesic hexagon inΓ with sides la-

belled in turnw, u, x, v−1, w−1 andh−1. Let g label a geodesic connecting ˆa to â′,

and letw′ andu′ label geodesics connectingê′ to â andâ′ to b̂ respectively.

Since f (ê) ·w= f (ê·hw′) = f (ê) ·w′ andw labels a geodesic starting atf (ê),

we must have

|w′| ≥ |w|. (4.1)
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Ĉ
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Q̂
u

v
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w

f (ê)

Figure 4.2: A general triangle inΓ′

ê

ê′

â b̂

ĉâ′

w

w

w′
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v

xgh

p̂

q̂

Figure 4.3: A hexagon inΓ which maps to the triangle inΓ′
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b̂

â′

w

w′
u′

u

ê′

â

g

(â, ê′)â′ (â, b̂)â′

Figure 4.4: No point on[â, b̂] can chain-correspond only to a point on[â′, ê′]

Similarly Â ·u′ = Â ·u andu labels a geodesic starting atÂ, so

|u′| ≥ |u|. (4.2)

Now (4.1) implies that(â, ê′)â′ =
|g|+|w|−|w′|

2 ≤ |g|2 and (4.2) implies that(â, b̂)â′ =
|g|+|u′|−|u|

2 ≥ |g|2 . Putting these together, we find that

(â, b̂)â′ ≥ (â, ê′)â′, (4.3)

and no point on[â, b̂] can chain-correspond only to a point on[â′, ê′] (and vice

versa), as illustrated in Figure 4.4. Looking at distances from â, this is equivalent to

(â′, b̂)â≤ (â′, ê′)â. (4.4)

Also, observe that (4.2) implies that|u|+|v|−|x|2 ≤ |u
′|+|v|−|x|

2 , or in other words

(B̂,Ĉ)Â≤ (b̂, ĉ)â′. (4.5)

Suppose now that̂P= Â·u(i) is a vertex on[Â, B̂] which corresponds to a vertex

Q̂ = Â · v(i) on [Â,Ĉ]. Let p̂ := â ·u(i) and letq̂ := â′ · v(i) so thatP̂ = f (p̂) and

Q̂= f (q̂). By relabelling, any pair of corresponding vertices can be made to fit this

construction.
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ê

ê′

â

â′
ŝ

r̂ p̂ b̂

ĉ

Figure 4.5: Vertices on[â, ê] are equal to vertices on[â′, ê′] after applyingf

We can now observe some cases which will be treated in order ofincreasing

distance from ˆp to â.

Case 1: Suppose thati ≤ min{(â′, b̂)â,(ê, ê′)â}. Notice that (4.4) implies that

(â′, ê′)â≥ (â′, b̂)â so thati ≤ (â′, ê′)â as well. Then this case applies if and only if ˆp

3-corresponds to a vertex ˆr = â ·w−1(i) on [ê, â] as illustrated in Figure 4.5.

Now let ŝ := â′ ·w−1(i); that is, the point “opposite” ˆr. Using Propostion 4.2.4,

observe that

d(P̂, f (ŝ)) = d(P̂, f (r̂))≤ d(p̂, r̂)≤ 3δ. (4.6)

This case has a number of sub-cases, depending on which side of the hexagon ˆs

chain-corresponds to. Again, we will treat them with smallest i first.

Case 1a: Suppose thati ≤ (ê′, â)â′ so that ˆscorresponds to a vertex on[â′, â]. By

(4.3) we know that(ê′, â)â′ ≤ (â, b̂)â′ so that vertex in turn corresponds to a vertex on

[â′, b̂]. Finally, by (4.5) we havei ≤ (b̂, ĉ)â′ , soŝ3-corresponds to a vertex on[â′, ĉ].

Sinced(â′, ŝ) = i = d(â′, q̂), this vertex must be ˆq, andd( f (ŝ),Q̂)≤ d(ŝ, q̂)≤ 3δ so

(4.6) implies thatd(P̂,Q̂)≤ 6δ as required for property 1 of Definition 4.3.1.

For Cases 1b and 1c, we may therefore assume thati > (ê′, â)â′ so that ˆs corre-

sponds to a vertex on[ê′, â].

Case 1b: Suppose that ˆs 2-corresponds to a vertext̂ on [ê, â] as in Figure 4.6.
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ê

ê′

w

w

w′

â

â′

r̂

ŝ

t̂

Figure 4.6: In this situation, the dashed path must be longerthand(â′, ŝ)

Notice that

d(â, t̂) = d( f (â), f (t̂))

= d( f (â′), f (t̂))

≤ d( f (â′), f (ŝ))+d( f (ŝ), f (t̂))

≤ d(â′, ŝ)+d(ŝ, t̂)

≤ i +2δ.

andi ≤ (ê′, â′)â as noted in Case 1, so

i = d(â′, ŝ)

= d(â, t̂)− (â′, ê′)â+(â, ê′)â′

≤ i +2δ− (â′, ê′)â+(â, ê′)â′

≤ (ê′, â)â′+2δ.

Let p̂′ := â ·u( j) where j = max{i−2δ,0}. Then j ≤ (ê′, â)â′ , so f (p̂′) is in Case

1a. Sincej− i ≤ 2δ, we have shown that̂P satisfies property 3 of Definition 4.3.1.

In Case 4, we will use the fact that every vertex withinδ+1 of P̂ also satisfies this

property.

Case 1c: The final subcase has ˆs2-corresponding to a vertext̂ on [ê, ê′]. Sincef

is quasiconvex,d( f (t̂), f (ê))≤ ε, sod(P̂, f (ê))≤ d(p̂, r̂)+d(r̂ , t̂)+ε≤ 5δ+ε and



4.3. A TIGHTER BOUND ON THE THINNESS OF TRIANGLES 93

ê â b̂

ĉâ′ê′

u

v

p̂

r̂

Figure 4.7: Again, the dashed paths cannot be too short

P̂ satisfies property 2 of Definition 4.3.1.

All cases wherei ≤ min{(â′, b̂)â,(ê, ê′)â} have now been covered, so we may

assume that eitheri > (â′, b̂)â or i > (ê, ê′)â.

Case 2: Suppose thati ≤ (â′, b̂)â so thati > (ê, ê′)â. By (4.4) we havei ≤
(â′, ê′)â, sop̂ must 3-correspond to a vertex ˆr on [ê, ê′]. Notice thatd( f (r̂), f (ê))≤ ε
and sod(P̂, f (ê)) ≤ d(p̂, r̂) + ε ≤ 3δ+ ε and P̂ satisfies property 2 of Definition

4.3.1.

We have now dealt with all possibilities wherei ≤ (â′, b̂)â and may thus assume

that i > (â′, b̂)â.

Case 3: Suppose that|u| − i ≥ (â′, ĉ)b̂ so that ˆp 2-corresponds to a vertex ˆr =

â′ ·v( j) on [â′, ĉ], as illustrated in Figure 4.7. Similar to Case 1b, we have

j = d(â′, r̂)

= d(Â, f (r̂))

≤ d(Â, P̂)+d(P̂, f (r̂))

≤ i +d(p̂, r̂)

≤ i +2δ,
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â′

b̂

ĉâ

p̂
r̂

Figure 4.8: The construction used in Case 4

and by reversing the roles ofi and j we find thati ≤ j +2δ and so| j− i| ≤ 2δ. Now

d(P̂,Q̂) ≤ d(p̂, q̂)

≤ d(p̂, r̂)+d(r̂, q̂)

= d(p̂, r̂)+ |i− j|
≤ 4δ,

and we have shown thatP̂ satisfies property 1 of Definition 4.3.1.

Case 4: The remaining case has|u| − i < (â′, ĉ)b̂ so that ˆp 2-corresponds to

some vertex ˆr on [b̂, ĉ]. Observe that

|v| = d(Ĉ, Â)

≤ d(ĉ, â)

≤ d(ĉ, r̂)+d(r̂, p̂)+d(p̂, â)

≤ |x|−d(b̂, r̂)+d(r̂, p̂)+d(p̂, â)

≤ |x|− (|u|− i)+2δ+ i

= |x|− |u|+2i +2δ,
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but then by re-arranging, we see

i ≤ (B̂,Ĉ)Â

=
|u|+ |v|− |x|

2
≤ i +δ

Now let p̂′ = â ·u( j) where j = max{i−δ−1,0}. Then eitherj = 0 so thatf (p̂′)

is in Case 1a orj > 0 and j + δ < (B̂,Ĉ)Â, so in either casef (p̂′) is not in Case

4. If f (p̂′) is in Case 1b then there is a vertexp̂′′ with d( f (p̂′′), P̂) ≤ 3δ+1 and

f (p̂′′) satisfies property 1 of Definition 4.3.1. Otherwise,d(P̂, f (p̂′)) ≤ δ+1 and

f (p̂′) satisfies property 1 or property 2 of Definition 4.3.1. In either case,̂P satisfies

property 3 of Definition 4.3.1.

Combining this with Case 1b we see thatP̂ is within 3δ+1 of a vertexP̂′ which

satisfies one of the first two properties in the claim.

Since all verticeŝP have been shown to satisfy a property in Definition 4.3.1, the

triangle is(δ,ε)-nearly thin relative tof (ê). Lemma 4.3.2 completes the proof.�

It seems likely that the proof above should adapt to some classes of general

(unlabelled) hyperbolic graphs and spaces, though restricting toX-graphs simplifies

the situation as given a connected structure in the target, one need only read off the

path labels to find a connected structure in the domain which maps onto it.

The result is for example not true when mapping between general graphs: let

Γ be the Cayley graph ofZ under a cyclic generator, and letf identify 2k +1 to

2k+1−1 for k≥ 2. ThenΓ is 0-vertex-hyperbolic andf−1( f (0)) contains only one

vertex (so is 0-quasiconvex) but the resulting graph, a partof which is illustrated in

Figure 4.9, is not hyperbolic at all: fork≥ 3, x̂= ŷ= f (2k+1) andẑ= f (2k+2k−1)

are the corners of a geodesic triangle which is not 2k−1−3-vertex-thin.

In any case, the resultdoesapply to coset Cayley graphs of quasiconvex sub-

groups.

Corollary 4.3.4. If G =<X > is a δ-hyperbolic group and H is aε-quasiconvex

subgroup then the coset Cayley graph of H is16δ+2ε+2-vertex-hyperbolic, and

geodesic triangles in the coset Cayley graph with corners onvertices in which all

vertices on all sides are further than5δ+ ε from H are12δ+2-vertex-thin.
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ẑ

x̂= ŷ

Figure 4.9: A segment of a non-hyperbolic graph

Proof. If the Cayley and coset Cayley graphs areΓ andΓ′ respectively, the map

f : Γ→ Γ′ : 1 ·w 7→ Hw has f−1( f (ê)) = H whenê represents the identity element

of G, so Theorem 4.3.3 finishes the proof. �

Notice that the second part of the result above is a hint that there is some ball

about the base point, outside of which the contraction behaves much like the original

graph.

4.4 Ball Morphisms and Loops

In this section, we provide some means to recognise when two balls are isomorphic,

which we use later to prove some results about IB and GIB. The following result

is a slightly more powerful version of Lemma 4.1.1.3 from [9](the statement there

only finds a loop of length 2k+1, although the observation that it can be taken to

label a geodesic is made inside a later proof). The 1 in 2k+ 1 can be eliminated

by considering metric balls in the graphs rather than subgraphs induced by balls of

vertices.

Proposition 4.4.1.SupposeΓ1 andΓ2 are X-graphs.

If x̂1 ∈ Γ1 andx̂2 ∈ Γ2 are vertices and for some non-negative integer k the balls

Bk(x̂1) and Bk(x̂2) are not isomorphic, then there is some X-word w of length at

most2k+1 which labels a loop at̂x2 but does not label a loop at̂x1 or vice versa.

If there is an X-ball morphism from Bk(x̂1) to Bk(x̂2) then w labels a loop at̂x2.

Suppose additionally thatΓ is an X-graph with IB(2k+1) and that the centre

of B̂2k+1(Γ) is p̂. If for i ∈ {1,2} there is an X-ball morphism from̂B2k+1(Γ) to
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BΓi
2k+1(x̂i) then w can be taken to label a geodesic inΓ which starts atp̂.

Proof. We assume there is no wordw as in the hypothesis and demonstrate that

there is an isomorphism of balls.

Proposition 4.2.3 implies that if anX-map f : Bk(x̂1)→ Bk(x̂2) exists sending

x̂1 to x̂2, it must map ˆx1 ·w to x̂2 ·w for all Bk(x̂1)-wordsw, and if this describes a

well-defined function then that function is anX-map. Let us aim for a contradiction

and assume, then, that this map is not well defined, so there exist X-wordsu and

v such thatu andv are bothBk(x̂1)-words at ˆx1 andBk(x̂2)-words at ˆx2, and that

x̂1 ·u= x̂1 ·v but x̂2 ·u, x̂2 ·v.

For each 0≤ j ≤ |u|, let zj be the label of a geodesic which connects ˆx1 to

x̂1 · u( j). Notice that|zj | ≤ k so zj is a Bk(x̂2)-word at ˆx2 for all j. Suppose that

for some 0≤ l < |u| we have ˆx2 · zl = x̂2 · u(l), but x̂2 · zl+1 , x̂2 · u(l + 1). Let

w := zlu[l +1]z−1
l+1. Then|w| ≤ |zl |+1+ |zl+1| ≤ 2k+1, andw labels a loop at ˆx1

but not ˆx2, a contradiction. If there is no suchl , we may replaceu with z|u|, which

labels a geodesic which starts at ˆx1, and in particular we then have|u| ≤ k.

These arguments can also be applied tov, so we can also assume that|v| ≤ k.

Now if x̂1 ·u= x̂1 ·v but x̂2 ·u, x̂2 ·v then letw := uv−1. Since|w| ≤ |u|+ |v| ≤ 2k

andw labels a loop at ˆx1 but not ˆx2, we again have a contradiction.

Thus ˆx1 ·u= x̂1 ·v implies that ˆx2 ·u= x̂2 ·v and there is anX-map fromBk(x̂1)

to Bk(x̂2) which sends ˆx1 to x̂2, ie. a ball morphism. SwappingΓ1 andΓ2 shows a

ball morphism exists in the other direction. Since ball morphisms are surjective by

Proposition 4.2.6, this implies these balls contain the same number of vertices and

so the morphism must also be injective, ie. an isomorphism.

To prove the second statement, letf be theX-ball morphism. Note that ifw

labels a loop at ˆx1 then

x̂2 ·w = f (x̂1) ·w
= f (x̂1 ·w)
= f (x̂1) = x̂2,

sow must also label a loop at ˆx2. Thus any loop present at the centre of only one

ball must be a loop at ˆx2 and not at ˆx1.

For the final statement, letfi (i = 1,2) be the givenX-ball morphisms. Notice

that if w′ labels a geodesic in̂B2k+1(Γ)-word connecting ˆp to p̂ ·w, then for eachi
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we have

x̂i ·w′ = fi(p̂) ·w′

= fi(p̂ ·w′)
= fi(p̂ ·w)
= fi(p̂) ·w
= x̂i ·w,

sow′ labels a loop at ˆxi if and only if w does. We may therefore replacew with w′

and the result is proved. �

The simple identifying property given above allows us to much more easily

determine whether or not two balls are isomorphic. We now give a characterisation

of loops in certainX-graphs.

Lemma 4.4.2.Suppose thatΓ andΓ′ are X-graphs, thatΓ is δ-vertex-hyperbolic

and has base point̂a and that f : Γ → Γ′ is an X-map where f−1( f (â)) is ε-

quasiconvex.

Suppose further that w labels a geodesic inΓ′ which starts at f(â), that u labels

a geodesic inΓ which starts atâ ·w and that f(â ·w) = f (â ·wu). Then for any

X-word which labels a geodesic inΓ which starts atâ with â · v= â ·wuw−1, we

have either

1. |v| ≤ |u|−2|w|+6δ+4ε+2, |v| ≤ |u|+3δ+2ε+2, and2|w| ≤ |u|+3δ+
2ε+1, or

2. |v| ≤ 3δ+2ε+1 and |u|2 ≥ (â, â ·wu)â·w≥ |u|2 −δ.

In the second case, if|u| > 2δ, let i :=
⌊
|u|
2

⌋
− δ and there is a word u′ with

|u′| ≤ 5δ+1 such thatâ·wu= â ·w(|w|− i)u′w(|w|− i : |w|).

Proof. Let v be such anX-word. Thenf (â · v) = f (â), so f (â · v(i)) is within ε of

f (ê) for all integersi. Form a geodesic quadrilateral inΓ with corners ˆa, b̂ := â ·v,

ĉ := b̂ ·w and d̂ := ĉ · u−1 = â ·w, picking [b̂, ĉ] and [â, d̂] so that they are both

labelledw. Split the quadrilateral into two triangles using some geodesic[â, ĉ].

Let m be the number of vertices on[b̂, ĉ], excludingb̂ itself, which correspond

to vertices on[â, b̂], in other words
⌊
(â, ĉ)b̂

⌋
. Let x̂ be the vertex on[b̂, ĉ] with
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w u

f−1( f (â))
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d̂

â b̂

ĉ

Figure 4.10: A loopu close toH

d(x̂, b̂) = m, so that ˆx corresponds to a vertex ˆy on [â, b̂]. Since[â, b̂] is a geodesic

and f−1( f (â)) is ε-quasiconvex, there exists some ˆg ∈ Γ such that f (ĝ) = f (â)

andd(ĝ, ŷ) ≤ ε. Thend( f (x̂), f (b̂)) = d( f (x̂), f (ĝ)) ≤ d(x̂, ĝ) ≤ δ+ ε. Sincew

labels a geodesic inΓ′ which starts atf (â) = f (b̂), we therefore havem= d(x̂, b̂) =

d( f (x̂), f (b̂))≤ δ+ ε.

Let n be the number of vertices on[â, d̂], excludingâ itself, which 2-correspond

to a vertex on[â, b̂]. Then a similar construction to that in the previous paragraph

shows thatn≤ 2δ+ ε.

Suppose that no vertex on[b̂, ĉ] 2-corresponds to a vertex on[â, d̂], as in Figure

4.10. Let l be the number of vertices on[â, b̂] which chain-correspond only to

vertices on[d̂, ĉ]. By counting corresponding vertices we find that

|v|+1= l +(m+1)+(n+1). (4.7)

Note that there are|w|−m or |w|−m+1 vertices on[b̂, ĉ] which 2-correspond

to vertices on[ĉ, d̂]. Similarly, there are|w| − n or |w| − n+ 1 vertices on[â, d̂]

which correspond to vertices on[ĉ, d̂]. Counting vertices again, we see that|u|
is within 1 of l + (|w| −m)+ (|w| − n). Combining this with (4.7), we find that

|v|−m−n−1=1 |u|−2|w|+m+n, so|v|=1 |u|+2(m+n−|w|)+1.

We know thatm+n≤ 3δ+2ε, so we can derive|v| ≤ |u|−2|w|+6δ+4ε+2.

Also, 2|w| ≥ m+ n so |v| ≤ |u|+m+ n+ 2 ≤ |u|+ 3δ + 2ε + 2. Finally, |v| ≥
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Figure 4.11: A loopu distant fromH

n+m+1 so we obtain

2|w| ≤ |u|− |v|+2n+2m+2

= |u|−n+m+1

≤ |u|+3δ+2ε+1.

All inequalities for the first case of the hypothesis have nowbeen shown to

be satisfied. It remains to cover the case where at least one vertex on [b̂, ĉ] 2-

corresponds to a vertex on[â, d̂], as in Figure 4.11.

All points on[â, b̂] must now chain-correspond to points on[b̂, ĉ] or [â, d̂] so we

have|v|+1≤m+1+n+1 and in particular|v| ≤ 2ε+3δ+1 as required by the

second case.

Note that there is at least onei such that the vertex ˆp= b̂ ·w(i) on [b̂, ĉ] corre-

sponds to a vertex̂p′ on [â, ĉ] which in turn corresponds to a vertex ˆq= â ·w( j) on

[â, d̂] for somej. For any such points, note that ˆr := â·w(i) has f (r̂) = f (â·w(i)) =
f (b̂·w(i)), so

|i− j| = d(r̂, q̂)

= d( f (r̂), f (q̂))

= d( f (p̂), f (q̂))

≤ d(p̂, q̂)

≤ 2δ.
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This implies that

d(â, ĉ) = d(â, q̂)+d(â, ĉ)−d(â, q̂)

= d(â, q̂)+d(ĉ, p̂′)

= d(â, q̂)+d(ĉ, p̂)

= d(â, q̂)+d(ĉ, b̂)−d(b̂, p̂)

= j + |w|− i

≤ |w|+2δ.

Also, sincew labels a geodesic which starts atf (b̂) we have

|w| = d( f (b̂), f (ĉ))

= d( f (â), f (ĉ))

≤ d(â, ĉ),

so

|u|
2

≥ |u|+ |w|−d(â, ĉ)
2

= (ĉ, â)d̂

≥ |u|
2
−δ.

Since(â, â·wu)â·w = (ĉ, â)d̂, we have now shown that the second case applies.

For the last part, let ˆs on [b̂, ĉ] and t̂ on [â, d̂] be the vertices at distancei =⌊
|u|
2

⌋
−δ from ĉ andd̂ respectively, so that they chain-correspond to verticesŝ′ and

t̂ ′ on [d̂, ĉ] at most 2δ+1 apart. We can see now thatd(ŝ, t̂) ≤ d(ŝ, ŝ′)+d(ŝ′, t̂ ′)+

d(t̂ ′, t̂)≤ 5δ+1 and lettingu′ be a word labelling a geodesic path between ˆs andt̂,

we have ˆa ·wu= â ·w(|w|− i)u′w(|w|− i : |w|) as required. �

In particular, we can show that long loops which are far from the base point in

the target graph of a quasiconvexX-map can be “pulled” to shorter loops which are

closer to the base point.
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4.5 IB(5
2δ) implies IB(∞)

For torsion free subgroups, Foord demonstrates the GIB(∞) property for a specific

class of subgroups of word-hyperbolic groups (those subgroupsH where|H : H ∩
CG(h)| is finite for all elementsh in H) by finding a bound on the distance of large

loops from the base point of the coset Cayley graph.

We will take a slightly different approach to this problem byfirst showing that

one only needs to bound the distance ofsufficiently largeloops, and in the next

section we will provide such a bound.

Proposition 4.5.1.Suppose thatΓ andΓ′ are X-graphs, thatΓ has IB(2k+3δ+1)

with constant M for some k≥ 5
2δ, is δ-vertex-hyperbolic and has base pointâ, that

f : Γ→ Γ′ is an X-map and that f−1( f (â)) is ε-quasiconvex.

If Γ′ has IB(52δ) with constant K then it has IB(k) with constant K′ := max{M+

k−δ,K+k−δ,ε+ k+3δ
2 +2}.

If additionally{Γ,Γ′} has IB(52δ), then it has IB(k).

Proof. We start by making the observation that sinceΓ has IB(2k+ 3δ+1) with

constantM, it must also have IB(2k+1) with constantM.

Suppose for a contradicton thatΓ′ does not have IB(k) with constantK′. Then

there exist vertices ˆx and ŷ which are of distance at leastK′ from ẑ and such that

Bk(x̂) is not isomorphic toBk(ŷ). Let w label a geodesic inΓ′ connecting ˆz to x̂ and

let b̂ := â ·w so thatf (b̂) = x̂. Pick ĉ so thatf (ĉ) = ŷ in a similar way.

Notice thatd(â, b̂) = d(ẑ, x̂) ≥ K′ ≥M and similarlyd(â, ĉ) ≥M. SinceΓ has

IB(2k+1) with constantM, the 2k+1-balls around̂b andĉ are ball isomorphic to

B̂2k+1(Γ). Then f restricts to ball morphisms from̂B2k+1(Γ) to bothB2k+1(x̂) and

B2k+1(ŷ).

By Proposition 4.4.1, there is a wordu of length at most 2k+ 1 which labels

a loop at the centre of one ball and not the other, and that loopcan be assumed to

label a geodesic which starts at the centre ofB̂2k+1(Γ).
Now, Lemma 4.4.2 applies. Since 2|w| ≥ 2K′ > |u|+ 2ε + 3δ+ 1, we must

be in the second case of that lemma. In the case where|u| ≤ 2δ, let i := 0 and

u′ := u. Otherwise|u|> 2δ and letu′ be the word given by the final part of Lemma

4.4.2; in this case leti :=
⌊
|u|
2

⌋
− δ. In either caseu′ satisfies|u′| ≤ 5δ+ 1 and

â·wu= â·w(|w|− i)u′w(|w|− i : |w|), andi satisfiesi ≤ k−δ.



4.5. IB(52δ) IMPLIES IB(∞) 103

Now d(ẑ, ŷ′) ≥ d(ẑ, ŷ)− i ≥ K′−k+δ ≥ K whereŷ′ = ŷ ·w(|w|− i : |w|)−1, so

B5
2δ(ŷ

′) is X-ball isomorphic toB̂5
2δ(Γ

′) andu′ also labels a loop at̂y′. Now

ŷ·w(|w|− i : |w|)−1u′w(|w|− i : |w|) = ŷ′ ·u′w(|w|− i : |w|)
= ŷ′ ·w(|w|− i : |w|)
= ŷ,

sov := w(|w|− i : |w|)−1u′w(|w|− i : |w|) labels a loop at ˆy.

Notice that|v| ≤ 2i +5δ+1≤ 2k+3δ+1 sob̂
v→ is contained inside the 2k+

3δ+1-ball around̂b andĉ
v→ is contained inside the 2k+3δ+1-ball around ˆc. As

Γ has IB(2k+3δ+1) andb̂ and ĉ are sufficiently far from ˆa, these balls are ball

isomorphic. Sincêb ·u= b̂·v, this implies that ˆc ·u= ĉ ·v and so

ŷ·u = f (ĉ·u)
= f (ĉ·v)
= ŷ·v
= ŷ,

which contradicts our assumption thatu did not label a loop at ˆy. In other words,

Bk(x̂) is isomorphic toBk(ŷ) andΓ′ has IB(k) with constantK′, as required.

It remains to prove the last part. If{Γ,Γ′} does not have IB(k) thenB̂k(Γ) is not

isomorphic toB̂k(Γ). Pick a vertex ˆx∈ Γ′ with d(x̂, ẑ) ≥ K′, let w label a geodesic

path inΓ′ which connects ˆz to x̂ and letb̂ := â ·w. Then thek-balls around̂b and

x̂ are ball isomorphic to the canonical balls in their graphs and Bk(x̂) is not ball

isomorphic toBk(b̂).

SinceΓ has IB(2k+1) with constantM, the 2k+1-ball around̂b is ball isomor-

phic toB̂2k+1(Γ). Then f restricts to a ball morphism from̂B2k+1(Γ) to B2k+1(x̂).

Proposition 4.4.1 provides us with a non-emptyX-word u of length at most

2k+ 1 which labels a geodesic starting atb̂ and a loop at ˆx. As before, 2|w| ≥
|u|+2ε+3δ+1, so the second case of Lemma 4.4.2 applies. Once again, if|u| ≤2δ,

let i :=0 andu′ := u. Otherwise|u|> 2δ and letu′ be the word given by the final part

of Lemma 4.4.2; in this case leti :=
⌊
|u|
2

⌋
−δ. In either caseu′ satisfies|u′| ≤ 5δ+1

andâ·wu= â·w(|w|− i)u′w(|w|− i : |w|), andi satisfiesi ≤ k−δ.

Notice thatd(â, b̂′)≥K′− i≥M whereb̂′ := â·w(|w|− i), andd(ẑ, x̂′)≥K′− i ≥
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K where x̂′ := ẑ·w(|w| − i). In particular, the5
2δ-balls aroundb̂′ and x̂′ are ball

isomorphic, and sou′ labels a loop at̂b′. But then

b̂ ·u = â·wu

= â·w(|w|− i)u′w(|w|− i : |w|)
= b̂′ ·u′w(|w|− i : |w|)
= b̂′ ·w(|w|− i : |w|)
= b̂,

sou labels a loop at̂b. This is a contradiction, soBk(x̂) is ball isomorphic toBk(b̂)

and{Γ,Γ′} has IB(k) as required to prove the second statement. �

4.6 Torsion-free Subgroups have GIB(∞)

Foord proved in Theorem 4.3.1.1 of [9] that torsion free subgroups of word-hyperbolic

groups have GIB(k) for anyk > 0 but gave no bound on the constant. It is the aim

of this section to demonstrate that said bound is inO(k+ε) using some of the work

in Chapter 2.

In order to find a bound on the constant for GIB(k), we only need to exhibit a

constant for GIB(52δ) by Proposition 4.5.1. We do this below, after stating a result

which will be used to do so. The reader should recap the constants from Section

2.2.

The following is a reasonably well known general result; theparticular statement

here is a restatement of Proposition 2.3 of [3].

Proposition 4.6.1.Let G=<X > be aδ-hyperbolic group. If u and v are words

which are conjugate in G then there exists a word x such that x−1ux=G v, and

|x| ≤ |u|+ |v|+Q2+4δ.

The statement in [3] uses a slightly different expression for the constant, but the

proof is sufficient to prove the statement here. Now we can move onto our result.

Proposition 4.6.2.Suppose that G isδ-hyperbolic with respect to a generating set

X, and that H is anyε-quasiconvex torsion-free subgroup of G. Then H has GIB(5
2δ)
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with constant K= 100MQ2δ+2ε.

Proof. Let Γ be the Cayley graph ofG with respect toX and letΓ′ be the coset

Cayley graph ofH with respect toG. Let â be the vertex representingH in Γ′ and

suppose that some wordw labels a geodesic inΓ′ connecting ˆa to some vertex ˆx and

thatB5
2δ(x̂) is not isomorphic toB̂5

2δ(Γ).

Proposition 4.4.1 gives us a wordu labelling a geodesic inΓ of length at most

5δ+1 which labels a loop at ˆx but not at the centre of̂B5
2δ(Γ), sou,G 1. Applying

Lemma 4.4.2 we see that eitherd(â, x̂)≤ |u|+3δ+2ε
2 ≤ K, in which case we are done,

or |wuw−1|G≤ 3δ+2ε.

By Proposition 4.6.1, there is a wordw′ such thatw′uw′−1 =G wuw−1 and

|w′| ≤ |u|+ |wuw−1|G+Q2+4δ

≤ 12δ+2ε+Q2+1.

Let z=G w′−1w be the label of a geodesic inΓ, and note thatz∈ CG(u). By

Corollary 2.3.19 (withv= u), we know thatz=G uit for somei and someX-word t

of length at most 8MQ2|u|+16δ≤ 64MQ2δ. Then

Hw = Hw′z

= Hw′uit

= Hw′t,

so

d(H,Hw) ≤ |w′|+ |t|
≤ 12δ+2ε+Q2+1+64MQ2δ

≤ 100MQ2δ+2ε,

as required. �

It is interesting to note that the factor ofε above does not depend onδ (although

the leading constant does rather heavily).
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H

a

w2

w′1
qi+1

qi

w1

pi
pi+1

hi

hi+1

Figure 4.12: Geodesic triangle constructed outside ofBK−1(b̂)

4.7 Geodesic Path Labels Under IB

In this section, we will give some results which show that notjust balls but geodesics

in anX-graph behave in a homogeneous way when they are relatively distant from

the base point, assuming IB(5
2δ).

Proposition 4.7.1.SupposeΓ is an X-graph with base point̂b which is∆-vertex-

hyperbolic. Suppose thatΓ has IB(∆+1) with constant K, that w labels a geodesic

that lies entirely outside of BK(b̂), and thatγ is any other path labelled by w and

lying entirely outside of BK(b̂). Thenγ is a geodesic.

Proof. Suppose the conclusion is false, and suppose the geodesic thatw labels starts

from p̂ andγ starts from ˆq. Let w= w1aw2, wherew1 is the longest subword which

does label a geodesic starting at ˆq, anda is a word of length 1. Letw′1 be a the label

of a geodesic such that ˆq ·w′1 = q̂·w1a, so that we must have|w′1| ≤ |w1|.
Then we have a geodesic triangle with corners ˆq, q̂·w1 andq̂·w′1 and the obvious

sides connecting them. Letn := |w1|, and for 0≤ i < n, let p̂i := q̂ ·w(i) and

q̂i := q̂·w′1(i). Let p̂n := q̂ ·w1 and ˆqn := q̂ ·w′1. This is illustrated in Figure 4.12.

Now, since the triangle above is∆-thin, we can pick, for eachi, a wordhi la-

belling a path from ˆpi andq̂i with |hi| ≤ ∆. Now we find that for 0≤ i < n, each

quadrilateral with corners ˆpi , ˆpi+1, q̂i , ˆqi+1 lies within ∆+1 of p̂i , hence it is con-

tained inside the∆+1-ball around ˆq ·w(i), which is isomorphic to the∆+1-ball

around ˆp ·w(i) (since this vertex is at a distance of at leastK from H).
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Using a simple induction, we have ˆp ·w1a = p̂ ·w′1. But this is a clear contra-

diction, since|w1a| > |w′1|, andw1a labels a geodesic path starting at ˆp. Hence no

suchw′1 existed, andw labels a geodesic starting at ˆq. �

By substituting the point 1 in the group Cayley graph for ˆp in the above argu-

ment, we derive the following similar result:

Proposition 4.7.2. Suppose that G is a finitely generated group, that H is a sub-

group with coset Cayley graphΓ′ which is∆-vertex-hyperbolic and has GIB(∆+1)

with constant K. If w is a shortest word representing some group element then any

path inΓ′ labelled by w which lies outside of BK(H) is a geodesic.

It’s a well-known result that in hyperbolic spaces, quasigeodesic paths lie close

to geodesic paths, so that if geodesic-labelling words in the Cayley graph label

geodesics in the coset Cayley graph when they lie outside a certain radius, the same

must be true of quasigeodesics (although the radius in question might be larger).

We see the emergence of one “bad” ball, centred atH in the coset Cayley graph.

4.8 Conclusion and Possible Further Work

This chapter has demonstrated that in the setting ofX-graphs, anX-map with qua-

siconvexf−1( f (â)) preserves a variety of properties.

In Section 4.3 it was pointed out that at least some of these facts are not true

for general graphs, but it may be that they generalise to morespecific classes, like

regular graphs (ie. those graphs in which every vertex has the same valency). One

expects that a 2k-regular graph ought to admit edge labels and directions to make it

into anX-graph, and that labelling ought to lift through a graph morphism so that

hyperbolicity would be preserved in the case of 2k-regular graphs. It would seem

more difficult to do this in a way which would preserve (labelled) isomorphisms of

balls, however.

Similarly, one might ask whether some of the results can be expanded somehow

to general hyperbolic spaces. If the spaces embedX-graphs in a nice way, this

would indeed seem to be the case. What about more general spaces?
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Chapter 5

Hyperbolic Groups are 14-hyperbolic

The constant of hyperbolicity of a word-hyperbolic group isdependent on its gen-

erating set. For example, a free group, sayF =< a> on a free generating set has a

vertex hyperbolicity constant of 0. However introducing a redundant generator will

increase this constant, for exampleF =< a,b|a2 = b > has vertex hyperbolicity

constant of 1. The purpose of this chapter is to investigate the lower bound minδ(G)

of this constant for a given groupG.

It turns out that there is a single small such bound that applies to all word-

hyperbolic groups. Thus, the value of minδ(G) partitions word-hyperbolic groups

into a small number of classes. The bounds given here are likely not to be the

smallest due to the naive way in which they are derived, however it is the existence

of such a bound that is interesting.

5.1 Thinness of Quasigeodesic Triangles

We first show that if we are working in a geodesic metric space in which all geodesic

triangles areδ-vertex-thin and we are given a triangle whose sides are all(1,k)-

quasigeodesics, then the triangle is∆-vertex-thin for some∆ depending only onk

andδ.

It is well known that in hyperbolic spaces, quasigeodesic paths lie close to

geodesic paths; let us briefly investigate the case of(1,k)-quasigeodesics in par-

ticular.

109



110 CHAPTER 5. HYPERBOLIC GROUPS ARE14-HYPERBOLIC

γ

α
x̂

q̂

p̂

ŷ

q̂′

Figure 5.1:(1,k)-quasigeodesics lie close to geodesics

Lemma 5.1.1. Suppose thatΓ is a δ-vertex-hyperbolic graph, thatγ is a (1,k)-

quasigeodesic inΓ joining the verticeŝx andŷ, and thatα is a geodesic joininĝx

andŷ.

Then for every vertex̂p on γ, there exists a vertex̂q on α such that d(p̂, q̂) ≤
k+1

2 +δ and d(x̂, q̂)≤ dγ(x̂, p̂)≤ d(x̂, q̂)+ 3k+1
2 .

Proof. Pick geodesics[p̂, x̂] and [p̂, ŷ], and define a geodesic triangle using these

andα, as in Figure 5.1. Letm be the meeting point on[p̂, x̂]. Thenm must be of

distance at mostk2 from p̂, since

d(p̂,m) =
d(p̂, x̂)+d(p̂, ŷ)−d(x̂, ŷ)

2

≤ dγ(p̂, x̂)+dγ(p̂, ŷ)−d(x̂, ŷ)

2

=
dγ(x̂, ŷ)−d(x̂, ŷ)

2

≤ k
2
.

If m lies on a vertex, let̂q′ = m, and if not, letebe the edge containingmand let

q̂′ be the vertex one that is closest to ˆx. Either way,d(q̂′,m)≤ 1
2.

Let q̂ be the vertex onα which corresponds tôq′. Then

d(p̂, q̂) ≤ d(p̂,m)+d(m, q̂′)+d(q̂′, q̂)

≤ k
2
+

1
2
+δ,
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αxz

axz

bxz

axy

αxy

αyz

p̂′

q̂′

q̂x̂

p̂

ŷ ẑ

bxy

p̂′′

Figure 5.2:(1,k)-quasigeodesic triangles are thin

and

d(x̂, q̂) ≤ d(x̂, p̂)

≤ dγ(x̂, p̂)

≤ d(x̂, p̂)+k

≤ d(x̂, q̂′)+d(q̂′, p̂)+k

≤ d(x̂, q̂)+
3k+1

2

as required. �

When the pathsγ andα are understood, we will refer to ˆq in Lemma 5.1.1 as the

partner of p̂.

Lemma 5.1.2.SupposeΓ is aδ-vertex-hyperbolic graph. Let k be a positive integer,

let x̂, ŷ andẑ be vertices inΓ and letαxy, αyzandαxzbe(1,k)-quasigeodesics joining

x̂ to ŷ, ŷ to ẑ andx̂ to ẑ respectively to form a triangleα.

Thenα is 3k+3δ+2-vertex-thin.

Proof. Pick geodesics[x̂, ŷ], [ŷ, ẑ] and[x̂, ẑ] connecting ˆx, ŷ andẑ, to form a geodesic



112 CHAPTER 5. HYPERBOLIC GROUPS ARE14-HYPERBOLIC

triangleβ. Let axy, ayz andaxz be the meeting points onα and letbxz, byz andbxz be

the meeting points onβ. See Figure 5.2.

Let p̂∈ αxy be a vertex corresponding to ˆq∈ αxz, sodαxz(x̂, q̂) = dαxy(x̂, p̂). Let

p̂′ ∈ [x̂, ŷ] andq̂′ ∈ [x̂, ẑ] be their respective partners, as in Lemma 5.1.1. By Lemma

5.1.1, the distancesd(p̂, p̂′) andd(q̂, q̂′) are less than or equal toδ+ k+1
2 .

By relabelling the corners of the triangle, any pair of corresponding vertices ˆp

andq̂ can be made to fit the above construction. Ifd(x̂, p̂′)> d(x̂, q̂′) then swapping

ŷ and ẑ, and p̂ and q̂ reverses the inquality, so it may be assumed thatd(x̂, p̂′) ≤
d(x̂, q̂′).

Supposed(x̂, p̂′) ≤ d(x̂,bxy), and letp̂′′ be the point on[x̂, ẑ] corresponding to

p̂′, sod(p̂′, p̂′′)≤ δ. Using the second part of Lemma 5.1.1, we have

d(q̂′, p̂′′) = |d(x̂, q̂′)−d(x̂, p̂′′)|
= |d(x̂, q̂′)−d(x̂, p̂′)|

≤ 3k+1
2

,

asdαxz(x̂, q̂) = dαxy(x̂, p̂). Application of the triangle inequality gives

d(p̂, q̂) ≤ d(p̂, p̂′)+d(p̂′, p̂′′)+d(p̂′′, q̂′)+d(q̂′, q̂)

≤
(

k+1
2

+δ
)
+δ+

3k+1
2

+

(
k+1

2
+δ

)

=
5k+3

2
+3δ≤ 3k+3δ+2,

as required.

It remains to consider the case where bothd(x̂, p̂′) andd(x̂, q̂′) are strictly larger
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thand(x̂,bxy). Note thatdαxy(x̂, p̂) = dαxz(x̂, q̂)≤ dαxy(x̂,axz). Then

d(x̂,bxy) < d(x̂, p̂′)

≤ dαxy(x̂, p̂)

≤ dαxy(x̂,axy)

=
dαxy(x̂, ŷ)+dαxz(x̂, ẑ)−dαyz(ŷ, ẑ)

2

≤ d(x̂, ŷ)+d(x̂, ẑ)+2k−d(ŷ, ẑ)
2

= d(x̂,bxy)+k,

sod(p̂′,bxy) = d(x̂, p̂′)−d(x̂,bxy)≤ k andd(p̂,bxy)≤ d(p̂, p̂′)+d(p̂′,bxy)≤ k+1
2 +

δ+k= 3k+1
2 +δ. By symmetry,d(q̂,bxz)≤ 3k+1

2 +δ also, so we have

d(p̂, q̂) ≤ d(p̂,bxy)+d(bxy,bxz)+d(bxz, q̂)

≤
(

3k+1
2

+δ
)
+(δ+1)+

(
3k+1

2
+δ

)

= 3k+3δ+2.

�

5.2 The Effect of Corners not on Vertices

We will now investigate the result of allowing corners of a geodesic triangle to

reside on an edge rather than a vertex. If the reader has no trouble believing that

a result like the following holds, they are advised to simplyskip this section; it is

provided only for completeness.

That vertex-hyperbolicity implies hyperbolicity is not a new result; Section 4.2

of [7] gives a similar result relating the thinness of short-lex geodesic triangles and

the bigon constant (simply stated, the thinness of geodesictriangles with corners on

vertices for which one side has length at most 1) to the hyperbolicity of the space.

Applying that result directly here would give us the value 5δ+3. The value 2δ+6

given here is not claimed to be minimal, but the use of two correspondances (which

results in the 2δ) does appear to be necessary.
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x

z

p

y

x
p̂

q
q̂

x̂y = x̂z

ŷx

ŷz

ẑx

ẑy

q̂′

x̂z

x̂y

Figure 5.3: Removing loops from corners (left), and the firstcase of Proposition
5.2.1 (right)

Proposition 5.2.1.Suppose that x, y and z are points in a Cayley graph and that

[x,y], [y,z] and [x,z] are geodesics forming a geodesic triangleα. If the vertex

thinness constant of the space isδ thenα is 2δ+6-thin.

Proof. It is sufficient to prove any two corresponding points lie at most 2δ+6 apart.

Assume the labels are picked so that a pointp on [x,y] corresponds to a pointq on

[x,z]. Let axy, axz andayz be the meeting points on[x,y], [x,z] and[y,z] respectively.

If x is a vertex, let ˆxy = x̂z = x; if it lies on an edgee then let ˆxy be the vertex

on e which lies on[x,y] and ˆxz be the vertex one which lies on[x,z] (these are

uniquely defined sincex does not lie on a vertex). Define ˆyx etc. in a similar way.

By swappingzandy as necessary, it can be assumed thatd(x̂y,x)≤ 1
2.

Suppose that ˆxy = x̂z, x, sox lies on a loop of length 1, as in the left hand side of

Figure 5.3. Notice thatd(x, x̂y) = d(x, x̂z) =
1
2 or one of the sides of the triangle was

not geodesic. Ifp lies betweenx and ˆxy thend(p,q) ≤ 1≤ 2δ+6 as required. If

not, define a new triangle with corners ˆxy, y, andzand edges[x̂y,y], [x̂y,z], and[y,z].

Sinced(x, p)−d(x,q) = d(x̂y, p)−d(x̂y,q), the pointsp andq also correspond in

the new triangle, soα can be replaced by this new triangle without affecting the

arguments below. Thus, it may be assumed that ifx, x̂y then ˆxz, x̂y.
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Note that ifd(p,x)≤ 1 thend(p,q)≤ 2≤ 2δ+6, so we can assume

d(p,x)> 1. (5.1)

Our aim is to produce a second geodesic triangleβ which lies close toα and whose

corners lie on vertices, and then use correspondances inβ to bound the distance

betweenp andq.

First, suppose thatd(x̂y, ẑx) = d(x̂y, x̂z)+d(x̂z, ẑx), so thatβxz= [x̂y, x̂z][x̂z, ẑx] is

a geodesic, as in the right hand side of Figure 5.3. Letx̂′ = x̂y, let ŷ′ = ŷx, and let

ẑ′ = ẑx. Form a geodesic triangleβ with cornersx̂′, ŷ′ andẑ′ using geodesic paths

βxy= [x̂y, ŷx], βxz andβyz= [ŷx, ẑx] (pick any geodesic for the latter). Letbxy andbxz

be the meeting points onβxy andβxz respectively.

Note that

d(x̂y,bxy) =
d(x̂y, ẑx)+d(x̂y, ŷx)−d(ẑx, ŷx)

2

=
(d(x, ẑx)+d(x, x̂y))+(d(x, ŷx)−d(x, x̂y))−d(ẑx, ŷx)

2

=
d(x, ẑx)+d(x, ŷx)−d(ẑx, ŷx)

2

≥ (d(x,z)−d(z, ẑx))+(d(x,y)−d(y, ŷx))

2

−d(y,z)+d(z, ẑx)+d(y, ŷx)

2
= d(x,axy)−d(z, ẑx)−d(y, ŷx)

≥ d(x,axy)−2.

Let p̂ be a closest vertex top on [x̂y, ŷx] with d(x̂y,bxy) ≥ d(x̂y, p̂) and letq̂ be a

closest vertex toq on [x̂z, ŷz] with d(x̂y,bxz)≥ d(x̂y, q̂).

Suppose thatd(x̂y, p)> d(x̂y,bxy), so thatp does not correspond to any point on

βxz in β. The same must be true ofq asd(x̂y,q) = d(x̂y, p)+2d(x, x̂y)≥ d(x̂y, p). If

the meeting pointsbxy andbxz lie on vertices, ˆp andq̂ must now be equal tobxy and

bxz respectively. If not,d(x̂y, p̂) = d(x̂y,bxy)− 1
2 andd(x̂y, q̂) = d(x̂y,bxz)− 1

2.
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Now d(x̂y, p̂) = d(x̂y, q̂), so p̂ corresponds to ˆq in β. But then

d(p,q) ≤ d(p, p̂)+d(p̂, q̂)+d(q̂,q)

≤ d(x̂y, p)−d(x̂y, p̂)+δ+d(x̂y,q)−d(x̂y, q̂)

≤ d(x,axy)−d(x̂y,bxy)+
1
2
+δ+d(x,axy)−d(x̂y,bxy)+

1
2

≤ 2+
1
2
+δ+2+

1
2

≤ δ+5.

The remaining case in this construction is thatd(x̂y, p)≤ d(x̂y,bxy). If so, let q̂′

be the vertex onβxz corresponding to ˆp. If q̂′ = q̂ then

d(p,q) ≤ d(p, p̂)+d(p̂, q̂)+d(q̂,q)

≤ δ+1.

If not, d(x̂y, p)−1≤ d(x̂y, p)−2d(x, x̂y) = d(x̂y,q) implies thatd(x̂y, q̂)+1 =

d(x̂y,q′), so

d(p,q) ≤ d(p, p̂)+d(p̂, q̂′)+d(q̂′, q̂)+d(q̂,q)

≤ δ+2.

Therefore if[x̂y, x̂z][x̂z, ẑx] is a geodesic thend(p,q)≤ δ+5≤ 2δ+6 as required.

If d(x, x̂y)<
1
2 thend(x̂y, ẑx) = d(x̂z, ẑx)+1, so[x̂y, x̂z][x̂z, ẑx] must be a geodesic,

as if not we can find a path[ẑx, x̂y][x̂y,x] which is shorter than the path following the

geodesic[x,z]. If d(x, x̂y) =
1
2 and[x̂z, x̂y][x̂y, ŷx] is a geodesic, swapy andz and we

can once again use the above reasoning.

Thus it remains to consider the case where neither[x̂y, x̂z][x̂z, ẑx] nor [x̂z, x̂y][x̂y, ŷx]

are geodesics. In particular,d(ŷx, x̂y) = d(ŷx, x̂z) andd(x, x̂y) =
1
2.

First construct a geodesic triangleγ with sidesγwx := [x̂y, x̂z] andγwy := [x̂y, ŷx]

andγxy := [x̂z, ŷx], where for the latter path we take any geodesic. Construct a second

geodesic triangleβ with sidesβxy := γxy, βxz := [x̂z, ẑx] and βyz := [ŷx, ẑx], again

picking any geodesic for the latter path. See Figure 5.4. Letbxy, bxz andbyz be the

meeting points on the sides ofβ.



5.2. THE EFFECT OF CORNERS NOT ON VERTICES 117

q̂

p̂

q
p

x

y

z

x̂y x̂z

ŷx

ŷz

ẑx

ẑy

Figure 5.4: The second case of Proposition 5.2.1

Now

d(x̂z,bxz) =
d(x̂z, ŷx)+d(x̂z, ẑx)−d(ŷx, ẑx)

2

=
(d(x, ŷx)− 1

2)+(d(x, ẑx)− 1
2)−d(ŷx, ẑx)

2

≥ (d(x,y)−d(y, ŷx))+(d(x,z)−d(z, ẑx))

2

−d(y,z)+d(y, ŷx)+d(z, ẑx)

2
−1

≥ d(x,axy)−3

= d(x̂z,axy)−
5
2
.

Let p̂ be the closest vertex top on [x̂y, ŷx] such thatd(x̂z,bxz) ≥ d(x̂y, p̂) and

let q̂ be the closest vertex toq on [x̂z, ẑx] such thatd(x̂z,bxz) ≥ d(x̂y, q̂) (picking the

closest tox if there are two).

We have assumed in equation (5.1) thatd(p,x)> 1. Thenp̂ corresponds inγ to

a vertexp̂′ on [x̂z, ŷx] with d(x̂y, p̂) = d(x̂z, p̂′) = d(x̂z, q̂), so p̂ must 2-correspond to

q̂ in the trianglesγ andβ. Our aim is to boundd(p, p̂) = d(q, q̂).
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If d(x̂y, p)> d(x̂z,bxy) then

d(p, p̂) = d(x̂y, p)−d(x̂y, p̂)

≤ d(x̂y,axy)− (d(x̂y,bxz)−
1
2
)

≤ 3,

and otherwised(p, p̂)≤ 1
2. Thusd(p,q)≤ d(p, p̂)+d(p̂, q̂)+d(q̂,q)≤ 2δ+6 and

we are done. �

5.3 A Change of Generating Set

In this section, we will suppose we are given some presentation G=<X′|R>, and

that the Cayley graph of this presentation has vertex thinness constantδ≥ 1.

Let X = X′∪{$} where $=G 1, and letΓ be the Cayley graph ofG with respect

to X. Any shortest path label inΓ between two elements ofG cannot involve $,

so is also a shortest path label in the original Cayley graph between the same two

elements ofG, and vice versa. Thus,<X|R,$> is another presentation forG with

vertex thinness constantδ.

Pick somek∈ N, and letY = {g∈G : 1≤ |g|X ≤ k}. Our aim will be to find a

bound on the thinness of triangles in the Cayley graphΓ′ under the new generating

setY.

For each elementa∈Y, pick anyX-word of lengthk such thatw anda represent

the same element ofG. The existence of such a word is guaranteed by the presence

of the generator $: if the shortest word does not have a lengthof k, pad it by adding

$ anywhere in the word until it does. Extend this to a map of words f : Y∗→ (X±1)∗

(ignoring any cancellation).

If w is a word in either generating set, let|w| be its length, and for a group

elementg (perhaps represented by anX-word or aY-word), let|g|X = dΓ(1,g) and

|g|Y = dΓ′(1,g).

Lemma 5.3.1. If w ∈Y∗ labels a geodesic inΓ′ then| f (w)| ≤ | f (w)|X +k−1. In

particular, f(w) labels a(1,k−1)-quasigeodesic inΓ.

Proof. If | f (w)|X ≤ k(|w|−1) then f (w) can be represented byn= |w|−1 wordsw′i
of length at mostk, each of which correspond to someyi ∈Y, hencew=G y1 . . .yn.
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z
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x

$

$

$

Figure 5.5: A triangle inΓ′ mapped intoΓ

But thenw does not label a geodesic sincen< |w|.
Thus| f (w)|X > k(|w|−1), or since this is an integer equation, we can rearrange

it to | f (w)| = k|w| ≤ | f (w)|X +k−1. Suppose now thatf (w) labels a pathγ in Γ
starting at ˆa and ending at̂b so that| f (w)| = dγ(â, b̂) ≥ d(â, b̂) = | f (w)|X. Given

any two pointsc,d ∈ γ we find (possibly by swappingc andd) that

dγ(c,d) = dγ(â, b̂)−dγ(â,c)−dγ(d, b̂)

≤ d(â, b̂)+k−1−d(â,c)−d(d, b̂)

≤ d(c,d)+k−1,

where the last line is due to the triangle inequality. But now, by definitionγ is a

(1,k−1)-quasigeodesic and we are done. �

Proposition 5.3.2.With the hypothesis given at the start of this section,Γ′ is
⌈

3k−2+3δ
k

⌉
-

vertex-thin.

Proof. Let x̂′, ŷ′ andẑ′ be vertices inΓ′, and let ˆx, ŷ andẑbe the vertices inΓ which

represent to the same group elements. Pick geodesics connecting x̂′, ŷ′ and ẑ′ in

Γ′ to form a geodesic triangleα, and note that any vertex along these geodesics

corresponds to a vertex inΓ. If w′ was the label on a side ofα, then f (w′) labels a

path which passes through each of these points, and is a(1,k−1)-quasigeodesic by

Lemma 5.3.1. Letβ be the triangle inΓ labelled by these paths.

By Lemma 5.1.2,β is 3k−2+3δ-thin. Since corresponding vertices onα are

guaranteed to map to corresponding vertices onβ (this is ensured by the introduction
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of $: if dα(x̂, p̂) = n thendβ(x̂, p̂) = kn), corresponding vertices onα are within⌈
3k−2+3δ

k

⌉
of each other and we are done. �

Theorem 5.3.3.All word-hyperbolic groups have a presentation with respect to

which their Cayley graph is4-vertex-hyperbolic, and14-hyperbolic.

Proof. Using the construction in Proposition 5.3.2 withk= 3δ+1, we get a presen-

tation whose vertex thinness is constant is 4, and by Proposition 5.2.1, all geodesic

triangles in the Cayley graph for this presentation must be 14-thin. �

5.4 Conclusion and Possible Further Work

In this chapter we have seen that all word-hyperbolic groupsadmit a presentation

with respect to which their Cayley graph is 4-vertex-hyperbolic. It is well known

that a graph is 0-hyperbolic if and only if it is a tree; in other words if and only if

the group is free.

It is reasonable to ask, then, which groups admit a 1-vertex-hyperbolic Cayley

graph? It may be that this is any word-hyperbolic group, but if not, is there any

other identifying property?
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