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Abstract

This thesis describes a number of algorithms and propaslating to Gromov’s
word-hyperbolic groups. A fuller outline of the thesis ivgn, and a number of
basic concepts relating to metric spaces, hyperbolicity amomaticity are first
briefly detailed in Chapter 1. Chapter 2 then details a smuto the conjugacy
problem for lists of elements in a word-hyperbolic group efhcan be run in linear
time; this is an improvement on a quadratic time algorithmlists which con-
tain an infinite order element. Chapter 3 provides a numbéurtiier results and
algorithms which build upon this result to efficiently sojw®blems relating to qua-
siconvex subgroups of word-hyperbolic groups — specifictie problem of testing
if an element conjugates into a quasiconvex subgroup, atitgecquality of dou-
ble cosets. In Chapter 4, a number of properties of certasetd@ayley graphs are
studied, in particular showing that graph morphisms whigserve edge labels and
directions and map a quasiconvex subset to a single pompatserve a variety of
other properties, for instance hyperbolicity. Finally,apker 5 gives a proof that all
word-hyperbolic groups are 14-hyperbolic with respectdime generating set.

Vi



Symbols and Notation

Below is a summary of notation used throughout the thesiss fbtation is ex-
plained more verbosely in the introduction.

Symbol Denotes

1 The identity element of a group.

d(x,y) The distance operator in a metric space.

(X,Y)z The hyperbolic inner producfZX+d(zy)diy)

as The path in arX-graph starting aa and labelled byw.

a-w The vertex at the end af .

A(u,v) For wordsu andyv, the inner producté- u,a- v)a;.

dy(X,y) The length of the subpath of a patlhetween pointg andy.

X,V A path between pointsandy.

X* The set of words with letters in a ¥t

X+t The set of elements of a s¥talong with their symbolic in-
verses.

W] The length of a word or path.

W The length of the shortest word representing the same elemen
of G asw.

wl The symbolic inverse of a word or the reversal of a path.

wH For a wordu, the wordu—twu.

w! For an integer, the word formed by concatenatingopies of
a wordw.

w(i) The initial subword of a worav of lengthi.

w(i:j) The subword of a wordv which skips the initial letters and
ends at thgth letter.

Wi] Theith letter of a wordw.

Wi The wordw( @ ).

WR The wordw( @ L w)).

We The wordwgrw_ .

w> (i) The wordw (i), orw!(—i) if i is negative.

Vil



A-FSA
A-DFA
x=Yz
U=gV
U=V
(W)

The two-way infinite path defined by repeatiwgndefinitely,
passing through the base point.

Computational complexityf (n), ignoring contributions from
fixed structures.

A finite state automaton which recognises word&in

A deterministicA-FSA.

Shorthand fofx—z| <.

Wordsu andv represent the same group element.

Wordsu andv represent the same free group element.

The short-lex reduction of a wonal.

viii



Chapter 1
Introduction

The concept of a word-hyperbolic group was explored by Grom$12] where he
brought much previous work in the area together using sorfieitiens involving
groups with left-invariant hyperbolic metrics, the worgplerbolic case of which
will be given later. He shows among other things that in soeress “most” finite
presentations define word-hyperbolic groups and thatioestpes of small cancel-
lation group are word-hyperbolic.

It turns out that word-hyperbolic groups admit simple siolus to the first two
problems outlined by Dehn in [5] for finitely presented gre@generated by a set
X:

The word problem: Given a wordw € (X*1)*, determine ifw represents the
identity element of5.

The conjugacy problemt Given wordsu,v € (X*1)*, determine ifu andv are
conjugate elements @.

In fact, there is a solution to a problem which generalisas lob these in the
torsion-free word-hyperbolic case, that of deciding wiketh system of equations
over elements in such a group admits a solution. This resualtie to Sela in [22],
although more general statements have since been proved.

An efficient solution to the word problem due to Shapiro isexian Section 1.5,
and a solution to the conjugacy problem is the topic of Chahte

The third problem proposed by Dehn, tisemorphism problem of determin-
ing whether two such groups are isomorphic has also beenrstmle solvable at
least for torsion free word-hyperbolic groups. Sela firsived in [21] that this is

1



2 CHAPTER 1. INTRODUCTION

solvable for torsion free word-hyperbolic groups with neesstial small action on a
real-tree and he has an unpublished proof for arbitrarydnsgee word-hyperbolic
groups; Dahmani and Groves proved in [4] that the probleroligable in the more
general class of torsion free relatively hyperbolic growgs abelian parabolics (a
class which in particular includes torsion free word-hygméic groups).

All three of these problems are known to admit no solutionhi@ setting of
general finitely presented groups.

The reader may notice that torsion in word-hyperbolic geoappears to lead
to complications which are often hard to work with. The isopiosm problem for
arbitrary word-hyperbolic groups remains open at the tiferiting, and torsion
plays a part in complicating some of the proofs given in thests.

In Chapter 2 we present a solution to the conjugacy problerfirite lists of
elements of an arbitrary word-hyperbolic group which withiin timeO(mp) where
m is the number of words in each list apdis an upper bound on the length of
said words. This is an improvement upon a quadratic timergkgo for lists which
contain an infinite order element given in [3] - and an expoiaétime algorithm for
lists of torsion elements outlined in the same paper. Outiswl will in fact produce
a complete description of the setalf conjugating elements, and in particular the
centraliser of a given list of elements.

In Chapter 3 we show that given a quasiconvex subgkbopa word-hyperbolic
group, there is an algorithm which checks whether an inputiwepresents a con-
jugate of an element dfi, and again, this algorithm will run in linear time if both
the group and the subgroup are held constant. We also shoivithaossible, again
in linear time, to test if two double cosdtiuK andHVK are equal for quasiconvex
subgroup$d andK, providedH andK are held constant.

Chapter 4 expands upon some work by Foord in [9], and giveg spoperties
of certain coset Cayley graphs of subgroups of word-hygergooups, specifically
giving some bounds on hyperbolicity and the distance froenlthse point before
which they become “eventually homogeneous” in the torsiea tase, going on to
show some simple facts about words which label geodesitandisom the base
point.

Finally, in Chapter 5 we present a proof that there is a uppand on themini-
mumconstant of hyperbolicity of a word-hyperbolic group ovifiaite generating
sets of said group.
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The rest of this chapter outlines the definitions which wplply during the rest
of the thesis.

1.1 A Note on Computational Complexity

A number of results in the thesis make reference to runnimggiof algorithms.
These are normally stated in terms of a number of “fixed” mEdjtfor instance
some word-hyperbolic group. Where a quantity is descrilsedeang inO(n) for
somen, any part of the runtime which depends on these fixed entgigmored:
we presume that there is some constamtepending only on the fixed entities such
that the runtime i©(Kn).

Unless noted otherwise, we will assume that the algorithmtguiestion are to
be run under a RAM model of computing; that is, one in whictksegto arbitrary
locations of memory and basic arithmetic can be performesbistant time. This
is a sensible model for any algorithm being implemented upodern computers
provided the input is small enough that processing it will eohaust the system
RAM.

The run-time of the algorithms detailed here appears to beamged when they
are run on a Turing machine, provided the machine is givefffizigmtly large num-
ber of states, symbols, heads and tapes (the number of, stgelsols, heads and
tapes will be dependent only on the ambient groups pickeslether) and provided
one is rather more careful in cases where it appears arithimeteeded to be per-
formed. We use a RAM model in the text to avoid having to repaigitdeal with
these technicalities.

1.2 Metric Spaces and Paths
We assume the reader has at least a basic understandingrf spaces.

Definition 1.2.1. Letl" be a metric space.

A patha in I is a natural (ie. arc length) parametrizatiam: [0,1] — I of a
rectifiable curve in". We will write x€ a to denote that x lies in the image @f If
a maps from0, 1], define the lengtho| of a to be .
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A two-way infinite patha in I is defined in the same way, except tbiahaps
fromR instead of an interval.

A subpatha’ of a (finite or two-way infinite) path is any restriction ofx to a
bounded subinterval of its domain, @, ,, reparametrised so that'(0) = a(a).

Thereversala=!:[0,I] — I of a patha is the map which sends& [0,1] to
a(l —t).

For points xy € I', we will often pick a specific path: [0,1] — I between x and
y, ie. witha (0) = x anda(l) = y. Where such a path has been explicitly picked, we
will write [x,y] as a shorthand.

Further, when such a path has been picked, suppose that@) and d= a(b)
for0<a<b<I. We will write [c,d] to refer to the subpath|, ; between c and d,
and define g(c,d) = b—a. Often we will simply pick the points ¢ and d to construct
such a path. Whenever this is done, we are implicitly pickedges a and b iff0, ||
so that this operation is well defined even witeis not injective.

We are now in a position to define a number of concepts reldtrghortest
paths.

Definition 1.2.2. Suppose is a path in some metric spafe

For anyA > 1 ande > 0, we definex to be a(A, €)-quasigeodesid given any
subpatha, b] of a we have d(a,b) < Ad(a(a),a(b)) +«.

a is ageodesidf it is a (1,0)-quasigeodesic (that is, an isometry).gaéodesic
metric spaces a metric space in which every pair of points in the spaceshav
geodesic connecting them.

For L > 0 definea to have a property ocally if every length L subpath af
has that property. So for example, L-local quasigeodesiepaths for which each
length L subpath is a quasigeodesic.

Finally, a two-way infinite path has one of the above properif every bounded
subpath does. Thus we may describe an infinite path as a qoakgic and so on.

1.3 X-graphs

Some of the definitions in this section will be used exclugive Chapter 4. How-
ever, as they relate to Cayley graphs it is convenient to defiem now to avoid
defining a number of other concepts twice.
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The metric spaces which are dealt with in this thesis wilballabelled directed
graphs, where the labels obey the criteria below.

Definition 1.3.1. Supposé is a directed graph which is connected ignoring edge
directions, and has all edges labelled by elements of soite $iet X. Ther is an
X-graphif, for each vertexp € I' and each x X, there are unique edges e and f
labelled by x, so that e starts atand f terminates gb. An X-graph will always be
endowed with a distinguished base vertex.

Thus, anX-graph is a pointed labelled directed graph in which any wandse
letters are inX U X! defines an edge path starting from any vertex, formalised as
follows:

Definition 1.3.2. For a finite set A, let Abe the set of tuple&y, . .. ,an) where each
a € A. We define the set'A= |,,_oA" and write elements of Awithout brackets
and commas, that is, in the formae---a,. If u,v € A* we define uv to be the
element of Adefined by the concatenation of these strings.

Suppose X is a finite set. Definé%to be the union of X with the sé&x~1: x ¢
X} where x1 is assumed to never be an element of X.

An X-wordis an element ofX*1)*. We will normally have a fixed set X; where
this is the case, unless specified otherwise we will ofteplgidescribe an X-word
as a word.

We defingx~1)~! to be just x for any x X and then defin¢a;---a,) ! =
agl .. a{l forany X-word a- - - an. An X-word isreducedf it contains no subword
of the form xx* or x1x where xc X.

Given a vertexp in an X-graphl’, and some x X, let p-x be the terminal
vertex of the edge labelled x which startgfatand letp- x—* be the initial vertex of
the edge labelled x which endsfat

For any X-word w= a; - - - an there is thus defined a unique verg@w = (... (w-
a1)-ap...)-an, and a unique pattp —: [0,n] — I labelled by w which picks each
intermediate vertex and edge in the obvious way.

Theword metric on anX-graphl is the metric which gives every edge length
1, so that the distance between two vertices is the shoetegtH of a word labelling
a geodesic i which connects them. We will assume AHgraphs are given this
metric. Clearly, the resulting space is geodesic.
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Given a groups generated by a s&, the Cayley graph ofs with respect toX
has vertex séB and edges connectirggto gx with labelx for eachg € G andx € X.
This is anX-graph, and the base vertex in this case will be taken to bedthex
representing the identity @.

Similarly, the coset Cayley graph (sometimes called a $ehdegagram or rela-
tive Cayley graph) of a subgrou < G with respect toX has vertex sef = {Hg:
g € G} (ie. the set of right cosets &f), and edges connnectiftg to Hgx for each
Hg €V andx € X. Again, this is anX-graph, and we take the base vertex to be the
vertex representing the trivial cogdt

In fact, anyX-graphl is just a coset Cayley graph of a subgroup of the free
group onX. To see this, lep be the base vertex df. Let G be the free group
generated by with elements represented by redueéavords, and leH be the set
of reducedX-wordsw such thatp”w = p. ThenH is a subgroup oG whose coset
Cayley graph with respect ®is . In this constructionp is the vertex representing
the trivial cosetH. Much of Chapter 4 could therefore be equivalently restated
terms of coset Cayley graphs.

Definition 1.3.3. If p is a vertex in an X-graph and k> 0, the kball aroundp,
or Bﬂ(f)), is the set containing all verticeswith d(§, p) < k. The superscript will
often be omitted where the X-graph is clear from the vertex.

Later on, we will often use the concept of a mid-vertex of adgsic path in a
graph. We define this now.

Definition 1.3.4. Suppos& andy are vertices in some gragh and[X, Y] is some
geodesic path connecting them. Ifebe some vertex o, y] such that/d(p,X) —
d(p,y)| < 1. Then we say is amid-vertexof [X,y].

Note that if the distance between two vertices is even, thalide one mid-
vertex; if it is odd there will be two.

1.4 More aboutX-words

We will often be concerned with various subwords<eivords; the following defi-
nitions outline some shorthands to define these.
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Supposes is a finitely generated group. We will use the notatieg to repre-
sent equality of elements @, and simply= to represent equality of words. When
we wish to represent equality of words allowing canceliatid letters with their
inverses (ie. under the free group), we will writg .

Definition 1.4.1. Suppose w= aiay. .. ax is some X-word.

Denote thdength, k, of w agw|, and if G is a group generated by X then denote
by |w|c the smallest length of an X-word equal in G to w.

Letw(i) :=ajap...a for 0<i <|wl. Ifi < Oletw(i) be the empty word and if
i > |w| letw(i) :=w.

This definition can be extended to the integers by considevin to be a sub-
word of w' or w—" for large enough n. In order to avoid confusion, we usg w
to represent this extension in the following notation: N and n= {IIW\J then
w2 (i) =ww(i —njw|), and if —i € N, w” (i) = (W 1)®(—i).

Whererl is an X-graph with base poird, define the two-way infinite patt :

R — I by settingw®(i) := 4-w™(i) for any integer i and extending t& in the
obvious way.

Next, for0<i<j<kweletwi: j):=aii1...aj = W(i)"w(j). Letwfi] ;== &.

If f = {@J , we define w:=w(f), wr:=w(f :|w|) and we := wWrw, .

Note that ifw labels a geodesic path in thenw_ labels a path to a mid-
vertex andw = w wg always. As an example, let = abcde Thenw”(11) =
abcdeabcdeav?(—3) =w1(3) = e tdlct, wp =w(2) =ab,wgr =w(2:5) =
cdeandwc = cdeab

We can now define a “straight” word.

Definition 1.4.2. Given an X-graph and with base verte&, a non-empty word w
is straightif w® is a geodesic.

By fixing some ordering on % we can produce a lexicographic ordering on
X-words. We say w is ghort-lex least representativié w labels a geodesic &
and no other geodesic connectiago &- w has a label lexicocgraphically less than
W.

A non-empty word ishort-lex straightif w' is a short-lex least word for each
i > 0.
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Cz

Sy &

Figure 1.1: A thin triangle, and a 3-correspondance

Those definitions above which relate to the base point wily e used in the
case wherd is the Cayley graph of a group. As Cayley graphs are homoggnou
they are therefore independent of the base point chosen.

1.5 Hyperbolicity

There are a number of equivalent definitions of hyperbglwita given space, many
of which are for example given in [2] or [1]. The definition weélMpe using is that
of having thin triangles.

Definition 1.5.1. Letl" be a geodesic metric space.
For points xy,z € I, define thényperbolic inner product

d(x,z) +d(y,z) —d(x,y)
5 )

(X7 y)Z -

Given three points.,y,z € I', we define driangle to be a choice of pathlx,y],
ly,Z] and |z x]. We say the triangle is geodesic (resp. quasigeodesid, ¢eealesic,
...) if each of the three paths which make it up are geodesgp(rquasigeodesic,

).

On a triangle connecting these three points, definentleting pointon the side

[X,y] to be the point g€ [x,y] such that

iy (% Y) +dix 7(%,2) —diy (Y, 2)
2

d[x7y] (X, Cz) =

Notice that this meeting point may be on an edge whes a graph. Define ¢
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and g similarly as in Figure 1.1. Note that in the case of a geodésangle,
d(x,¢z) = (¥, 2)x-

Suppose that p is a point ofx,c,]. We say the point g [x,cy] such that
dix.c, (X,d) = dixc,) (X, p) correspondgo p and vice versa. By relabelling the cor-
ners, we may find a corresponding point to each point on eat¢heothree sides
of the triangle. Observe that the meeting points all coramgpto each other and
hence have two corresponding points (except in degeneaatssavhere the meeting
points are equal), and that all other points have one coroegfing point (except in
similar degenerate cases).

The triangle isd-thin if d(p,q) < & for all such corresponding points p and g.
It is &-vertex-thinif d(p,q) < & for all corresponding verticep andg.

A geodesic space i&hyperbolicif all geodesic triangles in it aré-thin. A
graph isd-vertex-hyperboliaf every geodesic triangle in the graph whose corners
lie on vertices id-vertex-thin and® is an integer. In either case we will assume
0 > 1to avoid complications in run times and so on.

A finitely generated group &< X > is &-hyperbolicwith respect to X if its
Cayley graph with respect to X &hyperbolic.

In a construction involving many triangles sharing commales, we will use
the phrase p fcorresponddo q if there is a sequence=rg,r1,r2,---,ry = q of
points such thatjrcorresponds (via a previously constructed triangle);tq ffor all
i. More generally, we will say that pointhain-correspondf there exists an & N
such that they n-correspond. This is illustrated on the trlggnd side of Figure 1.1.

Notice that for any points,y,z< I we have(x, z)y + (Y, 2)x = d(x,y). This fact
is used in many places to produce boundslipgy).

For an X-graphl" with base vertexa,” if we have X-words u,v which label
geodesics aa then the value ofé- u,a-v); in some sense measures the amount
of cancellation in the wordi~v when it defines a path starting at i. When
[ is a Cayley graph, notice théf-u,a-v); = w is independent of
the specific vertexa.” Thus, when some grou has been picked, we will write
A(u,v) = (&4-u,a-v)a.

It is perhaps unclear whether or not a vertex-hyperbolicspa hyperbolic
(although a hyperbolic space is clearly vertex-hyperbolit Section 5.2 we show
that these properties are indeed equivalent. ¥agsociated to vertex-hyperbolicity
Is rather more relevant to a word-hyperbolic group as we awvstiyn concerned
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with words — that is, labels of paths which connect vertiddsst of the literature,
however, uses the hyperbolicity constant rather than xdrygerbolicity constant,
so we will for the most part be using this constant also to &fsnfhe use of results
from elsewhere.

The property of bein@-hyperbolic forsomed is a property of the group and
not just the generating set (see [12]), although the paatictalue ofd will likely
change depending on the particular generating set used.

Of course, knowing that such a constarexists is not particularly helpful for
writing explicit algorithms which will often use thealueof &. In [7] an algorithm is
given (and in fact implemented in D. F. Holt's KBMAG package#)ich can, given
a finite presentation for a word-hyperbolic group, computehsa constant. In fact,
the algorithm computes the minimum vertex-hyperboliciypstant for the Cayley
graph relative to the given generating set.

This algorithm terminates if and only if the presentatiofirtkes a word-hyperbolic
group, and has no bound on its running time: It is impossibleredict when the
algorithm will complete, only that it will at some point do.s®e will therefore
assume that for any word-hyperbolic group mentioned inttiesis, the algorithm
hasalready been executeahd thus the constadtis known.

Note that this indeterminate runtime is the best that we agretior. Given a
d-hyperbolic group, it is rather easy to test if that grouprisgdl: use the solution
of the word problem to show that each generator is equal toddity. In fact,
the trivial group is 1-hyperbolic with respect to any getieaset. If there were
an efficient algorithm which determined whether or not a gipeesentation was
hyperbolic, it would therefore be able to determine whettrenot a given finite
presentation is a presentation of the trivial group. Thiszedi known to be impos-
sible.

We noted earlier that the word problem was solvable in thengebf word-
hyperbolic groups. In [8] a solution to the word problem daeShapiro is given
which runs in linear time on a Turing machine with two tapesfalows.

Lemma 1.5.2. Suppose that G is &hyperbolic group. Then there is an algorithm
which, given a word w in the generators of G will return the idHex least repre-
sentative of w in time Qw|).

We will denote use of this lemma (ie. the act of finding shext+leduced words)
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by 1t operating on elements, words and lists of elements or wardlse obvious
way. Of course, we will also use it implicitly, since it imp$ that operations like
finding the lengthg|s of an elemeng, or deciding equality of two elements can be
performed in time linear in the length of the input words.

1.6 FSAs, DFAs and Automatic Groups

Another class of finitely generated groups which is of corapanal interest is the
class of automatic groups, which are defined by certain fetage automata. A lot
of detail in these definitions and results will be omitteda@ter 13 of [14] gives a
rather fuller outline of the theory of automatic groups aeglular languages.

Definition 1.6.1. Given a set A, let A= AU {e} whereg is assumed not to be in A.

A finite state automatorM on an alphabet A (or A-FSA) is a finite set S of
states, a subset X S ofstart statesa subset YC S ofaccepting stateand a set
T C Sx A x S oftransitions

The set of transitions allow us to regard M as a directed gr&plwith vertex
set S and an edge connecting s to t with label a when@yart) € 1. An edge with
label¢ is called ane-transition.

We say M igdeterministic or M is an ADFA, if X has only a single element
S € X, there are nc-transitions and for all &£ S and ac A there is at most one
edge in G labelled a which starts at s.

We say an element @ A* is accepted byM if there is a path in G starting
at an element of X and ending at an element of Y whose labet, ddteting all
occurrences of, is w.

A subset of Ais called alanguage The set of all words accepted by M is the
language ofM.

A language isegular if it is the language of an A-FSA.

In the deterministic case, notice thatefines a partial functioo : Sx A —
S. By adding a “reject” state to S, we can makey a full function o’ by setting
0’(s,a) = r wheneverd’(s,a) is not defined. We can extend this tdransition
function @ : Sx A* — Sby lettinga(s,w) := d’(0’(d’(s,a1),a), . ..,an) whenever
W= ajay---ay € A". Thusw is accepted if and only if(sp,w) € Y, and one can
test membership in time linear in input length.
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Every regular language is in fact accepted by a DFA. In sedii1.6.1 of [14],
for instance, a method is given to produce a DFA from any FSA.

A basic property of regular languages is that they obeypilmaping lemma
(see [15], Lemma 3.1 for example). A quick sketch proof igitere, as a similar
technique is used in Section 2.3.1.

Proposition 1.6.2. Suppose M is an A-DFA. Then there is a constant K such that
for any word w in the language of M witlv| > K there are words &, ¢ € A* such
w = abc, |b| > 0 and abf'c is in the language of M for all p- 0.

Proof. Let K be the number of states M, let 55 be its start state and |&t be
its transition function. Ifjw| > K then when readingv, some state is hit twice,
ie. there is some statewith s = 0(sp,wW(i)) = 6(so,wW(])) for somei < j. Then
o(s,w(i:j))=s,soleta:=w(i),b:=w(i:j)andc:=w(j:|w|) and for anyn > 0
we haveo(sy,ab’c) = 6(so,abc) = 6(so,w). In particularabc is also accepted by
M. O

There are many other definitions of a regular language whielequivalent to
this, for instance, regular expressions. We will not neeséhdefinitions, however,
so we omit them. We do, however, make use of (synchronowsyiable FSAs
which we now define.

Definition 1.6.3. For this definition, given a set A, let A AU{$} where$is some
symbol which is not in A.

Given a tuple T= (wj,...,wy) of words with letters in A, let | be the length of
the longest word in T. For each i, let'ee w with a string of$ symbols added
onto the end so that eachi Wwas length exactly |. Now lef = a;---a Where
aj == (W,[j],...,w,[j]) so thatT, thepaddingof T, is an element qiA’")*.

An n-variable A-FSA M is now defined to be simply &##SA. The language
of M is the set of elements E&*)" which, after padding, are accepted by M.

We say that a subset A*)" is aregular n-variable languageif it is the lan-
guage of an n-variable A-FSA.

Notice that a 1-variabl&-FSA simply defines ai\-FSA (the symbol $ will
never be needed, so any edge with that label may be ignoresljhow state some
simple results involving regular languages and providdef proof skipping some
details.
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Proposition 1.6.4. Suppose A is a finite set containing | elements.
(1) The empty set is the language of an A-DFA with 1 state.
(2) A*isthe language of an A-DFA with 1 state.

(3) For any word ye A%, the set{y} is the language of an A-DFA witly| + 1
states.

(4) For any non-empty word ¢ A%, the sef{y" : n € Z,n > 0} is the language of
an A-DFA with|y| states.

Now suppose that there are arg-wariable and n-variable A-FSAs which have
languages k. and Lp, and have kand k states respectively.

(5) Projection of Iy to any its first factor is the language of an A-FSA with k
states.

(6) L1 x Ly isthe language of anint+ ny-variable A-FSA with Kk, states.
Suppose thatin= no.

(7) LiULyis the language of anjavariable A-FSA with k-+ ky states.

(8) LinLyisthe language of anjprvariable A-FSA with ko states.
Finally, suppose thatin=n, = 1.

(9) {(w,w):we Lz} isthe language of &-variable A-FSA with kstates.

(10) The concatenationily = {wyws : Wy € L1,wo € Lo} of Ly and L, is the
language of an A-FSA with k- k, states.

All of the automata above can be computed in tinf?€), where s is the number
of states in the new automaton.

Proof. For (1) letS= X =Y = {1} andt be the empty set. For (2), I&= X =
Y={1}andlett =Sx A xS

For (3) and (4), suppose= a; ---an. For (3), letS= {0,...,n}, X = {0} and
Y ={n}. Lett={(i—1,&,i): 1 <i<n}. For (4), letS={1,...,n}, X={1} and
Y ={1}. Lett={(i,&,i+1):1<i<n-—-1}U{(n,an1)}.
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For the remainder of the examples, assume the FSAs havesstat®, start
statesX;, accept state and transitions;. For convenience, assume tlsan S, =
Q.

For (5) letS= 5, X = X1, Y =Y andt = {(s,a1,t) : (S,(a1,...,8n,),t) € T1},
replacing any transitions labelled $ with transitions ligwke.

For (6) if both automata have one variable, &t § x S, X = X3 x X2 and
Y=YixYo. Letti =1U{(s,$,5) : s€ S} for eachi and then let

1= {((s1,%), (a1,a2), (t1,t2)) : (S1,a1,t1) € T3, (S, A, t2) € TH}.

The multiple variable case is similar but requires that oeebittle careful with
transitions labelled $.

For (7) letS=SUS, let X =X UXp and letY =Y, UYs. Finally, lett =11 UT,.

For (8) letS= S x $, let X = X3 x Xp, letY =Y; x Yo and lett = {(s1, S, a,1,12) :
(s1,a,t1) € 11, (S2,a,12) € T2}

For (9) letS= 5, X =X1,Y =Y, andt = {(s,(a,a),t) : (s,a,t) € 11}.

For (10) letS=SUS, X=X andY =Y, and lett = 11 UT2 U{(Y,€,X) 1Y €

Y1,X € Xo}.
In each case, the se®&X,Y andt define the required automaton and can be
computed in the required time. O

We now define various types of automatic groups.

Definition 1.6.5. Suppose that G is a group generated by a set X.

A language Wc (X*1)* is across-section o6 if each element of G is equal to
at least one element of W. If W is regular, we say W riegular cross-section of
G.

Suppose that W is a regular cross-section of G. Let A be theosegaining all
of X*1 as well as the identity in G.

If the set{(u,v) € W?: ux =g v} is a regular 2-variable language for each
x € A then we say G iautomatic with respect t&V. A group isautomaticif it is
automatic with respect to some regular cross-section.

If the set{ (u,v) € W2 : ux=g xV} is a regular2-variable language for each& A
then we say G isonjugacy automatic with respect t@/. A group isconjugacy
automaticif it is automatic with respect to some regular cross-seattio
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P. Papasoglu proved in [19] that a group is word-hyperbélnd only if it is
automatic with respect to the Sat of all words labelling geodesics in the Cayley
graph (that is, if the group is strongly geodesically autboya In fact a word-
hyperbolic group is automatic with respect to the set of sleorleast representa-
tives of elements (this is Theorem 3.4.5 of [6]).

Word-hyperbolic groups are also conjugacy automatic wapect to the set
of geodesic-labelling words (see Lemma 4.2 of [11] for a pafdhis fact which
uses the fact that word-hyperbolic groups hrautomaticwith respect to the set
of geodesics). Since the language of short-lex least reptatves is regular and
the intersection of two regular languages is regular, worperbolic groups are
conjugacy automatic with respect to the set of short-lestlegpresentatives as well.

In particular, for a word-hyperbolic group generated bytaXs¢here is ark**-
DFA whose language is the set of all short-lex least words stiort-lex word
acceptor, and anotheiX*1-DFA whose language is the set of words which la-
bel geodesics in the group’s Cayley graph, ¢fe@desic word acceptar We will
assume therefore that these automata have already beemtearipr any word-
hyperbolic group we are given.

Much like with hyperbolicity, it is impossible to determingnether or not an
arbitrary finitely presented group is automatic — in facg pmoblem here is made
even more difficult as one must search for a regular crogsmsad/, which might
not be something easily described like the set of geodabieling words.

1.7 Other Notation

We close this chapter with some other miscellaneous notatiuch is used through-
out.

Many of the results in the thesis relate to conjugacy. We adaghorthand to
express conjugation.

Definition 1.7.1. Supposing gh € G, we will denote conjugation of g by h using
superscripts, so that'g= h—1gh.

Finally, many of the results below attempt to express thaggseing “equal plus
or minus delta,” so to avoid lots of duplicate inequationsg, aefine a symbol to
express this.
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Definition 1.7.2. If a,b,c € R satisfy a+-¢c > b > a— c then we write a=°b.



Chapter 2

The Conjugacy Problem for Lists

2.1 Introduction

In [3], Bridson and Howie give a solution of the conjugacy e for finite lists
A= (ay,...,am) andB = (by,...,bm) of elements in a word-hyperbolic group —in
fact, they prove that the problem is solvable in ti@@n(?) for a torsion free group,
wherep is an upper bound on the length of elements in both lists.

The aim here is to both improve the bound on running tim®tmy), and to
tie up the rather limp conclusion in part 2 of Theorem B of [8],which their
algorithm simply terminates when the lists contain engiedements of finite order
without giving any results on the conjugacy.

The ideas used here closely relate to the ideas in [8], inlWBjustein and Holt
show that the conjugacy problem for single elements in a vingqeerbolic group
can be solved in linear time if one assumes a RAM model of caimgu They
do so by showing that infinite order elements tend to be wallaved when raised
to large powers, and finite order elements can be conjugateteiments of short
length whose conjugacy can be precomputed. In fact, we usender of results
from that paper which relate to these facts in order to eistathe result here.

We will presume for the duration of this chapter that the anbfinitely gen-
erated grougs has been fixed along with a finite generating Xetand thatG is
d-hyperbolic for some with respect to this generating set (we will assudris an
integer and > 0 to simplify some reasoning later on). All words in this cteagare
X-words, and all geometric constructions occur inside thd&yagraphl” of G with

17
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respect toX, inside which we will assume that the vertexepresents the identity
element ofG.

We will also assume that an ordering on the generators haspieleed, so that
the notion of a short-lex least representative word for edement exists and that
the short-lex word acceptor f@ has been computed.

The technicalities behind the proof in the case where oneeig saya;, has
infinite order are largely covered by solving the conjugan;btema*l‘ =g by for h
as in [8]. In the process of doing so, we can find a useful detson of elements
of the centralise€ of a; and then test if for some € C we haveA" =g B. Of
courseC is infinite, so it is important to perform this testing effiotly. Section 2.3
describes a way of doing so.

Unfortunately, since we can only obtain this form of the calider for infi-
nite order elements we run up against problems when we cemkstis of torsion
elements. Itis, however, possible to show that provided ewad the number of el-
ements in our lists, we can efficiently find a pair of listsandB’ such thatA" =¢ B
if and only if A" =g B’ and such that eitheX or B’ contains an infinite order ele-
ment, or each element & andB’ is of bounded length for some elemeantin the
latter case, one may simply use the exponential algorittivengin [3] to finish the
solution.

The disadvantage of computing in this way is that for listdwvmore elements,
the amount of computation required grows in at least exptasdd¢ashion. However,
it can be shown that if there are sufficiently many finite o@lements in the list then
its centraliser is finite. In particular, there are only atBmumber of elements which
can simultaneously conjugate the initial elements of ostetdi the initial elements
of the other, so we need only test these centralising elesm@nthe remainder of
the elements of the lists to complete the procedure.

In fact, all of the methods we use above will produce a corepletscription of
the set ofall conjugating elements as a regular set. Thus we have:

Theorem 2.1.1.Given integers > 1 and |, there is an algorithm which, given
a &-hyperbolic group G=< X|R > with |X| <, a number m> 0 and lists A=
(a1, --,am) and B= (by,---,bmy), each containing words in the generators of G,
can find a (non-deterministic) %¢-FSA whose language L satisfies:

e AY =g B for any we L, and
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e for any ge G such that A=g B there is an element w L with w=¢ g.

If |aj| < p and|bj| < p for eachl <i < m then the algorithm will run in time
O(my). It can be modified to return a single conjugating elemeat@with A¥ =B,
if one exists, without affecting the running time.

Because the methods here express all conjugating elentieysadditionally
allow computation of the centraliser of a list of elements.

2.2 Notation

In this section, we provide some notation which is used dutive remainder of
the chapter. We start by suggesting that the reader famdidinemselves with the
definitions in Section 1.4.

Next, recall Lemma 1.5.2, that we have a functiowhich returns the short-lex
least representative i@ of any word and can be computed in time linear in input
word length. We extentd to operate on lists and sets in the obvious way.

There are a number of constants which will be used througinesithapter (as
well as some points in later chapters where this chaptesislteare used). These
are:

o L:=340+2
e V, the number of vertices iB,5(é)

e Q, the number of vertices iBy5(é)

o M:= 1033232

2.3 The Infinite Order Case

In this section, we will assume that we are given two equajtierists A andB
whose elements ape-words, and that all elements AfandB have length at most
K. We will also assume that the first elementok of infinite order.

The aim of the section is to test which elemegts G have A% =g B. The
method is something of a combination of those methods autlin [8] and [3].
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We begin with several sections which bring together regtdts other sources
and then put those results together to give an algorithmiwfimcls elements which
conjugateA to B.

2.3.1 Results From [8]

In [8] (Section 3), it's proved that the conjugacy problem &ingle elements is
linear in the total input element length. The proof has ssv&eps. The first few
will be followed here as well.

The first step is to show that elements that are “difficult toredn” are actually
of infinite order, and behave nicely when raised to large pswd his result is
Lemma 3.1 of [8].

Proposition 2.3.1.Let w be some short-lex least word. Let u be the short-lex leas
representative of w If u has length strictly greater tha2i, then all positive powers
of u label L-local(1,23)-quasigeodesics.

In Proposition 2.3 of [8] it is proved that such a local quasidesic lies close to
a geodesic.

Proposition 2.3.2.1f w is an L-local(1,23) quasigeodesic if, and u is a geodesic
connecting its endpoints, then every point on w is wiiiof a point on u and vice
versa. Also, ifw| > L then|u| > %

In particular, ifjwc| > 2L thenw is of infinite order as there is no bound on the
length of shortest representatives of its powers. We wélthigs fact extensively in
the next section also.

The next step is to show that such a wardan be equated with some root of a
conjugate of a short-lex straight word. The following tweuls summarise Section
3.2 of [8].

Proposition 2.3.3. Suppose u is some short-lex least word such that all positive
powers of u label L-local1,2d)-quasigeodesics angi| > L. Then there exists
some integed < k < Q? and some word a whose length is less than or equébto
such thatr(a~1u*a) is short-lex straight.

Proposition 2.3.4. Given a short-lex least word u, testing if u is short-lex gha
takes time at most Qu|).
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The second proposition can be proved in a similar way to tmed?ug Lemma,
Proposition 1.6.2. Repeatedly reathrough the short-lex word acceptor until some
state is hit for the second time after reading a complete @dpy In this case,
readingu again will just cycle over previous statesismust be short-lex straight.

Thus we have the following code to test for short-lex straiggss:

Algorithm 2.3.5. Test if anX-word is short-lex straight
1: function TESTSLS()
Input: An X-wordu.
Output: True if ais short-lex straight; false otherwise.

2: WA <+ SHORTLEXWORDACCEPTOKG)
3 S+ STATES(WA)
4 w+ulS
5: for se Sdo
6: visiteds| « false > States hit after reading complete copiesiof
7: end for
8: S« STARTSTATE(WA)
9: f « TRANSITIONFUNCTION(WA)
10:  visiteds| < true
11:  fori:=1to|w|do
12: s« f(s,wi])
13: if = ISACCEPTSTATE(WA s) then
14: return false
15: end if
16: if i =0 mod|ul then
17: if visiteds| then
18: return true
19: end if
20: visiteds| < true
21 end if

22: end for
23: end function

And we can find a short-lex straight power as follows:

Algorithm 2.3.6. Find a short-lex straight power
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=

. function FINDSLSROWER(a)
Input: An X-word a for whicha® is alL-local (1,25) quasigeodesic.
Output: An X-word h and an integeirwith 1i((a')") short-lex straight.

2: for h € Bgs(1) do > Find straight power using Proposition 2.3.3
3: foriec{1,...,Q°} do

4: if TESTSLS@(h~a'h)) then > Must happen at least once
5: return h;i

6: end if

7 end for

8: end for

9: end function

Once a word is short-lex straight, it is easier to test comgygagainst it. The
next result summarises Section 3.3 of [8].

Proposition 2.3.7.1f u is short-lex straight and v is a word such thét is a (1, 25)
L-local quasigeodesic wit[v|g > L, and g-lvg=¢ u for some g, then there exists
a word h with|h| < 68 such thatrh~1vh) is a cyclic conjugate of u.

One can test if a word is a cyclic conjugate of another wokdby testing if
v appears as a substring of, which can be done for instance using the Knuth-
Morris-Pratt algorithm which runs in tirdeD(|u| + |v|). We denote the use of this
algorithm by ENDSUBSTRING and later, IND SECONDSUBSTRING.

The following pseudocode will test conjugacy of such wargd

Algorithm 2.3.8. Test if a short-lex straight word is conjugate to a “long” @or

1: function TESTCONJUGACYSLSLONG(uU, V)
Input: A short-lex straighX-wordu and anX-wordv for whichv® is aL-local
(1,2d) quasigeodesic.
Output: An X-word g with u% =g v or null if no suchg exists.
2: for h € Bgs(1) do > Test conjugacy using Proposition 2.3.7
3: i «+— FINDSUBSTRING(U?, i(hvh1))

LStrictly speaking, the standard KMP algorithm will run in ise than linear time on a Turing
machine, due to construction of a table whose length depamtise input. However, the algorithm
can be modified to generate the table in a more tape-friendly, §i0] offers an implementation
which will test for substrings in linear time (actually, tiEaper’'s method runs in real-time given a
suitably arranged input).
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if i is not nullthen
return u(i)h
end if
end for
return null
end function

© % N o a &

A refinement of the proof of the above statement gives a nigr for elements
of the centraliser of a short-lex straight word. This resulinmarises Section 3.4
of [8].

Proposition 2.3.9.1f z is short-lex straight and y= z with | maximal, then g Cg(2)
implies that g=g y'y1h, with y1 a prefix of y, ic Z and |h| < 25. Further, yi depends
only on h.

|, y and the set of words i can be computed in time(@]).

Again, here is the algorithm in pseudocode:

Algorithm 2.3.10. Find a “nice” superset of the centraliser of a short-lexighta
word.

1: function FINDSLSCENTRALISERSUPERSEX2)
Input: A short-lex straighiX-word z
Output: A short-lex straight word/ with y* = z for somel and a seS with

Cs(z) c{y"s:neZ,se S}.

2 i + FINDSECONDSUBSTRING(Z, 2)

3 y <« z(i)

4 S« {}

5 for h € Bys(1) do > Find centraliser o using Proposition 2.3.9
6: i «— FINDSUBSTRING(Z, i(hziT 1))

7 if i is not nullthen

8 S« Su{z(i)h}

9 end if

10: end for
11 return y,S
12: end function
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Suppose that = i(a~*(uc)'a) is short-lex straight, that = zwith | maximal,
thatv® is anL-local (1,25) quasigeodesic, thét 1zb=¢ V' and thatg tug =g V.
Note that

so thata=*(u.)~1gb! € Cg(z), and so is equal ifG to y"y;h wheren is some
integer,his a word of length at most®andy; is a prefix ofy that depends only on
h. Thereforeg =g u_ay"y;hb.

This fact is used in the following algorithm which returns ard p of length
O(|u|), a short-lex straight worgl of lengthO(|u|) and a se of at mostV words
each of lengtfO(|u| + |v|) such that ifg~tug =g v theng =g py's for somen € Z
and some e S

Algorithm 2.3.11. Find a “nice” set of candidates for conjugating elements.

1: function GETCONJUGATIONCANDIDATESEH(u, V)
Input: Two X-wordsu andv which label geodesics ih and havduc|g > 2L
and|vc|c > 2L
Output: An X-word p, a short-lex straight worgand a seBwith (uP)' =y! for
somei, j € Z and such thati(w) € {r(py"s) : n € Z,s € S} wheneveu" =g v.
a,i < FINDSLSPOWER(TI(Uc))
z+ ma Yuc)'a)
b« TESTCONJUGACYSLSLONG(z 11((Vc)'))
if bis nullthen
return 1,1, {}
end if
Y,S< FINDSLSCENTRALISERSUPERSET2)
9:  return u,a,y,{sb(v.)"l:se S}
10: end function

It is at this point that we break from the method in [8].
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2.3.2 Finding Long Powers of Infinite Order Elements

In this section, we will show that given a&-word w which represents an infinite
order element o065, we can find a short-lex reduced wordwhich is conjugate in
G to a power ofw and for whichr(w;) is longer than B. Thus given two infinite
order wordsu andv we may find conjugates of powerswhndv to which we may
apply GETCONJUGATIONCANDIDATESEH.

We begin by recalling some well-known properties of worgynpolic groups
and hyperbolic spaces; these results are taken from [IQuagth similar results ap-
pear in many other expositions of the subject area. The exdwges in the state-
ments are taken from the proofs in [1] (the statements gbyeiaply state that
the constants in question exist). The first is Propositi@uo38[1].

Proposition 2.3.12.For any X-word w which is of infinite order in G and labels a
geodesic in", the two way infinite pativ® in I is a (), )-quasigeodesic, where
A = |w|V ande = 2|w|2V2 4+ 2|w)V.

The nextis Theorem 2.19 of [1].

Proposition 2.3.13.The function eR>o — R>o with ¢0) =dand €l) = 252 for
| > 0is a divergence function for anyhyperbolic space (ie. given geodesics
[x,y] andy = [x,7], if r;,Re N with r+ R< min{Jy|, |Y|} and dy(R),Y(R)) > €(0),
if a is a path fromy(R+r) toy (R-+r) lying outside the ball of radius Rr around
X, then|a| > e(r)).

Finally, Proposition 3.3 of [1].

Proposition 2.3.14.1n a hyperbolic space with divergence function e, given con-
stantsA > 1 and € > 0, there exists D= D(A,¢g,e) such that ifa is an (A,€)-
quasigeodesic angis a geodesic starting and ending at the same points tgen
every point oryis within a distance D of a point om. It suffices to take D satisfying
e(22%) > 4D+ 6AD +¢.

We now use these results to find some powef an infinite order wordv such
that|(w")c|g is large. RecalM from Section 2.2.

Proposition 2.3.15.Let w be any X-word which is of infinite order in G, labels a
geodesic il and hasgw| < 2L. Then|(r(wM))c|c > 2L.
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Proof. By Proposition 2.3.13, the functiat0) =, e(l) = 252 for| > 0is a diver-
gence function foF . By Proposition 2.3.12 we see tha is a(\, €)-quasigeodesic
y, where = |w|V ande = 2|w|?V2 +2|w|V. The first aim is to find a suitabl@ for
Proposition 2.3.14.

Let D := 10*3°LV. Then

D-9 D 5
%) = o33

1 p\ log2
- )
4.2

buteX > ’é—?,’ > (’—35)3 for anyx > 1, so noting that 3log2 2, we have

D-& 1 D 32
- - > - (=
(%) = 7alem)

> —1 <_) ’
and by substituting iD

e(D—a) ! (1046LV)2
2 T 442 6
&5%_2\/2

36x4+/2
> 48000@2L2V2.

Recall thatw| < 2L, A = |w|V ande = 2|w|?V? 4+ 2|w|V, so

(%)

2

(12+ 12+ 12+ 12)10°%5°L2V2

12x 10°0°L2V? + 12 x 10%°0°L2V? + 12 x 10%°0°L2V? + 12 x 10°3°L2V?
4x 10°°LV +12LV x 10*3°LV + 8L2V2 + 4LV

4 x 10°8%LV + 6|w|V x 10%3°LV + 2|w|?V2 + 2|w|V

= 4D+6AD +e¢.

AV | Y

v
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O

u p y

Figure 2.1: Cutting across a long quasigeodesic

Thus picking a geodesic path:= [€,&-wM], by Proposition 2.3.14 each point
ona lies within D of some point ory = w®™.

LetX:= & y:=X-wM andZ:=y-wM, recalling thatVl = 1038°V3L2. Let [R,Y]
and[y, 2] be labelleds := (wM) and letp:= - u_ andq:=y-u.. See Figure 2.1.

There exists a poin := x-wM (i) onywherei < M|w| which is withinD of ,
and lettingg := y-wM (i) we find thatd (¢, §) < D also. Now

luc| = d(p,q)
> d(p,q)—2D
W)
A
~wiM
y 2D.

Substitute in the values &f, A ande to find

\W|LV2D
20|w|V
LVD

= — — _2wA/Z2_2wV -2D
20 W W ,

—2[w2vZ —2|w|V — 2D

luc|] >

and by recalling thab = 10%°LV and|w| < 2L we see that

luc| > 500°L2V2—8L2V?Z — 4LV — 2000B°LV
= LV(5005°LV — 8LV — 4 — 2000%?).

Now, V is the number of vertices in theddall inT, soV > 20+1> 5. Also,
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L=340+2>36soVL > 180 and

luc| > LV((8+6+486)5°LV —8LV —4—2000@?)
= LV(83°LV — 8LV +65°LV — 4+ 4865°LV — 2000?)
> LV((8LV —8LV) + (6 — 4) 4 (8748® — 2000G?))
> 2L
as required. |

Remark 2.3.16. The value of M used above is of course by no means optimal. If
nothing else, the powers of L, V addused in D can be reduced at the cost of a
potentially larger constant by increasing the degree ingibé/nomial bound for'g

and in any case for a particular group and presentation, itikely that a much
lower bound can be obtained by solving the problem algoriitafty. However, the
above bound illustrates that there is a definite computablee:

By Proposition 2.3.12, short infinite order words can beaa@ito large powers
to get an appropriate input forEBCONJUGATIONCANDIDATESEH. We also wish
to confirm that words which are already appropriate inpug appropriate when
raised to the power d¥l.

Proposition 2.3.17.Suppose that w is a word labelling a geodesi€ iand |wc | >
2L. If n> L then|(i((we)™))c| > 2L. In particular, | (11 (we)™))c| > 2L.

Proof. Letu:=1((wc)"), and lety be the path starting at= élabelled by(Ti(we))?".
Lety:=X-uand letZ:=y-u. Now letp:=X-u_ and letq:=y- u_ so thatp andq
are mid-vertices on the short-lex geodesic p&thg and|y, 2] respectively andic
labels a path fronp fo §. Figure 2.1 provides a suitable diagram once again.

Note thaty is anL-local (1, 28)-quasigeodesic by Proposition 2.3.1, so Proposi-
tion 2.3.2 applies. Then there is a verggx= X- (wc)"(i) for somei with d(p/, p) <
43. Letq :=y- (we)"(i) so thatd(q,§) < 43 also. Sincejy(f)’,(i’) =nwe|c > L,
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N

Proposition 2.3.2 also gives a lower boundct(nﬁ)’, /) as follows:

d(p.6) =% d(p.q)
> (

But then

[(T((we))e| = uc]
d(p,q)

14
1—7Ln—86

14

2L

AVAR

v

v

as required. |

By the above two result§Ti((uc)™))c|c > 2L for any infinite order wordu
which labels a geodesic in. In particular, ifu andv label geodesics i and
are of infinite order irG then GETCONJUGATIONCANDIDATESEH can be applied
to 1i((uc)M) andm((vc)M) by executing GTCONJUGATIONCANDIDATES(U,V) as
defined in the following pseudocode:

Algorithm 2.3.18. Find candidates for conjugation elements.

1: function GETCONJUGATIONCANDIDATES(U, V)
Input: Two X-wordsu andv which are of infinite order irt.
Output: An X-word p, a short-lex straight worgt and a set such thatw is
equal inG to an element of i(py"s) : n € Z,s € S} wheneveu" =g v.

2: U < 1(u)

3 V <« 1(v)

4: ¢« 1 (ug)™)

5: d < 1((vo)M)

6: 0,Y, S« GETCONJUGATIONCANDIDATESEH(c, d)
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7. retun u.g,y,{sy':scS}
8: end function

For convience in later chapters, we at this point summahis@bove results.
Corollary 2.3.19. Suppose u is an X-word which is of infinite order in G.

(1) There exists an integer k MQ? and an X-word w whose length is at most
M|u| + 43 such that z= Ti((U*)W) is short-lex straight. Both k and w can be
found in time Q|w|).

(2) Ifvis another X-word then any element @ with P =g v has g=g u'h where
i is an integer and h is an X-word of length at mésQ?(|u| + |v|) + 163.

Proof. Letuy := (u), letuy := 11(((u1)c)M) and letuz := 1((up)c ). By Proposition
2.3.15 or Proposition 2.3.17 we know theg| > 2L.

By Proposition 2.3.1, all positive powersaflabelL-local (1, 25)-quasigeodesics
and then by Proposition 2.3.3 we know thiat= n(k*lu'sk) is short-lex straight for
somel < Q? and somexX-word k of length at most & Notice thatug =g (u'M)W
wherew, := (u1)L(u2)_k so thatw| < (MJFTW +4d. This proves the first part.

We now need to prove the second part, so suppose someg bastbeen picked.

Supposels = ug for some integec (which we assume is maximal for this prop-
erty). By Proposition 2.3.9 there is a setontaining elements of the foryp,
wherep is anX-word of length at most@andy is a prefix ofus which depends
only on p, such that every element of the centraliseugfs of the formugyp for
someyp e S. This is equal twiugyp for some integera andb with 0 < b < c.
Notice thatjulyp| < |ua| + 23.

Constructry, v andvg in the same way as throughusg, settingw, := (V1) (V2)L.
Sinceu andv are conjugate, so ang andv's, so by Proposition 2.3.7 there is an
X-wordqwith |g| < 65 such tha(\/'3)OI is a cyclic conjugate afi;. Now any element
G conjugatingu to \/'3 is of the formugr wherer =g ugypuﬁl(m)q—1 forsomeype S
and some integers b andmwith b < ¢. Note thatr|g < 2|us| + 8.

Now, g must be equal tav,uirw, * wherer is some element as described in the
previous paragraph. Using =g (uM)", we see thaj =¢ u'h wherei = IMa and
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h =g wyrwy 1 is a short-lex reduced word. Using the bounds above,

I < wule+]rle+w, e
M+1 M+1
< 7( +2>|u|+46+2MQ2|u|+86+7( +2>|V|+46

< AMQA(Ju|+ |v]) + 163.

We also have a method of checking whether an element is of fander.

Corollary 2.3.20. There is an algorithnTESTINFORDER which tests whether or
not an input word w is of infinite order in G and runs in tim¢|@| ).

Proof. First replacev with Ti(w). Now if | (T(wi{))c|c > 2L thenw) and therefore

w is of infinite order by Proposition 2.3.1 and we return trdendt, w cannot be of

infinite order by Proposition 2.3.15 or Proposition 2.3.hd ave return false.
Since/wM| < M|w

, this test takes time at wor€x(|wy|). O

Using GETCONJUGATIONCANDIDATES we will later reduce the conjugacy prob-
lem for lists to testing, for input wordsandv, which powers of a short-lex straight
word conjugateu to v. This testing process is the concern of the next two subsec-
tions.

2.3.3 Conjugating by a Power of a Short-lex Straight Word

In this subsection, we suppose that we are giveX-avordgwhich labels a geodesic
in I and a short-lex straight word We wish to find a useful description of the con-
jugatesy””.

We begin by proving a result which is true of general vertggdrbolic graphs.

Lemma 2.3.21.Let 4, b, ¢ andd be vertices iri” such that I:= d(&,b) = d(¢, d).
Letay : [0,1] — I be a geodesic path frodtob and leta, : [0,1] — I be a geodesic
path fromd to ¢ as in Figure 2.2.
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d W R
~
JAS =

a

Figure 2.2: A geodesic quadrilateral

Figure 2.3: A thin part of a quadrilateral

Figure 2.4: Points after the meeting points are distant
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Define the constants

Ny =

Fori e N:

1. If Ny <i < Npthen
d(az(i),a1(i +K)) < 2.

2. IfN;+K <i<Ny+K then

d(0(i — K),aa(i)) < 25.

3. IfI >i>max{N;+K,N2,No + K} then
d(as(i),0z(i)) = d(b, &) —2(1 - i),

A

If| >i>d(&d) then at least one of these three cases applies.

Proof. Pick a geodesiy = [B,Cﬂ so that we have two geodesic triangles, one with
cornersa; b, andd; the other with cornerb, d andc; both sharing a common side
v. Also, letp:=ax(i) andg:= a4(i).

Suppose thall; <i < No. Note thatp'corresponds to some poiai{t onywhich
in turn corresponds to some potﬁﬁton o, as illustrated in Figure 2.3. Observe that

daq) = d(ab)—d(b,q)
= d(ab)—d(b,q")
= d(a,b)—d(b,d)+d(d,q")
= d(&b)—d(b,d)+d(d,p)
= K+d(d,p)
= K+i
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o) (ﬂ’ = a4(i +K), and a geodesic path betwepran“d(i’ has length at most®as
required in the first case.

For the second case, just use the first case witK in place ofi.

For the final case, note that

= (67d)év *)

the distance frona fo the meeting point on.

Now suppose that> max{N; + K, N2, N2+ K}. Let 3 be a geodesic fromto ¢.
Thend(d, p) > N,, sop corresponds to a vertept on B. Similarly, d(&,q) > N1+
K = (b,d)a by (*) soq corresponds to a verteg onywith d(d,q’) =i — K > N,
which in turn corresponds to a verté&on B. Thisis illustrated in Figure 2.4.

Now,

A

d(p.q) = d(b,p)—d(b.q)
= d(b,&) —d(¢,p) —d(b,q)
= d(b,¢)—d(b,q) —d(b,q)
— d(b,&) — 2d(b, )
= d(b,6)—2(d(&b) -i),

sod(a(i),ax(i)) =¥ d(b,&) — 2(1 —i) as required.

For the last statement, assume thatd(&,d) and that the first two cases do
not apply. Since > d(4,d) > (4,b)j = N1, we havei > N, or we are in Case 1.
Similarly, (*) gives usi > d(4,d) > (b,d)a = Ny +K, soi > N, +K or we are in
Case 2. Therefore> max{N; + K, N2, N>+ K} and we are in Case 3; in particular

A

| >i>d(4d) implies that one of the three cases applies. |

This lemma allows some results about conjugates to be shéwparticular,
simply building the construction above in the group for sdarge power of a con-
jugating word gives computable estimates on the lengthd efraller power con-
jugates, and a constraint on the form of those conjugateshadre “short.” Recall
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thatA(u,v) = (4-u,4- V)4 for X-wordsu andv.

Lemma 2.3.22.Suppose that y is a straight word and that g labels a geodasic i
Letne N, let K:=|yjn—|gy'|c and let0 < j <n.

1. IfA(g,9y") <|ylj <A(gy",y") then ¢ =¢ h(y*(K))~* for some word h with
|h] < 22.

2. IfA(g,gy") +K < |y|j <A(gy",y") +K then gi =g ¥ (—K)h for some word
h with |h| < 26.

3. Ifly|n>|y|j > max{A(gy’,y"), A(g, gy") + K, A(gy", y") +K} then|g' | =%
19”6 — 2lyl(n—j).

If ly|j > |g| then at least one of the three cases applies.

Proof. Let¢:=4a.g,d:=¢&-y", é:= a-y"andf := & and note that the three cases
of Lemma 2.3.21 (with = |y|j) correspond exactly to the three cases here.

In the first case, we know tha( f -y(i),é-y"(i +K)) < 25 so there is a word
h of length at most @ with f-y?(i)h = ¢€-y(i +K). By definition,y"(i) =y and
y'(i +K) =¢ yly*(K). Now, sincegyj labels a path frone-y"(i) to f - y(i), we see
thatg” =g h(y(K))~! and we are done.

For the second casy](i — K) =g y'y*(—K) so by a similar argumerng;yj =G
y*(—K)h for some wordh of length at most & as required.

For the third case, sinai{d, &) = |gyj lcandd(¢, f) =y
lemma is proved by the third part of Lemma 2.3.21.

Noting that|g| = d(¢, f), the last statement again corresponds to the last state-
ment of Lemma 2.3.21. O

n, the third part of this

Recall that we are trying to find a useful description of thejegatesy”. We
will start by determining whether a power gfcentralisesu, and thus establish
whether or not the set of conjugates is infinite.

Since the conjugates in the first range in Lemma 2.3.22 aenpetrised by a
word of length at most @& if a large number of in this range can be found, some
conjugate will repeat and some poweryafill indeed be in the centraliser gf The
next lemma states this more precisely.
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Lemma 2.3.23.Suppose that y is a straight word, that g labels a geodedic and
N

thatNe Z. If N — L%J >V then there exist constantsedwith |g| — 26 <

d <|gland1l <e<V such that

¢lc="d

foralli € Z, and

y* € Cs(9).

Proof. The number of conjugatﬂg%’j in the first case of Lemma 2.3.22 is at least

(A YY) —A(g,gy'“w
] vl
_[lge+1yIN=10"c  lgl+IgyMc— IyIN
2ly| 2ly|
_|2yIN-1g"c— g
2ly|
9l +19" |
= N-— .
{ 2ly| J

Let p:= % and letK := |y|N — |gyN|g as in Lemma 2.3.22. Since the
conjugatesy’” for p < n < p+K are all of the formh(y*(K))~* for wordsh ¢
Bos(1), if there are more tha¥ of them there must be at least one duplicate, say,
gyi =G gyj for some integersandj with p+V +1> j>i>p. Lete:=j—-i <V,
so thatg =g gyiTj —c ¢, andy® is in the centraliser of as required.

Since all conjugategyk can now be written in the forrgyl for somep <| <
p+e<A(gyV,yN), Lemma 2.3.22 implies that they are all of the fon(y (K)) 4,
so in particular|gyi|G =2 [K|. Sinceg = g we have|g| < |[K|+ 29, and finally
K| = |lyIN— |gyN|c| < |g| so we may takel := |K| and we are done. O

The following lemma illustrates that we can test whethers@awer ofy is in
the centraliser of by finding the length of a single group element.

Lemma 2.3.24.Suppose that y is a straight word and that g labels a geodedic i

N
IfN >V 4+ \\‘gﬂTTéJ and|gyN‘G < \g\+26then N— \‘g+2|§]/y |GJ >V.
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In particular |gyN | < |g|+25if and only if some power of y is in the centraliser
of g.

Proof. The first part is just straightforward evaluation:

2ly| Y| 2ly|
> V+{Ig|+5J_{2lgl+26J
Y| 2ly|
— V.

For the second part, note that the first part covers the ordgsé by Lemma
2.3.23, so it remains to prove the if case. Supposeythatin the centraliser of
for somen > 0. LetNy := n(V +|g| +1). Clearlyy™ centralises, so in particular
10" |6 = lgl < gl +25. Also

le
Ny - 9l+19" le | _ Nl—{MJ
2ly| 2ly|

> nV+|gin+n—|g|
>V,

so by Lemma 2.3.23 we hanVN|G <|g| + 25 as required. O

Since we can now detect when some poweragntraliseg), and since we know
the behaviour of conjugateeﬁk in this case, it remains to analyse the behaviour of
the conjugates when no powerytentraliseg. We now show that if no power of
y centraliseg) then the length of conjugate¥’ for largen is very predictable.

Lemma 2.3.25.Suppose that y is a straight word and that g labels a geodesic i
M. 1N > 19 and|g’'|6 > |g| + 25 then|g”|c =% |¢""|c +2ly|(n—N) for n€ N
satisfying n> N.

Proof. Apply Lemma 2.3.22 withj = N. SinceN|y| > |g|, at least one of the three
cases applies. Becau@N lc > |g] + 26 > K + 29, the first two cases cannot apply,
so the third case must apply arg!N lc =% |g""|c — 2ly|(n—N), which can easily
be rearranged to the required equation. O
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The next result is simply a summary of the above results.

Proposition 2.3.26.Let g€ G and let y be some straight word. Let NV +

WIGTIMJ . One of the following is true:

1. |gVN|G < |glc + 25 and there is som@ < i <V such that e Cg(g).

2. 19" |6 > |olc+ 25 and|g”"|c =2 |g”" | + 2ly|(n— N) for any n> N.

In the next subsection, we use this information to solve tgugacy problem
in the special case where the conjugating element is retjtirde a power of a
short-lex straight word.

2.3.4 Testing Conjugacy by Short-lex Straight Words

In this subsection, we suppose we are gi¥ewordsu andv and a short-lex straight
wordy, and wish to test whetheY" =g v for some integen.

Proposition 2.3.27.Let uv € G and let y be some straight word. In timé¢|@ +
[V| +|y|) it is possible to find,t € ZU{} such that either

1.0<r<t<V and V% =g vifandonlyif j=r modt,
2. reZ,t=wandr is the unique integer such thaf u=g v, or

3. r=o,t =00 and there is no integer n such thaf u=g v.

Proof. First, letN :=V +1+ LWJ and letlg := \gYN|G, whereg is eitheru
or v.

If 1y < |u|g+ 28 butly > |v|g + 20 then by Proposition 2.3.26, the conjugates
W' have bounded length whereas the conjugefesio not. Thus there can be no
n € Z such that¥" =g v. The same is true if these two inequalities are reversed, so
if we find thatu andyv lie in different cases of Proposition 2.3.26 then we may set
r =t =0 and stop.

Otherwise, it can be assumed that bo#ndv lie in the same case of Proposition
2.3.26.

Now suppose that, < |u|lc+ 25. By Proposition 2.3.26, some powst for

n <V centralises, so in particular Case 2 does not apply. Sikces dependent
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only on the chosen presentation it is possible to check for each<0r’ <t <V
if ' =g uor W =g VvintimeO(|u|+|v|+y]). If nor’is found, Case 3 holds so
letr =t = =, otherwise Case 1 holds so pick the lowest values found fandt’
asr andt respectively.

Finally, suppose thdt, > |u|c + 2. Proposition 2.3.26 implies thmyn|G =3
lu+ 2]y|(n—N) for largen, so Case 1 cannot apply and no powerya$ in the
centraliser of1. In fact, by Proposition 2.3.26, i =g v then

lu+2ly|(n+r—N) =2 [W"7g
= Ve
=3}, +2ly|(n—N)

for all largen. Rearrangingly — Iy =% 2]y, so 'V_;T’YTGE’ <r< 'V‘;ﬁ%. Because

no power ofy centralises, there can only be onesuch that?”" =g vand to find it,

we must simply check eaghin this range. If somg" conjugatesito vthen Case 2
holds so set = « and stop, otherwise Case 3 holds sarsett = . At most @+ 1
checks of conjugatas’” need to made to distinguish between these two cases, and

each check takes tinf@(|u| + |v| + |y|) as required. O

We summarise this information in the following algorithm.

Algorithm 2.3.28. Test which powers of a short-lex straight are conjugatiregy el
ments.

1: function TESTCONJUGACYBYSLS(,V,y)
Input: Two X-wordsu andv and a short-lex straigh€-wordy
Output: Valuesr andsas in Proposition 2.3.27
NV + L|U|G+|\y\|/\e+5J +1
ly < WG
v WG
if Iy <|u|c+ 20 then
if Iy > |v|c+2dthen
return oo, oo
else
r<— o

10: S<¢—
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11: forie{1,....,V}do
12: if u =g uthen
13: s« min{i,s}
14: end if

15: if W =g vthen
16: r < min{i,r}
17: end if

18: end for

19: if r = then

20: return oo, oo

21: else

22: return r,s

23: end if

24: end if

25: else > If we get here thefy, > |u|g+ 26
26: if Iy < |v|g+ 28 then
27: return oo, oo

28: else

29: | PerluyT 65}

30: m< {'V‘Z'M 65J

31: forre{l,...,m} do
32: if W =g vthen
33: return r, o
34: end if

35: end for

36: return oo, oo

37: end if

38: end if

39: end function

In the next subsection, we complete a solution to the corjugeoblem where
we know an element is of infinite order by putting togetheoathe tools we have
so far in this section.
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2.3.5 Testing Conjugacy ofA and B

We are now in a position to test if there is an elemenGaihich conjugates the
entire listA = (ag,...,am) to B= (by,...,bm). Recall thata; is assumed to be of
infinite order. Letu be an upper bound on the length of elements in either list.

Use Corollary 2.3.20 (ESTINFORDER) to test in timeO(|by|) if by is of infinite
order. If it is not,a; andb; are not conjugate, so neither akeandB and we may
stop.

Next, apply Algorithm 2.3.18 (ETCONJUGATIONCANDIDATES) ona; andb;
to obtain anX-word p, a short-lex straight worgt and a set of X-words with at
mostV elements such thaﬁ =g by only if g=g py'sfor somen e Z ands< S. All
returnedX-words have lengti®(|as| + |b1|) and this step takes tim@(|az| + |bs|)
and in particulaO(l).

We repeat the remaining steps for each elersen®. Since there are at mogt
elements ir§5, we can do this without affecting the overall runtime of thgoaithm.

Foreach € {1,---,m}, apply Algorithm 2.3.28 (ESTCONJUGACYBYSLS) to
aip, b?fl andy to obtain values; andt;. This takes timé)(mu).2

If rj = oo for somei thenaiIO can’'t be conjugated tb}sfl for any power ofy, so
the same is true oA andBS " and we can move to the next elementof

Otherwise, a set afn (possibly modular) equations must be solved simultane-
ously. Iftj = « for somei, this is simple; it suffices to check that= r; for each
j # i wheretj = o, and thatrj = rj modt; for eachj # i wheretj # . If all of
the equations are satisfied th&PY's = B andr; is the unique power of with this
property; otherwise there is no powenofvhich conjugate#\P to BS ', Either way
we may move onto the nestand these checks take tir@my) for eachs.

The remaining case is where &llandr; are finite, in which case the set of
equationsj = r;i modt; must be solved simultaneously. First, note thad énd
e are coprime natural numbers thgee ¢ moddeif and only if ] = ¢ modd and
] =c¢ modeboth hold, so each congruence r; modt; can be splitinto a number
of congruences modulo prime powers. #As. V for eachi, the time taken by this
operation is independent of input for eda¢lso inO(m) overall.

For integers andd, a prime numbep and natural numbers f the two equa-

2As y was originally found as an element of the centraliser of aquoef a;, it might seem
superfluous to test= 1 here, but we only know at this point that a poweyakntralises @owerof
aj, and in any case it is not clear what powerydhis is the case for.
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tionsa=c modp® anda=d modp®p’ are equivalent to the seconddf= d
mod p® and have no solution if not. Thus the equations can be eitimwrs to be
inconsistent, or reduced to a set of at mMéstquations modulo prime powers where
each prime is distinct and each prime power is at nvosBYy allocating an array
with an element corresponding to each prime belgvthis will take constant time
per starting prime power equation, so again ti@{en) overall.

Finally, the well-known Chinese Remainder Theorem yieldsndt’ such that
j =r’" modt’ if and only if APY'S — B. Since at this point there are at mast
congruences modulo pairwise coprime numbers less tharuat &)/, the running
time of this final step is independent of input length.

Thus we have an algorithnogVESIMULTANEOUSM ODULAREQUATIONS which
takes as input a list of integer paifs,s) and solves the set of modular equations
u=r; mods simultaneously. We will suppose that it returns integeasds such
thatu=r modsif and only if u was a solution to the original set of equations, and
returnseo, co if there is no solution.

To summarise, here is the full algorithm in pseudocode.

Algorithm 2.3.29. Test conjugacy of lists where the first elemenAas known to
have infinite order.

1: function FINDCONJUGATINGELEMENTSINF(A, B)
Input: ListsA=[ay,...,am] andB = [by,...,by] with a; of infinite order.
Output: A set of all elementg € G such thag *Ag=g B.

2 if “TESTINFORDER(b1) then
3: return {}
4: end if
5: p,y,S<+ GETCONJUGATIONCANDIDATES(az,b1)
6: O+ {}
7 for se Sdo
8: E« {} > Any modular equations go here
o: n < null > Set tor; if § = o for somei
10: forie{1,...,n} do
11: a+ m(ad)
12: b m(bs )
13: ri,ti < TESTCONJUGACYSLS(@,Db,y)
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14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
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if rj = oo then
nexts
end if
if tj = o0 then
N<1T;
end if
E <« EU{(r,t)}
end for
if n=null then
(r,t) + SOLVESIMULTANEOUSM ODULAREQUATIONS(E)
O« OU{pyyks:kez}
else
for (r,t) e Edo
if t =0 andr # nthen
nexts
else ift < o andr #n modt then
nexts
end if
end for
O« Ou{py's}
end if
end for
return O

37: end function

Since |y| € O(|az|) and |s| € O(|ay| + |b1|), the loop on line 10 takes time

O(laj| + |bi| + |a1| + |b1|) per iteration, so timé(my) in total. By the discus-

sion above, line 23 runs in tim@(m) and returns ands whose value is bounded
above byV, so this section runs within tim@(my). Finally, then on line 33 has

Iy"| € O(p) so the last section also runs in tir@émy).

Notice that on line 33 the worgy"s has lengthO(p) so is the language of an

X*1-DFA with O() states which can be computed in tif®) by Proposition
1.6.4.

Similarly on line 24 the sefpyys: k € Z} is the concatenation of the sets

{py}, {y!: k € Z} and{s} and that each of these is accepted byan-FSA with
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O(p) states (the language of powers can for instance be repeesen{y' : k > 0}
union{yk: k > 0}).

We now know that each set addedQ@ds accepted by aX*1-FSA with O(p)
states, which can be computed in ti@éu) by Proposition 1.6.4. A slightly more
careful argument would show that each FSA can in fact be chiwsbe determin-
istic with number of states still i@(p).

ThusO is the union of at most X*1-FSAs each wittO() states, so by Propo-
sition 1.6.4 it too is the language of ¥11-FSA with O(p) states which can com-
puted inO(p) time.

Instead of building the séd, we may instead simply returpys on line 33,
returnpy s on line 24 or returmull on line 36 - in this case, the algorithm will test
for the existence of a conjugating element and return onecifi &n element exists.

To summarise:

Theorem 2.3.30.Given integer® > 1 and |, there is an algorithm which, given
a &-hyperbolic group G=< X|R > with |X| <, a number m> 0 and lists A=
(a1, --,am) and B= (by,---,by), each containing words in the generators of G
with & representing an infinite order element of G, can find a (noteuheinistic)
X*1.FSA whose language L satisfies:

e AY =g B forany we L, and
e for any ge G such that A= B there is an element w L withw=g g.

If |a| < p and|bj| < p for eachl <i < m then the algorithm will run in time
O(my). It can be modified to return a single conjugating elemeat@with A¥ =B,
if one exists, without affecting the running time.

Note that FND CONJUGATINGELEMENTSINF(A, A) returns the centraliser &
in time O(m).

2.4 Conjugacy of General Lists

In this section we will show that the conjugacy problem fetdiis solvable in linear
time even if all elements of both lists are of finite order, bher finding an infinite
order element which is a multiple of some of the elements enarthe other list, or
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y

o)

Figure 2.5: A midpoint on a geodesic triangle

by reducing the problem to testing the conjugacy of boundedth lists containing
only elements of bounded length.

2.4.1 Simple Results

We start by making an elementary observation about mideesrt

Lemma 2.4.1. Suppos«, y andz are vertices i and thatp is a mid-vertex of a
geodesic patlik,y]. Then

> +9.

d(p,2)

Proof. Let [X,2], and[y,Z be geodesics so that we have a geodesic triangle with
cornersx;y andz

Assume thatl(X, 2) > d(¥,2), as in Figure 2.5. Note that
d(%y)+1

2

2

x>

d(x,p) <

- (y7 2)27
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sop corresponds to a vertexoh [X, 2. Notice that

d(p,2) < d(p,§ +d(q.2
= 6+d()27'\)_d<l572)
< drz+s- TEIL

as required for this case. We proceed similarlg(iX,2) < d(y,2).

It remains to consider the case whel(&,2) = d(y,2). If d(X,y) is even therp”
must be the meeting point d&,y]. Otherwise, suppose thdtp,X) = (¥,2)z — %
In either casep torresponds to a vertexon [X, 2| which must be Within% of the
meeting point on that side, so

d(p.2) < d(p,§) +d(q2
1
S 6+()2,9>2+§

_ d(X,Z>+d(y,22)—d(X,y)+1+6

I
+
(o]

as required. IH(p,%) = (y,2)x + 5 then interchanga andy'in the above argument
to get the same result. |

We also make a simple observation which will be used lateidas in short-
ening list elements.

Lemma 2.4.2. Suppose @1,ap, b1, by € G. Then(a,ap)? = (by,bp) if and only if
(aqap,a2)9 = (bibo, by).

Proof. The proof is elementary; the forward implication can be \atifrom the
identity (ayap)9 = ala) and the reverse from = (ajaz)9(a,*)9. O

One can extend this to show that we can multiply any elemerdagiair of lists
together without altering the set of conjugating elememtsyided we do the same
in both lists.
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2.4.2 Bounding Element Length in Short Lists

In this subsection, we show that if the number of elementslist & bounded, we
can find a related list in which either every element has bedrength or at least
one element has infinite order. We will describe in a latetisediow to use this
information to solve the conjugacy problem. The procedorénd such a list is
described below.

Proposition 2.4.3. There is an algorithmBHORTENLIST which, given a list A=
(a1,...,am) of elements of G, will either:

e return some & G which for anyl <i <m has

i 1
|Cflaiai+1..~amC| < 3m- <7L—|—6+ é)
or

e return integers j and k such thatg k < m and gaj;1---ax is of infinite
order.

Further, the algorithm will run in time Qmy), where i is the maximum length
of the elements in A.

Proof. We first state the algorithm, and then prove that it works asdised.

1: function SHORTENLIST([ay,-..,am|)
2: co+1

end for

Ok +— T Ck—1(T(C 1 ACk—1))L)
10: end for

11: return cm, null, null

12: end function

3: for k:=1tomdo

4 for je{1,...,k} do

5: if |(T(c 4@ aCk_1))c|c > 2L then

6: return null, j,k > a; - - - a is of infinite order
7 end if

8:

9:
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o

(et atk-1)

Figure 2.6: Extending.

If the algorithm finds and returns integerk on line 6, then a conjugaig of
aj---ax has|(1(g))c| > 2L, and sag is of infinite order by Proposition 2.3.1. But
thena; - - - ax has infinite order also and the algorithm is correct to refukn

We may therefore assume that the assertion on line 5 alwégs faremains
to show that after the outer loop has rkitimes, the length otglai .- aCy Is less
than or equal t¢7L + 8+ 3)3*~ and that the algorithm has taken ti®ek3p).

In order to show these facts, it is useful to show tleat < k(5 + 3+ 1). We
do this now. Consider a geodesic triangle with correrb = é-¢q and¢:=
é-a.c1. Label the sides with the short lex geodesigd], [b,& and[é,¢]. Let
p:=b- (T(c Y aCk_1))L, which is a mid-vertex ofb, g as illustrated in Figure 2.6.
Sincecy labels a geodesic fromtb p, by Lemma 2.4.1 we have

+9o

2max{d(&,b),d(& &)} —d(b,&) +1
|Ci] 5

2max{|ck 1, |ack_1lc} — |G Akt 1]c +1

< 5 +9.

Supposecy_1| > |akCk_1|c. Notice that|c|:_11akck_1|g > |ck-1| — |akCk_1|c by
the triangle inequality, so we find that

2lck1] —|ok-a| +[akck-1lc +1

lc] < 5 +9
Ci— _ 1
_ lokeal 4 lakck-1le + L5
2
2|C_ 1
< |Ck—1|+ 45
2
|a]

< ‘Ck,]_‘ —|—7 +04+1.
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Similarly if |cx—1| < |akCk—1|c then

2|akCk-1/c — |akCk-1/c + |ck-1]
+
2
_ ‘akck_1|G+|Ck_1|+5
2

2|ck_
< lad+2ocd]

2
|a]

= ‘Ck_l‘ + 74—64— 1.

)

o] <

)

In either case, thengy| < |ck_1| + ‘%k' +o0+1.

By repeating this argument starting @ we find that|cy| < k(5+3+1) as
required.

It can now be shown that the algorithm runs in ti®@n’y). Note thatc, *;a; -+ acy_1| <
Kp+2|ck—1| < 2k(p+ 0+ 1) so the checks on line 5 each run in ti@éky). There
arek such steps per loop and a totalmafloops, so the overall running time is in
O(mPp) for this step.

Similarly, \ck_lcg_llakck_ﬂ € O(kp) so line 9 runs in tim&®(ky) and the overall
time taken in this step is i®(mPy). Therefore the whole algorithm runs in time
O(mp) as required.

It remains to show that the bound on the length of the elements ay)°™ is
satisfied. This can be shown by inductionranLet us first, for eack € {1,...,m},
defineKyx :=2L. Now letK; 1 := 3Kjx+10L+20+1 forany 1<i <k. The
aim is to use induction ok to show thaljclzla; -aklk|ec < Kig forany 1<i <k
and then show thd{; i, is within the required bound.

In thek =i caseay =g d% =¢ dc whered = 1(a;“*). Since we ensure that
|dc|c < 2L on line 5 we must haviay*|c < Kyk = 2L.

Now suppose that the inequalihy;lai ---axCk|e < Kk is satisfied for all 1<
i <k. We must show thdtlzjla; .. k4+1Ck+1lc < K k1 for eachi.

Pick some specifi¢, and lete := (¢, 'q; ... ac 1¢k) and g := (¢, “ay; 1Ck)-
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Notice thatck 1 =g ckgL and so

-1
(al . ak+1)ck+l =G eck Ck+1
o e
—1
9
o &
—1.—1
9r"Gc
:G %el:_ R .

The checks on line 5 ensure that|c < 2L, and|gc|c < 2L, so we know that
-1.—1
et % |6 < 2|greL|c + 6L. In particular, we will be done if we can show that

3 1
|gReI_|G§§Ki,k+2L+5+§. (2.1)

Let f := n(c;lai ...aC) =c eg ! and recall thatf| < Ki x by our earlier as-
sumption. Consider a geodesic triangle with correrb = é&.g andc¢:=b-e
illustrated in Figure 2.7. Note that

d(é&c) = |gale
= |fteals
< lealc+Kik
= |eLeclc +Kik,

but|ec|c < 2L so

o
—~
™

(@)
SN—
IN

le| + Kix+2L
e
%-l—Ki,k-I-ZL
|| +1g|
>+

IN

Ki,k +2L.

oo
(@)}
@

Also, d(b, €)

I
®
IN
N
IN
N|

bl
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A

c

T(ge.) e

e p g b

Figure 2.7: Boundingre_

Pick the mid-vertesp *= é-g, on[é,b]. Lemma 2.4.1 implies that

9ReLle = d(p.€) ) )
2max{d(&,¢),d(b,6)} —d(&b)+1
2
2max{ 9 21 4k, T8 jg) 41
2

2(2L + K; f|— 1

_ 202+ .,k)+\g\+|\ g+l 5

2(2L +Kig) + [ +1
2

3 1
< ZKix+2L+0+ -
= 2 I,k+ + +27

IA

+9

IA

+0

IN

+9

as required by (2.1).

Therefore|(a - - - ax)*|g < K; i for each 1< i <k < mand it remains to show
thatK; x < 3<(7L+8+ 3). But

Kik = 3Kix1+10L+20+1
. k_l .
= 37Kii+(10L+25+1) 5 3
n=I

-1
3-1
1

= 3oL+ (31 <5L+ 5+ §>

= 3K+ (10L+25+1)

- 1
< 3K <7L+6+ 5),

and we are done. O
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We end this subsection by noting that by repeated applicatic.emma 2.4.2,
the conjugacy problem remains unchanged between studyinlists(ay, . . ., am)
and(by,...,bm), and thelistgay, &, . .., ay,) and(by, b, . .., by) whereal = a; - - - am
andbl = b; - - -by. This is critical to our solution later.

2.4.3 Some Worse than Linear Time Algorithms

This subsection provides a small toolbox of results whidWeswarious problems
involving lists in worse than linear time. They are usefslitae previous subsection
allows us to bound the lengths of elements in terms of the mummbelements.

The following result is a restatement of Corollary 3.2 of. [3]

Proposition 2.4.4. Let (ay,...,am) be a list of m pairwise distinct finite order ele-
ments of G. Suppose thatxG satisfies

X|g > (2k+5)%+2(1 + 25)

where |= max{|ai|c, |8}|c,---,|am|c, |am/c} and k is the number of generators of
G. Then mis less than or equal t& Q

The statement in [3] says that < (2k)®, but the proof there is sufficient to
prove the statement here. Proposition 2.4.4 implies tleatémtraliser of a long list
of finite order elements is finite. Theorem MI3.2 of [2] then provides a bound on
the number of elements in a finite subgroup:

Proposition 2.4.5.1f G is ad-hyperbolic group and H is a finite subgroup of G then
there is an element g G with HY contained entirely within a ball in the Cayley
graph of G of radiugid + 2.

We can now prove the following corollary:

Corollary 2.4.6. There is a constant R and an algoritHiND CENTRALISEREXP
which takes as input a list A consisting o&nQ? words, all of which represent
pairwise distinct finite order elements of G, returns thetcaiser C of A and runs
in time Q(nuRY) where L is an upper bound on the length of words in A. All elésnen
of C have length in Qu) and the number of elements in C is i X).
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Proof. Suppose thah = (ay,...,an) is such a list. Iiis in the centraliser oA then
a =g for all 1 <i <n, so in Proposition 2.4.4 we have that . Sincen > Q2
we havelx|g < R(U+ 23), whereR:= (2k + 5)%+2,

Since all elements i€ are of bounded lengttC is finite. Proposition 2.4.5
implies thatC can be conjugated into a ball ihof radius &+ 2, and in particular
the number of elements {Dis bounded by a constant depending onlyGn

Thus the algorithm WD CENTRALISEREXP need now just check for each word
w of length at mosR(p+ 25) whetherA"” =g A. There are at mos#+2% ¢ O(RY)
such words, and checking each word takes tld{ap), so the algorithm runs in
time O(nuRY) as required. O

Thus we have a method of computing the centraliser of a I@i@fishort finite
order words. We still need an algorithm which can be used droa &st of short
finite order words. Lemma 4.2 and Proposition 4.3 of [11] shioat the centraliser
of any finite list in a conjugacy automatic group is a regudarguage. A run-time
analysis of this algorithm is given below for completeness.

Proposition 2.4.7.1f A= (ay,...,am) is a list of words, there is a regular language
Z of short-lex least words which is exactly the centralideAo

Further, there is a constant R and an algoritiimb CENTRALISERRATIONAL
which takes as input a list A (ay,...,an) of X-words returns an X'-FSA which
accepts Z in time GR™), where u is an upper bound on the length of words in A.

Proof. Let WA be the short-lex word acceptor f@ and letW be its language.
Pick X*1 DFAs My for x € X** or x equal to the identity to accept each language
L(x) = {(u,Vv) : u,v € W,ux=g xv} in the conjugacy automatic structure f8mwith
respect taV. Letk be the maximum number of states in these DFAs.

Forw =X ---Xn, letL(w) be the intersection of

L(x1) x ... x L(Xn)

and
{(Ul, Uz, U2, U3, U3, - - -, Un, Un, Ul) sUg,...,Un € W}

By Proposition 1.6.4, both are regulan-2ariable languages, and are accepted
by a Z-variable FSA withk" states (the second one is essentially the cartesian
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product of a number of copies §tw,w) : w e W}) soL(w) is accepted by an FSA
with at mostk®” states.

Notice that(uy, Uz, Up, U, U3, - - - , Un, Un, Unt1) € L(W) for some set of words; if
and only ifuiXi = Uj;1 foreach 1< i <n, and sau}’ = un41 = uy. Thus the centraliser
of C(w) is just the projection of (w) to its first factor and is accepted bk#-state
FSA by Proposition 1.6.4.

The centraliser oA is the intersection of the centraliséZ$a;) of its elements
a;, which by Proposition 1.6.4 is accepted bi?&*-state FSA. Computation of this
FSA takes timeD(k®™) so it sufficies to leR = k2. O

The reader may notice that it would be possible to use thisioteinstead of
FINDCENTRALISEREXP and the running time would not be dissimilar. We choose
not to in order to give better emphasis to the fact that thérakser in that case is
finite and avoid the complications of finding the languagehefESA so-returned.

We now have enough information to compute centraliserssts bf short ele-
ments. To complete this section, we give a method of testimjugacy between
lists of short elements. The main theorem regarding listénite order elements
in [3], Theorem 3.3, is restated below.

Proposition 2.4.8.Let A= (ay,...,am) and B= (b, ..., by) be sets of torsion ele-
ments in G. If A and B are conjugate then there exists a wordhx wi

X|e < (2k+5)®*2(1+25) + Q%

where p is the maximum length of an element in either list aisdtike number of
generators of G.

Again, the statement in [3] us¢2k)® in place ofQ?, but the proof is sufficient
to prove the statement here. Thus by simply checking eaameglieunder the length
above, we have an algorithmnESTCONJUGACYEXP which takes as input two lists
of m words whose elements have length less thaand returns a worav with
A" =g B if one exists in time exponential in

2.4.4 Ensuring Distinct Elements

Notice that to apply Corollary 2.4.6 to a list= (ay,...,am) we must ensure that
all of the elements of our input list are distinct. We will bgpdying the corollary to
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a list of lengthn = Q? + 1 which has been returned byySRTENLIST, so we need
to ensure that tha; - - - a, are pairwise distinct group elements for each

Notice that ifa; - --an =g aj41---a, for somei < j < ntheng;---a; is equal to
the identity inG. We thus need to ensure ttat - - a; is never the identity.

If B= (by,...,bm) then we may replaca with & := g; - - - a; and replacd; with
b{ := b - - - bj without changing the conjugacy problem betwéeandB by Lemma
2.4.2. If one ofg; andby is the identity and the other is not, the lists cannot theeefo
be conjugate. If both are the identity, they may be removeahfiheir lists without
altering the conjugacy problem.

Thus the aim of this subsection is to produce a list of indi¢deswhich a; which
may be removed fromA using the above reasoning, and by doing so either shérten
to less tham elements or replac& with a list for whicha; - - - a, are distinct group
elements for eacl < n. To do this efficiently, we will use a real-time solution to
the word problem.

A real-time Turing machine hask two-way infinite work tapes (for some in-
tegerk), one input tape and a finite set of states including a state stnd a list of
accepting states. It must read the word on the input tapedming one letter, then
for each work tape it may write a symbol to the current logadad then move that
tape’s head one unit either left or right. The word is acagfdtthe machine is in an
accept state at the end of input.

The word-problem irGs isreal-time if there is a real-time Turing machine which
accepts exactly those words which are equal to the ident®y in [13] it is proved
that the word problem for a word-hyperbolic group is indeeal-time.

We will createn copiesTy,..., T, of this Turing machine and attach to eakh
a “logging machine’R; which records a log of the machine’s behaviour which is
sufficient to “rewind”T;. That is, it stores for each input letter the directions whic
the work heads moved, the symbols which were under each \&pe&st head and
the original state of the machine. One can thus rewind dadh constant time
by setting its state, moving each of its work heads in reveeseriting the stored
symbol for that tape and moving the input tape’s head backiaitieWhen doing so
we move the head dR’s tape so that it is ready to rewifiglonce more if required.

We letl = 0 andk = 1 and start eacfi; with a blank input tape. At stebwe
perform the following actions:

1. Increment.
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2. Copya to the end of the input tapes @f,. .., T;.
3. AdvanceTy,..., T by |ay| letters.
4. If someT; is in an accepting state fox |, then:

(a) Rewind eacfy,..., T by |ay] letters.
(b) Clearay from the end of the input tapes ®f,...,T,.
(c) Markag as an element which should be removed.

(d) Decrement.
5. Incremenk.
6. If I <nork> mthen stop.

Thus at stefk, we at worst rea@y into and then rewind at most real-time
Turing machines, which takes tint®(|ax|). We stop after at mosh steps, so the
algorithm runs in timeéO(m).

After stepk, eachT; holds a the wordy - - - af where the list(a,...,a[) is the
list (a1,...,ax) with the elements marked above skipp&gdwas not in an accept
state immediately after readirgj- --a’j for eachi < j < so none of these words
is equal to the identity and we have the desired algorithmmé#his algorithm
DETECTIDENTITY.

We now describe a second algorithm. Given listandB of the same length,
execute [ETECTIDENTITY on each listin turn. If the same set of element indices is
marked to be removed for both lists, remove those elememtsifioth lists to create
lists A’ andB’, which are immediately returned. By the discussion abdwe,d G
thenA" =g B if and only if A" =g B’ so we may replacé with A’ andB with B’
without changing the set of conjugating elements.

If the marked indices differ, returnull. In this case we know thak is not
conjugate tdB. Name this algorithm ESUREUNIQUENESS

2.4.5 Solving the Conjugacy Problem

We are now ready to solve the conjugacy problem in the genasa.
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SupposeA = (ay,...,am) andB = (by,...,by) are lists ofX-words. We wish
to test if one list is a conjugate of the other and return aleeganguage of words
which conjugatéA to B in G, and contains a representative word for each element
with this property. Left be the maximum length of all elementsArandB.

First, execute BSUREUNIQUENESSTI(A), Ti(B)). If the algorithm returnsiull
then stop and declare the lists not conjugate. If not, repdaand B with the lists
returned by this algorithm. This step takes ti@eny).

We now have two list®\ and B, each of short-lex least words all of length at
least 1, and such that for:= min{Q? + 1,m} the group elements represented by
a; - - - ap are distinct for ali < n.

Let A’ andB’ be the sublists oA andB respectively containing the firstele-
ments.

Apply SHORTENLIST to A andB'; this takes timeD(n3p) = O().

If the algorithm returns an infinite order elememt--a; or b;---b; for some
I < jthen add; - - - aj to the start ofA and addb; - - - b; to the start oB (notice that
the set of conjugating elements is unchanged by this actibl@w apply FEND-
CONJUGATINGELEMENTSINF, noting that the return value is already a regular lan-
guage, so we are done. The maximum length of an element indtseid now
(j—i1+21)pu<ny so this takes tim®(mnp) = O(my).

If not, check, for each < n if CHECKINFORDER(g;) returns true. If so, let
j =nand continue as if SORTENLIST had declared - - - a; to be of infinite order.
Again, this step takes tim@(m).

If we have not yet stopped, we have conjugating elemenéndcg which were
returned by BORTENLIST. LetA' := (&j,...,a,) wherea = 1((a---an)*) and
defineB’ in the same way usings. Computing these lists takes tin@n’p) =
O(W).

Use TESTCONJUGACYEXP to find anX-word u with AY =g B'. If no u is
found,A andB were not conjugate, so we may stop. The time taken for thgsiste
independent of input.

Supposen > n. SinceA was processed byNSUREUNIQUENESSandA’ with
TESTINFORDER all elements of\’ are distinct finite order elements. We may there-
fore execute NDCENTRALISEREXP to find a finite seC which is the centraliser
of A. Again the time taken is independent of input.

Now check if A% = B for eachw € C. Each check takes tim@(mp) and
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the number of checks is independent of the input lists, sophit executes in time
O(my). Return the set of atawucg® for which this check succeeds. As this is
a finite set, it is a regular language. In fact, it is a concatien of the languages
{ca}, C’ and{ucs} whereC’ c C.

By Proposition 1.6.4, the first and last languages are aedepy X *1-FSAs
with O(np) = O(p) states, and the middle one is accepted byxan-FSA with
maximum number of states independent of input. The conatitenis accepted by
an FSA whose number of states is the sum of this, which (). If only one
conjugating element is required, return the first eIerrtn;a\mtucg1 found such that
Acawucs* =g B, if any.

Finally, suppose that = m. LetC be the centraliser o' found using FND-
CENTRALISERRATIONAL . We have thafcawus" =g B for anyw € C, so we need
simply return the seD := {cAwucg1 :w € C}. Notice thatC is recognised by an
FSA with number of states independent of input. Then as b&as the language
of an FSA withO(p) states and we are done. If only one conjugating element is
required, simply retunaAuc,g1 in this case.

This concludes the proof of Theorem 2.1.1.

2.5 The Final Algorithm

This section contains pseudocode for the main part of tharigihgn, given input of
two listsA andB of mwords.

Algorithm 2.5.1. Solve the list conjugacy problem.

1: function TESTCONJUGACY(A := [a1,...,am],B:=[b1,...,bn])
Input: Two equal length lists oK-words with maximum element length
Output: A regular set for whichi(L) = {m(w) : w € G,A" =g B}.

A, B < ENSUREUNIQUENESSTI(A), TI(B))

if A=null then

return {}

end if

n <« min{Q?+1,m}

i < null

j < null > These save indices for whieh- - - a; is of infinite order
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10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

33:

34:
35:
36:
37:
38:
39:
40:

Ao < [a1,...an
Ca,i’, j) +— SHORTENLIST(Ap)
if i’ # null then

i

j< 7
else

fori’e{1,...,n} do

if TESTINFORDER(ay
i
j<n
end if

end for
end if
Bo + [b]_, .. .bn]
Cp, i, j' +— SHORTENLIST(Bp)
if i’ # null then

i

j< 7
end if
if i # null then

A/<_ [ai"'aj7a17""ai_1’

59

---ap) then

ai+1,...,arn]

B/<_ [bi"'bj7b17"'7bi—17bi+17"'7bm]
return TESTCONJUGACYINF(A',B)

end if
> A’ must contain only d

istinct finite order elements of bounasdyth

A« [czlajap---anCa, Cytarag - -anCa, . . -, Cy “@nCal

> B’ must contain only elements of bounded length
B’ « [c, 'baby - - bCp, ¢, hobs - - - bnCo, - .-, G tbnCp)]
g <+ TESTCONJUGACYEXP(A',B)

if g=null then
return {}

end if

if m> Q?then

C < FINDCENTRALISEREXP(A',B)
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41: O+ {}

42: for we Cdo

43: if A9 —5 B% then

44 O+ OU{cawgg '}
45: end if

46: end for

47: return O

48: else

49: C + FINDCENTRALISERRATIONAL (A, B)
50: return {cawgg,':we C}
51: end if

52: end function

Once again, we note that the centralisefAds returned by ESTCONJUGACY(A,A).

2.6 Conclusion and Possible Further Work

This chapter describes an algorithm which can efficientlyesthe conjugacy prob-
lem for lists in the setting of a word-hyperbolic group. Thethod ties up the
inefficient cases from, and offers an improved asymptotitinte over the method
described in [3]. It could also be regarded as an improveroeat the run time

in [8] in the infinite order case (in the that paper, the audhequire that the al-
gorithm checks/! conjugates in the infinite order case; for lists of lengthte
method here requires only checks although the words involved may be somewhat
longer).

Of course, as it is outlined here the algorithm is not suitedrhplementation
due to the sheer size of many of the constants. These comstanthowever rather
simplistic. For instance, where the constednappears, we may use the number of
short-lex least representatives which can label a 2-gooregance in the Cayley
graph: the set of so-called word differences is typicallhea smaller than the
number of words of lengt®. Even this is likely to be an overestimate, however,
as we are interested in words which can label a spetyifie of 2-correspondance
(that is, one between two two-way infinite geodesics withdame label).

In the rather simple case @fx Z, with the obvious generating set, for example,
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we find that the Cayley graph is 2-hyperbolic &he- 8, so we might predict that we
must check 8 words to determine if a power of a short-lexgittaivord centralises
a given word as in Proposition 2.3.27. However, the groupp&ian so every word
centralises every other! Similarly, for this group we findttiwe may takéV = 1,
which is much smaller than the value given above.

The algorithms outlined in this chapter all return non-deiaistic FSAs, due
in part to the fact that the languages are the union of a nuoflsegular languages.
It is perhaps possible to modify these algorithms to insteaidrn a DFA (or at least
a list of DFAs where the number of DFAs depends only on thegend the set of
conjugating elements is the union of their languages).

Similarly, the FSAs returned do not necessarily accept guenword for each
conjugating element; it should be possible to ensure tlopeaty. It also seems
possible that forX-wordsa, b and ¢ whereb is short-lex straight, the language
{m(abc) : n € Z} is accepted by a (possibly even determiniské)!-FSA with
number of states linear in total word length.

There are a variety of similar questions one can ask alorsgtlies.
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Chapter 3

Conjugacy and Quasiconvex
Subgroups

3.1 Introduction

In this chapter, we outline some algorithms which will testious conjugacy related
properties with respect to a quasiconvex subgroup of a \mgperbolic group.

In general, word-hyperbolic groups may contain subgroupisiwvare somewhat
difficult to work with. It is for this reason that we restrict uasiconvex subgroups,
which we define now.

Definition 3.1.1. Suppose G is a group with Cayley graphwvith respect to a gener-
ating set X. A subgroup H of G gsquasiconvex if, for each X -word&H labelling
a geodesic i, and for each0 <i < |w| there exists an k H and an X-word a
with |a| < € such that wi) =g ha.

In particular, quasiconvexity as above implies tHats itself word-hyperbolic
(and so finitely presented) & is, andG has solvable generalised word problem
with respect tdd (Proposition 1 of [16] in fact allows us to find &&*1-FSA whose
language is the set of short-lex leXstvords in the subgroup).

Some simple examples of quasiconvex subgroups are finik subgroups and
finite subgroups of any group, and finitely generated sulgg ot free groups.

There are in fact few examples in the literature of subgraipgord-hyperbolic
groups which araotquasiconvex. One can however use the construction by E. Rips

63
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in [20] to produce a word-hyperbolic group with finitely geated normal subgroup
which has unsolvable generalised word problem and is therefot quasiconvex.
Examples have also been produced under rather stricteitiwors] for instance
in [17], |. Kapovich gives an example of a finitely presentieeely indecomposable
non-quasiconvex subgroup of a torsion free hyperbolic gmhich coincides with
its own virtual normaliser.

It is impossible to determine whether a list of elements ineaggal word-
hyperbolic group generate a quasiconvex subgroup (aganal{20]). We will
therefore assume thathas already been computed.

It may seem that quasiconvexity depends on the particulaergéing set cho-
sen for the larger group. This is not the case, however: whéeconstant may
change under change of generating set, the existence ofascchstant does not
(see Proposition 2.6 of [11] for instance).

Throughout this chapter, unless stated otherwise, we wdlme thaG is a
word-hyperbolic group generated by someXethatl” is its Cayley graph which
has base vertea and isd-vertex-hyperbolic and thatl is ane-quasiconvex sub-
group with coset Cayley gragf with respect toX. We will assume thad ande
are integers which are strictly greater than 0.

Recall from Lemma 1.5.2 that the mapwhich reduces words to their short-
lex least representatives can be computed in time linearpatilength. We will
assume that ak*1-DFA HA has been computed which accepts all short-lex least
representatives il so that a wordv can be tested for membership léfin time
O(|w|) by testing ifHA acceptst(w).

3.2 Useful Results

We begin by providing some basic results in order to avoitratising the reader
from the main results in each section.

3.2.1 Extending Geodesics

Recall thatA(u,v) = (4-u,4- V)4 for X-wordsu andv, and is independent af ~
A useful tool used throughout this chapter is the followimgowhich says that
if wis a long enough word which labels a geodesi€'imt H andu is a label of a
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Figure 3.1: Extending a long minimal coset representative

geodesic i with A(w~1,u) small, therwu labels something close to a geodesic
in " when started aH. The bounds can be slightly improved in the case where
A(w~1,u) = 0 (that is,wu labels a geodesic ifi), but the factor ot is unchanged

so we will simply prove the more general statement.

Lemma 3.2.1. Suppose that wand w, label geodesics . Let k:= A(WIl,Wz),
and let Wi and w, label geodesics i’ connecting H to Hw and H to Hww,
respectively. Ifw;| > 36+ €+ k+ 1 then|w,| > |w)| +|wa| — 2k — 30— €.

Proof. Pick X-wordsh; andh; to label geodesics ii connectingato é-wlm/l*l
andd to - wiwow, ! respectively. Leb:=4&-w, ¢:= & -wiwp, d := &-hy and
€:=4a-hy. Then we have a geodesic pentagon as illustrated in FigireVge let
di = (6, a)4 andd; := (C,4)e, and lets := |hj| —d; for i equal to 1 or 2. These
numbers measure in some sense the length of various wordk iticancels.”

Leti:=|di|. LetX:= d\/\/l(i) e [d,b] so that'corresponds to a vertek on
[4,d]. SinceH is e-quasiconvex, there is a vertgowithin € of X' representing an

A~

element ofH such thad(%,y) < d(% X) +d(X,y) < d+¢. Letu be the label of a
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geodesic i connectingy to b, then sinceHu = Hw; we have

Wi | d(H,Hu)

A

d(y,b)
Wi | —i+0+e,

VANRVAN

soi < d+¢and L
d1§6+s+§. (3.1)

Exchanging for ¢ andd for &in this argument shows that
1
d2§6+5+§ (3.2)

as well.

Notice that

Wo| =|wiwa|g +d2 — s
:|W1‘ + |W2‘ —2k+do—
=W | +s1—d1+|w2| —2k+d2 — 5 (3.3)

so recalling thatl; is bounded, we need only show ttsatis not much larger than
s1 to find a lower bound ofws,|.

By definition, (b,&)a = [wi| — (&,&); = |wi| —k. Sincejwy| = |wj| —di + s,
using|w;| > 36+ ¢+ k+ 1 from the hypothesis, we see that

(b,6)a>s1+30+&—dy+1. (3.4)

Now let j := s+ 30+ ¢€—d; +1 and suppose for a contradiction that s,.
Notices; —d; € Z so thatj is an integer. Lez "= 4-hy(j) and sincg < s, we seez”
corresponds to a vertex ¢ &|. By (3.4) we know thaj < (b,&)a, so this vertex in
turn corresponds to a vertex ¢ E)]. Finally, (3.1) implies thaf > s; + 26+ % > 9,
so 7 3-corresponds to a vertex on [d,b]. Notice thatd(d,p) = j —s1 +dy =

A

3d+¢e+1 so thad(p,b) = |wj| —30—e—1.

SinceZ'lies on [4, €], it lies within € of some other vertex| fepresenting an
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element ofH and we have

~

d(d,b)
< d(G,p) +d(p,b)
(30+¢€)+ (|w)| —30—e—1)
wa,

d(H,HW))

VAN VAN VAN

A\

sow; cannot label a geodesic I which starts aH, a contradiction. Thus, <
S1+30+¢€—d;+1.
To complete the proof, recall (3.3) to see that

Wo| = |Wy|+s—di+ Wo| —2k+dr— s
> Wyl + wo| —2k—38—¢e—1,

and sgw,| > |wy| + |wo| — 2k — 30 — € as required. O

This lemma in particular implies that if a word which labelg@odesic in™
labels a path starting & which strays too far froniH, it can never go back. This
fact is especially useful in the next sections.

3.2.2 Other Useful Results

The next two results relate to words of minimal length undetjegation.

Lemma 3.2.2. Suppose that g G, that|g?|c > | for all X-words a, that w is an
X-word such thatg”|c = | and that w has minimal length over all X-words with
this property. ThenA(g¥,w—1)| <.

Proof. Suppose not. Letl = 1(g") andv := 1i(gw), and construct a geodesic tri-
angle inl" with cornersa; b:=4a-uandc:=a-w ! and sides labelled, u and

v as illustrated in Figure 3.2. Leét:= |A(u,w 1)| and letx:=4-u(i). Thenx
corresponds to a vertgxon [4, €] and

d(&,%)

IN

d(¢,y) +d(¥,%)
W] —i+38.

VAN
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Figure 3.2: Finding a shortcut over a minimal conjugate

Letw :=1(wu(i)). Notice that

gm/ —5 gwu(i)

o)

which is a cyclic conjugate ofi. In particular,|g¥|c < |u| =1 so|g¥|c = and
|W| =d(€,X) < |w| —i+d. Sincew had minimal length, we havie< 6 and we are
done. i

The following fact is perhaps obvious, but the rather shoobpis included for
completeness.

Lemma 3.2.3. A straight word has minimal length under conjugation.

Proof. Suppose not. Then there exists a straight woethd anotheK-worda such
that W3 < |[w| — 1. But thenw?®|g = |[a(w?)3at|c < 14 3(jw| —1) +1 < [W?|
andw was not straight, a contradiction which proves the lemma. ]

Lemma 4.4.2, which will be proved in the next chapter, is ulfefr conjugacy
testing. We provide a special case of that lemma here.

Lemma 3.2.4.Suppose that w labels a geodesidirstarting at H, that u labels a
geodesic i and that Hwu= Hw. Let v=ti(wuw1). Then either

1. 2|w| < |u|—|v|+60+4e+2and2|w| < |u|+3d+2e+1, or

2. |v| <30+2e+1
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Figure 3.3: A large power of

3.3 An Upper Bound on Minimal Powers

In this section, we demonstrate that there if an elemeht &f a large power of an
element ofG then it is a proper power of an elementtéf RecallM andQ from
Section 2.2.

Theorem 3.3.1.Suppose that g G with ¢' € H for some ne N. Then ¢ € H for
some I< MQ?R where R is the number of vertices iggJI;SHl(H).

Proof. Supposey has finite order. Theg generates a finite subgroipwhich, by
Proposition 2.4.5, can be conjugated into a ball' iof radius at most 8+ 2. As
Q is the number of vertices in théball in I, the &-ball in T must have less than
Q? vertices and s& has less thaf? elements. But theg" is the identity for some
n < Q? < MQ?R. Since the identity is necessarily i, we are done.

We may therefore assume thats of infinite order, so thag™ has a short-lex
straight conjugate for some© m < MQ? by Corollary 2.3.19. Pick aX-word
a such thatr(ag™a 1) is short-lex straight and the length afis minimal over all
words with this property. Lex := m(ag™a1). We aim to bound\(x'a,x/a) for
largei and | in order to apply Lemma 3.2.1.

Notice thatx has minimal length under conjugation for aky 1 by Lemma
3.2.3,and so Lemma 3.2.2 implies tha(x,a) | < dand|A(x X, a) | < dwhenever
k> 1.

Suppose for a contradiction that 35+ 2, thatj > 35+ 2 and that\(x 'a,x/a) >
35+1. Leth:=a-x/,¢:=b-a é:=4&-x andd := &-a. Then we have a geodesic
pentagon il as illustrated in Figure 3.3.
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LetR:=4 X (1) andy:=4&-x'(1) wherel := | 38| + 1. Notice tha is infinite
order, sgx| > 1. Then

A, X/ a)

¥ —a(xa)
jX-0-1
20+1

l,

(bv é)é

AV AVARRN |

v

soxcorrespondsto a vertakon [4,€]. A similar argument shows thgtdrresponds
to a vertexy’ on [4,d].

SinceA(x 'a,xla) > 35+ 1 we know thal < A(x'a,x/a) = (¢,d)a, soxX cor-
responds t(§’ . In particularx"3-corresponds tg, Sod(X,y) < 38 and

[+

d(é,b)
d(&9) +d(y,%) +d(%,b)
IX|—1+35+ x| -1

IXFI| -1,

VAN VAN VAN

This is a clear contradiction, s&(x'a,x/a) < 35+ 5 whenever botli and j are at
least D+ 2.

Suppose thatl(H,Hax) > 65+ ¢+ 2 for somei > 35+ 2. Then for anyj >
35+ 2, Lemma 3.2.1 applies withy = a~*x, w, = xlaandk = 35+ 1, and implies
that

d(H,Hg™*)) = d(H,Ha ¥"la)
1

: : 3
> d(H,Ha’lx')+|x1a|G—2(§6+§)—36—8—1
— d(H,Ha X))+ |xajg—65—&—2

> X —lal

for large j. Since this implieHd' is far fromH for large values of, no power of
g can be inH. This is a contradiction. We must therefore half¢l,Ha x') <
60+¢€-+ 1 for each > 30+ 2.
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If Ha~X' = Ha x/ for some integers & i < j thenHa X P = Ha 1xI P
for any integemp. Settingp = —i we find thatHa~x/~' = Ha~1 so thatg™/—1) =g
a~xI~'ais an element oH.

As there areR elements irBgs, ¢, 1(H), we can assume that-i < Rand we
are done. O

We close this section by making the observation tfag H if and only if
(a~lga)" =f a“'g"a € a~'Ha. This implies that the bound in Theorem 3.3.1 de-
pends not org but on theminimumquasiconvexity constant over all subgroups of
G which are conjugate tbl and that there is a bound on the minimum power for
which a group element may lwenjugatednto H.

3.4 Testing Conjugacy with Elements of a Quasicon-
vex Subgroup

In this section, we will outline an algorithm which will tefta given X-word is a
conjugate of an element &éf. We begin finding bounds on the lengths of eitg@r
or awhenevem is either short or of minimal length under conjugation.

Proposition 3.4.1. Suppose that g labels a geodesidirand that § € H where
a1 labels a geodesic ifi’ starting at H. Then either

1. |¢?lc <30+2¢+1,o0r

2. |a < W# and if g has minimal length under conjugation in G then

la) <30+2e+1.

Proof. Note that Lemma 3.2.4 applies with= a~*, u= g andv = m(g?).

The second case of Lemma 3.2.4 implies fodfc < 30+ 2¢+ 1 so we have
the first inequality.

The first case of Lemma 3.2.4 implies th#X< |g| 4+ 38+ 2¢ + 1 which proves
the first inequality of the second case.

Finally, the first case of Lemma 3.2.4 also implies that £ |g| — |g?|c + 60+
4e + 2, and ifg has minimal length under conjugation thgh< |g?| so thatla| <
30+ 2e + 1 as required for the final inequality. O
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We can now prove the result.

Theorem 3.4.2.Given a word g in the generators of G, it is possible to check if
there exists, and return, some=gG such that § € H, in time Q(|g|).

Proof. We first prove that we can find wordg and x of lengthO(|g|) such that
whenever ! labels a geodesic starting frofhandg"@ € H we can bound either
|]al or [x®|g. This fact is then used to complete the proof. Recall thetiwtac
andg, from Definition 1.4.1. We break into cases depending on thgtleggc|c.

First suppose thdtc|c < 2L. Letw:= g. and apply Proposition 3.4.1 to:=
m(ge). We find that ifa—! labels a geodesic i’ starting atH andg"® =g x® € H
then eithera < M# <L+30+2+1or| @ <30+2+1.

Instead suppose thigk:|c > 2L so thatgis of infinite order by Proposition 2.3.1.
Corollary 2.3.19 withu = g implies that we can find a wong of lengthO(|g|) and
an integemm < MQ? wherex := m(w1g™w) is short-lex straight ifi, and that this
operation takes tim®(|g|). Applying Proposition 3.4.1 t& (which is of minimal
length under conjugation by Lemma 3.2.3), we find that it labels a geodesic in
" starting atH andg”@ € H then(g™)"8 =g x® € H and so eithefa] < 30+2e+1
or x®|g < 30+2e+1.

In either case, i1 labels a geodesic it starting aH andg"@ € H then either
la] <L+30+2c+1or|x®g < 30+2+1. Also, [x| and|w| are inO(|g|). The
algorithm can therefore be implemented as follows.

For eachX-word a of length at most + 30+ 2+ 1, test ifg"@ € H. If this
check succeeds for sonaethenwa is a suitable conjugating element and can be
returned. If all checks here fail then continue to the next.pgach check can be
performed in time>(|g|) and the number of checks is independerg b this case
can be tested for in tim@(|g|).

For all X-wordsh with |h| < 30+ 2e+1, test ifh € H andx® =g h for some
elementa € G. If such aa is found thenwa is a suitable conjugating element
and can be returned. If not then no conjugating elementsaisi we may return.
Again, each check can be performed in ti@€g|) by Theorem 2.1.1, and the
number of checks is again independengafo this case can also be tested for in
time O(|g|). i

We remark that this method can of course be modified to retwati@nal lan-
guage which contains all such conjugating elements as ipt€ha, and that it can
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likely be modified to test if a list of elements can be simudtamsly conjugated into
the subgroup. This latter result would provide a method stirig whether or not
one quasiconvex subgroup is a conjugate of a subgroup dfi@not

3.5 Checking Equality of Double Cosets

In this section, we demonstrate that it is possible to efiityedetermine if two
double cosets of quasiconvex subgroups are equal. We bgghdwing that it’s
possible to efficiently find a double coset representatie#glinearly optimal” in
both directions.

Proposition 3.5.1.Given an X-word w one can find an X-word u such fla |w|,
Hw=Hu and dH,Hw) > |u| —3d—¢in time Q(|w]).

Suppose additionally that K is a fixédquasiconvex subgroup. Then one can
find an X-word v with Hwk= HvK such that dK,Kv—1) > |v| - 35— and d H,Hv) >
V| —8d—2e — Cintime Q(|w|).

Proof. Begin by replacingv with 1i(w) so thatw labels a geodesic in.

Let Ry be the set containing the empty word andifor O defineR; in terms of
R_1byR ={m(a):|a| <35+¢&,beR_1,bwijatcH}. If R_1is non-empty then
Ri is the set of short-lex least representativesgith Hr = Hw(i) and|r| < 30+ ¢
(this is clear whem = 0 and can be seen by induction for larger values.of

To computeR; we at worst need to test ifwji]v € H for all wordsu andv of
length at most 8+ €. Each of these tests is linear in word length and so takes
constant time — and the number of tests does not depemd ®hus the time taken
to compute the sefs; is O(|w]).

WheneveR,; is non-empty, let; be the short-lex least elementiRf Notice that
ri, if it exists, is the short-lex least word withr; = Hw(i), so|ri| = d(H,Hr) =
d(H, Hw(i)) < [w(i)].

Pick the largest value afsuch thaR; is nonempty. Letv := r;j and notice that
d(H,Hw(i)) = [wo| < 3d0+¢. If i = |w]| then letu =r,, and we haveu| < |w
Hu=Hwandd(H,Hw) = |u| so we are done.

Otherwise notice thatl(H,Hw(i + 1)) = 30+ ¢+ 1 (or R;1 would be non-
empty). SinceHwp = Hw(i) we haved(H,Hwow(i + 1]) = 30+ €+ 1.
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Let u:= m(wow(i : |w|)) and we see thgt| < |w| andHu = Hw. By Lemma
3.2.1 withwy = w(i), wo = w(i : |w|) andk = 0 we have

d(H,Hw) > d(H,Hw(i+1))+ w(i+1:|w|)|—30—¢
= d(H,Hwow[i +1]) —30—¢&+ |w(i+1:|w|)|
= |w(i+1:|w])|+1

= |w(i: |wi)]
> |uf — |wo|
= |u|—3d—¢,

sou satisfies the requirements of the hypothesis and is comjputede O(|w|) as
required for the first part.

For the second part, apply the first part as beforevailm get a wordu with
lu| < |w|, Hw=Huandd(H,Hw) > |u| — 35 —¢&. Now apply the first part a second
time using the subgroul instead oH and the wordu—* instead ofw. The proof
gives us arX-wordV = 1i(upu~ (i : [u|)) such that(K,KV') > |V/| — 38—, wherei
is an integer andp is anX-word satisfyingup| = 38+ . Notice thatfV/| < |u| < |w].

Letv:=v~!and we find thatl(K,Kv—1) > |v| — 35— and|v| < |w| as required,
so it remains to show that(H,Hv) is sufficiently large.

If |v| <83+ 2¢+  then we are done, so suppose that> 85+ 2 + { + 1.
Since|v| < |u|, we havelu| > 80+ 2¢+ { + 1 as well.

Let t label a geodesic i’ connectingH to Hv. If |v| — |t| < 58+ 2¢ then
d(H,Hv) > |v| — 50 — 2¢ so we are done. Thus assume thvat- |t| > 55+ 2¢ + 1.
Letj:=50+2e+ 1.

Construct a geodesic trianglefirwith cornersa;b:= 4 u(Ju| —i) and¢:=4a-v
as in Figure 3.4. Noting that(|u| —i) =g u=(i : |u]) =g Uy 'V we may take the
side labels to be(|u| —i), vandug. Then

|u — |uo|
> (80+2e+(+1)—(30+Q)
> Bd+2+1

\%
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Figure 3.4: The double coset representatives

andp:=4&-u(]j) corresponds to a poiton [4, €].
Construct a second geodesic triangle with corrmersahdd := ¢-t~1, picking
n(vt~1) as the side label fdé,d]. Then

A

(67 )é > d(évé>_d(év A)
= M-
> 50+2e+1
> ]
andd'therefore corresponds to a verteari[4, d]. Sincevt 1 € H, f is withine of a

vertexsrepresenting an elementdfso thatd(H,Hu(j)) < d(f,$) < 25+ €. But

> ul—35——|u|+ ]

= 20+¢e+1

and we have a contradiction. Thus the proposition is proved. |

We now prove a brief lemma which essentially says that whengvs close
to being a minimal representative for a cokgtof a quasiconvex subgroug, the
cancellatiom(k, g) is small for anyk € K.
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Lemma 3.5.2. Suppose that A is a-quasiconvex subgroup of G, that a and g are
X-words which label geodesicsandf3 in ' respectively, such that a is mapped to
an element of A anth|c < d(A,Ag) +C. If a andy start from the same vertex

in I, are adjacent sides of some geodesic polygoin and, after subdivision into
triangles, there exist verticese a andy € 3 such thatk n-corresponds tg then
d(y,2) <C+0+nd.

Proof. Notice that there is a vert@awhich represents an elementfivith d(4, X) <
0. But then

d(A,Ag) < d(42-9)
< d(&x)+dxy) +d(y,2 g)
< 0+nd+|gl—d(¥,2)
< o0+nd+d(AAg +C—d(y,2),

and a quick cancellation and re-arrangement showsdtaf) < C+ o+ nd as
required. O

Armed with this tool we can now test equality of double cosgresentatives.

Theorem 3.5.3.Suppose K is a fixe¢-quasconvex subgroup. If u and v are X-
words then it is possible to test whether HeHVK in time Q(|u| + |v|).

Proof. Letu; andv; be the words obtained by applying the second part of Proposi-
tion 3.5.1 orK with the wordsu andv respectively. Since these words are obtained
in time O(|u| + |v|) and satisfyHu;K = HuK andHv;K = HVK, we replaces with
m(up) andv with 1t(vy).

If HuK = HvK then there exisK-wordsh andk which are mapped to elements
of H andK respectively and witluk =g hv. We will assume that andk are picked
to label geodesics, and such tht+ k| is minimised. Leb:=4a-h, ¢:=b-vand
d:=a-u. Then we have a geodesic quadrilateralivith side labeld, v, k and
u. Pick some geodesic connectia¢p’C to split this quadrilateral into two geodesic
triangles. This quadrilateral is illustrated in Figure.3.5

We now aim to bound the lengths bfandk by a value which does not depend
onu andv. Suppose thdtis an integer and the vertax :=d - k(i) 2-corresponds

A

to a vertexy:= a-h(i’). Notice that’ := (€,d)a— (&4,€)4+i.
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A
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Figure 3.5: The double coset representatives

There is a vertex; € I representing an element iéfsuch thad(p;, i) < an
similarly there is a verteg & I' representing an elementldfsuch thatd (g, §) <e€.
Let w; label a geodesic i connectings”to r; and observe thdw;| = d(§,f}) <
20+ ¢+ (. See Figure 3.6 for a complete picture.

4
)

Let P be the number of vertices BE5+E+Z 4). Suppose that more th&tie + )
vertices on[d, & 2-correspond to vertices dé,b] so that there exist integers<
] —e—{ with wj =g wj. Letky, ko andks label geodesics ifi connectingato rj, f
to r andrj to € respectively. Definéy, ho andhs to label geodesics connectiag ™
S, Sj andb similarly.

Thenw; =g howjk, * = howik, 1 andw; =g havks * so that

u =g hvk?
=6 hihohavkg ks Tkt
=g hihpwik; kit
—c hwik?
=c hihavkg ik 2,

but then|h1h3| + ‘klkg‘ < ‘h‘ +2e+ ‘k‘ +2C —2(] — I) < ‘h‘ + |k| andhihav =g ukiks
which contradicts minimality ofh| 4 |k|. Thus at mosP(e + ) vertices on[d, ¢
can correspond to vertices & b).

Applying Lemma 3.5.2 witlo = €+ { andC = 8d+ 2 + ¢, and using setting the
triple (A, g,a) to each of(H,u,h), (H,v,h™1), (K,u™1,k) and(K,v -1 k1) we see
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Figure 3.6: Finding a shortérandk

that vertices on the sides of the quadrilateral which cleaimespond to vertices on
adjacent sides must be at worsdX03e + 2¢ from the common corner of those two
sides. For instance, any vertex fih¢] which 2-corresponds to a vertex ¢ d]
must be within 16+ 3¢ + 2Z of d (this upper bound is slightly larger than the one
given by the lemma, but works for all four corners giving astly simpler proof
here).

Now, all vertices on[d,&] are either within 16+ 3¢ + 2 of ¢ or d, or 2-
correspond to a vertex da, b]. By counting vertices, we find that| = d(d, ) <
100+ 3e+2(+P(e+7)+100+3e+2(+1=200+6e+4(+P(e+{)+1. Sim-
ilarly, all vertices on[4,b] are either within 18+ 3 + 2 of ¢ or d, or are 2-
corresponded to by a vertex ¢ &], so|h| < 205+ 6+ 4 + P(e+ ) + 1.

We thus test, for each pair of-wordsh andk with |h| and|k| both less than or
equal to 28+ 6€ + 4 + P(e + {) + 1 whetherh € H, k € K anduk =g hv. If for
some pair of words all three of these checks succeed, thdeloabets are equal.

If this never happens theduK # HvK. These checks can each be performed in
time O(|u| + |v|) and the number of them is independenuaindv, so the whole
operation takes tim®(|u| + |v|). The theorem is proved. i
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3.6 Conclusion and Possible Further Work

Much of the further work for Chapter 2 can be generalised éqtioblem of testing
whether a list of words can be conjugated into a quasicorviegreup. One might
similarly wish to reduce the rather inefficient constantduseTheorem 3.3.1.

In the case of testing equality of double cosets, a methodontimed which
would find a near-minimal coset representative. A more cam@gument might
show that it is possible to find the short-lex least repredeamt for a given coset
or double coset in linear time. This would of course triwadblve the problem of
testing equality of double cosets.



80 CHAPTER 3. CONJUGACY AND QUASICONVEX SUBGROUPS



Chapter 4

X-graphs and Hyperbolicity

4.1 Introduction

This chapter is largely based on work by Foord in his PhD tggi Foord studies
some properties of coset Cayley graphs of word-hyperbobags with respect to
quasiconvex subgroups. The work here slightly generalsess well as providing
some improved constants relating to these results. We wilkwvith X-graphs, as
detailed in Section 1.3. The reader is invited to recap thetien before continuing
as some of the definitions there have been neglected until now

A rather vague outline of this chapter is given below. Theestents will be
made rather more precise in the next section.

We first show that graph morphisnisbetweenX-graphs which preserve edge
labels and directions (we call theXemaps), and have quasiconvéx?!(f(é)) for
some vertexe, preserve hyperbolicity. We define a concept of “eventualbynor-
phic k-balls,” 1B(k), and show that if theXx-graphs are hyperbolic then 1B(is
preserved by thes¢-maps, too.

It turns out that if the domain has IB)(for everyk > 0 (we use IB¢) as a short-
hand) and the target has B(for “large enough’k then the target also has I&j.
This fact is used to offer an alternative proof that cosetl&agraphs of word-
hyperbolic groups relative to torsion-free quasiconvexgsaups satisfy a slightly
stronger condition than 1B4).

Finally, a simple implication of IB¢) upon the set of words labelling geodesics
distant from base point of ad-graph is demonstrated.

81
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4.2 Definitions

In this section, we define the constructions that we will bekivay with later.

Definition 4.2.1. Given a set of verticel§' in a graphl’, thesubgraph ofl” induced
by " is " together with every edge inwhich connects two vertices Ir.

A setl’ of vertices in an X-graph is aconnected vertex subset CVSif the
subgraph of” induced by’ is connected. Where we are not concerned with the full
X-graphrl’, we will simply say that’ is an X-CVS.

If I"isan X-CVSp e and wis an X-word, wis &'-wordat p if p-w(i) e I’
foreachie {1,...,|w|}.

That is, al'’-word atp'is a word labelling a path starting atwhose vertices
are all insidel’”’, and a CVS is a set of vertices which are pairwise connected by
’-words. Notice that a finite ball is in particular a CVS.

Much of this section concerns the similarity of CVSs, which @efine in terms
of graph morphisms.

Definition 4.2.2. Letl'; andl" be X-CVSs. A map :fl1 — N> is an X-mapif it
can be extended to a graph morphism of the subgraphs indydedandr > which
preserves edge labels and directions.

The existence of an extension to the induced graph is enaugtote that an
X-map f is defined completely oncé(p) is known for any single vertep. "We
prove this now.

Proposition 4.2.3. Suppose that both; and ", are X-CVSs and let f['; — >
be any function which sends edges to edges and verticesttoegerThen f is an
X-map if and only if fp-w) = f(p)-w for all I'1-words w at verticep inT 1.

In particular, if f : 1 —T2and g: 1 — 2 are X-maps andj is a vertex i 1,
then f= g if and only f§) = g(q).

Proof. Supposef is an X-map and letf be the extension of to the subgraphs
induced byl"; andl».

Sincef preserves edge labels and directions, given a vertex 7 and element
x € X, if there is an edge which is labelledk and starts ap, thenf (e) is labelled
X, starts atf (p) and ends af (p) - x. This implies thatf (p-x) = f(p) - x. The same
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is true for edges labelledwhich end atp;so f(p-u) = f(p) - u for anyl 1-word u
at p of length 1. Now for any 1-word w at p,

F(p-w) = (... ((P-w[1]) -w[2])...) - wl|w]])
() -wi1])-w(2])...) - wljw]]

as required.

We now prove the converse. Suppose that fofatwordsw and verticesp”™
in 'y we havef(p-w) = f(p)-w. Notice that for any € X, sincex andx ! are
X-words, the endpoints and directions of any edges pointitggand out ofp'with
labelx are preserved, thuscan be extended to a graph morphism and is therefore
anX-map.

For the last part, it is clear thdt+ g if f(q§) # 9(§). Suppose that(§) = g(§).
For any vertex € "1 there is d 1 word, sayw, with §-w = f. But then

f(f) =

and f = g as required. O

The first part of Proposition 4.2.3 will be used frequentlyheut reference.
Another simple fact to note is that-maps, being restrictions of graph mor-
phisms, define contractions of metric spaces.

Proposition 4.2.4. Suppose thaf1 and ', are graphs in which all edges have
length 1, that f: ;1 — M2 is a morphism of graphs and thatandb are vertices in
. Then df(4), f(b)) < d(4,b).

Proof. Note that any geodesic path connectatg b must be mapped to a path con-
nectingf (&) to f(b). Since edges are sent to edges and vertices are sent t@sggertic
there is a path i, connectingf (4) to f(b) of lengthd(4,b), sod(f(&), f(b)) <

d(a,b). 0
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Again, we will use this proposition often without reference

When determining whether two balls are the “same,” it is ement to ensure
that not only is there a bijectiv€-map between them, but that this map preserves
the centres.

Definition 4.2.5. If 1 and I are X-graphs then an X-map: Blzl(m) — Bﬂz(ﬁz)
is amorphism of ballsif f (1) = p2. We say f is afisomorphism of ballsf f is
bijective, and in this case we saﬂ%m) and I?,:Z(ﬁz) are ball isomorphic

We can show that if aiX-map either maps from a¥-graph or is a morphism
of balls then it is surjective. In particular, injective npbisms of balls are isomor-
phisms of balls.

Proposition 4.2.6. Suppose that both; and "', are connected vertex sets of X-
graphsand f. 'y — M is an X-map.

1. IfI'1is an X-graph then f is surjective.

2. If bothl"1 andTl, are balls of the same radius and f is a ball morphism then
f is surjective.

Proof. Suppose thaf; is an X-graph. Pick any verteg in 1. SinceX-CVSs
have connected induced subgraphs, given any verieX > there is a 2-word at
f(§), sayw, with f(§)-w=Ff. Thenwis al;-word atq (as anyX-word is), so
f(§) -w= f(§-w) andq-wis a vertex in" 1 which maps td . Thusf is surjective.

Similarly, suppose thdt; andl", are balls of the same radiuR,say, thatf is
a ball morphism, thad) is the centre of 1 and thatr e I',. Then sincef is a ball
morphism,f(§) is the centre of 2 so there is d& 2-word at f(§), sayw, of length
at mostR which satisfiesf (§) - w = f. But thenw is al"1-word (as anyX-word of
length at mosR is), so once agaifi(§) -w= f(§-w) andf is surjective. |

The restriction that the centre of the ball is preservedssifjed since one can
produce an example of ax-graph where two equal radius balls around different
points are equal as sets but not isomorphic as balls, dtetrbelow.

Example 4.2.7.Let G be the free group on the st b}. Let H be the subgroup of
G generated by bal, b%a, b~%a and b 1a?, and letl" be its coset Cayley graph with
respect to X, which is illustrated in Figure 4.1. The treaustures on the left and
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Figure 4.1: The 1-balls arourtdl andHa are equal but not isomorphic

right of the illustration represent subgraphs of the Caydgsiph of G with respect
to {a,b}.

Notice that ifX is a vertex inC which is neither H nor Ha then (@H,X) =
d(Ha,X), so if k> 0 then B(H) = By(Ha) as sets. However, ab labels a loop at
H but not Ha, so there is no X-map from(Bi) to By(Ha) which sends H to Ha.
In particular, these balls are not ball isomorphic.

We now define a concept of “mostly homogeneous”. The GIB pig@nd IB
property for a single graph correspond to the definitions cyré.

Definition 4.2.8. Suppose that is an X-graph with base vertdx Then for non-
negative ke Z we say:

" hasIB(K) if there exists some K such that(p) and B(q) are ball isomor-
phic for any verticef),§ € I' with d(f), p) > K and d(f), §) > K. Thus there is a
canonical k-ball ofl which balls of radius k which are sufficiently far fropnare
ball isomorphic to. We label this balfi ().

Suppose S is a collection of X-graphs which all satisfik)B Then we say S
satisfies IBK) if Bi(I'1) and Bx(T"2) are ball isomorphic for any two elemenitg
andlsin S.

Suppose G is some group generated by X with Cayley graphThenl has
GIB(k) with respectto G if ', '} has IBK).

Where the presentation is understood, we will refer to a salggof a group as
having IB(k) or GIB(K) if its associated coset Cayley graplesl
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Denote byIB(«) the property of having IB(k) for any Xk 0 and defineGIB()
similarly.

In other words, these properties imply that provided youtcse more than a
given finite distance and are sufficiently far from the bas@tibis impossible to
tell where you are in the graph, or which graph you are in.

The concept of quasiconvexity of subgroups (DefinitionB.is a special case
of a similar condition for subsets of a graph. We state thrsddoon in terms of
X-graphs.

Definition 4.2.9. Supposd is an X-graph. Then a set S of verticeslins ¢-
guasiconvex if whenever w is a word labelling a geodesic éetwtwo vertice$
andfin S and i< |w| there is a vertexi € S with d'§-w(i),0) < €.

We will be studying the case of ak-map f wheref*l(B) is quasiconvex for
the base poinib of the targetX-graph.

In [9], Foord proves that for a quasiconvex subgrétif a word-hyperbolic
group G, the coset Cayley graph with respect to any finite generaeigfG is
hyperbolic. He also shows that it has Gig(if and only if the index|Cg(h) :
Cg(h)NH| is finite for anyh € H. In particular, this is true of any torsion free
quasiconvex subgroup. However, the hyperbolicity corisgaren there is rather
large, and no bounds on the constants involved in the GlBtrasigiven.

It is the aim of this chapter to generalise this work somevllyadropping some
of the restrictions that one graph be a Cayley graph, anddeige some rather
lower constants.

4.3 A Tighter Bound on the Thinness of Triangles

The aim of this section is to demonstrate that hyperbolicéyries over through
X-maps whose inverse of a single vertex is quasiconvex, apdrircular that coset
Cayley graphs of quasiconvex subgroups of word-hyperlgobaps are themselves
hyperbolic. This result is a generalisation of Theorem343lfrom [9], with a rather
smaller constant (the constant given there was exponent@ahnde). A similar
statement to Foord’s with a similarly exponential consisugiven by llya Kapovich
in [18].

We begin by giving a simple condition which implies that angle is thin.
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Definition 4.3.1. A triangle in an X-graph ig9, €)-nearly thin relative tod if & is
a vertex and given any pajy andq of corresponding points on the triangle, one of
the following is true:

1. pis within6d of g,
2. piswithin5d+ € of 4, or

3. there are corresponding verticéSandci’ on the same sides of the triangle as
p andq such that @p, f)’) < 30+ 1 and either property 1 or property 2 holds
for f)’ and its corresponding vertei(.

Lemma 4.3.2. Supposé is a d-vertex-hyperbolic X-graph with base po#&tthat
[ is an X-graph and that fI” — I’ is an X-map such that f( f (&)) is e-quasiconvex.
If a geodesic triangle i$0,€)-nearly thin relative to {é) then it is16d+ 2¢ + 2-
vertex-thin.

If all vertices on all sides of the triangle are further th&d+ € from f(é) then
itis 120+ 2-vertex-thin.

Proof. Suppose that the geodesic triangle has corAeBandC and thatP is on
[A,B] and correponds tQ on [A,C]. If P satisfies property 3 then 18t be a vertex
on [A, B] which is within 3+ 1 of P and satisfies property 1 or property 2; if not
then simply let? := P.

Suppose thalP’ satisfies property 2. Sinaﬂf”, f(é)) <55+ ¢ we need only
prove thatd(P, Q) < 165+ 2¢ + 2. By swapping3 andC, we see tha® must also
satisfy one of the three properties in Definition 4.3.1. Riekvertex?' in the same
manner a$’ so thatd(Q, Q) < 35+ 1.

If Q' also satisfies property 2 then

d(P,Q) < d(P,P)+d(P,f(8)+d(f(€),Q)+d(Q,Q)
< 30+14+504+€+50+€+30+1

= 160+ 2e+2,

as required. If notQ satisfies property 1; in this case swpandQ so that the only
case left to deal with is the case whéesatisfies property 1.
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To finish off, then, suppose tht satisfies property 1 so tht is within 63 of
its corresponding poiri on [A,C]. Notice thatd(R,Q) = d(P’,P) < 35+1, so

d(P,Q < d(P,P)+d(P,R)+d(RQ)
< 354+1+65+35+1

= 120+2,
which completes the proof. O

We now prove the main result for this section.

Theorem 4.3.3.Supposd is a &-vertex-hyperbolic X-graph with base poiét
that I’ is an X-graph and that I — '’ is an X-map such that f(f(é)) is
e-quasiconvex. TheR' is 160 + 2¢ + 2-vertex-hyperbolic and geodesic triangles,
with corners on vertices, in which all vertices on all sides &urther than50 + €
from f(€) are 125+ 2-vertex-thin.

Proof. Suppose we are given a geodesic triangl€’invith cornersA, B andC.
Supposef (&) -w= A, 4-u=BandA-v=B-x=C, wherew labels a geodesic
starting atf (€), andu, v andx label the sides of the triangle. The situatiorinis
illustrated in Figure 4.2.

We aim to translate the construction ifitan order to use hyperbolicity df to
show that the triangle 8, €)-nearly thin relative tof (€) in order to use Lemma
4.3.2.

letd:=é-w,b:=4-u, ¢:=b-x, @ :=¢v?iande:=a -wl Lethla-
bel a geodesic i connectingeto €. See Figure 4.3 for an illustration of this
construction.

We know thatA-uxv ! = A so f(a) = A and thenf (&) = f(&). Becausef is
e-quasiconvex, each vertdXé- h(j)) must be within withire of f(é).

Including €, these six points then form a geodesic hexagoh with sides la-
belled in turnw, u, x, v-1, w1 andh~1. Let g label a geodesic connectiagd &,
and letw’ andu’ label geodesics connectirgto & anda’ to b respectively.

Sincef(é)-w= f(é-hw)) = f(é)-w andw labels a geodesic starting &té),
we must have

W] > w]. (4.)



4.3. ATIGHTER BOUND ON THE THINNESS OF TRIANGLES 89

Figure 4.2: A general triangle i/

Figure 4.3: A hexagon it which maps to the triangle i’
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Q>
oo

(4,€)a (ab),

Figure 4.4: No point o1, 6] can chain-correspond only to a point Eai’}é’]

Similarly A-u = A-u andu labels a geodesic starting/Atso
| > ul. (4.2)

Now (4.1) implies thata, &) ;, = 9| < 9l and (4.2) implies thef, b)
w > % Putting these together, we find that

&=

&b, >(4€) (4.3)

a

and no point ond,b] can chain-correspond only to a point ¢ai,&] (and vice
versa), as illustrated in Figure 4.4. Looking at distances, this is equivalent to

(@,b)a< (@,€)a (4.4)

Also, observe that (4.2) implies th&tY =X < WEEM=M o in other words

o

B,C);

IN

( 7é)é/~ (4.5)
Suppose now th& = A-u(i) is a vertex ofjA, B] which corresponds to a vertex
Q=A-v(i)on[AC]. Letp:=4a-u(i) and letq:= & - v(i) so thatP = f(p) and

Q= f(§). By relabelling, any pair of corresponding vertices can laelento fit this
construction.
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e

é

Figure 4.5: Vertices of8, € are equal to vertices o[é’, é’] after applyingf

We can now observe some cases which will be treated in ordercodasing
distance fronpto 4

Case 1 Suppose that< min{(a,b)s, (& €)s}. Notice that (4.4) implies that
(a,€)s > (&,b)s so thatl < (&,€)s as well. Then this case applies if and onlyif ~
3-corresponds to a vertex="a-w1(i) on[é, 4] as illustrated in Figure 4.5.

Now lets:= é’-w_l(i); that is, the point “opposite’”."Using Propostion 4.2.4,
observe that
d(P, £(8) = d(P, f(F)) < d(p,) < 35. (4.6)

This case has a number of sub-cases, depending on whichfside bexagors ™
chain-corresponds to. Again, we will treat them with snstlidirst.

Case la Suppose that< (¢,4) &~ So thatstorresponds to a vertex ¢, 4. By
(4.3) we know that€, a); < (4, B)é, so that vertex in turn corresponds to a vertex on
[&,b]. Finally, by (4.5) we have< (b,¢);, sos3-corresponds to a vertex ¢, &].
Sinced(a,$) =i = d(&,§), this vertex must bg, andd( f(8),Q) < d(8,§) < 3dso
(4.6) implies thatl(P, Q) < 63 as required for property 1 of Definition 4.3.1.

For Cases 1b and 1c, we may therefore assume thae', ) 5 SO thats’corre-
sponds to a vertex oje/, 4.

Case 1b Suppose thas 2-corresponds to a vertdxon [€ 4] as in Figure 4.6.
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Figure 4.6: In this situation, the dashed path must be lotigerd (&, $)

Notice that

o
—~
o

—t)
N~—

I

o

ININ A
- o o
+
N
(oY

andi < (¢,&)3 as noted in Case 1, so

i = d(@,9
- d(éwf)_(é,?é{)A-i_(évé()aAf
< i4+25—(d,€)a+(4,€);

< (€,8)5+25.

Let p/ ;= &-u(j) wherej = max{i — 25,0}. Thenj < (€,4);, sof(p/) is in Case
la. Sincej —i < 25, we have shown tha& satisfies property 3 of Definition 4.3.1.
In Case 4, we will use the fact that every vertex within 1 of P also satisfies this
property.

Case 1c The final subcase ha®-corresponding to a vertéon [é, é’]. Sincef
is quasiconvex(f (), f(&)) <e, sod(P, f(&)) < d(p,f)+d(f,f) +& < 55+¢ and
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(@}

e

D

b

Figure 4.7: Again, the dashed paths cannot be too short

P satisfies property 2 of Definition 4.3.1.

’\ A

All cases wheré < min{(&,b)s, (& €)a} have now been covered, so we may
assume that eithér> (a/,b)z ori > (& €)a.

Case 2 Suppose that < (é’,f))a so thati > (é,é’)a. By (4.4) we have <
(a,€)a sopmust 3-correspond to a vertewi [é &]. Notice thaid(f (7), f (&) <e
and sod(P, f(&)) < d(p,f) + & < 35+ ¢ andP satisfies property 2 of Definition
4.3.1.

We have now dealt with all possibilities where (&, b)s and may thus assume
thati > (a,b)a.

Case 3 Suppose thafu| —i > (é’,é)B so thatp™2-corresponds to a vertex=
a-v(j)on[a,d, as illustrated in Figure 4.7. Similar to Case 1b, we have

IA A IN
- = Qo o
++3;)f\
N o 2o
\'Olj-a-U)_h

>+

=<

.0

.

>
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Figure 4.8: The construction used in Case 4

and by reversing the roles béndj we find that < j+2dand sgj —i| < 256. Now

d(P,Q) < d(p.g)
< d(p,f)+d(f,q)
= d(p,F)+[i— ]
< 45,

and we have shown th&tsatisfies property 1 of Definition 4.3.1.

Case 4 The remaining case hag| —i < (é’,é)B so thatp™2-corresponds to
some vertex dn [b, ¢]. Observe that

\

VAN VAN VAN

IN

A

d(C.A)
d(¢,8)

d(&,f)+d(f, p) +d(p,a)

x| —d(b,f) +d(f, p) +d(p.8)
X — (Ju] —i) +28+i

IX| — [u] +2i + 28,

o
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but then by re-arranging, we see

i < (BC);i
el
2
< i+

Now let p' = &-u(j) wherej = max{i — 5— 1,0}. Then eitherj = 0 so thatf (/)
isin Case laof >0andj+9d < (é,C)A, so in either casé (p/) is not in Case
4. If f(p/) is in Case 1b then there is a vertp with d(f(p”),P) < 35+ 1 and
f(p’) satisfies property 1 of Definition 4.3.1. OtherwiséP, f(p')) < 5+ 1 and
f(f)’) satisfies property 1 or property 2 of Definition 4.3.1. In eithaseP satisfies
property 3 of Definition 4.3.1.

Combining this with Case 1b we see tias within 35+ 1 of a vertex?’ which
satisfies one of the first two properties in the claim.

Since all vertice® have been shown to satisfy a property in Definition 4.3.1, the
triangle is(d, €)-nearly thin relative tof (€). Lemma 4.3.2 completes the proofo

It seems likely that the proof above should adapt to somesetasf general
(unlabelled) hyperbolic graphs and spaces, though rastyito X-graphs simplifies
the situation as given a connected structure in the targetneed only read off the
path labels to find a connected structure in the domain whighshonto it.

The result is for example not true when mapping between gégeaphs: let
[ be the Cayley graph ¢ under a cyclic generator, and létidentify 2+ 1 to
2kt1 _ 1 fork > 2. Thenrl is O-vertex-hyperbolic and—(f(0)) contains only one
vertex (so is 0-quasiconvex) but the resulting graph, agfashich is illustrated in
Figure 4.9, is not hyperbolic at all: fér> 3, X =y = f(2K+1) andZ= f(2¢+2k1)
are the corners of a geodesic triangle which is rfot 2- 3-vertex-thin.

In any case, the resuttoesapply to coset Cayley graphs of quasiconvex sub-
groups.

Corollary 4.3.4. If G =< X > is a d-hyperbolic group and H is @&-quasiconvex
subgroup then the coset Cayley graph of HL& + 2¢ + 2-vertex-hyperbolic, and
geodesic triangles in the coset Cayley graph with cornersentices in which all
vertices on all sides are further th&d+ € from H are125+ 2-vertex-thin.
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Figure 4.9: A segment of a non-hyperbolic graph

Proof. If the Cayley and coset Cayley graphs &r@and [’ respectively, the map
f:r —T":1.ww~ Hwhasf~1(f(8)) = H when€represents the identity element
of G, so Theorem 4.3.3 finishes the proof. O

Notice that the second part of the result above is a hint tiexetis some ball
about the base point, outside of which the contraction bethawch like the original
graph.

4.4 Ball Morphisms and Loops

In this section, we provide some means to recognise whenasdre isomorphic,
which we use later to prove some results about IB and GIB. Bdhewing result

is a slightly more powerful version of Lemma 4.1.1.3 from (@]e statement there
only finds a loop of length®R+ 1, although the observation that it can be taken to
label a geodesic is made inside a later proof). The lkia 2 can be eliminated
by considering metric balls in the graphs rather than syffgranduced by balls of
vertices.

Proposition 4.4.1. Supposé ; andl , are X-graphs.

If X1 € 1 andX, € ', are vertices and for some non-negative integer k the balls
Bk(X1) and B((X2) are not isomorphic, then there is some X-word w of length at
most2k + 1 which labels a loop ax> but does not label a loop & or vice versa.

If there is an X-ball morphism fromX; ) to By(X2) then w labels a loop af,.

Suppose additionally thdt is an X-graph with IB2k+ 1) and that the centre
of Ba,1(T") is p. If for i € {1,2} there is an X-ball morphism fromBa, 1(I") to
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Bgf(ﬂ()?i) then w can be taken to label a geodesi¢ iwhich starts atp.

Proof. We assume there is no wowd as in the hypothesis and demonstrate that
there is an isomorphism of balls.

Proposition 4.2.3 implies that if ad-map f : Bx(X1) — Bk(X2) exists sending
X1 t0 X2, it must mapxy - w to X - w for all Bx(X;)-wordsw, and if this describes a
well-defined function then that function is 2Zamap. Let us aim for a contradiction
and assume, then, that this map is not well defined, so théseXexvordsu and
v such thatu andv are bothBy(X1)-words atx; and By (X2)-words atxy, and that
X1-u=X1-vbutXo-u+x-Vv.

For each O< j < |u|, let zj be the label of a geodesic which connexisto™
X1-u(j). Notice that|zj| < k soz; is aBy(X2)-word atx; for all j. Suppose that
for some 0< | < |u| we havexz-z =X -u(l), butxz-z,1 # X -u(l +1). Let
w:=zull +1)7 Y. Thenw| < |z|+ 1+ |21 < 2k+1, andw labels a loop ax;
but notxz, a contradiction. If there is no su¢hwe may replace with z,, which
labels a geodesic which startsat dnd in particular we then havye| < k.

These arguments can also be applied,teo we can also assume thet < k.
Now if X -u= Xy -V butXa-u# X -vthen letw := uv1. Since|w| < |u] + |v| < 2k
andw labels a loop ax; but notxz, we again have a contradiction.

Thusxj -u=Xj - vimplies thatxz - u = Xz - vand there is aiX-map fromBy(X3)
to Bk(X2) which sends¢to X2, ie. a ball morphism. Swapping andl; shows a
ball morphism exists in the other direction. Since ball niisms are surjective by
Proposition 4.2.6, this implies these balls contain theesanmber of vertices and
so the morphism must also be injective, ie. an isomorphism.

To prove the second statement, febe theX-ball morphism. Note that ifv
labels a loop ax; then

Xo-w = (X)) -w
= (X -w)

sow must also label a loop ab.” Thus any loop present at the centre of only one
ball must be a loop at; and not ai;.

For the final statement, ldf (i = 1,2) be the giverX-ball morphisms. Notice
that if W labels a geodesic iI§2k+1(F)-word connectingp to p- w, then for each
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we have
%-woo= fi(p)-w
= fi(p-w)
= fi(p-w)
= fi(p)-w
— %-w,

sow labels a loop ax; if and only if w does. We may therefore replasewith w
and the result is proved. O

The simple identifying property given above allows us to muagore easily
determine whether or not two balls are isomorphic. We now gicharacterisation
of loops in certainX-graphs.

Lemma 4.4.2. Suppose that and[l’ are X-graphs, thaf is &-vertex-hyperbolic
and has base poird and that f: I — I’ is an X-map where f1(f(8)) is &-
guasiconvex.

Suppose further that w labels a geodesi€invhich starts at {4), that u labels
a geodesic il which starts atd-w and that {a-w) = f(a4-wu). Then for any
X-word which labels a geodesic hwhich starts atd with a-v=a-wuw !, we
have either

1. |v| <|ul—2|w|+6d+4e+2, |v| < |ul+30+2e+2, and2|w| < |u| +3d+
2e+1,or

\ u

— 0.

Q.»

2. |v| < 35+2e+1andly > (4,4 wu)

r\)I

W
In the second case, jti| > 2, leti:= { J 0 and there is a word ‘uwith
|U| <56+ 1 such thaté-wu=&-w(|w| —i)uw(|w| —i:|w]).

Proof. Let v be such arX-word. Thenf(4-v) = (&), sof(&-v(i)) is within € of
f (&) for all integers. Form a geodesic quadrilaterallinwith cornersa;b:=4-v,
¢:=b-wandd:=¢-ul=a-w, picking [b,& and[4,d] so that they are both
labelledw. Split the quadrilateral into two triangles using some g=id|4, €|.

Let m be the number of vertices dh, €, excludingb itself, which correspond
to vertices on[4,b], in other words|(4,€);|. Let X be the vertex orib, ] with
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Figure 4.10: A loopu close toH

d(%,b) = m, so thatx’corresponds to a vertexoh [4,b]. Since[4,b] is a geodesic
and f~1(f(4)) is e-quasiconvex, there exists sorges T such thatf(§) = f(4)
andd(g,y) < e. Thend(f(X), f(b)) =d(f(), f(§)) < d(X,§) <d+e¢. Sincew
labels a geodesic i which starts af (4) = f(b), we therefore haven=d (%, b) =
d(f(X), f(b)) <5+e.

A

Let n be the number of vertices d&, d|, excludingd’itself, which 2-correspond
to a vertex on4, 6]. Then a similar construction to that in the previous parnalgra
shows thah < 26 +¢.

Suppose that no vertex d, & 2-corresponds to a vertex ¢@ d], as in Figure
4.10. Letl be the number of vertices o, b] which chain-correspond only to
vertices or{d, ¢]. By counting corresponding vertices we find that

V|[+1=I4+(m+1)+(n+1). 4.7)

Note that there ar@w| —mor |w| — m+ 1 vertices or{b, €] which 2-correspond

A A

to vertices on[€,d]. Similarly, there argw| —n or |w| — n+ 1 vertices on/4,d|
which correspond to vertices di,d]. Counting vertices again, we see thal
is within 1 of | + (Jw] —m) + (Jw| — n). Combining this with (4.7), we find that

V| —m—n—1=1|ul—2/w|+m+n, solv| =1 Ju] +2(m+n— |w]) +1.

We know thatm+ n < 38+ 2¢, so we can deriver| < |u| — 2|w| + 60+ 4€ + 2.
Also, 2w| > m+nso |v| < |u+m+n+2 < |u|+ 30+ 2¢+ 2. Finally, |v| >
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Figure 4.11: A loopu distant fromH

n-+m+ 1 so we obtain

2wl < |u—|v|+2n+2m+2
= |u—-n+m+1
< |u[+30+2e+1.

All inequalities for the first case of the hypothesis have rmen shown to
be satisfied. It remains to cover the case where at least amexven [b,&] 2-
corresponds to a vertex da dJ, as in Figure 4.11.

All points on [4, b] must now chain-correspond to points [bng] or [4, d] so we
have|v| +1<m+1+n+1 and in particulatv| < 2e + 35+ 1 as required by the
second case.

Note that there is at least onsuch that the vertep = b-w(i) on [b, & corre-
sponds to a vertep on [4, €] which in turn corresponds to a vertgx="a- w(j) on
[4,d] for somej. For any such points, note that=a-w(i) hasf (f) = f(&-w(i)) =
f(b-w(i)), so

i—j| = d

IN AN I
N QO Q9 O
o9 —~ —~ —~
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This implies that

d(a,6) = d(4d)+d(4:¢) —d(aa)
= d(&§)+d&p)
= d(aq)+d(Cp)
— d(a,§)+d(¢b)—d(b,p)
= j+[w i
< |w|+20

Wi = d(f(B),1(e)
~ d(f(8),1(e)
< d@ae),
SO
lu
2 A A
, Lr-dag o,
u
> 5 -8

Since(4,a-wu)aw = (€, )4, we have now shown that the second case applies.

For the last part, les on [b,& andf on [4,d] be the vertices at distanée=
U—;‘J — & from ¢andd respectively, so that they chain-correspond to vertstasd
t’ on[d,¢] at most 3+ 1 apart. We can see now thats, f) < d(§,8) +d(s,t/) +
d(t7,f) <50+ 1 and lettingy’ be a word labelling a geodesic path betwsamdf,
we havea”wu=a-w(|w| —i)u'w(|lw| —i: |w|) as required. O

In particular, we can show that long loops which are far fréw base point in
the target graph of a quasiconvExmap can be “pulled” to shorter loops which are
closer to the base point.
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4.5 1B(30) implies IB()

For torsion free subgroups, Foord demonstrates theIBfoperty for a specific
class of subgroups of word-hyperbolic groups (those sulggbdl where|H : HN
Cg(h)| is finite for all element# in H) by finding a bound on the distance of large
loops from the base point of the coset Cayley graph.

We will take a slightly different approach to this problemfirngt showing that
one only needs to bound the distancesafficiently largeloops, and in the next
section we will provide such a bound.

Proposition 4.5.1. Suppose thdt andl"" are X-graphs, thaf has IB@k+ 35+ 1)
with constant M for some k 26, is &-vertex-hyperbolic and has base po&tthat
f:I — " is an X-map and that f(f(&)) is e-quasiconvex.

If I'" has IB(%ES) with constant K then it has IB(k) with constant& max{M +
k—8,K+k—3,e+ K3 4 21,

If additionally {I","'} has IB€6), then it has IB(K).

Proof. We start by making the observation that sifichas IB(X + 30+ 1) with
constantM, it must also have IB(2-+ 1) with constanivl.

Suppose for a contradicton thiat does not have IB) with constant’. Then
there exist verticeg andy which are of distance at leak! from Z and such that
Bk(X) is not isomorphic td(y). Letw label a geodesic iR’ connectingzto X and
letb := &-w so thatf (b) = X. Pick¢so thatf (¢) = ¥ in a similar way.

Notice thatd(4,b) = d(2,%) > K’ > M and similarlyd(&,&) > M. Sincel has
IB(2k + 1) with constantV, the &+ 1-balls around andcare ball isomorphic to
Bo1(I"). Thenf restricts to ball morphisms fromy, 1 () to bothByy.1(X) and
Bok+1(Y)-

By Proposition 4.4.1, there is a wotdof length at most R+ 1 which labels
a loop at the centre of one ball and not the other, and thatdaompe assumed to
label a geodesic which starts at the centr&gf. 1 (I").

Now, Lemma 4.4.2 applies. Sincéw2 > 2K’ > |u| + 2¢ + 30+ 1, we must
be in the second case of that lemma. In the case wjere 25, leti:= 0 and
U :=u. Otherwiselu| > 25 and letu’ be the word given by the final part of Lemma
4.4.2; in this case let:= L%J — 0. In either casa/ satisfies|u/| <50+ 1 and
a-wu=a-w(|w| —i)uw(|w| —i: |w|), andi satisfies <k— 9.
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Nowd(z,y) > d(2y) —i > K’ —k+38> K wherey = y-w(jw| —i : |w|)"1, so
Bgé()?’) is X-ball isomorphic tdéga(r’) andu’ also labels a loop at. Now

§-w(w| —i: w) T ruw(w i w]) =y -uw(w] i [w)
= Y -w(w| =i |w)
=V

sov:=w(|w| —i:|w])~tu'w(jw| —i: |w]) labels a loop ay.”

Notice thatv] < 2i +55+1 < 2k+ 38+ 1 sob - is contained inside thek2-
35+ 1-ball aroundd and¢— is contained inside thek2- 33+ 1-ball around:” As
I has IB(X+ 30+ 1) andb andc are sufficiently far froma,” these balls are ball
isomorphic. Sincd®-u= b-v, this implies that“u= &-vand so

(@}

gou = f(c-u)

= f(

A~

=Y

-V)

< (@}

which contradicts our assumption thatlid not label a loop ay.”In other words,
Bk(X) is isomorphic tdBy(y) andl” has IBk) with constanK’, as required.

It remains to prove the last part. {f,[’} does not have IB{ thenBy(I") is not
isomorphic toBy(I"). Pick a vertexxe I’ with d(%,2) > K/, letw label a geodesic
path inl’" which connectg to X and letb := &-w. Then thek-balls aroundb and
X are ball isomorphic to the canonical balls in their graphd Bg(X) is not ball
isomorphic toBy(b).

Sincel” has IB(X+ 1) with constani, the &+ 1-ball aroundb is ball isomor-
phic toBy,1(I). Thenf restricts to a ball morphism fromy,, 1 (I") to By 1(X).

Proposition 4.4.1 provides us with a non-emptyword u of length at most
2k + 1 which labels a geodesic startingaand a loop ak.” As before, 2w| >
|u|+2e+3d+1, so the second case of Lemma 4.4.2 applies. Once againsid,
leti := 0 andu’ := u. Otherwisgu| > 2dand letu’ be the word given by the final part
of Lemma 4.4.2; in this case let= % — 0. In either case/ satisfiegu’| <56+ 1
andd-wu=a-w(|w| —i)uw(|jw| —i: |w|), andi satisfied < k—d.

Notice thaid (4, b') > K’ —i > M whereb’ := &-w(|w|—i), andd(2,x) > K’ —i >
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K wherex := 2-w(|w| —i). In particular, the38-balls around andx are ball
isomorphic, and sa’ labels a loop aby. But then

b-u = a-wu
= a-w(w| —iu'w(|w|—i:|w])
= b-uw(w—i:|w|)
= b w(lw| =i |w))
= b,

sou labels a loop ab. This is a contradiction, sBy () is ball isomorphic tdBy(b)
and{I",I""} has IBK) as required to prove the second statement. |

4.6 Torsion-free Subgroups have GIBg)

Foord proved in Theorem 4.3.1.1 of [9] that torsion free sobgs of word-hyperbolic
groups have GIB) for anyk > 0 but gave no bound on the constant. It is the aim
of this section to demonstrate that said bound ®({k+ €) using some of the work

in Chapter 2.

In order to find a bound on the constant for GtB(we only need to exhibit a
constant for GIB%E')) by Proposition 4.5.1. We do this below, after stating a ltesu
which will be used to do so. The reader should recap the cotssteom Section
2.2.

The following is a reasonably well known general result;ghgicular statement
here is a restatement of Proposition 2.3 of [3].

Proposition 4.6.1.Let G=< X > be ad-hyperbolic group. If u and v are words
which are conjugate in G then there exists a word x such thatix=g v, and

IX| < |u| + V| + Q%+ 43.

The statement in [3] uses a slightly different expressiaritie constant, but the
proof is sufficient to prove the statement here. Now we canenooxo our result.

Proposition 4.6.2. Suppose that G i8-hyperbolic with respect to a generating set
X, and that H is ang-quasiconvex torsion-free subgroup of G. Then H has %&B(
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with constant K= 100M Q25+ 2.

Proof. Let I' be the Cayley graph d& with respect toX and letl” be the coset
Cayley graph oH with respect tdG. Let d be the vertex representirdyin I’ and
suppose that some wowdlabels a geodesic iiY connectingato some vertex and
thatBs;(%) is not isomorphic tégé(r).

Proposition 4.4.1 gives us a wordabelling a geodesic ifi of length at most
56+ 1 which labels a loop at but not at the centre (ﬁgé(r), sou #g 1. Applying

< M”’# < K, in which case we are done,

Lemma 4.4.2 we see that eitroya, X)
or [wuw 1| < 35+ 2¢.

By Proposition 4.6.1, there is a wovd such thatv/'uw —! =g wuw* and

W] < Jul 4 jwuw g+ Q%+ 48
< 125+2e+Q%+1.
Let z=c W 1w be the label of a geodesic I, and note thaz € Cg(u). By
Corollary 2.3.19 (withv = u), we know thaz =g u't for somei and someX-wordt
of length at most BIQ?|u| + 163 < 64MQ?3. Then

Hw = Hwz
= Hwu't
= Hwt,
o)
d(H,HwW) < |wW/|+[t]
< 125+2e4+ Q%+ 1+64MQ%
< 100MQ?5+ 2,
as required. |

It is interesting to note that the factor ®above does not depend difalthough
the leading constant does rather heavily).
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Figure 4.12: Geodesic triangle constructed outsidaKofl(B)

4.7 Geodesic Path Labels Under IB

In this section, we will give some results which show thatjost balls but geodesics
in anX-graph behave in a homogeneous way when they are relatiistgntd from
the base point, assuming I%I).

Proposition 4.7.1. Supposd is an X-graph with base poirﬁ which isA-vertex-
hyperbolic. Suppose th&thas IBQ + 1) with constant K, that w labels a geodesic
that lies entirely outside of;af)), and thaty is any other path labelled by w and
lying entirely outside of g(b). Thenyis a geodesic.

Proof. Suppose the conclusion is false, and suppose the geodaisicléibels starts
from p andy starts fromg” Letw = wyawe, wherews is the longest subword which
does label a geodesic startinggatiida is a word of length 1. Letv} be a the label
of a geodesic such thgt W; = §-w;a, so that we must havev;| < |wy].

Then we have a geodesic triangle with corregi§- W, andd-w) and the obvious
sides connecting them. Let:= |wy|, and for 0<i <n, let j := §-w(i) and
Gi :=G-wy(i). Let pn:= §-wy andap := §-w). This is illustrated in Figure 4.12.

Now, since the triangle above 4sthin, we can pick, for each a wordh; la-
belling a path fromp"andgq; with |hj| < A. Now we find that for 0< i < n, each
quadrilateral with cornerp;,"pit-1, Gi, Git1 lies within A+ 1 of j;, hence it is con-
tained inside the\ + 1-ball aroundq®w(i), which is isomorphic to thé + 1-ball
aroundp™w(i) (since this vertex is at a distance of at lelddtom H).
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Using a simple induction, we haye- Ww;a = p-w}. But this is a clear contra-
diction, sincew;al > |wj|, andw;a labels a geodesic path startingmatHence no
suchw; existed, andv labels a geodesic startingat " O

By substituting the point 1 in the group Cayley graph foin the above argu-
ment, we derive the following similar result:

Proposition 4.7.2. Suppose that G is a finitely generated group, that H is a sub-
group with coset Cayley gradf which isA-vertex-hyperbolic and has GIB{+ 1)

with constant K. If w is a shortest word representing someigrelement then any
path in"" labelled by w which lies outside okBH ) is a geodesic.

It's a well-known result that in hyperbolic spaces, quasdgsic paths lie close
to geodesic paths, so that if geodesic-labelling words en@ayley graph label
geodesics in the coset Cayley graph when they lie outsidda@ceadius, the same
must be true of quasigeodesics (although the radius iniguasight be larger).

We see the emergence of one “bad” ball, centread &t the coset Cayley graph.

4.8 Conclusion and Possible Further Work

This chapter has demonstrated that in the setting-gfaphs, ark-map with qua-
siconvexf ~1(f(4)) preserves a variety of properties.

In Section 4.3 it was pointed out that at least some of thess e not true
for general graphs, but it may be that they generalise to sjeeific classes, like
regular graphs (ie. those graphs in which every vertex hasdime valency). One
expects that akkregular graph ought to admit edge labels and directionsatoenit
into anX-graph, and that labelling ought to lift through a graph nism so that
hyperbolicity would be preserved in the case kfr@gular graphs. It would seem
more difficult to do this in a way which would preserve (lakdll isomorphisms of
balls, however.

Similarly, one might ask whether some of the results can pamdted somehow
to general hyperbolic spaces. If the spaces endeptaphs in a nice way, this
would indeed seem to be the case. What about more generals$pac
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Chapter 5

Hyperbolic Groups are 14-hyperbolic

The constant of hyperbolicity of a word-hyperbolic grouglependent on its gen-
erating set. For example, a free group, Bay:< a > on a free generating set has a
vertex hyperbolicity constant of 0. However introducingdundant generator will
increase this constant, for exampie=< a,b|a’> = b > has vertex hyperbolicity
constant of 1. The purpose of this chapter is to investidetéawer bound mig(G)
of this constant for a given group.

It turns out that there is a single small such bound that apgh all word-
hyperbolic groups. Thus, the value of rxi®) partitions word-hyperbolic groups
into a small number of classes. The bounds given here arly it to be the
smallest due to the naive way in which they are derived, hewits the existence
of such a bound that is interesting.

5.1 Thinness of Quasigeodesic Triangles

We first show that if we are working in a geodesic metric spaeehich all geodesic
triangles ared-vertex-thin and we are given a triangle whose sides arélai)-
quasigeodesics, then the trianglé\isertex-thin for some\ depending only ork
andd.

It is well known that in hyperbolic spaces, quasigeodesithgpdie close to
geodesic paths; let us briefly investigate the cas€ldf)-quasigeodesics in par-
ticular.

109
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p

x>

* A~
> y
a G

Figure 5.1:(1, k)-quasigeodesics lie close to geodesics

Lemma 5.1.1. Suppose thaf is a &-vertex-hyperbolic graph, thatis a (1,k)-
quasigeodesic il joining the verticexX andy, and thata is a geodesic joining
andy.

Then for every vertep ony, there exists a verte§ ona such that dp,§) <
K51 +8and dx,6) < dy(% P) < d(%.G) + 35

Proof. Pick geodesics$p, X and [P, V], and define a geodesic triangle using these
anda, as in Figure 5.1. Lem be the meeting point ofp,X]. Thenm must be of
distance at mo§§ from p, since

i d(p.%) +d(p.9) — (¥
dpm = 9BX (I; ) —d(xy)
- 2
_ dv(f(, A) - d(f(, A)

2
Kk
< —.
- 2

If mlies on a vertex, Ietﬁ’ =m, and if not, lete be the edge containingand let
g be the vertex oethat is closest ta. ‘Either way,d((i’, m) < %

Let § be the vertex o which corresponds tq. Then

d(p,m) +d(m ) +d(d.0)
Kilis
2 2 7

d(p,q)

IN

IN
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and
d(%§) < d(xp)
S dy()zvp)
< d(X,p)+k
< dR.q)+d(d,p)+k
- 3k+1
< dR g2
2
as required. |

When the pathg anda are understood, we will refer gpii Lemma 5.1.1 as the
partner of p.

Lemma5.1.2.Supposé is ad-vertex-hyperbolic graph. Let k be a positive integer,
letX,y andz be vertices il and letayy, oy, anday; be(1,k)-quasigeodesics joining
X toy,y toz andX to z respectively to form a triangle.

Thena is 3k+ 35+ 2-vertex-thin.

Proof. Pick geodesic&, V], [V, 2] and[X, Z] connecting;y andZ to form a geodesic
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trianglef3. Let ayy, ay, anday, be the meeting points amand letby, by, andby; be
the meeting points ofd. See Figure 5.2.

) Letpe Olxy be a vertex corresponding tps"0xz, S0dq,, (X, §) = da,, (X, p). Let

P € [X,y] andq € [X, Z be their respective partners, as in Lemma5.1.1. By Lemma
. I A2 k+1

5.1.1, the distanced(p, p’) andd(q,q') are less than or equal &t “%=.

By relabelling the corners of the triangle, any pair of cep@nding verticep ~
andd'can be made to fit the above constructiord (i, p') > d(%,¢) then swapping
y andZ and p andd reverses the inquality, so it may be assumed uﬁﬁ,tf)’) <

d(x,q).

Supposel(

% p) < d(x, byy), and letp” be the point ori%, 2] corresponding to
P, sod(fJ’, ﬁ”) <d

. Using the second part of Lemma 5.1.1, we have

d(d.p") = [d(%q)—d&p")

asdy,,(X,0) = da,, (X, p). Application of the triangle inequality gives

d(p,p) +d(p, p") +d(p",q) +d(d,G)
k+1 3k+1 k+1
<T+6)+6+ > +< > —|—6)

_ 5k7+3+36g3k+36+2,

d(p,q)

IN

IN

as required.

It remains to consider the case where bk, p') andd (X, ) are strictly larger
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thand(X, bxy). Note thatdy, (X, p) = da,,(X, ) < dq,, (X axz). Then

A

o
—~
>
<o
N—

d ()27 be)

(VAN
o
Q
x
<
—~
>
2
NI

2
= d(X byy) +k,

VAN

50d(P',bey) = d(% P') —d(% byy) < kandd(p,bey) < d(B, ') +d(P/, byy) < 551 +
8+k =3 15 By symmetryd(g, by,) < 3 + S also, so we have

d(ﬁ:d) S d(f’abxy)‘i‘d(bxya bxz)"‘d(bxz,d)

3K+1 3K+ 1
< <T++6)+(6+1)+<T++6)
— 3kt3012

5.2 The Effect of Corners not on Vertices

We will now investigate the result of allowing corners of aodesic triangle to
reside on an edge rather than a vertex. If the reader has winlérbelieving that
a result like the following holds, they are advised to simghyp this section; it is
provided only for completeness.

That vertex-hyperbolicity implies hyperbolicity is not am result; Section 4.2
of [7] gives a similar result relating the thinness of sHext-geodesic triangles and
the bigon constant (simply stated, the thinness of geodeésigles with corners on
vertices for which one side has length at most 1) to the hygeity of the space.
Applying that result directly here would give us the val@ets3. The value 8+ 6
given here is not claimed to be minimal, but the use of twoespondances (which
results in the &) does appear to be necessary.
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Figure 5.3: Removing loops from corners (left), and the fiede of Proposition
5.2.1 (right)

Proposition 5.2.1. Suppose that x, y and z are points in a Cayley graph and that
Xy, [,Z and [x,Z] are geodesics forming a geodesic triangle If the vertex
thinness constant of the spaceithena is 26+ 6-thin.

Proof. Itis sufficient to prove any two corresponding points lie aistid+ 6 apart.
Assume the labels are picked so that a ppion [x,y| corresponds to a poilton
(X, 7). Letayy, ax; anday, be the meeting points dw, Y|, [,z and[y, z] respectively.

If Xis a vertex, letx,= X; = x; if it lies on an edgee then letxy be the vertex
on e which lies on[x,y] andx; be the vertex ore which lies on[x, Z (these are
uniquely defined since does not lie on a vertex). Defing étc. in a similar way.
By swappingz andy as necessary, it can be assumed &}, x) < %

Suppose that, = X, # X, sox lies on aloop of length 1, as in the left hand side of
Figure 5.3. Notice thad(x,Xy) = d(x,X;) = % or one of the sides of the triangle was
not geodesic. Ip lies betweerx andxy thend(p,q) <1 < 23+ 6 as required. If
not, define a new triangle with cornesg y, andz and edge$X, Y], [%, 2], andly, Z.
Sinced(x, p) —d(x,q) = d(Xy, p) — d(X%y,q), the pointsp andq also correspond in
the new triangle, sa can be replaced by this new triangle without affecting the
arguments below. Thus, it may be assumed that4i, thenx; # Xy .
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Note that ifd(p,x) < 1 thend(p,q) <2 < 23+ 6, SO we can assume
d(p,x) > 1. (5.1)

Our aim is to produce a second geodesic triafighdich lies close tm and whose
corners lie on vertices, and then use correspondanc@gorbound the distance
betweenp andg.

First, suppose that(Xy, ) = d(Xy,Xz) + d(Xz, 2), S0 thatBy, = [Xy, %] [%z, % is
a geodesic, as in the right hand side of Figure 5.3.x et Xy, Iet;}’ =Yy, and let
Z =7%. Form a geodesic triang[@ with cornersx, 9’ andz using geodesic paths

Bxy = Xy, Yx, Bxz andByz = [Yx, %] (pick any geodesic for the latter). Liat, andby;
be the meeting points gy, andpx, respectively.

Note that

A A

d(%y, Z) +d (%, ¥x) — d(Z Yx)

(d(x, %) + d(X,Ziy)) + (A% Yx) —d(x%y)) — d(Z, Yx)

d(x %) +d(x,¥x) — d(Z )%x)

(d(x,2) - d(Z,ZZ“x)) +(d(x,y) —d(y,¥))
d(y,2) +d(z %) f d(y, Yx)

d(x, axy) — d(Z,2 Z) —d(y;Yx)

d(X, axy) — 2.

d(%y,bxy) =

vV

v

Let p be a closest vertex tp on [Xy, yx] with d(Xy, bxy) > d(Xy, p) and letq’be a
closest vertex to on [Xz, Y] with d(Xy, byz) > d(Xy, §).

Suppose thad(Xy, p) > d(Xy, byy), So thatp does not correspond to any point on
Bxzin B. The same must be true glasd(Xy,q) = d(Xy, p) + 2d(x,%y) > d(Xy, p). If
the meeting pointbyy andby;, lie on vertices p’andg must now be equal tbyy and
by, respectively. If notd (X, p) = d(Xy, byy) — 2 andd (X, §) = d(Xy, bx) — 3.
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Now d(%y, p) = d(Xy,q), sop corresponds tq ih . But then

d(p,q)

IN

d(p,p) +d(p,q) +d(G,q)
d(Xy, p) —d(Xy, P) +d+d(Xy,q) — d(X,q)
. 1 . 1

IN

IN

IN

1 1
242 48+242
58+ 2+ 3
5+5.

IN

The remaining case in this construction is tdafy, p) < d(Xy, byy). If so, letq
be the vertex oy, corresponding t@.If ¢ = ¢ then

d(p,q) < d(p,p)+d(p,G)+d(Gq)
< 5+1

If not, d(Xy, p) — 1 < d(Xy, p) — 2d(x,Xy) = d(Xy,q) implies thatd(Xy,q) +1 =
d(%,q), S0

d(p,a) < d(p,p)+d(p,q)+d(q,6) +d(4,q)
< 042

Therefore if(Xy, %] %z, %] is a geodesic thedi(p,q) < 8+ 5 < 256+ 6 as required.

If d(x,%y) < % thend(Xy, Z) = d(%z, %) + 1, SO[Xy, %] [%z, ] must be a geodesic,
as if not we can find a patly, Xy|[Xy, x| which is shorter than the path following the
geodesidx, . If d(x,%) = 3 and[%, X%][X, V] is a geodesic, swapandz and we
can once again use the above reasoning.

Thus it remains to consider the case where neityex;| Xz, 2] nor Xz, %] [Xy, Vx|
are geodesics. In particulalyy, Xy) = d(Yx, %) andd(x,Xy) = %

First construct a geodesic triangjavith sidesywy := [Xy, Xz] andywy := [Xy, x|
andyxy := [%, Yx], where for the latter path we take any geodesic. Construst@ns
geodesic trianglg with sidesPByy := iy, Bxz i= [%, 2 and By, := [Yx, 2], again
picking any geodesic for the latter path. See Figure 5.4 blygtoy, andby, be the
meeting points on the sides pf
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Figure 5.4: The second case of Proposition 5.2.1

Now

d(%e, Yx) + d(%z, %) — d(¥x, &)

) i (d(x,2) —3) —d(¥x %)

(d(xy) —d(y,¥)) f(d(x, 2)—d(z%))
d(y,2) +d(y,¥x) id(Z, %)

- ~1
2

d(X,axy) —3

. 5
= d(Xzaxy) — >

d()'(\b bxz) —

NI=

(d(x ¥x) —

v

v

Let p be the closest vertex tp on [Xy,Yx] such thatd(%,bx,) > d(%, p) and
let § be the closest vertex ®on [X;, %] such thad (X, bx,) > d(Xy, §) (picking the
closest tax if there are two).

We have assumed in equation (5.1) tgb,x) > 1. Thenp'corresponds iy to
a vertexp’ on [%, ] with d(Xy, P) = d(Xz, ') = d(%,d), S0P must 2-correspond to
g in the trianglesy andp. Our aim is to boundl(p, p) = d(q,q).
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If d(Xy, p) > d(Xz, byy) then

d(p7 F'j) = d()ew p) - d()zy, F'j)
" N 1
< d(Xy, axy) — (d(Xy, bxz) — é)
< 3,

and otherwisel(p, p) < % Thusd(p,q) <d(p,p)+d(p,q) +d(q,q) <20+ 6 and
we are done. o

5.3 A Change of Generating Set

In this section, we will suppose we are given some presemt&i=<X'|R>, and
that the Cayley graph of this presentation has vertex tlssoenstand > 1.

Let X = X"U{$} where $=¢ 1, and lef” be the Cayley graph @ with respect
to X. Any shortest path label il between two elements @ cannot involve $,
so is also a shortest path label in the original Cayley gragitvéen the same two
elements of5, and vice versa. Thus;X|R,$> is another presentation f@ with
vertex thinness constadt

Pick somek € N, and letY = {g € G: 1 < |g|x < k}. Our aim will be to find a
bound on the thinness of triangles in the Cayley graplinder the new generating
setY.

For each elemerde Y, pick anyX-word of lengthk such thatv anda represent
the same element @. The existence of such a word is guaranteed by the presence
of the generator $: if the shortest word does not have a lesfdthpad it by adding
$ anywhere in the word until it does. Extend this to a map ofdsdr: Y* — (X*1)*
(ignoring any cancellation).

If wis a word in either generating set, lgt| be its length, and for a group
element (perhaps represented by AAword or aY-word), let|g|x = dr(1,g) and

‘g‘Y - dr’(17 g)
Lemma 5.3.1.1f w € Y* labels a geodesic it then| f(w)| < |f(w)|x +k—1. In
particular, f(w) labels a(1,k — 1)-quasigeodesic if.

Proof. If | f(w)|x <k(|w|—1) thenf(w) can be represented by= |w| — 1 wordsw
of length at mosk, each of which correspond to sompec Y, hencew =gy ...Yn.
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X

y $

Figure 5.5: A triangle i’ mapped intd”

But thenw does not label a geodesic sinte: |w|.

Thus| f(w)|x > k(|w| — 1), or since this is an integer equation, we can rearrange
itto |f(w)| =kjw| <|f(w)|x +k—1. Suppose now thdt(w) labels a patty in I
starting ata’and ending ab so that| f (w)| = dy(&,b) > d(&,b) = |f(w)|x. Given
any two points, d € ywe find (possibly by swappingandd) that

dy(c,d) = dy(&b)—dy(ac)—dy(d,b)
< d(4,b)+k—1-d(4,.c)—d(d,b)
< d(c,d)+k—1,

where the last line is due to the triangle inequality. But poyvdefinitionyis a
(1,k— 1)-quasigeodesic and we are done. O

Proposition 5.3.2.With the hypothesis given at the start of this sectidig {
vertex-thin.

3k—2433 | _
K

Proof. Letx, y andZ be vertices i/, and let< y andZbe the vertices it which
represent to the same group elements. Pick geodesics ¢'m‘rm§!c)7’ andZ in
I’ to form a geodesic triangla, and note that any vertex along these geodesics
corresponds to a vertex In If w was the label on a side of, thenf(w') labels a
path which passes through each of these points, anfllika- 1)-quasigeodesic by
Lemma 5.3.1. LeP be the triangle i labelled by these paths.

By Lemma 5.1.2[3 is 3k — 2+ 3d-thin. Since corresponding vertices arare
guaranteed to map to corresponding verticeB @his is ensured by the introduction
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of $: if dy (X, p) = n thendg(X, p) = kn), corresponding vertices am are within
Pkik{ﬂ of each other and we are done. O

Theorem 5.3.3. All word-hyperbolic groups have a presentation with regpec
which their Cayley graph id-vertex-hyperbolic, and4-hyperbolic.

Proof. Using the construction in Proposition 5.3.2 with- 30+ 1, we get a presen-
tation whose vertex thinness is constant is 4, and by Propo&i.2.1, all geodesic
triangles in the Cayley graph for this presentation mustdéhin. ]

5.4 Conclusion and Possible Further Work

In this chapter we have seen that all word-hyperbolic gragmit a presentation
with respect to which their Cayley graph is 4-vertex-hypéid It is well known
that a graph is O-hyperbolic if and only if it is a tree; in atleords if and only if
the group is free.

It is reasonable to ask, then, which groups admit a 1-vernygerbolic Cayley
graph? It may be that this is any word-hyperbolic group, buiot, is there any
other identifying property?
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