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ABSTRACT

To survive in an ever increasing global and competitive marketplace, organisations
are forging strategic alliances to gain a competitive advantage over their rivals.
Consequently, it is now recognised that it is not sufficient to look at organisations in
isolation, but view them in the wider context of the supply chain. In order to design
arid manage supply chains it is necessary to understand and predict the behaviour of
such systems.

The ability to perform detailed studies of dynamic behaviour has made discrete event
simulation (DES) an invaluable tool in the design and analysis of manufacturing
systems. DES has been used to model individual stages of a supply chain, but rarely
has it been applied comprehensively across the entire chain. The multi-faceted nature
of supply chains makes the creation of a single model that represents all aspects of the
chain difficult. A compositional framework, termed HerMIS (Heterogeneous Model
Integration and Simulation), is proposed that allows pieces of a supply chain to not
only be studied in isolation, but in the context of the other parts as well.

Three requirements are identified for the development of HerMIS. These are: (1) to
support a compositional approach so as to allow multi-facetted modelling, (2) to
function in a distributed environment where models and information about them are
distributed at different locations amongst various organisations, and (3) to provide an
execution mechanism that allows the composite model to be simulated efficiently.

A class based taxonomy of component models and their interaction is conceived that
forms the basis of a representation scheme for composite modelling. An agent based
paradigm that employs a collection of synthesis_agents and model_agents is devised
to support the distributed operation of the framework. The synthesis_agents function
as sources of knowledge for synthesising composite models and are used in
conjunction with an interactive blackboard based system to guide the user in creating
composite models. Each of the model_agents incorporate a discrete event model of a
supply chain component, arid supports the distributed simulation of the composite
model.

Finally, a parallel discrete event simulation algorithm is proposed that enables the
composite model to be simulated on a network of computer workstations. The
algorithm is based on the optimistic PDES approach and takes into consideration
some of the operating characteristics of a composite supply chain model.
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Introduction

CHAPTER 1

Introduction

In an increasingly global and competitive market place, the notion of supply chain and its

management has been the focus of many researchers and practitioners alike. In a fast

changing environment organisations are focusing on their core competencies and forging

strategic alliances that share knowledge and resources to gain a competitive advantage

and retain flexibility over their competitors.

A number of terms such as extended enterprise, virtual enterprises [Bleecker 94] and

symbiotic networks [Alter 93] have been used to describe these integrated enterprises. In

order to get the benefit of such integrated enterprises it is clearly not enough to optimise

one part of the supply chain but to look at it as a whole. In addition to understanding the

components of the system, it is important to understand the relationship between the

various components and the behaviour that consequently emerges.

The developments in network technologies such as the internet and the use of EDT has

enabled the creation of inter-organisational systems that support these emerging close

relationships between organisations. However, the primary focus has been on

implementing transaction systems, such as order, invoice, and payment systems [Turner

93]. In addition to integrating transaction processes across the supply chain, there is also
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a need for integrated decision support systems that help to plan and predict the

performance of the system.

Discrete event simulation (DES) has been used as a tool to analyse the performance of

existing and proposed manufacturing systems for a number of years now. It has been

used to support decision making at various levels from strategic analysis of a proposed

plant to aiding day to day operations, for instance, in a scheduling system. The ability to

create detailed models that closely conform in structure, dynamic and stochastic

behaviour, to the manufacturing system being modelled, has made DES an attractive

technique for what - if analysis. However, DES has largely been restricted to modelling

individual pieces, such as a single production facility of a supply chain and is seldom

employed to model the entire supply chain [Geller 95]. Even in cases where an attempt

has been made to model the supply chain more comprehensively, the modelling effort

can often be described as 'modelling in the small', a term coined by Zeigler [Zeigler 84].

Often a model is created with the purpose of aiding a given decision objective. For

instance, the objective may be to study the potential capacity of a proposed plant. Once

this objective is met the model is viewed as having served its purpose and is often

discarded. Even in the case of a DES model developed in the context of a scheduling

system, where a model is used over a long period of time, it is still generally confined to

this application. If for instance the scheduling problem is to be studied at a supply chain

level instead of at a local level, then typically, a new model is created from scratch rather

than integrating several local models. Ulgen and Gunal [Ulgen 98] estimate that seventy

2



Introduction

to eighty percent of simulation models developed in the automobile industry fall into this

category of 'modelling in the small'.

The nature of supply chain management is such that a multiplicity of objectives needs to

be addressed. DeKok and Bertrand [DeKok 95] use the notion of a hypothetical supply

chain manager and production manager to illustrate the division in responsibility and

consequently the objectives in controlling the supply chain. The supply chain manager is

concerned with objectives at a global (supply chain wide) level. This may include

performance measures, such as lead-times of individual production facilities in the

supply chain or inventory levels between production facilities etc. His aim is to improve

the overall performance of the supply chain. On the other hand, the production manager

is concerned with objectives at a more local level. His objectives are to take into

consideration local constraints such as limited capacity andlor limited inventory storage

etc. and still meet his obligation to his customers. In addition, within a particular entity

of the supply chain, decision-making objectives may vary based on the management

level of the decision-maker. For instance at a corporate level the objectives may deal

with capacity, production rate etc, while at a shop floor level one may be concerned with

sequencing and scheduling on an hour by hour basis. This existence of a multiplicity of

objectives in the management and control of a system needs to be addressed in the

development of a modelling methodology that supports decision making. Zeigler

[Zeigler 84] uses the term multifaceted modelling to describe such a methodology.

3
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Two general approaches are used in the design of manufacturing systems: aggregate

refinement and decomposition [Heim 94]. Aggregate refinement attempts to model a

system using a single model that incorporates details of all aspects of the systems. Such

models allow a more holistic view of the system in consideration. However, when

dealing with large systems one is restricted to building models that are fairly coarse (not

detailed, rough cut), since attempting to increase the detail of representation of the

system can result in large and unwieldy models that are hard to maintain and verify. The

decomposition approach, on the other hand, is based on the 'divide and conquer'

strategy. Instead of modelling all aspects of the system in a single model, the system is

partitioned into a number of independent components each of which are modelled

separately. The decomposition approach simplifies building models of complex systems.

However, treating the system as being composed of independent units prevents a more

'holistic' analysis. Creating models by decomposition allows one to perform detailed

analysis of parts of a system in a manageable fashion, but ignores potentially vital

interactions between the components of a system.

Both the approaches viz, aggregation refinement and modelling by decomposition are

useful but not sufficient. In the context of supply chain modelling, an aggregation

refinement approach may be used to create a coarse model of the supply chain, whereas

the decomposition approach may be used to model individual manufacturing facilities at

a more detailed level. However, quite often there is a need for a model that is detailed but

still takes into account the broader context in which it operates. In addition, creating new

models from scratch for every objective is wasteful. Instead, a compositional approach

that reuses models and allows models representing the various facets of the system to be

4
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simulated either in isolation or together, may be more appropriate. In this way

knowledge embedded in previously constructed models can be reused and new models

tailored from existing ones.

A multifaceted modelling methodology needs to support modelling at two levels, viz.

model building and composite model building. At the model building level the

methodology needs to be based on sound modelling and software principles. This would

allow for good design, enable easy model development, documentation, reuse etc. In

addition, models need to be based on a modular design that incorporates a well defined

interface so as to allow the inclusion of the model in a model composite and thus support

multifaceted modelling. At the composite model building level the methodology needs to

support an integrated framework that allows the management of the models that

represent the various facets of the system. The framework needs to provide a means of

storing, classifying and retrieving models, and a mechanism for synthesising composite

models from them. Once created, the composite model needs to be simulated to satisfy

the objectives of the modelling exercise. Thus, the framework needs to include a means

of simulating the integrated model.

A number of modelling formalisms, worldviews, frameworks, and tools currently exist.

However, no single formalismltool satisfies all users [Goble 91] [Hooper 86]. Due to a

combination of conceptual ease, cost, skill etc., modellers select appropriate formalisms!

tools to build their models. This thesis deals with developing a framework that supports

multifaceted modelling at the composite model building level by coupling together

models built using existing model building formalisms and tools.

5
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1.1 Objectives

The primary objective of this thesis is to develop a multifaceted discrete event modelling

framework, based on a compositional approach, for the modelling of supply chains. In

order to achieve this the following objectives also need to be met.

1. Analyse and identify the fundamental concepts and components required for the

framework.

2. Review literature to evaluate how the required concepts and components have been

applied.

3. Develop concepts, structures, and relationships of a framework that can be used to

aid multifaceted modelling of supply chains.

4. Develop a mechanism to simulate the composite model created by the framework.

1.2 Methodology

We employ a 'Phenomenological, descriptive-Interpretive' approach [Galliers 87] in the

design of the modelling framework.

The field of study is reviewed in breadth to identify the various techniques applied to

solve the design problem. The modelling framework is then developed by integrating and

6
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synthesising the various approaches to arrive at a novel approach that satisfies the

objective of the research.

1.3 Chapter plan

The thesis is composed of seven chapters. Chapter 2 begins by reviewing the area of

discrete event simulation. This is followed by a review of the type of supply chain

models found in the literature. Finally, a set of broad requirements for the modelling

framework is identified.

Chapter 3 and Chapter 4 review concepts found in the literature that are relevant to the

requirements identified in the previous chapter. Chapter 3 reports how a number of

researchers have tackled issues relating to composite modelling. Modularity, coupling

schemes and the DEVS methodology [Zeigler 84] are some of the items described in this

chapter. Chapter 4 reviews the area of parallel discrete event simulation (PDES). A

number of algorithms are critically reviewed in this chapter.

Chapter 5 and Chapter 6 describe a compositional modelling framework for the

modelling of supply chains. Chapter 5 presents aspects relating to the building of a

composite model. In Chapter 6 the development of a mechanism for simulating the

composite model is described. A novel PDES algorithm is presented in this regard and a

mathematical proof of validity is included.

7
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Chapter 7 provides a summary of the work reported in the thesis and conclusions are

drawn. Finally, a few suggestions for future work are expressed.



A review of discrete event simulation and supply chain modelling

CHAPTER 2

A review of discrete event simulation and supply chain

modelling

This chapter begins by presenting a review of discrete event simulation in general and its

application in modelling manufacturing systems in particular. The objective here is to

introduce basic concepts and terminology and provide an overview of simulation

tecimiques currently used. This is followed by a review of various attempts in the

literature to model supply chains.

2.1 The need for models

The unceasing quest for knowledge and the desire to control one's destiny has been a

fundamental characteristic of mankind throughout their history. The ability to create

models of the world around us and use these has been an important part of this

endeavour. Rosenbiuth and Wiener [Rosenbiuth 45] substantiate the importance of model

building by saying:

"No substantial part of the universe is so simple that it can be grasped and controlled

without abstraction. Abstraction consists in replacing the part of the universe under

9
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consideration by a model of similar but simpler structure. Models are thus a central

necessity of scientfI c procedure."

A number of definitions of models exist in the literature. Minsky [Minsky 86] defines

models quite simply as: "any structure that a person can use to simulate or anticipate the

behaviour of something else". He considers models, in particular 'mental models', as

embodiment of knowledge. For the discussion here a definition of models provided by

Pidd [Pidd 94] for use in the context of management systems is used.

"A model is an external and explicit representation of part of reality as seen by the

people who wish to use that model to understand, to change, to manage and to control

that part of reality."

Models can take a multitude of forms. For instance, models could be mental models ( as

described by Minsky earlier) or physical models (scale models) as in the case of aircraft

wind tunnel models or mathematical models such as a differential equation that models

the behaviour of a chemical reaction or logical models where the behaviour of a system

is described by a set of logical rules. Typically, these rules are encoded on a computer

and simulated. Naylor et al. define simulation as: "a numerical technique for conducting

experiments on a digital computer, which involves certain types of mathematical and

logical models".

10
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Computer simulation models can be classified in several ways [Rubinstein 98]:

1. Static versus Dynamic Models: Static models are those that do not evolve over time.

In contrast, dynamic models represent the behaviour of systems over time.

2. Deterministic versus Stochastic Models: Models that incorporate at least a single

random variable in the representation of the model are termed stochastic models,

while models that incorporate non random (deterministic) variables exclusively in

their representation are termed deterministic models.

3. Continuous versus Discrete Models: Models can also be classified in the way the

notion of time is handled. In continuous models the state of the model changes

continuously with respect to time. Continuous models generally employ a system of

differential or difference equations to express a model of a particular system.

Examples of continuous models include models of air flow on aircraft wings, models

of chemical reactions and system dynamics models etc. Simulation of these models

are performed by solving the differential equations either on an analogue computer or

digital computer. On the other hand, discrete models update their state

instantaneously at a finite number of discrete points in time. The maimer in which the

state is transformed is expressed using a logical state transition function as opposed

to mathematical equations. Simulation is performed by employing discrete event

simulation software on a digital computer. Discrete event models are usually used in

the modelling of queuing network systems such as manufacturing systems etc.

11
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This thesis deals only with discrete, dynamic and stochastic simulation models. Such

models have collectively been termed as discrete event dynamic models (DEDM) or

discrete event simulation (DES) in the literature. Unless otherwise mentioned,

subsequent references to models mean DEDM.

2.2 World views

Early work in the area of DES concentrated on ways of conceptualising the problem in a

manner so as to enable it to be encoded as a set of computer routines. The static structure

was described as a set of entities with its associated attributes, which provided a data

processing environment in which the dynamic behaviour was simulated [Kiviat 69]. The

dynamic structure involved structuring the behaviour such that one can identify when the

next event will occur and what routine to execute at that point [Tocher 65]. Three basic

ways of structuring the problem into computer routines evolved from the early work in

modelling - namely, event based, activity scanning and process interaction [Kiviat 69].

These were termed world views as they allowed the structuring of a model based on

different perspectives of the system.

2.2.1 Event based approaches

Event based approaches [ Markowitz 63] [Fishman 73] were the most commonly used

approach in the early days of simulation. This was partly due to the popularity of

SIMSCRIPT, a simulation language based on the work by Markowitz [Markowitz 63] at

12
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the RAND co-Operation. However, later versions of SIMSCRIPT have emphasised the

process interaction view, and this has been one of the reasons for the decline in recent

years of event based approaches[Pidd 88]. Other reasons for the lack of popularity of the

event based approach are discussed later in this section.

An event based approach consists of a set of event routines that capture the changes of

state that occur at different points in time in the flow of the simulation. The routines

describe the consequences of the occurrence of an event. The consequences are

represented as event notices, which identify the time at which these events occur, and are

scheduled on to the event list. An event based control program provides a list, termed the

event list, into which event routines schedule event notices. This has prompted the use of

the term event scheduling (ES) for describing this approach. The simulation control

program maintains the list in increasing order of time of event notices. Simulation occurs

by selecting the next event in the event list and executing the relevant event routine.

A major drawback cited by a number of researchers [Pidd 88] [Laski 65] is the inherent

difficulty in developing event routines. In the case of simple models where limited

interaction occurs between entities this may not be a problem, but developing event

routines for more complicated models can be difficult and error prone. This is because

the effect of all the consequences of executing an event need to be taken into

consideration in developing the event routines. Further, this also inhibits modification

and incremental building of models. A small change in the model may involve the

reworking of a number of event routines.

13
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The flip side of increased complexity of model development is that event based

approaches, in general, are more efficient than the other world view approaches in terms

of runtime.

2.2.2 Activity based approaches

One approach to simplifying the model development process in relation to the event

based approach, is to take the complexity out of the model building and transfer it to the

simulation executive. Thus, rather than have the modeller determining all the

consequences of the occurrence of an event, the modeller simply describes the conditions

upon which events occur and the simulation executive can be used to determine when

these conditions are satisfied and schedule events. Activity based approaches [Buxton

62] [Tocher 65] are based on this philosophy.

An activity routine consists of a test head, that describes a set of conditions that need to

be true so as to schedule the start of the activity, and a number of action statements. The

action statement expresses the change of state accompanied by the start of the activity

and the time at which the activity will complete, i.e. end event. The advantage of

including a set of conditions in the activity is that unlike in the event based approaches

the consequences of the execution of an event need not be explicitly mentioned. Instead,

a set of conditions is used to evaluate the scheduling of the events.

14



A review of discrete event simulation and supply chain modelling

The conditions in the test head of an activity are based on the status of entities or the

simulation time or both. If all the necessary entities required for the activity to

commence are available, the action statements in the activity are executed and the entities

are made unavailable to other activities. Each of the entities are associated with a time

cell which informs when in the future the entity will again become available.

The simulation executive scans the time cells of the entities and determines when the

next entity is going to become free, indicating the next event time. This entity is then

made available. The test heads of the activities are then scanned to see if this change in

status of entities triggers any of the activities. Activities that have been triggered then

execute their action statements. This process is then repeated. The need to scan the

entities and activities repeatedly, in order to progress the simulation, has led to the name

activity scanning (AS) by some researchers.

A key feature of the activity scanning approach is that the activities are represented as

compact self-contained units. Conditions and actions that are only relevant to the activity

are included in its description, thus enabling greater clarity and model extensibility. The

downside is that as the consequences of executing events are not determined beforehand,

as is the case in the ES approach, repeated scanning of entities and activities are required

to progress the simulation time, resulting in significant overhead in runtime of the

simulation

15
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In practice, due to the poor run time performance of AS models this approach is rarely

used in its original form. The three phase approach, a hybrid, that combines some of the

runtime benefits of the ES approach while improving on the representational ease of AS

has to a large degree superseded the AS approach.

2.2.3 Three phase approach

The three phase was first described by Tocher [Tocher 63] in the context of modelling a

steel mill. Tocher argues that in most real world systems two types of events exist, viz.

conditional events and bound events. Conditional events are triggered when a certain

condition is true. On the other hand, bound events are those that follow the completion of

another event. Distinguishing between the two types of events allows for creating a

hybrid approach. Bound events can be scheduled directly as in the ES approach, while

Conditional events can utilise a scanning procedure, akin to the AS view.

The separation of bound and conditional events also allow for a more modular

representation of activities. In the AS approach (original) the description of the activities

were fragmented as the start and end events are described in different activity routines.

The three phase approach allows for a more complete definition of an activity, where an

activity describes a period of time during which one or more entities are engaged in some

aspect of behaviour of the real world system. An activity is described by a conditional

event and one or more bound events. The conditional event describes the conditions for

the start of the activity and the bound events schedule the termination.
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Simulation occurs in three phases- 'A' phase, which advances the time to the next

scheduled event, 'B' phase that executes all scheduled events at that time, 'C' phase

scans the conditional events and executes them. Thus, this approach has been termed the

three phase approach or the ABC approach.

2.2.4 Process based approaches

The various world views conceptualise the modelling problem in different ways. The ES

approach considers all the events that occur in a system and models them as individual

event routines, which describe all the consequences of executing them. On the other

hand, the AS approach breaks down the behaviour of the system into a number of unique

activities and describes their behaviour. In a sense, both these approaches describe the

consequences of the occurrence of an event on the entities in the simulation. In the event

based approach, all the consequences of executing an event are located in that event

routine, while in the case of the AS approach only the consequences on the entities that

are involved in the activity are included.

Process based approaches, as the name suggests, conceptualises a system as consisting of

a number of processes each describing the behaviour of an entity or class of entities

throughout its life cycle.

The system can be modelled by either representing the life cycle of temporary entities

(parts, WIP), as in GPSS, or representing the behaviour of permanent entities (machines),
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as is possible in SIMULA. The former is termed as a transaction based process view and

the latter a server based process view.

As a process has to include the passage of time in its description, there needs to be a

method of synchronising the various process routines. This is accomplished by

deactivating and reactivating the execution of the process. A process may be deactivated

for a fixed period of time or until some condition is met. The former is referred to as an

unconditional delay and the latter as a conditional delay {Pidd 88]. In the case of an

unconditional delay the reactivation of the process can be scheduled in an event list.

Conditional delays, however, require that after the execution of every event the process

be checked for reactivation.

Interaction between processes are commonly described using some intermediate object

[Franta 79] [Birtwistle 79], Mutual exclusion and producer - consumer synchronisation

are two such approaches. In mutual exclusion, synchronisation is achieved by acquiring

and releasing a common resource. This is used to model a resource in a transaction

based process view. Producer - Consumer synchronisation is used in a server based view

where temporary entities are exchanged via a common buffer.

The simulation executive of a process based approach is responsible, at each point in the

simulation, in moving the entity as far as possible through its process cycle. A popular

approach in accomplishing this is to use two lists - a future event list and a current event

list. The future event list contains entities (processes) that are unconditionally delayed
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and are scheduled to activate at some fixed time in the future. This list is used to

determine the time of next event. The current event list contains two types of entities.

Entities that are waiting to be reactivated based on some condition, i.e. entities that are

conditionally delayed, and unconditionally delayed entities that are to reactivate at the

current simulation time. The simulation progresses in three stages as follows:

1. Future event scan: This involves finding the unconditional entities that are to be

reactivated next. The simulation clock is then updated to this value.

2. Move entities: The entities in the future event list that are to be reactivated at the

current simulation time are moved to the current event list.

3. Current event scan: The entities in the current event list are scanned repeatedly with a

view to move the entities through their processes. An entity that is permitted to

reactivate will move through its process until the termination of the process or a

further delay. The entities are then rescheduled in the future event list (unconditional

delay) or the current event list (conditional delay). The scan is performed repeatedly

until none of the entities in the current event list can move further through their

process. The executive then goes back to step 1 and the simulation continues.

The P1 view has the benefit of being the more natural way of representation compared to

the other world views {Pidd 88]. This has to do with the similarity between the way a

modeller, in particular a novice, conceives a model and the manner in which the routines

are structured in the P1 view. It is common for a modeller to conceive the working of a
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system by breaking it down into a number of entities and then understanding the

behaviour of each of them in turn.

2.3 World views and problem description

Behaviour of production systems are commonly expressed in one of two ways: from the

perspective of the machines or from the perspective of the uxaterial that t1 ow tiwwh the.

system. Tocher [Tocher 65] categorised a number of simulation packages available at

that time based on the perceptive of their model description, i.e. machine based or

material based. He suggests that both perspectives could be used for modelling

manufacturing systems; however, one or the other would be more suitable depending on

the nature of the manufacturing system.

In the case of a mass production system, where there is low variability in the type and

characteristics of the materials that flow through the system and considerable

complexity in the structure and behaviour of the machines, a machine based view may

be more appropriate. Conversely, he states that in systems with high material variability

in conjunction with a simple machine behaviour and layout, modelling using a material

based focus may be more suitable.

The three world views described in the previous section may be used to conceptualise

models in either perspective. However, in practice one perspective may be more natural

than the other for a particular world view. Activity and event based approaches are most
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commonly associated with machine based representation while process based systems

are more natural with a material based focus.

2.4 Overview of developments in discrete event simulation

Discrete event simulation software in one form or another has existed over a period of

forty years and to varying degrees has paralleled the development of computer

technology. Simulation software today in general belongs to one of the two categories:

programmable approaches and non-programmable approaches. Although, a few

simulation packages exhibit characteristics of either category; an example of this is

SIMPLE ++ [Aesop 94]. SIMPLE ++ is basically a simulation programming

environment but it also includes templates of common domain objects that can be

customised and integrated with a GUI to create models.

2.4.1 Programming approaches

Early attempts at building simulation models were restricted exclusively to being built

using general purpose programming languages (GPPL). As simulation models are a type

of software, using a GPPL provides the most direct route to model development.

However, the process can be quite arduous, particularly for large models. Programs that

represent simulation models can be thought of as consisting of three levels of routines -

level 1 which provides routines for the executive that manages the scheduling of the

events and progressing the simulation clock, level 2 contains routines that specify the

model, and level 3 which includes auxiliary routines that aid the simulation process such
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as statistical distributions, random number generators etc. As only the level two routines

vary from model to model, reusing the level one and level three routines can reduce the

development time of models.

Some of the early simulation software was based around this idea. Routines that reappear

in every simulation such as the level one and level three routines were provided as

libraries in a GPPL. Models were coded in a GPPL and appropriate routines from the

libraries were then incorporated to create the simulation model. An early example of a

simulation library was SIMON [Hills 65], the initial version of which was based on

ALGOL and Jater adapted to FORTRAN. More recently, SEE WHY [Fiddy 81] offered a

library of FORTRAN routines that supported an event scheduling approach and included

visual interactive support.

A disadvantage of the flexibility offered by a GPPL is that it provides a more general

syntax, the use of which may not be natural to the modelling task. Simulation

programming languages (SPL) provide a more problem specific syntax. The syntax is

designed to bear a closer resemblance to the way in which the modelling problem is

conceptualised, thus simplifying the process of translating the model into computer code.

In addition, SPLs typically include a hidden executive that handles the sequencing and

scheduling of events. The modeller, thus, focuses his attention on describing the

behaviour of the model in terms of the syntax provided.
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The combination of a hidden executive and modelling view implicit in the syntax may

result in a simpler, in relation to GPPL, albeit less flexible tool for model building. A

number of SPLs have been developed over the years. Some of the popular languages are

SIMULA [Birtwistle 79], the SIMSCRIIPT family [Markowitz 63], and more recently

MODSIM [CACI 93].

2.4.2 Non programming approaches

Developing models in either a GPPL or a SPL requires one to be skilled in programming.

Some of the early non programming approaches to developing simulations were based on

the idea of what has been termed 'Block Structured Languages' by Pidd [Pidd 95]. These

were developed with an aim to allow non-programmers, typically experts in the domain

system, to be able to create models. Block structured languages provide a diagrammatic

representation scheme akin to flowcharts. A set of symbols or blocks is provided from

which a flow diagram that represents the system is constructed on paper. Each of the

blocks in the diagram is associated with a set of attributes which custornises how the

block behaves in the model. The modeller then translates the diagram into a sequence of

commands and attributes, each representing a block. GPSS (General Purpose Simulation

System) [Greenberg 72] and HOCUS [Hills 71] were two of the earliest modelling

systems and SIMAN [Pegden 90] is a more recent addition to this category of modelling

software. GPSS and SIMAN use block diagrams to represent a transaction oriented

process view, while HOCUS employs activity cycle diagrams to describe an activity

based approach to modelling.
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The provision of blocks and their associated attributes avoids the need for programming

and therefore simplifies model building. The benefit however come with the cost of

decreased flexibility. For instance, the origins of GPSS lie in the modelling of

telecommunication networks. Consequently, modelling systems that are not similar in

nature will be harder to represent. GPSS, due to its transaction based process view, has

some inherent limitations. For example, systems that involve limited interaction between

transactions are easier to model, however if complicated interactions occur between

transactions, then modelling using GPSS may not be appropriate [Pidd 94] [Gordon 79].

Block structured systems were designed in the era of non-interactive and text based

computing. With the advent of interactive GUI based computing, a number of simulation

packages have appeared that use these features to aid the description of models. Law and

Kelton [Law 91] use the term simulators while Pidd [Pidd 95] terms them as 'visual

interactive modelling systems' (VIMS). A simulator provides a set of pre-built objects

that correspond closely to the objects in a real life system of a particular domain. Icons

are used to represent these objects and a GUI is used to customise and integrate these

objects to create a simulation model. The presence of pre-defined objects makes it

simpler for modellers to conceptualise and create models, but affects the modelling

flexibility. As long as the system to be modelled bears a close resemblance to the

structure of the simulator, model building can be greatly simplified. Examples of

simulators are WITNESS [ISTEL 96] and Arena [SMC 93] which is based on SIMAN.

Indeed, SIMAN, a block structured system, now comes as part of ARENA, a VIMS

system, thus ensuing the benefits of such systems.
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2.5 Supply chain modelling

In this section modelling techniques found in the literature to model supply chains are

reviewed. The review is not exhaustive or detailed but the objective here is to provide a

flavour of the various attempts at modelling supply chains and bring out some of the

issues involved in using the various techniques.

A supply chain is the network of organisations that are involved, through upstream and

downstream linkages, in the different processes and activities that produce value in the

form of products and services in the hands of the utiate stoer 	 Z3.

Typically, supply chains consist of three stages: procurement, production and distribution

[Thomas 96]. Each of these stages may in turn involve a number of facilities that may

cross organisational and geographical borders. Models of supply chains (Figure [2.11)

have used a network structure of nodes and links to describe the various activities

involved in the supply chain, where the nodes represent production or stocking facilities

and the links between nodes describe the flow of information and material between the

various facilities of the supply chain. The procurement stage of the supply chain consists

of a network of stocking facilities that control and store the ordering of raw materials or

intermediate products required by the production facilities. The production facilities

consume the material provided by the procurement stage and transform it into the final

product. The transformation process involves the flow of material through a sequence of

processing facilities linked by intermediate stocking points. Finally, the distribution stage

consists of a network of stocking nodes that direct the product from the production
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facilities to the final customer. The stocking nodes consist of various levels of

warehouses and the final retail outlet where the customer demand is satisfied.

Although the various stages of a supply chain may be organisationally or geographically

separated, decisions made at each stage have an effect on other stages. For example, lot

sizes at the production stage through their effect on material procurement patterns affect

the stocking policy at the procurement stage. Similarly, lead-times of products affect the

stocking policy at the distribution stage of the supply chain. The aim of supply chain

modelling is to study these interactions between the various stages of the supply chain in

order to better control and manage the performance of the supply chain in its entirety.

raw material	 intermediate	 final product	 distribution	 warehouses	 customers

vendors	 product plants	 plants	 centres

(a) A general supply chain network
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(d) Arborescent structure

Figure 2.1 Forms of supply chain network [Schwarz 81]

The supply chain network illustrated in Figure [2.1 a] is a general representation and in

practice is quite complicated to use in developing models. A number of attempts in the

literature have instead focussed on simplifying the supply chain network. Schwarz

[Schwarz 81] has identified three such networks:
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1. Serial structure: The network (Figure [2. ib]) is made of nodes such that every node,

apart from the first and last one, connects to only one other predecessor and successor

node. The simplicity of such networks attracted their use in a number of early

models. Supply chains in practice are rarely structured in such a manner and

consequently their value is limited.

2. Assembly structure: Here the network (Figure [2.lc]) is composed such that each

node has exactly one successor node, but can potentially have a number of

predecessor nodes. These networks typically represent assembly operations where a

number of parts/subassemblies feed into a production node where they are assembled

into a single subassembly/product.

3. Arborescent structure: These networks (Figure [2.ld]) are usually useful in

structuring the distribution stage of the supply chain. Each node is restricted to

exactly one predecessor node, but can be connected to a number of successor nodes.

Supply chain models have been classified in the literature by many authors [Thomas 96]

[Vidal 97] [Ballou 92] based on the level at which they aid the decision making process.

Operational models have been developed to aid short-term decision making, typically

involving a time horizon in days or even hours. Operational supply chain models deal

with issues such as selection of production batch sizes, choice of transportation mode etc.

Strategic models, on the other hand, have a longer time horizon, typically in months or

years. They deal with issues such as opening and closing of facilities (both plant and

distribution centres), selection of location for the production of a new product,

optimising on taxes and duties incurred and so on.
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Much of the past effort in modelling supply chains has not considered the supply chain in

its entirety, thus avoiding the ensuing complexity. Instead, researchers have tended to

focus only on parts of the supply chain. Thomas and Griffin [Thomas 96] classify

operational models that take into account only part of the supply chain into three

categories: buyer-vendor, production-distribution, and inventory-distribution models.

Buyer-vendor models deal with the buying and selling of raw material and/or

intermediate components (subassemblies) between the various stages of the supply

chains. Traditionally, inventory models have ignored vendor issues and focussed instead

on determining the optimal order quantities for the purchaser. Thomas and Griffin

[Thomas 96] point out that focussing solely on the purchaser ignores two potential

opportunities. Firstly, it may be possible to reduce costs without changing the ordering

policy by investing in newer material handling systems or data handling technology,

such as electronic data interchange (EDT). Secondly, the firms can jointly determine an

order quantity that is optimal to the buyer and the vendor. Determining an optimal

quantity for the buyer and vendor is the aim of many of the models presented in the

literature. Monahan [Monahan 84] considers the case of a single product single buyer -

single vendor structure. Assuming that vendors purchase in a lot for lot fashion,

Monahan develops an expression that determines the factor 'K' by which the optimal

order quantity should be increased by.
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Lee and Rosenblatt [Lee 86] extend the work of Monahan by allowing the vendor to

purchase in any quantity rather than lot for lot and requiring a minimum profit margin.

They present an algorithm that finds the optimal order quantity increase factor 'K' and

the optimal order quantity for the vendor. They show that the optimal order quantity for

the vendor is an integral multiple of the optimal order quantity of the buyer.

Other authors have looked at alternatives to the single buyer - single vendor structure.

Kohli and Park [Kohli 94] consider a single vendor - group of buyers scenario. They

investigate the case of a homogeneous group of buyers that buy from a single vendor.

They exploit the reduction of transaction costs attained by joint ordering. They derive

expressions for optimal joint ordering quantities. Lau and Lau [Lau 94] investigate single

buyer - multiple vendor structures where the buyer has a choice between a low cost, high

lead-time supplier and a high cost, low-lead time supplier. They obtain expressions

assuming deterministic demand and stochastic lead-time of a known distribution, for a

total cost function that is dependent on the optimal order quantity, the optimal reorder

point and the ratio of the orders placed with each of the suppliers.

Production-distribution models link aspects of production with those of distribution

planning. They look at the relationship between production batch sizes and distribution

batch sizes, impact of selecting various transportation options etc. Although one can find

a number of examples of production planning models or distribution planning models in

the literature, models that consider the two jointly are rare. Part of the difficulty in

creating such models has to do with the fact that either of these aspects (production
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planning or distribution planning) of the supply chain are quite difficult to model

individually [Thomas 96]. Consequently, the models are complicated to formulate or a

number of simplifications need to be made to make the model more tractable. Examples

of the latter are Production-distribution models developed by Benjamin [Benjamin 90]

and Haq et al. [Haq 91]. Both these models assume linear transport costs and thus have

limited applicability in practice.

Much of the early effort in supply chain co-ordination was in the area of modelling

inventory-distribution systems. Clark and Scarf [Clark 60] pioneered some of the earliest

work in this area. They consider a serial inventory system with stochastic customer

demand. Penalty costs are used to enable co-ordination between the inventories. The

penalty cost charged on an inventory is the total cost of the succeeding inventory, which

is incurred due to the failure of the inventory under consideration to deliver the ordered

quantity.

Finally, Cohen and Lee [Cohen 88] present an ambitious attempt to include all parts of

the supply chain in a single model. They describe a model that consists of four analytical

sub-models, viz. (1) Material control, (2) production control, (3) finished goods

stockpile, and (4) distribution network control. Each of these are tractable stochastic

models and can be solved to optimise relevant operating policies for each of the sub-

models. However, optimising performance measures for the entire chain requires a

heuristic procedure due to the intractable nature of the computations involved. Although

Cohen and Lee make a number of assumptions in deriving the model that restrict its
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application in practice, the fact that the various aspects of a supply chain were integrated

in a single model makes this a good starting point for future models [Slats 95]

2.6 Supply chain dynamics

A frequently cited example that epitomises supply chain dynamics is given by Houlihan

[Houlihan 87]. He describes a supply chain comprising five stages that are connected to

one another serially as shown in Figure [2.2].

Information flow

Goods flow

company A	 uornpany ti	 Lompany L	 Lompany U	 company t

Time

Figure 2.2 Demand amplification in a supply chain [Houlihan 87]
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If for instance, a small variation in customer demand occurs at stage A then this variation

in demand is propagated to the subsequent stages. However, due to the inevitable time

delays in transmission and the various control policies at each of the stages, the responses

tend to exaggerate at each subsequent stage. Thus, what was a small variation in demand

of a few percent at stage A results in a much larger variation at stage E as illustrated in

Figure [2.2]. This phenomenon of demand amplification has been coined by Burbridge

[Burbridge 84] as the law of industrial dynamics. He states, "If demand for products is

transmitted along a series of inventories using stock control ordering, then the demand

variation will increase with each transfer".

This phenomenon was first studied by Forrester [Forrester 61] and presented in his book

Industrial dynamics. Forrester applied the concepts and techniques of control theory to

study the dynamic behaviour of industrial systems. He presents the case of a production-

distribution system that consists of four stages namely, a factory, a warehouse, a

distributor inventory and a retailer inventory. The flow of information and material

between the various stages of the supply chain are modelled. Unlike a DES model, the

behaviour of individual entities and interactions between them are not expressed in a

descriptive fashion. Instead, the rates of flow of information and goods between the

various stages and the manner in which they vary with time are expressed using first

order difference equations. The model is described as a feedback system where decisions

to change system parameters such as production rate are based on current state and the

previous state. An important issue in control theory is the study of the stability of

feedback systems. Stability deals with determining the response of a feedback system to
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changes in input. Forester uses these techniques to study the dynamic behaviour of the

above mentioned production distribution system. He uses a system of 72 first order

difference equations that describe the relationship between the stock levels, production

rates, rate of orders placed by customers etc. The production-distribution system is

simulated by solving the system of difference equations at each point in time to

determine the values of the various system variables.

Forrester uses the model of the production-distribution system to demonstrate the

amplification of demand as it propagates through the stages of the supply chain, due to

an initial small change in customer demand at the retailer. He studies the effects of

various production, distribution, and storage policies on demand amplification. He

considers three ways of reducing demand amplification:

1. By reducing delays in the system so as to allow a quicker response to any changes in

demand. For example, by decreasing production time and delays in order processing

etc.

2. By limiting the number of stages in the supply chain. Forrester reports improvement

in system stability by eliminating the distribution stage in his production-distribution

model.

3. By changing inventory policy. He reported an improvement by reducing the re-order

quantity and increasing re-ordering frequency.
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More recently Towill and his colleagues at the University of Wales at Cardiff have

contributed to the area of supply chain dynamics. Towill [Towill 93] discusses how the

systems dynamics methodology can be extended by incorporating ideas of servo theory.

Towill [Towill 91] illustrates that significant reduction in demand amplification can be

achieved by integrating various decision making mechanisms in the supply chain. This

allows the better use of information available rather then acting only on distorted

orders/information received from the previous echelon in the supply chain.

The phenomenon of demand amplification and fluctuation in stock levels has also been

exhibited by using other modelling teclmiques. Southhall et al [Southall 88] describe the

use of a discrete event model to study this phenomenon. In addition to studying stepwise

responses as in the case of the Forrester model, they incorporate the existence of

uncertainty such as random fluctuation of customer demand and also in production lead-

times and study their effects on supply chain dynamics. Lee et al [Lee 97] study the

effects of systems dynamics within the framework of classical inventory theory. They

prove the existence of demand distortion and its amplification as it propagates upstream

in a supply chain. They use the term 'bull whip effect' to describe this.

2.7 The role of DES in supply chain modelling

A large proportion of the supply chain modelling effort, as is evident from the review in

the previous section, has focussed on developing analytical models of supply chains.

Models have been based on mathematical formulations of queuing theory, multiple

integer programming (MIP), difference equations and so on. However, such models are
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limited in the level of detail they incorporate. For example, questions such as what are

the effects of a machine breakdown are often important in the design and management of

the supply chain. This requires not only studying the steady state behaviour of the system

but also investigating the dynamic behaviour of the system at a very detailed level. Most

analytical models, systems dynamics models being an exception, evaluate behaviour

under steady state conditions and ignore transient affects. In addition, researchers as

opposed to practitioners are often tempted by the potential elegance and simplicity

offered by closed form solutions. However, in practice problems in supply chains tend to

be complicated and finding simple closed form solutions are far from trivial. A number

of authors have questioned the applicability of analytical models in practice [Slats 95]

[Askin 93]. Slats et al [Slats 95] cite that a large proportion of analytical models fall prey

to the need to make a number of unrealistic assumptions in order to reduce the

complexity and make the computation tractable. In addition, discrete event simulation

provides a valuable tool for constructing models that include random behaviour of a large

number and wide variety of components [Askin 93]. Consequently a few researchers

have looked at applying discrete event simulation to the modelling of supply chains.

Geller et al [Geller 95] describe the use of DES in the modelling of the IRIDIUM supply

chain. The IRIDIUM project co-ordinated by Motorola consists of a number of partners

in the telecommunications and space industry. The objective of the project is to provide a

digital, satellite-based, cellular, personal communications network. The project involves

the development and launch of a number of satellites in a short time frame. Geller et a!

describe the need to predict resource requirements and optimise schedules so as to
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minimise costs and meet the aggressive launch targets. Discrete event models of the

different stages of the supply chain were built by the individual partners using a common

tool. WITNESS, a visual interactive simulation tool, was chosen for this purpose.

Depending upon the requirements of the study, models of varying levels of detail were

developed, from detailed representations to black box representations that use a simple

time delay to characterise a stage. The models of the various stages of the supply chain

were implemented as WITNESS sub-models. These were then integrated to create a

model of the supply chain.

The supply chain models then were used in two studies to predict shared resource

requirements and the alignment of production and delivery schedules. Although a

traditional simulation tool and a simple mechanism for model integration was used, the

authors attribute a substantial saving in time and cost to the supply chain modelling

study.

VanDuin et al [VanDuin 92] describe the development of TASTE, an acronym for The

Advanced Simulation Tool for logistic Engineering, a simulation tool for the modelling

of supply chains. It consists of a library of pre-defined logistic components that can be

configured to represent a supply chain using a graphical user interface. The components

of TASTE have been designed so as to enable them to be used in a wide variety of

supply chains. Configurable components such as distribution centres, production units,

transport mechanisms etc are provided as part of the library. Slats et al [Slats 95] report

the successful use of TASTE in a number of enterprises in the Netherlands. TASTE
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provides a tool for modelling a supply chain at a high level (low detail). Individual

supply chain components are not modelled in great detail. For instance, production units

are not linked to detailed models that represent the manufacturing facility.

Slats Ct a! [Slats 95] incorporate TASTE as a part of DPSS, a distributed planning

support system. DPSS is based on the idea of logistic laboratories. The creation of

logistic laboratories is motivated by the need to support analysis of the performance of

entire logistic chains from several perspectives and levels of decision making viz.

strategic, tactical, and operational. Slats et al [Slats 95] advocate the use of an

experimental environment, termed logistic laboratory that consists of a set of logistic

models and sub-models based on optimisation, heuristics, and simulation, from which

models reflecting various perspectives of the supply chain can be created. DPSS consists

of four types of models, three of which are based on optimisation and the fourth is a DES

model for which TASTE is used.

Roy and Meikie [Roy 95] describe the role of DES in finite capacity scheduling. They

state that the role of DES based scheduling is limited, in particular in the case of large

and complex enterprises, to the shop/cell level, due to a lack of an integrating framework

that incorporates models of the various stages. The authors envision a DES tool that

includes knowledge of the structure of the enterprise so as to extend the DES scheduling

framework to include the supply chain and thus provide more accurate schedules. A

model of an enterprise can then be created that includes links to the various cell/shop

models. Models of various levels of detail can be included in the framework. Typically, a
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coarse model may be sufficient at the enterprise level, while a more detailed model can

be used at a local level.

2.8 Requirements for DES of supply chains

One approach to modelling the supply chain could be to use a traditional 'flat' simulation

framework. Although such a framework is suitable and has been used successfully for

modelling single manufacturing cells or single flow lines in detail, extending it to a

supply chain level or even a factory level would not be practical. Popplewell and Yu

[Popplewell 94] mention that the human effort in building such a model would be

enormous and it would result in the use of excessive computer memory and slow run

times to be of any use. In addition, the model would fail to reflect the structure of the

supply chain, thus not aiding the understanding of its behaviour. An alternative is to

couple a number of models that represent the various components of the supply chain to

create a more comprehensive model of the supply chain. The coupling of models could

occur in a top down fashion where the supply chain is decomposed into its constituent

parts and coupled together, or it can take place in a bottom-up manner where existing

models are coupled to synthesise a composite model that represents the supply chain.

The facilities that constitute the supply chain are often dispersed geographically.

Consequently, the models that represent the various stages of the supply chain may be

created and maintained by different people and stored in various locations. The supply

chain modelling framework, thus, must operate in a distributed environment where
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composite models are created by integrating such distributed component models. The

advent of the World-Wide-Web and developments in networking technologies has

enabled organisations to integrate a number of operations such as order processing etc.

Adopting these concepts and technologies to the area of modelling methodology is an

important requirement for modelling supply chains. Web based simulation is a new and

fast growing area that looks at how the internet and web based technology can influence

modelling methodology. In the context of developing a supply chain modelling

framework the support for distributed modelling provided by web based simulation is of

interest.

Once a composite model is created, the modelling framework requires a mechanism to

execute (simulate) the model. In the case of individual models, a simulation executive

manages the execution of events in a time ordered fashion. Events are scheduled on to an

event list and the simulation is progressed by executing the event with the earliest

scheduled time. The simulation of composite models is more complicated as events in

one component model may affect events in another component. Thus, there needs to be a

means of sequencing and scheduling the events generated by the various components in a

composite model. One approach is to extend the event list mechanism to include not only

local events but events generated across the entire composite model. All the models in a

composite could employ a common global event list on to which events would be

scheduled. A super-executive would determine the next set of events to be executed and

inform the associated component models to execute them. Such an approach has its

attraction in its simplicity, however, using a global event list is not a very efficient
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mechanism, both in terms of scalability and runtime performance. As the number of

models in a composite increase so do the number of possible events, and consequently

the size of the event list grows making its management difficult. Further, run times of

large models may be high as the execution of the event list is sequential and only events

that are scheduled for the next-event time are executed.

An option to improve runtimes is to locate the various component models in several

processing nodes rather than a single one. For instance, the component models could be

executed in a network of workstations with each component model assigned to a

workstation. This approach has the benefit of allowing local events that occur in each of

the component models to be executed in parallel rather than sequentially, thus improving

the speed of execution. In addition to assigning the component models to run on

individual processors, a mechanism to co-ordinate the local execution of events in each

of the processors needs to be present. Employing a global event list allows for exploiting

the potential parallelism in event execution to a limited extent as only events that are

scheduled for the next-event time can be processed simultaneously. A number of

alternate algorithms that address this issue have been presented under the baimer of

parallel discrete event simulation (PDES) in the literature. Incorporating PDES in the

supply chain modelling framework will enable the efficient execution of large composite

models. Run time performance of a simulation is an important attribute and indeed has a

bearing on the successful satisfaction of the modelling objectives. Prohibitively large run

times can restrict the amount of experimentation possible which can be detrimental to the

simulation study.
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The researchers belonging to the PDES community and the modelling methodology

community have by and large worked in isolation and consequently the application of

PDES techniques in mainstream modelling efforts have been limited and not very

successful [Fujimoto 92]. A major criticism of the PDES effort is that the primary focus

has been on improving runtime performance and this has been quite often at the cost of

other modelling requirements. In addition, the objective of research in PDES has not just

been motivated by the need to provide an efficient runtime platform for discrete eveiit

simulation. A number of researchers [Chandy 93] have looked at PDES also as a case

study or vehicle to explore concepts and techniques in the wider context of distributed

computing. Thus, as Page [Page 93] notes, a sizeable proportion of the research does not

address the PDES effort in the larger context of the modelling endeavour.

Similarly, developments in web based simulation need to be conducted in the context of

other developments in modelling methodology. In summary, the modelling framework

needs to support the following three requirements:

1. A compositional approach.

2. Functioning in a distributed environment.

3. PDES techniques.

In order to gain an understanding of the intricacies involved in developing the modelling

framework, the relevant literature pertaining to each of the three requirements is first
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reviewed. The knowledge thus gained is then used to develop a novel supply chain

modelling framework. This chapter concludes by providing an overview of web based

modelling and its support for distributed modelling. The review of compositional

approaches and PDES tecimiques found in the literature are presented in chapters three

and four respectively.

2.9 Web based and distributed modelling

Almost every area of human activity has been transformed by the impact of the world-

wide-web (WW\V) and computer simulation is no exception. Web based simulation is a

new field that investigates the application of web based technologies to simulation. One

of the earliest researchers to foresee the potential impact of the web on simulation was

Fishwick [Fishwick 97]. He described a number of potential impacts of this new

technology on the discipline of simulation, including: (1) education and training, (2)

publication, and (3) simulation programs. It is the last category, viz, web based

simulation programs, that has received the most interest and it is this that is of interest

here in the context of supporting distributed modelling.

A fundamental characteristic of the WWW is its distributed nature. Thus, integrating it

with traditional simulation techniques is a natural avenue to support distributed

modelling. Page et a!. [Page 97] identify two basic forms of web based simulation. The

first form involves a remote server on which a simulation runs. A client uses a form-

based CGI script to set up an experiment for the simulation. The server performs the
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simulation and returns the results, which is displayed by the CGI script. Such an

approach has the benefit that existing simulation software can be used. The second form

involves using Java applets. Simulation models are encoded in a Java applet which is

downloaded using a web browser by a client who wishes to run it. The simulation is then

run locally and the user interacts with the applet in the course of performing the

simulation. An obvious disadvantage is that existing simulation tools cannot be

incorporated in this approach.

Lorenz et al. [Lorenz 97] describe a third form of web based simulation that combines

the two approaches described above. A disadvantage of using a remote server based

simulation is that interaction with users is limited to CGI forms and thus visual

interactive simulation is not possible. Lorenz et al. propose an architecture where the

simulation runs on a remote server. However, instead of using a CGI interface a Java

applet acts as a client and provides local support for animation and visual interaction.

A number of simulation languages, such as silk, SIMJAVA, and NCOS, have been

developed, based on Java, with a view of exploiting the web oriented characteristics of

this language. Healy and Kilgore [Healy 97] describe silk, a general purpose simulation

language based on Java. Java's built in support for multi-threading is used by silk as a

basis for describing the behaviour of entities in a process oriented simulation. Distributed

simulation is then achieved by mapping threads onto multiple processors. In addition, the

use of JavaBeans to create reusable component models supports distributed modelling.
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McNab and Howell describe the development of SIMJAVA [McNab 96]; a simulation

package that is a Java version of Sim++, a discrete event simulation library for C++.

SIMJAVA is based on the process-interaction world view. A SIMJAVA simulation

consists of a set of objects each running on their own execution thread. Objects

communicate with one another by sending event messages over ports. Page et al. [Page

97] describe how the Remote Method Invocation (RMI) feature of Java can be

incorporated into SIMJAVA to enhance its support for distributed modelling. RMI

employs the distributed object model of Java. In this model, objects, termed remote

objects, make available their functionality by allowing other objects to access their

methods. Thus, components of a model can be distributed over the internet and

interaction between them can occur by invoking appropriate methods in remote objects.

Colvin and Beaumariage [Colvin 98] present a simulation environment termed 'The

Network-Centric Simulation Object System (NSCOS). NSCOS is a prototype simulation

environment, based on Java, primarily for use in manufacturing systems simulation.

Models in NSCOS are described by aggregating a collection of simulation objects.

Allowing the simulation objects to be located either locally or on a network enables

distributed modelling. They describe the application of NSCOS to the simulation of a

semiconductor fabrication facility. Models of the semiconductor facility are created by

coupling together a range of workstation objects. Some of these workstation_objects

may be located on a remote computer connected to the Internet. The class_loader feature

of Java, which allows classes to be loaded from the web, is used to provide the

mechanism for supporting remote workstation_objects.
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Sari oughian and Zeigler [Sari oughian 1998] describe an implementation of the DEVS

formalism in Java. DEVSJAVA enables the amalgamation of a proven set theoretic

modelling formalism with the web-centric capabilities of Java. DEVSJAVA supports the

creation of standalone and applet based atomic and composite models. A web browser

based graphical SES (GSES) is used to synthesise hierarchical models from atomic and

coupled models. The platform independent nature of Java and the support for distributed

object computing allows DEVSJAVA to support a collaborative modelling environment.

2.10 Conclusion

A broad review of DES techniques is presented in this chapter. The various types of

simulation tools are categorised, and their potential benefits and pitfalls discussed. A key

conclusion is that it is impossible to find a single formalism/tool, that can be used across

the board, to satisfy the requirements of all users. A judicious choice of the modelling

framework needs to be made based on the nature of the modelling problem.

This is followed by a review of approaches to modelling supply chains. A number of

approaches, both analytical and simulation exist in the literature. Based on the

knowledge gained by the review, a set of requirements for the DES of supply chains are

identified. The literature pertaining to one of the requirements, viz, web based and

distributed modelling, is reviewed here. In Chapters 3 and 4 a review of the other two
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In Chapters 3 and 4 a review of the other two requirements, namely support for

compositional modelling and the incorporation of PDES, is presented.
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CHAPTER 3

Large scale modelling - a review

A number of researchers [Zeigler 84] [Luna 92] [lJlgen9O] have identified the need for

coupling together models to represent a wider system. Zeigler [Zeigler 84] describes the

notion of modelling in the large, where individual models are developed with the aim of

not just studying one aspect or facet of a wider system, but to be part of a larger model of

models, representing the multi-faceted characteristics of the system. In the previous

chapter the ability to couple models to create composite models was specified as a

requirement in aiding the modelling of supply chains. Providing an environment in

which such multi-faceted modelling can take place requires a revision of the way in

which aspects of behaviour and description of interaction are represented. [Davis 96].

This chapter provides a review of the research addressing the problems of representing

and structuring models to aid large scale modelling. Increasing the modularity of models

has been an underlying theme in the literature. Modularity and the support for it provided

by the world views is first looked at.

The need to develop larger and more complex computer programs has motivated

software engineers to develop mechanisms to structure problems to aid the programming

48



Large scale modelling - a review

process. A number of these ideas have been adopted by the discrete event simulation

community in their endeavour to model increasingly complex systems. Modularity, an

important software engineering concept, has been suggested as a natural choice for

simulation, particularly so in large scale modelling [Oren 79].

Cota and Sargent [Cota 92] describe modularity as a combination of locality and

encapsulation. Locality has to do with locating all relevant parts of a system in one place.

Encapsulation, on the other hand, is the strict protection of this information by a well

defined interface in such a way as to allow it to be changed without affecting other atts

of the system. The identification of what constitutes a relevant piece of information and,

thus, requires to be localised is clearly subjective and depends on the objective of the

modelling exercise. For example, if the modelling exercise is to study the flow of entities

and various routing schemes in say a discrete part manufacturing environment, a material

based view, where all aspects of behaviour of a part are localised in one place, may be

more suitable. The localisation of all routing information in the flow entities would make

for easier changes to routings.

The requirement of coupling together models to describe a larger system is of interest in

the context of supply chain modelling. Modularity in this case has to do with allowing

model components to be reused in interchangeable coupling configurations. This requires

the modularization of behaviour and coupling information, thus allowing behaviour and

coupling specification to be modified independently. Modularity can exist at the

modelling object level, the model level or both. At the modelling object level individual
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objects can be coupled to create a model. At the model level, models can be coupled to

create a composite model.

3.1 Modularity and the world views

The traditional world views have been the basis for simulation in a number of

commercial simulation packages. The implications for modularity of modelling using

world views is investigated here. The process interaction view is considered first. The

process world view provides locality of object [Overstreet 86], i.e. the behaviour of an

object (entity) is contained within a process routine. Information about interaction among

objects however is distributed, and mutually supportive code in the interacting entities is

required to co-ordinate interaction [Blunden 67]. Traditional process based languages do

not provide locality of the conditions for reactivation of a process. Languages such as

SIMAN and GPS S allow a process to deactivate and subsequently reactivate another

process. Deactivation of a process is supported by the 'pre-empt' block in GPSS and

SIMAN, and 'cancel' and 'reactivate' instructions in SIMULA.

With the objective of improving the modularity of the process based view, Cota and

Sargent [Cota 92] proposed a modified process view based on the active server approach

[Henrikson 81]. They argue that design decisions are often associated with servers or

resources and the active transaction approach employed in SIMAN and GPSS result in

the distribution of conditional information regarding the acquisition of resources among

the transaction entities. They modify the notion of active state of a process to include not
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only the time left to complete the current activity, but also the conditions under which the

activity can be pre-empted and others scheduled. The reactivation of a process is

described by the following structure:

Waitt

or when condition 1

or when condition 2

or when condition n

Where t is the time for the completion of the current event and condition 1 to condition n

are the conditions under which the activity will be pre-empted.

By employing a combination of an active server approach and modifying the active state

of a process, the modified process view localises conditional information within the

process. As mentioned earlier encapsulation of process behaviour requires the strict

protection of state by a clearly defined interface. In the example given in [Cota 92], Cota

and Sargent describe a repair shop process modelled using the modified process approach

where interaction between processes is accomplished via a passive entity (buffer). The

repair shop accepts parts with varying priorities and performs a repair and makes it

available to other processes. Parts with higher priority pre-empt repairs of parts with

lower priority, which resume repair once the higher priority part has been repaired.
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Interaction between processes is achieved through two buffers - an input bin and an

output bin. Parts that need to be repaired are placed in the input bin by a supplier process

and after the completion of repair the part is placed in the output bin by the repair process

to be accessed by other processes.

The use of message passing as a means for interaction has been suggested by a number of

researchers, and implemented in simulation languages based on the modified process

view such as May [Bagrodia 87], Sim++ [Lomow 90], and HCFG [Fritz 95]. Message

passing as the sole interaction mechanism between processes prevent them from directly

modifying the state of other processes and thus encapsulates processes behaviour. In

addition, the use of message based simulators provides a more natural environment for

modelling distributed systems [Bagrodia 87] (Note: Supply chain models could be

thought of as distributed models).

Cota and Sargent [Cota 94] describe a graph based representation of the modified process

view employing message passing for inter-process communication. Control flow graphs

(CFG) are self contained units that describe the behaviour of a process and can be

combined to create a model. Inter-process communication occurs via message passing

along channels. A process is described by a directed graph where nodes represent control

states (reactivation points) and edges describe possible control state transitions. Each

edge is associated with three attributes - a condition, an event, and a priority. An edge is

traversed if the condition is satisfied and the event associated with the edge, which

represents the actions performed in the state transition, is executed. Priorities are used to
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break a tie if the conditions of more then one arc emanating from a node are true.

Conditions are based on:

1. Messages waiting to be received by the CFG.

2. A boolean function of the local variables.

3. A time delay, which holds the process until some fixed simulation time has elapsed.

By enforcing a fixed interface and employing message passing for inter-process

communication, CFG provides a modular representation of processes in a modified

process interaction view. Modularity, as in our earlier definition of allowing model

components to be reused in mutable coupling configurations, is achieved by making a

clear separation between the description of the behaviour of the process, which is

described by a CFG, and the description of the interaction which is described by an

interconnection graph (IG). Fritz and Sargent [Fritz 95] describe an extension of the

CFG/IG framework to support hierarchical modelling. The objective here is to extend the

idea of process modularity to modularity at the sub-model/model level, allowing for the

creation of models which are composed of a network of other models. Hierarchical

control flow graph based models make use of hierarchical interconnection graphs (HIG)

to describe the interconnection between sub-models. The nodes in a HIG are not

restricted to representing a single process described by a CFG, but can denote models

(described by an IG). The relationship between the different structures viz. CFG, IG,

HIG are illustrated in Figure [3.1].
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Figure 3.1 Relationship between Control Flow Graph,
Interconnection Graph and Hierarchical Interconnection
Graph

Approaches based on the modified process view provide modularity by employing an

active server approach and using constructs to localise the conditions for interaction with

the flow entities. Bagrodia et al. [Bagrodia 87] describe another message based approach

to discrete event simulation that is based around the modified process view. This

approach, however, does not enforce the active server model as used by Cota and Sargent

[Cota 92], or for that matter the active transaction view. A general entity construct is

used to model all entities, active or passive. The interaction between entities is akin to

mutual interaction as described by Davis [Davis 96]. He defines mutual interaction as the
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interaction between entities of equal status, in which none dominates and which allows

each to proceed with internal behaviour during an activity. Modularity in the context of

entities being coupled in mutable coupling configurations is, however, limited as

conditional information for the interaction is distributed amongst the entities.

Pflug and Prohaska [Pflug 90] propose the Entity-Connection approach in the context of

providing modularity with respect to mutual interaction. They draw an analogy between

actors in a play and processes in a model. The parts of an actor contain monologues and

dialogues ( or polylogue). The monologues correspond to autonomous behaviour in a

process and dialogues (polylogue) correspond to interaction between processes. This

distinction between monologue and dialogue is the basis for the entity-connection model.

An entity module encapsulates the activities of the entity that do not require co-

operation, while a connection module encapsulates activities that require co-operation.

During execution entities perform activities concurrently. When interaction is required

the interacting entities invoke the relevant connection module that describes the

interacting activity. During the execution of the connection module the entities which

invoked the connection remain attached to it. The connection module has a set of

conditions associated with it, such as type and number of entities. When these are

satisfied, the body of the connection module is executed. After the termination of the

connection module the attached entities are released and they resume concurrent

execution.
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Pflug and Prohaska [Pflug 90] describe a two stage modelling process. First entities and

connection modules are defined. Models are then created by using the modules as

building blocks. A graphical user interface is used to select and combine the required

modules to create a model. The ability to subsequently use these models as building

blocks in a composite model is not described by the author. However, it may be possible

to extend the entity-connection framework to support hierarchical modelling by creating

a 'model' object. Models can be described as an aggregation of entities and connections.

A coupled model could then be described as an aggregation of models and connection

objects that are shared between the models.

Model = < Entity, Connection>

Coupled model < Model , Connection>

Figure [3.2] illustrates this.

Model 1
	

Model2

Figure 3.2 Coupling two models using the Entity-Connection view
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The idea of separating the behaviour of entity from interaction has also been incorporated

in PAInt [Davis 96], albeit from the perspective of the activity and process world views.

Davis proposes a modelling view that combines the traditional process and activity world

views, processes being similar to entities in the entity connection view and activities to

connection modules. Processes are modified to improve process independence by

extracting conditions for mutual interaction and placing them within activities. Waiting

states are removed from the process and incorporated into the activities that describe the

interaction. Processes act as tokens that are accepted and released by a series of activities,

where process interaction occurs. Keys, based on the idea of guards [Bagrodia 90], are

employed to check the validity of arriving entities for commencement of the activity. By

separating the specification of entity behaviour @rocess), entity interaction (activity), and

the conditions for interaction (keys), PAInt supports modularity. Figure [3.3] shows an

example of a PAInt model. Two processes P1 and P2 are used that perform activities Al

and A2. Both activities Al and A2 involve co-operative interaction between the two

entities of the processes P1 and P2.

A1____ A2

Figure 3.3 An example of a simplified PAInt model [Davis 96]
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Davis describes how the mechanism of employing keys, processes and activities to

develop modelling objects can be extended to create models (aggregation of modelling

objects) and further to create composite models ( aggregation of models) and so on, thus

supporting hierarchical model construction.

Modelling objects are defined by M = < k,A,P>

where k =key describing the conditions for the activity to commence

A = Set of activities

P = Set of processes

and composite models can be described by CM= < k,M,P>

where k = Input interface

M = Set of models

P = Set of processes that connect the models

In the case of modelling objects, keys describe the conditions for an activity to occur, i.e.

the input interface for tokens (processes) to be accepted by an activity. At higher levels

of aggregation (models and composite models), keys determine the input interface to the

model/composite model. Similarly, processes can be used to determine the output

interface of a model. Keys and processes have an independent existence from the models,

thus resulting in the separation of behaviour and coupling specification, and

consequently allowing the aggregation of models in interchangeable composites. In

addition, the notion of keys allows the implicit description of coupling information.
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Modularity with respect to creating a composite of heterogeneous models (models

employing different modelling formalisms) at varying levels of abstraction, also termed

multi-modelling by Fishwick [Fishwick 93], has been investigated by De Meter and

Deisenroth in the development of GIBSS (Generalised Interactive Based Simulation

Specification) [De Meter 91]. Entity objects are used to represent a subsystem at some

level of abstraction. These specify the attributes and logic required to simulate the entity.

Interactions between entities are explicitly stated and accomplished by an interaction

object. Dc Meter and Deisenroth suggest that message passing may be ill-suited to

conceptually represent physical interactions, and describe a mechanism of direct

observation /manipulation to accomplish interaction between the entity objects and

interaction objects. This is similar to the idea of observation of state values suggested by

Blunden [Blunden 67] to solve the 'self containment problem' (modularity). A three

phase approach adapted to handle continuous simulation is used in the execution of the

model. Hierarchical modelling as such is not supported, the model is an aggregation of

entities. However, the entities in themselves may represent subsystems at different levels

of abstraction.

Activity based approaches provide locality of interaction. Pidd [Pidd 88] has suggested

that the activity view facilitates modular code development and modification. However,

locality in terms of entity behaviour is not provided by activity based approaches, as the

various activities performed by an entity are described in different routines. Unlike

traditional process based approaches, conditions for interaction in activity based
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approaches are localised in the test head of an activity. However, the decoupling of the

test conditions from the activity is necessary in order for activities to be more modular.

The idea of guards [Bagrodia 87] [Davis 96] can be used for this purpose.

3.2 Object oriented simulation

Object orientation is a popular technique for developing and implementing complex

(large) computer programs. The ideas behind object orientation ironically were first

demonstrated by the general purpose simulation language SIMULA [Birtwistle 79]. A

combination of the difficulty involved in understanding a new modelling paradigm, and

the lack of facilities such as integrated statistics collection, contributed to the lack of

acceptance in the simulation community [Henrikson 81]. Since then the concepts of

object orientation have matured and languages such as Smalltalk [Goldberg 89] and C++

[Stroustrup 88] have contributed to its popularity in the general programming

community.

An important aspect of object orientation is the idea of objects. Objects are based on the

idea of encapsulating data and methods. The data in the object can only be

accessed/manipulated by the associated methods in the object. The methods thus act as

an interface to the data held in the object. The parallel between object data and state, and

methods and behaviour suggests object orientation as being a natural choice for

simulation.
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The early attempts at object orientation was in aiding the implementation of a particular

world view. For example both SLAM and SIMAN are implemented in C++, although

such efforts cannot strictly be classified under the term object oriented simulation. At the

modelling level they do not allow the defining, modification (polymorphism) and reuse

(inheritance) of modelling primitives. This view is similar to what is termed object based

[Joines 97], or data driven simulators. A predefined set of objects are provided that are

used to create new models by combining them in a suitable manner.

The natural correspondence between objects in the physical world and their

representation as model objects has been suggested by a number of authors [Ulgen 90]

[Zeigler 90]. The application of object orientation has been extended to the modelling

view in a number of simulation environments. Used in combination with a graphical user

interface they provide an easy and extensible modelling environment.

Simple++ [Aesop 94] employs a graphical interface which allows the coupling of

different modelling objects. Modelling objects can be selected from a predefined set of

objects or new objects can be created/modified from existing objects. Full access is

provided to the modelling hierarchy of the objects, thus allowing inheritance and reuse of

modelling objects.

Ulgen and Thomasma [ Ulgen 90] describe SmartSim, an object oriented simulation

environment implemented in Smailtalk for the modelling of discrete part manufacturing

systems. A set of generic modelling objects are provided that are combined using a
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graphical user interface to create models. The objects are part of a class hierarchy Figure

[3.4] and are fully extensible. They give the example of a workstation object being

extended to represent a Gauge object. Objects can be combined to create aggregate

objects using the subsystem class. These aggregate objects in turn can be part of other

aggregate objects and so on, thus providing a mechanism for hierarchical modelling.

Object

Simulator	 Stationary Simulation object 	 part	 event

Workstation	 Storage facility 	 Router	 Source	 sink	 Subsystem

Figure 3.4 The class hierarchy of simulation objects in SmartSim

3.3 DEVS and hierarchical modelling

The motivation behind the development of DEVS [Zeigler 84] lies in providing a sound

mathematical basis for the representation of discrete event models. It performs a similar

role to differential equations in the representation of continuous models. Based on

systems theory concepts, DEVS provides an implementation independent abstraction for

the description of discrete event models. This can be used as a basis for the development

of simulation languages; DEVS Scheme being one such example. Systems theory

distinguishes between the behaviour of a system and its structure. It introduces the notion
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of decomposition (how a system can be broken down), and synthesis (how previously

decomposed system can be reconstituted.), thus allowing hierarchical construction. By

adopting decomposition and synthesis, DEVS allows the representation of discrete event

models in a hierarchical modular manner.

The DEVS formalism allows one to specify basic models from which larger ones are

built, and the manner in which these models are connected together in a hierarchical

fashion. The basic models are termed atomic models and used to describe behaviour of

individual components. Coupled models are used to describe the structure of models

created from individual components. Thus, atomic models represent the behavioural

aspects of a model, while coupled models the structural aspects.

A basic model contains the following information.

A set of input ports through which external events are received.

A set of output ports through which external events are sent.

. A set of state variables that define the state of the model.

• A time advance function that schedules change of state based on an internal transition

function.

• An internal transition function that describes the state change of a model when

directed by the time advance function.

• An external transition function that describes the change of state when an input is

received on an input port

• An output function that describes the output generated by a state change.
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An atomic model is described mathematically by the following structure

M = < X, S Y dint' cxt, X., ta>

where X is the set of external events that can be received by M

S is a set that defines the state

Y is the set of events that can be output by M

6int is the internal transition function which specifies the next state the system

will change to after time ta

6ext is the external transition function which specifies the transition of state when

an input is received

2 is the output function which generates an external output just before an internal

state transition

ta is the time advance function

A coupled model is defined by the following mathematical structure

DN = < D, {M 1}, {IJ , { Z} , select>

where, D is a set of model component names,

for each i E D

M specifies a model described by i

I is a set containing the models influenced by M.

64



Large scale modelling - a review

Z., is a set of port couplings that describe the port to port connection from model M 1 to

model M, where j E D

select is a function that resolves ties when simultaneous events occur across more than

one input port.

3.3.1 Large scale modelling decomposition and synthesis

Zeigler [Zeigler 84] characterises model building in terms of small scale modelling and

large scale modelling. He compares small scale modelling to more traditional approaches

to modelling. A model is created as a 'one off with a specific objective to analyse a

particular aspect of a system. Once the modelling objective is met the model may be

discarded and not used again . In contrast, models in large scale modelling are developed

as part of a larger model (hierarchical ), and models are reused in different

configurations to study different aspects of behaviour.

Zeigler proposes a structure, the system entity structure (SES), to support large scale

modelling. The SES combines the dynamic formalism of DEVS with AT symbolic

formalisms. It provides a structure that embodies knowledge about the system [Zeigler

84]. The SES is described using a labelled tree structure. Nodes represent entities,

specialisation, or aspects. Entities representing individual real world objects or

components of a decomposition of another real world object. An aspect node represents

one decomposition out of a possible many of an entity (represented by the parent node).

The children nodes of an aspect represent components in the decomposition of the parent.
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Specialisation nodes represent alternative choices for a component. The children of a

specialisation node represent variants of its parent.

Modelling occurs in two stages. In the first stage, that occurs once initially, the entire

system is decomposed to include all the objects, their variants (termed specialisation)

and alternate configurations (termed aspects), to create a SES. In the second stage, the

SES is pruned such that a unique model is derived that satisfies the modelling objectives.

Pruning begins at the root of the SES and progresses in a top-down fashion. At each

stage the SES is pruned to leave a unique object under each specialisation and one aspect

under each object. The coupling specifications at each aspect are then used to provide the

coupling specification of the model.

Zeigler provides examples [Zeigler 90] of the usefulness of the concept of SES in

supporting large scale modelling in the domain of computer architecture modelling.

However Davis suggests [Davis 96] that the degree of isomorphism (similar structure

and consequently interface) between entities may be limited in manufacturing systems.

The need to make explicit all possible couplings between entities in a SES can be time-

consuming. Rozenblit et al. [Rosenblit 89] have suggested the use of a knowledge based

system for identifying additional taxonomical information regarding constraints and

relationships between objects to guide synthesis. Thomas [Thomas 94] has identified the

role that model interfaces can play in providing this information. He employs a scheme

where the type of model interface, as opposed to the implementation, is used as a
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classification criterion to classify DEVS models. He modifies the input and output sets to

include typed messages. In addition to the port name and content, the type of message is

also included in messages. A class based hierarchy is developed where models belong to

a class if they share the same interface. He employs this classification in the syntactic

checking of possible coupling configurations in a SES.

3.3.2 Variable structure modelling and DEVS

Oren [Oren 75] introduced variable structure systems as a new system class. Variable

structure models, as part of their behaviour, include in their description the possibility to

change their own structure, both in terms of constituent components as well as the

relationship that exists between them. Such systems exist in a number of application

domains including manufacturing systems (flexible manufacturing systems, supply

chains), biological/ecological systems etc. For example, depending on the type of orders

and quantity a manufacturer may vary his suppliers thus reconfiguring the supply chain.

Models in DEVS are represented by atomic and coupled models. Atomic models

describe the behaviour of individual components, while coupled models describe the

structure of the model. This apparent separation of behaviour from structure (see Figure

[3.5]) makes it difficult for DEVS based models to describe variable structure systems.

Zeigler and Praehofer [Zeigler 89] describe a two-level control hierarchy for the

modelling of variable structure systems. The first level is made up of models that

represent the behaviour of the system. The second level consists of controllers that
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observe the dynamic behaviour of the models in level one, and accordingly change the

structure of the couplings between them. The control models, however, cannot be viewed

as atomic models as they violate the modularity principle. Atomic models are only

allowed to change their own state. The controller models can be viewed as belonging to

another class of models besides atomic and coupled models.

Figure 3.5 Separation of description of behaviour and structure in DEVS models

Barros et al. [Barros 94] describe an approach that maintains the modularity of atomic

models. They modify the DEVS coupled models formalism with a view to support

structural change. Atomic models are defined as before, while coupled models are

defined as follows:

V_CM =	 , Y , , select >

Where,

V_CM = Coupled model incorporating variable structure behaviour.
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X = set of internal ports;

Y = Set of external ports;

M Set of components;

C =connections between components;

and & is defined by

& = <	 X , int 6ext select>

where x =	 C>

afld X,Y,	 and	 are as defined above in the case of DEVS.

& acts as an atomic model that handles structural change. The state of the model is

defined by the set of components and the respective interconnections of the coupled

model. Changes in structure are initiated by internal and external transition functions of

the atomic model. They give an example of the application of the formalism in a model

of a variable multi-processor network. Based on the load of incoming jobs, the processor

network invokes new processors or releases processors back to a pooi.

Pawletta et. al. [Pawletta 96] describe an approach based on the pnming of the SES in

runtime. Coupled models are modified to include structural events that can create, delete

and exchange components or connections in a coupled model. The SES uses the

structural events to re-prune the SES and generate a structural variant of the model.

Pawletta et al. also address the problem of dependence between behavioural state and
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structural state. For example, if component 'a' is exchanged with component 'b' in a

coupled model and if the two components share some common state variables, then a

mechanism needs to be devised to copy the common state variables from 'a' to 'b'. The

problem is solved by introducing a class hierarchy based on the state variables of

component models. Component models inherit state variables from parent classes.

Exchanges then are permitted only between components with state classes derived from a

common parent class.

Thomas [Thomas 94] mentions that the interface-oriented classification of models,

described earlier in the context of syntactic checking of couplings in a SES, can also

facilitate variable structure modelling. The interface classes are used to create a coupled

structure of classes. Where, the classes act as placeholders for component models. The

structure of the model is varied (to a limited extent) by replacing component models in

the coupled structure by other models belonging to the same class.

The problem of modelling variable structure systems can be viewed from the perspective

of the level of modularity of the component modules. The more modular the component

models are, the less they are contextualised to a particular model configuration and

consequently, can change their structure more easily.
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3.4 Coupling schemes

The function of a coupling scheme is to provide a translation of the input/output alphabet

used in interaction between component models. The coupling scheme together with

modularity allows the creation of composite models. Davis [Davis96] classifies coupling

schemes into four categories.

1. Tightly coupled- a complete and explicit coupling is provided.

2. Loosely coupled - part of the coupling is made explicit and the rest is garnered from

context of the interaction.

3. Fixed coupling - A common alphabet is used by all the component models.

Couplings are identified as a sequence of component names/identifiers.

4. Undefined - No explicit coupling is mentioned.

Modelling frameworks that describe coupled models in a tightly coupled fashion

typically use graph based teclmique to make explicit coupling information. Control flow

graphs and hierarchical control flow graphs (CFG/HCFG) [Cota 94] [Fritz 95], described

earlier (Section 3.1), are examples of modelling frameworks that employ tightly coupled

coupling schemes. Component models are created using CFG that communicate strictly

via chaimels. Coupling between component models is described by an interconnection

graph or hierarchical interconnection graph (IG/HIG). IG/HIG explicitly describe the set

of input and output channels (ports) for the coupled model to communicate with its

71



Large scale modelling - a review

environment, and an explicit description of the internal coupling of the constituent

component channels.

Coupled models in DEVS [Zeigler 84] are also described using a tightly coupled

scheme. An explicit specification of the couplings of the various ports of each of the

models in a coupled model is required to describe it. Coupled models described as above

belong to a class of coupled models termed Digraph models. In addition to Digraph

models, Zeigler describes another class of coupled models termed Kernel models. Kernel

models provide a more loose coupling description. They are used to describe coupled

models that can consist of a variable number of component models. All of these

however share a fixed topology. Thus only the models that make up the coupled models

need to be described. The context, i.e. topology is then used by the coupled model to

work out the exact port to port couplings.

Other modelling frameworks/environments that use loose coupling descriptions include

SmartSim [Ulgen 90], Cadence {Login93], and Simple ++ [Aesop 94]. All the above

schemes use a static routing, which is described explicitly by a graph, but routes during

model execution can be varied depending on the state of the models. SmartSim and

Cadence use information in routing objects to determine exact coupling details during

runtime, while Simple ++ allows the entire state of the coupled model to be involved in

determining exact coupling details.
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Examples of models with no coupling scheme can also be found in object oriented

simulation languages such as MODSIM II [CACI 93] and APPOSTLE [Wonnacott 96].

Interaction between objects in 00 languages is performed by executing methods in other

objects. Care must be taken to ensure that the invoked messages actually exist in the

other models. It must be noted that strictly speaking 00 simulation languages do not

provide an input coupling scheme, as an object does not need to know the identity of all

the objects that access its methods. Output coupling, on the other hand, is made explicit

in the calling object.

Bhuskute et.al. [Bhuskute 92] describe a modelling environment that employs a fixed

inputloutput alphabet. All entities (component models) are aware of all other entities and

their interfaces. Coupling can be performed by using a uniform naming scheme that

describes all the constituent components and ports of a coupled model. In the scheme

described by Bhuskute, all interaction occurs via buffers with a fixed naming convention.

3.5 High level architecture

High level architecture (HLA) is a specification developed by the US Department of

Defence (DoD) with the aim to support the reuse and interoperation of simulation

models. Although primarily developed for the requirements of the defence industry, the

DoD is actively involved in promoting HLA in the civilian domain [Dahmann 98]. A

special issue of the journal SIMULATION recently was part of this endeavour. The

HLA builds and generalises upon past activities such as the aggregated level simulation
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protocol (ALSP) [Wilson 94] and distributed interactive simulation (DIS) [DIS steering

committee 94].

HLA specifies how multiple simulations termed federates inter operate with each other

resulting in a larger simulation termed the federation. HLA is composed of three major

components:

1. HLA Rules: A set of ten rules that specify the principles and conventions that need

to be adhered to so as to achieve proper interaction between the federates during the

simulation of a federation. In addition, it specifies the responsibilities of federate and

federation designers.

2. Object Model Template (OMT): OMT describes the entities to be simulated and

the interactions between entities in a federation. Two information models are

employed for this purpose. The Simulation Object Model or SOM, one of which

exists for each federate in a federation, describes the data a federate requires

(consumes) and the data it produces for use by other federates in the federation. The

other information model, one of which exists for every federation, is the Federation

Object Model (FOM). This model defines what part of the information in the SOM is

to be used by the federation. In other words the FOM describes what subset of

functionality of each SOM will be used by the federation.

3. Interface Specification: These provide a description of the functional interface

between the federates and the Run Time Infrastructure (RTI). The RTI is a software

that provides a set of services to co-ordinate and allow the exchange of data between

federates. The RTI itself can take a number of forms and as such is not part of the
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HLA specification; the federates only need to be aware of the functional interface

provided by the RTI.

Figure [3.6] illustrates the simulation of federates in a federation. The federates do not all

have to be simulation models; they can represent other entities such as data collectors or

even real-time human participants as in the case of war game scenarios. Figure [3.6]

depicts three federates - a data collector, simulation-i and simulation-2. Each of these

federates has a federate ambassador that enables it to communicate with the RTI. The

RTI in turn employs a RTI ambassador that enables it to communicate with the federate

ambassador. This separation of integration facilities allows the RTI to be reused in

different federations irrespective of the type of federates involved.

The object models in conjunction with the HLA rules can be viewed as providing an

explicit coupling scheme. However, HLA does not contain a knowledge representation

scheme, akin to a SES in DEVS, that aids a modeller in synthesising models. Recently

DEVS has been extended to incorporate HLA in DEVS/HLA [Zeigler 99], where DEVS

provides a mechanism for synthesising models from a family of component models while

HLA provides a standard that ensures that the component models of the synthesised

model can interoperate and provides a mechanism for simulation.
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Figure 3.6 Simulation of federates in HLA

3.6 Conclusion

In this chapter approaches in the literature for structuring model objects (both entities

and models) with a view to aid the building of composite models were discussed. Three

issues need to be addressed in developing a large scale modelling framework. Firstly, the

models need to be encapsulated to create component models. Secondly, a coupling

scheme needs to be devised that specifies the interaction between the components in a

composite model. Finally, a knowledge representation structure needs to be created that

incorporates compositional knowledge about the domain to be modelled and guides the

synthesis of models.
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Various approaches to modifying the traditional world views, with the objective of

creating a more modular representation, were reviewed. The modified process view of

Cota and Sargent [Cota 92], the PAInt [Davis 96] approach, proposed by Davis, to

integrating the process and activity modelling so as to support hierarchical modelling,

and the Entity-Connection framework were some of the approaches reviewed in this

context.

The DEVS methodology, reviewed in this chapter, provides a comprehensive framework

that supports large scale modelling. It employs an explicit coupling scheme and supports

the creation of hierarchical models. A structure termed system entity structure (SES) was

proposed that described the various facets of a system and aided synthesis of composite

models. The SES is pruned in a top-down fashion to create a particular instance of a

composite model. The SES includes taxonomically, decompositional and coupling

knowledge to help synthesise composite models.

In the next chapter a framework that supports large scale modelling by allowing the

synthesis of composite models in a bottom-up fashion is described. In addition, rather

than employing a single global structure to incorporate the knowledge required for

synthesis, a distributed structure is devised. Further, the ability to create composite

models is supported in all the approaches in the literature by extending the same

mechanism that is used to create individual models from modelling entities. In Chapter 5,

the need to move away from this 'single formalism' description is discussed and an

approach that makes this distinction is described.
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CHAPTER 4

Parallel discrete event simulation - a review

This chapter reviews parallel discrete event simulation (PDES), also sometimes referred

to as distributed simulation. The chapter begins by defining the problems involved with

simulating a model on multiple processors. PDES techniques from the literature are then

presented. This is followed by a review of PDES, and its application in the area of

manufacturing systems simulation. Finally, a comparison of the various techniques is

presented.

4.1 The problem

PDES is concerned with the simulation of a discrete event simulation model on multiple

processors. The motivation behind applying PDES techniques in the supply chain

modelling paradigm developed in this thesis is two fold. Firstly, the nature of the supply

chain modelling paradigm is such that a number of autonomous models that constitute

the supply chain are integrated together to create a single model. For the simulation of

this model, a synchronising mechanism is required that ensures that the constituent

models run in step. The second issue that PDES addresses is the potentially large model

sizes that can result in the modelling of the supply chain. The PDES paradigm, by
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allowing concurrent execution of the models, results in improved execution time and

consequently makes the simulation of supply chains more feasible in practice.

One approach to the synchronisation problem is to use a global clock to synchronise all

the models in the supply chain, allowing execution to proceed in a lock step fashion.

When few events occur simultaneously at a single point in simulation time, this

approach, termed synchronous PDES in the literature, performs badly in terms of

execution time since the number of events that can be simulated concurrently at each

clock cycle is small [Fujimoto 90]. The primary focus of PDES literature has been in the

simulation of asynchronous systems, where events are not syncbronised by a global clock

but occur at irregular time intervals. As models of manufacturing systems tend to belong

to this class, i.e. asynchronous models, the rest of this chapter is concerned with

asynchronous PDES teclmiques.

4.1.1 The structure of asynchronous PDES

Figure [4.1] depicts the structure of a typical PDES. This paradigm, first proposed by

Chandy and Misra [Chandy 79], has been used as the basis in the literature to describe

PDES models. The physical system is viewed as being composed of a number of

physical processes (PP), that interact with each other during the course of its operation.

For example, if the physical system being modelled is a machine shop, machines,

buffers, conveyors could be viewed as the PPs. The physical system is modelled by
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constructing a simulator consisting of logical processes (LP), one for every PP in the

physical system. Each LP includes state variables, an event list, and a local clock, that

together represent the state space and event list of the equivalent serial simulator.

Interactions between PPs are modelled by sending and receiving time stamped messages

amongst corresponding LPs. Simulation proceeds by every LP processing the events in

its input queue in time stamp order. Processing of event messages may involve the

modification of state variables, the scheduling of one or more events, the sending of

messages, and the updating of the clock.

Figure 4.1 An example of an LP framework

4.1.2 Causality errors

The objective of PDES algorithms is to maintain the causality relationships between the

events in the simulation and thus avoid causality errors. The following example (Figure

[4.2]) illustrates this.
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20
	

E3

Time	 LPj	 LP2

Figure 4.2 Causal relationships

Consider two events Ej at LPj scheduled at time 10, and E3 at LP2 scheduled at time

20. If Ej schedules an event E2 °' LP2 at say time 15, then it is possible that the event

E2 could affect the execution of event E3, thus requiring the sequential execution of

events Ej, E2, E3. In other words, from the perspective of the physical system the cause

must always precede the effect. However, it is also conceivable that the events Ej, E2,

E3 are all independent and can be executed concurrently. The objective of the PDES

algorithm is to guarantee that causality errors are avoided, but on the other hand, any

inherent parallelism in the simulation is exploited to the utmost.
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4.2 PDES algorithms

PDES algorithms can be broadly classified as belonging to two categories: conservative

approaches or optimistic approaches. The conservative approach executes events only

when it can guarantee that it is safe to do so. Causality errors are strictly avoided by this

mechanism. Optimistic techniques take a different approach. Events are processed

without guaranteeing causality errors. When a causality error is detected, a rollback

mechanism is invoked to recover from the error.

More recently hybrid approaches (conservative/optimistic) have also been proposed.

They make use of a combination of the two appToaches to a'oid casa1iCy enoi. The

following sub-sections describe these approaches in more detail.

4.2.1 Conservative approach

4.2.1.1 The Chandy and Misra approach

Early attempts at PDES were based on the conservative approach. Chandy and Misra

[Chandy 79], and Bryant [Bryant 77], independently developed the first PDES

algorithms. The algorithms are based on the asynchronous paradigm presented in section

4.1.1. The links between the different LPs are statically determined, and as mentioned

earlier, each LP sends messages in increasing order of time. The last message received on

a lini can thus be used as a lower bound of the time stamp of any subsequent messages

that will be sent on that link. Messages arriving on each link are stored in a FIFO queue,

which because of the fact that messages are sent in an increasing order of time, is also in
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increasing order of timestamp. A clock is associated with every incoming link of an LP.

The clock is set to the timestamp of the message at the top of the queue or if the queue is

empty, it is set to the time stamp of the last received message.

Each LP repeatedly selects the link with the smallest clock time. If the queue associated

with this link contains a message, it is processed or else the LP blocks (waits). Chandy

and Misra [Chandy 79] proved that this mechanism guaranteed that no casual errors

occur. However, a cycle of empty queues can occur under some circumstances and this

could result in a deadlock, i.e. each LP in the cycle is waiting for a message from the

other, and consequently, the simulation grinds to a halt. Figure 4.3 illustrates this. LP1 is

waiting for a message from LP2, LP2 is waiting for a message from LP3 arid finally LP3

is waiting for a message from LPj. All three LPs are blocked even though each of the

LPs has messages in other queues that are waiting to be processed.

Null messages were proposed [Chandy 79] as a mechanism to avoid deadlock. Unlike

other messages null messages have no counterpart in the physical system. They are used

only for synchronisation purposes. A null message sent from LPj to LP2 , with

timestamp tnull, is a commitment by LPJ to LP2 that it will not send a message with

timestamp smaller than tnull. Null messages are sent by an LP on all its output links after

the processing of every event. The clock value of every incoming link is used to obtain a

lower bound of the next event to be processed. This value can be coupled with

knowledge specific to the simulation to arrive at a lower bound of timestamp at each

link. For instance, a minimum service time may be available for any message passing

83



5

LP2

Parallel discrete event simulation - a review

through an LP. This could be taken into account while determining the time stamp for the

null message. The receiver of the null messages can then compute new bounds on its

outgoing links and so on.

LPj

U
	 .LA11IiLJ .Jucuc

Not empty

Figure 4.3 An example of deadlock

Empirical evidence [Seetalakslmui 78] has suggested that in practice a large proportion of

messages tend to be null messages, and this can adversely affect performance of the

simulation. A variation [Nicol 96] of the null messages protocol is to send null
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messages only when requested by another LP. This technique significantly reduces the

amount of null messages traffic. However, null messages take a longer time as each

message requires two messages to be sent- first, a request for a null message and then the

actual null message. 	 Another variation in resolving the null message congestion

problem is to entirely do away with null messages. A deadlock detection and recovery

algorithm has been proposed in the literature [Chandy 81]. This algorithm works in a

similar fashion to the deadlock prevention mechanism, except null messages are not

employed. The simulation progresses until it deadlocks. The deadlock is then detected

and a deadlock recovery scheme is used to resolve it.

In this scheme a simulation is in one of the two phases viz.:

1. Parallel phase: Simulation proceeds as in the null message algorithm until it

deadlocks. An algorithm is used to detect the occurrence of deadlock. Misra [Misra 86]

presents one such algorithm.

2. Phase interface: Initiate computations that advance the LP clocks and resolve the

deadlock.

A centralised controller is used to synchronise the above actions. The controller is

responsible for detecting deadlocks and ordering the LPs to move into the phase interface

stage, and once the deadlock is resolved to move back into the parallel phase. The phase

interface scheme works by exploiting the fact that it is always safe to process events with
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the smallest time stamp. This is similar to sequential simulation. Thus, until a deadlock is

detected, deadlock detection and recovery based algorithms work in an identical fashion

to a deadlock avoidance scheme without null messages. Once a deadlock occurs,

sequential processing of events is resorted to advance simulation time and resolve the

deadlock.

4.2.1.2 Synchronous approach and conservative time windows

A number of PDES approaches belonging to this class exist in the literature [Ayani 89]

[Lubachevsky 89]. These techniques are based on the following principle. A global

synchronisation function is used to choose, among all the LPs, a set of events that are

safe to be processed. These events are then processed. This procedure of determining safe

events and executing them is continued iteratively. The different approaches vary in the

way that safe events are selected. The basis for many of these algorithms is the notion of

distance between LPs. The distance metric between two LPs provides a lower bound of

the time that it takes for an event to propagate from one LP to the other, and possibly

influence the execution of events in that LP.

For example, consider three LPs - LPj , LP2, and LP3. If the minimum time for an event

to be propagated from LP1 to LP2 is 10 and from LP2 to LP3 is 15, then

distab 10; and distbcl5;
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Table [4.1] describes the events scheduled in the three LPs:

LPj	 LP2	 LP3

Ej 1 at 5	 E2] at 6	 E3 1 at 18

E]2 at 6	 E22 at 17	 E32 at 19

E]3 at 30	 E23 at 20	 E33 at 100

Table 4.1 Example of event scheduling in a synchronous approach

At the start of the simulation the safe events are Ejj, E21, and E3J, as the distance

between them prevents them from interfering with each other. At the next step, E12 and

E32 are safe to process, whereas E22 may be influenced by E12 as the distance between

them is only 10.

In practice a large proportion of time may be wasted in searching for safe events.

Lubachevsky [Lubachevsky 89] proposed the use of a time window to limit the search

space of events. An important issue in such a scheme is the size of the window. Too

small a size will limit the number of events for concurrent execution and too large a size

will mean that the simulation will behave in a similar fashion to a simulation without a

time window, making the window managing overhead unjustifiable. In practice, the size

of the window needs to be determined by application specific information provided by

the modeller.
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4.2.2 Optimistic approach

As mentioned earlier, optimistic techniques do not strictly adhere to causal relationships.

Events are processed as and when they arrive. An error detection mechanism is used to

monitor the occurrence of causal errors. When an error is detected the system rolls back

and undoes the erroneous processing of events that caused it. Optimistic techniques can

be viewed as operating by constantly betting that the events processed will not result in a

causality error. The assumption here is that more often than not causality errors will not

occur, thus limiting the overhead due to rollbacks. Jefferson [Jefferson 85] refers to this

as the temporal locality principle and conjectures that in practice many applications

belong to this category. The time warp paradigm [Jefferson 85] is one of the most

popular implementations of optimistic PDES.

Time warp is similar to the conservative LP paradigm in so much as that each LP has its

own local clock and no global clock exists. However, LPs do not block when they can

not guarantee that an event is safe to process. Each LP has a single input queue into

which all the messages are stored in increasing order of time. The only constraint is that

LPs follow the local causality principle i.e. events must be processed by each LP in a

non-decreasing timestamp order. Execution on LPs continue until the local causality

principle is violated, i.e. a message (straggler message) arrives with a timestamp smaller

than the local clock, or more simply a message that should have arrived in the past

arrives later. As the local causality principle cannot be violated, the LP needs to rollback

to a time earlier than the time stamp of the straggler message. This is accomplished by

returning the state of the LP to the past, so that events can be processed in increasing
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order of time. The mechanism is termed time warp as LPs have clocks that may not agree

with one another, and these clocks may go backwards and forwards in time.

4.2.2.1 Rollback control and antimessages

As mentioned earlier when a straggler event is detected by a LP the rollback mechanism

is invoked. During the course of the simulation the state variables, and input and output

queues are constantly saved, so that they can be used to undo erroneous computation and

facilitate a rollback. However, an LP may have sent a number of messages to other LPs,

and these LPs in turn, based on these event messages, may have sent more messages to

other LPs. A mechanism is required to undo the effects of these messages so as to cause a

complete rollback. Jefferson [Jefferson 85] developed a technique based on the notion of

antimessages.

Every time a message is sent by a LP, a corresponding antimessage is stored in its output

queue. The antimessage is similar to the actual message except for a single type field.

Antimessages have a negative sign in that field whereas normal messages have a positive

sign. Messages and antimessages are treated by the LP in the same fashion, except,

antimessages do not cause any processing by the LP and they have a different queuing

discipline. Whenever a message and its corresponding antimessage find themselves in

the same input queue, they cancel each other. This property of antimessages makes it

useful in unsending a previously sent message because of a rollback.
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Consider the following example. Let a message with timestamp 100 arrive at an LP

which is at virtual time 150. Clearly, this is a violation of the local causality principle,

hence a rollback is ordered. The first step in the roll back process is to restore the state of

the LP to a time before 100. The next step is to undo the effect of all messages sent to

other LPs between the virtual time 100 and 150. This is accomplished by sending all

messages in the antimessage queue that have a timestamp between 100 and 150. The

antimessages in effect, now chase their corresponding actual messages and annihilate

them. The maimer in which the antimessage catches up with its corresponding message is

described by the three possible cases that may occur.

1. The original message has been received by the LP but is still in the input queue

waiting to be processed. Clearly, in this case the virtual clock of the LP is behind the

timestamp of the message, as otherwise a rollback would have occurred. The antimessage

gets queued in the input queue and as both message and antimessage cannot exist in the

same queue, they annihilate each other, leaving the LP with no record of that message.

2. The second case is if the original message has been processed or being processed. In

this case the virtual time of the LP will be greater than the timestamp on the antimessage,

as the original message has been processed and virtual time has moved on. The

antimessage now has a timestamp less than the virtual time of the LP. This causes the LP

to rollback, bringing back the original message to the input queue, and maybe sending

other antimessages to other LPs where again similar actions are taken if the antimessage

has a lower timestamp than the virtual time of the LP. The rollback brings the input
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queue to the same state as case 1, and consequently the message and antimessage

annihilate each other.

3. The final case is if the antimessage arrives earlier than the actual message. This is

possible because the underlying message passing mechanism does not enforce message

ordering, i.e. a message may arrive in an order different from when they were sent. In

this case the antimessage waits in the queue until its corresponding message arrives. In

the meanwhile the LP may process the antimessage; however the antimessage results in

no computation by the LP, and the only effect is that the virtual clock of the LP is

updated. When the actual message arrives it causes a roll back which brings the

antimessage back into the input queue and the message and antimessage annihilate each

other.

4.2.2.2 Global virtual time

An important issue not addressed so far is the fact that the time warp mechanism seems

to require infinite memory space or in other words the memory requirements for a

simulation run is not bounded. State vectors and input output queues of the model need

to be intermediately saved at different points in simulation time to guarantee successful

rollback. Secondly, if individual LPs are constantly moving in forward and backward

directions ( with respect to time), how does one determine the extent to which the

simulation has progressed? Time warp exploits the property of global virtual time (GVT)

to overcome this.
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GVT at real time r is defined as follows:

GVT = Minimum of { (The virtual clocks of all LPs at time r) and (The virtual

timestamps of all messages in transit, i.e. messages that have been sent but not

received.))

GVT thus provides a lower bound of the furthest a LP can roll back. It can be viewed as

a floor beyond which LPs cannot roll back. All states saved before GVT can be

reclaimed as it is impossible for an LP to rollback beyond GVT.

As mentioned earlier, the virtual times of the LPs may not agree with each other and in

addition, are not restricted to moving in one direction, i.e. virtual time may go forward or

backward. However, GVT always moves forward although not necessarily at a constant

rate, making it a virtual clock for the entire system, and thus being a measure of how far

the simulation has progressed.

A number of algorithms [Lin 89] {Samadi 85] exist in the literature for calculating GVT.

The basis of most of them is to temporarily stop the simulation and order all LPs to send

information regarding their virtual clocks to a central controller. The central controller

then uses this information to calculate the GVT. The frequency of calculating GVT is a

trade-off between space and time. Calculating GVT frequently makes efficient use of

memory. However, because the simulation needs to be paused, the progress of the
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simulation suffers. On the other hand, infrequent calculation of GVT benefits execution

time at the expense of increased memory requirements.

4.2.2.3 Variations of time warp

A variation to the rollback mechanism is to employ lazy message cancellation [Gafni

88]. In time warp when rollback occurs messages are cancelled aggressively, i.e.

antimessages are immediately sent to cancel messages sent earlier. In lazy cancellations

antimessages are not immediately dispatched. The LP waits to see if the re-execution of

roilbacked computations regenerates the same message. If the same message is generated

there obviously is no need to send the antimessage.

For example, consider a LP rolls back to time T, and there is an antimessage with

timestamp T+t. If lazy cancellation is employed the antimessage is not sent until the

virtual clock passes time T+t. At this time if the rolibacked computation resulted in an

identical message, the antimessage is not sent, else, the antimessage is sent.

Another variation is to only employ local rollback. In this technique messages are not

sent immediately. They are only sent to other LPs after the timestamp on the message is

greater than GVT, in other words only when the sending LP can guarantee that in a

rollback the message will not be required to be cancelled. Thus, antimessages are not

employed in this scheme.
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4.3 Conservative versus optimistic techniques - a critique

An important factor in the performance of a PDES algorithm is the extent to which

inherent parallelism in the execution of events by LPs is exploited. At one end of the

spectrum is the classic Chandy and Misra [Chandy 79] conservative approach where if,

for example, it is possible that an event EA on LP A may affect EB an event on LP B,

then they must be executed sequentially with EA first executed followed by EB. If, for

instance, in the simulation EA seldom affects EB then performance can be degraded

severely. In practice, conservative approaches depend on look-ahead information to

improve performance. A number of studies [Fugimoto 90] have shown the reliance of

conservative approaches on the availability of look-ahead information. In addition, as

mentioned earlier, look-ahead information is also required (not in the case of deadlock

detection and recovery schemes.) to prevent the simulation from deadlocking. A

consequence of the dependence of conservative approaches on look-ahead information is

that the simulation modeller needs to concern himself with the details of the

synchronisation mechanism. In addition, modification of the simulation model is made

more complicated as the modeller needs to verify that any changes to the model will not

affect the look-ahead properties of the model. Automatic extraction of look-ahead

information from models has been investigated by a few researchers [Cota 90] [Bagrodia

90]. However, the application of such techniques are still in their infancy and are

restricted to simple cases.

In contrast, optimistic approaches try and exploit as much parallelism present in the

simulation as possible. They do this by executing events concurrently irrespective of
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their causal dependence on one another. Any causal errors are then detected and the

effects rolled back. Thus, optimistic approaches have no need for look-ahead

information. An important consequence of this is that the modeller is free from

concerning himself with issues of synchronisation and can concentrate on the modelling

effort instead. This is much like in the case of development of traditional sequential

simulations, where the modeller is oblivious to the details of the implementation of the

event list. Optimistic schemes also avoid the potential for deadlock as LPs do not block

in anticipation of messages. The flip side of this is that optimistic approaches incur

additional overheads compared to conservative approaches as they are required to save

states periodically and perform rollbacks to undo incorrect computations. This can be a

problem, particularly if the simulation exhibits 'thrashing' behaviour where most of its

time is spent in executing incorrect events and undoing their effect by rolling back.

Further, the optimistic mechanism (executive) is more complicated to implement than its

conservative counterpart. However, this is not a significant disadvantage, as the cost of

developing an optimistic executive needs only to be paid initially during its development.

Once a robust optimistic mechanism is implemented, the benefits of simpler model

development can be reaped.

The choice of PDES scheme for a particular application depends on a number of factors.

If for example, the application exhibits good look-ahead characteristics and a simple

simulation executive is desired, then good performance can be derived from an executive

based on the conservative approach. On the other hand, if look-ahead information is

limited or user transparency of simulation protocol is paramount then optimistic
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approaches provide an alternative choice of PDES scheme. Table [4.2] surnmarises

issues relating to conservative and optimistic approaches.

Conservative	 Optimistic
Parallelism	 Limited by worst case Not limited

scenario.
Performance	 Depends on the quality of Can	 exhibit	 thrashing

look-ahead present in the behaviour
simulation.

Overheads	 Blocking till the avoidance of Overhead involved in state
causal	 errors	 can	 be saving and recovery.
guaranteed, and the overhead
of deadlock avoidance and

__________________________ recovery.	 __________________________
Development of simulation Simple	 More complex, and harder to
executive______________________________ verify robustness.
Development of simulation Complicated, requires the Higher 	 degree	 of
models	 modeller to be aware of transparency	 of

synchronisation	 issues. synchronisation mechanism
Harder to modify models. 	 and more robust to model

___________________________ change.

Table 4.2 Comparison of conservative versus optimistic schemes

4.4 PDES based simulation languages

Although research in the area of PDES has been conducted for many years during which

a number of PDES algorithms have been proposed and implemented, the use of PDES

techniques has not been adopted by the practising simulation community at large

[Fujimoto 93]. Page [Page 93] has attributed this mainly to the PDES community

ignoring the methodologies adopted by the mainstream simulation community in the

pursuit of performance gains. Thus in many cases the simulation techniques developed
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by PDES researchers have tended to be contrived and bode little relevance to the

requirements of simulation modellers. In order to remedy this a number of researchers

[Bagrodia 90] [Waldorf 94] [Woimacott 96] [West 88] have investigated the

development of PDES based simulation languages that incorporate many of the features

of traditional sequential simulation languages.

4.5 PDES of manufacturing systems - a review

Chen and Peng [Peng 96] argue that although PDES has shown promise in a number of

areas such as telecommunications, computer networks, battlefield simulations etc, its

implementation in manufacturing simulation has not been very successful to-date. They

attribute the failure to lack of suitable decomposition techniques, oversimplification of

the model so as to make it suitable for PDES, and the use of exotic parallel computing

platforms.

Some of the earliest work in application of PDES techniques to manufacturing was

conducted by Shires [Shires 84]. The objective of the project was to develop a multi-

processing framework for the simulation of a flexible manufacturing system (FMS). The

entities in the simulation were limited to buffers and machines. The scheme used was

different from other PDES attempts. Their ideas were influenced by traditional parallel

processing concepts. The entire simulation was divided into five modules, viz, one

module to simulate the machine centres, another to simulate all the buffers, a third was

used to model operation decisions, a fourth module was responsible for the collection of
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statistics and animation, and the fifth module managed the event list and super-executive.

The modules were programmed in Pascal and executed on an Intel SYS 310 computer

controlling a set of slave processors via an Intel multibus.

A drawback with this approach is that it is not scaleable. A single event list and global

clock is used, resulting in a bottleneck. In addition, in practice the communications

overhead may be significant as the entities in the model are tightly coupled and a large

proportion of time may be spent in message passing.

A similar approach was used by Hon and Ismail [Hon 91]. Each entity in the simulation

was represented by a process that was concurrently executed on a transputer. A central

"monitor" process was cormected to all the entity processes and was responsible for

monitoring event and state changes of the entities. This system was used to simulate a

cell containing an AGV, a robot, three identical machine centres, and four buffers. The

system was implemented on OCCAM based transputers.

Both of the above mentioned approaches resorted to very fine grained decomposition.

Entities at the cell level were mapped on to different processors. The interactions

between entities tend to be very strong in such an approach, and consequently, in

practice, conirnunication overheads negate the benefits of concurrent execution.

A few researchers have tried to exploit the structure of manufacturing systems to arrive at

more efficient PDES algorithms. Nevison [Nevison 1990] proposed a simulator that
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exploits the closed loop structure of some flexible manufacturing systems. The model

consists of a system of conveyors that feed a number of assembly stations. Parts and WIP

are routed by transfer points, under computer control, to appropriate assembly stations.

The system was defined to be composed of eight building blocks. Nevison argues that

one of the primary reasons that the conservative (Chandy and Misra) algorithm performs

poorly is due to the flooding of null messages. He developed a set of rules, taking the

structure of the system into account, that determine when a deadlock can occur. These

rules are used as a basis for dictating when null messages were sent. A network of

transputers was used as the hardware platform for the simulation.

Bhuskute and Mize [Bhuskute 93] exploit the deterministic routings of some

manufacturing systems. A model is described by three parameters: the number of

machines M, the number of parts N, and a graph that determines the routing of each part.

Models are described by varying these three parameters. Each processor executes a sub-

model with its own event list. Message passing is used to simulate dependencies between

sub-models. The system was implemented on an Intel ips/2 concurrent computer with 32

nodes.

The Nevison and Bhuskute/Mize approaches both sacrifice generality and oversimplify

the model in pursuit of improved execution efficiencies. For instance, Bhuskute and

Mize ignore transportation mechanisms and parts are made to follow deterministic

routings. In practice manufacturing systems are more complex and such assumptions

reduce the fidelity of the simulation.
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In addition, the majority of approaches base their simulation on "exotic" parallel

computing hardware. Manufacturing organisations seldom have the expertise or

infrastructure to support these hardware platforms.

Fujii [Fujii 94J describes applying PDES techniques to a CIM system. The factory is

decomposed into areas. Each area is assigned to a processor and simulation is conducted

in a sequential manner. Transportation systems connecting all the areas are modelled on a

separate processor. Since the areas do not depend on each other strongly, simulation for

the most part can continue independently. A time bucket algorithm, a variation of time

warp, was used for synchronisation. The simulator was implemented on a network of six

SPARC workstations.

This approach, to an extent, addresses the problems of decomposition and hardware

platforms. A CIM factory is decomposed into loosely coupled areas, thus reducing their

interdependence and consequently reducing message traffic. In addition, a network of

workstations, as opposed to dedicated parallel computers or transputers, is employed to

implement the simulation.
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Developed by	 Synchronisation scheme	 Hardware platform

Robert and Shires	 N/A	 Intel SYS 310 computer

[Shires 84]	 with multiprocessing slave

computers	 connected

through Intel multibus

Nevison [Nevison 90]	 Conservative	 Transputer network

Hon [Hon 91]	 Conservative	 Transputer network

Bhuskute [Bhuskute 93]	 N/A	 Intel	 ips/2	 concurrent

computer with 32 nodes

Fujii [Fujii 94]	 Optimistic	 Six	 Sun	 SPARC

workstations connected by

ethernet

Table 4.3 Summary of PDES in manufacturing

4.6 Conclusion

In this chapter a literature review of PDES was presented. The motivation behind using

PDES techniques is two fold. Firstly to provide a mechanism to synchronise the models

that constitute the supply chain and secondly execution speed. The large scale nature of

supply chain models necessitates an efficient simulation engine, so as to allow the

simulation to be performed in a reasonable time and thus be practical. PDES techniques

can be broadly classified into conservative and optimistic techniques. Conservative

techniques process events only when it can be guaranteed that causality errors will not

occur. On the other hand, optimistic techniques execute events without avoiding
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causality errors; if a causality error is detected, the simulation is rolled back to undo the

causality error. Peng and Chen [Peng 96] believe that PDES has not been successful in

practice in the simulation of manufacturing systems for two reasons. One that a

generalised decomposition scheme does not exist, and second that expensive parallel

processing platforms have been employed in the past to implement the simulator. In

chapter 6 a PDES scheme is presented that takes a more coarsely grained approach, by

concurrently simulating individual models in a supply chain rather than individual

entities, than the reviewed attempts at applying PDES to manufacturing systems

described earlier.
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CHAPTER 5

A framework for composite modelling

The objective of this thesis, as previously mentioned, is to develop a framework for the

modelling and simulation of manufacturing supply chains. Three broad requirements

were identified in Chapter 2 for such a framework. The framework must:

• Address the distributed nature of component models

• Provide a mechanism for integrating component models to create model composites

• Provide a mechanism for executing (simulating) the model composites

In this chapter and the next (Chapter 6) a modelling framework HerMIS (acronym for

Heterogeneous Model Integration and Simulation) that satisfies the above requirements

is presented.

5.1 Design rationale

In this section some of the ideas, concepts and features that influence the design of

HerMIS are introduced.
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5.1.1 Heterogeneous composite modelling

An important aspect in supporting composite modelling is the mechanism employed to

describe the interaction between component models in a composite. Figure [5.11 depicts

the various levels of interaction in a modelling environment. In general, approaches in

the literature that support composite modelling, reviewed earlier in Chapter 4, employed

a uniform mechanism to describe interaction among the various levels of modelling. For

instance, in the case of DEVS [Zeigler 84] and CFG [Cota 94] interactions between

modelling elements were described using an explicit coupling scheme that mapped

input/output ports from one modelling element on to another. Similarly, models and

composite models were also created by coupling modelling objects through the same

explicit mapping of the input/output ports. Again in the case of PAInt [Davis 96] the

process-activity interaction model is used to express interaction at all levels of

composition.

interaction	 aggregation	 integration

Modelling elements	 Modelling objects	 Models	 Composite
Models

Figure 5.1 Levels of composition ( modified from [Davis 96])

A uniform interaction mechanism provides a seamless modelling environment in which

models are composed in a hierarchical manner. However, as the nature of interactions

occurring at each level of composition are different, building models using a uniform

compositional approach may complicate the modelling process. For instance, the

process-activity formalism used in PAInt leads to a conceptually simple mechanism for
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modelling interactions between modelling elements. This is because at this level it is

natural to think in terms of activities and processes. However, at the composite

modelling level, representing interaction between models is harder to conceptualise using

the process-activity interaction mechanism. For example, consider a frequently occurring

inter-model interaction: transferring temporary entities from one model to another. Here,

a port based explicit coupling scheme, similar to an interconnection graph (IG), which is

employed in the control flow graph formalism [Cota 94], may provide a conceptually

simpler representation.

One advantage of making a distinction between the manner in which models and

composite models are built is the support such a framework provides for heterogeneous

modelling. By heterogeneous modelling it is meant that models that compose a

composite model are free to be expressed in a variety of modelling formalisms. In

contrast, in the case of approaches reviewed that support composite modelling (DEVS,

CFG, PAInt), composite models were homogenous. For instance, in the case of DEVS all

the models that compose a coupled model have to be DEVS (coupled or atomic) models.

Heterogeneous modelling allows a modeller to choose a formalism for model building

that is suitable for the modelling task. A formalism may be chosen because of its

naturalness for the task. If, for instance, a discrete part manufacturing system is being

modelled, a formalism supporting a material based view may be more appropriate than

say a machine based approach. The knowledge and expertise in using a particular

formalism can also play a part in the selection of a modelling formalism. In addition,

factors such as availability, popularity, cost etc. can influence the choice of a modelling

105



A framework for composite modelling

tool and, consequently, the modelling formalism employed.

5.1.2 Composite model synthesis

Creating composite models involves two activities:

1. Selecting appropriate models that constitute a composite.

2. Specifying how the constituent components in a composite interact.

As mentioned earlier, a number of composite modelling approaches required the explicit

specification of the port couplings involved. Such a scheme has the advantage of being

based on a sound set theoretical foundation, as demonstrated by the DEVS methodology.

However, creation of composites can become quite user intensive. This is particularly so

when a large number of models are involved in the composition.

An obvious solution to this problem is to use a knowledge based mechanism to guide

composition. One such approach reviewed earlier employed a system entity structure

(SES) to contain information of models and their possible couplings. The SES is pruned

based on a given criterion to arrive at a suitable composition. Although using a SES

simplifies composition, a SES needs to be created in the first instance. This can be quite

a complicated process and involves the complete exposition of all possible models in a

system and their various couplings [Davis 96]. Consequently, the resulting SES could be

very large and unwieldy. This is particularly so in the case of variable structure

composites, as every possible coupling of a variable structured system needs to be

explicitly represented.
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In addition, the following other reasons make a compositional approach based on a SES

unsuitable for structuring models that compose a supply chain:

Hierarchical focus: The SES is fundamentally a hierarchical structure. It represents a

variety of decompositions of a particular system, thus allowing for a top down synthesis

of models. Consequently, if one looks at a SES, the manner in which the various entities

interact with one another is not readily apparent. One has to look at the composition tree

in conjunction with the SES for this information. In the composition of models of supply

chains one is primarily concerned with identifying the component models and modelling

the manner in which they couple and interact with one another. Hence, it may seem that a

network structure that focuses on the connectivity of the various entities as opposed to a

tree structure (SES) that focuses on decomposition would be more appropriate in guiding

composition.

Figure [5.2] illustrates this point by considering the supply chain of a hypothetical

personal computer manufacturer. Figure [5.2 a] depicts a hierarchical representation

while figure [5.2 b] depicts a network representation of the supply chain. Looking at the

network representation the structure of the supply chain and the interaction of the various

components is readily apparent.
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PC supply
chain

order

Motherboard	 Disk drive	 PC assembly
manufacturer	 manufacturer	 shipment

a. Heirarchical representaion
Motherboard
manufacturer

PC assembly

Disk drive

b. Network representation
	 manufacturer

Figure 5.2 An example of a supply chain of a personal computer manufacturer

Isomorphic constraint: The maimer in which a system is decomposed in a SES can

affect the subsequent ability to synthesise models from it [Davis 96]. Let us again

consider the example of the personal computer manufacturer illustrated in Figure [5.2].

The interactions between the entities, viz. Monitor manufacturer, Motherboard

manufacturer, Disk drive manufacturer, and PC assembly, decomposed from the PC

supply chain node is described by a composition graph. Care must be taken in

developing this composition graph as subsequent specialisation or decomposition of any

of these entities will be restricted to this coupling scheme. For instance, say, if the

personal computer manufacturer deals with two types of monitor manufacturers, namely
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a flat screen LCD monitor manufacturer and a CRT monitor manufacturer. The two

monitor manufacturers will be represented in the SES as specialisations of the Monitor

manufacturer. The interaction between the two monitor manufacturers and the PC

assembly entity may be quite different. Order specification, for example, can be quite

different in the two cases. Orders for CRT monitors may include information about tube

size, pitch size etc. In contrast, the LCD display may include type of display (TFT, active

matrix), pixel resolution etc. Thus, the ability to decompose or specialise entities in the

SES is restricted by the type of interaction between the entities. If the nature of the

system modelled is such that the interactions between entities is fixed for all possible

subsequent specialisation and decomposition, then creating a SES is not a problem.

However, if this is not the case, the creation of a SES and the subsequent synthesis of

models from it can be quite difficult.

The need for decomposed or specialised entities in a SES to be isomorphic is in part due

to the way in which the composition graph is structured. The composition graph

incorporates information about what other entities a particular entity interacts with and

the way in which this interaction occurs, i.e. the coupling scheme. If these two aspects

can be described separately rather than be combined in a single structure, then it may be

possible to postpone the description of the exact nature of the interaction to a more

detailed level of decomposition or specialisation, thus relaxing the need for decomposed

or specialised components to be isomorphic.

Global nature: Knowledge about model composition of an entire system is encoded

within the SES. If models belong to more than one SES, as in the case of models in a
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supply chain, each SES needs to be created individually, resulting in repetition. An

alternative is, rather than employing a global structure to represent information required

for composition, this information can be distributed among the various models. This

allows the model and knowledge of how it interacts with other models to be created and

maintained by the owners of it, thus allowing for collaborative model development.

5.2 Functional view of the architecture

In this section and the next the composite modelling framework HerMIS is described. A

functional view to better illustrate the requirements of the framework is first presented.

This is followed by a process view that describes all the elements of HerMIS and how

they support the composite modelling process.

Model Base

Virtual Computer
Models

Composite Models

Model Configurator	
I	 I 

Super Executive

Graphical User Interface

• Uses

5.3 A functional view of the composite modelling framework
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Figure [5.3] illustrates the different function modules and their interrelationship. The

modules can be classified as belonging to two categories; those that support model

composition, and those that support model execution.

Model composition

The modules that belong to this category are involved in providing support for the

creation of composite models. Activities supported include model creation, access,

composition (integration), and reuse.

Model base

The function of the model base is to act as a repository of models (atomic as well as

composite). The model base provides functions for model searching, based on user-

defined criteria, model access, and model storage. A model builder can search for

component models for a composite model or save models for future reuse.

In addition, information regarding the function and the requirements for interfacing with

other prospective models need to be stored in the model base. A mechanism to describe

the types of temporary entities that the model consumes and produces in a composite is

required.

Aspects of security and control need to be addressed by the model base. Models may be

viewed as proprietary information. Functions that allow the imposition of restrictions on
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model access and use need to be provided. Users may be granted privileges such as-

access only, permission to modify, permission to integrate and create composites etc.

Model configurator

The function of the model configurator is to facilitate the building of composite models.

The model configurator uses the information in the model base to create composite

models. Composite model builders (they may be independent of model builders) use the

model configurator to describe the different components that constitute the composite

and their interrelationship. As a minimum, a mechanism to specify the inter-model

coupling for the transfer of information between the input/output ports of the constituent

models needs to be provided. Due to the heterogeneous nature of the modelling

framework, simple mapping between input and output ports may not be sufficient.

Models in a composite may employ different representation schemes for the exchange of

information. For example, a model representing a memory chip manufacturing facility

may represent a memory chip entity by a product code whereas another model may

describe the same memory chip by a different set of attributes, say name, type, capacity,

speed etc. Functions that translate between the different representations are required if

meaningful interaction is to occur between the models.

In addition, issues regarding validity (syntactic) of coupling needs to be addressed by

this module. Interface information of models can be used to guide or check the validity

of inter-model coupling. Finally, functions to save composite models for future reuse in

the model base need to be provided.
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Model execution

The modules in this category deal with the simulation of composite models in the model

base. The activities involved include creating a distributed computer network for the

concurrent execution of the models, mapping the constituent models of a composite

model onto appropriate processors, creating and managing the physical interface for

communication between the models and co-ordinating activities between the models

during simulation.

Super executive

This module is responsible for the synchronisation of activities between models. The

super executive is analogues to the simulation executive in a traditional modelling

environment. It is responsible for scheduling the inter-model activities, and the exchange

of temporary entities between models need to be co-ordinated so they are sent and arrive

at appropriate times.

The super executive could employ a simple mechanism that monitors the time-of-next-

event of all the models and schedules the activation of an event in the model with the

least time-of-next-event. Alternatively a PDES scheme may be used to exploit the

inherent parallelism in the models, allowing for concurrent execution of models.
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Virtual distributed computer

This module encapsulates the physical processors that compose the distributed computer.

Functions are provided for creating a network computer on which the individual

simulations can be distributed and will be executed. The simulations can be mapped on

to the processors and be simulated using distributed algorithms. A PDES algorithms is

presented in the next chapter that performs these functions.

5.3 Composite modelling framework - Process view

5.3.1 Model Taxonomy

As mentioned earlier one of the requirements for a composite modelling framework is a

knowledge based representation that aids the model building process. Three types of

taxonomic information are required for this purpose.

1. Classification of models based on what it models.

2. Classification of models based on the type of models it interacts with.

3. Information about how models interact with one another, i.e. coupling specification.

Three taxonomies viz. Model-Type, Model-Interaction hierarchies and Transfer-Entity

hierarchies are used for this purpose

Model-Type categorises models based on what they represent. Models that are classed as

belonging to a particular Model-Type all model the same system or class of system. For
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example, models that represent a computer motherboard assembly line could all be

classed as belonging to say, Model-Type motherboard_mfg. Similarly, all models of a

CPU manufacturing facility could belong to Model-Type mem_mfg.

To support composite modelling, in addition to knowing what a given model models, it

is also useful to know with what other models it may interact. Model-Interaction

hierarchies provide this information. Continuing with the example cited earlier of

computer motherboard manufacturers, a model of Model-Type motherboard_mfg could

interact with a model of a CPU production facility to create a composite model that

models a part of the motherboard supply chain.

Each Model-Type is associated with a Model-Interaction hierarchy. Model-Interaction

classes are structured within a Model-Interaction hierarchy based on the Model-Types

each class interacts with. If two models interact with identical Model-Types then they

belong to the same Model-Interaction class. Inheritance relationships are applied to

classes within a Model-Interaction hierarchy such that Model-Interaction classes

interact with at least all the Model-Types that a parent class interacts with.

Model interaction is described by using ports. A Model-Interaction class has a port for

every model it interacts with. The port specifies the Model-Type that it can be coupled

with and the Transfer-Entity hierarchy to be used for the interaction. Figure [5.4 a ]

illustrates a hypothetical Model-Interaction hierarchy used to model a personal computer

manufacturer. A variety of Model-Interaction classes can be defined depending on what
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aspect of a supply chain is to be modelled. Four model classes, viz. pc, pC_mem,

pc_mon, and pc_mem_mon, are depicted in Figure [5.4a]. Models belonging to class C

have a port that can be coupled with a customer model. Similarly, models belonging to

class pcmem can be coupled to a model that models a memory production facility. In

addition it can also be coupled to a customer model as it inherits a customer port from its

parent class pc. Depending on the objectives of a simulation study, models can be

selected from appropriate classes and coupled to create a composite model.
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Figure 5.4	 Class hierarchies: a) PC manufacturer, b) Computer monitor

manufacturer
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For instance if the relationship between the monitor manufacturer and the personal

computer manufacturer is to be investigated, a model belonging to class pc_mon can be

coupled with a model belonging to class monitor_manufacturer . Further, if a more

detailed study is deemed to be required, say the influence of the monitor tube supplier is

to be included, an appropriate model belonging to class mon_tube can replace the model

belonging to the monitor_manufacturer class. A model of class tube_manufacturer can

then be coupled to the mon_tube model to complete the network.

The Model-Interaction based classification guides composition by identifying the models

that can be coupled to produce meaningful composites. However, it does not say

anything about the manner in which the constituent models may communicate. This

information is derived from a Transfer-Entity specification. The Transfer-Entity

specification expresses the structure of the information that is exchanged between the

interacting models via the model ports. It is structured in a hierarchy of classes to

maximise reuse by inheritance. Figure [5.5] illustrates a part of the Transfer-Entity

hierarchy of a personal computer manufacturer. Here the structure of a Transfer-Entity

that represents an external order placed by a customer to the manufacturer is depicted.

For instance, the Transfer-Entity order_basic may be suitable for a 'rough cut' model

which does not take into account the various types of personal computers manufactured,

whereas order advanced may be appropriate as a Transfer-Entity in the case of a more

sophisticated model that takes into account the exact specification of the ordered

computer.
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Name: order basic
Information: order_quantity
of type integer

Name: order advanced
Information: order_quantity
of type integer; cpu_type of
type integer, memory_size,
harddrive_size of type integer

Figure 5.5	 Transfer-Entity heirarchy of a customer order placed with a PC

manufacturer

The Model-Interaction hierarchy in conjunction with the Transfer-Entity specification

provide a knowledge representation scheme that aids the synthesis of composite models.

The Model-Type and Model-Interaction taxonomy can be viewed as providing semantic

information for the synthesis of composite models, while the Transfer-Entity taxonomy

ensures syntactic compatibility.

5.3.2 Model selection

Model-Type and Model-Interaction taxonomies incorporate knowledge of models at a

structural level. The Model-Type taxonomy in conjunction with Model-Interaction

hierarchies of component models in a composite incorporates knowledge about the

structure of the composite model. However, in addition, knowledge of behavioural

aspects of models is required to aid the creation of composite models. As mentioned

earlier, Model-Types indicate the real world system a particular model represents and the

Model-Interaction hierarchy tells us of the structure of interaction between the models.

118



A framework for composite modelling

However, it does not tell us about the aspects of the real world system that are

incorporated in the model, or at what level of detail the model is constructed. For

example, various models of a motherboard assembly line can be created. At the simplest

level the system can be modelled by a queue that stores orders and a server with a fixed

delay that approximates the time taken to assemble a motherboard. More complex

models can be created that take into consideration the type of motherboard being created,

detailed sequencing and constraints involved in the assembly etc. Thus, in addition to the

information provided by the Model-Type and Model-Interaction hierarchy, an additional

taxonomy is required that classifies models based on the manner in which they abstract

the real world system in consideration and help the user (composite modeller) select

component model instances from Model-Type classes.

This additional taxonomy is harder to provide as a real world system can be modelled in

a multitude of ways to reflect various modelling objectives. Developing a comprehensive

methodology by which models that represent a common system can be classified and

related to one another, based on the degree of abstraction, is beyond the scope of this

thesis. However, an example of a classification scheme that may help as a starting point

in tackling model selection is given below.

At the most basic level, model selection can be totally delegated to the user (composite

modeller). The user can be presented with a list of models and then be requested to make

a selection. In addition, the models could be tagged with a document that provides

descriptive information about them. Further, models can also be classified based on the

performance measures they provide. For example, all models of a system that include
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levels of inventory as a performance measure can be classified together. Within a

performance measure class, further sub-classification is possible. For example models

that include inventory levels as a performance measure can be connected by a set of

directed edges such that an edge connects a model of lower resolution with a model of

higher resolution.

5.3.3 Agents and model synthesis

Software agents is a fast evolving and intensively researched area. The term agent has

become so pervasive that an all encompassing definition is beyond the scope here.

Instead the term agent is adopted as described by Nwana [Nwana 96]. Agents can be

broadly defined as a component of software and/or hardware which is capable of acting

exactingly to accomplish tasks on the behalf of the user [Nwana 96].

Agents provide an elegant paradigm for developing mechanisms for model synthesis

and execution in a distributed environment. Two types of agents are used in the

modelling framework: synthesis_agents and model_agents. The two agent types can be

viewed as supporting different aspects of the distributed nature of HerMIS. The

synthesis_agents enable distributed (collaborative) model development and

model_agents support the distributed execution of models. Synthesis_agents are

described here and model_agents are discussed in a subsequent section (section 5.3.5.1).

Synthesis_agents can be viewed as belonging to the class of agents termed 'interface

agents' [Nwana 96]. Interface agents are agents that co-operate with a user in achieving a

particular task. As the name suggests, synthesis_agents aid the modeller with the task of

synthesising composite models. It incorporates knowledge about the different model
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types it supports and their various interfaces. Synthesis _agents interact with the modeller

to help select and couple appropriate models to create composite models.

Figure [5.6] illustrates the architecture of a synthesis_agent. The agent consists of two

parts - a static component termed the agent delivery facilitator that interacts with a client

and facilitates the transport of the agent, and a mobile component functional unit that is

transported to the client and performs the actual function of the agent. The functional

unit consists of the following parts:

1. Agent control and interface: This provides an interface through which the modeller

interacts with the agent. In addition it is responsible for controlling the operation of

the agent.

2. Model repository: It holds the information required for synthesising composite

models. The model interaction hierarchies, entity classes, and model instances are

stored here.

3. Model-Interaction type selection method: This method guides the user in selecting

the appropriate Model-Interaction type for the component model. The information in

the Model_Interaction hierarchy is then used to determine the other

Model_Interaction types that can be coupled with it.

4. Model instance selection method: For every Model-Interaction class supported by

the agent the model instance selection method provides a mechanism to guide the

user in selecting appropriate model instances for the modelling task.
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Agent interface and control

Model-Type selection method	 Model instance se1ection	 Selection methods
method	
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Composi
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Figure 5.6 synthesis_agent architecture

Selection/creation of a synthesis_agent

The objective of model building in an environment that supports 'large scale modelling'

is to enable the model not just to be simulated in isolation but also to be able to interact

with other models, and thus support composite modelling. Consequently, a newly created

model needs to be associated with an appropriate synthesis_agent that incorporates the

knowledge required for guiding and enabling composition. It may be that a

synthesis_agent already exists that supports models of a particular system. For example,

the newly created model could be one of a family of models supported by a pre-existing

synthesis_agent. In such a case the synthesis_agent is updated to reflect the existance of

the new model. This involves the following steps:

1. Associating the newly created model with a Model-Interaction class. This may be a

pre-existing class, or the Model-Interaction hierarchy may need to be extended to
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support the interactions of the new model.

2. Associating the various ports with appropriate transfer entities from the Transfer-

Entity hierarchy. This may involve extending the Transfer-Entity hierarchy.

3. Updating the selection methods of the agents to allow the selection of the newly

created model.

4. Updating the model base of the synthesis_agent to include the newly created

model_agent.

In case a synthesis_agent that supports a newly created model does not exist before hand,

a synthesis agent then needs to be created. Rather than creating a new synthesis_agent

from scratch, (creating new Model-Type, Model-Interaction hierachy, Tranfer-Entily

hierarchy etc) it is useful to reuse compositional knowledge (taxonomic, topological, and

coupling) existing in other pre-existing synthesis_agents that support similar model

types. Thus, a search needs to be performed for pre-existing synthesis_agents that

support the Model-Type that the model belongs to, and the knowledge embodied in them

incorporated to aid composition.

For example, consider an automobile engine manufacturer who wishes to evaluate the

potential of supplying engines to an automobile manufacturer. The supply chain is

modelled by coupling a model of the automobile manufacturer and its suppliers with a

model of the engine manufacturer. To create a synthesis_agent, the engine manufacturer

searches for a synthesis_agent that supports models of engine manufacturing facilities

that supply the automobile manufacturer. This new synthesis_agent then reuses the

model interaction and coupling hierarchies, possibly extending it, thus allowing the

newly created model to be part of previously composed composites.
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If a previously created synthesis_agent that satisfies the requirements of a new model

cannot be found, then Model-Interaction and Transfer-Entity hierarchies along with a

synthesis_agent need to be created by the model builder.

5.3.4 Composite model building

Composite model synthesis can be guided by using the knowledge (topological,

taxonomic and coupling) present in synthesis_agents. The composite builder illustrated

in Figure [5.7] employs a blackboard based architecture. The idea of blackboard based

systems was first used in the development of HEARSAY-2, a speech understanding

program [Erman 80]. Blackboard based frameworks are useful in the context of systems

that use distributed sources of knowledge to arrive at a solution. Blackboard systems

consist of:

A set of independent modules that incorporate various domain-specific knowledge

sources.

. A blackboard that acts as a shared structure enabling the various knowledge sources

to communicate with one another.

. A control system that sequences the actions of the various knowledge sources on the

blackboard.
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Blackboard

Figure 5.7 Blackboard architecture of composite modeller

In the composite modeller the knowledge sources are:

1. synthesis_agents which incorporate knowledge about the various simulation models

they support. The Model-Interaction hierarchy contains knowledge about the

topology of potential composite networks, the Transfer-Entity hierarchy contains

knowledge about the coupling of various models, and the model selection methods

are used to select suitable models for the composite.

2. A search_agent which is responsible for locating appropriate synthesis_agents that

support the required component models of the composite model.

3. A user_agent, that essentially is a user (composite modeller) interacting via a

graphical user interface (GUI).

The user agent also acts as the blackboard controller, and co-ordinates composite model
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building by activating various agents and making appropriate selections based on the

information provided by the knowledge sources.

The blackboard provides a structure that is manipulated by the various knowledge

sources (synthesis_agents, search_agent, user_agent) to create a composite graph that

describes the various component models and the manner in which they are coupled to

one another to create a composite model.

The agents (synthesis, search, user) perform operations on the blackboard by creating,

deleting, and manipulating two entities, viz, nodes and edges, to create a composition

graph that describes a composite model by specifying all the component models (nodes)

and the manner in which they are interconnected (edges).
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Nodes are described by a five-tupple structure:

Nodes(L,T,S,Mi,M)

Where,

L is a label that uniquely defines the node,

T is a Model-Type that the node represents,

S is a synthesis_agent that is of type T,

Mi is a Model-Interaction class that is a subclass of T,

M is a model that belongs to class Mi.

For example (see Figure [5.8] ), consider a node that represents a CPU manufacturer then

T would be a Model-Type, say for instance CPU vL4NF, that represents CPU

manufacturers. S is a synthesis_agent that represents models that belong to Model-Type

T. In this case, if say, models of XYZ's (a hypothetical company) CPU manufacturing

facilities are of interest, then S would be a synthesis_agent that represents a collection of

models that model the manufacture of XYZ CPUs. The number of edges (ports) that a

node has and the other nodes that these edges coimect with is given by the Model-

Interaction class Mi. In other words Mi incorporates structural information about the

composite network. In the above example if it is of interest to model the relationship

between a CPU manufacturer and a motherboard manufacturer, Mi would be a model

interaction class that consists of a single port which connects with a node of type

motherboard manufacturer. Knowledge about the behaviour of the node is given by M

the model instance. Again continuing with the example, if it is required to take into

account machine breakdown, then M will be a model instance that belongs to class Mi

and incorporates breakdown of machines in the model of the CPU manufacturing
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process.

Edges are represented on the blackboard by a two tupple structure. An edge that connects

node ito nodej is represented as follows:

EDGE ,j ( port port)

where

port1 is an ordered pair [inputstream outputstream] such that

Inpntstream is a set of Transfer-Entities that represents the input required by

node i and outputstream is a set of Transfer-Entity that represent output

generated by node i.

An edge edge 1 is valid if and only if for all inputstream and outputstream Transfer-

Entities

Port 1 . inputstream ç ports . outputstream and

Ports . inputstream ç port. outputstream

Thus, a valid edge guarantees that a model connected to one end of an edge gets at least

all the Transfer-Entities it requires as input and conversely, outputs at least all Transfer-

Entities required by the model at the other end of the edge.
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Figure 5.8 Supply chain of a computer manufacturer

In order to explain the synthesis of a composite model an example is presented. Figure

[5.8] illustrates a supply chain of a computer manufacturer. If, say, it is required to study

the relationship between the computer, motherboard and CPU manufacturers. The

process of synthesis is described in the following steps.

STEP 1: The synthesis process can begin with any of the component models of the

composite model, although starting with the most important component may help the

synthesis process. In this instance, it is assumed that synthesis begins using models of

the computer manufacturer. The user begins by creating a node on the blackboard which
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is given a label Nj and assigned type COMP_MANF.

STEP 2: Next the user uses the search agent to locate a suitable synthesis_agent, of type

COMP_MANF, that supports models of the computer manufacturer in question. The

synthesis_agent is then assigned to the node, N1, and evoked to assign a Model-

Interaction class to the node. As the user is interested in models that interact with a

motherboard manufacturer, the user selects Model-Interaction class comp_mboard (see

Figure [5.9 a] ). As models of Model-Interaction class comp_mboard interact with

models of motherboard manufacturers, the synthesis_agent creates a new node, N2, and

assigns it with type MBOARD_M4NF and Model-Interaction class mboard_comp. An

edge is then created to connect nodes N1 and N2. This edge is initially left unassigned as

the type of transfer entities used by the model instance for the interaction is not known at

this stage.

STEP 3: The user next uses the search agent to locate a synthesis_agent that supports

models of the motherboard manufacturer, and assigns it to node N2, the

MB OARD_MA NE node. The node has already been assigned to Model-Interaction class

mboard_comp in STEP 2 . However, as the user wishes to model the interaction between

the motherboard manufacturer and the CPU manufacturer, the node needs to be assigned

to a sub-class of mboard comp that interacts with a CPU manufacturer. The node is thus

assigned to Model-Interaction class mboard_comp_cpu (see Figure [5.9b] ), which is a
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Figure 5.9 MI hierarchy of a.Computer assembler, b. Motherboard manufacturer,
c. CPU manufacturer.
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sub-class of rnboard_cornp. The synthesis_agent then uses the information in the Model-

Interaction hierarchy to create a new node, N3 and assigns it to type CPU_M4NF and

Model-Interaction class cpu_rn board. An edge is then created to connect node N2 to node

N3.

STEP 4: So far a composite of Model-Interaction classes has been created. The next step

is to assign specific model instances to each of these classes to create a composite model.

This is accomplished by evoking the model selection methods supported by the

synthesis_agents in each of the nodes N1 , N2, N3.

STEP 5: The next step is to verify that the model components in the composite will

interact meaningfully, i.e. that they use compatible transfer entity classes for interactions.

The edges are assigned the input and output Transfer-Entity classes of their respective

model instances. All the edges are then verified to make sure that interactions are valid

(See earlier definition of valid edge), thus guaranteeing the models interact meaningfully.

The synthesis process is now complete as all the nodes in the composite have been

assigned with model instances and connected suitably by edges.

5.3.5 Simulation of the composite model

So far, how a composite model can be synthesised from a set of component models has

been discussed. Next, the manner in which such a composite model can be simulated is

presented. Two issues need to be addressed in order to develop a simulation mechanism.

Firstly, the component models due to the distributed nature of modelling in HerMIS may
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be stored at various locations, thus the models need to be encapsulated as mobile

components that can be transported over the internet. Secondly, a distributed computer

infrastructure needs to be created to allow the mapping of component models and their

subsequent simulation on a network of computer workstations.

5.3.5.1 Model encapsulation and model agents

Model_agents provide a mechanism for component models to be encapsulated and allow

a standard interface to enable interaction with other components in the composite.

Model_agents are based on the ideas of agent based software engineering [Genesereth

94]. The key concept behind agent based software development is to create software

programs as autonomous agents, rather than stand alone programs, that interoperate with

one another providing services and sharing information, and thereby solving problems

that cannot be solved alone.

Applying the ideas of agent based software engineering to model building allows the

modelling framework to support composites constructed from heterogeneous models.

Models in a composite may be created using any combination of tools and formalisms as

long as they act as agents and employ a mutually agreed communication protocol,

termed in agent parlance as an agent communication language (ACL).

As in the case of synthesis_agent, the model_agent is supplied by an agent server. The

server is responsible for accepting requests for the model agent and transferring the

agent to the appropriate destination ( processing node on which the model_agent is

simulated). The model_agent consists of four components:
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1. Simulator: It performs the actual simulation of the model. It maintains all the

entities in the model, their state, event list, and an executive to schedule events and

manage the simulation process.

2. Model: It contains the model representation that the simulator simulates. This is akin

to a 'model file' in a traditional simulation environment.

3. Agent interface: The interface provides a means for other entities involved in the

simulation to interact with the model_agent. The interface provides a mechanism to

(1) send and receive event messages, and (2) send and receive control messages for

co-ordinating the simulation.

4. Agent control: This component is responsible for the overall behaviour of the agent.

It uses the messages received through the interface to control the execution of the

simulation. It interacts with the simulator executive for this purpose. Event messages

are introduced and removed from the simulator.

The architecture of the model_agent described above is not suitable when using

simulations based on tools that do not support the agent based programming paradigm.

As the majority of simulation tools are static pieces of software and do not support

mobile operation, an alternate agent architecture is required to support legacy

simulations. One option is to create a 'wrapper' that encapsulates the simulator to allow

its 'agentification'. Alternatively, the simulator can be separated from the rest of the

model_agent and interaction between the two can occur through a client-server

relationship.
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5.3.5.2 Distributed computer infrastructure

Figure [5.1O illustrates the architecture of the simulation mechanism. Simulation of a

composite model is performed by mapping the component models onto a network of

computer workstations.

user interface	 simulation super executive

message router	 LSE
	 message router	 LSE

PDES
	

PDES
	

PDES
	

PDES

model	 model
	 model

	
model

agent	 agent
	 agent	 agent

Model agent virtual machine 	 Model agent virtual machine

Computer 1
	

Computer 2

Figure 5.10 Architecture of simulation mechanism

The component models, for instance, could be mapped on to a single computer for

simulation, or alternatively onto a number of workstations. The simulation mechanism

consists of a centralised facility and a number of distributed facilities. The centralised

facility consists of a user interface and the simulation super executive (SSE), while each
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of the distributed facilities includes a local simulation executive (LSE), a message router

(MR), a model agent virtual machine (MAVM), and a PDES @arallel discrete event

simulation) controller. The simulation super-executive co-operates with local simulation

executives to control and co-ordinate the set-up and execution of composite models. The

local simulation executive in turn uses the message router, MAVM, and the PDES

controller to perform their functions.

5.3.5.3 Simulation super executive

The simulation super executive (S SE) is responsible for managing the simulation process

of the composite model. A single SSE is in operation for each invocation of HerMIS.

The SSE performs its activities by interacting with the user interface and the various

local simulation executives (LSE).

The user interface is an independent process that can be hosted on a separate computer.

The separation of the user interface from the SSE has the advantage of allowing a user

(model builder) with minimal computational resources to simulate a composite model

over a distributed network of workstations. Further, by allowing multiple user interfaces

to interact with a single SSE, a number of users can participate in the simulation of a

composite model.

The SSE and the user interface share a client-server relationship. The user interface acts

as a client by initiating the SSE to perform the simulation of a composite model and the

SSE in turn acts as the server that performs the simulation and provides the results of the

simulation to the user interface. The simulation process begins by the user interface
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specifying the composition graph (the creation of which was discussed in the preceding

section) of a composite model that is to be simulated. Each of the component models,

which are represented by nodes in the composition graph, is then assigned to a local

simulation executive (LSE). Each workstation on the network is controlled by a LSE. If,

for example, all the component models are to be simulated on a single workstation then

all the models will be assigned to the same LSE. For each component model in the

composite, the SSE sends a component configuration packet (CCP) to the LSE that the

model is mapped onto. The CCP contains three fields:

1. Label: A unique label by which each component model in a composite can be

identified. The label may be the same as the label in the composition graph or

assigned something different.

2. Model agent: A link to the component model agent server that supplies the

appropriate model agent for the component model.

3. Interconnections: A list of labels (component models) with which the component

model interacts, and a link to the LSE that supports these component models.

This information is used by the various LSEs to instantiate a composite model on the

network of workstations. The SSE in collaboration with the user creates an experimental

frame for the simulation of the composite model. The experimental frame consists of the

initialisation parameters, the various performance measures to be derived from the

simulation, and conditions for termination. A template of the experimental frame of each

of the component models is provided by the component model builder to the composite

model builder. The experimental frame of the composite is linked to all the individual
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component experimental frames. The experimental frame of the component models are

then sent to the appropriate LSE. The SSE then signals all the LSEs to start the

simulation. Once the simulation is terminated, all the LSEs return the experimental

frames with values of performance measures generated by the simulation run to the S SE.

The SSE combines these results, updates the experimental frame of the composite, and

uses the user interface to present results of the simulation run.

5.3.5.4 Local simulation executive

The Local simulation executive (LSE) is the principal component of the distributed

facility of HerMIS. Each simulation node (workstation) has a LSE assigned to it. The

LSE manages the resources available on the workstation for simulation. The LSE

consists of a Simulation Controller and a Communications Manager. The Simulation

Controller is responsible for initialising and co-ordinating the various resources available

on the simulation node. The Communications Manager on the other hand is responsible

for handling the message passing between the various component models of the

composite. The SSE initiates actions on the LSE by sending it a component

configuration packet that describes all the component models that are simulated by the

LSE. The LSE responds by requesting the PDES controller to assign a PDES engine to

each of the model agents in the CCP. In addition, the LSE assigns a set of ports, one for

each PDES engine - model agent pair to enable the exchange of messages between the

model agents. The communications manager manages these ports by using information

present in the CCP (interconnections field). As mentioned earlier, the interconnections

field details the coupling between the component models in the composite. The

Communications Manager incorporates two mechanisms for communication, viz, local
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communication mechanism and network communication mechanism. The local

communication mechanism is used in communications between component models

simulated on the same simulation node, while component models on different simulation

nodes use the network communication mechanism to communicate.

5.3.5.5 PDES controller

The PDES controller implements the PDES algorithm that is used in the simulation of

the composite model. The function of the PDES controller is twofold. Firstly, to provide

a mechanism to simulate the composite model as an aggregate; it does this by co-

ordinating the execution of events across all the component models. Secondly, to try and

exploit possible parallelism present by virtue of the distributed simulation of the

component models.

The PDES controller manages the simulation process by associating each of the

component models with a PDES engine. All interactions (messages) between two

component models are routed via its PDES engine. The PDES engine and its associated

model_agent (component model) share a client-server relationship. The PDES engine

acts as a message server that supplies messages, which represent interactions, to the

model_agent such that it can guarantee that the model agent does not violate the causal

relationship it shares with the other component models in the composite. The details of

the workings of the PDES controller are deferred to the next chapter (Chapter 6), where a

PDES algorithm for the message controller is presented.
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5.4 Conclusion

In this chapter a composite modelling framework that satisfies two of the three

requirements, viz, composite modelling and distributed modelling has been presented. In

the next chapter (Chapter 6) the framework is extended by including a parallel simulation

engine, the third requirement for the modelling framework. A set of requirements for a

PDES algorithm is developed and a new algorithm is presented.
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CHAPTER 6

PDES controller for HerMIS

In the previous chapter the HerMIS modelling framework was presented. The framework

specified how composite models were synthesised from component models and a

distributed computing platform on which the composite model is to be simulated was

developed. The various components of the simulation infrastructure were identified and a

procedure for mapping the model_agents on to the processing nodes was defined.

However, a key aspect of the infrastructure, viz, the mechanism for synchronising the

execution of events, was deferred. In this chapter this issue is tackled and a PDES

mechanism for HerMIS is developed.

In chapter four a number of PDES techniques where reviewed. From this discussion it is

apparent that, just as using a single modelling formalism or methodology is not sufficient

for all modelling needs, the choice of a PDES algorithm needs to be made based on the

model and objectives of the simulation. For example, at one extreme, run-times of the

simulation may not be a consideration at all and all that is required is a mechanism to

execute the composite model. At the other extreme is a case where simulation time is of

paramount importance. In the former case, synchronisation of events in the component

models may be done by employing a global event list on to which all models in the

composite schedule their events. The global event list can then be used to determine the
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next event/events to be executed. Such a scheme would exploit minimal parallelism

inherent in the models, as only events that occur at the same time would be executed in

parallel. In the case of the latter, a sophisticated PDES algorithm that is optimised to

maximise the degree of parallelism exploited is needed. This may require the specialist

knowledge of a user who is capable of fine tuning the algorithm to suit the model.

Here a PDES scheme is developed that is somewhere between the two extremes

mentioned above. A few of the operating characteristics of supply chains are taken into

account and exploited, to develop an 'efficient' PDES scheme that is transparent to the

user.

The Chandy- Misra framework [Chandy 79] has served as a starting point in a number of

research endeavours in the past and is used here as well, with a view to understand the

requirements for a PDES technique for simulation of the composite supply chain model.

An example of a framework based on the LP model [Chandy 79] is given below. The

notion of a physical and modelled systems is employed here. The physical system

represents the real life system that needs to be simulated. The modelled system

represents the model that is used in the simulation of the physical system. In the context

of this work the physical system is a supply chain and the modelled system is the LP

network.

Every model in the supply chain is simulated by an LP. Communication between models

are exclusively through a message passing mechanism. Each messages includes two
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fields - a timestamp to represent the time at which the sending model sent the message,

and a message field to describe the information to be sent from one LP to another. All

LPs use a message queue to store the incoming messages. Incoming messages are

processed by the LP in increasing order of timestamps.

Typically, the physical system will be composed of a network of production and

distribution stages. Stages share supplier-customer relationships with one another. A

supplier stage receives orders from a customer stage and based on these orders

manufactures, or uses from inventory, products which are then shipped to the customer

stage.

The modelled system is mapped on to a distributed simulator in order to simulate the

physical system. The distributed simulator consists of a number of processors coimected

together via a message passing mechanism. The only method of exchanging information

is via the message passing mechanism. A many to one relationship exists between LPs

and processors. Each processor executes one or more LPs.

In the following two sections the suitability of conservative and optimistic PDES

schemes in the simulation of the supply chain model is looked at.

6.1 The conservative approach

Using the LP framework described above in conjunction with a conservative PDES

algorithm (Chandy and Misra) [Chandy 79], a number of experiments employing
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computer and paper-based models were conducted with a view to study the suitability of

conservative PDES schemes in simulating the supply chain model.

The notion of event-coupling ratio is introduced to help in describing a characteristic of

manufacturing supply chain systems and, consequently, the effect it has on the

performance of PDES algorithms. Event-coupling ratio is the ratio between the number

of external events to the number of internal events generated by an LP during a typical

simulation run. External events are events that are scheduled by one model on to another

by passing a message, while an internal event is one that is scheduled by a model to be

executed by itself. For example, external events could represent the placement of an

order or a shipment of a part, from one model to another. On the other hand, the

scheduling of the start of a machining cycle is an example of an internal event. A key

characteristic of the entities in a manufacturing supply chain is low event coupling ratio.

Typically, orders to suppliers and shipment of parts to customers occur a few times a

day. Most of the time spent by the simulator is in scheduling internal events that satisfy

the order. To investigate the effect of low event-coupling in terms of performance, the

factors affecting performance of PDES algorithms is looked at. In order to maximise

parallelism and, hence, performance, it is important that LPs spend a large proportion of

time performing operations relevant to the simulation, rather than blocking (waiting for

messages) to guarantee the avoidance of causal errors. Secondly, the overhead due to

message passing needs to be minimised.

As mentioned earlier in chapter four conservative algorithms process events only when

they can guarantee that causality errors will not occur in doing so. This is achieved by
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blocking (waiting) until a message is received on all inputs to the LP. As each LP

processes events in increasing timestamp order, LPs can use the arrival of a message to

guarantee that a messages will not be sent later with a time stamp lower than the message

just arrived. In low event-coupling systems, the dependence between LPs is limited and

consequently messages are sent infrequently. As a result, LPs working under a

conservative PDES scheme will spend a large proportion of time waiting for messages

before the simulation can be progressed.

Another property of the supply chain modelling paradigm is the existence of multiple

loops. Relationships between the entities of the supply chain tend to be cyclical (Figure

[6.11), due to supplier/customer interaction. As described earlier in section 4.2.1.1 and

illustrated by Figure [4.3], conservative PDES schemes operating in LP networks that

consist of loops can deadlock.

Figure 6.1 Cyclic relationship in supply chain models
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Conservative PDES techniques either use null messages or a deadlock detection and

recovery scheme to tackle the potential of deadlocking. In the case of null message

conservative protocols, the time between actual messages is spent exchanging null

messages, thus significantly increasing the communication overhead, and reducing the

benefit derived from concurrent execution of models. The deadlock detection and

recovery schemes also place a processing overhead on the LP as these techniques let the

LPs deadlock arid then try and resolve the deadlock.

Thus, applying the Chandy-Misra conservative algorithms led to the following

observations:

A large proportion of time was spent blocking due to low-event coupling ratio of

supply chain models.

The cyclic nature of supplier-customer relationships result in communication

overhead in the form of null messages or, in the case of deadlock detection and

avoidance schemes, a processing overhead is incurred as time is spent in detecting and

recovering from the deadlock.

In the next section the appropriateness of optimistic PDES algorithms for the simulation

of supply chain models is studied with a view to observe if they overcome the pitfalls

suffered by the conservative approach.
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6.2 Optimistic approach

Optimistic PDES algorithms, in contrast to conservative approaches, do not postpone the

execution of events until the avoidance of causality errors can be guaranteed. Events are

processed until causality errors are detected. Causal errors are then undone by rolling

back. There are two important consequences of this mode of operation. Firstly, as LPs do

not block, the low event-coupling ratio does not affect performance. Secondly, the

question of deadlock does not arise as a prerequisite for deadlock to occur is for LPs to

block until appropriate messages are received. However, as LPs in an optimistic scheme

do not block, as a result, the cyclic nature of supplier-customer relationships does not

affect the performance of optimistic PDES systems. Thus, the very nature of optimistic

systems avoids the pitfalls that conservative systems suffer from.

Optimistic PDES algorithms, however, have their share of pitfalls. Performance of

simulators based on the optimistic approach is affected by two factors. Firstly, the

overhead caused due to rollbacks and secondly, the overhead due to message passing.

As in the case of the conservative approach, paper and computer based models were

created to investigate the rollback mechanism and its effect on performance. The

experiments with these models led to two important observations.

. In a number of cases wasted rollbacks occurred i.e. the rollback was not necessary to

guarantee a correct state in the simulation.

A potential for flooding of antimessages existed.
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Rollbacks in optimistic simulators occur when an event message arrives at the simulator

with a timestamp less than the simulation time. This is necessary as messages need to be

executed in strictly increasing order of timestamps. However, consider a case where

incoming messages (external events) are not processed by the simulation as and when

they arrive but are batched together. For example, consider the case of an event message

that represents an order for a component. Typically in a production stage, orders are not

processed as and when they arrive but are batched together and processed at a few fixed

points during the day. Thus, a rollback only needs to occur when the timestamp of a

order message just received is less than the time at which the simulation began to process

the last batch of orders.

An example is provided to better illustrate such 'wasted rollbacks'. Consider a model M

at simulation time tclk. M consists of one input queue I that receives orders for the

manufacture of a component C, and one output queue 0 that outputs the component C.

Let a message < oj ti> which represents an order with timestamp tj arrive at I such

that, tj < tclk . As the timestamp of the message is less than the simulation time, the

simulation will rollback to t. Let another message < o. t2 > such that t2 < t] arrive

next. The simulation will again rollback to simulation time t2. In the above example, if

orders were last processed by M at time tbatch , and say tbatch < t2, then the rollbacks

that occurred when orders oj and °2 arrived were not necessary, as they do not affect the

final outcome. Further, the order of arrival of oj and °2 is not important as long as they

both arrive before the next tbatch , i.e. before the simulator processes the next batch of

orders.
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During a rollback an LP loads a previously saved state and dispatches antimessages to

undo erroneous event messages. Jefferson [Jefferson 85] argues that in practice most

applications operate in a pattern where each external event results in the generation of a

few internal events and only a single external event. Consequently, the number of

antimessages sent is equal to the number of external events rolled back. It is argued here

that this is not necessarily true in the case of supply chain models. Consider the case of

simulating a supply chain. Let each LP model a single entity of a supply chain. Messages

between LPs would include orders placed by customer LPs and shipment of parts by

supplier LPs. Typically, when a LP receives an order it will dispatch a number of orders

to its supplier LPs. Thus, when a LP receives an external event (order), not one but a

number of external events are generated by the LP. Consequently, if a rollback is

required at some future time, then, a number of antimessages need to be sent to cancel all

the order messages to supplier LPs. Further, the LPs receiving the antimessages may also

need to rollback, resulting in a flooding of antimessages and, hence, degradation of

performance.

Based on the experiments conducted using the conservative and optimistic models, the

following requirements where formulated for the PDES algorithm.

. An algorithm based on the optimistic approach.

Requires to take into consideration batched external events.

. Provide an alternative to the antimessage mechanism to prevent the occurrence of

message flooding.
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In the following sections such an algorithm is presented.

6.3 PDES paradigm

The issue of batched events is addressed first. In time warp, the standard implementation

of an optimistic simulator, the input and output queues are part of the simulator. The

timestamp of an incoming event is compared with the simulation time (clock) and a

rollback is issued if the timestamp of the incoming message is found to be less than the

simulation time. A modification to the LP is proposed here with the aim of avoiding

wasted rollbacks. The input queues are separated from the rest of the simulator and share

a client server relationship. The input queue acts as a message server to the simulator.

Each input queue has a clock associated with it which stores the simulation time at which

the last request for messages was made by the simulator. During the course of the

simulation the simulator requests messages from the input queue and the input queue

responds by serving messages. All messages that have timestamps greater than the input

queue clock (initially set to zero) and less than or equal to the simulation clock are sent to

the simulator. The input queue clock is then incremented to the value of the simulation

clock.

Rollbacks occur when an incoming message to an input queue has a time stamp smaller

than the input queue clock, i.e. only when it is certain that an input message would have

been processed with other messages if it had arrived earlier. A sequential list (tb tb4

tb2 .....to) of all previous queue clock values is maintained to determine the point of
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rollback. The timestamp of the message that caused the rollback, say m is compared

with the list of queue clock values, in an increasing order of queue clock values until a

queue clock value, say tb fl , is found that is greater than or equal to tm, the timestamp of

the rollback message. The simulator is then rolled back to tbn.

An additional benefit of the modified LP has to do with the mechanism of saving state.

Saving state at every point in the simulation can result in high cost, both in terms of

space (memory) and time (execution speed). Thus, in practice, checkpointing or periodic

saving of state is often employed. Infrequent saving of state, however, could mean

excessive rollback distance. This results in LPs rolling back further than required and,

consequently, a lot of the computations have to be performed again, resulting in

inefficient execution. On the other hand, frequently saving state could undo the benefits

of checkpointing. Thus, the frequency of state saving is an important parameter in terms

of performance. In the case of clocked queue implementation, the queue clock list can be

used to provide the checkpointing intervals. From the above discussion (previous

paragraph) on rollbacks it can be seen that the simulator always rolls back to a point in

the queue clock list. As a result, it is sufficient to perform the state saving operation only

when the queue clock is updated.

The requirements for a PDES algorithm presented earlier identified the need to develop

an alternative to the antimessage mechanism. A novel technique using rollback counters

is presented here to overcome the disadvantages of the antimessage mechanism.
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Every LP keeps track of its rollback count which is the number of times it has rolled back

since the start of the simulation. The rollback count is added to every outgoing message

sent by the LP. When an LP rolls back its rollback counter is incremented and a control

message is sent, with the current rollback count on all its output links. Subsequent

messages include the new value of rollback count. The rollback count of a message

coupled with the control messages (which act as markers in the input queue) can be used

to detect invalid messages. The details of this scheme are presented in the following

section.

6.3.1 Modified LP architecture

Figure [6.2] illustrates the structure of the modified LP. It consists of three functional

units: message controller, simulator, and state saving mechanism. The message controller

and simulator share a client server relationship. The message controller is responsible for

sending and receiving messages between LPs and the simulator performs the actual

simulation of the physical process. In the case of HerMIS the model agent acts as the

simulator. A state saving mechanism is used to enable the LP to rollback. The message

controller acts as a message server to the simulator. It consists of input queues (clocked

queues), one for each input link, and output queues, one for each output. During the

simulation the simulator client may either request messages from the message controller

or send messages to the output queue. In the event of a request for messages by the

simulator, the message controller furnishes the appropriate messages to the simulator.

The message controller receives messages on all the input links and saves the messages

in the designated input queues in increasing order of time stamps. Timestamps and

rollback counts of arriving messages are used to detect any violation of causal
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relationship. Erroneous messages are deleted and in case a rollback is required, the

message controller signals the state saving mechanism to undertake a rollback. A clock

(queue clock) keeps track of how far the message controller has progressed in simulated

time, i.e. how far into simulated time the message controller has served messages to the

simulator.

Request input

In put queues
	 messages

Messages from
	 Simulator

input queue

Output queues	 Messages to
output queue

Save state Load state

State saving
mechanism

Request roll back

Figure 6.2 Modified LP architecture

6.3.2 PDES algorithm

The message controller performs two functions: (1) receiving messages sent by other

LPs and (2) satisfying requests for messages by the simulator. The algorithms for both

functions are presented below.
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Receiving messages

The message controller constantly polls for messages. When a message is received the

message controller needs to first determine if the message is a valid message, i.e. not the

result of an erroneous computation by the transmitting LP, and secondly, if required, it

needs to issue a rollback to the simulator. Message validity is performed by checking the

rollback count of the incoming message. Every time an LP rolls back, it issues a rollback

control message with an updated value of the rollback count on all its output links. All

subsequent messages, until another rollback, sent by the LP includes this rollback

count. By comparing the rollback count on a message with other messages one can

determine if the message is the result of an erroneous computation or not. This is

explained below

Two types of messages can be received by the message controller - normal message and

rollback control message. Let us first consider the case of a normal message. When a

message is received by the message controller the position i in the input queue where the

message needs to be inserted is determined based on the time stamp of the message. The

input queue stores messages in increasing order of time stamps. The rollback count of the

message, messg. rbc, is compared with the rollback count of the message one before the

position where the message is to be inserted in the input queue ( position i-i). The

objective is to check if there are any messages that arrived earlier (messages with smaller

timestamps) and have a higher rollback count, indicating that the LP that sent the

message has performed a rollback sice. If messg.rbc < messg.rbc, the message is

154



PDES controller for HerMIS

erroneous, as the LP that transmitted the message has rolled back since it sent the

message, and is not inserted in the input queue.

If the message is inserted in the queue, the next step is to check if the simulator needs to

rollback. The timestamp of the message messg. ts is compared with the current clock

value of the message controller cik, which indicates the last time at which the simulator

requested messages from the queue. If messg. ts < cik , then the message should have

been sent as part of an earlier request for messages by the simulator and the message

controller issues a rollback. The point of rollback is determined by finding the highest

value in the queue clock list that is greater than or equal to messg. ts.

Now let us consider if the incoming message is a rollback control message, say,

contmessg. The position i in the queue based on messg. ts is determined and the control

message is inserted. Rollback counts of all messages lying ahead, i.e. with greater than

equal timestamps, of the inserted control message are compared with the rollback count

of the control message to determine if they have a lower rollback count, thus indicating

the messages were sent before the LP rolled back. If messg. rbc < contmessg. rbc the

message is deleted. The timestamp of the control message is compared with the clock of

the message controller, if messg. ts < cik a rollback is issued to the simulator. The

algorithm for message processing is given below.

155



PDES controller for HerMIS

For normal messages

For every message m received

I

i = position in the input queue at which the message is to be inserted.

If Q[i-l].rbc > m.rbc delete m

else

insert m at Q[iJ

if m.ts <= cik issue a rollback

For controi messages

For every control message cm

I

determine i such that

i = position in the input queue at which the message is to be inserted.

for all messages m in Q[j] such thatj>i

fm.rbc < cm.rbc delete m

fm. ts < cik issue a rollback
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In case of rollback

when rollback required

I
Find smallest value of i such that

tqueueclk[i] ^ m. ts	 where tqueueclk is the queue clock list.

rollback to tqueueclk [iJ

rb++ increment rollback count of LP by one.

broadcast a control message (t, rb) on all output links.

t = point at which the LP has rolled back, rb is the new rollback count.

}

Sending messages to simulator

Whenever the simulator requests messages, the message controller sends all the

messages in the appropriate input queue with time stamps greater than the queue clock

and less than equal to the simulator clock, to the simulator. The queue clock is then

updated to the value of the simulator clock. In case the simulator outputs a message it is

stored in the appropriate output queue and transmitted by the message controller.

The algorithm for handling message requests by the simulator to the message controller

is given below. The simulator sends a request req which consists of two fields: req.q (the

label of the queue from which the simulator requests the messages and req. t (the time the
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simulator is currently in). The message controller returns a list of messages messg back

to the simulator.

Wait until request by simulator req

send all messages messg in input queue req.q that satijIes

clkreq. q <messg. t <=req. t

clkreq. q req.t

6.4 Proof of correctness

Consider a physical system PS composed of N processes that communicate exclusively

through message passing. PS is represented by a directed graph G consisting of n vertices

(Pj 2........P} each representing a process in PS. An arc exists between P1 and Pj if

process P communicates with Pj . In order to model PS a modelled system MS is

composed such that, for every process P there exists an LP, LP, in MS that models the

behaviour of that process. If a message passing link exists between P and Pj then a

corresponding link exists between LP1 and LP1 in MS.

Let us assume that one is interested in simulating the operation of PS in the time interval

[O,Z]. For some process P in PS, define t = 0 and t, = Z, i.e. the start and end of the

simulation. Further, [to ti t2...........t,11 represents the sequences of times at which the
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process P processes incoming messages. Assume the sequence [to ti .... t,] to be

monotonically increasing. Hence a positive constant s exists such that:

tj+J_tj>S	 fori=Oton-1

In practice all physical systems exhibit a delay in processing messages, hence the above

requirement is not a restriction.

Let Ij, termed input set, contain all the messages that arrive at process P during the time

interval t1j <1 ^t1.

If = [set of all input messages m.t, such that t1j <t ^tj .for all 1 1= 1......
Note in the case ofj=O,	 = {}.

Similarly define O , termed output set, to contain all the messages that P transmits to

other processes in the time interval t1j <t ^tj.

O =[set of all output messages m.t, such that tj.j <t ^tj.for all i 1= 1..... . ii]

Note in the case ofj=O,	 = {}.

Let I O) and OO) define the message input and output history respectively, of process

P.

IpO)'O I1	 ................+Ij

O(O Oo +O1	 ................+Oj

Thus, IpO) and OpO) represent the sequence of messages received and transmitted

respectively, by process P, until time tj.
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Assume a function F exists for a process such that:

OpO) = F(7p/-12)	 where J1.....n

The state of process P at time; is represented by S. The state of a process depends on the

input received by it, thus there exists a function G such that:

Sj = G(Sj..1 Ip(f-l)) where J1.....n

Define the corresponding terms in MS by using the lower case alphabet. For some LP,

LP1 , in MS the following are defined.

Input set	 = tj <t ^t.	 for J = 1......n

Outputseto1=tj <t^t3 .	 for J=1......n

InputhistoryipO)i0+ij+ ................ +1]

Output history opO) = 00 + 0] + ................ + 
Of

An output functionf exists, such that opO) f(ip(f-l))	 where J=1.....n

A state transition function g exists, such that = g(sjj, i(/-1)) where j=1.....n

As the modelled system MS is based on an optimistic PDES algorithm, the causal

relationship between messages cannot be guaranteed. Consequently, erroneous messages

can exist in the message histories (input and output histories) of LPs. In addition control

messages are included in message streams to detect erroneous messages.
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Define input history ipO) and output history OpO) to be correct, i.e. IpO) i1,) and

Op(f) OpO), if all the messages they contain do not violate the following conditions:

1. All valid messages with time stamps t < t ^tj must be present.

2. A control message with a timestamp less than any valid message and a rollback count

more than the message cannot exist.

3. If an invalid message exists with timestamp t and rollback r then a control message (t

r) must exist in the output stream such that t ^t and rc > r.

Assume s = {set of all states for some LP in MS}

In addition, define the following terms for an LP in MS:

Valid state: A valid state sJ is defined recursively as follows

so is valid (i.e. the initial state of an LP is valid)

Sj is valid if s1 g(sjj, i(/-1)) where j1.....n and i(/-]) is correct and

Sj.j isavalid state

Invalid state: A state encountered by an LP that is not valid is invalid and is denoted as

S.

The proof is structured as follows. It is first proved that if an LP is at some valid state Sf

then given correct input history ipO), it will transform to the next valid state Sj+1. This

property is then used to prove that any LP in MS given correct input history ipO) will

generate correct output history opO). Finally, using the results of the previously proved

theorems, the correctness of MS is proved.
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Theorem 1: Assuming correct input history ip(J-1), if an LP is at some valid input state

5] then at some time in the simulation the LP can be guaranteed to be at the next valid

state Sj+1.

Proof: Let us consider an LP at some valid input state s1 and at simulation time tj . Now

if i (input set) is complete, the LP will process ij and transform to the next valid state

Sj+1 (by definition of valid state).

However if is not complete or an erroneous message exists in at simulation time tj,

then the LP will process i 'j (incomplete/incorrect) and transform to invalid state s.i/+1.

Let us first consider the case of j being incomplete.

At some point in the future will be complete as message delivery is guaranteed. The

last message to complete zj will cause the LP to rollback to sj as all messages in have

timestamps in the interval tjj <t ^ tp The LP processes ij and transforms from state s1

to s+j (NB: The LP before the rollback will be in simulation time tj ^t ^z).

Now, consider if consists of erroneous messages when the LP is at simulation time t.

As the input is correct, from the definition of correct input it is known that a control

message with a timestamp less than the erroneous message and a rollback count more

than it, must exist in the input stream. From the algorithm it is known that every time a

control message arrives it deletes all messages ahead of it (with timestamps greater than

the timestamp of the control message) in the input queue with rollback counts smaller
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than it. The last control message to arrive deletes the remaining erroneous messages in zj

and rollsback to as all messages in have timestamps in the interval tp.j < t ^tj. The

LP processes j which is void of all erroneous computations and transforms to the next

valid state s1--j.

Lemma 1: The roll back count of an LP cannot decrease during the course of the

simulation.

Proof: From the algorithm in the previous section note that the rollback count of an LP is

initialised to zero at the start of the simulation. The only other operation performed on

the rollback count is an addition operation every time a rollback occurs. Hence the

rollback count of an LP cannot decrease during the course of the simulation.

Theorem 2: If an LP receives correct input during the course of a simulation 0 < t ^z,

it will generate correct output op(t,i.).

Proof: From the definitions given at the start of this section it is known that output

generated by an LP must not violate the following conditions:

1. All valid output must be present.

2. A control message with a timestamp less than that of a valid message and a rollback

count more than that of the message cannot exist.

3. If an invalid message exists with timestamp t and rollback r then a control message

must exist in the output stream such that t ^t and rc> r.
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Next it is proven that given correct input, an LP does not violate each of the above

conditions.

Condition 1

From Theorem 1 we know, given a correct input the LP will go through all valid states

and as valid states generate valid output condition 1 is satisfied.

Condition 2

There are two ways an LP can send a control message with a timestamp less than that of

a valid message.

1. The LP sends the control message first and then sends the message.

2. The LP sends the message first and at some point in the simulation rolls back to a

time less than the timestamp of the message and transmits the control message.

From lemma 1, it is known that the rollback count cannot decrease during the course of

the simulation. Thus, if a control message is sent before the normal message, it cannot

have a greater rollback count. Its now proven that the second case is also impossible.

Let us assume that the LP is at valid state Sj at time tj and generated output Of. Now as

is valid, all inputs in the time interval 0 < t ^ tj have arrived, hence the LP cannot roll

back to tj and behind. Consequently, a control message cannot be sent such that its

timestamp is less than or equal to tj after has been transmitted.
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Condition 3

Let us assume that the LP is at some invalid state s and outputs an invalid message m

with timestamp t and rollback count r. Then some where tj < t must exist which is not

complete. As it is assumed that correct input messages and message delivery is

guaranteed, at some point j will be complete (see theorem 1) and the LP will rollback to

tj; this will cause the rollback count to be incremented arid the transmission of a control

message at tj with rollback count r+1, hence satisf'ing the condition.

Combining the proofs for condition 1,2, and 3 it can be guaranteed that given correct

input an LP generates correct output.

Theorem 2 may seem to indicate the correctness of simulation of an arbitrarily connected

network of LPs. However, there is a possibility that the outputs of LPs in a loop may all

be incorrect. Theorem 3 proves that this is in fact not possible.

Let us define a simulation run 0 < t ^z to be described by a set R { [ LPj ] [LP2 I....[

LPJ}, where [LPj] denotes the output history of LPj during the course of the

simulation (0 < t ^z), i.e. op(t&. Define Re to be such that the LP output sequences only

includes the outputs generated by states so to Se where so is the initial state and 5e the eth

valid state in the LP, i.e. LPj = op(e). Define Re to be correct if for allj, LP1 is a correct

output history. A simulation run R is correct if Re is correct for all e, 0 <e ^n, where n

is the final valid state or terminating state of the LP. This is now proved in the next

theorem.
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Theorem 3: For every simulation run R, Re is correct for all e, 0 <z e ^n.

Proof: Proof is by induction on e. For e=O Re = { } and, hence, the theorem holds

trivially. Let us assume that for some e>0, Re..] is correct. Now to complete the proof it

needs to be shown that Re is correct.

Consider LP, an LP in MS. Then, 1p(e-])	 R..j , as the input history at e-] of LPj is

the output histories at e-1, of the LPs it receives input from. Now as Re is correct all the

outputs in Re are correct as well. Hence ip(e-1) is correct. If ip(e-J) is correct then from

theorem 2 it is known that op(e) is correct. Continuing this argument for all LPs, it is

concluded Re is correct.

6.5 Discussion

In this chapter a modified optimistic PDES scheme was presented that is suitable for the

distributed simulation of models which constitute a supply chain. An optimistic scheme

was shown more suitable due to the loosely coupled nature of supply chain models.

However, two potential drawbacks, viz, wasted rollbacks and antimessage flooding, in

using a standard (time warp) optimistic simulator implementation, were identified. The

problem of wasted rollbacks is dealt with by using an interrogative message delivery

(messages are only delivered when the simulation requests it.) rather than an imperative

delivery scheme (delivery of messages to an LP based on the timestamp of the message)

Thus, messages are 'pulled' by the simulator as and when required rather than being

'pushed' by the model sending the message. A pull-based scheme has the advantage of
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avoiding wasted rollbacks and minimising the number of state saves required, when

operating in a system where messages are processed in batches. However, a pull-based

scheme is not sufficient for handling all types of messages. For instance, emergency

orders may need to be sent to the simulator immediately. Hence, messages will have to

be 'pushed' to the simulator as soon as they arrive.	 Thus, in addition to serving

messages to the simulator when demanded (pull based), the message controller also

needs a mechanism to interrupt the simulation and send messages to it when required.

These messages may cause a rollback and as the nature of them demands that they be

processed immediately, the simulator may have to rollback to a point that is not saved.

Consequently, the simulator will have to rollback to an earlier time and repeat some of

the computations.

In terms of performance, although the interrogative approach results in additional

processing compared to the standard implementation, it is argued that in general, state

saving and retrieval operations would be significantly more expensive (computationally)

than the operations required to perform message interrogation.

The idea of wasted rollbacks (termed artificial rollbacks) has also been discussed by

Bagrodia [Bagrodia 90] with respect to Masie, a distributed simulation language.

Bagrodia investigates the occurrence of wasted rollbacks in the context of priority

servers. For example, consider a server that serves two types of messages, one with a

high priority and the other with a low priority. A high priority message is allowed to pre-

empt the server if a low priority message is being processed. Let us assume the LP

receives two messages- (10, high) and (12, low). Both types of messages take 10 units of
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time to be served. The first message is received by the LP at time 10. The second

message can cause the LP to rollback depending on how far the LP has progressed after

receiving the first message. For instance if the LP is at time 15 and the second message

arrives, the LP will rollback. Bagrodia terms such a rollback as an 'artificial rollback', as

a rollback is only necessary if the second message arrives after time 20. In Masie the

message types that can interrupt the simulation are made explicit. When a message

arrives with a timestamp higher than the simulation clock, it is checked to see if it is of a

valid type to interrupt the simulation. Only if the message is valid (of a type that with

higher priority), the simulator issues a rollback. Masie employs a Wait until structure for

message acceptance. The wait statement has the following form:

Wait t until

{

r1
r2

r

t represents the wait time during which the message is processed, r 1 r2 ...r describe the

type of messages that can interrupt the processing of the message accessed by the wait

statement.

To tackle the issue of flooding of messages, the antimessage mechanism, used in the

standard optimistic PDES implementations, has been replaced by a novel technique

employing rollback counts and control messages. The algorithm requires a LP to send

only one message to delete all erroneous message sent by the LP due to a rollback, thus
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greatly reducing message overhead incurred during rollback. The LPs that have received

erroneous messages may require in turn to rollback and undo erroneous messages sent

earlier, resulting in a cascade of rollbacks. However, at each stage only one message

(control message) needs to be sent. The upperbound Mm ax, the maximum number of

messages sent by an LP network to undo the effects of a rollback is equal to the largest

distance that can be traversed on a graph G without traversing any vertex more than once.

Where, the vertices represent LPs and the arcs message passing links.

Finally, a proof of correctness is given for the PDES algorithm presented in this chapter.
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CHAPTER SEVEN

Conclusion

7.1 Summary of work

The primary objective of the research presented in this thesis was to develop a

framework to support the modelling and simulation of supply chains. Supply chains are

an example of what has been termed 'multifaceted systems' by Zeigler [Zeigler 84]. The

management of supply chains involves dealing with a multiplicity of objectives at

various levels of decision making. Consequently, employing an exclusively reductionist

methodology of model building that involves analysing the whole by studying the

component parts in isolation, or, on the other hand, using a holistic approach that

attempts to capture all the aspects of a supply chain in a single model, are not sufficient.

In order to develop the modelling framework three areas of simulation and modelling,

viz, large scale modelling, distributed modelling, and parallel discrete event simulation,

were deemed to be relevant.

A key feature of large scale modelling is the ability to combine appropriate component

models, that represent the various facets of a system, to create a composite model. To

support a compositional approach, component models need to be modularised with a

well defined interface and a coupling scheme needs to be specified that allows the

various component models to be coupled so as to interact with one another as part of the
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composite model. Various coupling schemes have been described in the literature. The

most common scheme is a tightly coupled approach where all the component models and

their respective ports are uniquely identified. Interconnections between component

models are made explicit by mapping appropriate ports on to one another. The DEVS

and Control flow graph (CFG) formalisms are two examples that employ a tightly

coupled scheme. The advantage of such a scheme is that coupling relationships can be

described unambiguously. However, the task of explicitly specifying all the model

couplings in a composite model is time consuming. This is further exasperated if a top

down coupling knowledge representation scheme, such as the SES, is employed, as the

system to be modelled needs to be decomposed completely and all possible

decompositions, aspects, and specialisations need to be made explicit.

Thus, rather than using a top down structure for model synthesis a bottom up approach

may hold more value. This is possible by distributing knowledge for synthesis in each of

the component models, rather than using a single structure such as the SES. A bottom up

approach supports incremental model building, as all possible coupling scenarios need

not be identified beforehand, as is the case in a top down representation.

Three class based taxonomies viz, Model-Type, model interaction hierarchy, and

transfer entity hierarchy, were employed by HerMIS to provide knowledge for composite

model synthesis. The Model-Type classification classifies models based on what part of

the system they model. Each of the Model-Type classes is further structured into a

Model-Interaction hierarchy. The Model-Interaction hierarchy classifies models based

on what other Model-Types a model interacts with. Thus, the Model-Interaction

171



Conclusion

taxonomy can be viewed as providing semantic information that can be used to guide

composition. The Transfer-Entity hierarchy, on the other hand, provides syntactic

knowledge. It describes the actual manner in which the models interact in a composite. It

describes the structure of the interaction between the component models.

The second requirement for the supply chain modelling environment is to operate in a

distributed environment. This is essential as it is natural for the models to be developed

and maintained at the various sites of the supply chain. Thus, just as the supply chain is

distributed in various locations the models that represent the various components of the

supply chain are also distributed. This requirement is addressed by the use of agents. The

knowledge required for composition is incorporated by an interface agent termed

sythesis_agent. Each Model-Type is associated with a synthesis_agent and includes all

the information required for composition. Composite models are synthesised by using

the synthesis agents in a blackboard based architecture.

A second type of agent, based on the principles of mobile agents, is used to allow

distributed component models to be integrated to create a composite model. This allows

the models to be transported on to the simulation node where simulation occurs.

Finally, a PDES algorithm, which takes into consideration the cyclical and loosely

coupled nature of the supply chain, was presented that allows the simulation of the

composite model. The algorithm is based on the optimistic approach and incorporates a

novel mechanism that reduces the risk of antimessage flooding.
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7.2 Conclusions

The primary objective of this work was to develop a modelling and simulation

framework for the modelling of supply chains. This objective has been accomplished by

the conceptualisation of HerMIS. The insights gained from the development of HerMIS

allows for the following conclusions to be drawn.

Large scale modelling: The creation of models of the supply chain from scratch in

an ad hoc fashion to satisfy specific objectives is wasteful. Due to the complexity in

terms of size and interaction of supply chains a single model is not sufficient to

satisfy the various decision making objectives that arise in the management of supply

chains. Alternatively, decomposing the supply chain into smaller parts and analysing

them in isolation ignores potentially important interactions that occur between the

components of the supply chain. Thus, there is a need for a compositional approach

that allows individual components of a supply chain to be studied in detail and also to

be coupled to other models so as to take into account the wider system and the

interactions that consequently occur.

> Unsuitability of SES: The system entity structure (SES) provides a knowledge

representation scheme in the DEVS formalism that aids synthesis of composite

models. The SES is found to be unsuitable for the modelling of supply chains for the

following reasons. The structure of a supply chain is principally a network one while

the SES is a tree structure that represents the various decompositions, aspects, and

specilisations of a system. Thus, a network based knowledge representation is more
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suitable. In addition, the creation of a SES is an arduous task that requires the

complete top down decomposition of the system, and the exposition of all possible

models that represent the various facets of the decomposed system and their various

couplings. Creating a SES may be worthwhile during the design of a new system, but

its applicability is limited when trying to model existing systems.

> Class based hierarchies: As mentioned above, the task of making all the port to

port couplings explicit in creating a SES (System Entity Structure) can be a time

consuming activity. An alternative is to include taxonomic information in the

component models, which aids synthesis. Thus, rather than employing a global

structure that incorporates the knowledge required for synthesis, it is derived from

the component models themselves. Such an approach, in addition to being suitable

for a distributed modelling environment (which is one of the requirements of the

modelling framework), allows a more incremental model development approach.

> Conservative PDES algorithm: Employing a conservative PDES algorithm to the

simulation of composite models was found unsuitable due to the following two

reasons. Firstly, the loosely coupled nature of a supply chain meant that a large

proportion of time was spent by the component models waiting (blocking) to

guarantee the causal relationship between the component models was maintained.

This could be alleviated to some extent by incorporating 'look-ahead' information,

but this requires the user to be aware of the temporal characteristics of the model.

Secondly, the cyclic nature of supplier-customer relationships in a supply chain
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means that the simulation is liable to deadlocking. A communication overhead is thus

incurred in avoiding or detecting and resolving the deadlocks.

> Optimistic PDES algorithm: Optimistic PDES algorithms do not require to block

and consequently are also not liable to deadlocking. However, two potential pitfalls

of the optimistic approach were identified. Firstly, there is a potential for 'wasted

rollback' to occur if message processing occurs in a batched fashion. Secondly, a

rollbacks in the simulation is likely to cause a flooding of rollback messages.

7.3 Contribution

The major contribution of this work is in the conceptualisation of HerMIS, a framework

that enables a compositional approach to discrete event modelling of supply chains. In

doing so a number of smaller contributions were made to the area of modelling

methodology.

. A model taxonomy scheme was developed that allows a representation of composite

building knowledge. A scheme such as this can also be used for modelling other

systems that incorporate a network structure such as models of the internet etc.

. The use of agents was proposed to allow composition to occur in a distributed

framework.
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. A novel PDES algorithm was proposed for the simulation of the composite model.

This again is not restricted to use in supply chain modelling but may find application

in other domains that reflect a similar structure, for example in the modelling of

computer networks.

7.4 Suggestions for future work

The obvious first step in extending the work presented in this thesis is to develop a

complete prototype tool based on HerMIS. By applying this to various modelling case

studies the efficacy Of the framework can be determined. In addition, the following are

some other suggestions for extending this work.

One of the issues that was not addressed in detail by the HerMIS framework was the

development of a mechanism to aid the selection of a particular component model

instance based on the modelling objective. The development of a rule based

knowledge system may help in this regard.

> With the increasing adoption of HLA as a standard for model interoperability,

integrating it with HerMIS may be of some value. HLA could provide the syntactic

knowledge for coupling while the synthesis_agent in conjunction with the blackboard

based architecture could aid the composition task.
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> The PDES algorithm presented does not take into account the existence of

emergency orders or other contingencies and operates in a purely batch processing

mode. The algorithm may be improved to take this into consideration.
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APPENDIX A

JAVA source code for PDES controller

The source code of an implementation of the PDES algorithm in Java is included below.
The program represents the queue controller used in the PDES engine.

import java.util.*;
import java.io.*;

public class Controller

II Instantiate a new Controller
public Controller(int num)

queues = new Vector[num];
for (mt i=O;i<num;i++)

queues[i] = new Vector(initial queue length);

/1 we could just initialize qc clk values to a Vector of
II of length 0 but this will cause too many resizings as the
II vector grows.
qcclkvalues = new Vector(initialqcclklength);
qcclkvalues.insertElementAt (new Integer(0),0); II Time 0
qcclkindex = 0;
qcclk = 0;
num queues = rium;

II Locate a message X in queues[msg.link] such that the following
II invariant holds:
II if op = 0 then
/1	 prev(X) .timestamp <= X.timestamp < next(X) .timestamp
1/ and if op = 1
1/	 prev(X).timestamp < X.timestamp <= next(X).timestamp
/1 The function returns the index of message X in queues[msg.link]
private mt locate(int op)

mt i;
Vector Q = queues [msg.link type];
// Take care of the base case
if (Q.size() == 0) return -1;

for (i=0;i<Q.size();i++)
if (op == 0)

II op = 0 i.e 'x < m <
if (msg.timestamp <

((Message)Q.elementAt (i)) .timestamp)
break;

else
if (msg.timestamp <=

((Message)Q.elementAt(i)) .timestamp)
break;
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if (i<O) return 0;
return i;

// return the index of the first element in the queue that is
smaller than value

private mt findlndex(int value,Vector Q)
if (Q.size() == 0) return -1;
mt i;
for (i=O;i<Q.size();i++)

if (((Message)Q.elementAt(i)).timestamp > value) break;

if (i == Q.size) return -1; 1/ No element was found
return i; II else return index

synchronized public mt processNessage (Message mg)
mt i;
msg = mg;
Vector Q = queues[msg.link type];
if (msg.message type == 'N')

II Normal message
i = locate(0);
if ( (i-i > 0) &&

(((Message) Q.elementAt (i-i)) .rollback count >
msg.rollback count))

msg = null;
II delete msg

else
1/ insert msg at Q[i]
if (i < 0) Q.insertElementAt(msg,0);
else Q. insertElementAt (msg, i);

1/ end 'N specific process
else if (msg.message type == 'C')

II Control message
i = locate(1);
Q.insertElementAt (msg, i);
II if i < 0 or i is the last element then we can safely
II skip the following block
if ( (i >= 0) && (i < Q.size(fl)

mt j;int count = 0; // count = % of elements deleted
mt size = Q.size;
for (ji+1;j<size;j++)

if (((Message) Q.elementAt(j-
count)).rollback count < msg.rollback count)

Q.removeElementAt(j-count); II delete m
count++;

II endif

/1 end 'C' specific process
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if (msg == null) return 0; II No chance of rollback here bcoz
message was deleted

if (msg.timestamp <= qc_clk) { // Check for rollback

// Determine the what value qc cik should be reset to
mt found = -1;
for (i=O;i<qcclkvalues.size();i++)

if (((Integer)qcclkvalues.elementAt(i)) .intValue() <
msg.timestamp) continue;

found = i;
break;

if (found < 0)
System.out.println("Fatal System Error");
System.exit (-1);

1/ found > 0
mt count = 0;
mt size = qcclkvalues.size;
1/ Remove all time values that are greater than the

selected timestamp(i.e qcclkvalues.elementAt(found))
for (i=found+1;i<size;i-i-+)

qcclkvalues.removeElementAt (i-count);
count++;

qcclk =
((Integer)qcclkvalues.elementAt(found)) .intValue;

qcclkindex = qcclkvalues.size()-l;

1/ Now remove all elements from the referenced queue that
have timestamp greater than qcclk

I/if (Q.size() > 0)
1/	 for (i=Q.size()-1;i>=O;i--)
1/	 if ( ((Message)Q.elementAt(i)).timestamp <=

qcclk) break; /1 done searching
1/	 Q.removeElementAt(i); II timestamp > qcclk
II	 }
//}
II Call the rollback function
if (msg.timestamp <= qcclk) rollback(qcclk);

msg = null; II msg in not pending anymore
return 0;

public Vector getMessages (mt req timestamp)

mt i;
Vector return_list = new Vector(1O,1O);

for (i=O;i<numqueues;i++)
Vector Q = queues[i];
mt index = findlndex(qcclk,Q);
mt j;
if (index == -1) index = Q.size; II this will ensure the

loop won't execute
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for (j=index;j<Q.sizeO;j++)
if (((Message)Q.elementAt(j)).timestamp >

req timestamp) break;
else return list.addElement(Q.elementAt(j));

qcclkvalues.addEleinent (new Integer(reqtimestampfl;
qcclkindex = qcclkvalues.size() - 1;
qcclk = req timestamp;

return return list;

public mt rollback(int timestamp)
System.out.println("Issuing rollback on message

"+msg.toString()+ " timestamp = "+timestamp);
II Issue a rollback
return 0;

public void printlnfo()

System.out.println("Number of queues = " + num queues);
mt i;
for (i=O;i<numqueues;i-f+)

System.out.println("_____ Queue #" + I + "
mt j;
for (j=0;j<queues[i].size();j++)

System.out.println( nl Element #"+j);
System.out.println(((Message)queues[i] .elementAt(j)).
toString ());

System.out.println;

System.out . println( lv clk = t+qcclk);
System.out.println("Clock history =

"-fqc cik values. toString 0);

synchronized public mt processMessage(Inputstream istream) throws
java.io.IOException

DatalnputStream din = new DatalnputStream(istream);
msg = new Message (din);
processMessage (msg);
return 0;

private final static mt initial_queue_length = 100; 1/ Default
Vector size

private final static mt initial qc cik length = 100;
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private final mt num queues;
private Message msg; // Pending message, yet to be processed
Vector[] queues;
Vector qcclkvalues;
mt qc_clk_index; II index into qcclkvalues.
mt qc_clk; II qc_clk = qcclkvalues[qcclkindex]

import java.io.*;
import java.lang.*;

public class Message

public Message(int link type,char message type,int timestamp,
mt rollback count,byte[] info){

this.link type = link_type;
this.message type = message_type;
this.timestamp = timestamp;
this. rollback_count = rollback_count;
this.info = info;

public Message(DatalnputStream din) throws java.io.IOException{
link_type = din.readInt;
message_type = din.readChar();
timestamp = din.readlntM;
rollback_count = din.readInt;
info = new byte[info size];
din. read ( info)
System.out.println("Printing Message");
System.out.println(toString()

public String toString()
String str = " link_type =
str += link_type;
str += "\n message_type =
str += message_type;
str += "\n timestamp =
str += timestamp;
str += "\n rollback_count =
str += rollback_count;
return str;

public mt link_type;
public char message_type;
public mt timestamp;
public mt rollback_count;
public byte[] info;
public final mt info_size = 10;
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/*
A basic Java class stub for a Win32 Console Application.

import java.io.*;
import java.net .*;
import java.util.*;

public class SimplCon

public SimplCon ()

public static void testController()
Vector return list;
mt i;
byte[] bt = new byte[64];
Controller con = new Controller(2);
for (i=0;i<64;i++) bt[i] =
Message msg = new Message(0, 'N',lO,O,bt);
con.processMessage (msg);
msg = new Message(O, 'N',15,O,bt);
con.processMessage (msg);
msg = new Message(1,'N',5,0,bt);
con.processMessage (msg);
msg = new Message(0, 'N',13,l,bt);
con.processMessage (msg)
msg = new Message(0, 'N',20,l,bt)
con.processMessage (msg);

return_list = con.getMessages (10);
System.out.println(returnlist.tostring(fl;
return_list = con.getMessages (12);
System.out.println(returnlist.tostring(fl;

msg = new Message(0, 'C',12,2,bt);
con.processMessage (msg);
msg = new Message(0, 'N',8,0,bt);
con.processMessage (msg);
msg = new Message(0,'N',15,0,bt);
con.processMessage (msg);
msg = new Message(0,'C',8,3,bt);
con.processMessage (msg);
con.printInfo;
return list = con.getMessages (30);
System.out.println(returnlist.tostring());
msg = new Message(1, 'C',4,1,bt)
con.processMessage (msg);
con.printInfo;
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public static void testCasel(Controller con,byte[] bt)
mt i;
Vector return_list;
for (i=O;i<10;i++)

Message msg = new Message(O, 'N',1000-i,5,bt)
con.processMessage (msg);

con.printInfo;
return_list = con.getMessages(5);
System.out.println(returnlist.toStringW;
con.printInfo;
con.processMessage(new Message(0, 'N',1001,5,bt));
con.printInfo;
con.processMessage(new Message(O,'C',995,7,bt));
con.printInfo;

static public void main(String args[]) throws java.io.IOException{

System.out.println("Hello World");
//Message msg = new Message(1O,'N',l1,12,new byte[100]);
//System.out.println(msg.toString());
Controller con = new Controller(5);

//con.printlnfoH;
testController ;
System.in.read;
II Setup a server socket that listens on port portnuin
//ServerSocket server = new ServerSocket(portnum, 100);

I/while (true)
II Socket sock = server.accept();

/1 con.processMessage(sock.getlnputStream(fl;
//}

System. in. read ( )

final static mt portnum = 23;
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