
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/3640

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.



 

 

 
 

 

 

Parallelisation for Data-Intensive  

Applications over  

Peer-to-Peer Networks 

 

by 

Xinuo Chen 

 

Thesis 

Submitted to the University of Warwick 

In partial fulfilment of the requirements for the degree of 

Doctor of Philosophy 

 

Department of Computer Science 

September 2009 

 

 

  



 

 

Contents 

List of Tables ........................................................................................................... i 

List of Figures ........................................................................................................ ii 

Declarations ......................................................................................................... vii 

Glossary of Terms ................................................................................................. x 

Abstract .................................................................................................................. 1 

Chapter 1 Introduction ......................................................................................... 3 

1.1 Thesis Contributions ................................................................................ 9 

Chapter 2 Background ........................................................................................ 11 

2.1 BLAST ................................................................................................... 11 

2.2 Peer-to-Peer Network ............................................................................. 13 

2.2.1 Peer-to-Peer File Sharing .......................................................... 13 

2.2.2 DHT ........................................................................................... 16 

2.2.3 Peer-to-Peer Computation ......................................................... 15 

Chapter 3 Analysing BitTorrent’s Seeding Strategies ..................................... 19 

3.1 Introduction ............................................................................................ 19 

3.2 Seeding Strategies and Performance ...................................................... 20 



 

 

3.3 Understanding BitTorrent ...................................................................... 22 

3.3.1 BitTorrent Mechanism ............................................................... 22 

3.3.2 Seeding Strategy ........................................................................ 23 

3.3.3 Additional Related Work on the Analysis of BitTorrent ........... 25 

3.4 Modelling Seeding Strategies ................................................................ 27 

3.4.1 Metrics, Assumptions and Scenarios ......................................... 28 

3.4.2 The Model ................................................................................. 29 

3.5 Simulation Methodology ....................................................................... 32 

3.5.1 Simulator Details ....................................................................... 32 

3.5.2 Metrics ....................................................................................... 34 

3.5.3 Setup of Experiments ................................................................ 34 

3.5.4 Roadmap of Experiments .......................................................... 36 

3.6 Results: the Homogenous Setting .......................................................... 36 

3.6.1 Impact of Freeriders .................................................................. 37 

3.6.2 Impact of Exploiters .................................................................. 40 

3.7 Results: the Heterogeneous Setting ....................................................... 42 

3.7.1 Impact of Freeriders .................................................................. 42 

3.7.2 Impact of Exploiters .................................................................. 47 

3.8 Conclusions and Discussion .................................................................. 51 

Chapter 4 Distributed Arbitrary Segment Tree ............................................... 53 

4.1 Introduction ............................................................................................ 53 

4.2 DHT and DAST ..................................................................................... 54 

4.3 Other Rang Query Support .................................................................... 56 

4.3.1 Prefix Hash Tree (PHT) ............................................................. 57 



 

 

4.3.2 Distributed Segment Tree (DST) ............................................... 58 

4.4 Design of DAST .................................................................................... 59 

4.4.1 Arbitrary Segment Tree ............................................................. 59 

4.4.2 DAST operations ....................................................................... 63 

4.4.3 The Value of M .......................................................................... 64 

4.4.4 Accuracy of Result for a range query ........................................ 64 

4.4.5 Load Balancing .......................................................................... 66 

4.4.6 Tree Maintenance and Fault Tolerance ..................................... 67 

4.5 Evaluation .............................................................................................. 68 

4.5.1 Implementation .......................................................................... 68 

4.5.2 Setup .......................................................................................... 69 

4.5.3 Structural Properties of DAST .................................................. 70 

4.5.4 Range query operations in DAST, DST and PHT ..................... 75 

4.5.5 Comparison of the latencies for insertions and range queries in 

DAST, DST and PHT ......................................................................... 77 

4.6 Conclusions ............................................................................................ 78 

Chapter 5 ppBLAST: A BLAST service over Peer-to-Peer networks ........... 80 

5.1. Introduction ........................................................................................... 80 

5.2 Additional Related Work ....................................................................... 81 

5.2.1 Parallelising BLAST ................................................................. 81 

5.2.2 SETI@home and Folding@home ............................................. 82 

5.2.3 Recent distributed data intensive computing techniques ........... 83 

5.3 Design of ppBLAST .............................................................................. 83 

5.3.1 Characteristics of BLAST ......................................................... 83 

5.3.2 Overview of ppBLAST ............................................................. 84 



 

 

5.3.3 DAST-DHT ............................................................................... 86 

5.3.4 Peers and the worker component ............................................... 88 

5.3.5 Service Broker ........................................................................... 89 

5.3.6 Segment Distributor ................................................................... 91 

5.4 Performance Evaluation ......................................................................... 92 

5.4.1 Experimental Roadmap and Setup ............................................ 93 

5.4.2 Results from the feasibility experiments ................................... 96 

5.4.3 Results from the simulation experiments .................................. 99 

5.5 Conclusions .......................................................................................... 102 

Chapter 6 Conclusions and Future Work ....................................................... 103 

6.1 Conclusions .......................................................................................... 103 

6.1.1 Analysing BitTorrent Seeding Strategies ................................ 104 

6.1.2 Distributed Arbitrary Segment Tree on DHT .......................... 105 

6.1.3 A Parallelisation of BLAST over Peer-to-Peer network ......... 106 

6.2 Future Work ......................................................................................... 106 

BitTorrent Seeding Strategies ........................................................... 106 

DAST ................................................................................................ 107 

ppBLAST ......................................................................................... 107 

Bibliography ....................................................................................................... 109 

 

  



i 

 

List of Tables 

Table 1-1 BLAST programs and their functions ..................................................... 3 

Table 3-1: Bandwidth distribution of leechers (derived from actual 

distribution of the Gnutella network [2, 3]) .......................................................... 35 

Table 4-1: The experimental results for N = 4 and N = 5 ...................................... 76 

Table 4-2: The experimental results for AoR ........................................................ 77 

Table 4-3: The comparison of AoR between PHT and DAST .............................. 78 

Table 4-4: The experimental results for the average latencies of insert and 

range query in DAST, DST and PHT .................................................................... 79 

Table 5-1. The hardware specifications for the five PCs ...................................... 92 

Table 5-2. Bandwidth distribution of leechers (derived from the actual 

distribution of the Gnutella network [1]) ............................................................ 100 

 

  



ii 

 

List of Figures 

Figure 3-1. Results for homogenous setting with freerider: the mean 

download completion time comparison ................................................................ 37 

Figure 3-2. Results for homogenous setting with freerider: the download 

rate comparison ..................................................................................................... 38 

Figure 3-3. Results for homogenous setting with freerider: the IRD 

comparison ............................................................................................................ 39 

Figure 3-4. Results for homogenous setting with exploiters: the mean 

download time comparison ................................................................................... 39 

Figure 3-5. Results for homogenous setting with exploiters: the download 

rate comparison ..................................................................................................... 41 

Figure 3-6. Results for homogenous setting with exploiters: the IRD 

comparison ............................................................................................................ 41 

Figure 3-7. The cumulative distribution of the download times, when the 

number of freeriders or exploiters equal to zero, for all unselfish leechers .......... 43 

Figure 3-8. The cumulative distribution of the download times, when the 

number of freeriders or exploiters equal to zero, for each class of unselfish 

leechers .................................................................................................................. 43 

Figure 3-9. The cumulative distribution of the download times for all 

unselfish leechers when freeriders exist (100 freeriders) ...................................... 44 



iii 

 

Figure 3-10. The cumulative distribution of the download times for all 

unselfish leechers when freeriders exist (300 freeriders) ...................................... 44 

Figure 3-11. The cumulative distribution of the download times for all 

unselfish leechers when freeriders exist (700 freeriders) ...................................... 45 

Figure 3-12. The cumulative distribution of the download times for  each 

class of unselfish leechers when freeriders exist (100 freeriders) ......................... 45 

Figure 3-13. The cumulative distribution of the download times for  each 

class of unselfish leechers when freeriders exist (300 freeriders) ......................... 46 

Figure 3-14. The cumulative distribution of the download times for  each 

class of unselfish leechers when freeriders exist (700 freeriders) ......................... 46 

Figure 3-15. The cumulative distribution of the download times for  all 

unselfish leechers when exploiters exist (100 exploiters) ..................................... 48 

Figure 3-16. The cumulative distribution of the download times for  all 

unselfish leechers when exploiters exist (300 exploiters) ..................................... 48 

Figure 3-17. The cumulative distribution of the download times for  all 

unselfish leechers when exploiters exist (700 exploiters) ..................................... 49 

Figure 3-18. The cumulative distribution of the download times for  each 

class of unselfish leechers when exploiters exist (100 exploiters) ........................ 49 

Figure 3-19. The cumulative distribution of the download times for  each 

class of unselfish leechers when exploiters exist (300 exploiters) ........................ 50 

Figure 3-20. The cumulative distribution of the download times for  each 

class of unselfish leechers when exploiters exist (700 exploiters) ........................ 50 



iv 

 

Figure 4-1. An example AST with the segment tree range [0, 16] and M =  4. 

We choose the segment tree range such hat each node can have an arbitrary 

number of children and the segments are uniformly split in each level while 

maintaining appropriate span length. An exemplar query for range [6, 13] is 

also illustrated here. The query union can be {[6, 6], [7, 8], [9, 9], [10, 11], 

[12, 13]} with AoR 100% or be {[5, 9], [10, 14]} with AoR 71.4%. ................... 59 

Figure 4-2. Plots of DHT operations for different values of M (Maximum 

number of children): the plot of the average number of DHT insertions for 

one DAST insert request; ...................................................................................... 70 

Figure 4-3. Plots of DHT operations for different values of M (Maximum 

number of children): the plot of the average number of DHT retrievals for 

one DAST range query request ............................................................................. 71 

Figure 4-4. Plots of DHT operations for different values of N (the level 

number that DAST starts to insert data items): the plot of the average 

number of DHT insertions for one DAST insert request ...................................... 72 

Figure 4-5. Plots of DHT operations for different values of N (the level 

number that DAST starts to insert data items): the plot of the average 

number of DHT retrievals for one DAST range query request ............................. 73 

Figure 4-6. Plot of the average number of DHT retrievals for one DAST 

range query request with different values of AoR (the accuracy of result). .......... 74 

Figure 4-7. Comparison of DAST (with different AoR) against DST and 

PHT on average number of DHT retrievals for one range query. ......................... 75 

Figure 4-8. Comparison of DAST (with different AoR) against DST and 

PHT on query latency. ........................................................................................... 75 

Figure 5-1. Design overview of ppBLAST ........................................................... 84 



v 

 

Figure 5-2. An example AST with the entire range [0, 8] ..................................... 85 

Figure 5-3. the BLAST searching time comparison of local search and 

ppBLAST search ................................................................................................... 95 

Figure 5-4. Speedup of ppBLAST comparing to the local searches on PC1, 

PC3, PC5 ............................................................................................................... 96 

Figure 5-5. The work loads of each PC (the percentage of the total number 

of tasks in a BLAST job) ....................................................................................... 98 

Figure 5-6. Speedup of ppBLAST when every peer has at least 60% of the 

complete segment set ............................................................................................. 99 

Figure 5-7. Speedup of ppBLAST when every peer has full segment set .......... 100 

Figure 5-8. How is time spent in ppBLAST. ...................................................... 101 

 

  



vi 

 

Acknowledgements 

I would like to express my most sincere thanks to my supervisor, Professor 

Stephen Jarvis, for offering me a great environment, unlimited support and perti-

nent suggestions. Without his continual guidance, this work would not have been 

possible.  

I would also like to thank Dr. Guang Tan. He is one of my best friends and one of 

the kindest persons I ever met in my life.  He gives me many valuable advices on 

my research and much help even in my personal life. Without the vivid discus-

sions we had on the research, the process of finishing this work would have been 

much less fun. Another important PhD mate who I cannot forget is Dr. Wen Jun 

James Xue. He encouraged me a lot in my studies. 

This PhD study is the best time in my life. Thanks to the members and associates 

of the High Performance Systems Group at University of Warwick both past and 

present, including Dr. Ligang He, Dr. Daniel Spooner, Lei Zhao, Paul Isitt, Brian 

Foley, and Gihan Mudalige.  

Thanks to my parents. To them, I am always a little boy. They give me their 

unlimited love to support me in all the years. No matter how busy they were, they 

always prepared the best food for me to take the cooking burden off my shoulder 

so that I have more dedicated time on this work. 

Last but definitely not least, thanks to my beautiful and lovely girlfriend Shuan-

gyan Liu. She accompanies me in the last year of this work. The finalising process 

of this work was hard, but she stands behind me and encourages me not to stop 

progressing. She brings tremendous fun to my life and I will not forget any slice 

of memory of being with her. 

 



vii 

 

Declarations 

This thesis is presented in accordance with the University of Warwick regulations 

for the degree of Doctor of Philosophy. It has been written by myself and has not 

been submitted in any previous applications for any degrees. This work described 

in the thesis has been undertaken by myself except where otherwise stated.  

During this period of research, I have contributed to the following publications: 

X Chen, SA Jarvis, Shuangyan Liu, “ppBLAST: A Computational Service over 

Peer-to-Peer network for BLAST”, International Conference on Advances in P2P 

Systems (AP2PS 2009), Sliema, Malta, October 11-16, 2009. [4] 

X Chen, SA Jarvis, “Analysing BitTorrent's Seeding Strategies”, 7th IEEE/IFIP 

International Conference on Embedded and Ubiquitous Computing (EUC-09), 

Vancouver, Canada, August 29-31, 2009. BEST Paper Award. [5] 

X Chen, SA Jarvis, “Design and Implementation of Efficient Range Query over 

DHT Services”, International Conference on Signal Processing and Communica-

tion Systems (ICSPCS 2007), Australia, Gold Coast, 17-19 December 2007. [6] 

X Chen, SA Jarvis, “Distributed Arbitrary Segment Tree: Efficient Range Query 

Over Public DHT Services”, 12th IEEE International Workshop on Computer 

Aided Modelling and Design of Communication Links and Networks (CAMAD 

07), held as part of the 18th IEEE International Symposium on Personal, Indoor 

and Mobile Radio Communications (PIMRC 2007), Athens, Greece, September, 

2007. [7] 

X Chen, SA Jarvis, “Analysing Seeding Strategies and Fairness in BitTorrent-

based Networks”, 22nd Annual UK Performance Engineering Workshop (UK-

PEW06), Bournemouth, UK, July 6-7, 2006. [8] 



viii 

 

X Chen, SA Jarvis, G Tan, L He, DP Spooner, GR Nudd, “An implementation of 

BLAST over peer-to-peer and its performance validation through simulation”, 8th 

International Conference on Computer Modelling and Simulation, Oxford, UK, 6-

8 April 2005. [9] 

G Tan, SA Jarvis, X Chen, DP Spooner, GR Nudd, “Performance Analysis and 

Improvement of Overlay Construction for Peer-to-Peer Live Media Streaming”, 

Simulation: Transactions of the Society for Modeling and Simulation, 82:93-106, 

Feb 2006. [10] 

G Tan, SA Jarvis, X Chen, DP Spooner, GR Nudd, “Performance Analysis and 

Improvement of Overlay Construction for Peer-to-Peer Live Media Streaming”, 

13th IEEE Symposium on Modeling, Analysis, and Simulation of Computer and 

Telecommunication Systems (MASCOTS), Sept. 2005. [11] 

G Tan, SA Jarvis, L He, X Chen, DP Spooner, GR Nudd, “Modelling Web trans-

fer Performance over Asymmetric Networks”, 1st International Workshop on Per-

formance Modelling in Wired, Wireless, Mobile Networking and Computing 

(PMWMNC-2005), 11th IEEE International Conference on Parallel and Distrib-

uted Systems (ICPADS'05), Fukuoka Institute of Technology, Japan, 20-22 July 

2005. [12] 

L He, SA Jarvis, DP Spooner, X Chen, GR Nudd, “Dynamic Scheduling of Paral-

lel Jobs with QoS Demands in Multiclusters and Grids”, 5th IEEE/ACM Interna-

tional Workshop on Grid Computing (Grid2004), Pittsburgh, USA, Nov 8, 2004. 

[13] 

L He, SA Jarvis, DP Spooner, X Chen, GR Nudd, “Hybrid Performance-based 

Workload Management for Multiclusters and Grids”, IEE Proc.-Softw., 

151(5):224-231, October 2004. [14] 

L He, SA Jarvis, DP Spooner, X Chen, GR Nudd, “Dynamic, Hybrid Perform-

ance-oriented Scheduling of Moldable Jobs with QoS Demands in Multiclusters 



ix 

 

and Grids”, 3rd International Conference on Grid and Cooperative Computing 

(GCC 2004), Wuhan, China, October 2004. [15] 

L He, SA Jarvis, D Bacigalupo, DP Spooner, X Chen, GR Nudd, “Queueing Net-

work-based Optimisation Techniques for Workload Allocation in Clusters of 

Computers”, IEEE International Conference on Services Computing (SCC 2004), 

Shanghai, China, September 15-18, 2004. IEEE Computer Society Press. [16] 

L He, SA Jarvis, DP Spooner, X Chen, GR Nudd, “Hybrid performance-oriented 

optimisation mechanism for scheduling QoS-requesting parallel jobs in multi-

clusters and grids”, 20th Annual UK Performance Engineering Workshop (UK-

PEW' 2004), University of Bradford, July 7-8 2004. [17] 

 

  



x 

 

Glossary of Terms 

BLAST 

A Bioinformatics tool set which is used to compare two DNA sequences. 

Peer-to-Peer networks 

The application level of overlays where computers over the Internet con-

nect to each other to share resources such as files, storage, computing power, and 

so on. 

BitTorrent 

 The most popular and effective Peer-to-Peer file sharing protocol which 

splits large files into pieces and distributes them among peers.  

Seed 

 The peer that have a complete set of file pieces in BitTorrent networks. 

They upload to others without the need of downloading. 

Leecher 

 The peer that downloads file pieces in the BitTorrent networks. 

Selfish leecher 

 The leecher who wants to download but not to share. 

 



xi 

 

Freerider 

 A type of selfish leecher who downloads many file pieces without sharing 

any with others. 

Exploiter 

 A type of selfish leecher who shares file pieces while downloading, but 

leaves the network immediately after finishing. 

Seeding strategy 

 The strategy which guides seeds to upload file pieces to leechers. 

Tit-For-Tat 

 One of the key mechanisms in BitTorrent protocol. It forces leechers to 

upload. 

BitTorrent Choking Algorithm 

 The file chunks are exchanged between peers. Every peer employs the 

Choking Algorithm to decide whom it will upload to.  

Choking Slot 

 When a peer uses the choking algorithm to decide whom to upload, the 

choking slot is actually the number of other peers this peer will upload to. 

SHA-1 

 Secure Hash Algorithm - 1. An algorithm is used for encryption.  

 



xii 

 

Tracker 

 A server that stores the locations of all peers (in the BitTorrent overlay) 

and provides every peer with the locations of others. 

Homogeneous and Heterogeneous network environments 

 In homogeneous network environment, every peer is assumed to have the 

same network bandwidth. For heterogeneous network environment, the network 

bandwidths of peers are different.  

DHT 

 Distributed Hashtable. A Peer-to-Peer overlay that provides lookup and 

storage functions. 

Traditional Segment Tree 

 A traditional segment tree is a binary tree and the value of every parent is 

split and assigned to its two children. 

Bootstrap Peer 

 A peer whose job is to give the locations of other peer to the peers who 

wish to join the peer-to-peer overlay. 

 

  



 

1 

 

Abstract 

In Data Intensive Computing, properties of the data that are the input for 

an application decide running performance in most cases. Those properties in-

clude the size of the data, the relationships inside data, and so forth. There is a 

class of data intensive applications (BLAST, SETI@home, Folding@Home and 

so on so forth) whose performances solely depend on the amount of input data. 

Another important characteristic of those applications is that the input data can be 

split into units and these units are not related to each other during the runs of the 

applications. This characteristic helps this class of data intensive applications to 

be parallelised in the way where the input data is split into units and application 

runs on different computer nodes for certain portion of the units. SETI@home and 

Folding@Home have been successfully parallelised over peer-to-peer networks. 

However, they suffer from the problems of single point of failure and poor scal-

ability. In order to solve these problems, we choose BLAST as our example data 

intensive applications and parallelise BLAST over a fully distributed peer-to-peer 

network.  

BLAST is a popular bioinformatics toolset which can be used to compare 

two DNA sequences. The major usage of BLAST is searching a query of se-

quences inside a database for their similarities so as to identify whether they are 

new. When comparing single pair of sequences, BLAST is efficient. However, 

due to growing size of the databases, executing BLAST jobs locally produces 

prohibitively poor performance. Thus, methods for parallelising BLAST are 

sought. 

Traditional BLAST parallelisation approaches are all based on clusters. 

Clusters employ a number of computing nodes and high bandwidth interlinks be-

tween nodes. Cluster-based BLAST exhibits higher performance; nevertheless, 

clusters suffer from limited resources and scalability problems. Clusters are ex-



 

2 

 

pensive, prohibitively so when the growth of the sequence database are taken into 

account. It involves high cost and complication when increasing the number of 

nodes to adapt to the growth of BLAST databases. Hence a Peer-to-Peer-based 

BLAST service is required. 

This thesis demonstrates our parallelisation of BLAST over Peer-to-Peer 

networks (termed ppBLAST), which utilises the free storage and computing re-

sources in the Peer-to-Peer networks to complete BLAST jobs in parallel. In order 

to achieve the goal, we build three layers in ppBLAST each of which is responsi-

ble for particular functions. The bottom layer is a DHT infrastructure with the 

support of range queries. It provides efficient range-based lookup service and 

storage for BLAST tasks. The middle layer is the BitTorrent-based database dis-

tribution. The upper layer is the core of ppBLAST which schedules and dis-

patches task to peers. For each layer, we conduct comprehensive research and the 

achievements are presented in this thesis.  

For the DHT layer, we design and implement our DAST-DHT. We ana-

lyse balancing, maximum number of children and the accuracy of the range query. 

We also compare the DAST with other range query methodology and state that if 

the number of children is adjusted to more two, the performance of DAST over-

comes others. For the BitTorrent-like database distribution layer, we investigate 

the relationship between the seeding strategies and the selfish leechers (freeriders 

and exploiters). We conclude that OSS works better than TSS in a normal situa-

tion.  

  



 

3 

 

Chapter 1  

Introduction 

1.1 Overview of BLAST 

The Basic Local Alignment Search Tool (BLAST) is a tool set which is 

used throughout Bioinformatics to compare two nucleotide or protein sequences. 

Normally, all sequences that have already been identified are categorised and 

packed into databases, while newly discovered sequences can be encapsulated 

into queries. BLAST compares each sequence in a query with each sequence in a 

database. For each sequence in the query, the statistical similarity that is derived 

from all comparisons is calculated in order to decide whether it is novel or not. If 

novel sequences are indicated by the results, they will be added into the existing 

databases and, therefore, the size of the existing databases will grow.   

The current most popular version of BLAST is NCBI-BLAST, which is 

implemented by the National Centre for Biotechnology Information (NCBI) [18]. 

NCBI-BLAST consists of five programs: blastn, blastp, blastx, tblastn and tblastx 

Table 1-1 BLAST programs and their functions 

BLAST program Function 

blastn Compare nucleotide with nucleotide 

blastp Compare protein with protein 

blastx Compare translated nucleotide with protein 

tblastn Compare translated protein with nucleotide 

tblastx Compare translated nucleotide with translated protein 

 



 

4 

 

(their functions are summarised in Table 1-1). Each program can be executed 

through the command line. The parameters for the commands of the five pro-

grams are similar; the two major parameters express the query and an associated 

database, both of which contain a number of sequences. More details about NCBI-

BLAST and BLAST are presented in Chapter 2. In this chapter, for simplicity, we 

only use the term BLAST and the terminology for a command line execution of a 

BLAST comparison is expressed as a “blast query database”.  

BLAST provides high efficiency algorithms to compare two sequences; 

however, for the daily tasks of discovering new nucleotide or protein sequences, 

the usage of BLAST is restricted by the exponential growth in the databases [19]. 

As described above, every officially identified novel sequence will be added to 

the existing databases, e.g., GenBank [20]. In order to identify one newly discov-

ered sequence, each of the existing sequences in the databases has to be compared 

with it using BLAST. Hence, along with the growth of the databases, more se-

quences will join the comparison queue for one query sequence, and the search 

time of a single BLAST job also increases exponentially. To illustrate the current 

performance of a typical BLAST job, we present an example. The current size of 

the nucleotide sequence database (nt database from GenBank in FASTA format) 

is 7.29GB. For a query of sequences, whose size is 1MB, if we compare it with 

the nt database using BLAST on a PC with 2GB memory and an Intel Core2 Duo 

2.4GHz CPU, it will take approximately 8 hours and 34 minutes. This is the cur-

rent status, and clearly the performance will deteriorate yet further as the data-

bases associated with BLAST continue to grow.  

In order to reduce this performance impact, a number of advances (re-

search and / or industry oriented) have emerged to parallelise BLAST
1
. While 

some of these propose special hardware to directly accelerate BLAST compari-

sons [21, 22], most focus on software level parallelisation, which splits a job into 

a number of tasks and distributes them among nodes in a cluster [23-25].  

                                                 
1
 More details of these BLAST parallelisation approaches are presented in Chapter 5. 



 

5 

 

BLAST has the following characteristics that make it possible to split a 

BLAST job into tasks at a software level. First, one unit of comparison in BLAST 

is between two single sequences. Although BLAST accepts a query or database 

that contains more than one sequence, the actual operation that BLAST conducts 

is to compare each pair of sequences (one sequence from the query and the other 

from the database) until all comparison units are finished.  For example, if a query 

has three sequences and a database has five sequences, a blast query on the data-

base will execute 15 comparisons one by one. Moreover, all comparisons are in-

dependent to each other, which means that one comparison operation will not af-

fect another. Thus, if one splits the database into several parts, each of which con-

tains a number of sequences, a query and one portion of the database can be then 

combined to create a task. When those portions of the database are distributed 

among nodes in a cluster, a BLAST job can then be completed in parallel by all 

nodes.   

The feasibility of splitting BLAST jobs and utilising clusters to improve 

BLAST performance has been proven by [9, 19, 23, 25-29]. However, the cluster-

based parallelising approaches also face problems of scalability and resource limi-

tations. While the sizes of the existing databases grow exponentially [20], more 

nodes have to be continuously added into a cluster to match the growth in speed 

required in order to satisfy the demand for BLAST performance. This has already 

been shown to involve tremendous cost and an increased complexity in the main-

tenance and administration of these supporting clusters. Another burden on the 

scalability of cluster-based BLAST is the number of BLAST job requests from the 

users. If the number of job requests increases, more nodes are needed in a cluster 

to satisfy the requests of the users. For example, Darling et al. [24] claims that 

their cluster-based approach of parallelising BLAST can obtain near linear 

speedup for one BLAST job. Nevertheless, if an increasing number of BLAST 

jobs are submitted to the cluster simultaneously, which is commonly the case, the 

performance will unlikely reach the optimal degree. 

In order to tackle the scalability problems in parallelising BLAST and also 

adapt to the growth of the databases and the potentially large number of BLAST 



 

6 

 

job requests, we investigate another type of available and usable resources – Peer-

to-Peer networks. The Peer-to-Peer technology has become popular since the suc-

cess of Napster [30] in 1999. Traditional approaches to sharing music files were 

based on the server / client Internet model. If a user wants to share his own music 

files, he has to upload the files onto the server. The server was responsible for 

hosting the music files and all clients downloaded from the server. This approach 

suffers from the scalability problem: if a large number of clients try to download 

music files simultaneously, the server has to either put limits on the number of 

connections or stop the service directly. In either case, the result is that the clients 

cannot obtain satisfactory service. Napster solved the problem by maintaining an 

index server which did not host any files. If a client has a file to share with others, 

it connects to the server and informs it which file it wants to share and what is the 

IP:Port it provides. The server will then index this information. When another cli-

ent wants to download the file, the server will tells it who has the file and the cli-

ent will try to connect to the file owner’s computer and download from it directly. 

In other words, downloading and uploading files will occur between clients, not 

between clients and servers. This solves the scalability problem for the server.  

After the birth of Napster, many Peer-to-Peer applications emerged cover-

ing areas such as file-sharing [2, 31], storage [32-34], online video streaming [35], 

information routing [36], processing power sharing [37-39] and so forth. Their 

achievements have shown the availability and scalability of Peer-to-Peer re-

sources. The projects on SETI@Home claim that over millions of peers have con-

tributed their resources since the projects started [40]. Their successes demon-

strate the richness of the Peer-to-Peer resources and peers are willing to share not 

only their storage space but also the CPU processing power. Therefore, inspired 

by the model of SETI@Home, we have targeted Peer-to-Peer networks as the new 

computing resource provider for BLAST and have carried out extensive research 

on utilising scalable Peer-to-Peer networks in parallelising BLAST.  

Parallelising BLAST over Peer-to-Peer networks has the following fea-

tures that need to be taken into consideration: 



 

7 

 

• Network Bandwidth 

In a cluster environment, the network links between nodes nor-

mally have high bandwidths. In a cluster, there is a master node that as-

signs tasks to worker nodes and hosts the database fragments. If a worker 

node needs a fraction of a database at a certain point in time to finish a 

task, it can download it from the master node directly (and immediately) 

without considering the performance impact that will be brought about 

from the transfer delay [24]. This is the so-called “on demand”.  

In a Peer-to-Peer network overlay, however, this is hard to achieve. 

Most peers are normal home PCs which are connected to the Internet 

through home broadband. Their download and upload bandwidths are 

much more limited compared to cluster interlinks. If we adapt the “on de-

mand” design to the database distributions in a Peer-to-Peer network, the 

time spent on the comparatively low transfers will decrease the overall 

performance significantly. 

Therefore a more efficient file distribution approach needs to be 

investigated and employed for Peer-to-Peer BLAST in order to save the 

time cost in distributing databases among peers.  

• Self-organising (has advantage) 

Cluster-based BLAST parallelisation is in a centrally controlled 

paradigm. The master node hosts database fragments and is responsible for 

organising all worker nodes to cooperate with each other to finish a 

BLAST job. This makes the master node the central point of failure. With-

out a properly functioning master node, the BLAST service cannot oper-

ate.  

For Peer-to-Peer BLAST, however, we design it in a loose and 

self-organising paradigm in order to avoid the dependency of single point. 



 

8 

 

In addition, the self-organising mechanism will also remove the central 

control from Peer-to-Peer BLAST and further increase the scalability of 

the system.  

 

• Storage 

Since there will be no master element in Peer-to-Peer BLAST, one 

remaining question is where the queries or results should be stored after 

users submit their BLAST jobs. As users will not wait for all worker peers 

to obtain the queries or return results, queries or results need to be tempo-

rarily stored in the overlay for worker nodes or users to retrieve them later.  

• Self-scheduling 

When a job is submitted to the Peer-to-Peer BLAST overlay, it is 

automatically split into a number of tasks and this number depends on how 

many fragments the database has. As previously described, all tasks are 

independent. However, each task will produce only one result file and all 

result files have to be finally collected for a complete BLAST job. There-

fore, a job may be delayed due to a small number of incomplete tasks. This 

represents a task scheduling problem. Another scheduling issue is that 

peers have different network bandwidths and thus at a certain point in 

time, peers have a different distribution of database fragments. If one peer 

does not have database fragment A, it cannot finish task A, which means 

that not every peer can finish every task. One peer may have a large num-

ber of fragments while another may only have few. The working abilities 

of these two peers are then different. Note that there is no master-like ele-

ment in the overlay to centrally schedule the tasks, how to self-schedule 

the tasks to achieve BLAST jobs efficiently must also be investigated. 



 

9 

 

1.2 Thesis Contributions 

Through solving the above problems, we design a Peer-to-Peer BLAST 

service, ppBLAST, where volunteer peers (which also can be BLAST users) con-

struct an overlay, receive BLAST job requests from users, and return the results. 

In this thesis, we demonstrate the achievements of this research on BLAST paral-

lelisation over a Peer-to-Peer network. The three specific contributions of this the-

sis are as follows.  

The first contribution is the analysis of BitTorrent seeding strategies. In 

order to boost the database distributions over the Peer-to-Peer network, we em-

ploy the efficient Peer-to-Peer BitTorrent file sharing protocol. Although the effi-

ciency of BitTorrent is one of its key advantages, the seeding strategy of the pro-

tocol has been largely overlooked. In order to obtain the optimum performance 

from BitTorrent to aid the database distributions for ppBLAST, we carry out 

comprehensive analysis dedicated to BitTorrent seeding strategies. This contribu-

tion is presented in Chapter 3. 

The second contribution is in the design and implementation of efficient 

range queries over Distributed Hash Table (DHT) services. The DHT is based on 

a Peer-to-Peer overlay to provide a lookup service similar to a hash table. {key, 

value} pairs can be inserted into DHT and the value be retrieved through the key. 

DHT can be used as a light-weight information storage and retrieval system. In 

addition, DHTs are purely distributed and self-organised. These characteristics of 

DHT fit to the requirements of ppBLAST and Peers in ppBLAST can be self-

organised through the DHT mechanism. However, normal DHTs can only support 

single key retrieval, which means that only one key can be queried at a time. If 

one wants to retrieve the values for a series of keys, the query operations have to 

be carried out for each key one by one. This significantly increases the overheads 

of query operations and decreases ppBLAST performance because there are al-

ways many pairs of {task, result} to be retrieved for a BLAST job. Therefore, we 

improve DHT by adding a range query layer so that the values for a range of keys 



 

10 

 

can be retrieved through one query operation. This contribution is presented in 

Chapter 4. 

The final contribution is the ppBLAST service and its performance meas-

urements.  A BitTorrent-like file distribution with correct seeding strategy is em-

ployed in ppBLAST to boost the database distribution process. A DHT infrastruc-

ture with support for range queries is also added as a fundamental layer of 

ppBLAST to provide a self-organising ability, peer seeking and locating function-

alities, as well as the storage of queries and results. We then design ppBLAST 

framework and self-scheduling algorithms using the two research contributions 

above.  

The remainder of the thesis is organised as follows: Chapter 2 documents 

the background research and related work; Chapter 3 presents the analysis of Bit-

Torrent seeding strategies and the changes required to support ppBLAST; Chapter 

4 describes the range query support for DHTs and how this work has been ex-

tended for the ppBLAST design; Chapter 5 illustrates the design and implementa-

tion of ppBLAST and demonstrates its relative performance; Chapter 6 concludes 

the thesis and discusses future works.  

  



 

11 

 

Chapter 2  

Background 

 In this chapter, we present the necessary background research for this the-

sis. Since this thesis covers three research areas – BLAST (data intensive compu-

tation), Peer-to-Peer file distribution and DHT - we split the background chapter 

into these three areas. It should be noted that each of the following chapters con-

tains its own related work, and therefore we do not repeat this in this chapter.  

In Section 2.1, we detail BLAST and its characteristics related to this the-

sis. In Section 2.2, we introduce Peer-to-Peer overlays, Peer-to-Peer file sharing, 

DHTs and Peer-to-Peer-based computation. The documentation that is more topic-

related is addressed at the beginning of the associated chapters.  

2.1 BLAST 

BLAST, the Basic Local Alignment Search Tool [41, 42] is mainly em-

ployed by bioinformatics area to compare two amino-acid sequences from differ-

ent proteins or the nucleotides of DNA. The results are then used to find the simi-

larity between the two sequences. For example, if a gene from an ape is obtained, 

one can compare it with each identified human genome to see whether humans 

carry a similar gene; alternatively it can be compared with all identified ape ge-

nomes to find out if the gene is new. 

 The original BLAST contains algorithms to efficiently carry out the com-

parison. The National Centre for Biotechnology Information (NCBI) [18]  has de-

veloped five programs (listed in Table 1-1) and combined them into a toolset 

(NCBI-BLAST). NCBI also maintains a large library of databases to store all iden-



 

12 

 

tified nucleotide and protein sequences. Every identified sequence is added to the 

library. Bioinformatics scientists, who are BLAST users, will compare newly ob-

tained sequences against the ones in certain databases in the library through 

BLAST. Although these five programs of NCBI-BLAST are used to compare dif-

ferent types of sequences, their basic usages are similar. They accept a query and 

a database as the input, and produce the result to show the similarities between the 

query and database. Both query and database can have one or more sequences. If 

either of them has more than one sequence, each sequence will be compared 

against the target. For example, if a query has three sequences, each of them will 

be extracted and compared with the target database. If the target database has five 

sequences, then each possible pair of sequences (one from the query and the other 

from the database) will be compared. All five programs are executed through a 

command line in the form of “blast –p program_name –i query_name –d data-

base_name –o out_result” with a number of other parameters. For simplicity, an 

execution of the BLAST program is termed a “blast query database”.  

 Although some characteristics of BLAST have been introduced in Chapter 

1, more detail is required in the content of this work. BLAST is both data- and 

computation-intensive. The time overhead that is spent on a BLAST job has two 

parts. One is the disk operation time which is spent on reading the sequences from 

the hard disk to memory and writing text-based results from memory into the disk. 

The other overhead is the computational comparisons for sequences. Simply com-

paring two single sequences using BLAST is very effective; however, once the 

number and the sizes of sequences (from either query or database) in a job are 

large, the execution time will become tremendous, as shown by the example in 

Chapter 1. However, the independent characteristics of BLAST provide a means 

for parallelisation.  

 Despite the number of sequences in the query or database, BLAST always 

extracts one sequence from a query and one from the database, and compares the 

pair. After one pair is finished, BLAST will carry on the comparison for another 

different pair until all possible combinations of pairs are finished. Most impor-

tantly, the comparisons of all pairs are independent. In other words, we can split 



 

13 

 

the sequence pairs, compare them separately and finally combine all results. 

Therefore, in order to parallelise a BLAST job, we can split the database into 

fragments and distribute them among nodes (in cluster-based parallelisation, the 

term “node” refers to cluster node; in our Peer-to-Peer approach, it refers to peer 

over the Internet). Each node will therefore have a number of fragments and can 

compare the query against its own database portions. In this way, a BLAST job 

can be executed in parallel and the overall performance and efficiency are im-

proved. Another advantage of this parallelisation approach is that the core of 

BLAST does not need to be modified and the parallelisation is focused on BLAST 

jobs but not on the core of BLAST programs.  

2.2 Peer-to-Peer Network 

As introduced in Chapter 1, the popularity of Peer-to-Peer networks in 

both research and industry arises largely from the success of Napster [2, 30]. The 

term Peer-to-Peer overlay indicates that a number of nodes are interconnected 

through a particular distributed architecture, which is laid on top of the physical 

network links. In the overlay, peers share resources with each other and during the 

sharing, peers are both servers and clients; this is different from the traditional 

network sharing model where nodes are normally clients and obtain services only 

from servers.   

2.2.1 Peer-to-Peer File Sharing 

The most important application area for Peer-to-Peer networks is file shar-

ing. Traditional file sharing approaches heavily rely on servers. Popular files are 

collected or produced by the hosting servers manually, or uploaded to the servers 

by clients. If a client wants to obtain a file, he has to connect to the hosting server 

and download it. The upload / download links exist only between a server and a 

client. The downloading rate is restricted by the server’s output bandwidth or the 

client’s download bandwidth. It is also affected by the number of users connected 

in the server. The output bandwidth of a server is always limited and it has to be 



 

14 

 

shared by all downloaders. In the worst case, the server may stop working if the 

number of simultaneous downloaders reaches a threshold because the capacity of 

the server is exceeded. Peer-to-Peer file sharing applications solve the problem by 

allowing peers to connect to each other without considerable central server activ-

ity. Peer can browse shared files of other peers or upload to / download from oth-

ers. The bandwidths of the links between peers are then utilised more efficiently. 

In addition, the capacity of the whole system increases when more peers join the 

network, because the newly joined peers can supply more files / file chunks and 

contribute their bandwidths.  

In June 1999, Napster emerged and started the popularity of Peer-to-Peer 

file sharing overlays. Gnutella [1], eDonkey2000 [43] and Freenet  [44] were re-

leased in 2000. Gnutella [1], employs a search driven file sharing mechanism. 

Peers do not browse for files; instead, they query their neighbours for the files that 

they want to retrieve. If their neighbours do not have the files, queries will be sent 

to the next level of neighbours to further explore the existence of the requested 

files. The whole overlay is unstructured, i.e., there are no particular algorithms to 

decide who peers should be connected to and peers randomly make connections to 

others through bootstrap nodes. eDonkey2000 [43] also follows this unstructured 

design. However, it has a central indexing server to record which files peers share 

in the overlay and where they are located (IP:Port information of peers). This de-

sign is similar to Napster, which is called a Hybrid Unstructured architecture. 

Freenet [44] has put much effort on the anonymity of peers. Peers in Freenet do 

not browse or query for files and they simply choose whether to receive files from 

others. Sharing a file normally starts from one peer, and that peer will send files to 

neighbours. If the neighbours choose to receive them, they will start the next 

round of sending after finishing their retrieval. Every peer knows only its 

neighbours who send the file, but not the information on which peer initialises the 

sharing.  

By 2002, the BitTorrent Peer-to-Peer protocol [31] dominated the file 

sharing arena. This protocol splits every large file into small chunks. When a peer 

initialises the sharing of a file, it builds a torrent file and publishes it. Peers who 



 

15 

 

wish to download this file will open the torrent file, retrieving the meta-

information in it and starting the BitTorrent client. The client application will fol-

low the records that reside in the torrent file and connect to the tracker server. The 

tracker server is the only centralised element in the BitTorrent overlay; however, 

its function is limited to only recording the IP:Port of peers who are currently 

download the file in the overlay. The key factor that leads to the BitTorrent suc-

cess is the Tit-For-Tat mechanism (TFT). The TFT algorithm forces peers to up-

load to others whose uploading rates are the highest. The reason for this design is 

that if one is willing to upload, it then can download faster from others. Peers use 

TFT to decide which peer to upload chunks to and which to download from. Bit-

Torrent is suitable for the sharing of large files and has been demonstrated to ex-

hibit very high efficiency [3, 7, 8, 31, 45-56]. This is one of the reasons that we 

select BitTorrent as our database distribution layer.  

2.2.2 Peer-to-Peer Computation 

The most representative applications in Peer-to-Peer computation area are 

SETI@Home [37, 38, 40] and Folding@Home [39]. Although the initiatives of 

these two projects are different, the internal Peer-to-Peer architectures are similar. 

Thus, we describe only SETI@Home in this section. 

The term SETI is an acronym for the Search for Extra-Terrestrial Intelli-

gence. SETI@Home is the project that makes use of home PCs to analyse radio 

transmissions from outer space to search for possible evidence of alien life. Since 

the analysis work intends to be continuous and long term, this project builds on a 

Peer-to-Peer overlay and normal home PCs can participate in to contribute their 

processing power. The architecture of SETI@Home is straightforward, in that it 

employs a centralised server to coordinate the whole Peer-to-Peer computation 

process. If a home PC wants to contribute to the project, it can connect to the in-

dexing server and become a peer through SETI@Home client application. The 

server then sends the peer computation task to compute. Once the peer finishes the 

task, it returns the result back to the server and a new round of task assigning 

starts. Peers can join or leave at any time without any restriction. The server just 



 

16 

 

iteratively locates any available peers and assigns them with tasks. There are no 

communications between peers and the whole running process of SETI@Home is 

driven purely by the server.  

SETI@Home is enormously successful. Since SETI@Home was launched 

on 17
th

 May, 1999, it has had over 5.2 million participants worldwide. On 26
th

 

September, 2001, it has performed a total of 10
21

 floating point operations, which 

is the largest computation in history. On the 14
th

 September, 2009, SETI@Home 

had 278, 832 active peers concurrently in the overlay and 2.4 million peers having 

been in the system. The computing capacity of the SETI@Home Peer-to-Peer 

overlay is over 684 TeraFLOPS. This provides the inspiration for the initiative of 

utilising Peer-to-Peer networks to parallelise BLAST. ppBLAST does however 

adopt a different Peer-to-Peer architecture for BLAST-style computation jobs.  

2.3 DHT 

A Distributed Hash Table (DHT) is a Peer-to-Peer system that provides a 

lookup service similar to a traditional hash table. A key and a value are combined 

as a {key, value} pair and stored in participating peers through a DHT construc-

tion algorithm. Peers can submit a key to the overlay and retrieve its value. This 

functionality seems simple but provides many other services to Peer-to-Peer ap-

plications. For example, using the DHT it is possible to store the location informa-

tion (IP:Port) of peers, so centralised indexing servers are no longer necessary 

[57]; DHTs can also act as online Peer-to-Peer storage systems, where disk stor-

age of peers can be easily utilised.  

Unlike ordinary Peer-to-Peer file sharing applications, DHT systems are 

normally structured. All peers join the overlay by following a design of construc-

tion so that various DHT properties, such as the number of replicas for {key, 

value} pairs, the list of peer’s neighbours etc., can be maintained. Although vari-

ous DHT systems exist [32, 36, 58-60], their construction algorithms are similar. 

In DHTs, when a peer joins the overlay through a bootstrap node (a node whose 



 

17 

 

IP address is known to every peer and is used as the entrance to the overlay), it 

will be assigned an id which is generated by hashing its IP:Port information. The 

peer will then query the bootstrap node for a list of peers whose ids are closest to 

its own. Once the list is obtained, it will connect to those peers and add them into 

its neighbour list.  

When a {key, value} pair is to be stored into the DHT, the key will be 

hashed in the same hashing space as the peer id. The remaining question for the 

storage of the {key, value} pair is which peers should physically store it. The peer 

that accepts the request of storage will not physically store them. For example, if 

peer A asks peer B to store {key, value} pair, peer B does not necessarily need to 

store the pair on its own hard drive. Instead, it will query its neighbours for the 

peers whose ids are closer to the pair’s key hash than itself. Neighbours will con-

tinue to query the next level of neighbours for closer ids. If a peer cannot find any 

other neighbours whose ids are closer, it becomes the final peer that will then 

eventually store the pair physically in its hard drive. The DHT value retrieval 

process is similar to the storing, thus we do not repeat it here. 

DHTs have the following characteristics: 

• Decentralisation. There are no coordinating or indexing servers in DHT 

overlays and DHTs are purely decentralised [58]. All peers collectively 

form a DHT system without any central coordination. This removes the 

possible single point of failure (single place where can causes the failure 

of the whole system) from the system and thus obtains better robustness.   

• Scalable. When more peers join the overlay, the performance of the DHTs 

will not decrease. Firstly, the capacity of the storage of the DHT will in-

crease as peers will contribute more local disk space. Secondly, because 

every peer is equal and the interconnections between peers are constrained 

by the DHT algorithms, the participation of peers will not overload other 

peers. In addition, as the DHT algorithms emphasise the distributed stor-

age, {key, value} pairs will not be stored on a single or a limited number 

of peers. On the contrary, DHTs intend to equalise the storage for the pairs 



 

18 

 

over all peers, i.e., every peer stores similar numbers of pairs [36]. There-

fore, with the participation of more peers, the load on existing peers will 

be more relaxed as the new peers will share portions of pairs and balance 

them with the existing peers.  

• Fault tolerant. DHTs have a replica mechanism to try to avoid the loss of 

{key, value} pairs due to any failure of peers [36]. Every {key, value} pair 

will have a number of replicas in the overlay. If a certain amount of peers 

fail to function, pairs will not be lost. Also, a timeout parameter exists in 

DHTs which is used to check whether a neighbour of a peer is still func-

tioning or not. If the timeout expires and there is no signal being returned 

back from a neighbour, the peer will try to connect a new possible 

neighbour candidate and a minor connection modification will occur.  

  



 

19 

 

Chapter 3  

Analysing BitTorrent’s Seeding Strategies  

The analysis in this chapter is key to identifying how database distribu-

tions over Peer-to-Peer networks can be conducted; this in turn is crucial for em-

ploying BitTorrent in the implementation of ppBLAST. 

 

 Various terminology is introduced (e.g., freerider, exploiter, selfish leecher, 

etc.). A summary of this terminology can be found in the thesis glossary.  

3.1 Introduction 

BitTorrent is a typical peer-to-peer (P2P) file distribution application that 

has gained tremendous popularity in recent years. A considerable amount of re-

search exists regarding BitTorrent’s choking algorithm (see Glossary), which has 

proved to be effective in preventing freeriders. However, the effect of the seeding 

strategy on the resistance to freeriders in BitTorrent has been largely overlooked. 

In addition to this, a category of selfish leechers (termed exploiters), who leave 

the overlay immediately after completion, has never been taken into account in 

previous research. In this chapter two popular seeding strategies, the Original 

Seeding Strategy (OSS) and the Time-based Seeding Strategy (TSS), are chosen 

and we study, via mathematical models and simulation, their effects on freeriders 

and exploiters in BitTorrent networks. The mathematical model is verified and we 

discover that both freeriders and exploiters impact on system performance, despite 

the seeding strategy that is employed. A selfish-leecher’s threshold is identified; 

once this threshold is exceeded, we find that TSS outperforms OSS – that is, TSS 

reduces the negative impact of selfish lechers more effectively than OSS. Based 



 

20 

 

on these results we discuss the choice of seeding strategy and speculate as to how 

more effective BitTorrent-based file distribution applications can be built. 

3.2 Seeding Strategies and Performance 

In a traditional client/server file distribution paradigm, a server takes responsibil-

ity for transmitting data to all clients. This service model is limited in scalability, 

especially when the files are large. As a successful Peer-to-Peer file-sharing sys-

tem, BitTorrent [31] solves this problem by dividing a large file into many small 

sized blocks and encouraging clients to exchange blocks during their downloading 

processes. This mechanism reduces load on the server and improves the system 

service capacity.  

Like many other peer-to-peer systems, BitTorrent faces the challenge of 

freeriders [1, 49], which are peers who never upload blocks to others. A peer can 

act as a freerider by setting the upload rate to a very low value or even zero. For-

tunately, BitTorrent can effectively penalise those freeriders using its Tit-For-Tat 

(TFT) policy, which determines how peers with incomplete files (called leechers) 

exchange blocks. With the TFT policy, all leechers exchange blocks only with 

those who upload to them at a higher rate, thus freeriders cannot obtain blocks 

because they never upload. While most previous research [31, 45, 49, 54] focuses 

on the behaviour of leechers, the role of the seeds (peers with complete files), in 

the process of preventing freeriders has been largely overlooked.  

Since seeds own all the data blocks, they are dedicated to uploading to 

others. Seeds use a seeding strategy to decide which leechers to serve. Currently, a 

widely used seeding strategy, the Original Seeding Strategy (OSS), ensures that 

seeds upload to leechers which have the highest download rates, in the hope that 

new seeds can be produced quickly, which can then serve others. However, when 

freeriders with relatively high download bandwidths exist in the overlay, due to 

the mechanism of OSS, there is a possibility that those freeriders dominate the 

resources of seeds and delay the downloading processes of other unselfish leech-



 

21 

 

ers. Thus the OSS strategy may benefit freeriders rather than necessarily fostering 

contribution. In order to solve this problem caused by freeriders, a new seeding 

strategy, called the Time-based Seeding Strategy (TSS), was proposed in [50]. By 

employing this strategy, seeds serve each leecher in turn and for the same amount 

of time so that no single leecher (including freeriders) can dominate the resources 

of seeds. However, the negative side of TSS is that the speed of producing fresh 

seeds in the overlay is slowed down and eventually the overall performance may 

be impacted. Due to the lack of a comprehensive analysis of TSS in [50], it is not 

clear whether TSS is better than OSS in preventing freeriders and as such this re-

mains an open research question. 

Furthermore, an issue largely ignored is that the newly generated seeds can 

choose not to act as expected – they may stay for only a short time [48, 53] or 

simply quit the system once they have obtained the whole file. In this chapter, we 

term these types of peers exploiters, i.e., they serve others while downloading, but 

quit the overlay immediately after its completion. So far little attention has been 

paid to the influence of exploiters; therefore it is unclear how OSS and TSS are 

resilient to their behaviour.  

In order to answer these questions and direct the selection of seeding strat-

egy for BitTorrent clients, we conduct a comprehensive analysis of OSS and TSS. 

First we establish a mathematical model to assess OSS’s effectiveness in reducing 

the impact of selfish leechers (freeriders and exploiters) in a homogeneous envi-

ronment where all peers have identical downlink and uplink bandwidths. We then 

introduce BitTorrent simulation experiments and provide experimental results that 

verify our model and compare TSS with OSS. The investigation is then extended 

to a heterogeneous environment. We show that under either OSS or TSS, freerid-

ers and exploiters degrade system performance. If the number of selfish leechers 

increases, the performance of OSS-led BitTorrent drops faster but is still better 

than a TSS-led version. However, there is a threshold for the scale of the selfish 

leechers. Once the threshold is met, TSS performs better than OSS and provides 

better resistance to freeriders and exploiters.  



 

22 

 

The remainder of this chapter is organised as follows. Section 3.3 presents 

an overview of BitTorrent and documents related work; Section 3.4 analyses the 

different seeding strategies using a mathematical model; Section 3.5 describe our 

simulation methodology; Section 3.6 and 3.7 discuss the simulation results; finally 

Section 3.8 summaries the chapter. 

3.3 Understanding BitTorrent 

BitTorrent employs a series of sophisticated mechanisms to encourage 

peers to upload data to each other, and thus achieves scalable and highly efficient 

content distributions. In this section, we first give an overview of BitTorrent. Sev-

eral key factors behind the success of the BitTorrent protocol, such as the choking 

algorithm and the local-rarest-first mechanism, are already described in previous 

research [3, 31, 50, 54, 61]. We thus present only the two popular seeding strate-

gies, OSS and TSS, in detail. Throughout this chapter, we use terminology first 

introduced in [50]; much of this terminology is summarised in the Glossary of 

Terms at the front of the thesis. 

3.3.1 BitTorrent Mechanism 

Prior to the content distribution, the content provider splits the file into a 

number of pieces and obtains the SHA-1 hashes for all pieces. Together with the 

IP address and port number of the tracker, the provider encapsulates the file piece 

information into a torrent. Normally the provider itself will then connect to the 

tracker and thus become the initial seed. After peers retrieve the torrent, they ob-

tain the IP address and port number of the tracker and then join the BitTorrent 

overlay through the tracker. From this time point, peers become leechers or if 

some peers already have the complete set of file pieces when they join, they be-

come initial seeds (we do not consider this case in our research). Every peer up-

dates its own peer set by obtaining a peer list, which contains a random set of 

peers (their IP:Port), from the tracker at a certain time interval. Seeds upload data 

to leechers using the seeding strategy, while leechers interact with each other, i.e., 



 

23 

 

decide who to download data from or who to upload data to, by executing the 

choking algorithm. When a peer starts to download data from others, leechers de-

cide which file piece to retrieve by following the guidance of the local-rarest-first 

algorithm (LRF). Once a leecher finishes downloading, it either rejoins the over-

lay to be a seed or leaves immediately so becoming an exploiter. 

3.3.2 Seeding Strategy 

The initial seed and the regular seeds that come from the leechers all have 

a complete set of file pieces and thus do not need any data from others. Note that 

the choking algorithm uses the uploading rates of leechers to decide whom to up-

load to, thus it is not applicable for seeds because seeds cannot calculate other 

leechers’ uploading rates. In order to effectively contribute to the distribution 

overlay optimally, seeds employ seeding strategies. There are currently two de-

ployed seeding strategies: the original seeding strategy (OSS) and the time-based 

seeding strategy (TSS). These are described in the following text and further ana-

lysed in Section 3.4. 

 

Algorithm 3-1: OSS, invoked by seeds every 10 seconds 

remove unchoked leecher from the interested_leecher_list 

for every leecher in the interested_leecher_list do  

calculate the rate (download_rate) at which the leecher downloads from 

this_local_seed 

end for 

sort interested_leecher_list in descending order based on the leecher’s 

download_rate 

for � ← 1 to 3 do 

    unchoke interested_leecher_list(�) 



 

24 

 

OSS (see algorithm 3-1) has been employed since BitTorrent was invented 

[31]. In the BitTorrent distribution process, there are seeds that always stay in the 

overlay for a limited time period [54, 61]. Thus, OSS aims to force seeds to con-

tribute to the overlay as much as possible before they leave.  In following OSS, 

seeds upload data to leechers whose downloading rates are highest. In other words, 

seeds aim to upload data as quickly as possible. There are three aspirations behind 

this process: 1. Seeds can deliver a maximum number of pieces to leechers; 2. 

Leechers that download from seeds can become new seeds quickly; 3. New seeds 

can continue to serve the remaining leechers.  

Algorithm 3-2: TSS, invoked by seeds every 10 seconds 

global variable: � 

sort the interested_leecher_list based on the leecher’s last unchoke time, with 

the most recently unchoked leecher last 

if � = 0 then 

for � ← 1 to 3 do 

        unchoke interested_leecher_list(�) 
    end for 

int � ← random integer between 4 and n (n is the number of interested 

leechers) 

    unchoke interested_leecher_list(�) 

     � ← � + 1 

else if � = 2 

    for � ← 1 to 4 do 

        unchoke interested_leecher_list(�) 
    end for 

     � ← 0 

end if 



 

25 

 

TSS (see algorithm 3-2) was introduced in the official BitTorrent client 

4.0.0 [50]. In following TSS, seeds upload data to leechers uniformly. In other 

words, seeds serve each of their neighbour leechers in turn based on the time 

stamp of the last service, regardless of the leechers’ download rates. A seed can 

perform s parallel uploads. After a seed has been uploading data to a leecher for 

sixty seconds (typically), it chokes the leecher and selects another leecher to serve. 

In this manner, all leechers that are connected to a seed will be served for a simi-

lar time period. The purpose of this strategy is: 1. To prevent any single leecher 

from monopolising seeds; 2. To reduce the amount of duplicate data a seed needs 

to upload before it contributes a full set of file pieces to the overlay. 

3.3.3 Additional Related Work on the Analysis of BitTorrent 

There has been a good deal of research on analysing the BitTorrent 

mechanism. The methodologies that this work employs can be categorised into 

three groups: creating mathematical models, carrying out simulations and analys-

ing BitTorrent traffic.  

Qiu et al. [54] construct a fluid model for BitTorrent in order to address 

several issues: peer evolution, scalability, file sharing efficiency, local availability 

and incentives to prevent freeriders. Their work indicates that the mean download 

completion time of leechers does not relate to the peer arrival rate. The utilisation 

of the uploading/downloading bandwidth of each peer is fairly high. However, the 

success of the distribution of a file is related to the number of freeriders in the 

overlay. If the number of freeriders is increasing, the numbers of seeds will expo-

nentially decrease and the distribution terminates.  

Massoulie et al. [62] introduce a probability model of coupon replication 

systems. The major conclusions, which are directly related to BitTorrent, are 1. the 

peer arriving or departing rate does not affect the system performance signifi-

cantly; 2. the efficiency of the distribution does not critically depend on the local-

rarest-first algorithm.  



 

26 

 

Tian et al. [56] create a simple mathematical model to study the perform-

ance of BitTorrent file sharing, with particular interest on the completeness of the 

downloading process. They find that the current choking algorithm improves the 

distribution efficiency but cannot help to maintain the file availability and may not 

prevent the system from termination (the rest of the leechers cannot finish 

downloading) because of the lack of certain pieces in the overlay. 

Fan et al. [46]  investigate how BitTorrent achieves incentives and pre-

vents freeriders. Felber et al. [63] conduct a simulation to investigate how BitTor-

rent-like protocols handle flash-crowds. By the means of simulation, they find 

several tradeoffs inside each algorithm that BitTorrent uses and that the system 

performance depends on many factors.  

Bharambe et al. [3] use an event-driven simulator to comprehensively 

evaluate the performance impact from the core algorithms (TFT choking algo-

rithm, local-rare-first algorithm and so forth) that BitTorrent employs. They find 

that the distribution rates are not optimal although they were reported to be high 

[48]. The choking algorithm is very effective and unfairness, which is defined in 

terms of serving rates, has been prevented to a satisfactory degree. However, if the 

fairness is defined in terms of the data served by nodes, the choking algorithm 

does not perform well. The local-rarest-first algorithm outperforms alternative 

piece selection strategies but does not effectively solve the last piece problem 

when leechers wait for the downloading of the last piece. The last finding from 

their work is that the initial seed is very important and it should distribute a full 

set of pieces into the overlay as quickly as possible. 

Iza et al. [48] conduct a comprehensive analysis on the data that is derived 

from the tracker log of the most popular Redhat 9 torrent. The measurements in-

volve the downloading and uploading characteristics of thousands of peers. They 

observe that the mean downloading rate of leechers is 50KB/s, which indicates the 

good connectivity that most leechers have. They also find that peers, including 

both leechers and seeds, are constantly sending data to other leechers, which im-

plies that the choking algorithm is able to provide incentives to peers for upload-



 

27 

 

ing. However, one fact that is also discovered is that major data contributions are 

from a relatively small number of peers.  

Pouwelse el al. [53] present a measurement study on BitTorrent. The ma-

jor contribution of their work is the analysis of the flashcrowd effect, i.e., the phe-

nomenon of the sudden popularity of a new file distribution. They indicate that the 

peer arrival process is not following the Poisson distribution and this gives guid-

ance to the future BitTorrent-related simulation research work.  

Guo et al. [47] focus on the fact that peers always download though multi-

ple torrents simultaneously. With this fact, the research in which single torrent 

distribution is assumed is not accurate any more because the downloading / up-

loading bandwidths of peers are shared among multiple BitTorrent distribution 

swarms. Guo et al. also find that the arrival / departure rate is exponential and that 

service availability becomes poor quickly when the distribution is close to the end. 

Finally, they propose a system design for multi-torrent cooperation.  

Our work on BitTorrent differs from the previous work discussed above in 

the following respects. First, we identify a special kind of selfish leecher: termed 

exploiters. We show that the behaviour of the exploiters impacts on the system 

performance although the harm done is not as severe as that caused by freeriders. 

Second, we analyse two seeding strategies (OSS and TSS) in detail and focus on 

their resistance to the selfish leechers, which none of the previous research work 

has conducted. Finally, our experiments show that choosing a seeding strategy to 

adapt to the scale of the selfish leechers in the overlay is very important. We thus 

propose in our future work that a mechanism is in need to detect the scale of the 

selfish leechers so that the seeding strategy can be loaded or changed dynamically. 

3.4 Modelling Seeding Strategies 

As described in Section 3.3, there are currently two kinds of seeding 

strategies, the original seeding strategy (OSS) and the time-based seeding strat-

egy (TSS), which have been deployed through different BitTorrent client applica-



 

28 

 

tions. In this section, we present a mathematical analysis to investigate the impact 

that freeriders or exploiters have on the mean download completion time of unsel-

fish leechers if OSS is employed. 

3.4.1 Metrics, Assumptions and Scenarios 

Leechers join a BitTorrent network in order to obtain a complete shared 

file from the overlay. They have one major concern - the time that they need to 

spend to complete the download. Since uploading data is the driving force of a 

BitTorrent system, unselfish leechers are important to the overlay and the quality 

of service that they get from the distribution should be kept at a certain level; oth-

erwise, the fairness in the system is violated. Thus, we choose the mean download 

completion time of unselfish leechers, denoted by ��, in the system as the metric 

of our mathematical analysis. Using this metric, we can investigate how freeriders 

and exploiters affect the fairness and the benefits that unselfish leechers obtain if 

BitTorrent employs OSS. 

 Another concern that leechers have is whether a complete set of blocks of 

the file can be finally obtained. [54] suggests that the probability of a leecher find-

ing a desired block among its neighbours is very close to one, therefore, for sim-

plicity of analysis, the first assumption that we make is that at any point in time, 

the network owns the complete set of blocks of a file. 

 The environment in which a file is distributed is assumed to be homogene-

ous. This is the second assumption that we make. Initially, there are � leechers 

and one initial seed. All peers have identical uplink bandwidths of 
, but varying 

downlink bandwidths of ��. The size of the file being distributed is �.  

 Two other assumptions are made: 

• A peer’s downloading bandwidth is not the bottleneck of data transfer. The 

experimental results in [54] suggest that the mean utilization of �� is prac-

tically quite low (20-40%). Therefore, it is reasonable to assume that the 



 

29 

 

downlink bandwidth of each leecher will not restrict the downloading 

process.  

• Peers have the same uplink bandwidths u, and the mean utilisation of peers’ 

uplink bandwidths is 100% [3] in this homogeneous environment. We will 

consider the heterogeneous setting where the uplink bandwidths are not 

equal in our simulation study. 

 Three scenarios are considered in the model. All leechers in the first sce-

nario are unselfish leechers. In the second scenario, a number � of leechers are 

freeriders and the remainder of the leechers are unselfish. In the final scenario, 

only unselfish leechers and a number � of exploiters are present in the network. 

The different �� for the three scenarios are calculated to show whether OSS can 

guarantee fairness in the system. 

3.4.2 The Model 

 In all three scenarios, unselfish leechers act as seeds for a mean time �� 

after finishing downloading, regardless of whether they are being served by seeds.  �� is assumed to be a constant value, which is long enough to let new seeds con-

tribute sufficient blocks to the network [3, 61]. Let ��� denote the staying time of 

the initial seed. Freeriders and exploiters have higher downlink bandwidths than 

unselfish leechers. The mean download time of exploiters is denoted by ��.  

 In the first scenario, all the unselfish leechers keep uploading to others be-

fore they become seeds. The amount of data that they upload is 
��� (�� is the 

period of time that unselfish leecher uploads for). After that they become seeds; 

they stay for a mean period of time ��, hence, the amount of data they send out to 

the system is 
���. The initial seed contributes to the network with the amount of 

data 
���, where ��� is long enough to ensure that at least one copy of the entire 

file blocks are distributed into the network. 

 In the distribution process of the whole file (i.e., within the period of the 

torrent lifetime), each of the � leechers eventually obtains a complete copy of the 



 

30 

 

file. Therefore, an amount �� of data has been uploaded by all peers. Thus, we 

have �� = 
��� + 
��� + 
��� and �� is given by  

�� = �� − 
��� − 
����
 = �
 − �� − ����  (1)

 When the � freeriders with the highest download rates join the system, the 

seeds pass on all of their contributions to the freeriders (following the OSS policy) 

before they, or the freeriders, leave the network. Because the freeriders do not up-

load blocks at all, all data are distributed through only the unselfish leechers and 

the seeds; that is, �� = �� − ��
��� + �� − ��
�� + 
���. 

 In the second case, ���  is given by 

��� = �� − �� − ��
�� − 
����� − ��
  
  = �� − � ∙ �
 − �� − ���� − � 

(2)

 To show the performance degradation caused by the freeriders, the in-

crease rate (���) of mean download completion time of unselfish leechers is  

��� = ��� −���� = �� − � ∙ �
 − �����
 − ���� − ��
> �� − � (3)

 In [1], it is discovered that nearly 70% of Gnutella users share no files. If 

we assume � to be 70%, ��� will be more than 230%, which implies that unsel-

fish leechers will have to spend 230% more time on downloading because of the 

existence of freeriders. At an early stage, freeriders dominate the resources of ini-

tial seeds, and unselfish leechers seldom exchange blocks with each other, be-

cause new blocks are rarely delivered to them. This blank transfer period causes a 

significant increase to the download completion time of unselfish leechers. Note 

that when ��� = ��/
, ��� = 0. This implies that when the initial seed stays in 



 

31 

 

the network for a sufficiently long period of time, the mean download completion 

time of unselfish leechers will not be increased. 

 If an alternative strategy, TSS (see algorithm 2), is applied, the freeriders 

will not be the only consumers of the initial seed. The seed tries to equalise its 

contributions to every leecher in the system. The unselfish leechers have equal 

chance to obtain new blocks from the initial seeds and the blank transfer period no 

longer exists. The mean download completion time of the unselfish leechers is 

thus reduced. This result will be further demonstrated in the simulation experi-

ments.  

 In the final scenario, the �  exploiters keep exchanging blocks with the 

leechers while they receive data from the seeds. However, the exploiters will 

leave the network as soon as they finish downloading; that is, they do not stay as 

seeds for a period of time �� . Therefore, �� = �� − ��
���� + �
�� +�� − ��
�� + 
��� and ���� is given by 

���� = �� − �
�� − �� − ��
�� − 
����� − ��
  
= �� − � ∙ �
 − �� − � ∙ �! − �� − ���� − � 

(4)

where �� is the mean download time of  the � exploiters. 

 To show the performance degradation, ���� is calculated  

���� = ����−���� = �� − � ∙ �
 − ���� − ���
 − ���� − ��
 

= �� − � ∙ �1 − �� − ���
 − ���� − ��
� 

(5)

 Note that �� < ��  because exploiters tend to be served by seeds with a 

higher priority, thus we have 



 

32 

 

���′ = �� − � ∙ #1 − ���
 − ���� − ��
+ ���
 − ���� − ��

$
> �� − � ∙ ���
 − ���� − ��

 
(6)

 The negative impact that the exploiters bring to the system is less than that 

of the freeriders. When �� increases, ���� drops. The reason for this is that if the 

exploiters have to stay as leechers in the network for a longer period of time, they 

serve more blocks to the unselfish leechers and the download rates of the unsel-

fish leechers therefore increase. OSS does not try to force exploiters to stay as 

leechers for a longer period of time; on the contrary, it helps the exploiters finish 

downloading in a faster manner if exploiters have higher download rates. 

3.5 Simulation Methodology 

 In this section we conduct simulations to: 1) Verify our mathematical 

model, which is presented in Section 3.4; 2) Analyse seeding strategies in both 

homogeneous and heterogeneous network environments; 3) Further explore the 

performance impact of seeding strategies using more comprehensive metrics. 

3.5.1 Simulator Details 

 A discrete-event-based simulator written in Java is implemented to simu-

late peer activities, such as joining, leaving and block exchanging, as well as most 

of the BitTorrent mechanisms (the local-rare-first algorithm, the choking algo-

rithm, OSS, TSS, etc). In the simulator, we treat every BitTorrent or network re-

lated operation as an event. Every event is associated with an event timestamp. 

The event timestamp does not correspond to the real time and it is a relative time 

indicator for events. In the simulation, we provide launch events, and event chains 

will be formed because one event may lead to another. For example, when a peer 



 

33 

 

becomes able to serve others, the first choking round occurs and a preset choking 

event for the peer is generated. When the event finishes, it will generate or sched-

ule the next choking round which will occur 10 seconds later. Note that the 10 

seconds is the timestamp inside the simulation. All events, including both the pre-

set and the newly generated events, are pushed into a priority queue, which is 

sorted by event time. The events in the event queue are polled one by one and 

executed. 

 Each peer in the simulator is associated with a downlink and an uplink 

bandwidth, which resemble asymmetric network access as widely observed today. 

Based on these bandwidth settings, the simulator calculates the block transfer de-

lay in the following way. When peer A is going to send a block to peer B, the 

simulator retrieves A’s upload bandwidth and B’s download bandwidth. The 

bandwidth with the least value is selected and the time delay is calculated through 

dividing the block size by the selected bandwidth value. The simulator then 

schedules a block-received event with the time delay for peer B. When the event 

is executed, peer B receives the block and its file block set is updated. 

 Since the time delay computation for each block transmission is expensive, 

we make a number of simplifications that have negligible impact on the perform-

ance aspects we are considering. For example, we ignore the interaction of Bit-

Torrent control packets, which are normally very small compared with the data 

block size. Following Akella et al. [64], network bottlenecks are assumed to 

mainly occur in the edges of networks. 

 We simulate BitTorrent mechanisms, such as its choking algorithm, local-

rarest-first algorithm, OSS, TSS, as comprehensively as possible. However, Bit-

Torrent performance can be influenced by many configuration parameters at the 

client side or the network condition of peers (such as a peer’s network link is not 

stable). Since our study is to find the performance impact of seeding strategies, we 

do not try to find a set of optimal parameters for BitTorrent performance but use 

those parameters proposed in related research [3, 50]. 



 

34 

 

3.5.2 Metrics 

 In term of fairness, we focus on the benefits that the unselfish leechers can 

obtain in the BitTorrent distribution process. Hence the metrics we select for the 

simulations are all for unselfish leechers. 

 Mean download completion time of unselfish leechers: In the mathe-

matical model, we use the mean download completion time of unselfish leechers 

as the metric to compare seeding strategies where freeriders or exploiters exist. 

Since the purpose of BitTorrent is to distribute a file among a number of peers, the 

mean download completion time indicates the efficiency of the distribution. Using 

this metric we can investigate the overall system performance. In the simulation 

experiments we continue to validate our model and extend the BitTorrent overlay 

environment from a homogenous to a heterogeneous setting. The download com-

pletion time of every unselfish leecher is summed and a mean value calculated.  

 Download rate and bandwidth utilisation: In the experiments with ho-

mogeneous settings, we use download rate and bandwidth utilisation of unselfish 

leechers as metrics to indicate performance differences between OSS-led and 

TSS-led BitTorrent overlays where selfish leechers exist.  

 Cumulative distribution of unselfish leechers’ download completion 

times: For the experiments with heterogeneous settings, we plot all cumulative 

distributions of the download times of all unselfish leechers. This metric will help 

us to understand how individual leechers perform. 

3.5.3 Setup of Experiments 

 Since our study focuses on the seeding status of the distribution, i.e. the 

finishing period, we assume a steady-state network where all leechers are already 

present. Bharambe et al. [3] also use a set of peer bandwidths, which was derived 

from the Gnutella study presented in [2]. We borrow the bandwidth values from 

[3] and assign them to peers in our simulation experiments. 



 

35 

 

 In term of peers’ bandwidths, our experiments have two settings: homoge-

nous and heterogeneous. In the homogenous setting, all leechers have the same 

network bandwidths that we choose from the bandwidth values shared by [2, 3]. 

In the heterogeneous setting, the link bandwidths of leechers follow the distribu-

tion which is presented in [3].  

 The experimental setup is summarised as follows: 

• File size: A = 200MB; piece size: 256KB; block size: 16KB 

• Number of initial seeds: 1 

• All unselfish seeds stay in the overlay for 1000 seconds 

• Peers’ bandwidth: 

o Initial seed uplink: 50KB/s 

o Leechers’ bandwidth. Homogeneous: downlink = 150KB/s, uplink 

= 38KB/s; Heterogeneous: see Table 3-1 

o For freeriders  and exploiters, the downlink remains 150KB/s and 

the uplink remains 38KB/s 

• Number of leechers: � = 1000 and all leechers join the network simulta-

neously at the beginning of the distribution 

• Unchoking slots for each peer: s = 5 

 

Table 3-1: Bandwidth distribution of leechers (derived from actual distri-

bution of the Gnutella network [2, 3]) 

Downlink (KB/s) Uplink (KB/s) Fraction of leechers 

78 12 0.3 

150 38 0.6 

300 100 0.1 

 



 

36 

 

3.5.4 Roadmap of Experiments 

 We begin in Section 3.6 by applying OSS and TSS, respectively, to Bit-

Torrent and examining their mean download times of unselfish leechers in a ho-

mogeneous environment (all leechers have the same uplink and downlink band-

widths) while freeriders or exploiters exist. For each of the seeding strategies, 

there are three experiments performed with this setting. In the first all leechers are 

unselfish. In the second and last we vary the number of freeriders / exploiters 

from 100 to 700 and record the mean download times. Through the three sets of 

mean download times we calculate the Increase Rates of the mean download 

times to study the impact of OSS and TSS on unselfish leechers while freeriders 

or exploiters exist. We finally use our mathematical model to predict the increase 

rates and compare them with OSS and TSS to verify the accuracy of our model. 

 In Section 3.6, we continue the experiments with heterogeneous settings. 

In addition to the mean download time of unselfish leechers, we use the cumula-

tive distribution of download times for the three classes of unselfish leechers 

whose network bandwidths are different. This metric helps us investigate the de-

tails of individual completion time. We use the set of 100, 300, and 700 for the 

numbers of freeriders or exploiters, as the trend of the change of the download 

time is the important characteristics that we are studying and we believe this set is 

enough to highlight this trend. 

Note that for the results of all experiments, they are related to only unselfish 

leechers unless we clearly specify otherwise. 

3.6 Results: the Homogenous Setting 

 In this section, we present the experimental results in a homogenous set-

ting. For each of the experiments, the figures are plotted from the mean values of 

the results which are provided from ten simulation runs. 



 

37 

 

3.6.1 Impact of Freeriders 

 Fig. 3-1 shows the mean download times of OSS and TSS while freeriders 

exist. When there is no freerider in the network, the mean download time when 

OSS is applied is 1,938.4 seconds, while applying TSS leads to a download time 

of 2,114.6 seconds. The download process therefore costs 8.3% more time to fin-

ish if TSS is employed; OSS clearly outperforms TSS when all leechers are unsel-

fish. The advantage of OSS is kept, although debasing, along with the increment 

of the number of freeriders. When the number of freeriders reaches 300, TSS 

starts to out-perform OSS. Its mean download time is 2,812.6 seconds represent-

ing a 7.8% improvement over OSS. When the number of freeriders is 700, which 

means 70% of the leechers are freeriders, the mean download time of TSS is 40.9 

percent less than OSS and the downloading performance of OSS becomes very 

poor (its mean downloading time is 7,275.9 seconds). Clearly, TSS performs bet-

ter in resisting freeriders than OSS, but OSS out-performs TSS when the number 

of freeriders is below a certain value. 

 We plot the mean download rates of OSS and TSS in Fig.  3-2. We can see 

that the download rate of OSS is higher than that of TSS before the number of 

freeriders reaches 300, but drops quickly as the number of freeriders increases. 

0 100 200 300 400 500 600 700
0

1000

2000

3000

4000

5000

6000

7000

8000

T
h

e 
m

ea
n

 d
o

w
n
lo

ad
 t

im
e 

(s
ec

o
n

d
s)

Number of Freeriders

 OSS

 TSS

 

Figure 3-1. Results for homogenous setting with freerider: the mean 

download completion time comparison 



 

38 

 

When 70% of the leechers are freeriders, the mean download rate of OSS drops to 

28.1KB/s where the mean download bandwidth utilisation is only 18.7%. On the 

other hand, the mean download rate of TSS drops smoothly and slowly. Even in 

the worst case, the mean download rate of TSS is 47.6KB/s, although when there 

are no freeriders in the overlay, TSS performs 17.3% worse than OSS. 

 From Fig. 3-1 and Fig. 3-2, it can be concluded that before the number of 

freeriders reaches a certain value, OSS leads to a higher distribution performance 

than TSS. This is because OSS encourages leechers, who have higher download 

rates, to be seeds more quickly. Although there may be a number of freeriders in 

the overlay, a portion of unselfish leechers still have the chance to be served by 

seeds, and continue to serve afterwards and boost the whole distribution process. 

We know that freeriders will not serve others after they finish downloading and 

even while they are being served by seeds, they are not sharing file blocks with 

others. Thus, when the number of freeriders grows, the possibility for more 

freeriders dominating the resources of seeds will also increase, and the download-

ing performance of unselfish leechers are negatively and significantly impacted. 

 Instead of letting a particular set of leechers dominate the seed resources, 

TSS forces seeds to treat every leecher equally (despite their download rates) and 

-100 0 100 200 300 400 500 600 700 800

30

45

60

75

90

105

 

 

 T
h

e 
m

ea
n

 d
o

w
n

lo
ad

 r
at

e 
(K

B
/s

)

Number of Freeriders

 OSS

 TSS

 

Figure 3-2. Results for homogenous setting with freerider: the download 

rate comparison 



 

39 

 

serve them one by one for a certain period of time. When the number of freeriders 

is below a certain value, the TSS-led distribution process has lower performance 

than OSS-led because it does not try to boost the whole process by making more 

seeds quickly (unlike OSS). While the number of freeriders is growing, the per-

formance is negatively impacted but does not drop sharply like an OSS-led distri-

bution, because freeriders will never dominate the seed resources and unselfish 

leechers still can be served by seeds even if the number of freeriders is large. 

 We compare the increasing rate of the mean download times (IRDs) of 

OSS-led BitTorrent with our model in Fig. 3-3. The reason for calculating the 

100 200 300 400 500 600 700

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

In
cr

ea
se

 r
at

e 
o

f 
th

e 
m

ea
n
 d

o
w

n
lo

ad
 t

im
e

Number of Freeriders

 OSS

 Our model

 TSS

 

Figure 3-3. Results for homogenous setting with freerider: the IRD com-

parison 

0 100 200 300 400 500 600 700
0

1000

2000

3000

4000

5000

6000

T
h

e 
m

ea
n

 d
o

w
n

lo
ad

 t
im

e 
(s

ec
o

n
d

s)

Number of Exploiters

 OSS

 TSS

 

Figure 3-4. Results for homogenous setting with exploiters: the mean 

download time comparison 



 

40 

 

IRD is to see how much the mean download time grows if the number of freerid-

ers changes from zero to a certain value.  Through the growth we can conclude 

which seeding strategy (OSS or TSS) performs better in resisting the freeriders. In 

addition, by calculating the IRD from the experimental results, we can justify how 

practical our mathematical model is. Note that our mathematical model is only for 

an OSS-led BitTorrent distribution process. We can see from Fig. 3-3 that the 

mathematical model matches the experimental results. The trends are approxi-

mately the same and our experience is that it is common for a mathematical model 

to underestimate values as it is, after all, an approximation of what is actually per-

formed in practice. We can confirm that in real-world experiments the OSS-led 

BitTorrent performs worse than our model predicts, although the model still pro-

vides a reliable indication of IRDs, and that the mean download time grows at a 

slightly faster rate.  

 If we focus on TSS-led BitTorrent, we can see that the IRDs from this are 

very low; from the best case (0.08) to the worst case (1.04). When comparing 

IRDs from a TSS-led implementation with the OSS-led implementation, we find 

that the TSS-led version is on average 41.66% better than the OSS-led version, 

and the difference is consistent ranging from -62.01% to -10.75% (the negative 

sign indicates that the TSS-led version is lower than the OSS-led version). This 

shows that with TSS, the mean download time increases in a slow and steady 

manner, while more freeriders emerge. 

3.6.2 Impact of Exploiters 

 Fig. 3-4 shows the mean download times of the OSS-led and the TSS-led 

versions when there are exploiters in the overlay. The OSS-led BitTorrent per-

forms better than the TSS-led one before the number of exploiters reaches 400, 

after which the reverse is true. Exploiters in a TSS-led BitTorrent overlay cannot 

dominate the seeds; however, it is similar for unselfish leechers whether they re-

ceive file blocks from seeds or exploiters. Hence, there are no large differences 

despite employing OSS or TSS when the number of exploiters is below a certain 

value (400 in our experiments). 



 

41 

 

 Fig. 3-5 plots the mean download rate of the unselfish leechers. When 

there are no exploiters in the overlay, the OSS-led BitTorrent distribution shows a 

high download rate of 110.73KB/s and the download bandwidth utilisation is 0.74. 

Although it is predictable that the TSS-led BitTorrent performs worse than the 

OSS-led version, the mean download rate remains high at 96.12KB/s. When the 

number of exploiters is 100, the download rate of the OSS-led BitTorrent de-

creases and is close to that of TSS. OSS keeps performing better than TSS until 

the number of exploiters reaches 400. When the number of exploiters equals 500, 

-100 0 100 200 300 400 500 600 700 800

30

45

60

75

90

105

 Number of Exploiters

 

 OSS

 TSS

T
h

e 
m

ea
n

 d
o
w

n
lo

ad
 r

at
e 

(K
B

/s
)

 

Figure 3-5. Results for homogenous setting with exploiters: the download 

rate comparison 

100 200 300 400 500 600 700

0.0

0.5

1.0

1.5

2.0

2.5

 

In
cr

ea
se

 r
at

e 
o

f 
th

e 
m

ea
n

 d
o

w
n

lo
ad

 t
im

e

Number of Exploiters

 OSS

 Our model

 TSS

 

Figure 3-6. Results for homogenous setting with exploiters: the IRD com-

parison 



 

42 

 

OSS is worse but close to TSS; however, the performance of OSS drops signifi-

cantly afterwards, while TSS’s degradation is slow. When the number of exploit-

ers is 700, the download bandwidth utilisation of OSS is 0.24, lower than that of 

TSS (0.33).  

 From Fig. 3-6, we can see that the increase rate of the mean download 

time for OSS matches our model and that the average difference is 0.091. Before 

the number of exploiters reaches 400, the increase rates of the mean download 

time of OSS and TSS are close. This indicates that before the number of exploit-

ers reaches a certain value, the negative impact on both seeding strategies are 

similar. After this, OSS suffers more acutely than TSS. In other words, TSS per-

forms better than OSS in resisting exploiters. 

3.7 Results: the Heterogeneous Setting 

 In this section, we study the impact of the seeding strategies on the per-

formance of BitTorrent when the peer bandwidth is heterogeneous. As described 

in sub-Section 3.5.3, we categorise all unselfish peers into three classes whose 

network bandwidths are different. To emphasise the effects of freeriders and ex-

ploiters, we choose to make their bandwidths consistent: 150KB/s (down) and 

38KB/s (up). 

3.7.1 Impact of Freeriders 

 Fig. 3-7 plots the cumulative distribution of the download time when there 

are no freeriders in the overlay. It is clear that TSS performs much worse than 

OSS in this case. Using TSS, there are only 20% of the leechers able to finish the 

download within 3,000 seconds and 90% of them need nearly 6,000 seconds to 

complete. In the case of OSS, 52% of the leechers complete within 3,000 seconds 

and 93% of them finish within 5,000 seconds.  

 Recall that there are three classes of unselfish leechers in the overlay. In 

order to investigate the difference of the impact between OSS and TSS on each 



 

43 

 

class, we plot the cumulative distribution of the download times for every class 

(Fig. 3-8). The download link bandwidths of the three classes of unselfish leechers 

are 78KB/s, 150KB/s and 300KB/s respectively. Thus, the optimal cases for the 

download times of the unselfish leechers are 2,625.6, 1,365.3, and 682.7 seconds. 

We can see from Fig. 3-8 that none of the leechers reach their optimal download 

time, despite the presence of OSS or TSS. For every class of unselfish leecher, 

OSS performs better than TSS. The 300KB/s class of leechers in TSS have similar 

download times to the 150KB/s class in OSS. The 78KB/s class of leechers, who 

1000 2000 3000 4000 5000 6000 7000
0.0

0.2

0.4

0.6

0.8

1.0

 

Num of Freeriders/Exploiters = 0

Download Time (Seconds)

C
u
m

u
la

ti
v
e 

F
ra

ct
io

n
 o

f 
U

n
se

lf
is

h
 L

ee
ch

er
s

 OSS

 TSS

 

Figure 3-7. The cumulative distribution of the download times, when the 

number of freeriders or exploiters equal to zero, for all unselfish leechers 

1000 2000 3000 4000 5000 6000 7000
0.0

0.2

0.4

0.6

0.8

1.0

 

 Num of Freeriders/Exploiters = 0

C
u
m

u
la

ti
v
e 

F
ra

ct
io

n
 o

f 
U

n
se

lf
is

h
 L

ee
ch

er
s

Download Time (Seconds)

 OSS 78KB/s

 OSS 150KB/s

 OSS 300KB/s

 TSS 78KB/s

 TSS 150KB/s

 TSS 300KB/s

 

Figure 3-8. The cumulative distribution of the download times, when the 

number of freeriders or exploiters equal to zero, for each class of unselfish 

leechers 



 

44 

 

have the lowest download bandwidths, spend the most time completing the 

download, particularly when TSS is employed.  

 When the number of freeriders is increased to 100, the two lines in Fig. 3-

9 become closer and the segments of the lines where the download time is more 

than 6,500 seconds overlap. In Fig. 3-12, we can see that the class of TSS 

300KB/s has surpassed the class of OSS 150KB/s, while they perform similarly if 

1000 2000 3000 4000 5000 6000 7000 8000
0.0

0.2

0.4

0.6

0.8

1.0

  
C

u
m

u
la

ti
v
e 

F
ra

ct
io

n
 o

f 
U

n
se

lf
is

h
 L

ee
ch

er
s

 

 Num of Freeriders = 100

Download Time (Seconds)

 OSS

 TSS

 

Figure 3-9. The cumulative distribution of the download times for all unselfish 

leechers when freeriders exist (100 freeriders) 

2000 3000 4000 5000 6000 7000 8000 9000
0.0

0.2

0.4

0.6

0.8

1.0

 C
u
m

u
la

ti
v
e 

F
ra

ct
io

n
 o

f 
U

n
se

lf
is

h
 L

ee
ch

er
s

 Num of Freeriders = 300

 

Download Time (Seconds)

 OSS

 TSS

 

Figure 3-10. The cumulative distribution of the download times for all unselfish 

leechers when freeriders exist (300 freeriders) 



 

45 

 

the number of freeriders is 0. At the same time, the class of TSS 78KB/s and the 

class of OSS 150KB/s have very close download times. 

 This indicates that once the freeriders join the overlay, the performance of 

the OSS-led BitTorrent degrades towards the TSS-led version. The TSS-led Bit-

Torrent also suffers performance degradation; however, the degree of this is less 

3000 4000 5000 6000 7000 8000 9000 10000 11000
0.0

0.2

0.4

0.6

0.8

1.0

  
C

u
m

u
la

ti
v
e 

F
ra

ct
io

n
 o

f 
U

n
se

lf
is

h
 L

ee
ch

er
s

 

 Num of Freeriders = 700

Download Time (Seconds)

 OSS

 TSS

 

Figure 3-11. The cumulative distribution of the download times for all unselfish 

leechers when freeriders exist (700 freeriders) 

1000 2000 3000 4000 5000 6000 7000 8000
0.0

0.2

0.4

0.6

0.8

1.0

 C
u

m
u

la
ti

v
e 

F
ra

ct
io

n
 o

f 
U

n
se

lf
is

h
 L

ee
ch

er
s

 Num of Freeriders = 100

 

 (a) Download Time (Seconds)

 OSS 78KB/s

 OSS 150KB/s

 OSS 300KB/s

 TSS 78KB/s

 TSS 150KB/s

 TSS 300KB/s

 

Figure 3-12. The cumulative distribution of the download times for  each class of 

unselfish leechers when freeriders exist (100 freeriders) 

 



 

46 

 

than that of OSS. When the number of freeriders reaches 300, the lines in Fig. 3-

10 are very close to overlapping, before the point where the download time equals 

5,000 seconds. This means that there are similar numbers of unselfish leechers 

having finished their download within 5000 seconds. After 5000 seconds, more 

unselfish leechers with TSS finish before 7000 seconds than those with OSS. Fig. 

3-13 shows that the low bandwidth (78KB/s) leechers with TSS complete sooner 

than those with OSS 

 For middle and high bandwidth leechers with TSS and OSS, they perform 

1000 2000 3000 4000 5000 6000 7000 8000 9000
0.0

0.2

0.4

0.6

0.8

1.0
 Num of Freeriders = 300

 
Download Time (Seconds)

C
u

m
u

la
ti

v
e 

F
ra

ct
io

n
 o

f 
U

n
se

lf
is

h
 L

ee
ch

er
s

 OSS 78KB/s

 OSS 150KB/s

 OSS 300KB/s

 TSS 78KB/s

 TSS 150KB/s

 TSS 300KB/s

 

Figure 3-13. The cumulative distribution of the download times for  each class of 

unselfish leechers when freeriders exist (300 freeriders) 

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0.0

0.2

0.4

0.6

0.8

1.0

 

Num of freeriders = 700

C
u

m
u
la

ti
v

e 
F

ra
ct

io
n

 o
f 

U
n

se
lf

is
h
 L

ee
ch

er
s

Download Time (Seconds)

 OSS 78KB/s

 OSS 150KB/s

 OSS 300KB/s

 TSS 78KB/s

 TSS 150KB/s

 TSS 300KB/s

 

Figure 3-14. The cumulative distribution of the download times for  each class of 

unselfish leechers when freeriders exist (700 freeriders) 



 

47 

 

the download similarly. This case is seen to be similar to the homogeneous setting. 

Where the number of freeriders is 300 and above, TSS starts to perform better 

than OSS. For the results of the experiments in which the number of freeriders is 

700, we plot them on Fig. 3-11 and Fig. 3-14. From Fig. 3-11, when the number 

of freeriders is 700, the download time in TSS is less than in OSS. From Fig. 3-14, 

the download time in TSS is also less than in OSS, respectively for every kind of 

bandwidth. Especially in Fig. 3-14, the class of OSS 150KB/s performs even 

worse than the class of TSS 78KB/s. Comparing the class of TSS 150KB/s with 

OSS 300KB/s, we can see that, 40% of TSS 150KB/s spent less time than OSS 

300KB/s leechers.  

 In addition to the conclusions that we draw from the above study, we also 

find two interesting effects of freeriders: 

• Freeriders impact simultaneously on all leechers even if they have differ-

ent bandwidths; 

• OSS-led and TSS-led BitTorrent overlays both suffer from freeriders. 

However, The TSS-led version suffers less than the OSS-led one. This is 

clearer when more freeriders join the overlay. 

3.7.2 Impact of Exploiters 

 In this section, we study the resistance of OSS and TSS to the exploiters. 

When the number of exploiters equals zero, the results of the download times are 

the same as those where there are no freeriders in the overlay (Fig. 3-7 and Fig. 3-

8). Thus we do not repeat the results or discussion here. Instead, we continue the 

study from where the number of exploiters is 100.  

 When the number of exploiters is increased to 300 (Fig. 3-19), 8% of the 

class TSS 300KB/s leechers finish downloading before all high-level leechers in 

the OSS-led BitTorrent; however, the remainder of the OSS 300KB/s leechers 

perform better than TSS 300KB/s. The download times of the middle-level leech-

ers are very close in both overlays, although those in the OSS-led overlay perform 



 

48 

 

slightly better than the TSS-led version. The low-level leechers in the TSS-led 

overlay complete sooner than the ones in the OSS-led BitTorrent. With the emer-

gence of more exploiters, the middle-level leechers in the OSS-led overlay sig-

nificantly impact on performance (compared with Fig. 3-7). This is because when 

exploiters finish downloading, they leave the network immediately. 

 Although high-level unselfish leechers will serve the overlay for an 

amount of time in an OSS-led overlay, their service targets are always other high-

level leechers who have not yet finished. The services to the middle-level leechers 

2000 2500 3000 3500 4000 4500 5000 5500 6000
0.0

0.2

0.4

0.6

0.8

1.0

 

  Num of exploiters = 100

C
u

m
u

la
ti

v
e 

F
ra

ct
io

n
 o

f 
U

n
se

lf
is

h
 L

ee
ch

er
s

Download Time (Seconds)

 OSS

 TSS

 

Figure 3-15. The cumulative distribution of the download times for  all unselfish 

leechers when exploiters exist (100 exploiters) 

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500
0.0

0.2

0.4

0.6

0.8

1.0

 

  Num of exploiters = 300

C
u

m
u

la
ti

v
e 

F
ra

ct
io

n
 o

f 
U

n
se

lf
is

h
 L

ee
ch

er
s

Download Time (Seconds)

 OSS

 TSS

 

Figure 3-16. The cumulative distribution of the download times for  all unselfish 

leechers when exploiters exist (300 exploiters) 



 

49 

 

are not therefore sufficient. In the TSS-led overlay, middle-level unselfish leech-

ers always obtain their services from existing seeds, even if exploiters exist. Thus 

the performance degradation in the TSS-led overlay is not as severe. Once the 

number of exploiters is more than 300, TSS starts to transcend OSS. First, the 

middle-level unselfish leechers in the TSS-led overlay obtain better overall 

download speeds than the same class in the OSS-led version (shown in Fig. 3-17), 

9% of them perform better than those in the OSS-led overlay when the number of 

exploiters is 700 (shown in Fig. 3-20). 

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
0.0

0.2

0.4

0.6

0.8

1.0

 

  Num of exploiters = 700

C
u
m

u
la

ti
v

e 
F

ra
ct

io
n

 o
f 

U
n
se

lf
is

h
 L

ee
ch

er
s

Download Time (Seconds)

 OSS

 TSS

 

Figure 3-17. The cumulative distribution of the download times for  all unselfish 

leechers when exploiters exist (700 exploiters) 

1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500
0.0

0.2

0.4

0.6

0.8

1.0
Num of exploiters = 100

C
u

m
u

la
ti

v
e 

F
ra

ct
io

n
 o

f 
U

n
se

lf
is

h
 L

ee
ch

er
s

Download Time (Seconds)

 OSS 78KB/s

 OSS 150KB/s

 OSS 300KB/s

 TSS 78KB/s

 TSS 150KB/s

 TSS 300KB/s

 

Figure 3-18. The cumulative distribution of the download times for  each class of 

unselfish leechers when exploiters exist (100 exploiters) 



 

50 

 

 The performance differences of low-level leechers between the OSS-led 

and TSS-led versions remain similar to the case where the number of exploiters is 

300; however, their overall download times are increased. When the number of 

exploiters is 700, the download time window for 63% of the unselfish leechers in 

the TSS-led overlay is between 3,000 and 5,000 seconds, while this window is 

between 4,000 and 6,000 seconds for the OSS-led overlay. 

1600 2400 3200 4000 4800 5600 6400 7200 8000
0.0

0.2

0.4

0.6

0.8

1.0
 Num of exploiters = 300

C
u
m

u
la

ti
v
e 

F
ra

ct
io

n
 o

f 
U

n
se

lf
is

h
 L

ee
ch

e
rs

(b) Download Time (Seconds)

 OSS 78KB/s

 OSS 150KB/s

 OSS 300KB/s

 TSS 78KB/s

 TSS 150KB/s

 TSS 300KB/s

 

Figure 3-19. The cumulative distribution of the download times for  each class of 

unselfish leechers when exploiters exist (300 exploiters) 

3000 4000 5000 6000 7000 8000 9000
0.0

0.2

0.4

0.6

0.8

1.0
 Num of exploiters = 700

C
u

m
u
la

ti
v
e 

F
ra

ct
io

n
 o

f 
U

n
se

lf
is

h
 L

ee
ch

er
s

(c) Download Time (Seconds)

 OSS 78KB/s

 OSS 150KB/s

 OSS 300KB/s

 TSS 78KB/s

 TSS 150KB/s

 TSS 300KB/s

 



 

51 

 

3.8 Conclusions and Discussion 

 In this chapter we establish a mathematical model to analyse how the seed-

ing strategies in BitTorrent affect system performance in the presence of selfish 

peers. We choose two popular seeding strategies, the Original Seeding Strategy 

(OSS) and the Time-based Seeding Strategy (TSS), for this study. We categorise 

selfish peers into two classes: freeriders and exploiters. A series of simulations are 

then conducted in both homogeneous and heterogeneous network settings.  

 First, we prove the practical uses of our mathematical model for OSS, 

which can be used to theoretically study the effects of the seeding strategies on a 

BitTorrent network. We then discover that when the number of selfish leechers is 

below a certain value, OSS performs better than TSS. Beyond this value, TSS 

outperforms OSS by equalising the contributions of seeds to every leecher. It is 

observed that this approach prevents freeriders from occupying the resources of 

seeds and successfully makes exploiters serve more blocks to other leechers. 

 We also discover that both freeriders and exploiters harm the system, de-

spite the seeding strategy that is employed. TSS has better resistance (which 

means smaller performance degradation) to selfish leechers compared with OSS. 

Our experimental results are consistent with those shown in [50]: that is the 

download rates that leechers can obtain are directly proportional to leechers’ 

bandwidths. Furthermore, we find that the selfish leechers can impact negatively 

on leechers of every level of bandwidth and neither of the seeding strategies can 

completely eliminate this impact. TSS can reduce the impact more effectively 

than OSS; this can be more clearly observed when the number of selfish leechers 

reaches a certain threshold.  

 In a BitTorrent network we believe that OSS should be employed to boost 

system performance (higher download performance) if the number of selfish 

leechers is relatively small; the exact threshold depends on the BitTorrent envi-

ronment. Beyond this threshold, TSS should be deployed to equalise the contribu-



 

52 

 

tions of the seeds into all leechers to prevent selfish leechers from dominating the 

seeding resources.  

 With this analysis work, suitable seeding strategies can be selected and 

optimum performance can be obtained after we employ BitTorrent for the data-

base distribution in ppBLAST. 

  



 

53 

 

 

Chapter 4  

Distributed Arbitrary Segment Tree 

 Distributed Hash Tables (DHTs) can provide functions such as lookup, 

storage, and self-organising Peer-to-Peer overlays. These functions are essential 

for ppBLAST. However, most DHTs support retrieval for only single key a time. 

For range queries, they always exhibit poor performance. ppBLAST involves 

many range query operations; therefore, we design Distributed Arbitrary Segment 

Tree structure and lay it on top existing DHTs to deliver high performance on 

range queries.    

4.1 Introduction 

This chapter describes the design and implementation of DAST, a Distributed Ar-

bitrary Segment Tree structure that supports range queries for public Distributed 

Hash Table (DHT) services. DAST does not modify the underlying DHT infra-

structure, instead it utilises the scalability and robustness of DHT while providing 

simplicity of implementation and deployment for applications. Compared with 

traditional segment trees, the arbitrary segment tree used by a DAST reduces the 

number of key-space segments that need to be maintained, which in turn results in 

fewer query operations and lower overheads. Moreover, considering that range 

queries often contain redundant entries that the clients do not need, we introduce 

the concept of Accuracy of Results (AoR) for range queries. We demonstrate that 

by adjusting AoR, the DHT operational overhead can be improved. DAST is im-

plemented on a well-known public DHT service (OpenDHT) and validation 



 

54 

 

through experimentation and supporting simulation is performed. The results 

demonstrate the effectiveness of DAST over exiting methods. 

4.2 DHT and DAST 

There has been considerable research interest into Distributed Hash Tables in re-

cent years. In addition to offering the advantages of scalability, load balancing and 

robustness, DHTs allow P2P applications to achieve efficient key insertion, 

lookup and retrieval over the underlying P2P network [58, 65-67]. Imperative to 

the success of DHTs is the hashing operation. Each DHT node has a unique node 

identifier represented with a predetermined number of bits, e.g., a Pastry node has 

a 128-bit id [66]. The node identifier is typically the hash of the node’s public key 

or IP address, and the set of node identifiers is uniformly distributed. Before in-

serting a key into the P2P overlay, DHT also hashes the key over the node identi-

fier space so as to locate the node whose node ID is the closest to the hash of the 

key. Once this mapping is complete, the hash of the key together with the value is 

stored at the target node.  

 The ID-based hashing effectively balances the load over all DHT nodes; 

however, this exact matching mechanism makes range query inefficient because 

clients can only search and retrieve one key at a time. If clients need to search for 

all available keys in a certain range, i.e., a range query, this is difficult to achieve 

via DHT lookup directly, since the DHT hashes the keys over the node identifier 

space before inserting, and the structural attributes of keys, such as the continuity 

of the key space, are erased by the DHT hashing functions. Consider for example 

that the keys to be inserted are the integers between 0 and 15. Each key is hashed 

before it is inserted into the DHT. If clients want to retrieve all keys in the range 

[3, 5], each key (“3”, “4”, “5”) must be separately identified as even if one key is 

found, e.g., “4”, it is not possible to conjecture the locations of its neighbours (“3”, 

“5”) through the hash value of “4” since the hashing is purely random and not 

structured. If the length of the range is very large, e.g. [2, 2
10

], then clients have to 

carry out 2
20

-1 retrieval operations to obtain all keys, which introduces consider-

able overheads to the DHT [68] and the efficiency of the query to itself. 



 

55 

 

 To enable DHTs to support efficient range queries, we propose a Distrib-

uted Arbitrary Segment Tree (DAST), a data structure that is layered upon a tradi-

tional DHT. There exist a number of approaches to implementing a range query. 

In some designs keys are duplicated or the query results contain unnecessary keys 

in the interest of query efficiency. Nevertheless, the values associated with the 

keys are ignored. We believe that the size and type of the data associated with 

each key is crucial in understanding the efficiency of the query process. It is this 

data after all which is directly retrieved from the DHT and causes the storage load 

on the DHT. By considering the values associated with each key, DAST achieves 

a better balance between load and query performance. Moreover, we use the term 

data item of the form {key, value} when we describe DAST operations. 

 DAST constructs an arbitrary segment tree (AST), which is an enhanced 

form of a traditional segment tree [68, 69], to break down the entire key space into 

a number of segments (each segment is a node in the tree). For every insertion re-

quest of a data item {key, value}, DAST first locates all segments of the tree that 

contain the key, and then creates new data items in the form {segmentId, (key, 

value)}, i.e., DAST encapsulates the key and the value in the new data item, with 

segmentId being the new key. Finally, DAST inserts the new data items into the 

underlying DHT instead of the original data items. To process a range query, 

DAST looks for a minimum number of segments on the tree so that the union of 

the selected segments matches the range of the query. This way, by retrieving all 

segmentIds in the union, we obtain the result of the range query. Since every seg-

ment contains a number of keys, retrieving by segmentIds instead of the original 

keys can significantly reduce the number of DHT retrieval operations and conse-

quently improve the efficiency of the range query.  

 A novel concept in DAST is the accuracy of the results for a range query. 

As mentioned, the efficiency of DAST is determined by the number of segments 

that constitute the query range. The use of the arbitrary segment tree guarantees 

that the DAST is able to find the union of segments exactly matching the range. 

However, if we relax the requirement of an exact match, that is, allow the union of 

segments to exceed the range of a query for a certain length, then fewer seg-



 

56 

 

ments may be needed to cover the range, which in turn leads to fewer “get” opera-

tions to the DHT. This said, the query efficiency may not always be improved 

since the result of the query may contain unwanted data items due to the extra 

span of segments which may cause more traffic or longer latency. We thus define 

the accuracy of results (AoR) as the number of necessary keys divided by the total 

number of keys in the response. We analyse the balance between the efficiency of 

DAST and the value of AoR in this chapter. To the best of our knowledge, no ex-

isting research has introduced or analysed the AoR, which makes our contribution 

unique. 

 Significantly, our solution does not require modifications to the core of the 

DHT; instead, we layer the DAST over a DHT infrastructure and present it as a 

middleware component between clients and DHTs. As some DHT systems have 

already become public services [57], this layering approach brings simplicity of 

implementation and deployment to applications. Note that DAST is a tree based 

data structure, however, it does not require peers in the network to be organised to 

any form of overlay structure, i.e., the DAST tree does not need to be maintained 

as long as the range of the key space is determined. Section 4.4 describes this 

characteristic of DAST in more details. 

 The rest of the chapter is organised as follows. We describe related work 

and compare DAST with this work in Section 4.3. In Section 4.4 we present the 

details of the DAST algorithms and the concept of the AoR. We evaluate the per-

formance of DAST in Section 4.5. Finally we conclude in Section 4.6. 

4.3 Other Range Query Support 

 Range queries are used by many P2P applications, including P2P data-

bases, distributed computing, and file sharing [70-72]. A variety of solutions have 

been proposed to address the range query problem for DHTs. These solutions can 

be classified into two broad categories: those that need to modify the core of the 

DHT, and those solutions that need not.  



 

57 

 

 Mercury [73], SkipGraph [74], SkipNet [75], and PIER [76] are all repre-

sentative examples from the first category. They either modify or redesign the 

core of the DHT to achieve a range query. Alternative designs include the Prefix 

Hash Tree (PHT) [60] and the Distributed Segment Tree (DST) [68], which repre-

sent examples of the second category, and subsequently do not need to know the 

internal mechanism of the DHT. We describe two examples, PHT and DST, and 

compare these with our own scheme DAST. 

4.3.1 Prefix Hash Tree (PHT) 

 PHT employs a layer-based tree structure encapsulating the original tuples 

{key, value} in new data items with the label of the leaf nodes acting as the new 

key and inserting it into the underlying DHT. Each original key is expressed as a 

binary string of length D. All keys with the same prefix are stored on the same 

leaf nodes. The depth of the tree is decided by the load balancing mechanism in 

PHT, i.e., if the number of keys that are stored on a leaf node exceeds a threshold, 

the leaf node will split into two child leaf nodes.  

 Clients are not aware of the structure of the whole PHT. To determine 

which leaf node to insert, clients have to first look up all D possible prefix labels 

in parallel, e.g., if the binary string of a key is “00100”, a client has to perform 

parallel “get” operations to the DHT for the keys “0”, “00”, “001”, “0010” and 

“00100”; if one of the “get” operations returns a result, then the leaf node is lo-

cated and the key is stored on it via a data item. The authors of PHT also suggests 

a binary search solution for locating the leaf node [60]. For the query of range (L, 

H), PHT first locates the PHT node corresponding to the longest common prefix 

of L and H and then performs a parallel traversal of its subtree to retrieve all the 

desired data items as the result of the query.  

 DAST differs from PHT in the following ways. First, the depth of the PHT 

grows with the increase in inserted keys, i.e., the structure of PHT keep changing 

over time and as a result additional “get” operations are required for each inser-

tion operation. In contrast, the structure of DAST is stable as long as the entire 



 

58 

 

key space does not change. Clients locate the destination tree nodes for keys with-

out any additional “get” operations, which results in lower latency for range que-

ries. Moreover, as will be described in Section 4.2, the result of a range query in 

PHT may contain unnecessary data items, which may increase the latency. In 

comparison, DAST gives criteria for the accuracy of results. We find that with 

similar AoR, DAST requires fewer DHT operations and thus achieves lower la-

tency for range query than PHT. 

4.3.2 Distributed Segment Tree (DST) 

 The Distributed Segment Tree approach is the most similar to our work. 

Both DST and DAST use the concept of a segment tree [69], nevertheless, DST is 

a binary tree while each node on DAST may have more than two children. Each 

non-leaf node in DST has two children and the segment corresponding to the par-

ent is split into two equal parts and assigned to the two children, respectively. 

Hence the entire key space is split into 2
i
 (i represents the level in the tree, count-

ing from 0) parts on each tree level and the depth of the tree is O(log )R  (R is the 

length of the entire space range). Therefore, keys need to be inserted to O(log )R  

DST nodes and there will thus be O(log )R  duplications for each key (the number 

of duplications is not always O(log )R  due to DST’s load balancing mechanism 

which we describe in Section 4.4). The nodes in a DAST can have more than two 

children and through setting the maximum number (M) of children that each node 

can have, there will be arbitrary number of segments on each tree level (this is 

where the name “arbitrary segment tree” derives) and the depth of the tree is 

log

log
O( )

R

M
. Consequently, each data items in a DAST will have log

log
O( )

R

M
 duplications, 

which leads to lower DHT storage load and operational overheads. DAST also 

adopts a load balancing algorithm that achieves similar effects to the one in DST, 

but with a considerably simpler implementation. Finally, DAST incorporates the 

concept of the AoR to further improve the range query performance. DAST also 

provides clients with the flexibility to adjust the primary properties to suit their 

own range query requirements. Such an approach is not documented in DST or 

PHT. 



 

59 

 

   

4.4 Design of DAST 

 In this section we present the design of DAST. We first introduce the Ar-

bitrary Segment Tree data structure and then describe how to layer an AST over 

an existing DHT infrastructure to achieve range query functionality. 

4.4.1 Arbitrary Segment Tree 

 The Arbitrary Segment Tree (AST) is based on the traditional segment tree 

(TST) data structure [69], where a range (henceforth we use the term segment tree 

range to distinguish from the range in a query) of non-negative integers
2
 is itera-

tively split at each level into certain number of segments, and each segment is as-

signed to one tree node. However, the rule of splitting the segment tree range on 

                                                 
2
 The range that a segment tree represents can in fact include real numbers. In this paper, we only 

give examples of non-negative integers for practical purposes.  

[0, 16]

[15, 16][10, 14][5, 9][0, 4]

[0, 1] [2, 3] [4, 4] [5, 6] [7, 8] [9, 9] [10, 11] [12,13] [14, 14] [15, 15] [16, 16]

[0, 0] [1, 1] [2, 2] [3, 3] [5, 5] [6, 6] [7, 7] [8, 8] [10, 10] [11, 11] [12, 12] [13, 13]  

Figure 4-1. An example AST with the segment tree range [0, 16] and M =  

4. We choose the segment tree range such hat each node can have an arbi-

trary number of children and the segments are uniformly split in each 

level while maintaining appropriate span length. An exemplar query for 

range [6, 13] is also illustrated here. The query union can be {[6, 6], [7, 8], 

[9, 9], [10, 11], [12, 13]} with AoR 100% or be {[5, 9], [10, 14]} with AoR 

71.4%. 

 



 

60 

 

Algorithm 4-1: The pseudo code of the AST construction algorithm 

// Parameters: 

// ASTNode: the class of AST nodes. 

// sf, st: bounds of the interval for the segment on the node. 

// level: the tree level of the node 

//ASTNode.children[]: an AST node’s children. 

//M: the maximum number of children; a global value. 

//C: the number of children of a node 

 

ASTNode(sf, st, level)  

     C ← 0 

     children ← new ASTNode[M] 

     if sf ≠ st then 

          from ← sf 

          length ← (st - sf) / M 

          to ← from + length 

          while true do 

               children[C] ← new ASTNode(from, to, level+1) 

               C ← C + 1 

                if to = st then 

                     break 

                else 

                     from ← to + 1 

              if st > from + length then 

                          to ← st 

              else 

                          to ← from + length 



 

61 

 

Algorithm 4-2: The pseudo code of the dividing algorithm for the 

range of the query 

// Parameters:  

// rf, rt: bounds of the interval of query range 

// cdt: the candidate segment for the union of range segments. 

// newCdt: new candidate segment. 

// cdtClt: the collection of candidates (cdt). 

// cf, ct: bounds of the interval for the candidate segment. 

// nf, nt: bounds of the interval for the current AST node. 

//nri: number of redundant data items allowed in query results. 

// results: the union of segments that match the range. 

 

divideRange(rf, rt, AoR) 

     cdtClt.add(interval(rf, rt)) 

     for each level on the tree do 

          for each AST node on the level do 

               if candidates is empty then 

                    return results 

         else  

    for each cdt in cdtClt do 

         nri ← (cdt.to ← cdt.from) × (1-AoR) 

           newCdt ← interval(cdt.from-nri, cdt.to + nri) 

         if newCdt covers the current node then 

                        results.add(the segment of current node) 

              if cf < nf then 

                    cdtClt.add(interval(cf, nf-1)) 

              if ct>nt then 

                   cdtClt.add(interval(nt+1, ct)) 

              cdtClt.remove(cdt) 

              break 

     return results 



 

62 

 

each level in AST is different from that found in TST (Traditional Segment Tree). 

TST is a binary tree where every internal node has two children. Therefore, start-

ing from the tree root, the segment that every internal node represents is evenly 

split into two parts and allocated to the two children, respectively, until it has only 

one number within. In contrast, AST is a multiway tree in which each internal 

node can have an arbitrary number
3
 of children. We denote M as the maximum 

number of children that one node can have, i.e., each AST node can have at most 

M children. Note that AST is a superset of TST, i.e., when the value of M is 2, an 

AST becomes a TST. At each tree level, AST splits the segment tree range uni-

formly to up to M segments while maximising the interval size of each segment. 

The properties of AST are as follows: 

• Assuming the length of the segment tree range is R, the height of an AST 

is log

log
O( )

R

M
. 

• The root node has the entire segment tree range. Every other node repre-

sents a segment. The union of all segments on the same tree level is the 

segment tree range. 

• Every non-leaf node has Ci children, where 1 < %� ≤ '. The segment of 

each non-leaf node is split into Ci parts and distributed to the children. The 

value of  Ci and the intervals of the segments for the children are decided 

by the tree construction algorithm (algorithm 4-1). 

• Every leaf node has an atom segment, i.e., a segment that contains only 

one key. The union of all leaf nodes covers the segment tree range. 

• Every node has a segmentId. DAST produces the segmentId by hashing its 

interval over the underlying DHT node ID space. Through the hash, the 

segmentId can be mapped to the node ID space of DHT and then used in 

the DAST operations.  

 Unlike PHT, an AST will not change its structure once it has been con-

structed, as long as the segment tree range does not change. This property ensures 

                                                 
3
 The number cannot be “1” because splitting a segment cannot be performed if a node has only 

one child.  



 

63 

 

the consistency of the positions for keys, i.e., the destination node that holds the 

(key, value) items.  Fig. 4-1 depicts an example AST where the segment tree 

range is [0, 16] and the value of M is four. Note that the numbers of children of 

internal nodes vary between two and three through the tree and are purely deter-

mined by the segment tree range and the choice of the value of M.  

4.4.2 DAST operations 

 The DAST data structure provides an interface between the client applica-

tions and the underlying DHT. Clients insert, delete or retrieve data items to or 

from DAST instead of DHT. We describe the DAST operations needed to achieve  

the range query functionality for clients. 

• Insert/Delete: The insertion and deletion of a data item with a key in 

DAST is straightforward. When an insert request arrives, DAST looks for 

all nodes whose segments cover the key of the item (there must be one and 

only one such node on each tree level). For each of these nodes, DAST 

creates a new data item in which the key is the segmentId of the node and 

the value is the original data item. Finally, DAST inserts the new data 

items to DHT. The insert operation for one key in DAST needs log

log
O( )

R

M

DHT insertions and there will be log

log
O( )

R

M
 copies of the key inside the DHT. 

When a data item is deleted, DAST finds all segments that cover the key 

and removes the data items accordingly. 

• Range query: DAST first divides the range of the query into a union of 

segments that the AST contains, and then retrieves all segmentIds with as-

sociated data items from the DHT. The dividing algorithm is shown in al-

gorithm 4-2. Since the AST ensures that leaf nodes have atom segments, 

the union of the segments is guaranteed to be found for the range. There 

may exist alternative ways to divide the range; however, our algorithm is 

dedicated to building a union containing a minimum number of segments, 

i.e., the intervals of the segments should be as wide as possible, so as to 

reduce the number of DHT retrievals.  



 

64 

 

• Single key query: DAST performs single key queries by simply retrieving 

the corresponding atom segment from the DHT. 

4.4.3 The Value of M 

 The value M controls the maximum number of children an AST node can 

have. The key advantage that AST has over TST is that it provides more flexibil-

ity for clients to improve the performance of a range query. As previously de-

scribed, the height of an AST is log

log
O( )

R

M
 and hence a greater value of M leads to 

lower numbers of DHT insertions (improving performance of the DAST insertion) 

and less duplications of data items (reducing the DHT storage load). However, if 

M is too large, the segment of one node will be split into more parts and conse-

quently the segments in the AST will be shorter. Therefore, when fulfilling a 

range query, the average number of segments in the union that covers the range 

will be greater. In other words, DAST has to perform more DHT retrievals to ob-

tain the result. Due to this trade-off, clients have to carefully choose the value of 

M depending on their definition of the key space and their expectations for the 

lengths of the ranges that the queries may have. We investigate the impact of M 

on the performance of DAST in Section 4.5. 

4.4.4 Accuracy of Result for a range query 

 We consider the Accuracy of Result (AoR) for a range query in DAST. 

This investigation is motivated by the fact that when using PHT we found that the 

responses of range queries may contain unnecessary data items, since one prefix 

tree node stands for a prefix of keys and consequently keys that do not belong to 

the same range may fall into one prefix node. This causes higher latency to the 

query responses and cannot be rectified because PHT does not modify the DHT 

layer and so cannot filter the query results before feeding them back to the clients.  

By default, DAST always returns the query results to clients with 100% accuracy, 

i.e., the responses of the query do not contain any unwanted data items. However, 

we found that if we relax the segment union for the query (to be larger than the 



 

65 

 

range of the query), i.e., the span of the union covers the range but has extra inter-

vals on either end or both ends, the number of segments in the union may be re-

duced. Consequently, a number of unnecessary data items will exist in the results, 

however, the number of DHT retrievals needed for range queries will also drop. 

An exemplar range query [6, 13] is illustrated in Fig. 1. DAST builds a union {(6, 

6), (7, 8), (9, 9), (10, 11), (12, 13)} for the query [6, 13] by default and has to per-

form five DHT retrievals for the result. If we relax the union construction to be 

{(5, 9), (10, 14)}, the result may contain only two extra items (5 and 14) but the 

number of retrievals drops down from five to two, which is 2.5 times lower than 

before.  

 Achieving a range query in DAST usually requires a number of DHT re-

trievals and these DHT retrievals are executed in parallel which significantly re-

duces the response latency. However, if clients submit range query requests to 

DAST simultaneously with high frequency, DAST has to in turn submit the re-

trieval operations for those range queries to the underlying DHT in parallel and 

the DHT may suffer high overheads in a short period of time (PHT also considers 

the overhead for a DHT when choosing a binary search or parallel search for a 

lookup, although there is no detailed analysis in the associated paper). To help the 

DAST clients reduce the overhead imposed on the DHT, we present the concept 

of the accuracy of result (AoR) for a range query. We will show that by adjusting 

the value of AoR, the number of DHT retrievals for range queries can be much 

reduced and the overhead on DHT can therefore be lowered. The AoR is defined 

as the number of necessary data items divided by the total number of data items in 

the result of a query. In the example above, the value of AoR is 5

5 2
71.4%

+
=  after 

tolerating unnecessary items in the result. The implementation of AoR is demon-

strated in Algorithm 4-2. 

 The AoR in a DAST range query is 100% by default since DAST builds a 

segment union that can precisely match the range of the query and the resulting 

response consists of only necessary data items. Clients can choose the desired 

AoR value to be less than 100% to suite their application environments. Note that 



 

66 

 

the desired AoR acts as a threshold in DAST, i.e., the actual AoR of range query 

may not precisely equal the desired one but it is guaranteed not to be lower. This 

is because we assume every key in the key space as having a data item in Algo-

rithm 4-2, and calculate the AoR by the number of key slots not the number of ac-

tual items. In real range query cases, since some key slots may be empty, the ac-

tual AoR must be equal to or greater than the desired one. We demonstrate the re-

lationship between AoR and the number of DHT retrievals in Section 4.5. 

4.4.5 Load Balancing 

 Approaches based on segment trees have potential problems on load bal-

ancing. There are fewer nodes at the higher tree levels; however, these nodes are 

responsible for more data items, as each data item has to be inserted into every 

tree level. The extreme case occurs at the root node. Since the root node has the 

entire key space, it will have to maintain a copy of every data item. The actual 

DHT node thus experiences a heavy storage load.  

 DST [68] employs a load balancing mechanism, called downward load 

stripping. Each node maintains two counters for its children, the left one and the 

right one. If, when a key is inserted into a node, it can also be covered by one of 

its children, the corresponding counter is increased by one. When either counter 

reaches a threshold, the node stops receiving keys. What this mechanism actually 

does is to limit the high level nodes from having more data items than the thresh-

old. However, it brings to the implementation the problem of how do clients lo-

cate the values of two counters for each DST node in such a distributed environ-

ment? The obvious solution is to put the counters into the underlying DHT as data 

items and let clients access them through specified keys. However, this solution 

will occupy extra DHT storage and the insertions or retrievals of the counters 

themselves take time. Consequently, concurrency or synchronisation problem may 

occur, e.g., one node may not stop receiving data items when it should, because 

the counters are not updated on time.  



 

67 

 

 Load balancing is nontrivial in DHTs [77] and cannot be perfect since 

even if the keys are uniformly distributed onto the DHT nodes, some nodes will 

be responsible for a logarithmic factor more of the key space than others [58]. In 

other words, some nodes in the DHT will assume much higher storage and routing 

load than others. Due to inheritance, PHT, DST and DAST also suffer from the 

same problem. Even though data items are inserted at leaf nodes in PHT and it is 

easier to distribute leaf nodes uniformly into DHT nodes, some data items within 

a certain range may still gain high popularity and become responsible nodes and 

hence will have uncharacteristically heavy load; this is also true for the DST.  

 Therefore, we propose to reduce the effects of load in DAST but not to 

perfectly eliminate it. We ignore the nodes in the levels N - 1 and above in the 

AST and start to insert data items at level N. The value of N depends on how large 

the entire segment tree range is and how many nodes there are in the underlying 

DHT. We encourage applications or clients to carry out experiments to test their 

values of N before the deployment. Our evaluation in Section 4.5 provides sugges-

tions as to how to choose a good value for N. 

4.4.6 Tree Maintenance and Fault Tolerance 

 As described above, DAST is a data structure layer between the peer-to-

peer overlay and the DHT infrastructure. When a peer carries out a range query 

operations, it gives the operation command to DAST and its associated algorithms 

and obtain the results from the DAST layer. Thus, the DAST data structure exists 

inside only the application functions which peers use to carry out the range query 

operations, and it does not influence the peer-to-peer overlay structure or the DHT 

infrastructure. Moreover, algorithm 4-1 and 4-2 show that the DAST structure 

will remain constant as long as the range of the whole key space does not change. 

Thus, the DAST does not require any maintenance work and this brings simplicity 

to the applications.  

 Since DAST is built upon a DHT service layer, it inherits all of the resil-

ience and failure recovery properties of the underlying DHT. Although the DHT 



 

68 

 

has methods to guarantee a certain level of data availability and fault tolerance 

[57], the DAST can still lose data if all replicas in the DHT disappear (all nodes 

with those replicas leave the network). To avoid this catastrophic failure, the 

DAST employs a soft state refreshing mechanism. Each data item that is inserted 

to the DHT through the DAST layer has a time-to-live (TTL) associated with it. 

Peers have to regularly update the data items regularly by a TTL of seconds; oth-

erwise, the data items are automatically deleted from the DHT. Hence, even if all 

replicas for a data item in DHT are lost, the item will be restored by the refreshing 

mechanism eventually.  

4.4.7 Memory Requirement 

In a DAST tree, a node will have at most M children. If a node’s id is 160 bits (we 

take this value from [36]) which is 20 bytes, then a node’s size in memory is �' + 1� × 20 bytes and the memory size of the whole tree is � × �' + 1� × 20 

where N is the number of nodes in the peer-to-peer network. Taking N = 50, 000 

[48] and M = 6 as an example, the whole tree’s size is 7MB. Considering the 

hardware specifications of current PCs, this memory requirement is fully accept-

able.  

4.5 Evaluation 

 In this section, we evaluate the performance of DAST. First we investigate 

the internal structural properties of DAST. We then compare the range query op-

erations of DAST, DST and PHT. Finally we compare their range query efficien-

cies in an OpenDHT deployment.  

4.5.1 Implementation 

 We implement two versions of DAST, the first as a simulation and the 

second as a full-scale deployment. In both versions, the source code for the 

mechanisms of DAST are exactly the same. The only difference is that the simula-



 

69 

 

tion version of DAST utilises a Java Hashtable object to simulate the underlying 

DHT, while the deployed version is layered on top of OpenDHT.  

 To shorten the time to conduct the experiments, we use the simulation ver-

sion to investigate the structural properties of DAST and compare the range query 

operations of DAST, DST and PHT. For comparisons of the real range query effi-

ciencies, we use our deployed version of DAST that accesses OpenDHT service 

on the Internet. 

4.5.2 Setup 

 In the simulations, we assumed the segment tree range to be [0, 2
16

-1] and 

generated 2
14

 keys for insertions. The keys are uniformly distributed over the 

segment tree range space. The values associated with the keys are empty, i.e., the 

sizes of the values are zero. This is because the sizes of the data items do not af-

fect the investigation of the internal mechanisms of DAST, DST or PHT - such a 

configuration also improves the simulation efficiency. We also randomly generate 

five sets of range queries, each of which has 1000 queries with span lengths (the 

length of the query range) of 512, 1024, 2048, 4096 and 8192, respectively.  

 In the deployment, the segment tree range remains the same but we gener-

ate only 2
10

 random keys. We chose a relatively small number of insertions be-

cause 2
10

 insertions are enough to demonstrate the insertion efficiency of all three 

approaches. Every key has 1KB of data associated with the value (the maximum 

size of a value in OpenDHT is 1KB). All the experiments were prototyped on a 

single PC to guarantee the correctness of the comparison of results. The range 

query setup is similar to that in the simulation except that each query set consists 

of 100 queries. 

 Each of the simulation experiments was conducted 100 times and the ex-

periments on the OpenDHT deployment were repeated 30 times.  



 

70 

 

4.5.3 Structural Properties of DAST 

 We study the number of children allowed in AST, the load balancing 

mechanism and the performance impacts from different values of AoR. Clients 

can choose their own settings to suit the demands or adapt to the different comput-

ing environments.  

 Maximum number of children (the value of M): As described in Section 

4.4, the value of M controls both the number of DHT insertions and the number of 

DHT retrievals for range queries. Recall that the height of AST is log

log
O( )

R

M
, if M is 

too large, AST may have only a very small number of levels (the extreme case is 

that the whole AST has only the root node when M = R). Thus to maintain the 

AST we choose the candidate M to be 2, 4, 8, 16 and 32. For each of the DAST 

examples with those M candidates, we insert the preloaded keys (for now we do 

0 2 4 6 8 10 12 14 16 18

0

5

10

15

20

25

30

35

A
v

er
ag

e 
n

u
m

b
er

 o
f 

D
H

T
 i

n
se

rt
io

n
s

Maximum number of childre for each node (M) 

 DAST implementation

 

Figure 4-2. Plots of DHT operations for different values of M (Maximum 

number of children): the plot of the average number of DHT insertions for 

one DAST insert request; 

 



 

71 

 

not consider the load balancing problem and AoR) and plot the average number of 

DHT insertions involved. As depicted in Fig. 4-2 the number of DHT insertions 

drops sharply when M increases from 2 to 4 and this trend slows as M increases. 

When M reaches 16, the number of DHT insertions remains constant. To see how 

the value of M affects the range query, we send the five sets of predefined range 

queries to DAST and plot the results in Fig. 4-3. We can see that the higher the 

value of M leads to a larger number of DHT retrievals. The distance between the 

curves for M = 8 and M = 16 is large, indicating a sudden increase of DHT re-

trievals. Comparing Figure 4-2 and 4-3, we thus suggest that M = 4 is the optimal 

in our experiments.  

 Load balancing (the value of N): Our load balancing mechanism is sim-

ply that we start to insert data items from tree level N (if the root node is on level 

1). The top N levels therefore contain no items. Using the result of M = 4 from the 

previous experiments, and testing N values from 1 to 6, the insertion and query 

512 1024 2048 4096 8192

10

20

30

40

50

60

A
v
er

ag
e 

n
u
m

b
er

 o
f 

D
H

T
 r

et
ri

ev
al

s

Span of query range

 M = 2

 M = 4

 M = 8

 M = 16

 M = 32

 

Figure 4-3. Plots of DHT operations for different values of M (Maximum 

number of children): the plot of the average number of DHT retrievals for 

one DAST range query request 

 



 

72 

 

range results are plotted in Fig. 4-4 and 4-5 respectively. The number of DHT in-

sertions is reduced by one if N increases by one, which is apparent in Fig. 4-4. In 

Fig. 4-5, it is not easy to see the plots where N = 1, 2, 3 because they are overrid-

den by N = 4, which implies the results for these three values of N are similar. 

When N = 5, the number of DHT retrievals starts to rise as the nodes on levels 1 

to 4 do not have data items and cannot contribute to the range query. The incre-

ment is more pronounced when the value of N reaches 6. The results in Fig. 4-5 

narrow our choice of N down to 4 or 5. We do not consider 3N ≤ because N = 4 

gives better load balancing while providing a similar number of DHT retrievals. 

We present the detailed experimental results for N = 4 and N = 5 in Table 4-1 to 

illustrate choosing the optimal N. As we can see, the differences between the 

numbers of DHT retrievals of the two cases become larger when the span of the 

query increases. However, we should also note that the number of nodes on tree 

level 5 is 256, which is four times more than that on level 4. Considering that 

0 1 2 3 4 5 6 7

1

2

3

4

5

6

A
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 

D
H

T
 i
n
s
e
rt

io
n
s

The tree level to start insertions (N) 

 DAST implementation

 

Figure 4-4. Plots of DHT operations for different values of N (the level 

number that DAST starts to insert data items): the plot of the average 

number of DHT insertions for one DAST insert request 

 



 

73 

 

lowering AoR in DAST can further reduce the number of DHT retrievals, we thus 

chose 5 as the optimal value for N. This conclusion is validated in the next ex-

periments considering AoR. Note, N = 5 is not universally optimal and clients 

should test for their own value of N.  

 The accuracy of the result for range query (AoR): To provide an analy-

sis from the point of view of the AoR, we queried DAST for the same range sets 

seven times and each time we tested a different value of AoR. The value set of 

AoR are shown in Fig. 4-6. We do not present the results when AoR < 70% be-

cause these plots are masked by the plot for AoR = 70%, which means the value of 

AoR stops affecting DAST when it is below 70%. As we can see in Fig. 4-6, the 

number of DHT retrievals needed for the range query drops along with the reduc-

tion of AoR. We confirm the precise pertentage of the drop (compared to that 

when AoR = 100%) with the corresponding value of AoR in table 4-2. Through 

512 1024 2048 4096 8192
10

20

30

40

50

60

A
v
e
ra

g
e
 n

u
m

b
e

r 
o
f 

D
H

T
 r

e
tr

ie
v
a
ls

Span of query range

 N = 1

 N = 2

 N = 3

 N = 4

 N = 5

 N = 6

 

Figure 4-5. Plots of DHT operations for different values of N (the level 

number that DAST starts to insert data items): the plot of the average 

number of DHT retrievals for one DAST range query request 

 



 

74 

 

comparisons, we can see that if we reduce the value of AoR by even 5%, the num-

ber of DHT retrievals drops significantly (by 21.62%). If we allow 30% of the re-

sult to be unnecessary (AoR = 70%), the number of retrievals drops further to 

57.43%.  

 Clients should be aware that lowering the value of AoR can also affect the 

response latency of the query depending on the sizes of the data items. If the size 

of the data item is small in the client application and the frequency of the range 

query request is high, having AoR of 70% can result in an approximate 50% lower 

overhead to the underlying DHT and may not negatively affect the response la-

tency. Even if the size of the data items is large and the frequency of the request is 

high, allowing AoR to be 95% is worth considering since it still results in over 20% 

lower overhead to the DHT. A detailed analysis of the tradeoffs among the data 

size, overhead and AoR is required; this is precluded in this chapter as the imple-

mentation and evaluation of DAST is done entirely on a third party DHT layer. 

512 1024 2048 4096 8192
2

4

6

8

10

12

14

16

18

20

22

24

A
v

er
an

g
e 

n
u

m
b

er
 o

f 
D

H
T

 r
et

ri
ev

al
s

Span of query range

 AoR = 100%  AoR = 95%

 AoR = 90%  AoR = 85%

 AoR = 80%  AoR = 75%

 AoR = 70%

 

Figure 4-6. Plot of the average number of DHT retrievals for one DAST 

range query request with different values of AoR (the accuracy of result). 

 



 

75 

 

The results here provide suggestions rather than quantitative conclusions for re-

ducing the potential DHT overhead through adjusting AoR in DAST.  

4.5.4 Range query operations in DAST, DST and PHT 

 We compare the number of DHT operations (insertions and retrievals) that 

are needed for range queries in DAST, DST and PHT. The parameter settings M = 

4 and N = 5 are selected for DAST and a block size of 60 is chosen for DST and 

PHT, which means that on each of the DST and PHT nodes they can have at most 

512 1024 2048 4096 8192
0

20

40

60

80

100

120

A
v
e
ra

n
g
e 

n
u

m
b

er
 o

f 
D

H
T

 r
et

ri
ev

al
s

Span of query range

 DAST with AoR = 100%

 DAST with AoR = 95%

 DAST with AoR = 70%

 DST

 PHT

 

Figure 4-7. Comparison of DAST (with different AoR) against DST and 

PHT on average number of DHT retrievals for one range query. 

512 1024 2048 4096 8192

6

8

10

12

14

16

18

20

22

A
v

er
ag

e 
ra

n
g

e 
q

u
er

y
 l

at
en

cy
 (

se
c)

Span of query range

 DAST with AoR = 100%

 DAST with AoR = 95%

 DAST with AoR = 70%

 DST

 PHT

 

Figure 4-8. Comparison of DAST (with different AoR) against DST and 

PHT on query latency. 

 



 

76 

 

60 data items stored (these settings replicate those found in related literature [68]). 

We insert the same set of data items to DAST, DST and PHT, and execute range 

queries using the same query sets in each of the three approaches. In DAST how-

ever, we also conduct range query experiments for three different values (100%, 

95%, and 70%) of AoR; these results can be found in Figure 4-6. 

 For an insertion request of one data item, PHT always requires only one 

DHT insertion, however, it requires a number of DHT retrievals for the lookup of 

the leaf node. For PHT, we hence add the number of DHT retrievals for the 

lookup to the one DHT insertion and treat the sum as the number of DHT opera-

tions needed for one data item insert request. The simulation results indicate that 

the average numbers of DHT operations for one data item insert request are 5, 13, 

and 8, respectively for DAST, DST and PHT. DST requires on average 13 DHT 

insertions for one data item insert request and duplicates the data item 13 times in 

the DHT storage. DAST requires less than half the DHT insertions and one data 

item requires only 5 copies in DHT, which significantly reduces the storage load 

in DHT. PHT on the other hand needs only one DHT insertion and requires only 

one copy of a data item. However, it requires on average 7 DHT retrievals, which 

imposes a higher operational overhead than DAST. To conclude, DAST is de-

monstrably superior to DST for insert requests and trades extra storage for inser-

tion performance when compared to PHT.  

 Fig. 4-7 depicts the simulation results for the range queries. For one range 

query, PHT performs many more DHT retrievals than DAST and DST, which 

represents potentially high DHT overheads. When DAST is configured with AoR 

set to 100% it requires more DHT operations than DST. This is because each DST 

Table 4-1: The experimental results of load balancing evaluation  

for N = 4 and N = 5 

N # of nodes 
Query span 

512 1024 2048 4096 8192 

4 64 12.8 13.7 14.4 15.35 16.7 

5 256 12.8 13.7 15.4 18.4 23.3 



 

77 

 

node has fewer children and the splitting of segments is slower than in DAST; 

DST therefore has longer segment spans, leading to fewer query unions of seg-

ments and fewer DHT retrievals. Nevertheless, when the AoR of DAST is set to 

95%, DAST achieves approximately the same number of DHT retrievals as DST. 

When AoR is configured to 70%, DAST surpasses DST.  

 

PHT does not always achieve 100% AoR in the results of the range queries. We 

calculate the AoR and the average number of DHT retrievals for PHT and DAST 

responses, and present the results in Table 4-3. Through comparing the values of 

AoR in PHT and DAST together with the average number of DHT retrievals, we 

can see that DAST performs fewer retrievals while maintaining higher AoR.  

4.5.5 Comparison of the latencies for insertions and range queries 

in DAST, DST and PHT 

 In this experiment, we deploy our DAST implementation on OpenDHT 

together with DST and PHT. We insert the preloaded data items into OpenDHT 

through DAST, DST and PHT, respectively. The latency of every insertion is re-

corded and the average of these values is presented in Table 4-4. The results 

clearly indicate one DAST insertion takes on average only 67% of the time that 

DST insertion requires. The advantage of DAST over PHT is more pronounced in 

that PHT insertions take twice as long as DAST insertions.  

Table 4-2: The experimental results for AoR 

AoR 
Average # of 

retrievals 

Dropping percen-

tiles for AoR 

Dropping percentiles 

for # of retrievals 

100% 16.84 N/A N/A 

95% 13.26 5% 21.62% 

90% 11.54 10% 31.78% 

85% 9.76 15% 43.19% 

80% 8.32 20% 51.94% 

75% 7.72 25% 55.98% 

70% 7.5 30% 57.43% 



 

78 

 

 For the range query experiment, we deploy three versions of DAST, each 

of which is configured with AoR as 100%, 95% and 70%, respectively. With dif-

ferent values of AoR, we investigate the impact of AoR on the query latency. 

These results are presented in Fig. 4-8; the average latencies of the range queries 

can be found in Table 4-4. We can see that the average latency in DAST with AoR 

as 100% is very close to the one in DST. When AoR is reduced, the latency grows 

due to extra unwanted items in the results. PHT requires more time for range que-

ries because it needs several sequential steps to lookup the leaf key, and the re-

sponse contains unnecessary items. DAST does not have sequential operations 

and thus performs better. 

4.6 Conclusions 

 In this chapter, we proposed a Distributed Arbitrary Segment Tree 

(DAST), a structure built on top of public DHT services to achieve enhanced 

range query functionality for clients. DAST incorporates the Arbitrary Segment 

Tree (AST), yet is designed so that the query union contains a smaller number of 

segments leading to fewer DHT operations and a lower overhead. In addition, the 

duplications of data items are significantly reduced in DAST as compared with 

DST. Moreover DAST introduces the concept of AoR (Accuracy of Result). By 

adjusting the value of AoR, we demonstrate that DAST can further reduce the 

number of DHT operations and therefore further reduce the overhead.  

 

Table 4-3: The comparison of AoR between PHT and DAST 

PHT DAST 

AoR 79% 86% 92% 96% 98% 70% 95% 100% 

# of DHT 

retrievals 
10.7 17.9 32.3 58.6 111.9 7.5 12.0 16.5 



 

79 

 

 An advantage of this scheme is that DAST does not modify the underlying 

DHT and instead acts as a middle layer between DHT and the applications that 

require range query functionality. The approach is also designed to provide DAST 

users with the flexibility to modify DAST to their application environments for 

best range query efficiency. Furthermore, the DAST structure is deterministic 

once the range of the whole key space is decided and therefore does not need any 

maintenance work which brings simplicity and less overhead to the client applica-

tions. 

 Validations are undertaken through both simulation and extensive real-

world experimentation and the results demonstrate the effectiveness of DAST 

across a range of metrics. 

 DAST has delivered range queries support to the underlying DHT, which 

can be used for ppBLAST to efficiently lookup a range of keys and further im-

prove the storage performance. Also, the DHT behind DAST organises peers for 

ppBLAST to build the self-constructing overlay. Thus, DAST is the important 

fundamental part of ppBLAST.   

Table 4-4: The experimental results for the average latencies of insert and 

range query in DAST, DST and PHT 

 
DAST (M = 4, N = 5) 

DST PHT 
AoR =100% AoR=95% AoR=70% 

Insert (sec) 4.5 6.7 9.6 

Query (sec) 7.9 8.37 9.606 8.32 15.88 



 

80 

 

Chapter 5  

ppBLAST: A BLAST Service over Peer-to-

Peer networks 

 We now turn our attention to ppBLAST. In Chapter 3, we present the 

analysis of BitTorrent seeding strategies. It guides us to choose proper seeding 

strategy for BitTorrent which we can employ for ppBLAST database distribution 

process. Chapter 4 introduces our DAST over DHT. DAST-DHT provides lookup 

of range queries and Peer-to-Peer storage functions, therefore ppBLAST can util-

ise it to search ranges of peer candidates for BLAST tasks and store BLAST que-

ries and results in the overlay for future retrieval. After these two essential layers 

are well formed, we begin integrating them to ppBLAST with a novel BLAST 

task scheduling algorithm and finalise the design of ppBLAST. 

5.1. Introduction 

BLAST is a popular toolset for protein and nucleotide sequence comparisons. Re-

cent estimates show that these databases of protein and nucleotide sequences are 

set to grow exponentially and as a result local BLAST searches on single PCs 

cannot satisfy recent data processing requirements. Traditional approaches for the 

parallelisation of BLAST are focused on utilising clusters. However, scaling clus-

ters to adapt potential growth of BLAST requests will significantly increase the 

cost and complexities of maintenance and administration. This chapter introduces 

ppBLAST, a BLAST service utilising the free computing resources in the peer-to-

peer overlay on the Internet. ppBLAST uses several peer-to-peer technologies 

such as DAST, DHT and BitTorrent-like distribution and layered design. In this 

chapter, the feasibility of ppBLAST is validated through a small-scale deployment. 



 

81 

 

The performance of ppBLAST is evaluated; we show that the execution time of a 

BLAST job can be considerably shortened if the scale of the supporting peer-to-

peer overlay is large enough. 

 The remainder of this chapter is organised as follows: Section 5.2 docu-

ments related work; Section 5.3 describes the design of ppBLAST; Section 5.4 

presents a performance evaluation of ppBLAST; Section 5.5 concludes the chap-

ter and discusses future work. 

5.2 Additional Related Work 

 This section is divided into three parts: (1) we briefly describe existing ap-

proaches that attempt to parallelise BLAST and boost its performance; (2) we in-

troduce the designs of SETI@home and Folding@home and compare them to 

ppBLAST; (3) several recent techniques, which support job scheduling on large 

data sets in distributed environments, are illustrated. 

5.2.1 Parallelising BLAST 

 TimeLogic [21] has announced an FPGA-based hardware accelerator 

called DeCypher BLAST which cooperates with their TeraBLAST software. This 

method of parallelisation takes place during the sequence alignment itself, i.e., 

parallelising the comparison of a single query sequence with a single database se-

quence entry. BioScan [22] is also focused on parallelising BLAST at the hard-

ware level.  

 Splitting BLAST queries, instead of databases, was proposed in [23, 27]. 

The query segments are distributed among nodes in a cluster or CPU on a sym-

metric multi-processor (SMP) system, each node then executes a BLAST com-

parison between the query segment and the entire database. By following this de-

sign, BLAST on each node still needs to load the entire database from a local 

storage system into core memory. Hence, if the database does not fit into the 



 

82 

 

memory, BLAST will suffer from the virtual memory bottleneck and the optimal 

performance cannot be obtained.  

 Segmenting BLAST databases are widely adopted [18, 24, 25, 78-80]. 

This approach requires clusters to cooperate on the parallelisation. Although all of 

these solutions claim high performance for BLAST search jobs, they require high 

cost clusters, complex maintenance and administration and suffer from scalability 

problems due to the growth of the databases and increasing BLAST search re-

quests.  

 ppBLAST differs from all the above approaches. It parallelises BLAST at 

a software level and does not require any special hardware modifications or up-

grades. It utilises peer-to-peer networks, where the computing resources are free, 

and addresses the scalability problems through the participation of peers. 

5.2.2 SETI@home and Folding@home 

 The design philosophies of SETI@home and Folding@home are similar. 

There are a set of central servers connected to the Internet which act as coordina-

tors for peers and job dispatchers. Peers who wish to contribute to the projects 

connect to the servers through the client applications. Once the connections have 

been established, the servers issue computation jobs to those peers and the results 

are returned once the jobs are finished.  

 The design of ppBLAST differs from both systems. ppBLAST does not 

have central servers to coordinate peers. The peers rely on range query supported 

DHT to be self constructed and organised. Users who wish to use the service 

submit BLAST jobs through the ppBLAST service broker and the program runs in 

a users’ local machine instead of in a central server.  Thus, ppBLAST does not 

have single point of failure and is ultimately scalable. 



 

83 

 

5.2.3 Recent distributed data intensive computing techniques 

 Several recent techniques exist in order to aid data intensive computing. 

MapReduce [81] was a programming model, invented by Google. It helps pro-

grammers who are not familiar with distributed computing to easily develop ap-

plications in environments that are based on cluster or multi-clusters over differ-

ent locations. Apache Hadoop [82] is also a Java programming framework which 

supports data intensive distributed applications for clusters. Since both techniques 

are focused on clusters, we do not describe them in details. BOINC [83] is a open 

source software for volunteer and Grid computing. Science projects can be created 

through BOINC and volunteer PCs can contribute their storing and computing 

powers to those projects through BOINC client application. The basic design of 

BOINC is similar with the one of SETI@HOME and Folding@HOME. In fact, 

both projects are now using BOINC as their application support. We described the 

differences between both projects and ppBLAST in sub-Section 5.2.2, thus we do 

not repeat here. 

5.3 Design of ppBLAST 

 We begin by recalling the characteristics of BLAST. Based on this the 

workings of ppBLAST and its components are described in detail. 

5.3.1 Characteristics of BLAST 

 The BLAST toolset has five programs: blastn, blastp, blastx, tblastn, 

tblastx. Each of these corresponds to one specific comparison, e.g., blastn is used 

for the comparison of nucleotide sequences. All five programs have similar run-

time features; a typical BLAST would involve the command line of BLAST query 

database
4
. The query and database are all text-based. After the run completes, the 

results are written to a text file. Because of the simplicity and success of the 

                                                 
4 BLAST programs have a number of other parameters. As these are not relative to our design, we ignore them in this chap-

ter for simplicity.  



 

84 

 

BLAST command style and its standalone capabilities, ppBLAST does not mod-

ify BLAST internally. Instead, after a peer accepts a BLAST task, it executes a 

command with the target query and database, and the standalone (original) 

BLAST will complete the actual search and produce the results. Furthermore, 

since the input and output of BLAST is all textual, it is feasible and convenient to 

segment the database and combine the results.  

5.3.2 Overview of ppBLAST 

 Fig. 5-1 depicts the overview of the design of ppBLAST. The most sig-

nificant component of ppBLAST is the underlying DHT infrastructure arranged as 

a Distributed Arbitrary Segment Tree (DAST). DAST is a result of our previous 

research [7] (described in Chapter 4), which lays over ordinary DHT and provides 

it with range query support. The peer-to-peer overlay is self-organised through the 

 

 

Figure 5-1. Design overview of ppBLAST 



 

85 

 

DAST-DHT and every peer represents a contributing node. Peers contribute to the 

function of the DAST-DHT and also use it at the same time. The major role of 

DAST-DHT is the storage facility. For the database segments it stores the follow-

ing tuple {dbId, dbSid_list}. A dbSid is the id of a database segment. This tuple of 

information maintains a list of dbSid for a database, this maintenance is necessary 

because the databases are regularly updated as described in chapter 1 and new da-

tabase segments may have to be added to the overlay. For a BLAST job, it stores 

{jobId_query, query}, {jobId, taskId}, {taskId_done, true}, {taskId_dispatched, 

true} and {taskId, result}. Every BLAST job has a unique Id associated with it 

and can be divided into a number of tasks. One task is defined as a comparison of 

a query and a segment of database. Thus a taskId is produced using a jobId and a 

dbSId. In order to store the locations of peers, it retains a {dbSId, ip:port_list}, i.e., 

the list of peers that have the according database segment, and {ip:port, 

job_queue_len}, i.e., the length of the queue of jobs of a corresponding peer. 

 A database is split by the Segment Distributor component prior to distribu-

tion. Normally this operation needs to run once at the very start. Future newly dis-

covered sequences which are added to the database can be extracted and become 

separate segments for distribution. The segment distribution process follows a 

modified BitTorrent protocol (described in sub-Section 5.3.5). Thus, after the 

segmenting operation, the segment distributor can be considered as a seed and up-

load at least one copy of a complete set of segments into the overlay. Each of the 

 

 

Figure 5-2. An example AST with the entire range [0, 8] 

 



 

86 

 

peers has a segment list and updates it after obtaining a new segment. Note that 

the segment distributor is the only central element in the service and may need to 

be hosted on at least one PC; this is however necessary as the sequence database 

needs to be published and its possible failure will not harm the ppBLAST service 

as its function is limited to the seeding of the distribution only.  

 We present a typical ppBLAST job workflow as follows. A user submits a 

BLAST request through the Service Broker of ppBLAST which resides on his lo-

cal PC. The service broker generates a jobId for the request and connects to the 

overlay via a bootstrap peer. It puts the tuple {jobId, query} into the overlay via 

the DAST-DHT interface. Afterwards, it obtains the set of candidate peers from 

DAST-DHT. The sum of the segment lists of the candidate peers will cover the 

entire database. Depending on the queue sizes of the candidates, the broker 

chooses worker peers and dispatches the task requests to them. Workers will then 

get the {jobId, query} from the DAST-DHT and execute the BLAST task. The 

{taskId, results} are placed in the DAST-DHT for retrieval. 

5.3.3 DAST-DHT 

 DAST-DHT provides the fundamental infrastructure to ppBLAST. It con-

tains two layers: BambooDHT [57, 84] and DAST [6, 7]. BambooDHT is a DHT 

implementation based on Pastry [36]. It provides mechanisms that organise peers 

into an overlay and functions of DHT, i.e., a put operation for a single {key, value} 

pair and a get operation for a single query of a {key}. Every pair that is stored in 

BambooDHT has a TTL (Time-To-Live) associated with it. For every key, it may 

have a list of values and if more than one put operations is made on the same key, 

all values will be added to that list. BambooDHT does not support range queries. 

If a component in an application wants to retrieve values for a range of keys, such 

as 2 to 8, it has to execute a get operation 7 times, which is not efficient. With 

DAST enabling the range query function for BambooDHT, the number of neces-

sary get operations is significantly reduced and higher efficiency can be obtained 

when a range of keys are queried.  



 

87 

 

  Chapter 4 describe the design of DAST; However, we present the three 

simple interfaces of DAST-DHT here to clarify the essential DAST-DHT opera-

tions within ppBLAST: 

Algorithm 5-1: The high level pseudo code of worker selection and 

task dispatching for the Service Broker 

     // Candidates: the list of peers. The sum of peers’ segments cover the  

                            according range of segments 

// index: controls the range of the segments 

// n: every n database segments constitute a task group 

//N: the total number of segments for a database 

// get(range_start, range_end): DAST-DHT range get interface 

//worker1, worker2, work3: selected worker peers 

//dispatch(worker, task_start, task_end, order): dispatch tasks  

// task_start, task_end: represents the segment range for a task group 

// order_1: blastn query from task_start to task_end ascending 

// order_2: blastn query from task_end to task_start descending 

// order_3: blastn query from the middle of task_start and task_end 

 

SelectWorker() 

    index ← n 

      while true do 

          candidates ← new List[]           

          candidates[index/n] ← get(index-n+1, index)  

          update task queue length of each peer in candidates[index/n] 

               sort candidates[index] ascending by length of peer’s queue  

          worker1 ← candidates[1] 

          worker2 ← candidates[2] 

          worker3 ← candidates[3] 

              dispatch(worker1, x-n+1, x, order_1); 

              dispatch(worker2, x-n+1, x, order_2); 

              dispatch(worker3, x-n+1, x, order_3); 

          index ← index + n 

          if index = N then break; 

          if index > N then index ← N 

      end while 

 



 

88 

 

• put_single(key, value). This interface inherits from BambooDHT and pre-

mits the put operation that needs not be range queried;  

• put_range(key, value). If the key may be range queried this alternative in-

terface should be used;  

• get(key_range_start, key_range_end). The two parameters indicate a range 

of keys. However, if key_range_start equals to key_range_end, then the 

get(key) function of BambooDHT is invoked. 

5.3.4 Peers and the worker component 

 There are three roles for the peers in the overlay. First, they organise 

themselves to construct the DAST-DHT. They store the {key, value} pairs in their 

local disks and conform to the BambooDHT mechanisms to route the messages 

over the network. The second role that they enact is as the clients of DAST-DHT, 

i.e., they access the public DAST-DHT interfaces for the purpose of storing or 

retrieving information. Their last role is in participating in the segment distribu-

tion and acting as the workers for the BLAST jobs/tasks via the worker compo-

nent. This three-layer design for peers eases the implementation of ppBLAST 

logically and since the functionalities of the layers are not overlapping, the design 

will not complicate the development.  

 Every peer maintains its database segment list and task queue. Every time 

a peer obtains a new segment, it invokes a put_range(dbSId, ip:port) over the 

DAST-DHT. This action will update the existing owners of the dbSId. Note that it 

uses the put_range because the service broker will need to query for a range of 

segments when looking for job candidates. In addition, peers are required to in-

voke put_single {ip:port_live, true} every t minutes to indicate their liveness. The 

TTL of pair {ip:port_live, true} is set to t such that if a peer does not update the 

pair, it is assumed to have left the overlay. 



 

89 

 

5.3.5 Service Broker 

 The service broker is a component that is accessed by only ppBLAST us-

ers. It can reside in a server that provides a web interface (a web page, for exam-

ple) to the users as the frontend for BLAST requests or be an application in users’ 

PCs in which case it will not be a central element in ppBLAST.  

 The major function of the service broker is offering a simple interface 

where users can select the BLAST program, upload a query and choose the target 

database. Once users complete these steps, the service broker will try to accom-

plish the remaining work; that is posting the query to the DAST-DHT such that 

worker peers can obtain it, identifying the worker peers and dispatching the tasks.  

 Suppose we split the database into N segments. A job can then be divided 

into N tasks each of which is a BLAST request on the query segment.  The N tasks 

are then organised consecutively and uniformly into N/n+1 groups and each group 

has n tasks. “Consecutively” means that the dbSIds of the segments of the n tasks 

in a group are contiguous. For every group of tasks, the service broker will query 

the DAST-DHT for a range of peers that own the according range of the segments 

of the tasks. Once the list of candidate peers for a group is obtained, the service 

broker will sort it into ascending order induced by the length of the peer’s task 

queue. The top k peers (with the shortest queues) are then chosen to be the work-

ers and the tasks in that group are dispatched to them with different orders. The 

information regarding which peers were assigned which tasks will be stored in the 

broker’s local system. 

 There are three possible orders to the search. With the first, the worker 

peer executes a BLAST run on each segment in the range in ascending order, i.e., 

from segment_1 to segment_n. The second is descending, where the peer runs 

BLAST from segment_n to segment_1. Finally a peer may start from seg-

ment_(n+1)/2 and the series of target segments will be {segment_(n+1)/2+1, 

segment_(n+1)/2-1, segment_(n+1)/2+2, segment_(n+1)/2-2, …}. The reasons 

that we section tasks into groups and dispatch a group of tasks to three peers, each 



 

90 

 

of which finishes tasks in a specified order, are summarised as follows: 1) Com-

pared to dispatching tasks one by one to peers, sectioning tasks can obtain higher 

efficiency and generate a lower overhead from the DAST-DHT get operation and 

network connections. 2)  We must prepare for the situation where worker peers 

may leave the network before finishing all the tasks in that group. If any one or 

two peers leave, the remaining peer(s) will be required to finish the entire group. 

If all leave, which is the worst case, the service broker will restart the worker se-

lection process again for the unfinished tasks. 3) Peers will get {taskId_done} be-

fore they decide whether or not to begin a task. By following the design of the 

three orders, the tasks that those three peers undertake will not overlap therefore 

no computing power is wasted. 4) We choose three worker peers whose task 

queues are the shortest to control overloading. After the workers are chosen for 

one group, peers’ queues are updated locally within the service broker such that 

the information regarding their queues will not be queried again when deciding 

the workers for the next group. Algorithm 5-1 depicts the whole worker selection 

and task dispatching process. 

 For load balancing purposes, the service broker will hold a threshold on 

the task queues of peers. If the lengths of the task queues of all candidate peers 

exceeds the threshold, the service broker will pause the dispatching process, regu-

larly querying peers’ queues and restarting the dispatching when the length of any 

peer’s queue is reduced below the threshold. Note that the service broker does not 

necessarily keep connections with worker peers after all tasks are dispatched. 

Once a worker peer finishes a task, it put_single {taskId, result} into the DAST-

DHT with a certain TTL. Within the TTL, users can retrieve results via the service 

broker. Since for every task there is a result file in the DAST-DHT, retrieving the 

result files can begin as soon as the first results file is produced. Users do not have 

to wait until all the results files are in place. Retrieving results asynchronously can 

reduce the total time spent on a BLAST job. When the service broker gets the 

{taskId} and retrieves no results, it will query for the {taskId_dispatched}. If the 

task has been dispatched, the broker will locate the worker peer for the task and 



 

91 

 

then query for {{ip:port_live, true}. If the peer is still alive, the service broker 

will wait; otherwise, it will restart the dispatching process for that task. 

5.3.6 Segment Distributor 

 The segment distributor is another component in ppBLAST. It has two 

major functions: splitting the database and distributing the parts into the overlay. 

All BLAST related nucleotide and protein databases are updated regularly by 

NCBI GenBank. Newly discovered sequences are added to the end of the existing 

databases; hence, they can be easily extracted and split into new segments for dis-

tribution while the old segments in the overlay do not need to be erased or redis-

tributed. The size of one segment should be considered carefully. If it is too large, 

it is possible that a peer cannot receive a complete copy of the segment if the 

sending peer leaves the overlay. If it is too small, the number of tasks for one job 

may be extremely large and the overhead of dispatching a job to peers may be too 

high. We will give an evaluation in Section 5.4 to guide the choice of the size of 

the segment.  

 The segment distribution process follows a modified BitTorrent protocol. 

BitTorrent is one of the most successful peer-to-peer file distribution protocol [31] 

(for details of BitTorrent mechanisms and its performance, refer to [50]). We 

modify the BitTorrent protocol in the following respects to adapt it to ppBLAST.  

 In original BitTorrent, there is a server, termed as tracker, in the overlay. 

It collects statistical information of peers and tells peers the location of others. 

Without the tracker, BitTorrent stops working. We ignore the tracker in 

ppBLAST. Instead, when the segment distributor wants to distribute segments, it 

announces itself as a seed by put_single {new_distribution, 

ip:port_of_distributor}. The key {new_distribution} will be regularly queried by 

peers. Once a peer detects a new distribution, it will connect to the segment dis-

tributor using the value of the key to receive the dbSIds of the new segments. It 

will then choose the ones it wants to download and query the DAST-DHT for the 

peers who own them. If no peers have yet owned them, it will ask for them from 



 

92 

 

the segment distributor. When facing parallel requests for segments, the segment 

distributor acts as a seed in BitTorrent. From the conclusion of chapter 3, the 

Original Seeding Strategy (OSS) performs better than the Time-based Seeding 

Strategy (TSS) when the number of freeriders and exploiters is relatively small [8]. 

Thus, we choose OSS as the seeding strategy in ppBLAST.  

 In BitTorrent, when a peer selects a file chunk to download from others, 

the one with least owners in the overlay will always be chosen, while in 

ppBLAST segment distribution however, peers choose segments in an organised 

manner. As described in sub-Section 5.3.6, tasks are sectioned into groups where 

the segments for a group of tasks are actually consecutive. Peers also download 

groups of segments to match the design of the dispatching. When a peer starts to 

download a group of segments (group size = n), it chooses a random starting point 

from the dbSId set {1, n+1, 2*n+1 …}. The random starting point will avoid (with 

a higher probability) the case that most peers are downloading the same group of 

segments at the same time. Staggering the segments can give opportunities to 

peers to download from each other. 

5.4 Performance Evaluation 

 We present the performance evaluation of ppBLAST. First, we investigate 

the feasibility of ppBLAST through its prototype over a limited number of peers. 

We then carry out a series of simulations to study the performance of ppBLAST 

Table 5-1. The hardware specifications for the five PCs 

Peer No. CPU Network 

1 P4 3.0 GHz University backbone 100Mbps 

2 P4 3.0 GHz University backbone 100Mbps 

3 P Core
2
 Duo 1.8GHz Home broadband 2Mbps 

4 P Core
2
 Duo 2.4GHz Home broadband 2Mbps 

5 P Core
2
 Duo 2.4GHz Home broadband 2Mbps 



 

93 

 

in a large-scale peer-to-peer overlay. 

5.4.1 Experimental Roadmap and Setup 

 The performance evaluation process is divided into two steps. The first is 

validating the feasibility of ppBLAST. We use a prototype version of ppBLAST 

and run it over five peers using Internet connections. The second step contains a 

group of simulations. We carefully set up the simulation parameters so as to re-

flect the real environment.  The details of both steps are as follows. 

1) Feasibility validation. We implemented a prototype version of ppBLAST to 

test the feasibility of the design. The implementation is Java based.  

a. DAST-DHT: Using the Bamboo-DHT sourcecode as a basis, we im-

plemented our DAST layer on top of this without changing the core of 

Bamboo-DHT. Bamboo-DHT constrains the sizes of the {key, value} 

pairs by default. By using DAST-DHT as a storage facility, we are 

able to get around this constraint by setting the size of a single pair to 

10MB. Note that for DAST, we assign 90% to the value of AoR and 3 

to the level of the tree (N). 

b. There are two types of values in {key, value} pairs in ppBLAST: mes-

sages and files. The messages are normally small with sizes below 

1KB. The files are the ones for results, query sequences and database 

segments. The sizes of queries that users submit to a real deployment 

of ppBLAST may exceed 10MB; however, in our experiments we 

constrain their sizes to be below 1MB to reduce the time of the ex-

periments. In fact, we do not recommend users submit a query larger 

than 1MB as it may cause low routing efficiencies in the underlying 

DHT. We discuss this in Section 5.5. 

c. For the worker component that every peer runs, we implemented it as 

two layers. One is for the BitTorrent-based segment distribution and 

the other is for the BLAST tasks. These two layers do not communi-

cate directly. If the task layer needs to know which segments the peer 

currently has, it simply checks the segment folder in the hard drive. 



 

94 

 

Also the task layer does not integrate with the BLAST programs. It 

simply executes BLAST command lines and reads the result files from 

disk after the BLAST programs finish. In all experiments, we choose 

blastn to represent BLAST and nt was selected to be the only target 

database.  

d. Experimental Settings: we deployed a prototype of the ppBLAST ser-

vice over five peers. The hardware specifications are listed in Table 5-

1. We do not list the sizes of the memory in these peers because the 

segment size will be much less than their memory sizes and thus will 

not cause a bottleneck [24]. We chose these five peers in order to re-

flect a heterogeneous environment. Furthermore, in order to reduce 

the run time, we ran the segment distributor in peer1 to utilise its 

backbone network to speed up the segment distribution. The service 

broker application ran in peer2. For the BLAST program, we choose 

blastn and nt for the database. 

2) Simulations: we extend the performance evaluation to a large-scale peer-

to-peer overlay through simulation. This simulates the key algorithms and 

components in ppBLAST. However, for BLAST jobs, the simulator does 

not execute real BLAST searchings. The simulation of job execution is de-

scribed as follows: 

a. Factors that affect the search time of a BLAST job: query length, 

number of sequences in a query, sequence database size, number of 

sequences in database [24]. Even if all these factors in two BLAST 

jobs are identical, the comparison between the query and database will 

likely result in different search times.  

b. The peers: The computers that peers are using are not always identical. 

Different CPUs or memory will result in different BLAST perform-

ance. Accurately simulating the computing abilities is not important 

here. Furthermore, we cannot consider all peers as dedicated workers. 

That is, peers may have other computing loads while serving 

ppBLAST, hence, it is unlikely to predict this senario.  



 

95 

 

c. Taking all these random factors into account, we simulate BLAST 

jobs as follows: First we categorise all peers into three groups of 

hardwares – CPUs: P4 3.0GHz, P4 Core
2
 Duo 1.8GHz, P4 Core

2
 Duo 

2.4GHz. These hardware reflect three kinds of peers whose computing 

abilities approximately range from low to high. A peer is randomly as-

signed to one of these hardwares. Before developing the simulator, we 

extracted one query sequence of size 1MB from the nt database. We 

ran blastn searching the query against the nt database in three PCs 

(PC1, PC2 and PC3) whose hardwares match the specifications above. 

The time consumed by those searches are recorded. After this, the nt 

database was split five times (the segment sizes were 2MB, 4MB, 

8MB and 16MB, respectively). We then ran the query against every 

segment in each set of the database and recorded the time for use in-

side the simulation. In the simulation, depending on the peer and the 

lengths of query and segment, the time of a blastn task in a peer was 

extracted from the benchmark above. Also we gave a random weight 

to each time to reflect the possible other computing loads in the peers.  

1 2 3 4 5
100

150

200

250

300

350

400

450

500

550

600

 

 (a)

B
L

A
S

T
 j

o
b
 e

x
ec

u
ti

o
n
 t

im
e 

(m
in

u
te

s)

Number of copies of complete set of segments

 PC1 local search

 PC2 local search

 PC3 local search

 ppBLAST search

 

Figure 5-3. the BLAST searching time comparison of local search and 

ppBLAST search 

 



 

96 

 

5.4.2 Results from the feasibility experiments 

 In this section, we present the experimental results to validate whether 

ppBLAST in a small scale peer-to-peer overlay can reduce the search time of 

BLAST. First we randomly extracted 10 sets of queries, each with 1MB size of 

sequences, from the nt database and searched (using blastn) against the nt data-

base in PC1, PC2, and PC3 locally. For each PC, the average values of the time 

spent searching the 10 queries are calculated and recorded. We then split the nt 

database into segments, each with 3MB size. The segment distributor was set up 

in peer2 and began the segment distribution. At each time when the overlay has a 

new complete copy of all segments (a maximum of five complete copies when 

each peer has one), we submit a random query (1MB) to ppBLAST via the service 

broker residing on peer3. A copy of the complete segment set in the overlay 

means that all segments that peers own can cover the segment set (but some peers 

may lack certain segments). For the time spent on a job in ppBLAST, we calculate 

1 2 3 4 5
2.0

2.5

3.0

3.5

4.0

4.5

5.0

 

 (b)

S
p
ee

d
u
p

Number of copies of complete set of segments

 Comparing to PC3 local search

 Comparing to PC2 local search

 Comparing to PC1 local search

 

Figure 5-4. Speedup of ppBLAST comparing to the local searches on PC1, 

PC3, PC5 

 



 

97 

 

the time period between the point of submitting a job and the point at which all 

the results are retrieved from the DAST-DHT.  

 Fig. 5-3 plots the BLAST search time comparisons between ppBLAST 

and the local searches of PC1, PC2, and PC3. We can see that the execution time 

of BLAST jobs on ppBLAST are much less than those obtained from local runs 

on a single PC. The speedups are depicted in Fig. 5-4. As described in Section 5.1, 

the performance of a local BLAST search significantly decreases if the size of the 

database is bigger than the memory on the PC. The nt database used in the ex-

periments has the size of 8.76GB and none of the three PCs have memories larger 

than this. Hence, the execution of the jobs run locally takes considerable time. 

peer1 exhibits the worst case where it averages almost 10 hours to complete a 

BLAST search of a 1MB query against the nt database. ppBLAST improves the 

BLAST search jobs significantly because (1) the size of database segment is much 

smaller than the local memory; (2) five peers cooperate to finish one job. Note 

that there are several additional operations, such as peers retrieving queries and 

putting the results files into a DAST-DHT, which cost time in ppBLAST. How-

ever, the size of the query is small enough to be obtained quickly (larger queries 

can be split) and storing result files can be managed asynchronously to the 

BLAST searching, i.e., if a peer finishes a task, it can store the result file in the 

background while it is doing the next task. Compared to the original BLAST 

search time, the overhead for the retrieving and storing operations are insignifi-

cant. 

 Fig. 5-4 also shows the relationship between the ppBLAST execution time 

and the number of copies of the complete segment set in the overlay. It is obvious 

that the performance of ppBLAST is better if there are more copies of the com-

plete segment set in the overlay. ppBLAST does not adopt a segment-on-demand 

mechanism [24] where a worker peer obtains a missing segment for a task from a 

central server. Instead, it assigns tasks based on what segments a peer current has. 

We design ppBLAST in this way because a central segment providing server may 

be the single point of failure, but without the server, segment-on-demand can 

force peers to download the lacking segments from others and the BLAST tasks 



 

98 

 

will have to wait, which itself is not time-efficient. Therefore, when there is only 

one copy of the complete set in the overlay, a job can be completed but a number 

of peers may not obtain tasks and be idle because they do not have the necessary 

segments. When more copies of segments are delivered among peers, the per-

formance increases. This is shown in Fig. 5-3 and 5-4; when there are four copies 

of the complete segment set in the overlay, the job execution performance reaches 

near-optimal.  

Fig. 5-5 presents the workload distributions of five peers. The workloads 

were calculated from the number of tasks that a peer took in a BLAST job. We 

can see that when there is only one copy of complete segment set in the overlay, 

peer1 and peer2 take the majority of the workload. As listed in Table I, peer1 and 

peer2 have high speed Internet access and they can download segments from oth-

ers (including the segment distributor) quickly. Inside the first copy of the com-

plete set in the overlay, they owned most of the segments. Hence, when the ser-

vice broker dispatched the tasks, peer1 and peer2 were assigned more than 70% 

1 2 3 4 5

0

5

10

15

20

25

30

35

40

 

W
o
rk

 l
o
ad

 p
er

ce
n
ta

g
es

 (
%

)

Number of copies of complete set of segments

 peer1

 peer2

 peer3

 peer4

 peer5

 

Figure 5-5. The work loads of each PC (the percentage of the total number 

of tasks in a BLAST job) 

 



 

99 

 

of the tasks. The remaining peers only obtain 26% of the tasks due to lacking cer-

tain segments. The workload tends to balance while more copies of segments are 

distributed among peers. When every peer in the overlay owns a complete seg-

ment set, peer3, peer4 and peer5 obtain more tasks than peer1 and peer2 because 

of their higher computing abilities. 

5.4.3 Results from the simulation experiments 

 In this section, we extend our performance evaluation of ppBLAST by 

adopting a large-scale peer-to-peer overlay via simulation. The numbers of peers 

that we have chosen are 200, 400, 800, 1600, 3200, and 6400. Since we analysed 

the relationship between copies of the complete segment set and the execution 

time in sub-Section 5.4.2, here we only present the results of the simulation runs 

in which a job is submitted when every peer has already obtained at least 60% or 

100% of the segment set. The percentage is only relative to the number of seg-

ments, but not related to the contents of segments, i.e., two peers can have the 

same number of segments but not same ones. For the comparison target, we chose 

0 400 800 1200 1600 2000 2400 2800 3200

0

200

400

600

800

1000

1200

1400

 

 (a)

S
p
ee

d
u
p

Number of peers

 2MB segment

 4MB segment

 8MB segment

 16MB segment

 

Figure 5-6. Speedup of ppBLAST when every peer has at least 60% of the 

complete segment set 

 



 

100 

 

the times spent on the BLAST job executed in PC3, which has the highest com-

puting capability. The distribution of the bandwidths follows Table 5-2.  

 Fig. 5-6 and 5-7 shows the speedup of the execution times of ppBLAST. 

First of all we can see that the speedups in both figures indicate the high perform-

ance improvement in ppBLAST once the peer-to-peer overlay is at large scales. 

The execution time of a BLAST job is considerably reduced in ppBLAST com-

pared to the local search time on one PC. In Fig. 5-6, four lines represent four 

types of segment into which the nt database is split. The speedups rise when split-

ting the database into 4MB segments instead of 2MB. However, if we segment the 

0 400 800 1200 1600 2000 2400 2800 3200

0

200

400

600

800

1000

1200

1400

 

 (b)

S
p
ee

d
u
p

Number of peers

 2MB segment

 4MB segment

 8MB segment

 16MB segment

 

Figure 5-7. Speedup of ppBLAST when every peer has full segment set 

 

Table 5-2. Bandwidth distribution of leechers (derived from the actual dis-

tribution of the Gnutella network [1]) 

Downlink (KB/s) Uplink (KB/s) Fraction 

78 12 0.3 

150 38 0.6 

300 100 0.1 



 

101 

 

database into 8MB segments, the performance degrades (it becomes worse using 

16MB segments). When a BLAST search begins, the program will read a query 

and a database from the hard drive and will write the results to the hard drive 

when finished. Constant hard drive operations (read and write) will result in high 

overheads on the local system. If we segment the database into 2MB segments, 

the system overhead is higher than that when using 4MB segments because there 

are more segments that need to be read and more result files need to be written. 

However, when we adopt 8MB segments or higher, the distribution of a single 

segment costs more time. A complete segment set is the unit for tasks. Hence, 

peers with high computing power but low bandwidth may not be able to take a 

task because of the low transmission rates of a single segment. This is clearly de-

picted in Fig. 5-6. In Fig. 5-7, the low transmission rate effect disappears since 

every peer has a complete set of segments.  

 Although the speedups in Fig. 5-6 and 5-7 indicate large performance im-

provement in ppBLAST, they are not optimal, i.e., speedup does not equal the 

number of peers. When the number of peers increases, the number of tasks that 

0 500 1000 1500 2000 2500 3000 3500

0

20

40

60

80

100

T
o
ta

l 
E

x
ec

u
ti

o
n
 T

im
e 

(%
)

Number of peers

 BLAST

 Storing results

 Retrieving query

 

Figure 5-8. How is time spent in ppBLAST. 

 



 

102 

 

each peer can take reduces. The total amount of time that a peer spends on all of 

its tasks is also shortened such that we cannot ignore the time spent on retrieving 

queries and storing result files (DAST-DHT operations, as described in sub-

Section 5.3.3). We plot the average time compositions of peers for each job in Fig. 

5-8. We can see that the percentage of the time spent on DAST-DHT operations 

becomes larger when the scale of the overlay grows. If the DAST-DHT operation 

time can be reduced, the performance of ppBLAST can be further improved. One 

potential solution to shorten the query retrieval time is to create an additional Bit-

Torrent-like layer dedicated to distributing the query among worker peers. 

5.5 Conclusions 

 This chapter introduces the design, implementation and performance 

evaluation of ppBLAST. ppBLAST focuses on utilising the computing resources 

over the Internet to provide a BLAST computing service. Its design involves three 

layers: DAST-DHT, BitTorrent-like distribution and BLAST job dispatching and 

execution. In order to simplify the implementation, all layers do not overlap but 

only use each other. A performance evaluation demonstrates the considerable im-

provement that ppBLAST can offer to BLAST searches.  

 The motivation of the attempt of utilising peer-to-peer network for BLAST 

is to look for another kind of possible computing resource to complement clusters. 

Clusters are expensive, in terms of the funding cost and the complexity of admini-

stration, and hard to scale with the growing sizes of the BLAST databases and 

jobs. Although one may argue that clusters are getting cheaper these days, we be-

lieve that these results demonstrate that the free and scalable computing resources 

from peer-to-peer networks will provide a cost-effective substitute for clusters. 

  

 

  



 

103 

 

Chapter 6  

Conclusions and Future Work 

6.1 Conclusions 

In this thesis, we present our three contributions: Analysing BitTorrent 

seeding strategies, a Distributed Arbitrary Segment Tree to provide range query 

function for DHTs, and utilising Peer-to-Peer overlays to parallelise the bioinfor-

matics application - BLAST.  

Although the aim of our research is to build a Peer-to-Peer computation 

service for BLAST jobs, we had to first build a large file distribution facility to 

distribute the database among peers. BitTorrent has been shown to be the most 

effective Peer-to-Peer file distribution protocol, and its Tit-For-Tat algorithm is 

one of the key factors that have led to BitTorrent to success. However, another 

key factor – Seeding Strategy – has been largely overlooked. Without a proper 

seeding strategy, the performance of BitTorrent still can be negatively impacted 

by the existence of freeriders and exploiters. Thus, we conduct a comprehensive 

analysis on the seeding strategies of BitTorrent in order to make better selection 

of strategy and further improve BitTorrent’s performance in preparation for the 

implementation of our Peer-to-Peer-based BLAST.  

With the BitTorrent protocol enhanced to provide an effective seeding 

strategy to distribute databases among peers in ppBLAST, an additional facility 

was required to store queries, tasks and results through a simple and efficient in-

terface. The DHT system fulfils this requirement. DHT supplies functions like a 

traditional hash table – put a {key, value} pair in and get the value out by a key. 

Peers can store queries and results through DHT layer easily and efficiently. In 



 

104 

 

addition, DHT also make peers self-organised and provides a convenient means 

for locating worker peers. However, current DHTs have the limitation of single 

key query, i.e., each time a peer can query for only one key and if it needs to 

query for a continuous series of keys, one query has to be made for each key. This 

negatively impacts the system performance. Therefore, we conducted research on 

building a range query function layer over existing DHTs. We utilise segment tree 

data structure, extending it to Distributed Arbitrary Segment Tree and layering it 

on top of DHTs. Every DHT put or get operation will first go through our DAST 

layer and DAST will rehash the key in a new hashing space in order to instrument 

the range query functionality. 

With the above two fundamental services were determined, we were able 

to design and implement ppBLAST. We build three layers: the layer at the bottom 

is the DAST-DHT; it provides three functions: constructing the overlay for 

ppBLAST, providing lookup for peers’ locations and storing queries, tasks, and 

results. The middle layer is the BitTorrent-like database distribution facility. It 

splits a large database into chunks and distributes them among peers. It also util-

ises the underlying DAST-DHT layer to locate peers and thus does not need an 

indexing server. The top layer is the BLAST job assigning and scheduling layer. It 

relies on the DAST-DHT layer to find the available target peers and assigns tasks 

through a scheduling algorithm.  

6.1.1 Analysing BitTorrent Seeding Strategies 

In this contribution, we study two seeding strategies – the Original Seed-

ing Strategy (OSS) and Time-based Seeding Strategy (TSS). First we build a 

mathematical model to investigate the impact that freeriders or exploiters have on 

the mean download completion time of unselfish leechers if OSS is employed. For 

the model, we adopt homogeneous environment where peers have the same 

download / upload bandwidths. We then further extend our study via simulation. 

In the simulation experiments for the homogeneous environment, we first validate 

our mathematical model and then compare OSS with TSS through metrics of 

mean download completion time, mean download rate and mean bandwidth utili-



 

105 

 

sation. For the heterogeneous environment, we use one additional metric which is 

the cumulative distribution of unselfish leechers’ download completion time.  

We summarise the results as follows. First, our mathematical model for 

studying the Original Seeding Strategy is validated and can be used to theoreti-

cally analyse the effects of the seeding strategies on BitTorrent networks. We find 

out that there is a threshold for the number of selfish leechers (freeriders / exploit-

ers). If the threshold is exceeded, TSS performs better than OSS; otherwise, OSS 

outperforms TSS. We also discover that both freeriders and exploiters harm the 

system, despite the seeding strategy that is employed. However, TSS has better 

resistance to selfish leechers compared with OSS. Furthermore, freeriders and ex-

ploiters impact negatively on leechers of every level of bandwidth and neither of 

the seeding strategies can completely eliminate this impact. Therefore, OSS 

should be employed if the number of selfish leechers is relatively small.  

6.1.2 Distributed Arbitrary Segment Tree on DHT 

In order to provide an efficient range query function for DHTs, we con-

struct a DAST layer on top of DHTs. The DAST layer selects a hashing space and 

constructs an arbitrary segment tree. Every segment on the tree is a fixed range of 

hashing values. When the DAST layer receives a put(key, value) request, the key 

is abstracted and obtains a new hash in the hashing space. Afterwards, DAST will 

insert the {key, value} pair into every node whose fixed range contains the new 

hash of the key. When a range of keys are queried, DAST will look for the mini-

mum number of nodes and the sum of all those nodes’ ranges cover the query.  

Although DAST requires more than one insert operation, with the consid-

eration of the fact that a single {key, value} pair is always put once, but value re-

trievals are conducted any number of times, the overall operation overhead is 

lowered compared to normal DHT. Another advantage of DAST is that it does not 

modify the core of the underlying DHT and thus can be adapted easily by any 

DHT systems. Also, DAST has set up parameters such as AoR, number of tree 

levels, and so on. Applications can adjust the parameters according to different 



 

106 

 

application environments to obtain optimal range query performance. Finally, the 

DAST structure is deterministic once the range of the whole hashing space is de-

cided and therefore does not need any maintenance work which brings simplicity 

and less overhead to the client applications.  

6.1.3 A Parallelisation of BLAST over Peer-to-Peer network 

The BitTorrent-like protocol and the DAST-DHT research provide two 

fundamental services, which are used in the implementation of ppBLAST. 

ppBLAST accepts BLAST jobs, dispatches them to peers and collects the results. 

A ppBLAST client submits a BLAST job through the locally running service bro-

ker. The service broker is not a centralised element in the overlay; instead, it is a 

component inside every BLAST client application. It accepts a BLAST job and 

divides the job into a number of tasks. Every task corresponds to a piece of data-

base and has a taskId associated with it. Afterwards, the service broker will range 

query the overlay for all available peers and the sum of all peers’ downloaded da-

tabase pieces cover the whole database. Finally, the tasks will be dispatched to the 

peers. Since the BLAST job query has to be bound with every task, it is not effi-

cient if the service broker sends the same copy of the query to every worker peer. 

Thus, for high efficiency, the service broker will store the query in the DAST-

DHT layer once and all selected worker peers will retrieve the query from it. 

When a worker peer finishes a task, it puts the {taskId, result} into the DAST-

DHT layer for users to retrieve. 

6.2 Future Work 

BitTorrent Seeding Strategies 

Current popular BitTorrent clients employ either OSS or TSS, and none 

investigate the combination of these two seeding strategies. Therefore our future 

research is focused on how to combine these two seeding strategies so that the 

seeds can deliver enhanced service to unselfish leechers despite the existence of 



 

107 

 

selfish leechers. This will involve building a mechanism to detect the scale of self-

ish leechers in the overlay. Depending on the scale, we will direct the seeds to im-

plement OSS or TSS dynamically. 

DAST 

In the current DAST design, although it effectively decreases the number 

of get operations when handling range queries, it still needs additional put opera-

tions for each insertion of key. Our next research step is to further reduce the put 

operation overhead for DAST while maintaining the same effectiveness of range 

queries in DHT. 

ppBLAST  

There are several directions for future work in ppBLAST. First, ppBLAST 

can create an additional BitTorrent-like layer to support the query distribution 

process. The current query distribution relies on the raw DAST-DHT operations 

which are proven to be relatively slow in our experiments. If we distribute queries 

in a BitTorrent-like manner, a large query may not need to be split and the per-

formance of ppBLAST can be further improved.  

 The second potential area of work is to create a mechanism to encourage 

peers to join the network. In the current design, we assume that all peers that con-

tribute to ppBLAST are self-motivated (just like ones in SETI@home and Fold-

ing@home) and they do not need to use BLAST themselves. However, some 

BLAST users can also be ppBLAST peers. How to encourage those users to con-

tribute while they do not use their machines remains the topic of future work.  

 The current evaluations and experiments, which were carried out through 

real deployment, for ppBLAST are based on a small scale of peer setup. We are 

planning to adopt larger number of real peers for fuller evaluations of ppBLAST. 

This can be done via clusters (each node in cluster can be emulated as a peer) or 

joining Planetlab to obtain real peer resources over the Internet.  



 

108 

 

At last, what is QoS level of ppBLAST needs to be explored and how to 

maintain QoS is also our future work. The churn phenomenon (peers keep leaving 

or joining) should also be analysed for ppBLAST to investigate its stability.  

  



 

109 

 

Bibliography 

[1] E. Adar and B. A. Huberman, "Free Riding on Gnutella", First Monday, 

Vol. 5, Issue 10, 2000. 

[2] S. Saroiu, P. K. Gummadi and S. D. Gribble, "A Measurement Study of 

Peer-to-Peer File Sharing Systems", MMCN, pp. 2002. 

[3] A. R. Bharambe, C. Herley and V. N. Padmanabhan, "Analyzing and 

Improving a BitTorrent Network's Performance Mechanisms", IEEE 

INFOCOM, pp. 2006. 

[4] X. Chen and S. Jarvis, "ppBLAST: A Computational Service over Peer-to-

Peer net-work for BLAST", International Conference on Advances in P2P 

Systems (AP2PS 2009), Sliema, Malta, October 11-16, 2009. 

[5] X. Chen and S. Jarvis, "Analysing BitTorrent's Seeding Strategies", 7th 

IEEE/IFIP International Conference on Embedded and Ubiquitous 

Computing (EUC-09), Vancouver, Canada, August 29-31, 2009. 

[6] X. Chen and S. A. Jarvis, "Design and Implementation of Efficient Range 

Query over DHT Services", 1st International Conference on Signal 

Processing and Communication Systems (ICSPCS 2007), pp. 2007. 

[7] X. Chen and S. A. Jarvis, "Distributed Arbitrary Segment Tree: Efficient 

Range Query Over Public DHT Services", 12th IEEE International 

Workshop on Computer Aided Modeling and Design of Communication 

Links and Networks, held as part of PIMRC07, Greece, 2007. 

[8] X. Chen and S. A. Jarvis, "Analysing Seeding Strategies and Fairness in 

BitTorrent-based Networks", 22nd Annual UK Performance Engineering 

Workshop, pp. 2006. 

[9] X. Chen, S. A. Jarvis, G. Tan, L. He, D. P. Spooner and G. R. Nudd, "An 

implementation of BLAST over peer-to-peer and its performance 

validation through simulation", 8th International Conference on Computer 

Modelling and Simulation, pp. 2005. 

[10] G. Tan, S. Jarvis, X. Chen, D. Spooner and G. Nudd, "Performance 

Analysis and Improvement of Overlay Construction for Peer-to-Peer Live 



 

110 

 

Media Streaming", Simulation: Transactions of the Society for Modeling 

and Simulation, 82:93-106(Feb 2006, pp.  

[11] G. Tan, S. Jarvis, X. Chen, D. Spooner and G. Nudd, "Performance 

Analysis and Improvement of Overlay Construction for Peer-to-Peer Live 

Media Streaming", 13th IEEE Symposium on Modeling, Analysis, and 

Simulation of Computer and Telecommunication Systems (MASCOTS), 

Sept. 2005. 

[12] G. Tan, S. Jarvis, L. He, X. Chen, D. Spooner, G. Nudd and ”, , , . 

"Modelling Web trans-fer Performance over Asymmetric Networks", 1st 

International Workshop on Per-formance Modelling in Wired, Wireless, 

Mobile Networking and Computing (PMWMNC-2005), 11th IEEE 

International Conference on Parallel and Distrib-uted Systems 

(ICPADS'05), Fukuoka Institute of Technology, Japan, 20-22 July 2005. 

[13] L. He, S. Jarvis, D. Spooner, X. Chen and G. Nudd, "Dynamic Scheduling 

of Paral-lel Jobs with QoS Demands in Multiclusters and Grids", 5th 

IEEE/ACM Interna-tional Workshop on Grid Computing (Grid2004), 

Pittsburgh, USA, Nov 8, 2004. 

[14] L. He, S. Jarvis, D. Spooner, X. Chen and G. Nudd, "Hybrid Performance-

based Workload Management for Multiclusters and Grids", IEE Proc.-

Softw., 151(5):224-231(October 2004, pp.  

[15] L. He, S. Jarvis, D. Spooner, X. Chen and G. Nudd, "Dynamic, Hybrid 

Perform-ance-oriented Scheduling of Moldable Jobs with QoS Demands 

in Multiclusters and Grids", 3rd International Conference on Grid and 

Cooperative Computing (GCC 2004), Wuhan, China, October 2004. 

[16] L. He, S. Jarvis, D. Bacigalupo, D. Spooner, X. Chen and G. Nudd, 

"Queueing Net-work-based Optimisation Techniques for Workload 

Allocation in Clusters of Computers", IEEE International Conference on 

Services Computing (SCC 2004), Shanghai, China, September 15-18, 

2004. 

[17] L. He, S. Jarvis, D. Spooner, X. Chen and G. Nudd, "Hybrid performance-

oriented optimisation mechanism for scheduling QoS-requesting parallel 

jobs in multi-clusters and grids", 20th Annual UK Performance 

Engineering Workshop (UK-PEW' 2004), University of Bradford, July 7-8 

2004. 

[18] NCBI. http://www.ncbi.nlm.nih.gov, Accessed on 15/01/2009. 



 

111 

 

[19] A. Naruse, N. Nishinomiya, K. Kumon and M. Yamaguchi, "Hi-per 

BLAST: High Performance BLAST on PC Cluster System", Genome 

Informatics. Vol. 13. pp 254–255 (2002), pp.  

[20] GenBank. http://www.ncbi.nlm.nih.gov/Genbank/index.html, Accessed on 

04/10/2008. 

[21] TimeLogic. http://www.timelogic.com/products.html, Accessed on 

02/02/2009. 

[22] R. K. Singh, W. D. Dettloff, V. L. Chi, D. L. Hoffman, S. G. Tell, C. T. 

White, S. F. Altschul and B. W. Erickson, "BioSCAN: A Dynamically 

Reconfigurable Systolic Array for Biosequence Analysis", CERCS96, 

1996. 

[23] N. Camp, H. Cofer and R. Gomperts, "High-Throughput BLAST", SGI 

White Paper, September 1998. 

[24] A. Darling, L. Carey and W. Feng, "The Design, Implementation, and 

Evaluation of mpiBLAST", 4th International Conference on Linux 

Clusters: The HPC Revolution 2003 in conjunction with ClusterWorld 

Conference & Expo, June, 2003. 

[25] W. Feng, "Green Destiny + mpiBLAST = Bioinfomagic", 10th 

International Conference on Parallel Computing (ParCo), September 

2003. 

[26] M. Bayer, A. Campbell and D. Virdee, "A GT3 based BLAST grid service 

for biomedical research", All Hands Meeting (AHM04), pp. 2004. 

[27] R. Braun, K. Pedretti, T. Casavant, T. Scheetz, C. Birkett and C. Roberts, 

"Parallelization of local BLAST service on workstation clusters", Future 

Generation Computer Systems, 17(6)(April 2001, pp. 745{754. 

[28] TeraBLAST. 

http://www.timelogic.com/downloads/TeraBLAST_2009.pdf, Accessed on 

02/02/2009. 

[29] K. Pedretti, T. Casavant, R. Braun, T. Scheetz, C. Birkett and C. Roberts, 

"Three complementary approaches to parallelization of local BLAST 

service on workstation clusters", Lecture Notes In Computer Science, 1662 

(1999, pp. 271 - 282. 

[30] Napster. www.napster.com, Accessed on 01/08/2009. 



 

112 

 

[31] B. Cohen, "Incentives Build Robustness in BitTorrent", First Workshop on 

Economics of Peer-to-Peer Systems, pp. 2003. 

[32] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. 

Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells and B. Zhao, 

"Oceanstore: An Architecture for Global-Scalable Persistent Storage", 

ASPLOS, pp. 2000. 

[33] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris and I. Stoica, "Wide-area 

Cooperative Storage with CFS", 18th ACM Symposium on Operating 

Systems Principles, pp. 2001. 

[34] A. Rowstron and P. Druschel, "Storage management and caching in 

PAST, a large-scale, persistent peer-to-peer storage utility", 18th ACM 

Symposium on Operating Systems Principles, pp. 2001. 

[35] ppStream. www.ppstream.com, Accessed on 01/08/2009. 

[36] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed object location 

and routing for large-scale peer-to-peer systems", 18th IFIP/ACM 

International Conference on Distributed Systems Platforms (Middleware 

2001), pp. 2001. 

[37] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky and D. Werthimer, 

"SETI@home: An Experiment in Public-Resource Computing", 

Communications of the ACM, 45 No. 11(November 2002, pp. 56-61. 

[38] E. Korpela, D. Werthimer, D. Anderson, J. Cobb and M. Leboisky, 

"SETI@home-massively distributed computing for SETI", Computing in 

Science & Engineering, 3, No. 1(2001, pp. 78-83. 

[39] C. D. S. Stefan M Larson, Michael Shirts, Vijay S Pande, 

"Folding@Home and Genome@Home: Using distributed computing to 

tackle previously intractable problems in computational biology", 

Computational Genomics, Horizon Press, 2002. 

[40] SETI@Home. http://setiathome.berkeley.edu/, Accessed on 07/2009. 

[41] S. Altschul, W. Gish, W. Miller, E. Myers and D. Lipman, "Basic local 

alignment search tool", Journal of Molecular Biology, 215(1990, pp. 403 - 

410. 

[42] S. F. Altschul, T. L. Madden, A. A. Schaer, J. Zhang, Z. Zhang, W. Miller 

and D. J. Lipman., "Gapped BLAST and PSI-BLAST: a new generation of 



 

113 

 

protein database search programs", Nucleic Acids Res., 25(1997, pp. 3389 

- 3402. 

[43] F. L. Fessant, S. Handurukande, A.-M. Kermarrec and L. Massoulié, 

"Clustering in Peer-to-Peer File Sharing Workloads", The 3rd 

International Workshop on Peer-to-Peer Systems 2004. 

[44] I. Clarke, O. Sandberg, B. Wiley and T. W. Hong., "Freenet: A distributed 

anonymous information storage and retrieval system.", The Workshop on 

Design Issues in Anonymity and Unobservability, 2000. 

[45] N. Andrade, M. Mowbray, A. Lima, G. Wagner and M. Ripeanu, 

"Influences on Cooperation in BitTorrent Communities", The Third 

Workshop on Economics of Peer-to-Peer System, pp. 2005. 

[46] B. Fan, D. M. Chiu and J. C. Lui., "The Delicate Tradeoffs in BitTorrent-

like File Sharing Protocol Design", International Conference on Network 

Protocols, pp. 2006. 

[47] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding and X. Zhang, "Measurements, 

Analysis, and Modeling of BitTorrent-like Systems", ACM SIGCOMM 

Internet Measurement Conference (IMC'05), pp. 2005. 

[48] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. Felber, A. A. Hamra and L. 

Garces-Erice, "Dissecting BitTorrent: Five Months in a Torrent's 

Lifetime", Passive and Active Network Measurement, pp. 2004. 

[49] S. Jun and M. Ahamad, "Incentives in BitTorrent Induce Free Riding", 

ACM SIGCOMM, pp. 2005. 

[50] A. Legout, N. Liogkas, E. Kohler and L. Zhang, "Clustering and Sharing 

Incentives in BitTorrent Systems", ACM SIGMETRICS, pp. 2007. 

[51] N. Liogkas, R. Nelson, E. Kohler and L. Zhang, "Exploring the robustness 

of BitTorrent Peer-to-Peer Systems", Concurrency and Computation: 

Practice and Experience, 2007, pp.  

[52] T. Locher, P. Moor, S. Schmid and R. Wattenhofer, "Free Riding in 

BitTorrent is Cheap", HotNets-V, pp. 2006. 

[53] J. A. Pouwelse, P. Garbacki, D. H. J. Epema and H. J. Sips, "The 

BitTorrent P2P File-Sharing System: Measurements and Analysis", 

International workshop on Peer-To-Peer Systems, pp. 2005. 



 

114 

 

[54] D. Qiu and R. Srikant, "Modeling and Performance Analysis of 

BitTorrent-Like Peer-to-Peer Networks", ACM SIGCOMM, pp. 2004. 

[55] M. Sirivianos, J. H. Park, R. Chen and X. Yang, "Free-riding in BitTorrent 

Networks with the Large View Exploit", IPTPS, pp. 2007. 

[56] Y. Tian, D. Wu and K. W. Ng, "Modeling, Analysis and Improvement for 

BitTorrent-Like File Sharing Networks", Infocom, pp. 2006. 

[57] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, 

I. Stoica and H. Yu, "OpenDHT: A Public DHT Service and Its Uses", 

ACM SIGCOMM, pp. 2005. 

[58] I. Stoica, R. Morris, D. Karger, F. Kaashoek and H. Balakrishnan, "Chord: 

A Scalable Peer-to-peer Lookup Service for Internet Applications", ACM 

SIGCOMM, pp. 149-160, 2001. 

[59] E. Sit, F. Dabek and J. Robertson, "UsenetDHT: A Low Overhead Usenet 

Server", IPTPS, pp. 2004. 

[60] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S. Shenker 

and J. Hellerstein, "A Case Study in Building Layered DHT Applications", 

ACM SIGCOMM, pp. 2005. 

[61] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding and X. Zhang, "Measurements, 

Analysis, and Modeling of BitTorrent-like Systems", ACM SIGCOMM 

Internet Measurement Conference (IMC'05), 2005. 

[62] L. Massoulie and M. Vojnovic, "Coupon Replication Systems", ACM 

Sigcomm, pp. 2005. 

[63] P. A. Felber and E. W. Biersack., "Self-scaling Networks for Content 

Distribution", International Workshop on Self-* Properties in Complex 

Information Systems, pp. 2004. 

[64] A. Akella, S. Seshan and A. Shaikh, "An Empirical Evaluation of Wide-

Area Internet Bottlenecks", Internet Measurement Conference, pp. 2003. 

[65] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker, "A 

Scalable Content-Addressable Network", ACM SIGCOMM, pp. 161-172, 

2001. 

[66] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed object location 

and routing for large-scale peer-to-peer systems", 18th IFIP/ACM 



 

115 

 

International Conference on Distributed Systems Platforms (Middleware 

2001), pp. Nov. 2001. 

[67] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph and J. D. 

Kubiatowicz, "Tapestry: A Resilient Global-scale Overlay for Service 

Deployment.", IEEE Journal on Selected Areas in Communications, 2003, 

pp.  

[68] C. Zheng, G. Shen, S. Li and S. Shenker, "Distributed Segment Tree: 

Support of Range Query and Cover Query over DHT", IPTPS, California, 

USA, pp. 2006. 

[69] M. d. Berg, M. v. Kreveld, M. Overmars and O. Schwarzkopf, 

Computational Geometry: Algorithms and Applications, Springer-Verlag, 

2000. 

[70] V. Papadimos, D. Maier and K. Tufte, "Distributed Query Processing and 

Catalogs for Peer-to-Peer Systems", Innovative Data Systems Research 

Asilomar, CA, USA, pp. 2003. 

[71] M. Abdallah and H. C. Le, "Scalable Range Query Processing for Large-

Scale Distributed Database Applications ", Parallel and Distributed 

Computing Systems, Phoenix, AZ, USA, pp. 2005. 

[72] D. Oppenheimer, J. Albrecht, D. Patterson and A. Vahdat, "Design and 

Implementation Tradeoffs for Wide-Area Resource Discovery ", HPDC, 

pp. 2005. 

[73] A. R. Bharambe, M. Agrawal and S. Seshan, "Mercury: Supporting 

Scalable Multi-Attribute Range Queries", ACM SIGCOMM, pp. 2004. 

[74] J. Aspnes and G. Shah, "Skip Graphs", ACM - SIAM Symposium on 

Discrete Algorithms (SODA), pp. 2003. 

[75] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer and A. Wolman, 

"SkipNet: A Scalable Overlay Network with Practical Locality 

Properties", Fourth USENIX Symposium on Internet Technologies and 

Systems, pp. 2003. 

[76] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker and I. 

Stoica, "Querying the Internet with PIER", 19th International Conference 

on Very Large Databases (VLDB), pp. 2003. 

[77]  



 

116 

 

[78] R. D. Bjornson, A. H. Sherman, S. B. Weston, N. Willard, J. Wing and T. 

Inc, "TurboBLAST: A Parallel Implementation of BLAST Built on the 

TurboHub", IPDPS, 2002. 

[79] H. Lin, P. Balaji, R. Poole, C. Sosa, X. Ma and W. Feng, "Massively 

Parallel Genomic Sequence Search on the Blue Gene/P Architecture", 

IEEE/ACM SC2008: The International Conference on High-Performance 

Computing, Networking, and Storage, November 2008. 

[80] H. Lin, X. Ma, P.Chandramohan, A. Geist and N. Samatova, "Efficient 

Data Access for Parallel BLAST", IEEE International Parallel & 

Distributed Processing Symposium, April 2005. 

[81] J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on 

Large Clusters", Sixth Symposium on Operating System Design and 

Implementation (OSDI'04), San Francisco, CA, 2004. 

[82] A. Hadoop. http://hadoop.apache.org/, Accessed on 18/07/2009. 

[83] D. P. Anderson., "BOINC: A System for Public-Resource Computing and 

Storage", 5th IEEE/ACM International Workshop on Grid Computing, 

Pittsburgh, USA, pp. 2004. 

[84] BambooDHT. http://bamboo-dht.org, Accessed on 04/09/2007. 

 

 


