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Abstract 

Transforming Growth Factor-beta (TGF-β) is a pro-sclerotic cytokine widely associated with the 

development of fibrosis in diabetic nephropathy. Central to the underlying pathology of 

tubulointerstitial fibrosis is epithelial-to-mesenchymal transition (EMT), or the trans-differentiation of 

tubular epithelial cells into myofibroblasts.  This process is accompanied by a number of key 

morphological and phenotypic changes culminating in detachment of cells from the tubular basement 

membrane and migration into the interstitium. Ultimately these cells reside as activated 

myofibroblasts and further exacerbate the state of fibrosis. A large body of evidence supports a role 

for TGF-β and downstream Smad signaling in the development and progression of renal fibrosis. Here 

we discuss a role for TGF-β as the principle effector in the development of renal fibrosis in diabetic 

nephropathy, focusing on the role of the TGF-β1 isoform and its downstream signaling intermediates, 

the Smad proteins. Specifically we review evidence for TGF-β1 induced EMT in both the proximal 

and distal regions of the nephron and describe potential therapeutic strategies that may target TGF-β1 

activity. 
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Introduction: 

Diabetic nephropathy (DN) is the single commonest cause of entry into the renal replacement therapy 

programme, and with the incidence of the disease doubling in the past decade DN now accounts for 

approximately 50% of those patients presenting with end-stage renal failure [1]. Although the 

aetiology of Type I and Type II diabetes is notably distinct, glucose-evoked changes in renal 

physiology are almost indistinguishable and often lead to complete destruction of kidney function 

prompting the need for dialysis or transplantation therapy [2]. Multiple structural and functional 

changes are associated with the disease, specifically in the glomerulus, tubulointerstitium and 

vasculature [3], where glycaemic injury includes structural abnormalities ranging from hypertrophy, 

thickening of the glomerular basement membrane, tubular atrophy and interstitial fibrosis [4]. These 

changes contribute to increased glomerular filtration rate, proteinuria, systemic hypertension and the 

loss of renal function [4]. Histologically, DN is characterised by an accumulation of extracellular 

matrix (ECM) in both the glomerular mesangium and tubular interstitum, culminating in excessive 

renal scarring and a decline in excretory function [4-7]. Renal fibrosis is evidenced by 

glomeruosclerosis, tubulinterstitial fibrosis (TIF), infiltration of inflammatory mediators and the 

activation of alpha-smooth muscle actin (α-SMA)-positive myofibroblasts [6][8]. Of these fibrotic 

changes, tubulointerstitial fibrosis is the key underlying pathology and represents the final common 

pathway for End-Stage Renal Disease (ESRD). Understanding those mediating signals which regulate 

deposition of fibrotic material in the interstitium is critical to future identification and development of 

site specific therapeutics which may alleviate this damage.  Central to TIF is tubular epithelial-to-

mesenchymal transition (EMT), or the transdifferentiation of tubular epithelial cells into 

myofibroblasts [9-10]. In DN, EMT occurs as cells attempt to evade apoptosis as a consequence of 

exposure to pathophysiological stimuli [11-12]. Cells undergo transition in a process that involves the 

generation of active myofibroblasts, excessive deposition of ECM and destruction of normal tissue 

architecture [13-14]. The ability to switch phenotype stems from a unique plasticity of epithelial cells 

that has, up until recently, been universally accepted as the sole driving force behind the generation of 

interstital fibroblasts in kidney disease. EMT of proximal tubule cells (PTC) has been clearly 
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documented in DN, with overwhelming evidence implicating the cytokine Transforming Growth 

Factor-beta 1 (TGF-β1) as the key mediator [15-16]. Our knowledge of the pathology of TGF-β1 in 

the kidney is extensive however, the majority of this research is dedicated to exploring the 

consequences of TGF-β1 signalling in glomerular cells, mesangial cells or podocytes. The aim of the 

current review is to discuss a role for TGF-β1 in DN, specifically in the proximal tubule and the 

collecting duct, where potential therapeutic strategies to inhibit renal fibrogenesis in diabetes may be 

unearthed.  

 

TGF-β1 as a molecular mediator of renal fibrosis in Diabetic Nephropathy:  

Deposition of ECM is required for normal wound healing in response to renal injury, but the 

excessive deposition of matrix is the pathological hallmark of renal fibrosis and occurs when cells of 

the nephron over compensate in an attempt to maintain both cell integrity and function. A tight 

balance between synthesis and breakdown of matrix proteins is therefore required to maintain normal 

function. One way to control this balance is via the release of mediators from inflammatory or 

connective tissue cells which act to regulate collagen and matrix metalloproteinase (MMP) 

production. Loss of this regulation can ultimately tip the balance from repair to injury culminating in a 

build up of fibrotic material and scar formation. 

Diagnosed by glomerulosclerosis, tubulointerstitial fibrosis, inflammatory filtration, and loss of renal 

architecture [17], renal fibrosis develops in response to an accumulation of ECM. In DN, progressive 

tubulointerstitial fibrosis represents the final common pathway of chronic renal failure and is a 

consequence of increased production and altered degradation of ECM components.  In diabetes, 

hyperglycaemia is the driving force behind the majority of these pathways and the inevitable build up 

of fibrotic material [16][18]. A decline in the number of nephrons parallels increased fibrosis as 

interstitial scarring replaces the spaces left by nephrons lost in this pathological process; the net result 

is impaired renal function. 
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Although more than a dozen fibrogenic factors affect renal function, it is widely recognised that the 

pro-sclerotic cytokine TGF-β1 and its downstream Smad signalling cascade, represents the 

predominant pathway orchestrating renal fibrosis [19][20]. Abnormalities in TGF-β1 have been linked 

to a variety of disorders, including autoimmune diseases, malignancies, and chronic renal disease 

[21]. Indeed, the up-regulation of TGF-β appears prevalent in all forms of chronic kidney disease 

(CKD) in both animal models and humans. Increased expression of TGF-β receptors have been 

described in experimental models of renal disease including; membranous nephropathy, obstructive 

nephropathy, and DN [21], whilst animal models of spontaneous diabetes (BB rat and NOD mouse) 

demonstrate increased TGF-β1 mRNA expression within 3-7 days of the onset of hyperglycaemia 

[22]. In the streptozotocin (STZ)-induced diabetic rat, mRNA expression for both TGF-β1 and the 

type II TGF-β receptor are increased within 3days following exposure to hyperglycamia [22]. Initiated 

in response to the actions of numerous circulating signalling molecules, hyperglycaemia drives the 

production of various downstream mediators of TGF-β. These downstream effector molecules include 

Advanced Glycation End products (AGEs), protein kinase C (PKC) and diacylglyerol (DAG). 

Together they instigate excess deposition of ECM [16][18][23]. Glucose-induced TGF-β1 mediated 

increases in ECM have been reported in cultured mesangial cells [24], podocytes [25] and tubular 

epithelial cells [26], the cumulative effect of which is destruction of the renal parenchyma. A recent 

study by Reiniger et al (2010) demonstrated that removal of the AGE receptor in the diabetic OVE26 

mouse, attenuated the degree of glomerulosclerosis with a concomitant improvement in renal function 

[27], whilst over-expression of PKC, has been shown to exert fibrotic effects in human proximal 

tubular cells [28]. Patient studies also implicate TGF-β1 with fibrosis in DN and individuals with both 

type I and type II diabetes mellitus exhibit enhanced production of TGF-β1 in their kidneys, 

expression of which closely correlates to the degree of glycaemic control [29-30]. 
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The role of TGF-β1 signalling in renal fibrosis: 

The TGF-β superfamily is comprised of secreted peptides subdivided into four main subgroups: the 

mullerian inhibitory substance (MIS) family, the inhibin/activin family, the bone morphogenetic 

protein (BMP) family and the TGF-β family [31]. Of these secreted peptides, all but the MIS family; 

are commonly associated with mammalian development, homeostasis and pathobiology. A broad 

spectrum cytokine, TGF-β regulates many fundamental biological processes including cell growth, 

differentiation, adhesion, proliferation tissue repair and apoptosis [32-33]. Of the five distinct 

isoforms which have been identified in vertebrates, only three have been shown to be expressed in 

mammals [34]. These isoforms exhibit ubiquitous levels of expression and act to evoke a response via 

the initiation of several intracellular signalling cascades, including the small mothers against 

decapentaplegic (SMADs) and mitogen activated protein kinases (MAPK), such as extracellular 

regulated kinase (ERK), p38 and Jun Kinase [35]. More recently, a study performed by Nyhan and 

colleagues demonstrated a role for a separate signalling cascade. Using proximal tubule cell line 

models, HK2 and RPTEC cells, they demonstrated that the Jagged/Notch signalling pathway is 

activated in response to TGF-β1. Furthermore, the cytokine-evoked changes in Jagged 1 expression 

preceeded EMT associated gene changes in both E-cadherin and vimentin, effects which appeared to 

be dependent on Smad3 activity [36]. Therefore, TGF-β1 can modulate transcription of multiple target 

genes through the activation of at least one, or a cross talk of multiple signaling pathways.  

 The TGF-β1 gene encodes a 390 amino acid precursor molecule that is composed of a signal 

peptide, the active TGF-β1 molecule and a latency associated peptide (LAP). Only when the signal 

peptide is proteolytically cleaved from the TGF-β1 gene product is an inactive latent TGF-β1, 

covalently bound with the LAP, released [37]. Dissociation of the covalent bond depends on 

environmental changes in pH, but ultimately TGF-β1 is released from the latent complex, enabling 

mature, active TGF-β1 to bind to its cell surface receptors [38]. The TGF-β receptor is a heteromeric 

trans-membrane complex consisting of both the TGF-β receptor II (TβRII) and TGF-β receptor type I 

(TβRI), the latter includes activin-like kinase (ALK) receptors. Unlike many membrane bound 

complexes which possess tyrosine kinase activity, the TGF-β receptors possess serine/threonine 
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kinase activity. Binding of TGF-β1 to the TBRII receptor is accompanied by phosphorylation and 

subsequent activation of the type I receptor within its cytoplasmic domain.  This association results in 

the downstream phosphorylation and activation of its classic signaling mediators, Smad2 and Smad3 

[39-40]. Smads are subdivided into three classes; Receptor regulated (R) Smads (Smad1, 2, 3, 5 and 

8), the Common (Co) Smads (Smad4) and the Inhibitory (I) Smads (Smad6 and 7) [39]. Following 

TβRII activation, R-Smads form oligomeric complexes with the common Smad (Co-Smad) prior to 

translocation into the nucleus and regulation of gene transcription (see figure 1) [39].  

 TGF-β/Smad signaling is stringently controlled within the cell and is regulated at both 

prereceptor and postreceptor stages through multiple levels of modulation. However, in many cell 

lines, TGF-β1 has the ability to regulate its own transcription through binding of an AP-1 

transcription factor complex to the TGF-β1 promoter [41-42] or through the involvement of a Smad3-

dependent signalling pathway [43]. Autoinduction of TGF-β1 is a well recognized phenomenon which 

has been described in a variety of cell types [42]. However, the significance of this may be tissue-

specific. The effect of auto-induction, whether beneficial or detrimental to the cell, depends on a 

scenario in which expression is upregulated. For example, TGF-β1 mRNA auto-induction is thought 

to have a beneficial role in cardiac wound healing after ischemic injury [44] , whilst auto-induction of 

TGF-β1 at the site of injury in the proximal tubule may result in a positive feedback, where sustained 

cytokine production may accelerate EMT and increase the generation of myofibroblasts thus 

promoting and exacerbating fibrosis. A correlation between Smads and AP-1 has also been suggested 

following elegant studies performed in a mouse model of unilateral ureteric obstruction and in 

fibroblasts obtained from Smad2 and Smad3 knockout animals [45-46]. These studies confirmed not 

only a correlation between Smad signalling and TGF-β1 auto-induction, but further demonstrated that 

the relationship depended on the presence and activation of Smad3. These observations agree with 

previous studies and support a role for Smad signalling in the development of renal fibrosis [47].  

 The majority of TGF- s regulated in EMT rely on Smad3-dependent 

transcriptional regulation [45]. Recent studies in renal proximal tubule cells demonstrated angiotensin 

II-induced tubular EMT was Smad3-dependent [48], whilst (β)1-integrin gene expression, a potential 
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therapeutic target of renal fibrosis is also up-regulated in both unilateral obstruction and in chronic 

tubulointerstitial fibrosis via a Smad3-dependent mechanism [49]. Despite the predominant 

involvement of Smad3, a role Smad2 should not be discounted [50]. Differential roles for both Smad2 

and Smad3 have been identified [51]. Smad3-dependent reduction of the cell adhesion protein E-

cadherin in human proximal tubular cells (hPTC) is paralleled by a Smad2-dependent induction of 

metallomatrix proteinase 2 [52]. Microarray analysis of TGF-β1-induced EMT in mouse and human 

epithelial cells demonstrates a critical requirement for Smad signalling in the regulation of all tested 

target genes [52] and an acute need for stringent control of Smad signalling in order to protect the 

cells from unwanted responses to TGF-β. Indeed, a safeguard mechanism exists in the form of 

inhibitory Smads and transcriptional co-repressors [53]. However, the level of hyperactive Smad 

signalling observed in certain types of renal disease reflects abberant levels of both Smad co-

repressors and their subsequent regulators [54-55]. The inhibitory Smads (Smad6 and Smad7) inhibit 

R-Smad phosphorylation by blocking their access to TβRI, &/or by promoting the degradation of the 

receptor complexes. Smad7 represents a general antagonist of both TGF-β1 and BMP signalling, with 

reports showing that induction of Smad7 blocks tubular EMT and the development of fibrotic lesions 

[56-57]. Smad6 appears to play a more specific role in the Bone Morphogenic Pathway (BMP) [58-

60]. 

 The co-repressors SnoN (Ski-related novel gene, non Alu-containing), Ski (Sloan-Kettering 

Institute proto-oncogene), and TGIF (TG-interacting factor) prevent gene transcription through 

inhibition of R-Smads [61]. Since these antagonists are critical in ensuring the regulation of Smad-

mediated gene transcription, a fine balance must be achieved in order to match cellular demands. It is 

of no surprise that diminished levels of co-repressors are observed in animal models of obstructive 

nephropathy and diabetes [67]. Smad ubiquitination regulatory factor-2 (Smurf2) is an ubiquitin ligase 

that specifically targets certain members of Smad proteins for degradation, including Ski, SnoN and 

TGIF [63]. The close association between Smurf2 expression and enhanced SnoN degradation [62] 

suggests that the dysregulation of Smurf2 is most likely to affect profibrotic TGF-β/Smad signalling 

and may contribute to the development and progression of renal fibrotic diseases in humans [63]. A 
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role for Smurf2 in the degradation of inhibitory Smad7, an event paralleled by increased tubular EMT 

has recently been reported [48]. 

 

EMT in the kidney 

Renal tubules are developmentally derived from the metanephric mesenchyme through a process 

termed mesenchymal-to-epithelial transdifferentiation (MET). This cellular differentiation is fluid and 

cells retain the ability to revert back to their original mesenchymal phenotype through EMT. 

Commonly associated with epithelia of embryonic origin, this plasticity is critical in early stages of 

development and is commonly referred to as type I EMT [64]. There are two further subtypes of 

EMT, type II and type III, the latter of which occurs in epithelial cancer cells that differ genetically 

and epigenetically from untransformed epithelial cells. In adults, EMT is associated with tissue injury 

and repair; a process instigated as the demand for fibroblasts and wound healing increases [68]. Type 

2 EMT is now used to categorise events that occur in epithelial cells following injury. As cells 

undergo Type 2 EMT they provide the interstitium with a new supply of fibroblasts. Furthermore, in 

an attempt to restore a healthy population of cells lining the tubular basement membrane (TBM)  

some epithelial cells are able to employ EMT as a means to migrate into damaged areas of the 

nephron prior to reconversion into an epithelial phenotype [64]. 

 In EMT, the loss of epithelial characteristics coincide with the acquisition of proteins 

associated with a mesenchymal phenoptye (See figure 2) These morphological and phenotypic 

changes occur at four different stages: (i) the loss of epithelial cell adhesion molecules such as 

Epithelial (E)-cadherin and zonula occludens protein ZO-1 are replaced by the (ii) mesenchymal 

markers α-SMA and the intermediate filament protein vimentin. The loss of cell adhesion is 

accompanied by (iii) cytoskeletal remodelling and morphological changes resulting in tubular 

basement membrane disruption. (iv). As myofibroblasts exhibit enhanced motility and increased 

proliferative and contractile capacity, these cells possess the ability to migrate from TBM into the 

interstium. This migratory capacity leads to increased deposition of the ECM and makes EMT pivotal 
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in the pathology of tubulointerstitial fibrosis. Normally, tubular epithelial cells form a highly coupled 

epithelial sheet held together by the adhesion molecule E-cadherin. Loss of E-cadherin expression 

occurs in the early stages of EMT and results in the dissociation of cells within the epithelial sheet 

[66]. Whether the loss of
 
E-cadherin is a consequence or a cause of EMT remains unknown. However, 

TGF-β1 is unable to initiate EMT without
 
disrupting the integrity of cell-to-cell contact, indicating 

involvement
 
of E-cadherin in this TGF-β1-mediated process [67]. The loss of cell adhesion represents 

the beginning of a series of events culminating in transition from an epithelial-to-mesenchymal 

phenotype. Changes in E-cadherin are rapidly accompanied by an up-regulation of mesenchymal 

markers. Re-organisation of the actin cytoskeleton into stress fibres containing de novo expression of 

α-SMA is accompanied by an exchange of cytokeratin for vimentin filaments and the expression of 

fibroblast-specific-protein-1 (FSP1), a Ca
2+

-binding protein involved in motility, invasion, and tubulin 

polymerization. These morphological and phenotypic changes support matrix remodelling and 

migration across the TBM into the interstitial environment [68].  

 The migratory phenotype, used to define EMT remains controversial, especially in the context 

of fibrosis [69]. Loss of an epithelial phenotype can be clearly identified by a loss in the expression of 

specific epithelial proteins, in particular E-cadherin. Acquisition of a mesenchymal phenotype is more 

difficult to assign [70] and may explain why EMT is often over-looked in studies of renal disease. 

Classic markers used to de -SMA [71]. Whilst vimentin is not 

specific for fibroblastoid cells [72], staining of both vimentin and tubular β-catenin is currently being 

used clinically to assess early renal injury (clinical trial NCT#01079143) [73]. Although α-SMA 

represents the most commonly used marker in EMT, heterogeneity of expression means that this 

protein is not a definitive marker [74], and clarification of EMT in fibrosis should be regarded with 

caution, since confirmation of this phenotypic transformation appears to depend upon a complex 

interplay of events. The concept that cells of an epithelial origin are able to undergo a phenotypic 

transformation in response to pathophysiological stimuli and ultimately traverse the TBM has, up 

until recently, been universally accepted. However, there is now clinical evidence from biopsies of 

renal allografts suggesting that the changes in epithelial phenotype precede fibrosis [75]. 
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Consequently, the contribution of EMT to renal fibrosis in vivo and, more importantly, the exact 

origin of the myofibroblasts [76-77] has become an area of intense debate [78]. 

Type 2 EMT is commonly defined as the ability of adult epithelial cells to undergo dedifferentiation, 

traverse the TBM into the interstitium and transdifferentiate into a myofibroblast phenotype capable 

of synthesising and increasing the deposition of ECM. Ultimately the epithelium is replaced by 

mesenchymal cells and fibrous scar tissue. Whilst these activated myofibroblasts are commonly 

thought of as key effector cells in the pathogenesis of renal fibrosis, it is becoming increasingly clear 

that they originate from multiple lineages. This has subsequently led many to cast doubt over the 

contribution of EMT to renal fibrosis in vivo and more importantly, question the exact cell type 

involved [76-77]. An accumulating body of evidence suggests that cells contributing to this pool, may 

include local interstitial fibroblasts [79], pericytes [80][81] local mesenchymal stem cells [82] or the 

injured epithelium itself [10]. As a result of these studies, there is now considerable debate both for 

and against a role of EMT in renal fibrosis. These arguments are eloquently summarised in a recent 

article published in JASN where eminent leaders in the field (Michael Zeisberg and Jeremy Duffied) 

debate the case for EMT in fibrosis [83]. 

Until recently, support for the role of EMT in fibrosis was based upon the following observations: (1) 

Tubular epithelial cells transform into activated myofibroblasts in response to pathophysiological 

stimuli, e.g. TGF- 1, Connective Tissue Growth Factor (CTGF) and AGE products (2) Characteristic 

features of this phenotypic transition include the loss in expression of epithelial markers including E-

cadherin, Zo-1 and cytokeratin, with subsequent acquisition of mesenchymal markers, e.g. -SMA 

and FSP1. (3) The use of lineage tracking to confirm the epithelial origin of cells within a 

myofibroblast pool in various models of fibrosis [10] [84-88]. (4) Amelioration of fibrosis using 

therapies designed to target EMT [87]. Of these different types of studies, the most persuasive is 

genetic fate mapping, which allows for cells of the epithelium to be genetically tagged and mapped 

throughout a disease process. Pioneering work by Iwano et al employed fate mapping to establish a 

role for EMT in unilateral ureteral obstruction (UUO) [10]. However, there has been a dearth of 

follow up work of this type and the established mainstay criteria supporting a role for EMT in fibrosis 
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is usually based around determining morphological changes and establishing whether there are 

alterations in the expression of key epithelial/mesenchymal markers. Surprisingly, these studies fail to 

demonstrate complete EMT in which fibroblasts fully migrate and traverse the TBM. More commonly 

observed is the phenomenon known as partial EMT (p-EMT) in which cells express both epithelial 

and mesenchymal markers. This intermediate phenotype is of relevance because the acquisition of 

mesenchymal markers and expression of ECM proteins that occur early in EMT may be transient, 

occurring in cells exposed to the diabetic milieu and contributing to fibrosis [71][88]. The argument 

against the full phenotypic transformation has been fuelled by data from the Duffield group who 

suggest that not only is EMT unlikely to occur in vivo, but that vascular pericytes are the source of 

fibrosis generating myofibroblasts. Furthermore, they suggest that epithelial cells contribute to 

fibrosis through paracrine cell signalling [81][89].  

 

TGF-β1, EMT and fibrosis in diabetic nephropathy:  

 The original link between fibrosis and EMT was suggested 15years ago in a model of mouse 

anti-tubular membrane disease where it was observed that renal tubular epithelial cells were capable 

of expressing the FSP1 [87]. A role for EMT in the progression of CKD was later confirmed in a 

model of UUO using genetically tagged (Lac Z) proximal tubule cells. The authors demonstrated that 

of those matrix producing cells resident within the tubulointerstitial space, 36% were of epithelial 

origin and thus derived from renal tubular epithelium through EMT [10]. The underlying pathology of 

EMT has since been observed in renal biopsies from diseased kidney where the proportion of cells 

undergoing transition correlated to both the level of serum creatinine and the degree of interstitial 

fibrosis [88]. Evidence for EMT in vivo has since been described in various forms of of CKD, 

including diabetic nephropathy [89][90]. In diabetes, glomerular fibrosis is observed in the 

progression from incipient to overt nephropathy [6]. Whilst tubulointerstitial fibrosis can also present 

itself in these early stages, a build up of fibrotic material in the tubular interstitium tends to 

accompany disease progression, correlating with a gradual decline in renal function [6]. 
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Consequently, progressive tubulointerstitial fibrosis, in part mediated by EMT, represents the final 

common pathway leading to renal failure in diabetic nephropathy [7].  

 In models of renal disease, EMT occurs in response to hypoxia, reactive oxygen species, AGE 

and numerous pro-fibrotic cytokines, growth factors and metalloproteinases. Of these TGF-β1 

represents the principle candidate in the development and progression of fibrotic complications. A 

role for TGF- 1 induced EMT in the pathology of tubulointerstitial fibrosis in DN has been reported 

and histological examination of kidneys from diabetic animals and biopsies from patients with DN 

where phenotypic changes associated with EMT have been observed [89][91]. In a study by Burns et 

al, EMT was studied in a rat tubular epithelial cell line (NRK-529) and the STZ-induced Sprague 

Dawley rat [89]. Following incubation with TGF- 1, EMT in NRK-529 cells was confirmed by the 

altered expression of -SMA, Vimentin and E-cadherin, whilst Sprague Dawley rats exhibited 

increased renal gene expression of TGF- 1 at 32 weeks and enhanced -SMA and collagen with a 

concomitant decrease in E-cadherin expression compared to control [89]. Similar markers of EMT 

have also been observed in a variety of animal models, including STZ-treated Wistar Kyoto rats, 

Sprague Dawley rats and the STZ-Ren-2 rat [89-90][92]. 

 The existence of FSP1 in podocytes from patients with diabetes is most likely associated with 

induction of podocyte detatchment through EMT [91]. Depletion of glomerular podocytes is an 

important feature of progressive diabetic nephropathy. Although the most plausible explanation for 

this podocyte depletion is detachment from the glomerular basement membrane after cellular 

apoptosis, the mechanism is unclear. FSP1 is constitutively expressed in the cytoplasm of tissue 

fibroblasts or epithelial cells converted into fibroblasts by EMT. In a study performed by Yamaguchi 

et al, of 109 patients presenting with both Type 2 diabetes and diabetic nephropathy 35% were 

normoalbuminuric, 15% had microalbuminuria, 7% had macroalbuminuria and 43% had decreased 

kidney function. In biopsies from 43 of these patients it appeared that the number of FSP1 positive 

podocytes was significantly higher in individuals with macroalbuminuria as opposed to those 

presenting with normoalbuminuria (p=0.03). Furthermore, the number of FSP1 positive podocytes 

was larger in those glomeruli exhibiting diffuse mesangiopathy than in those with focal 
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mesangiopathy. FSP1-positive podocytes selectively expressed Snail and integrin-linked kinase, a 

known trigger for EMT. 

 Recently, a role for microRNAs in regulation of EMT in the diabetic kidney has been 

established. MicroRNAs (miRNAs) are endogenous non-coding RNA molecules, which function as 

negative regulators of gene expression [93]. miRNA 192 is expressed in both glomerular and tubular 

human kidney sections. Interest in this exciting area of research stems from the fact that miRNA 192 

is down-regulated in DN in response to TGF- , an event that correlates to increased fibrosis [94]. The 

link between a loss in miRNA 192 and the development of fibrosis in DN is thought to be a 

consequence of a loss of regulation of those genes involved in EMT, a concept recently supported by 

Wang et al [95]. Using rat proximal tubule cells, they demonstrated that both TGF- 1 and TGF- 2 

were able to induce EMT and fibrogenesis as a consequence of a loss in mir-200a expression. This 

loss in expression was shown to augment EMT induced fibrosis through alleviating mi2-200a 

inhibition of Smad 3 activity [95]. 

 

The collecting duct in diabetic nephropathy: a role for TGF-β1? 

 Until recently, EMT in the kidney was associated with more proximal regions of the nephron. 

However, pioneering studies by Butt et al utilizing a fetal primate model of obstructive nephropathy 

confirmed the capacity of those cells within the colletcing duct to undergo EMT [96]. Furthermore, 

both insulin growth factor 1 (IGF1) and TGF-β1 have been shown to induce classic EMT-like changes 

in mouse inner medullary collecting duct cells [97], despite initial studies suggesting that these cells 

could not undergo phenotypic conversion in response to TGF-β1 [98]. How TGF-β1 induced EMT 

contributes to fibrosis in the distal nephron is unclear. In 2009 Aldehni F et al. demonstrated that 

TGF-β1 induced EMT in the mouse renal collecting duct increased Bestrophin 1 (Best1), a protein 

known to regulate the concentration of  intracellular Ca
2+

 and increase cellular proliferation [99]. 

Suppression of Best1 by RNAi inhibited proliferation and down-regulated markers of EMT, 

suggesting that Best1 may function as a downstream mediator of TGF-β1 induced EMT and renal 



 15 

fibrosis in the collecting duct. Deletion of the TβRII in cultured collecting duct cells evoked an 

increase in TGF-β activation with a subsequent exacerbation in renal fibrosis [100]. 

 TGF-β1 also promotes increased expression of the serum and glucocorticoid inducible kinase-

1 (SGK1), a serine/threonine kinase that regulates sodium re-absorption through control of the 

epithelial sodium channel (ENaC) [101-103]. SGK1 is elevated in models of diabetes [104], 

suggesting that it may contribute to the development of secondary hypertension. Interestingly SGK1 

is expressed in numerous tissues that exhibit fibrosis including cases of Crohn's disease, lung fibrosis, 

liver cirrhosis, fibrosing pancreatitis, DN and glomerulonephritis [105]. These studies suggest that 

SGK1 may also have a role in mediating the fibrotic effects of TGF-β1 in the collecting duct.  

 

THERAPEUTIC INTERVENTION 

 The pro-fibrotic actions of TGF-β -protective 

agents. Although TGF-β1 is regarded as the major isoform involved in fibrosis, improved renal 

function coincides with reduced expression of both TGF-β1 and TGF-β2 [106]. In the STZ-rat, renal 

expression of TGF-β2 is markedly increased and parallels ECM deposition in early stages of the 

disease [107]. By contrast, TGF-β1 protein levels remain unchanged during this initial period despite 

increased mRNA levels [107] Consequently, recent studies have focused on the antifibrotic potential 

of selectively targeting TGF-β2 for the prevention of progressive renal disease [108]. However, in 

diabetes, the pro-fibrotic role for all 3 isoforms [109] supports efforts to neutralize TGF-β1, TGF-β2 

or TGF-β3, to reduce renal scarring and improve overall kidney function [110]. Inhibition of TGF-β 

in this way also prevents glomerular enlargement and suppresses the expression of genes encoding for 

the ECM in models of chemically induced diabetes [110]. These findings were corroborated in db/db 

mice, where both TβRI and TβRII receptor mRNA expression were increased [111]. Chronic 

treatment of these animals with TGF-β-neutralizing antibodies markedly diminished the expression of 

collagen and fibronectin and reduced mesangial matrix expansion. Several anti-fibrotic and reno-
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protective agents have also been shown to partially alleviate TGF-β induced fibrosis including, Bone 

Morphogenic Protein-7 (BMP-7) and Hepatocyte Growth Factor (HGF). 

 An osteogenic factor, BMP-7 plays an important role in kidney development and regulation 

of nephrogenesis. Renal fibrosis in diabetes is inhibited by BMP-7. Following EMT, increased levels 

of TGF-β are paralleled by a reduction in expression of BMP-7, as a potential consequence of 

increased gremlin levels [112]. Gremlin limits BMP-7 availability and is markedly elevated in 

humans with DN [60]. This reciprocal relationship accounts for low BMP-7 concentrations in models 

of acute and chronic renal injury [113], and explains how exogenous BMP-7 restores renal function 

through blockade of EMT [114] Aside from the glomerular reno-protective effects observed in both 

STZ-rats and db/db mice, BMP-7 is capable of intercepting at the level of TGF-β signalling. In the 

adult, BMP-7 alleviates TGF-β-induced renal fibrosis [115] and antagonises TGF-β-induced Smad3-

dependent EMT [116]. However, the mechanism remains elusive since BMP-7 is unable to negate 

TGF-β-induced EMT in human PTC, suggesting that the effects are region specific [117]. The extent 

by which BMP-7 blocks EMT therefore requires further clarification. 

 A key anti-fibrotic cytokine, HGF prevents renal tissue fibrosis after chronic injury [118]. 

Administration of HGF reduces loss of kidney function, whilst blockade of HGF signalling further 

exacerbates the extent and progression of renal fibrosis [119]. As with BMP-7, HGF and TGF-β have 

a reciprocal relationship. HGF inhibits TGF-β-induced EMT, and ameliorates renal fibrotic lesions in 

numerous models of renal disease [119-120]. The underlying molecular mechanisms mediating these 

reno-protective effects are unknown. The anti-fibrotic activity of HGF appears to stem from up-

regulation of the transcriptional co-repressor SnoN. Binding of this co-repressor to Smad2 results in 

formation of a transcriptionally inactive complex, preventing the activation of Smad-mediated genes 

thereby blocking TGF-β-induced EMT [121]. Administration of HGF has been shown to alleviate 

renal complications in DN, including the reversal of glomerulosclerosis [122], a reduction in 

albuminuria [123] and blockade of fibrosis with a concomitant improvement in renal function [124]. 

However, a number of studies contradict these findings, suggesting that chronically elevated HGF 

promotes the progression of nephropathy in db/db mice [125]. Furthermore, potential proto-oncogenic 
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actions of HGF raises questions as to the potential therapeutic use of this growth factor in alleviating 

EMT induced complications in DN. Further studies are essential if HGF is to be considered as a future 

therapeutic means of intervening in fibrosis in DN. 

 Recent candidates identified upstream of HGF include, 9-cis retinoic acid, 1,25-

dihyrdoxyvitamin D3, the PPAR  agonist troglitazone and C-peptide [120-124][126]. A cleavage 

product of pro-insulin, C-peptide exerts a number of protective affects against the micro-vascular and 

macro-vascular complications associated with hyperglycaemia in type I diabetes [127] and in those 

patients with DN, C-peptide is reno-protective [128]. Recently, the Connecting-peptide has been 

shown to negate TGF-β induced EMT in cells of the proximal tubule [126] and as an adjunct to 

insulin therapy, C-peptide could be used to alleviate some renal complications of diabetes. However, 

like BMP-7 and HGF these findings are preliminary and whilst encouraging, need to be fully 

corroborated in the clinical scenario. 

 Studies of miRNA expression in diabetic nephropathy have predominantly been performed in 

animal models of diabetes and suggest that miRNAs may represent potential future therapeutic targets 

of renal fibrosis. Their role within the kidney appears to be region specific, e.g. miR-192 has been 

shown to exhibit elevated levels of expression in glomeruli isolated from the STZ mouse [129]. In this 

study, the function of miR-192 was shown to be of regulating repression of TGF-β1-induced changes 

in extracellular matrix proteins. Contrary to this, in proximal tubule cells reduced levels of mir-192 

have been described [93]. The loss of miR-192 has been shown to correlate with the degree of 

tubulointerstitial fibrosis in diabetic nephropathy. In Madin Darby canine kidney epithelial cells 

undergoing TGF-β1-induced EMT, a decrease in mir-200 and mir-205 suggests a link between 

miRNAs and the regulation of EMT [130]. Although these early studies suggest that miRNAs may 

represent reliable future biomarkers, the area of research demands considerable further attention,  
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Conclusion:  

 Although rigorous glycaemic control may reduce the burden of diabetes-associated morbidity, 

the Diabetes Control and Complications Trial (DCCT) showed that even with intensive insulin 

treatment, a substantial proportion of patients still develop complications. According to the 2007 

Renal Registry Report, diabetic nephropathy (DN) accounts for a significant proportion of the 40,000 

patients that require dialysis or transplantation in the UK each year and Worldwide, DN is the single 

commonest cause of entry into the renal replacement therapy programme. The increasing prevalence 

of diabetic nephropathy further highlights the urgency for discovery of  successful therapeutic agents 

aimed at alleviating renal fibrosis. TGF-β-induced EMT is a key contributor to fibrotic scar formation 

as seen in DN; therefore manipulating downstream TGF-β signalling represents a viable therapeutic 

target in an attempt to restore renal function. Administration of the anti-fibrotic growth factors HGF 

or BMP-7 can reverse the fibrogenic response and evidence supports the development of these types 

of reno-protective agents to alleviate complications of CKD, including DN. However, before a future 

treatment can ultimately arrest/reverse chronic kidney disease, further studies are required to fully 

understand how TGF-β1 exerts its plethoric effects. 
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FIGURE LEGENDS: 

Figure 1: Schematic depicting TGF-β1 signaling 

TGF-  binds to its type II serine/threonine kinase receptor and instigates autophophorylation 

permitting the recruitment of the type I receptor.  This interaction forms an activated heteromeric 

complex and facilitates phosphorylation of the receptor-regulated Smad2/3, promoting interaction 

with common Smad4. The active Smad2/3/4 complex translocates to the nucleus where it regulates 

the transcription of TGF- 1 target genes. TGF-β1 signaling is stringently regulated, and depends on 

both inhibitory Smads6/7 and transcriptional co-repressors that include SnoN, Ski, TGIF that help 

modify net cellular effects. 

 

Figure 2: Type 2-EMT in the kidney 

Loss in cell adhesion through the down-regulation of key epithelial markers, including E-cadherin 

(ECAD) and Zona-occludins (Zo-1), represents an initial step in type 2-EMT. Disassembly of the 

adherens junction complex is accompanied by a number of morphological and phenotypic changes. 

These gross changes are accompanied by alteration in the expression profile of key EMT proteins that 

include: up-regulation of vimentin, α-smooth muscle actin and fibroblast specific protein (FSP-1). 

Ultimately, cells detach from the tubular basement membrane (BM) and migrate into the interstitium 

where they exacerbate renal fibrosis. 
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