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Summary

In the chemical industry, the control of pH is a well-known problem that presents

difficulties due to the large variations in its process dynamics and the static nonlinearity

between pH and concentration. pH control requires the application of advanced control

techniques such as linear or nonlinear adaptive control methods. Unfortunately, adaptive

controllers rely on a mathematical model of the process being controlled, the parameters

being determined or modified in real time. Because of its characteristics, the pH control

process is extremeIy difficult to model accurately.

Fuzzy logic, which is derived from Zadeh's theory of fuzzy sets and algorithms,

provides an effective means of capturing the approximate, inexact nature of the physical

world. It can be used to convert a linguistic control strategy based on expert knowledge,

into an automatic control strategy to control a system in the absence of an exact

mathematical model. The work described in this thesis sets out to investigate the

suitability of fuzzy techniques for the control of pH within a continuous flow titration

process.

Initially, a simple fuzzy development system was designed and used to produce an

experimental fuzzy control program. A detailed study was then performed on the

relationship between fuzzy decision table scaling factors and the control constants of a

digital PI controller. Equation derived from this study were then confmned

experimentally using an analogue simulation of a first order plant. As a result of this

work a novel method of tuning a fuzzy controller by adjusting its scaling factors, was

derived. This technique was then used for the remainder of the work described in this

thesis.

The findings of the simulation studies were confirmed by an extensive series of

experiments using a pH process pilot plant. The performance of the tunable fuzzy

controller was compared with that of a conventional PI controller in response to step

change in the set-point, at a number of pH levels. The results showed not only that the

fuzzy controller could be easily adjusted to provided a wide range of



operating characteristics, but also that the fuzzy controller was much better at controlling

the highly non-linear pH process, than a conventional digital PI controller. The fuzzy

controller achieved a shorter settling time, produced less over-shoot, and was less

affected by contamination than the digital PI controller.

One of the most important characteristics of the tunable fuzzy controller is its ability

to implement a wide variety of control mechanisms simply by modifying one or two

control variables. Thus the controller can be made to behave in a manner similar to that

of a conventional PI controller, or with different parameter values, can imitate other

forms of controller. One such mode of operation uses sliding mode control, with the

fuzzy decision table main diagonal being used as the variable structure system (VSS)

switching line. A theoretical explanation of this behavior, and its boundary conditions,

are given within the text.

While the work described within this thesis has concentrated on the use of fuzzy

techniques in the control of continuous flow pH plants, the flexibility of the fuzzy

control strategy described here, make it of interest in other areas. It is likely to be

particularly useful in situations where high degrees of non-linearity make more

conventional control methods ineffective.
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Chapter 1

Introduction

In the chemical industry and in waste water treatment, the control of pH (the

concentration of hydrogen ions) is a well-known problem that presents difficulties due

to large variations in process dynamics and the static nonlinearity between pH and

concentration. Usually it requires the application of advanced control techniques such

as linear adaptive control[1 ,2,3 ,4,5], nonlinear adaptive control[6] or nonlinear control

using a nonlinear transformation method[7]. However, these design methods are often

complicated, as will be seen later in the survey section of this thesis (section 2.4).

1.1. pH Process Model Equations and pH Control Problems

pH is a measure of [H+], which denotes the concentration of hydrogen ions, in a

solution. It is defmed by:

pH = -log [ H+ ] (1-1)

A well established method for modeling the dynamics of pH in a stirred tank is that

developed by McAvoy[8]. This method, for single acid/single base systems, uses

material balances for the anion of the acid and the cation of the base, together with all

-1-



FB CBase

~ - - Controller

Figure 1-1 pH control system.

equilibrium equations and an electroneutrality restraint. For a typical pH control system

as shown in Figure 1-1, there is a strong acid, HA, neutralized by a strong base, BOH,

with the assumptions of constant volume, perfect mixing, and no species other than

water present, the mole balances of the cation of the acid and the anion of the base are:

(1-2)

(1-3)

here, CArepresents acid anion concentration and CBrepresents base cation concentration

in the effluent stream. CAcid is the acid concentration in the acidic stream entering into

this continuous stirred tank reactor (CSTR). CBase is the base concentration in the basic

stream entering CSTR. V is the volume of CSTR. FA and FBare flow rate of acidic and

basic streams. These dynamic equations will be discussed in detail in chapter 6. To

illustrate the difficulty of pH control, let x =CB- CA, the relation between the pH value

and x which will be derived in chapter 6 is shown below
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pH= f(x) x]
2

The graph of the function f is called the titration curve. It is the fundamental

nonlinearity for the neutralization problem. An example of the titration curve is shown

in Fig 1-2. There is considerable variation in the slope of titration curves. In Figure 1-2,

it also shows the titration curve for a weak acid and strong base. It can be seen that in

this case the curve is not symmetrical about pH =7.

0.020.0150.01

c;ase(N)

0.005

-
I~

O.OlNHAc L---J---
~NHCl ~

2

o

4

8

6

10

12

pH

Figure 1-2 typical titration curves. (reproduced from[9])

Since the titration curve varies drastically with pH, if the pH process has been

controlled by a conventional PI controller, the critical gain will vary accordingly. Some

values are listed below for different values of the pH of the mixture[lO].

pH Critical gain

7 0.009

8 0.046

9 0.46

10 4.6

-3-



From these estimated critical gains, it showed that to make sure that the closed loop

system is stable for small perturbations around an equilibrium of pH = 7, the gain

should thus be less than 0.009. A reasonable value of the gain for operation at pH = 8

is k = 0.01, but this gain will give an unstable system at pH = 7 and is too low for a

reasonable response at pH =9. Figure 1-3 shows a PI control with gain 0.01 to control

the pH process at different set-points.

pH

9-r--------:::;:~------------

108642

7-t-------t--+---+---+-----f-----\--------,f---\--/--

8-t---------f--I----I-~\__.::::=:.~-------

Time

Figure 1-3. The pH outputs of a pH control process
which controlled by a PI controller with
set-point equal to (a)7; (b)8; (c)9.

1.2. Reasons for Using Fuzzy Logic in the Control of pH Process

Usually a control theory can be successfully applied only when the system under

control can be sufficiently analyzed and a useful mathematical model has been found.

When the process characteristics are known in advance, and are either constant or

change predictably, a non- adaptive controller can be used to control it. On the other

hand, if the characteristics of the process change with time in an unpredictable manner,

an adaptive controller may be needed to control it. However, an adaptive controller still

relies on a mathematical model of the process under control whose parameters are

determined or modified in real time.
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Difficulties arise in the control of the pH process due to the severe process non­

linearity and frequent load changes. For example, changes in the influent composition

or flow rate. The non-linearity can be understood from the S-shaped titration curve

shown in Figure 1-2. Frequent and rapid load changes are common for most waste water

treatment facilities since the influents come from the waste of a number of sources. It

is therefore very difficult to analyze and derive the system model of a pH control

process. However, experience shows that they are often controlled successfully by

experienced human operator. Therefore, an alternative approach to the control of pH

process is to investigate the control strategies employed by the human operators. A

human operator can control a complex process effectively by simply attributing the

difficulties he experienced to the rate or manner of information displayed or to the depth

to which he may evaluate decisions. The operator's control strategy is based on intuition

and experience, and can be considered as a set of heuristic decision rules. Usually these

rules are expressed linguistically, and are often very difficult to convert into a

quantitative control strategy.

The theory of fuzzy sets and algorithms developed by Zadeh[ll, 12] can be used to

evaluated these imprecise linguistic statements directly. Fuzzy logic provides an effective

means of capturing the approximate, inexact nature of the physical world. Therefore, it

can be used to provide an algorithm which can convert a linguistic control strategy

based on expert knowledge, into an automatic control strategy. The pioneering research

of Mamdani and his colleagues on fuzzy control was started early in 1974 [13,14,15].

They developed a fuzzy controller for a boiler and steam engine. This showed that the

fuzzy control system was less sensitive than conventional control systems to process

parameter changes and that it gave good control at all operating points.

The work described in this thesis set out to investigate the suitability of fuzzy

- 5 -



techniques for the control of pH within a continuous flow titration process.

1.3 Description of the Contents of this Thesis

The second chapter describes the basic concepts of fuzzy sets theory, fuzzy logic and

approximate reasoning and also the design considerations for a fuzzy logic controller

(FLC). Thi s material will become the basis for later chapters. At the end of this

chapter, current uses of fuzzy techniques and other non-linear methods in pH control are

discussed briefly.

FLC industrial application techniques and FLC implementation methods are

mentioned in the third chapter. After studying these implementation methods, a simple

fuzzy developing system was designed and by which an experimental fuzzy control

program was generated.

The fourth chapter gives a detailed study on the relationship between fuzzy decision

table scaling factors and the control constants of a digital PI controller. Equations

derived in this chapter are confirmed by experiments in the next chapter and become the

basic tuning tools for all the fuzzy controllers used in later experiments.

Using an analog simulation of a plant, a fuzzy PI controller was compared with a

conventional digital PI controller and described in beginning of the fifth chapter. It then

describes a detailed study of the effects of the choice of scaling factors on the control

actions of a fuzzy PI controller. It shows that, in some cases, a special sliding motion

phenomenon will happen if the error change range of the decision table is too small.

The boundary conditions of this sliding regime is also discussed. At the end of this

chapter, by using these scaling factors, several other controllers are constructed which

includes an integral controller and variable structure systems (VSS) formed by switching

the scaling factors.

- 6 -



A discussion of the characteristics of the pH process and its experimental models

provide the content of the sixth chapter. This includes the structure of the pH process

model plant, the m del equations and static and dynamic behavior of the process.

Chapter seven contains the results and details of the pH control experiments

performed. It shows that the fuzzy PI controller can make the system settle down easier

and faster than the digital PI controller. The damping effect caused by the decision table

near the set-point is also study in detail. Finally, the fuzzy PI control of pH process

under varying set-points and noise are tested.

The last chapter provides the conclusions drawn from this study and some

suggestions for further research.

- 7 -
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Chapter 2

Theory and Design of a Fuzzy Logic
Controller

After Mamdani's work on using a fuzzy controller to control an industrial process,

reports of the application of fuzzy control techniques were widely spread through a

number of fields, such as water quality control [16], automatic train operation systems

[17], elevator control [18], nuclear reactor control [19], and roll and moment control for

a flexible wing aircraft [20]. The literature on fuzzy control has grown rapidly, and in

1990 Lee[21] produced a comprehensive survey of control applications.

The following sections give a brief description of the basic concepts of fuzzy set

theory and fuzzy logic, and includes elements from Lee's survey. This material will

form a basis for later chapters.

2.1 Basic DefInitions and the Fuzzy Set

A set U, denoted generally by {u}, is normally defined as a collection of elements

or objects that can be discrete or continuous. U is called the universe of discourse and

u are generic elements of U. Each element can either belong to or not belong to, a set

A, A E U. By defining a membership function for a set in which 1 indicates

membership and 0 indicates nonmembership, a classical set can be represented by a set

of ordered pairs (u,O) or (u, 1). For a fuzzy set the membership function is allowed to

-8-



have values between 0 and 1 to represent different degree of membership for the

elements of a given set. Therefore, a fuzzy set F in a universe of discourse U is

characterized by a membership function I-tP, which takes values in the interval [0,1]

namely,

Definition 1: Fuzzy set: A fuzzy set F in a universe of discourse U can be represented

as a set of ordered pairs of a generic element u and its grade of membership function:

F = { (u,l-tp(u» Iu E U }. When U is discrete, a fuzzy set F is described by

n
F = L 11F( Ui) / U i

1=1

where the symbol "/" is a separator and "E" means union. When U is continuous, a

fuzzy set F can be written concisely as

Definition 2: Support and Fuzzy Singleton: The support of a fuzzy set F, S(F), is the

crisp set of all u E U such that I-tp(u) > O. In particular, a fuzzy set whose support is a

single point in U with I-tp = 1.0 is referred to as fuzzy singleton.

A fuzzy set is denoted in terms of its membership function. Therefore, the set

theoretic operations of union, intersection and complement for fuzzy sets will be

defined via their membership functions. Let A and B be two fuzzy sets in U with

membership functions I-tA and JJ-B' respectively. Some basic operations for fuzzy sets are

shown below.

-9-



Definition 3: Intersection: The membership function /lc(u) of the intersection C=AnB

is pointwise defined by

U E U

Definition 4: Union: The membership function /lc(u) of the union C=AUB IS

pointwise defined by

U E U

Definition 5: Complement: The membership function Jlii.. of the complement of a fuzzy

set A is pointwise defined as

P"A ( u) = 1 - PA ( u)

Definition 6: Cartesian Product: If AI' ... ,An are fuzzy sets in UI,'" ,Un' respectively.

Then, the Cartesian product of AI' ... ,An is a fuzzy set in the product space UIX- XUn

with the membership function

PA x··· XA (u1 , u 2 , ' • " un) = min { PA (u1 ) , ' • "PA (Un)}
1 n 1 n

or

P A x . .. xA ( U1' U2,' . . , Un) = PAl ( U1 ) • PA
2

( U2) • . • PA ( Un)
l' , n n

Definition 7: Fuzzy Relation: An n-ary fuzzy relation is a fuzzy set in UIX ··XUnand

is expressed as

-10-



Definition 8: Fuzzy relation: Sup-Star Composition: If Rand S are fuzzy relations in

U X Vand V X W, respectively. Then the composition of Rand S is a fuzzy relation

denoted by R 0 S and is defined by

RoS = {[ (u, w), SUP(11 R ( u, v) * 11 s ( v, w))], UEU, VE V, WEW}
V

Definition 9: Fuzzy number: A fuzzy number F is a fuzzy set in the continuous universe

U which is normal and convex, that is

max 11 F ( u) = 1
UEU

11F(AU1 + (1-A)u2 )

> min ( 11 F( u1 ) ,11F( u2 ) ) ,

(normal)

( convex)
u1 ' u2 E U, A E [ 0 , 1 ]

Definition 10: Linguistic Variables: A linguistic variable is defmed by a quintuple

(x,T(x),U,G,M) in which x is the name of a fuzzy variable; T(x) is the set of names of

linguistic values of x with each value represented by a fuzzy number defined in U; G

is a syntactic rule to generate the names for x; and M is a semantic rule to give the

meaning of the x value. Usually, a linguistic variable can be regarded either as a

variable whose value is a fuzzy number or as a variable whose value are defined in

linguistic terms. For example, if there is a linguistic variable called "speed", then the

term set T(speed) could be defined as

T(speed) = {slow, moderate, fast}

-11-



Each term in T(speed) is characterized by a fuzzy set in the universe of discourse U =

[0,60] as shown in Figure 2-1. where "slow" could be interpreted as "a speed below

about 15 mph", "medium" as "a speed close to 30 mph", and "fast" as "a speed more

than 45 mph", etc.

Slow Medium Fast

o '---- .L..-- ~ ~ _____.J

604515o 30

Speed

Figure 2-1. Diagrammatic representation of fuzzy "speed."

Definition 11: Sup-star Composition Rule of Inference: If R is a fuzzy relation in U XV,

and u is a fuzzy set in U, then this rule asserts that the fuzzy set v in V induced by u

is given by

v =u 0 R

where u 0 R is the sup-star composition of u and R.

This defInition will become Zadeh's composition rule of inference if the star

represents the minimum operator.

2.2 Structure of a Fuzzy Controller

The basic configuration of a Fuzzy logic controller (FLC) has been described by Lee

in the survey paper discussed earlier[21]. He points out that usually there are four

principal components in a FLC as shown in Figure 2-2. These components are a

fuzzification interface, an inference engine (or decision-making logic), a knowledge base

and a defuzzification interface. The functions of these are discussed briefly below
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Fuzzy
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1
Defuzzification

interface

L I

Process output
and state

Controlled

System Actual control
Nonfuzzy

Figure 2-2. Basic configuration of a fuzzy logic controller (FLC).

(1) The fuzzification interface performs the following functions:

(a) it measures the values of the input variables (or the system state variables);

(b) it transfers the range of the values of the input variables into the corresponding

universe of discourse by scale mapping. Usually this is done by normalization.

(c) it converts the input data into proper linguistic values which will be viewed as

labels of fuzzy set.

(2) The knowledge base consists of a database and a linguistic control rule base. Its

main functions are:

(a) to provide the necessary definitions, which are used to define the linguistic

control rules and fuzzy data manipulation information.

(b) to provide the control goals and control policy of the domain experts which

are written using a set of linguistic control rules.

(3) The inference engine is the kernel of the fuzzy logic controller.

It provides decision making using fuzzy concepts and infers fuzzy control action
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by fuzzy implication and the rules of inference of fuzzy logic.

(4) The defuzzification interface performs the following functions:

(a) it converts the range of values of output variables into the corresponding

universe of discourse.

(b) it generates non-fuzzy control actions from the inferred fuzzy control action

outputs.

A fuzzy system is characterized by a set of linguistic statements based on expert

knowledge, which is usually in the form of "if-then" rules of the form:

IF (a set of conditions are satisfied)
THEN (a set of consequences will be inferred).

where both the set of conditions and the set of consequences are fuzzy terms. They are

directly associated with fuzzy concepts and are referred to as "fuzzy conditional

statements". Therefore, a fuzzy control rule is a fuzzy conditional statement in which

the antecedent is a condition in its application domain and the consequent is a control

action for the system under control.

The collection of these fuzzy control rules forms the rule base or the rule set of an

fuzzy logic controller (FLC). For instance, if x, and x2 denote the state variables of the

target plant, and y is the output of the FLC, then the IF (antecedent)-THEN

(consequence) control rule might be expressed as a control algorithms of the form:

if x, is small and x2 is big then y is medium

if x, is big and X2 is medium then y is big
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The antecedent (A and B) is interpreted as a fuzzy set Ax Bin the production space

U xV with membership functions JLAXB(U, v) and will be discussed latter in section

2.3.5(2). Therefore, a fuzzy control rule, such as "if (x is A j and y is Bj) then (z is Cj"

can be implemented by a fuzzy implication (relation) R, as follows:

11 R ~ 11 (A . /\ B .-+C .) ( u, v, w )
i J. J. J.

Where Ai and B, are fuzzy sets, AjXBjin UXV.The fuzzy implication RjA(Aj and B)

~ C, is in U xV xW; "~" denotes a fuzzy implication (relation) function which will

also be discussed later in section 2.3.5(1)

2.3 Design considerations for an FLC

As mentioned earlier, the main function of the FLC is to provide an algorithm which

can convert the linguistic control strategy based on expert knowledge into an automatic

control strategy. Then, the principle design considerations for an FLC may be divided

into five parts:

These are:

(1) fuzzification strategies;

(2) defuzzification strategies;

(3) data base considerations:

(a) discretization/normalization methods for the universes of discourse,

(b) the choice of the membership functions for the primary sets,

(c) the fuzzy partition of the input and output spaces.
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(4) rule base considerations:

(a) the choice of the state and control variables for the fuzzy control rules,

(b) the derivation of fuzzy control rules,

(c) the justification of fuzzy control rules,

(d) the choice of fuzzy control rule types.

(5) decision making logic considerations:

(a) the definition of fuzzy implications,

(b) the interpretation of sentence connectives "and" and "also",

(c) the definition of compositional operators,

(d) the inference mechanisms;

These five parts will be discussed in the following sections.

2.3. 1 Fuzzification strategies

Fuzzification could be defmedas a mappingfrom an observed inputspaceto fuzzy

sets in a certain input universe of discourse. The data manipulation in an FLC is based

on the fuzzy set theory, however, in control applications the observed data are usually

crisp values. Therefore, fuzzification is necessary at an early stage. Fuzzification is

normally achieved in one of two ways. Its results are shown in Figure 2-3(a) and (b).

Both cases show an ordinary fuzzy set B intersecting with a fuzzy set A. A is a fuzzy

set coming from the input signal Xc after fuzzification. In Figure 2-3(a), A is a singleton

but in (b) A is a triangular fuzzy set. The two fuzzification methods are

(1) A crisp value of some input variable can be viewed as a fuzzy singleton within

its universe of discourse. In this case a crisp input Xc will look like a fuzzy set A, with

the membership function IlA(X) that is equal to zero everywhere but at the point Xc,

where IlA(Xc) is equal to one as shown iriFigure2-3(a). The advantages of this approach
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is that no processing is required for fuzzification in this case. This strategy has been

widely used in fuzzy control applications, since it is very easy to implement.

jlA 1----------+---1

B

Xo
(a) Fuzzy singleton A.

JlA

(b) Triangular fuzzy set A
a = standard deviation.
X0 = mean value.

Figure 2-3.methods of fuzzification: The measured data are
(a) converted to a fuzzy singleton. (b) converted to
a triangular fuzzy set.

(2) In many applications the observed data are disturbed by random noise. In this

case, it is more appropriate to choose an isosceles triangle as the fuzzification function.

The vertex of this triangle corresponds to the mean value of a data set, while the base

is twice the standard deviation of the data set. Then, we can use this fuzzy number for

control manipulation. Figure 2-3(b) shows the second method of fuzzification. The fuzzy

set A with its vertex at Xo and having the base width equals to 20- is the resulting

triangular set. The point Xo is the mean value and 0- is the standard deviation of the

measured data set.

2.3.2 Defuzzification strategies

In many practical applications a crisp control action is required to drive the system.

Therefore, defuzzification is needed to produce a non-fuzzy control action which best
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represents the possibility distribution of the inferred fuzzy control action. In other words,

the defuzzification process is a mapping between a space of fuzzy control actions

defined over an output universe of discourse, and a space of non-fuzzy control actions.

There are several kinds of strategies being commonly used. These include the maximum

criteria, the mean of maximum and the center of area methods.

(a) The maximum criteria method

This method produces the point at which the possibility distribution of the control

action reaches a maximum value.

(b) The Mean of Maximum Method (MOM)

The MOM strategy generates a control action which represents the mean value of all

local control actions whose membership functions reach the maximum. In the case of

a discrete universe, the control action will be expressed as

n
Zo = L

j=l

where wj is the support value at which the membership function value p-/wj ) reaches the

maximum, and n is the total number of such support values.

(c) The Center of Area Method

The COA method is the most popular method currently being used by control

engineers. This strategy generates the center of gravity of the possibility distribution of

a control action. The formula is shown below
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In the case of a discrete universe, the method yields

(d) The Center of Sums

This method is the same as the CGA method except that the overlapping areas of the

membership functions must be counted twice during the calculation. The calculation

formula is adjusted as

f z z·fJ.1c( z) dz

fzfJ.1c( z) dz

(e) The Height method

This method is simpler than the CGA approach, since there is no integration during

calculation. The calculation formula is

v:«.».L- .1 .1Zo =

where hi is the strength of the inferred antecedent output of the ith rule, and z, is the

center of the corresponding output fuzzy set of the ith rule.

Braae and Rutherford[22] have performed detailed analysis of various defuzzification

strategies and observed that the CGA strategy yields better results which are similar to
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those obtained with a conventional PI controller. However, the MOM strategy yields a

better transient performance, while the COA method is better in its steady state

performance.

2.3.3 Data Base consideration

The concepts associated with a data base are used to characterize fuzzy control rules

and fuzzy data manipulation in an FLC. Since these concepts are basically defined

according to experience and engineering judgement, a "good" choice of the membership

functions of a fuzzy set will play an essential role in the success of the fuzzy controller

application. In this section some of the important considerations relating to the

construction of the data base will be discussed.

2.3.3. 1Discretization / normalization methods for the universes of discourse

The method used for the representation of linguistically described information using

fuzzy sets usually depends on the nature of the universe of discourse. A universe of

discourse in a FLC may be either discrete or continuous. If it is continuous then some

discretization and normalization process will be needed before the primary fuzzy sets

are applied on it.

(a) Discretization: The process of discretizing a universe of discourse is frequently

referred to as the quantitization process. This process divides a universe of discourse

into a number of segments.

Each segment (or range) is numerically labeled as a generic element and forms a

discrete universe. Then a fuzzy set will be defined by assigning grade of membership

values to each generic element of this discrete universe. Table 2-1 shows an example

of a discretization look-up table, where a universe of discourse is discretized into 9
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Table 2-1

Quantization and Primary Fuzzy sets Using a Numerical Definition

Level No. Range NB NM NS ZE PS PM PB

-4 x <-4 1 0.7 0 0 0 0 0

-3 -4<x~-2.5 0.7 1 0.5 0 0 0 0

-2 -2.5 <x<-1.5 0 0.7 0.7 0 0 0 0

-1 -1.5 < x<-0.5 0 0.3 1 0.3 0 0 0

0 -O.5<x<O.5 0 0 0.3 1 0.3 0 0

1 O.5<x<1.5 0 0 0 0.3 1 0.3 0

2 1.5<x~2.5 0 0 0 0 0.7 0.7 0

3 2.5<x<4 0 0 0 0 0.5 1 0.7

4 4<x 0 0 0 0 0 0.7 1

levels with 7 primary fuzzy sets defined on it. Note that the scale mapping of the

measured variable values x into the discretized universe can be uniform or nonuniform.

Looking into Table 2-1 we fmd that it is not a uniform mapping, since the width of the

ranges for all the quantitization levels are equal to 1 except level 3. The shape of the

membership functions of primary fuzzy sets, such as ZE and PM, will be discussed in

next section.

(b) Normalization: The normalization of a continuous universe requires a discretization

of the universe of discourse into a finite number of segments, with each segment

mapped into a segment of the normalized universe. Then, using an explicit function, a
I

fuzzy set will be defmed to its membership function. One example is shown in Table

2-2. where the universe of discourse, [-6, +4.5] is mapped into the normalized interval

[-1,+1];
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Table 2-2

Quantization and Primary Fuzzy sets Using a Numerical Definition

Normalized Normalized Primary Fuzzy
Universe Segments Range f.1 a Sets

[-1.0,-0.5] [-6.9,-4.1] -1.0 0.4 NB

[-0.5,-0.3] [-4.1,-2.2] -0.5 0.2 NM

[-0.3,-0.0] [-2.2,-0.0] -0.2 0.2 NS

[-1.0,+ 1.0] [+0.0,+0.2] [+0.0, + 1.0] 0.0 0.2 ZE

[+0.2, +0.6] [+ 1.0,+ 2.5] 0.2 0.2 PS

[+0.6, + 1.0] [+2.5,+4.5] 0.5 0.2 PM

1.0 0.4 PB

2.3.3.2The choice of the membership functions for the primary fuzzy sets

There are two kinds of fuzzy set definitions, depending on whether the universe of

discourse is discrete or continuous.

(a) Numerical Defmition: In this case, the grade of membership function of a fuzzy set

is represented by a vector of numbers. The dimension of the vector depends on the

degree of discretization. If the membership function of a primary fuzzy set of this kind

has the fonn

7
= L a i

. 1 u ..1.= ~

where a = [0.1,0.3,0.7, 1.0,0.7,0.3,0.1] is the vector of grades, its dimension is

equal to 7. Therefore, the primary fuzzy set "ZE" in Table 2-1 can be represented by

its membership function together with its corresponding u, as following

o 0
ZE = [-, -,

-4 -3
o-,
-2

0.3
-1 '
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Therefore, under this definition a fuzzy singleton will have the form of s= [0,0,0,0,0, 1,0]

without showing its value of quentitization level.

(b) Functional Definition: The membership function of a fuzzy set can sometimes be

expressed in a functional form, typically using triangle or bell shaped functions. It is

very easy to describe a triangle shape by function, for example, one could define a

triangle fuzzy set named "slow", which has vertex at 20 km and two base points at°km

and 40 lan. The following function can then be used to calculate its grade:

].1 slow( x)
= 20 - Ix - 20 l

20
, if 0~x~40

When using bell shaped fuzzy sets, a Gaussian normal distribution curve is commonly

used. This may be described by the equation:

f( x ) = exp ( : (x - ].1) 2 )

202

where Jl denotes the mean value and (J denotes the standard deviation.

The method used to assign the grades of membership to the primary fuzzy set using

these functions is very important. If the incoming signals are disturbed by noise, then

the membership functions should be wide enough to reduce the sensitivity to this noise.

Methods of storing these functional fuzzy sets within computer memory will be

discussed later. Figure 2-4 and 2-5 shows the triangle and the Gaussian curve shaped

fuzzy sets.
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o 1
1

I1(X)==a-(a-\x-b\)VO, a>O

1 NB NM NS zo P-S PM PB

Figure 2-4. The triangle shaped fuzzy sets.

1
NB NM NS zo PS PM PB

1o
o '-:"----------_.L--- ----...l

-1

Figure 2-5. The bell shaped fuzzy sets

2.3.3.3The fuzzy partition of the input and output space

Within fuzzy systems, both the input (antecedent) and output (consequence)

linguistic variables form fuzzy spaces with respect to their own universes of discourse.

In general, a linguistic variable is associated with a term set, with each term in the term

set being defmed on the same universe of discourse. A fuzzy partition determines how

many terms exist within the term set. A fme partition produces more terms than a coarse

one. Figure 2-6 shows two typical examples of fuzzy partitions in the same normalized

universe [-1, +1].

The cardinality (total number of terms) of a term set in a fuzzy input space
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1o
(b)partition of the fuzzy input!output

control rules is 7x7 =49.The fuzzy

determines the maximum number

of fuzzy control rules that can be coarse

1
N Z P

constructed. For instance in the,

case of two-input, one-output fuzzy
0

controller, if the cardinalities of the -1 0 1
(a)

term sets of these two inputs are all finer
1 NB NM NS ZE PS

7, then, the maximum number of

space, is normally non-deterministic

and has no unique solution. A

Figure 2-6. Diagrammatic representation
of fuzzy partition. (a) 3 terms coarse

partition(b) 7 terms finer partition.

heuristic cut and trial procedure is

usually needed to get the appropriate number of fuzzy partitions.

2.3.4 Rule Base consideration

A primary task in the design of a fuzzy controller is the construction of the control

rule base. Topics to be considered include: the choice of process state and control

(output) variables; the derivation and justification of control rules; the type of fuzzy

control rules to be used; and issues of consistency, interactivity, and completeness [21]

of control rules.

2.3.4.1 The choice of the state and control variables for the fuzzy control rules

The selection of the linguistic variables greatly influences the performance of an FLC.

As mentioned earlier, experience and engineering knowledge playa major role in their

selection. Typically, the linguistic variables in an FLC are the state, the state error, the
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state error integral, the state error derivative, etc.

2.3.4.2The derivation of fuzzy control rules

Tagaki and Sugeno [23] concluded that there are four ways to generate a set of fuzzy

control rules. These four ways are not mutually exclusive, and may be combined to form

an effective way to construct the fuzzy control rules.

(a) Using Expert Experience and Control Engineering Knowledge:

In everyday live most of the information on which our decisions are based is

linguistic rather than numerical in nature. In this respect, fuzzy control rules provide a

natural framework for the characterization of human behavior and for analyzing the

decision making process. It was realized that fuzzy control rules could provide a

convenient way to express domain knowledge. Therefore, most FLCs are based on the

knowledge and experience which are expressed in the language of fuzzy if-then rules

[14],[24] ,[25].

The formulation of fuzzy control rules can be done in two ways. The first one

involves an introspective verbalization of human expertise. Examples of such

verbalization are those operating manuals for the production plant. The second includes

an interrogation of experienced experts or operators using a carefully organized

questionnaire. By these two methods a prototype set of fuzzy control rules can be

produced for a particular application. However, it will generally be necessary to

optimize the performance of the system using a trial and error approach.

(b) Using lnfonnation on Operator's Control Actions:

In many man-machine control systems, the relationship between the input-output are
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not known sufficiently clearly, to make it possible to employ classical control theory for

modeling and simulation. However, human operation can perform quite complex tasks

in the absence of such models. For example, a skilled driver can park a car successfully

without being aware of a quantitative model of the car. In fact, a set of fuzzy if-then

control rules is being employed consciously or subconsciously by the car operator.

Therefore, rules deduced from the observation of a human controller's actions, are a

useful source of information of a rule base. Sugeno has presented a series of papers

discussing the automation of this process [26][27][28].

(c) Using a Fuzzy Model of a Process:

By analogy with classical control system modeling, a linguistic description of the

dynamic characteristics of a control system can be viewed as a fuzzy model of the

system. Based on this fuzzy model, it is possible to obtain a set of fuzzy control rules

for achieving near optimal control of the system. This set of control rules can then be

used as the rule base of an FLC.

Some fuzzy modeling techniques have been reported [29] [30], but this approach to

the design of an FLC has not been fully developed [21].

(d) Using Technique Based on Learning:

Early in 1979 Procyk and Mamdani presented the first self-organizing controller

(SOC)[31]. Such controllers are very attractive in applications as they automatically

tune, and retune, themselfs on line, and require no special expertise from the operator

once installed [45] . The SOC has a hierarchical structure which consists of two rule

bases. The first is the general fuzzy rule base of an FLC. However, the second is

constructed by "meta-rules" which have 'the ability to create and modify the general rule
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base, based on the desired overall performance of the system. In 1991, Lee presented

a new method of SOC [32]. He employed an approximation reasoning and neural net

concept for a self-learning rule-based controller. In Lee's controller there are two very

important units: the Associative Critic Neuron (ANC), and the Associative Learning

Neuron (ALN). The former evaluates the output response produced by present control

action and creates an evaluation signal. The latter adjusts the break point of the

membership functions in the rule base based on signals received from the ACN.

Combining neural network theory with fuzzy control theory is seen as an area of great

potential in the design of FLCs.

2.3.4.3The justification of fuzzy control rules

The most common method applied to the justification of fuzzy control rules is called

"scale mapping", which was first presented by King and Mamdani [33]. Rule

justification is done by considering the nature of the response of the system when

plotted on a phase plane diagram. This process is best understood through the use of an

example phase plane analysis.

Consider a system using the error E and change of error DE as input variables and

a rule linguistically described as follows:

IF E (error) =PB and DE (change of error) =PS
THEN y (output) =NM

( PB: positive big, PS: positive small, NM: negative medium.)

A possible response of such a system is shown in Figure 2-7. This shows the phase-

plane trajectory of the system and its step response. If from the system step response it

was found that the overshoot between point (b) and (c) was too big, then, the output

fuzzy set NM in the decision table corresponding to the position (b)-(c), could be
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changed to NB. This would increase the retarding force to reduce the overshoot or

adjust the value of membership function for NM to improve it.

A similar method was suggested by Braae and Rutherford [34]. They tracked the

linguistic trajectory of the closed loop system in a 'linguistic phase plane' . The pmciples

involved in this approach is similar to those described above.

DE

c

/
over
shoot

E

rise time

s.p,

a

E +
DE

m

+ + - - + + - - + + time
+ + - - ++--++-

(a) phase plane trajectory (b) system step response

Figure 2-7. Rule justification by using phase plane.

2.3.4.4 The choice of the fuzzy control rule types

Two types of fuzzy control rules are currently in use in the design of FLCs. These

are "state evaluation" fuzzy control rules and "object evaluation" fuzzy control rules. A

third type, slightly modified from the first of these, is also quite popular in the industrial

application. Its consequent instead of using linguistic values is represention as a function

of the process variables. These three types of fuzzy control rules are discussed briefly

below

(a) State Evaluation Fuzzy Control Rules:

State evaluation fuzzy control rules are the most commonly used form of rules in

FLC design. In the case of multi-input, single-output (MISO) systems, these may be
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characterized by the following form

where X,'" ,yand z are linguistic variables representing the process state variables and

the fuzzy control output variable; Ai, "',B j and C, are the linguistic values of the

linguistic variables x, "',y, and z.

(b) State Evaluation Fuzzy control Rules with Functional Output :

In such rules, the consequent is represented as a function of the process state

variables X,"',y .i.e.,

R: if x is Aj , ' " ,and y is B, then z hex, ...,y)

Such type of rules were first proposed by Sugeno[23], and are now widely used in

industry.

(c) Object Evaluation Fuzzy Control Rules:

Fuzzy control using objective evaluationcontrol rules is alsocalled 'predictive fuzzy

control', and was first proposed by Yasunobu, Miyamoto, and Ihara[35]. A control

command is inferred from an objective evaluation of a fuzzy control result that satisfies

the desired states and objectives. The rule will be described as

R: if(u is C, - >(x is A j and y is B) then u is C j •
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A control command u takes a crisp set as a value, such as "changed" or "not

changed", and x, y are performance indices for the evaluation of the ith rule, taking

values such as "good" or "bad". Then the most likely control rules will be selected

through predicting the results (x,y) corresponding to every control command C,

This rule can be interpreted linguistically as: "if the performance index x is Aj and

index y is Bj when a control command u is chosen to be C, then this rule is selected

and the control command C, will be taken to be the output of the controller. "

In practical, it is possible that more than one system state will give the same result

and prediction becomes more complicated.

2.3.5 Decision making logic consideration

The use of an FLC can be viewed as trying to emulate human decision making within

the conceptual framework of fuzzy logic and approximate reasoning. In this context, the

forward data-driven inference (generalized modus ponens), this term will be explained

later, plays a very important role. In this section, the properties of fuzzy implication

functions, sentences connectives, composition operators and related concepts will be

introduced.

(1) Fuzzy Implication Functions

A fuzzy control rule, is essentially a fuzzy relation which is expressed as a fuzzy

implication. In fuzzy logic, a fuzzy implication may be defmed using some kind of

fuzzy implication functions.

(a) Basic properties of a fuzzy implication function:

As is well known, there are two important fuzzy implication inference rules in

approximate reasoning. They are the generalized modus ponens (GMP) and the

-31-



generalized modus tollens (GMT), both of them come from tautologies such that modus

ponens: (A 1\ (A~B))~B, and modus tollens: «A~B) 1\ (not B))~ not A. Here, "~" is

the fuzzy implication or relation usually denoted by relation matrix "R". If A, A', B,

and B' are fuzzy predicates.then these two rules can be described as following,

premise 1: x is A'
premise 2: if x is A then y is B
consequence: y is B'

premise 1: y is B'
premise 2: if x is A then y is B
consequence: x is A'

(GMP)

(GMT)

For the GMP case, "y is B'" results from matrix operation B' =A' 0 R.It has forward

data-driven characteristics, thus which is more suitable for ordinary control applications.

(b) Families of Fuzzy Implication Functions:

There are at least 40 different kinds of fuzzy implication functions, in which the

antecedents and consequences contain fuzzy variables. Before the inference mechanisms

are discussed, in this section, several definitions must be briefly introduced.

Definition 1: Triangular Norms: The triangular norm * is an operation represented

by *: [0,1] x [0, 1]~ [0,1], which includes the following operations

For all x,y E [0,1]:

intersection

algebraic product

bounded product

drastic product

x A Y - min {x,y}

x . y = xy

x 0 y = max {O,x+y-l}

x y = 1

x@y= y x = 1

0 x,y< 1
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Definition 2: Triangular Co-Norms: The triangular co-norm + is also a two-place

function denoted by +:[0,1] X[O,l] ~ [0,1], which includes

union

algebraic sum

bounded sum

x V Y - max{x,y}

x ~ y - x + y - xy

X $ Y = min{l,x+y}

drastic sum

y=l

x = 1

x,y < 1

Definition 3: Fuzzy conjunction: The fuzzy conjunction is defined for all u E U and

v E V by

A~B=AXB

= f ].1 A ( u) *].1 B ( v) / ( U, v)
l/XV

where * is an operator representing a triangular norm.

Definition 4: Fuzzy disjunction: The fuzzy disjunction is defmed for all u E U and v

E Vby

A~B=AXB

= f ].1A ( u) +].1 B( v) / ( U, v)
l/XV

where + is an operator representing a triangular co-norm.

Definition 5: Fuzzy Implication: There are five families of fuzzy implication functions

in use. Here, as before, * denotes a triangular norm and + is a triangular co-norm.

a) material implication

A ~ B - (not A)+ B

b) Propositional calculus:

-33-



A ~ B = (not A)+ (A* B)

c) Extended propositional calculus:

A ~ B = (not A x not B)+ B

d) Generalization of modus ponens:

A ~ B = sup { c E [0,1], A* C < B }

e) Generalization of modus tollens:

A ~ B = inf { t E [0,1], B+ t < A }

Based on these definitions, many fuzzy implication functions may be generated by

employing triangular norms and co-norms. Examples include the following fuzzy

implications, which are called the mini-operation rule of fuzzy implications and the

product operation rule of fuzzy implication. These were developed by Mamdani[13] and

Larsen[65] respectively, and are often used in FLCs.

mini-operation rule:

R c = A ~ B
=AXB

= f J.1 A ( u) /\ J.1 B( v) / i.u, v)
{/Xv

product-operation rule:

R = A x B
p

= f J.1 A ( u) J.1 B ( v) / ( u, v)
{/Xv

(2) Interpretation of Sentence Connectives "and" and 'also"

(2-1)

(2 -2)

Commonly, the sentence connective"and" is implemented as a fuzzy conjunction in

a Cartesian product space in which variables are taking values from different universes

of discourse. For instance, in " if (A and B) then C," the antecedent (A and B) is
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interpreted as a fuzzy set A X Bin the product space U X V,with the membership function

given by

(2-3)

or

(2-4)

Where U and V are the universe of discourse associated with A and B respectively.

When a fuzzy system is characterized by a set of fuzzy control rules, the ordering of

the rules is immaterial. This implies that the sentence connective "also" should have the

properties of commutativity and associativity. Therefore, the operators in triangular

norms and co-norms possessing these properties are suitable to be used to interpret the

connective "also".

Finally from the practical point of view, the computational aspect of FLC require a

simplification of the fuzzy control algorithm. Therefore, Mamdani's R, and Larsen's ~

with the connective "also" as the union operator "V " seems to be more suitable for

constructing fuzzy models.

(3) Compositional operators

Four kinds of compositional operators have been reported which can be used in the

compositional rule of inference:

sup-min operation (Zadeh, [36])

sup-product operation (Kaufmann, [37])

sup-bounded-product operation (Mizumoto,[38])

sup-drastic-product operation (Mizumoto, [38])

In practical FLC applications, the sup-min and sup-productcompositional operators

are the most frequently used owing to their simplicity of computation.
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(4) Inference Mechanisms

In an FLC, the consequence of a rule is not applied to the antecedent of another.

This means that there is no chaining inference mechanism involved, and that the control

actions are simply based on one-level forward data-driven inference (GMP).

Combining all the implication functions, definitions and relations mentioned in this

chapter, the inference mechanism can be explained by the following four types of fuzzy

reasoning method which are currently employed in FLC application.

(a) Fuzzy Reasoning of the First Type - Mamdani's Minimum Operation Rule as a

Fuzzy Implication Function:

This type is the most popular reasoning method, and was first introduced by

Mamdani. Let us consider the following general form of MISO fuzzy control rules for

the case of two-input/single-output fuzzy systems:

RI : if Xl is All and x 2 is A l 2 then y 1S B I

or
R2 : if Xl 1S An and X 2 is A 22 then y 1S B2

or
· · •· · •

· · •• • •
is and is A i 2 then

.
BiR i : if Xl Ail X 2 Y 1S

· · •· • •
• · ·· • •

is and is ~2 then
.

Bn~: if Xl ~l X 2 Y 1S

If the universe of discourse of x, 'X2 and yare represented by

Xl' X
2

and Y. Then, using equation (2.1) and (2.3), the i's control rule can he expressed

by a fuzzy relation matrix:

(2 .5)
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This system consists of n rules, RI,R2 , ... ,Rnt!lerefore, we may combine them by "U"

as connective "also" which has been discussed in section 2.3.5(2). Equation (2.5)

becomes

R = R UR U ... URI 2 n

n
= U s,

i=l
( 2 .6)

When the inputs are Aol and Ao2 and the output is denoted by Bo, we will have the

following operation:

or

BO(y) = max [R( Xl' X 2, y) AA OI (Xl) AA 0 2 (x2 ) ]

X I,X2

(2.7)

(2.8)

Normally, the control inputs are crisp values, which are called fuzzy singletons. In this

case, we can replace the antecedent variables x., X2 by Xol and Xm, thus

( 2 .9)

and equation (2.7) become

(2.11)

combining (2.5) and (2.6), the right hand side of (2.11) will become

• • •

(2.12)
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n, (X0 1 , X0 2 ' y) - Ail (XOl ) 1\ A i 2 (X0 2 ) 1\ B i (y)

if we define

then (2. 11) will becomes:

n
Bo(y) = V [CAliA B i (y) ]

i=l

(2.13)

(2.14)

(2.15)

Now, if we use the center of area method (eGA) to get the defuzzification output, then

we will have a crisp output value. As described in section 2.3.2(c) the defuzzification

formula is

Yo =
JBo(y) 'ydy

JBo(y) dy
(2.16)

The following figure shows the reasoning method of this type.

Xz

B.1 -

y

Xz

Xoz

y

Figure 2-8. Diagrammatic representation of fuzzy
reasoning of type 1.
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(b) Fuzzy Reasoning of the Second Type - Larsen's Product Operation Rule as a Fuzzy

Implication Function.

Fuzzy reasoning of the second type is based on the use of Larsen's product

operation rule R, as a fuzzy implication function. In this case, the ith rule leads to the

control decision

(2.17)

consequently, the result of reasoning will become

n
Bo(y) = V wi B i (y )

i=l
(2.18)

The fuzzy reasoning process is illustrated in Fig. 2-9 as shown below

Y

Y

W z
.. ---+---:

X02

Yo
Figure 2-9. Diagrammatic representation of fuzzy

reasoning of type 2.
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(c) Fuzzy Reasoning of the Third Type - Tsukamoto's Method with Linguistic Terms

as Monotonic Membership Functions:

This method was proposed by Tsukamoto[39]. It is a simplifiedmethod based on the

fuzzy reasoning of the first type in which the membership functions of fuzzy sets Xl'

X2 and Y are monotonic, as shown in Figure 2-10(a) and 2-10(b).

1 1 - - - - - --

Positive

0
-1 0 1 -1 0 1

(a) (b)

Figure 2-10(a) monotonic linear type fuzzy membership function.
(b) monotonic arctan type membership function.

The P(Positive), N(Negative) fuzzy variables can be described as

P(x)
1 1= -x +
2 2

(2.19)

N(x) = P( -x) (2.20)

for Figure 2-10(a), the monotonic linear type variables. and

P(x) (2.21)

N(x} = Pc-x}

for Figure 2-10(b) the arctan type variables.

If using Tsukamoto's method, the result inferred from the first rule is Wt such that

WI =N(YI),and the result interred from the second rule is W 2 such that W2=P(Y2),then, a
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crisp control action may be expressed by equation (2.22), the height method, which has

been described in section 2.3. 2(e). This type of fuzzy reasoning is illustrated in Figure

2-11.

(2.22)

--
y

Figure 2-11. Diagrammatic representation of
fuzzy reasoning type 3.

(d) Fuzzy Reasoning of the Fourth Type - The Consequence of a Rule is a Function of

Input Variables.

Fuzzy reasoning of the fourth type employs a modified version of the state

evaluation function. In this mode of reasoning, the ith fuzzy control rule is of the form

For simplicity, assume that we have two fuzzy control rules as follows
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here, we may consider both f1 and f2 as linear equations of the form

although these are not usual in many applications. If the input variables are Xo1 and Xo2,

then the inferred value of the first and second rules will become

Thus, applying these two values, we can calculate the consequence result directly as

Finally, using the eGA defuzzification formula, a crisp control action is given by

Yo =
WI f 1 (X01' X 02) + w2 f 2 (X01' X 02)

WI + W 2
(2.23)

This method was proposed by Takagi and Sugeno and has been applied to guide a

model car smoothly along a crank-shaped track[26] and to park a car in a garage [27].

However, when the number of the input variables which representing the system states

increases, the number of rules will increase also. Usually, it will be equal to the number
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of input space partitioned. Figure 2-12. shows an example of the fuzzy rules used when

two input variables are involved, and Figure 2-13 shows the corresponding partitioning

of the input space. Note that, the break points of the membership functions for the input

variable x, space are 3, 9, 11 and 18; for x2 spaces are 4 and 13. The shaded area are

those membership function overlapping zones.

if X2 then y
----------------------------------------------------------------------------------_.

Y1 = 1.0 Xl + 0.5X2 +1.0

Y4 = 0.2 Xl +0.lx 2 +0.2

Y 3 = 0.9 x , +0.7x2 +9.0

Y2 =-0.1Xl + 4.0X 2 +1.2h
4 13

3 9

/1
3 9

~L
3 9 11 18 4 13

--,,---,-L L
11 18 4 13

Figure 2-12. The fuzzy rules for reasoning of type 4.

Deciding on an appropriate method of partitioning is a serious problem from the fuzzy

system identification point of view[40,41].

13 -

1
4 -

3 9 11 18

Figure 2-13. 'Partition of the fuzzy input space.
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2.4 Current uses of Fuzzy Techniques and other Non-linear methods in Control of the

pH Process

As mentioned in Chapter 1, control of the pH process is difficult due to the non­

linearity and time varying nature of the titration curve, and because of its strong

sensitivity to disturbances near the point of neutrality. For these reasons, over the years

several new technologies have been applied in an attempt to solve these problems. In

this section, several different approaches, including the use of the fuzzy logic are listed

chronologically and briefly discussed.

2.4.1 The Digital Parameter Adaptive Control Technique (1980)

Bergmann & Lachmann's paper[3] published in 1980, describes the application of

two digital parameter adaptive controllers to a pH process. The controllers use

combinations of recursive least squares (RLS) parameter estimation methods with a

extended minimal variance controller and a deadbeat controller of increased order. These

two adaptive control algorithms have been applied to control a pH pilot plant.

Experimental results are promising. However, selecting appropiate parameters to

achieve good stability is very difficult.

2.4.2 Dynamic Modeling and Reaction Invariant Control of pH(1983)

In 1983, Gusstafsson and Waller presented a paper[5] on a general and systematic

approach to the derivation of dynamic models for fast acid-base reactions. The treatment

is based on a consistent use of chemical reaction invariants and variants, the former

describing the physical properties of the reactor system independent of chemical

reactions, the later describing the chemical reactions. For fast acid-base reactions the

invariant part of the model is sufficient to define the thermodynamic state of the system.
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The reaction rate vector is thus eliminated from the model. The reaction variant part of

the model then, use a static equation to relate pH to the reaction invariant state

variables. The model obtained provides a sound basis for the design of control loops for

a pH control process. A computer simulation example is given at the end of this paper.

2.4.3 An Experimental Study of a Class of Algorithms for Adaptive pH Control (1985)

This paper, which was published by Gustafsson in 1985[4],describes models suited

to the design of controllers of pH in fast acid-base reaction processes with varying

buffer concentrations. The set of models includes a non-linear model resulting in a

controller with linearized feedback of a reaction invariant state vector and linearized

models resulting in adaptive linear feedback of pH. Experiments showed that the

reaction invariant feedback control needs a priori knowledge of the reaction invariant

dynamics of the process, which includes the time delay n and the model orders nA and

nB• These models can be obtained by on-line identification performed by a self-tuning

regulator. However, to ensure a correct result when identifying a process in closed-loop,

feedback polynomials of a high enough order and extra perturbing inputs are necessary.

In this paper the emphasis is put only on the adaptive properties of the controllers.

2.4.4 Non-linear State Feedback Synthesis for pH Control (1986)

In this paper, presented by Wright and Kravaris[7] , a novel non-linear state feedback

design methodology is described. This is based on a non-linear transformation of the

output that linearizes the state/output map. A linear PID control law for the transformed

output generates a non-linear control law for the pH process. Computer simulations were

used to compare the performance of this non-linear control law to classical linear PID

methods. Results showed that transforined control, with a minimum settling time of.
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approximately 10 controller actions, is clearly superior than the classical contro at all

sampling periods.

2.4.5 Non-linear Controller For a pH Process (1990)

Jayadeva and Rao, et al [42] synthesized a non-linear feedback-feedforward controller

in which a model reference non-linear controller design technique is applied to control

a pH process. The performance of this non-linear controller is evaluated by simulation

both for regulatory and servo problems. The simulation result is very good. This control

system is also shown to be robust to significant parameter variations and to small

disturbances.

2.4.6 Non-linear Control of pH Process Using the Strong acid Equivalents (1991)

A novel approach was developed by Wright and Kravaris[43] for the design of

nonlinear controllers for pH processes. It consists of defining an alternative equivalent

control objective which is linear in the states and using a linear nonadaptive control law

in terms of this new control objective. The new control objective is interpreted

physically as the strong acid equivalent of the system.

A minimal order realization of the full-order model has been rigorously derived, in

which the titration curve of the inlet stream appears explicitly. The strong acid

equivalent is the state in the reduced model which can be calculated on line from pH

measurements given a nominal titration curve of the process stream. However, this

requires the use of additional hardware, such as an automatic titrator or ion-selective

eletrodes to obtain a direct or indirect measurement of the strong acid equivalent value.

Computer simulations have been used to evaluate the performance of this new

methodology.
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2.4.7 Fuzzy Control of pH Using Genetic Algorithms (1993)

Researchers at the U.S. Bureau of Mines have developed a new technique for

producing adaptive FLCs that are capable of effectively managing systems such as the

pH process. In this technique, a genetic algorithm(GA) is used to adjust the membership

functions employed by a conventional FLC. GA' s are search algorithms based on the

mechanics of natural genetics that can rapidly locate near-optimal solutions to difficult

problems. Karr and Gentry reported [44] that they used this technique to produce an

adaptive GA FLC for a laboratory acid-base system. In the experiment, they change the

process dynamics by altering system parameters such as the desired set point and the

concentration and buffering capacity of the input solution. The experiment demonstrated

the effectiveness of this approach in developing an adaptive FLC for handling those

nonlinear systems such as those associated with pH control.

2.4.8 Summary

These papers are some of the recent technologies which have been applied in an

attempt to solve the pH control problems. Only three of them[3][4][44] have tested their

controllers on a real process. The latest one [44] is the first to try using the fuzzy logic

control techniques in pH control process. This technique offers a powerful alternative

to conventional process control techniques in non-linear, rapidly changing pH systems.

However, their experiments were performed in a 11 beaker with a magnetic stirring bar

in it not a continuous stirred reaction tank (CSTR). Therefore, further study is required,

in the control of pH in a continuous flowing system.
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Chapter 3

Implementation of a Real-Time Fuzzy
Controller

A fuzzy controller is characterized by its ability to provide an algorithm which can

convert a linguistic control strategy, based on expert knowledge, into an automatic

control strategy, without having a precise mathematical model of the target plant.

Lacking a knowledge of the system model, it is very difficult to employ the systematic

design techniques associated with modem control methods, in the design of a fuzzy

logic control system. Usually, trial and error are necessary components of all FLC

applications. In the last chapter we discussed the design parameters of a fuzzy controller.

In t is chapter, we look at current FLC implementation methods and consider the

construction of an FLC for experimental use.

3.1 Industrial Application of FLC Techniques

It was noted earlier that the Fuzzy inference engine, or decision making logic, is

merely an algorithm. This can be implemented in software within a personal computer

or in hardware using a fuzzy microchips. When using a general purpose fuzzy inference

engine, different control strategies can be achieved by simply changing the contents of

the stored knowledge base.
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The first fuzzy logic chip was designed by Togai and Watanabe at AT&T Bell

Laboratories in 1985[46]. The fuzzy inference chip, which can process 16 rules in

parallel, consists of four major parts: a rule-set memory; an inference processing unit;

a controller; and an input/output unit.

Recently, in order to allow dynamic changes in the rule set, the rule-set memory has

been implemented by a static random access memory (SRAM). Many new fuzzy

microchips are being introduced each year, but these show little variation in the basic

techniques used. The basic operation of these devices will be discussed later.

3.1.1 The Structure of a Fuzzy Control System

Usually, an industrial control system is composed of four main parts, as shown in

Figure 3-1.

Industrial Controller

I
r "'\I I

int I I

I Controller Actuator I

I I

I I
I

PlantI
I
I
I

System state I
I

Sensors
I

/I -

Set po

-------------------------------~

I

Figure 3-1 A block diagram of a typical industrial control system.

The state of the plant is first sensed by sensors in the form of physically- measurable

quantities. Then, after transforming to some appropriate signal, they are sent to the

controller. The controller, after comparing the signals, which represents the state
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variables of the plant, with the previously decided value of set point, will adjust the

output to the actuator. Finally, the plant will respond to the new driving force delivered

by the actuator.

In fact, a fuzzy controller plays the same role in an industrial control system as

classical controller. A fuzzy control system has the same structure as in Figure 3-1, the

only difference is that the controller becomes an FLC.

FLC's will have different forms depending on the application, requirements and

environment. Commonly used types are

(1) Fuzzy controllers based on single-chip microconirollers

In, consumer products, such as washing machines and other electrical equipments,

cost will be an important consideration. When fuzzy control is required, such system

often use conventional 4-bit or 8-bit microcontrollers to form an FLC.

(2) Fuzzy controllers based on personal computers

If a fuzzy controller is formed by constructing a fuzzy knowledge base in a personal

computer, then, the controller can utilize all the hardware and software resources of the

PC to improve its performance. For instance, a data base can improve its data searching

and handling ability, and process monitoring software can help it to perform intelligent

diagnosis and decision making.

(3) Fuzzy controllers based on programmable logic controllers(PLC).

PLC s are sequential controllers that are widely used in industry. Some PLC
f

manufacturers such as OMRON have also developed fuzzy controller modules which can

-

be installed in a PLC to perform the FLC functions, thus directly upgrading a PLC into

an FLC.
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3.1.2 Technical Considerations When Developing a Fuzzy Control System

There are several technical issues that must be considered when developing a product

that incorporates fuzzy control.

(1) general purpose FLC

A general purpose FLC can meet the requirements of a wide range of products

without changes to its hardware structure. If such an FLC could be produced, all the

development and maintenance costs would be reduced significantly. Therefore, the

development, or using such an FLC is an important consideration for any FLC

application.

(2) The FLC development system

A powerful fuzzy development system can help the FLC designer to build a useful

fuzzy knowledge base quickly and shorten the time required for product research and

development (R & D). Usually, such a fuzzy development system should have the

following characteristics:

(a) It should make it easy to construct, edit and adjust the fuzzy knowledge base.

(b) It should be capable of displaying the control system input and output

relationships within a control surface chart, and be ale to performing system

model simulation.

(c) It should be very easy to implant it into all kinds of controller.

(3) Self-learning and adjustment of the fuzzy knowledge base

The fuzzy knowledge base is the kernel of a fuzzy controller, and this can be built

from the knowledge of an expert or the experience of an operator. As the knowledge
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base increases in complexity, more and more time will be required to adjust it through

a process of try and error. Therefore, in complex system, self-learning techniques and

adjustment strategies become very important. This area is currently the subject of much

research.

(4) Performance of the fuzzy inference engine

Another important part of an FLC is the inference engine. The inference speed will

greatly affect system performance. Usually, the speed, or efficiency, of an inference

engine is expressed in FLIPS (Fuzzy logical inferences per second). The speed of a

particular system is likely to be greatly influenced by the methods used to implement

the inference engine with arrangements based on VLSI techniques being much faster

then those that are software based. Commercial products normally use low-end devices

with speeds of several thousand FLIPS. More demanding applications, such as those

in the aerospace or military section, often use high-end devices with speeds of about

a quarter of a million FLIPS. Software inference engines have speeds of only a. few

hundred FLIPS, but are sufficiently fast for many industrial applications. Software-based

arrangements offer considerable flexibility making them a very good choice for many

FLC applications.

3.2 FLC Implementation methods

FLC design strategies and procedures have already been discussed in earlier sections

of this chapter and in chapter two. However, when the target system has been
I

investigated and the fuzzy knowledge base (FKB) has been created, it is necessary to
_.

consider the choice of implementation techniques. Implementation here refers to the

process of implanting a FKB into a computer or some special controller. In other words,

through implementation we convert the' FKB into an executable form.
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The strategies and techniques mentioned earlier directly affect the implementation of

the FLC. However, as discussed in chapter 2, a fuzzy inference engine that is suitable

for fuzzy control is composed of three parts: a fuzzification interface, a forward-driven

fuzzy inference engine and a defuzzification interface. Usually, the fuzzy inference

engine has a fixed operation which will not change once it is implemented. Therefore,

the main task in designing an FLC is the design of an FKB.

There are two methods commonly used in the production of fuzzy knowledge bases...

the FKB compilation method and the FKB interpretation method.

3.2.1 Implementation Using the FKB Compilation Method.

The FKB compilation method is a technique widely used in the early days of fuzzy

control. It is an off-line implementation method, where the FKB is transformed into a

data format that can be used to perform the fuzzy control operation. The following three

forms are used most commonly.

D conversion

Microcomputer controller

lxn
vector

FU~fica~~

mxn
Relational matrix

Compositional
.operation

mxl
vector

Figure 3-2. The block diagram of a FKB relation matrix
implementation method.
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(1) To Convert the FKB into a Fuzzy Relation Matrix [47J

The fuzzy control rules in a fuzzy control system may be characterized by the IF-

THEN construct. From a mathematical point of view, these rules represents the

relationships between the inputs and outputs. Therefore, if the variables of these

linguistic rules can be discretized by applying some proper implication operation, the

control rules can be converted into a discrete fuzzy relation matrix. After combining all

the relation matrices of each rule, a numerical matrix is found which represents the

control system FKB and can be loaded into a computer memory. This kind of fuzzy

control system is shown in Figure 3-2, where the input signal is fuzzified and converted

into a vector (1 x n).Then, this vector will be used in the composition operation with the

relation matrix (m x n)and to produce a result vector (m Xl) .Finally , this output vector

will be defuzzified and become a crisp value before it is sent to the plant.

input 1:---1
NDC Ie:>xl

Knowledge Base ell ~tput
inPu~:--1

look_up table

~
D/AC Y

NDC (ROM)

Figure 3-3. method of Implementation using look-up table.

(2) Implementation by Look-up Table [48J

While the use of a relation matrix is straight forward, it takes a long time to perform

the matrix composition operations. In many real-time application this is unacceptable
f

and a faster method is required. One approach is to compute all the possible states of

the relation matrix off-time, and to store theses in a look-up table as shown in Figure

3-3.

In Figure 3-3, input signals xl and x2 are digitized by the AID converters and form
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the address of a ROM, which contains the input-output look-up table for the FKB.

Resultant output is then applied to a D/A converter.

(3) Implementation by compiling an FKB into executable real-time code.

We have seen that the fuzzy control rules in a fuzzy control system are expressed by

IF-THEN statements. Clearly, similar IF-THEN expressions are found in the ordinary

computer language; the difference being that fuzzy control rules use linguistic fuzzy

concepts to determine their action, while conventional programming languages make

decisions based on crisp values.

Therefore, if the fuzzy terms of a linguistic variable are well defined by its membership

function, then, it should be possible to convert the fuzzy control rules into the form of

an ordinary program. This concept was first presented by Togai[46]. He developed a

Fuzzy C Compiler which can convert an FKB into IF-THEN program statements in the

form of ANSI C. Then, using an ordinary C compiler (such as Microsoft C or Borland

C) it can be compiled to form executable code. This is shown in Figure 3-4.

Fuzzy c
Compiler

3

3

Real-Time
Code

C Compiler
Linker

4

2

5Implant

Fuzzy control system Application
Program

Figure 3-4 Implementation using FKB real-time code.
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3.2.2 Implementation using the FKB Interpretation Method

FKB interpretation is a method in which the fuzzy inference engine and the FKB are

separated. An independent fuzzy inference engine is installed in the fuzzy controller to

do the real-time inference work on the FKB. This is shown in Figure 3-5. This kind of

fuzzy control system need not apply any FKB format transformation techniques, and the

inference engine works inside the controller. Therefore, sometimes this approach is

called a real-time, on-line implementation.

As mentioned earlier, fuzzy inference is normally fixed operation and there are

several ways to perform it. For

~.- _.. - - .. - _.- -- -_ .. - _.. --._-.,
( ,

I

I

instance, it can be done using a

software inference program [49] ,

special inference chips [46][50] or

Inputs
L..--_+-u ' FKB Interpreter J---.L..-,/ Outputs

firmware within a microcontroller.

Examples of inference engine

implementation methods are given

below.

I
I
I

I
Fuzzy Knowledge I

Base :
I I
l )
'.- _.. - _.- _.. - ---_.. - -.- - .. -_.'

Figure 3-5 The basic configuration of an
FKB interpreter.

(1) A general purpose inference program working with a separate FKB [49]

First, using the program design techniques described above, the FKB is organized into

an efficient data structure. Then, a general purpose real-time function is designed to

represent the fuzzy inference operation. As shown in Figure 3-6, the action of the fuzzy

controller is written as a program and stored in the computer's memory. The main

program is responsible for calling the fuzzy inference function to process incoming data.
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(2) Implementation using an independent fuzzy microcontroller

Several commercial fuzzy microcontroller (FMC) are now available. An example is

that developed by NeuraLogix [50]. This general purpose inference engine (NLX-230)

contains a neural network inside the chips to improve its performance. The rule base and

membership functions are written in the mask programmed ROM. The chip can be

operated independently or as a slave device. Its performance is equivalent to an 8-bit

microcontroller performing the inference of 30 million rules per second.

Fuzzy
Inference
Function

Fuzzy Control ~
Application ...,.

Compilation
&

Link

-_O' - _O' - _O' - _ .. - _O' - _ .. - _. _ _ • - _. - _. - _O' - _O' - _ .. - _O' - _ ..__ • __ • - _. __ • __ ..

Inputs

c::>
Executable Program

loaded in

Microcomputer

Outputs

'"
y

Figure 3-6 Implementation by real-time inference program.

3.2.3 A Comparison of Implementation Methods

The main feature of the FKB compilation method is that the inference engine and the

FKB are put together to form a simple structure for implementation. However, there are

several disadvantages with this approach. For instance: it will be very difficult to

construct a multi-input, multi-output (MIMO) system [47]; the memory size and the

number of memory accesses increase exponentially as the number of rules is increased

[48]; the length of the executable code is directly related to the number of control rules

[51]; and it is very difficult to perform'on-line tuning.
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The FKB interpretationmethod, in contrast, produces a separate inference engine and

FKB. This kind of structure is more like the human brain; the inference engine

resembles the unchanging structure of approximate reasoning, while the fuzzy

knowledge base resembles human experience which can be changed or modified through

learning. Therefore, it could be possible to develop the FKB on-line tuning and learning

technique by using the FKB interpretation method.

For the FKB interpretation method, it seems that we need a general purpose fuzzy

inference engine (FIE) to meet our requirement, and we also have to convert the FKB

information to a specified data format which will satisfy this FIE. At present, a lot of

successful FIE hardware chips have been reported[46][50]. These FIE hardware products

are all characterized by their very high speed inference. However, they also have several

structural deficiencies due to a compromise between designing complexity and product

performance. For example: some have a limited number of input-output lines and a

limited number of control rules; while others have only 4-bit membership function, with

linguistic variables discretized to 64 levels. These characteristics result in a reduction of

the FKB data resolution.

3.2.4 The Fuzzy Development System

The design of a fuzzy control system, usually, involves not only the construction and

adjustment of the knowledge base , but also the task of transferring this to some

operational hardware platform. As mentioned in section 3.1.2, a powerful fuzzy
I

development system can greatly reduce the problems encountered during the designing

stage.

There are several fuzzy development systems in use. Most of them use the FKB

compilation method of implementation to generate the real-time C code for some special
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microprocessor. Some of these are listed below;

(a) TILShell- a fuzzy development system produced by Togai InfraLogic co., This

operates within the Windows environment and has the following functions:

to define and adjust membership functions; to construct or change a rule base;

to perform static or dynamic system debugging and simulation; and to generate

executable code in C for a FKB.

TILShell 3.0 uses a special Fuzzy Program Language (FPL) to define a fuzzy

system, and also offers a graphic editor.

For supporting single chip microcontrollers, this company offers another product

called the Microcontroller development package. It provides the feature of

TILShell and can be used to convert the FKB to assembler code of a range of

microcontrollers. At present, this package supports 8051, 68Hc11 and Hitachi

H8/300, H81500.

(b)FIDE - The Fuzzy Inference Development Environment is a product of Aptronix

USA, which is composed of four parts: Editor, Debugger, Composer and RTC

(Real Time Code). It uses a special Fuzzy Inference Language (FIL) to describe

the target's fuzzy system. The RTC is used to generate the machine code for

certain microprocessors. At present, FIDE support a range of Motorala devices,

and is capable of generating machine code for MC6805, MC68H05,MC68HCll,

MC68HC08, MC68HC16 and MC68342.

(c)FLD - The Fuzzy Logic Designer is a fuzzy development system designed by

Byte Dynamics co., USA. It is a low cost, user friendly FDS. It provides a very

good 2D/3D display for the control surface.
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Although FLD will generate an ANSI C source program for the FKB, it does

not provide any interface for the application systems. Therefore, linking its

FKB with a particular microcontroller may be a problem.

(d)FST - The Fuzzy System Toolbox is an application specific routine for use with

MATLAB@. MATLAB@ (derived from matrix laboratory) is a product of The

MathWorks, Inc., which is a technical computing environment whose basic data

element is a self-dimensioning matrix. It combines fast numerical capabilities

with excellent graphics useful for developing and modifying algorithms,

particularly those which depend heavily on matrix operations.

The Fuzzy System Toolbox(FST) by PWS Publishing Company is a useful

tool for creating and and using fuzzy inference systems. This toolbox provides

a command line approach to building fuzzy sets and fuzzy rule-based systems.

It also provides a gradient descent approach to learning which is useful for the

beginner. Several effective demonstration applications are included for pattern

recognition, control, model fitting, and decision making.

(e)FLT - The Fuzzy Logic Toolbox is also a product of The Mathworks, Inc. The

major difference between FLT and FST is the user interface. FST must be used

from the command line, while FLT can be used through a graphical interface.

This graphical interface grately simplifies the building and manipulation of

fuzzy systems. The Takagi-Sugeno model of fuzzy inference is also provided in

FLT. This allows quite sophisticated fuzzy models to be developed. In FLT the

set of demonstration applications, which accessible through menu and button

options, contains examples from control, time series, signal processing, and

-60-



clustering applications. There is a procedure included in this toolbox which

allows the user to build stand-alone code to do fuzzy inference. Therefore, FLT

is very useful for the application and for the study of fuzzy control theories.

However, this toolbox was not available when this research started.

3.3 Implementing an Experimental FLC

Although the work described in this thesis is of relevance to all forms of industrial

pH control system, the experimental work was performed using a laboratory model of

a pH plant. The relatively long time constants associated with this model (usually from

1 to 20 second) meant that the speed requirements of the control system were

undemanding. It was therefore decided to adopt a software-based implementation of an

FLC using a personal computer. This approach simplifies the task of formatting the data

for the FKB and allows the construction of a user- friendly interface.

A 486-based PC can achieve a performance of about 300 FLIPS which is quite

adequate for such an application. It was therefore decided to implement an experimental

FLC using the FKB interpretation approach on such a PC.

Early attempts to design a fuzzy logic controller involved the setting up of a Fuzzy

Data Processing System. This system could handle different kinds of fuzzy variables and

perform the various fuzzy data operations needed for an FLC. This was followed by

the construction of a simple fuzzy control program generator to generate different kinds

of real-time FLC.

3.3.1 System Description

The main functions of the system include: (1) Fuzzy data base creation. (2) Fuzzy

relation matrix manipulation. (3) Fuzzy logic inference. (4) Fuzzy data display. (5).
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Controller program generation. Part (1),(2) and (3) are broadly based on the subroutines

and files published by Mitzura and Tanaka[52]. Although these required considerable

modification, because of differences in the data set and the algorithm used. An

additional task was to write an interpreter for the complete system. This includes: (a)

an interactive screen editor, for fuzzy data base entry; (b) a fuzzy data screen display

program; and (c) an FLC program generator.

The main functions of this system are to perform the necessary procedures for

recording, deleting and executing fuzzy logic operations on fuzzy data files which

consist of: universal sets; fuzzy sets; fuzzy relation matrices and fuzzy IF-THEN rules.

(1) Data Sets.

There are 4 basic data sets in this system, each with user defmed file name for use

when recording and retrieving. Those sets are

- Universal set: The universal set is the universe of discourse of some fuzzy sets.

Usually it is equally separated in the Real domain. The number of the elements in a

universal set is defmed by a constant MXEL in an included file in C. If the system is

using the break points of membership functions to represent a continuous fuzzy set, then

we have to store only the minimum and maximum value of the universal set to represent

the domain of the universe of discourse.

- Fuzzy set: A fuzzy set X in a universe of discourse U is characterized by a

membership function P-x which takes values in the interval [0,1]. For the discrete fuzzy

set case, we need to store all the P-x and the corresponding points of the universal of

discourse in memory. However, for the breakpoint representation, we have to specify
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only the membership values corresponding to each break points, and store it together

with the breakpoint positions of the universe of discourse. An example of a continuous

fuzzy set is shown in Figure 3-13, where the continuous fuzzy set can be represented

by the seven breakpoints at -20, -18, -10, -2,4, 12 and 20 of the universe of discourse.

When written in the C language, the fuzzy set is represent by a structure which contains:

(i) the name of the universal set (char)

(ii) the name of the fuzzy set (char)

(iii) the number of breakpoints (int)

(iv) a data array of the value of the membership function at each breakpoint (float)

(v) a data array of the breakpoint positions in the universe of discourse

(vi) an address pointer for constructing a structure list.

Only those fuzzy sets with the same universal set can perform fuzzy set operations.

- Fuzzy relation: Binary relations are manipulated by matrix operations. The size of the

matrix is defined by the universe of discourse appeared in the relation matrix row and

column. Usually, this is used for discrete fuzzy sets, but not for the continuous fuzzy

set operation.

- Type 2 fuzzy set: When the membership values of the elements of a fuzzy set are also

a fuzzy set, it is called a type 2 fuzzy set (or simply T2 fuzzy set). In this system the

universal set of a T2 fuzzy set membership value is also limited by the constant MXEL
J

for the universal set.

_ Fuzzy IF-THEN Rules: The following m IF-THEN rules are recorded under a file

name:
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or

or

l\n: if x, is AmI and ..... Xu is Amn then y is Bm

where m ~XEL, and n ~XRC ( = 10)n is the number of input variables defined

in the system head file, which is also limited by a constant MXRC.

. :'"... '.:: .', "':. '.. . '. ., ... "':.; ....".: ... ::;< . :. ':. : :"::: :-

Wellcome to
Fuzzy theory system

o Please input the command name and parameters,

Example: < Command label I, label 2

o Or command only:

Example: < MK_FS

o Please type "END" to close the system.

Please hit any key to start !!

Figure 3-7 The opening menu for the fuzzy system.

(2) Data Entry and the Screen Editor

After entering the system, an opening menu as shown in Figure 3-7 will be displayed.

Then, the system will start and respond with a < on the screen as a result of hitting

any key on the key board. If we type a command such as <MK_F9-' after the prompt,
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the system will start the interactive program for the user to build a fuzzy set on the

screen (MK_FS stands for "Making a Fuzzy Set). However, before trying to build any

fuzzy set, we must construct its universal set first by using the command MK_UD

(Making an Universe of Discourse). If the corresponding universal set already exists

(stored as a record in an structured list with the name 'UDLIST'), the screen editor will

find it and each time a point position is entered, the system will check to see if this

point exceeds the maximum or minimum values of the universe of discourse. If it does,

the screen will respond with a warning message and wait for correction. The screen

editor for this command is shown below:

EDIT
command: MK FS

Note: press" q to quit;
press "s to save inpu1,
and press" z to ON/OFF
linearization.

** Linearization = OFF **
1 ( · )/ , 11 ( · )/ , 21 ( · ) / ,
2( · ) / , 12 ( · )/ , 22 ( · )/ ,
3 ( · )/ , 13 ( · )/ , 23 ( · )/ ,
4( · )/ , 14 ( · )/ , 24 ( · ) / ,
5 ( · )/ , 15 ( · )/ , 25 ( · )/ ,
6( · )/ , 16 ( · ) / , 26 ( · ) / ,
7( )/ , 17 ( · )/ , 27 ( · )/ ,
8( · )/ , 18 ( · )/ , 28 ( · )/ ,
9( · ) / , 19 ( . ) / , 29 ( . ) / ,

10 ( . ) / , 20 ( . ) / , 30 ( . ) / ,

NAME OF THE FUZZY SET =

NAME OF THE UNIVERSAL SET =

INPUT OK? (YIN)

Figure 3-8. screen editor for MK_FS command.

If the number of input elements exceeds the size of the frame allowed on screen, the
/

contents of the screen will scroll to the left or right, up or down to cover the whole set.

Some other examples are shown below

- MK FM : command to construct the fuzzy binary relation matrix, see Figure 3-9.

- MK FR : command to form the rule base for the controller. (see Figure 3-10.)
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- INFR_D : command to perform fuzzy sets direct reasoning by chosen implication

method. (see Figure 3-11.)

EDIT

NAME OF THE FUZZY RELATION = Command: MK PM

NAME OF THE ROW SIDE UNIV. SET =
NAME OF THE COLUMN SIDE UN IV. SET =

row side ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 )fuzzyset
-+- column side~ fuzzy set

( 1) ( · ) ( · ) ( · ) ( · ) ( · )
( 2) ( · ) ( ) ( · ) ( · ) ( · ) Note:
( 3) ( · ) ( · ) ( · ) ( ) ( ) press' A s' to quit and
( 4) ( ) ( ) ( ) ( ) ( ) save !!· · · · · press' A q' to quit opera( 5) ( · ) ( · ) ( · ) ( ) ( · ) tion.
( 6) ( · ) ( · ) ( · ) ( · ) ( · ) press 'A Z' to ON/OFF
( 7) ( ) ( ) ( ) ( ) ( ) linearization.· · · ·
( 8) -( · ) ( ) ( ) ( ) ( · )
( 9) ( · ) ( · ) ( ) ( ) ( · ) Linearization = OFF
(10) ( · ) ( · ) ( · ) ( ) ( · )

INPUT OK ? (Y IN)

Figure 3-9. screen editor for command MK_FM.

EDIT

NAME OF THE IF - THEN RULE =
NUMBER OF THE RULES =

NUMBER OF THE Xi's =
<=21
<=5

Command: M~FR

Y

INPUT OK? (YIN)
Note: press A q to quit input II

press AS to save input

RO:
R1:
R2:
R3:
R4:
R5:
R6:
R7:
R8:
R9:
Rll:L::::===--=====---======--====---====--

Figure 3-10. the input screen for the IF-THEN rules.
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EDIT
Command: INFR D

NAME OF THE IF-THEN RULES =----
NAME OF THE INPUT
FUZZY SET: Xl =

X2=----
X3=
X4=----
X5= _

Method to calculate the weighting factor
of the Antecedent? ( 1 , 2 ) [ ]

Method of implication? (1, 2 ) [ ]
[1] = AA B, [2] = 1 A(l-A+B)

Narne of the fussy set
to store the result =----

Note: press "'q to quit input I
press '" s to save and run.

INPUT OK? (Y / N)

Figure 3-11. fuzzy sets direct reasoning.

(3) Fuzzy Data display

The fuzzy data display commands include

- DSP_UD: Display all the existing universal sets on the same screen by use of

MK UD command.

- DSP_FS: Display all the existing fuzzy sets in the structure list FSLIST graphically.

- DSP_T2: Display all the existing Type 2 fuzzy sets graphically.

- DSP_FR: Display all the existing groups of IF-THEN rules on the same screen by use

of MK FR command.

_ DSP FM: Display all the existing relation matrices on the same screen by use of
/

MK FM command.
-

When the fuzzy set membership values are displayed by graph, if these fuzzy set are

the result of some controller output files, then, their centroid will also be displayed on

the screen.
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rr============ FS-DISPI.AY ============'1

NAME OF THE FUZZY SET = deeel

NAME OF THE UNIV. SET = aceel

1\
1\

1\
- 1\
- 1\

1.0

0.9

0.8

0.7

0.6

0.5

0.4

03

0.2

0.1

0.0
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20

Figur 3-12. using the DSP_FS command to display a fuzzy set.

r;::::::=========== FS-DISPI.AY ============'1

NAME OF THE FUZZY SET = deeel

NA:ME OF THE UNIV. SET = aceel

20124-2-10

1.0 ,--------------....---------...,

0.9

0.8

0.7

0.6

0.5

0.4

03

02

0.1
0.0 ..-+J."4-L.,L--4J.~~_L..tL.4..L...t.T.L..4_L_f__'_~LrL__4""~~_..,......,-r---4

-20 -18

Figure 3-13 example of continuous fuzzy set structure, with 7 breakpoints
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rr============ TI-DISPlAY ==========='1

NAME OF THE FUZZY SET = t2-deeel

NAME OF THE UNIV. SET = t2-aceel

1.0

0.9

0.8

0.7

8.6

0.5

0.4

0.3

0.2

0.1

0.0 t--~+-,.---t-...-+--r-+--r-+-~+--.-+--.-+-..--t---r--l
o 2 4 6 8 10 12 14 16 18 20

Figure 3-14 A TI fuzzy set is displayed by the command DSP_T2.

Centroid positions are calculated by the CGA defuzzification method. The page up or

page down keys can be used to examine all the existing fuzzy sets in the list. Figure 3-

12 and Figure 3-13 shows an discrete fuzzy set and a continuous fuzzy set having 7

breakpoints are displayed by commands DSP_FS and DSP_CFS respectively. Figure 3-

14 shows the structure of a Type 2 fuzzy set by the command DSP_TI.

(4) Controller Program Generation

The command MK_CTR is used to organize those fuzzy data sets, which are involved

in fuzzy reasoning of a group of IF-THEN rules, to form a C program data file. This
I

data file is composed of fuzzy set names in ASCII forms. By adding to it head and tail

-
parts of a controller program (CTRHEAD.C,CTRTAIL.C), a complete source program

will be constructed. Using this command, we can construct a fuzzy controller for the

experiment set that will be discussed in chapter 4.
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(5) List of the System Functions and Commands

As mentioned earlier, a lot of computer memories will be saved if the fuzzy set is

represented by breakpoints. Therefore, several commands are modified for handling the

continuous fuzzy set in this system. They are specified by adding a capital "C" in the

command.

- Fuzzy set functions and commands

1. MK_FS : generation of a fuzzy set.

1a. MK_CFS: generation of a continuous fuzzy set.

2. MK_UD : generation of a universal set.

2a. MK_CUD: generation of a continuous universal set.

3. uni_fs : flnd the union of two fuzzy sets.

4. int fs : find the intersection of two fuzzy sets.

5. cpl fs : find the complement of a fuzzy set.

6. 1_cpl_fs : find the A complement of a fuzzy set.

7. t_norm: T-norm operation.

8. t_cnorm : T-eonorm operation.

9. center : centroid calculation.

10. mode : find the element of a fuzzy set with largest membership in the set.

11. cardnl : find the cardinal of a fuzzy set.

12. rl cardnl : find the relative cardnl.

13. height : fmd the highest membership value.

14. alph_cut : proceed the a-cut operation.

15. nrmlze : normalization of a fuzzy set.

16. concent : concentration operation. .
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17. dilatn : dilation operation.

18. cntrst : contrast operation.

19. sclrnlt : scale multiplication.

20. pow_mit: power multiplication.

21. convp : convex check.

22. nmlp : normalization check.

23. eqp : equivalent check.

24. incp fs : fuzzy inclusion check.

- linguistic variables and Type-2 fuzzy set functions.

25. very : VERY operation of a fuzzy set.

26. mr_or_ls : MORE OR LESS operation.

27. slightly : SLIGHTLY operation.

28. sort_of : SORT_OF operation.

29. pretty : PRETTY operation.

30. rather : RATHER operation.

31. Ing_tr_v : generation of the linguistic truth value.

32. MK_T2 : construct a T2 fuzzy set.

33. uni t2 : find the union of two TI.

34. int t2 : find the intersection of two T2.

35. cpl_t2 : find the complement of a TI.

- Fuzzy set relations.

36. MK_FM : generation of fuzzy relations.

37. dom : find the domain of the relation.
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38. range: find the range of the relation.

39. prj : find the projection.

40. c_ext: find the cylindrical extension.

41. inv : find the inverse relation.

42. uni_fm : union operation of two fuzzy relations.

43. int_fm : intersection operation of two fuzzy relations.

44. cpl_fm : complement operation of fuzzy relations.

45. cp_fs_fm : composition of the fuzzy set with fuzzy relation.

46. cp_fin_fin : composition of two fuzzy relations.

47. incp_fin : inclusion check of two fuzzy relations.

48. rfrp : reflection check.

49. symp : symmetrical check.

50. asymp : asymmetrical check.

51. trnsp : transition check.

52. eqevp : equivalent check.

53. prordp : proper order check.

- Fuzzy reasoning.

54. MK_FR : generation of fuzzy IF-THEN rules.

54a.MK_CFR : generation of IF-THEN rules for the continuous fuzzy sets.

55. INFR_D : inference by direct method.

55a.INCFR D: direct method of inference for the continuous fuzzy IF-THEN rules.

56. INFR ID : inference by indirect method.

57. tr_ql : truth qualification operation.

58. en_tr_ql : converse of truth qualification.
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59. MK_CTR : fuzzy logic controller program generation.

- Fuzzy set display and deletion.

60. DSP_UD : screen display of the universal set.

60a. DSP_CUD : screen display of the continuous universal set.

61. DSP_FS : screen display of the fuzzy set.

61a. DSP_CFS : screen display of the continuous fuzzy set.

62. DSP_T2 : screen display of the type- 2 fuzzy set.

63. DSP_FM : screen display of the fuzzy relation matrix.

64. DSP_FR : screen display of the IF-THEN rules.

64a. DSP_CFR : screen display of the IF-THEN rules of the continuous fuzzy sets.

65. DLT UD : deletion of a universal set from the structure list.

65. DLT CUD: deletion of a continuous universal set from the structure list.

66. DLT FS : deletion of a fuzzy set from the structure list.

66a. DLT CFS : deletion of a continuous fuzzy set from the structure list.

67. '7XDLT_TIleletion of a type 2 fuzzy set.

The functions listed above in capital letters are executable programs, and can be used

directly as commands. The size of the complete software suite is about 2M bytes. This

forms a complete development system for the construction of fuzzy logic controllers.

3.3.2 Fuzzy Control Program Design

Using the development system described in the previous section, a fuzzy controller

-

program can be made. The main function of the development system is to construct an

FKB to meet specific requirements. The process of control program generation involves

assembling various program segments written in C. These program segments include: .
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a header file, the main program, and all the subroutines. The FKB takes the form of a

two dimensional array and is declared at the beginning of the "mairu)" program. The

program "maim)" is not only capable of handling the fuzzy control data, but can also

perform the process control functions. It therefore has to perform tasks such as input and

output signal manipulation, control data formating, controller parameter setting and the

display of status information. The main algorithm of this fuzzy control program is

shown in the flow chart in Figure 3-15. In the main control loop, as shown in Figure

3-15(a), the signal input from AID converter is transformed to a fuzzy singleton by

scale mapping, and then it is used to find the array index of the corresponding

antecedent fuzzy sets. There are seven quantization levels for the inputs, therefore, the

indexes are labeled from 0 to 6. After the antecedent fuzzy sets are found the

approximate reasoning procedure subroutine will be called. The flow chart of this

subroutine is shown in Figure 3-15(b). The fuzzy reasoning of the first type, that is

using Mamdani's minimum operation rule as fuzzy implication function, is applied in

this thesis. Therefore, the main task for this subroutine is to find the weighting factors

for each input rules involved by fuzzy minimum operation, and then get the minimum

one by comparison. For each rule, the consequent fuzzy set will be found by cutting

the corresponding output fuzzy set with this minimum weighting factor. Before the

subroutine returns, the output fuzzy set is constructed by maximum operation of these

consequent fuzzy sets. Finally, the controller output value is calculated by applying the

eGA method of defuzzification to the resulting output fuzzy set.
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Setting the parameter
& all the scaling factors

y
N

y

Input from AID converter

Forming the fuzzy singleton by
scale mapping and finding the
array index of the corres­
ponding antecedent fuzzy sets

Call
Approaximate reasoning procedure

subroutine

Defuzzification by method
of Center of Area

Output-the control signal
through DfA converter

Figure 3-15(a) Flow chart of the fuzzy control main program.
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Find the weighting factor

of jth input in ith rule.

Get the min. weighting
factor by comparing
with the previous one

Find the consequence of the ith rule
by cutting the output fuzzy set with

the min. weighting factor.

Max. operation of the resulted
output fuzzy set.

Figure 3-I5(b) flow chart of the approximate reasoning procedure,

3.4 Experimental Setup for the Fuzzy Controller

The fuzzy controller was implemented using a 486-based ffiM compatible PC. This

was fitted with a high speed ADC/DAC board (PCL-8I8H high performance data
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acquisition card by Advantech Co., Ltd.) The main feature of this interface control card

includes:

(1) 16 analog input channels.

(2) A standard 12 bit successive approximation AID converter is used to convert

the analog inputs. The highest AID sampling rate is 100 KHz in DMA mode.

(3) Software selectable analog input ranges.

Bipolar : +0.625V,j-1.25V,j-2.5V,j-5V, + lOY.

Unipolar: 0 to + 1.25V,0 to +2.5V,0 to +5V,0 to + lOY.

(4) Three AID trigger modes: Software trigger, programmable pacer trigger

and external pulse trigger.

(5) An Intel 8254 Programmable Timer/Counter provides pacer(trigger pulses) at

rates from 0.00023 Hz to 2.5 MHz.

(6) One 12 bit monolithic multiplying DIA output channel with an output range

of OV to + lOY.

In this experiment, the Bipolar +5V analog input and Software trigger were selected.

However, a bipolar output voltage was required, a level translator and amplifier circuit

was constructed using operational amplifiers to generate .±J8Vfrom the DIA output.

This output is carefully calibrated to give a linear change of 7.4mVIbit.

In many cases, differentiation or its numerical equivalent, differencing is needed in

a process, however, which is a "roughing" process. It is sensitive to and accentuates data

errors. Hence, a sixth-order Butterworth filter is applied for anti-aliasing before the AID

converter. Another sixth-order Butterworth filter was connected after the DIA converter

to act as reconstruction filter. For convenience, a square wave of 3.1V pk-pk

approximately was chosen as the input signal for the experiments.

-77-



Chapter 4

The Relationship between Fuzzy
Decision Table Scaling Factors and
the Control Constants of a Digital
PI Controller

Since Mamdani's first success, a lot of applications of his pioneering efforts in

fuzzy controller design have been reported [53]-[55]. However, many practical fuzzy

PI controllers suffer from oscillation problems. Liaw and Wang[56] tried to

overcome these problems in an induction motor control task, by switching an integral

controller into their system when the fuzzy control action reached a certain limit

cycle zone. Jihong Lee[57] tried to tackle the problems by using fuzzy control input

resetting techniques. However, neither of these approaches was totally successful.

Based on Tang and Mulholland's[58] study ofthe relationship between the scaling

factors of the MacVicar-Whelan rule-based fuzzy logic controller[59] and the

equivalent linear PI controller coefficients, a detailed study was made of the decision

table structures and the relationship between fuzzy PI and classical PI controller. The

results of this study are described below.
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4.1 Comparing Various Control Decision Tables

The decision tables used by Tang, Liaw & Wang, and Jihong Lee are very

different. We shall see later that, from a study of the performance of the various

controllers, it is concluded that the decision table from Jihong Lee's paper are the

most appropriate for the construction of an FLC.

4. 1.1 A comparison of digital PI and fuzzy controllers

In many cases, a discrete-time set-point PI controller will be adequate to control

a particular process. If the error e(k) at step k is the difference between the process

output and the set-point value, then the error and its incremental change are related

by the expression

. de( k) - e( k) .- e( k-1) (4-1)

and e(k) and de(k) provide inputs to the controller. The controller output u(k) is

given by

u(k) = u(k-1) + du(k) (4 -2)

and is used to drive the plant. The well known incremental or velocity form of the

ideal PI controller can be written as

OW (4-3)

where K., is the proportional control gain, K, is the integral control constant and T,

is the sampling interval.

With the same inputs and outputs, however, a fuzzy controller has the internal

structure of an expert system. The knowledge base of a fuzzy logic controller usually
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consists of rules of the form: "if e(k) is 'positive large' ( + L)and de(k) is 'negative

medium' (-M), then du(k) must be made 'positive small' ( +S)." These linguistic

variables + L,-M and -S are represented by fuzzy subsets of discrete universes of

discourse of the controller variables.

Inference is given by a relationship defined as a fuzzy subset of the Cartesian

product formed by the three universes of discourse for the controller variables. Then,

using the compositional rule of inference, a fuzzy subset for du(k) can be found even

when the controller inputs are non-fuzzy.

4. 1.2 Comparing various decision tables

The decision table for the MacVicar-Whelan[59] generalized fuzzy PI controller

used by Tang and Mulholland is shown in Figure 4-1. The universes of discourse of

the error e(k) and error change de(k) are quantized into fuzzy sets of seven levels,

with L =largeM =medium$ =small,' + ' standsfor positive and' -' stands for negative.

Liaw & Wang used a different linguistic control rules table in their experiments[56]

+L +L +M +M +s +s 0

+L +M +M +s +s 0 -s

+M +M +s +S- 0 -S -s

+M +s +s 0 -s -s -M

+s +S 0 -s -s -M -M

+5 0 -5 -5 -M -M -L
7

0 -5 -5 -M -M -L -L

derk)
-L -M -S 0 +S +M +L

+L

+M

+S

e(k) 0

-S

-M

-L

de(k)
L M S 0 +0 -s +M +L- - - -

-L -0 -s -M -L -L -L -L -L

M +S -0 -s -M -M -M -L -L
S+M +s -0 -s -s -s -M -L
O+M +M +s +0 -0 -s -M -M

0 +M +M +s +0 -0 -s -M -M

+L +M +s +s +s +0 -s -M

+L +L +M +M +M +s +0 -s

+L +L +L +L +L +M +S +0

+

+

-S

-M

-L

+

e(k) +

Figure 4-1. Decision table for
MacVicar- Whelan generalized
PI controller.

Figure 4-2. The decision table
derived from Liaw & Wang's
linguistic control rule table.
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as shown in Figure 4-2. For easy comparison, their symbols are somewhat changed

here to be compatible with Figure 4-1. Clearly these two tables are very different.

To investigate the characteristics of these two approaches, it is useful to look at the

corresponding system responses.

Figure 4-3 shows the typical output response of a stable closed loop system.

According to the magnitude of the error'e' and the sign of the change of error'de' ,

the response plane is roughly divided into four areas. The index used for identifying

these areas is defined as

a l : e >0 and de <0, ~: e <0 and de <0

a, : e < 0 and de > 0, a4 : e > 0 and de >0

A and C are the set point cross over points. Band D are the maximum and

minimum points. Consider initially, the situation when the decision table of Figure

4-1 is used. In this case, at the cross over point A, which corresponds to the situation

where the e= +0 and de=-L(negative large), the control output is set to +M.

de(k)
-L -M .s 0 +s +M +L

Time

, "
a l : az a, : a, : 0 +8 +8 +M +M +L +L

-8 0 +8 +8 +M +M +L

-8 -8 0 +8 +8 +M +M

-M -8 -8 0 +8 +8 +M

-M -M -8 -8 Q +8 +8

-L -M -M -8 -8 0 +8

-L -L -M -M -s -8 0--L

-S

-M

+L

+M

+s
e(k) 0

_-... Set point

Figure 4-3 The general waveform
of a system response.

Figure 4-4. Lee's control rule
table.
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If we assume the conventional closed loop situation where the feedback signal is

subtracted from the input reference signal to produce the error signal, then, at this

point the controller increases its output to the plant positively, which will further

increase its overshoot, thus drive the plant response in the wrong direction. Similarly,

at the points B, C and D there is a similar problem with the rules selecting an output

of the wrong sign. Thus, for the conventional closed loop situation the polarity of the

MacVicar-Whelan table must be reversed to ensure stability.

If we now consider the decision table of Figure 4-2, for the Liaw & Wang's

case, the maximum and minimum points Band D are correct but the cross over

points A and C produce an output of the wrong sign. This represent 90 0 rotation of

the required control action and it is clearly wrong.

The control rule table of Figure4-4 is that due to Jihong Lee[57]. Study of this

table shows that it generates outputs of the correct polarity under all conditions. For

this reason, a table of this form is used in the remainder of this work. The table due

to Jihong Lee corresponds to that of MacVicar-Whelan with its polarity reversed.

4.2 Comparing Fuzzy Logic with Classical Controller Design

Tang and Mulholland[58] have proposed a unified approach for comparing the

performance of fuzzy and non-fuzzy controller designs. They point out that the fuzzy

control rule tables represented by Figure 4-1 and 4-4 show a definite pattern of

symmetry about their main diagonal. Projecting the entries onto an axis

perpendicular to the main diagonal demonstrates the fuzzy segments for control

policy in terms of the resultant overlap among the various values of-du(k). This

means that, as shown in Figure 4-5, those regions formed by grouping the areas

with the same output strength is the fuzzy segments having the same control policy.
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defk)
-L +s +M +L -L -M -s 0 +s +M +L

+L 0 +L +L +
+M -s +s +L +
+s -s 0 +S +S +M

e(k) 0
-M +S +S e(k)

-s -M 0 +S +S
-M -S 0 +S
-L -s -S 0 -L

Figure 4-5. The boundary lines
formed by regions with the
same output strengths in a

decision table.

Figure 4-6. Decision table obtained
by halving the quantization
levels.

The overlap is clearly less fuzzy when the

detk)

-L -M -s 0 +S +M +L

quantization of the independent variables is

halved as shown in Fig. 4-6. We can

continue this process of reducing the

quantization levels until the frontiers of the

control regions no longer are fuzzy.

+s
e(k) 0

-s
-M

-L

Then, the control policy that results from

an infinitely fme quantization is, as shown

Figure 4-7 Decision table with
infinitely fme quantization
levels and seven control
output bands.

in Fig.4-7, where du, (i=-3,-2, ... , +3) denotes the quantized controller outputs.

If the regularized control frontier lines have a slope -C, as shown in Fig. 4-8,

then, the control action dux of a particular operating point (ex,dex) can be determined.

The straight line with slope -C through the operating point is:

= -c (4 -4)
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+8

e(k) +0

-0

-8

-M

-L

de(k)
-M -8 -0 +0

+ D

+L

T
E

E

Figure 4-8. Idealized decision table for a linear PI controller
where the line L1 represents the regularized control
frontier and the line L, (slope l/C) represents the
range of control actions.

where, C depends on the scaling. Therefore, if the error range E and the change of

error range D of the decision table are introduced for scaling, then equation (4-4)

will become

e ex
-
E E -c (4 -5)=

de dex
- --

D D

Note that the constant C here is not equal to the constant C in equation (4-4).

The line(~), perpendicular to this line, that passes through the origin is
I

e
E
de
D

1=
C
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C;(~,~_

-

Solving (4-5) and (4-6) gives

and

e
E

=
dex+ c--]

D
(4 -7)

de
D

= (4-8)

Thus, combining equation (4-7) and (4-8), the projected distance from the point

(de,e) to the origin which is

(4 -9)

This distance is linearly proportional to the control action, and therefore we can

rearrange this to give

du =x (4-10)

where P is the constant of proportionality to produce the real output du.,

Now, without out lose of generality, let C = lThen this equation become

P ex dexdu = [ + ]
x ..j2 E D

(4-11)

Comparing this with equation (4-3), we see that equation (4-11) represents the

characteristic equation of a classical PI controller with the control constants

K = J!...­
P .f2D

( 4 -12 )

K.·T =
~ s

P

.f2E
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Therefore, if D and E are the maximum ranges of de" and ex in the fuzzy decision

table, the smaller the value of D the more de" affects the control result. Thus, since

T, is a constant, varying D and E will have the same effect as varying the value of

Usually after inference, the scaling factor 'U' has to be applied, which is the

maximum range of the support element in the universe of discourse for du.. This

means that the true controller output values will be limited by the range ±U before

it is actually fed to the system. At the extreme ends of the control table, where e,,=E

and de"= D the following relationship is found from equation (4-11)

U = fL.p ( 4 -14 )

This gives p=U/(2)1/1ind equation (4-12) and (4-13) can be rearranged as

UK··T =
.z s 2E

UK =
p 2D

(4-15)

( 4 -16 )

Thus, K, and ~ are directly proportion to the value of range U. Therefore, just as

the design of a classical PI controller involves choosing the right values for the

constant K, and K, the design of a fuzzy PI controller involves the task of choosing

the proper values for U, D and E. In later chapters we will look at experiments

which illustrate the equivalence of the ranges E, D and U in a fuzzy controller, to

the variables ~ and K, in a PI controller. Some range modification techniques which

can be applied to improve the control response are also introduced in the following

chapters.
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Chapter 5

The Effect of Scaling Factors on a
Fuzzy PI Controller

In this chapter, we first look at the design of a fuzzy logic PI controller, and at

methods used to test it, using an analog simulation of a plant, which allowed a

comparison with a conventional digital PI controller. Following this, the chapter then

describes a detailed study of the effects of the choice of scaling factors on the control

actions of a fuzzy PI controller. This shows that there are several limitations on

choosing the decision table ranges in order to avoid saturation or overdamping effects.

In some cases, if choosing the range of error change D is too small or error range E is

too large, it will result in a special sliding motion phenomenon. The boundary conditions

of this sliding regime will be discussed latter in detail. Moreover, a different way of fme

tuning a fuzzy controller is possible by varying the decision table ranges and by

changing the fuzzy controller itself. If necessary, the fuzzy PI controller can be changed
/

easily to become an integral controller without the addition of a special integral

-
controller. At the end of this section, a variable structure systems(VSS) formed by

fuzzy PI and PD controllers are also tried to control a second order system.
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5. 1 Experimental setup

For this series of experiments, a set of analog control modules based on operational

amplifiers was used to model the target plant. By varying two amplifier gains K
1

and

K2, and adding on integrator l/s, any desired plant transfer function of the form

K1/(s+K2) could be produced. The experimental arrangement used is shown in Figure

5-1. This set up can be used to investigate the performance of either a digital PI

controller or a fuzzy PI controller. As mentioned in chapter three(section 3.4), the fuzzy

PI controller is implemented using an IBM compatible PC. The digital

Controller

C

I
I

I
I !
I I
I JL- -

I
--------------~

1-------------- 1

I Digital II
I r PI ~lI I Controller I

I I I
I I
I

~_--.----, I

I Fuzzy
PI

Controller

I

R + e I Lowpass
ND

filter X

Figure 5-1. A block diagram of the experimental setup.

PI controller uses the same hardware, for which the velocity algorithm described in

equation (4-3) is applied. The design of the fuzzy PI controller is described in the next

section.

5.2 The Fuzzy PI Controller Designed for this Experiment

In common with most other researchers' ,the fuzzy reasoning method selected for this

application is Mamdani's minimum operation method. In this experiment, the error and
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error change are used as the two control inputs. These are crisp values, which are

referred to as fuzzy singletons.

To define the fuzzy linguistic control rules as shown in Figure. 5-3, the membership

functions corresponding to each element in the linguistic set must be defined. Although

many types of membership function can be defined, the equal triangular type as shown

in Fig. 2-4 is applied here, for simplicity. The universe of discourse of the error (with

range -E to +E)and error change (with range -D to +D)are quantized into 7 levels,

-L -M -s 0 +s +M +L
1

<U
-0ro
l-.
on

0
0 1 2 3 4 5 6

universe of discourse

(a) membership functions for E & D

-H -L -B -M -s -T 0 +T +s +M +B +L +H
1

<U
-0ro

0.5l-.
on

0
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

universe of discourse

(b) membership functions for U

Figure 5-2. The membership functions.

from 0 to 6. The linguistic sets used to represent these levels are

{-L , -M, -S , 0 , +S , +M, +L } (5 -1)

where '+ 'is positive, '-' is negative, S is small, M is medium, L is large and 0 is zero.
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However, in order to send an inferred result to the output with more fine quantization,

the controller output du (with range -U to + U)is quantized into 13 levels from -6 to

6. The linguistic sets used are shown below

{-H, -L , -B , -M, -S , - T ,0 , +T , +S , +M, +B , +L , +H} (5 -2)

where T is tiny, L is large and H is huge. The membership functions of these

quantization levels are also expressed in Figure 5-2. Figure 5-2a shows its simplified

single character sets which was used in

the decision table. The linguistic

control rules considered earlier and
deCk)

-L -M -5 0 +5 +M +L

defined by Figure 4-4, but with thirteen +L

quatization levels for the controller

output, are shown in Figure 5-3. This

table implies the conditional rules, for

example, that the element of the first

row and seventh column is +Himplies

+M

+5
e(k) 0

-5

-M

-L

0 +T +s +M +B +L +H
-T 0 +T +s +M +B +L
-s -T 0 +T +s +M +B
-M -s -T 0 +T +s +M

-B -M -s -T 0 +T +s

-L -B -M -s -T 0 +T
-H -L -B -M -s -T 0

that Figure 5-3. The linguistic control rules
used in this experiment.

IF e(k) is +Land de(k) is +L

THEN the control input to the plant is + H.

The scaling factors E, D and U are not fixed as is usually the case, because they will

be used as varying factors to see their effects on K, and K, and also will be used as

tuning factors.
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5.3 The fuzzy PI controller experiments performed

Using the experimental setup which has been described in section 5.1 as the target

plant and a step input change, a series of fuzzy PI controller experiments were

performed as described in this section.

5.3.1 The effect of varying the decision table ranges on the behavior of a Fuzzy PI

controller and its comparison with the control constant of a digital PI controller

Some experiments were performed to see if the ranges D, E and U of a fuzzy PI

controller could be varied to achieve similar characteristics as those obtained by setting

the constants K, and K, for a digital PI controller. First, an experiment was performed

by setting the digital PI controller constants K,*Ts = 0.1 (T, is the sampling rate) and

varying its~ value while controlling a plant with a transfer function of l/(s+ l)ln the

fuzzy controller case, for each value of K, used by the digital PI controller, equations

(4-15) and (4-16) were applied to calculate the corresponding values of U, E and D.

Initially, the value of E was set to 3V, and D was varied by varying ~. The results

obtained are shown in Figure 5-4(a) and 5-4(b). The fuzzy PI controller was similar to

the digital PI controller in the way the overshoot and oscillations decreased with

increasing K, values. However, the output waveform of the fuzzy PI controller looks

similar to the digital PI controller only when K, was less than 3. Above this value it

tended to be heavily overdamped. The reason for this effect will be discussed in detail

in the next section.

Next, an experiment was performed by setting K, = 6 and varying K, in the digital

PI controller and selecting equivalent values for the fuzzy PI controller by E, to drive

the same plant l/(s+l).The results are shown in Figure 5-5. In both cases, the ripple

and overshoot increased with increasingK. In the case of the fuzzy PI controller, once
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the value of K, became less than O. 16 the damping of the system response became very

significant. The reason for this effect will be discussed in the next section.
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Figure 5-4. The output of a plant 1/(s+ l)which was driven by (a). a. fuzzy
PI controller with ranges E = 3V,U = O. 6V and by (b) a digital PI
controller with constant Kj·Ts=O.1.Kp is varying in both cases.
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Figure 5-5. The output of a plant 1/(s+ 1)was driven by (a) a fuzzy PI
controller with ranges D = O.2Vand U= 2.4V,(b) a digital PI
controller with constants K,=6,Kj was varied in both cases.
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5.3.2 Limitation of the decision table ranges.

As mentioned in the previous section, the behavior of a fuzzy PI controller is largely

determined by its control decision table. Unlike an ordinary digital PI controller, where

the control trajectory can move freely in the phase plane, the fuzzy controller decision

table ranges will impose limits on the changes to its variable. When these limits are

reached the system output can exhibit the characteristics of a sliding control or show an

overdamped response. To investigate this effect experiments will be conducted on the

same target plant, 1/(s+ 1),with a 3.1V step input change, when controlled by a fuzzy

PI controller. The limits on D, E, and U coud then be studied.

(1) The saturation phenomena caused by decreasing the values of the E, D and U ranges

together with the same ratio.

To see the influence ofan inappropriate choice ofthe control decision table ranges

D, E and U, an experiment was performed by keeping K, and K, constant while

increasing or decreasing the E, D and U ranges by the same factor. Since K,= U/2Dand

K,-T, =U/2EJf D, E and U are varied by the same factor, both the values of~ and K,

remain the same. The effect of these changes are illustrated in Figure 5-6. This shows

a control action trajectory drawn as a dashed curve within a control table having E and

D set equal to "1". It also shows a second control table formed by halving the values

of E and D. This results in a table of reduced size. Use of this second table will result

in some of the control action trajectory points falling outside of the new control table.

This will result in these points being limited at the extreme edges of the new control

table. In other words, the control output du will be saturated at the maximum values of

its output ranges.
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When the actual inputs de(k) or e(k) are limited to their maximum E or D ranges, the

output du will be saturated at this point by the output fuzzy set assigned to it, and this

will result in an

(1) E=l, D=l

(2) E=l/2, D=l/2

deCk)
-L -M -s 0 +S +M +L

+L .s->

T+M saturated trajectory
E

+s (1)

1e(k) 0 2)

r-S

-M control action E

-L
trajectory 1

!< D >1< D >I

Figure 5-6. The effect of decreasing E, D and U together
by the same factor. ~ and K, are constant.)

inadequate driving force being produced. This means that the system will respond more

slowly if the values of E exceeds some range. This results in a longer rise time and an

overdamped output response.

If all the E, D and U ranges are increased sufficiently in the same ratio, the

complete trajectory will now be included in the new control table, and no output

saturation will occur. Therefore, as long as the actual control trajectory can be included

in the control table, increasing or decreasing the D, E and U by the same factor will not

change its output value. The experimental results of using different values"ofD, E and

U while keeping K, and K, constant are shown in Figure 5-7(a). The control trajectories

and the total number of saturation points reached within 1000 samples are shown in (b), .

-95-



(c), (d) and (e). From (b) to (e), the ranges of E, D and U are decreased by the same

factor. No saturation point was found in Figure 5-7(b), but the number of saturation

points increased with decreasing decision table ranges. Figure 5-7(e) shows the worst

case with 121 positive and 119 negative saturation points. In fact, although not shown

in the Figure, when all the ranges are expanded by 50%, they became E=18V,D=0.6V

and U = 3.6Vand the output response keeps almost the same shape as Figure 5-7(b).
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Figure 5-7(a). The output of a plant 1/(s+1)controlled by
a fuzzy PI controller with different E, D and
U values but keeping K,=3.K,-T, =0.1.
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(b)The control trajectory of E= 12V,
D=O.4Vand U=2.4VNo error
saturation points were recorded
in this experiment.

(c) The control trajectory of E=3V,
D=O.lVand U=O.6V.There were
3 positive and 2 negative error
saturation points recorded.

de<x> de(x)
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+L
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(d)The control trajectory of E=O.75V,
D=O.025Vand U=O.15V.There
were 65 positive and 64 negative
error saturation points recorded.

(e)The control trajectory of E=O.375V
D = 0.0125Vand U= O.07,sV.There
were 121 positive and 119 negative
saturation points recorded.
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(2) The influence on the control action of decreasing the range D while keeping E

sufficiently large.

The experimental results presented in Figure 5-4 show that the output waveforms

of the fuzzy PI controller are similar to the output of a digital PI controller only when

D is greater than 0.1 V. When D is below this value the response tends to be heavily

damped. This can be explained as follows. Assume that the maximum error signal e(k)

caused by the step input change is at about the same value as the error range E. Then,

decreasing the range D while keeping E constant will cause the starting point of the

control trajectory on the control decision table to shift left into different output fuzzy

sets. As shown in Figure 5-8, curve (1) represent the normal control trajectory produced

by setting D =0.1 Curve (2) and (3) are the results of decreasing the D value by 1/2 and

1/4. The starting position of these curves are different. Their corresponding control

output fuzzy sets are +M, +Sand +Trespectively. Therefore,curve (2) has less driving

force

defk)

-L -M -s 0 +S +M +L (l)D=O.l

T+L (2) D = 0.05

+M (3) D = 0.025
E

+s 1e(k) 0

r-s
-M E

1-L
1< D >1< D >1

Figure 5-8. effect of decreasing the value of D range.
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(c) D=O.05V (d) D=O.025V

Figure 5-9. The control trajectories of Figure 5-4.

than curve (1) and thus less overshoot. Moreover, the control output fuzzy set of curve

(3) is +T,which is too weak to drive the system deep into the negative"part of the

control table. Then, it can only swing back and forth along the zero line and be driven

to the origin in a manner similar to a sliding mode controller. Figure 5-9 shows the
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control trajectories corresponding to the experiment results of Figure 5-4, and confirms

that the sliding control phenomenon does happen in Figure 5-9(d). This is analyzed

further in section 5.4.

(3) The damping effects caused by setting the error range E too large

We have noticed that there is another damping effect occurring in Figure 5-5(a). The

control trajectory of the third curve in Figure 5-5(a) whose error range E=7.5Vis shown

in Figure 5-10(b). For comparison, the trajectory for E=3with the same D and U as

in Figure 5-5(a) is also shown in Figure 5-10(a). Figure 5-10(b) shows that when

E=7.5V,the largest e(k) which caused by the step input changes are about +3.1Vor

-3.1V, therefore, it could only drive the control trajectory to the frame (0, + S)in the

+L

+H

+S

e(x)

0

-s

-M

-L

de(x)

-L -M -s 0 +S +M +L

0 +T +S ~ .. ,~ . +H.---r>
-T 0 +T +S +M 7 +L

~

-s -T 0 +T ;/ +H +8
r:

-M -S -T Q( +T +S +M
Pl

~
~

-8 -M f-T 0 +T +S

;/ "-""
-L -M -s -T 0 +T

,/ -" -T 0-. ~ -0 'M -S

+L

+M

+S

e(x)

0

-S

-M

-L

de(x)

-L -M -s 0 +S +M +L

0 +T +s +H +8 +L +H

-T 0 +T +S +M +8 +L

-S -T 0 +T +S ~ +8
,./

181
»<

·M -~ .... +T +S +M
~ t-- -..f---

---- I()-8 -M -s -T ~ .Ao~

-L -8 -M -s -T 0 +T

-H -L -8 -H -S -T 0

Figure 5-10(a) output fuzzy set is
+Mwhen E=3V,D=0.2V
and U=2.4.

Figure 5-10(b) the output fuzzy set
is +Twhen E=7.5V,D=0.2V
and U=2.4.

second quadrant or (O,-S) in the fourth quadrant. In this case, the consequence fuzzy set

for the positive output is + T (about 1/6 of + H) and -T for the negative output.

However, in Figure 5-10(a), if E was set equal to 3V, the same input change will make

the maximum positive frame reached in the second quadrant become (0, + L),for which
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the output fuzzy set is +M(about 1/2 of +H). Since the values of U are the same for

both cases, E=7.5 will produce weaker controller outputs than E=3 h I, ence, ess

overshoot or a more damped response is obtained.

The sliding control phenomenon could also happen in the case of the error range E

having too large setting. This will be discussed in the next section.

5.4 Sliding control of a fuzzy PI controller caused by choosing too small a value of D

or too large a value of E

5.4.1 The negative gain caused by choosing too small a value of D

As mentioned in section 5.3, when the range of error change D in a fuzzy PI

controller is made too small, it results in a special sliding motion as shown in Figure 5-

9d. The reason for this sliding characteristic and its theoretical background will now be

discussed in more detail. The sliding motion phenomenon is often found in variable

structure systems (VSSs). Usually, the structure of such a system is changed

intentionally in accordance with a preset structure-control law. The control laws

developed in the theory of VSS provide for changes in the structure of the system

whenever the representative point (RP is a point which represent the position of a

control trajectory in the phase plane) crosses certain surfaces (hypersurfaces) in the

phase space of the system. We shall see later that the hypersurface is a straight line

x,+a'x
2
= O in the phase plane where x, is the error and x2 is the change 9f error. On

each sides of this line the system structure is different and this will produce two phase

plane trajectories with opposite directions in the neighborhood of the line. The system

will move back and forth between the two regions divided by this line and gradually

slide down along the line to the phase plane center.
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Sliding motion control theories have been developed earlier by Itkis[60], Utkin[61]

and several others[62,63,64].Their concepts will be applied in the next section to study

sliding motion control in a fuzzy controller. First, however, we shall consider the cause

of the sudden change in the fuzzy PI control system structure.

Consider a fuzzy PI controller which has the control decision table shown in Figure

5-11. The error and error change ranges are set as E and D respectively. Then, the

diagonal line L1 with slope -c (c=E/D) will divide the table into two parts, the upper

right part produces positive control output du while the lower left part generate negative

duo If, at some instant, the control motion is located at the point (dex,ex), as shown in

the figure, this will generate a positive du since, in this example, the point is in the

upper right portion of the table. If ex is held unchanged then the horizontal distance F

from this point to the diagonal line L1 can be written as

(5 -3)

It can be seen that F > 0 will generate positive du but F <0 will output a negative duo

When F > 0 the following condition exists

dex

D
< (S-4)

Therefore, if we choose a new value D' which is too small to make the R.P moving

into negative du part, then this inequality will no longer hold. This mea~ that a point

(dex,ex) in the fuzzy decision table above line L1 should generate a positive duo
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Figure 5-11. The negative sign caused by choosing
too small value of D.

However, after scaling by this value D' it falls into the negative part of the new table

of range D' as show in Figure 5-11 and thus generates a negative duo Consequently,

before the control action moves across the L, line, the fuzzy controller behaves like a

normal PI controller generating positive duo However, once it crosses line~ and moves

into the region between line L1 and ~, it behaves as if a '-1' gain is instantaneously

switched into the control loop and K, is multiplied by K. Since the I range E is

unchanged and supposed to be a proper value, K, remains the same. From chapter 4, the

value of K is approximately equal to F2/F1 the ratio of the projected distance from line
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R ex (xd+ Kp·S +K· u 1 y1- S S + 1

Note: the error ex is chosen as State variable X,

Figure 5-12. The block diagram of a plant l/(s + l)being
controlled by a fuzzy PI controller with proper
D range.

+ ex K·Kp· S + K· -1 u 1 y1 r---- S S + 1

R

Figure 5-13. A plant l/(s+ l)is controlled by a fuzzy
PI controller with too small value of D' .

~ and the distance from line Lt. Figure 5-12 and 5-13 represents the structural changes
I

of this special phenomenon.

From equation (5-4) the range of D which makes the relation~=U/2D valid is

given by
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dex
E' < D

ex (5-5)

On the contrary, if D' meets the following inequality, it is a range too small to locate

the right control action point (dex,ex) on the decision table.

(5-6)

Note that when F =0,110 sliding regime is present and the slope of L, is equal to L
l
. If

the ratio of E:D is kept constant (that is the slope L, is kept constant) there will be no

slide regime no matter how small D becomes. This system property was illustrated in

Figure 5-7. The system is then only affected by the decision table saturation

phenomenon which was discussed in the last section. Thus, instead of fmding a

minimum value for D or a maximum value for D', it is more convenient to find the

value of the E/D ratio that correspond to the start of the sliding regime, This ratio can

be expressed by ~/(Ts-:K) from equation (4-15) and (4-16).

5.4.2 Theoretical explanation of the sliding mode control caused by the introduction of

a negative gain in the controller to form a variable structure system (VSS).

Consider the plant of Figure 5-12, whose free motion is described by ~e following

system of differential equations:
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dX1
X 2-- = (5-7a)

dt

dX2 - K i x 1 - ( Kp +1 ) X 2 (5-7b)-- =
dt

where x, is the difference between the reference input R and the output signal y of the

system, so, it is equal to the error ex and X2 is equal to the error change rate de/Ts•

There are three phase-portrait types for this system, depending on the relative position

of the roots of the characteristic equation:

(5-8)

The possible phase-portraits are as follows:

1. The roots are real, negative and distinct, say Al < A2 < O. The phase trajectories

(Figure 5-14a) are parabolas, with two asymptotes:

1 0 (5 -9 a)
°1 = Xl + A x 2 =

1

1 0 (5 -9b)
°2 = Xl + -X2

=
A 2

The system is globally asymptotically stable (whatever the initial position of the

representative point (RP) in the phase plane).

2. The roots are real, negative and equal, say Al =~=A<O. The phase trajectories

(Figure 5-14b) are convergent parabolas, but have only one asymptote:
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3. The roots are complex with negative real parts' ReA Re A <0 Th h trai
• } , 2 • e p ase rajectory

as shown Figure 5-14(c), is a spiral. The system is globally asymptotically stable

(oscillatory) .

Each of the above portraits corresponds to a certain system structure that may be

represented by the block diagram of Figure 5-14. Each portrait corresponds to a distinct

set of values for ~ and K. All three systems are stable. However, if a negative gain

-1 is included in the system loop, as shown in Figure 5-13, the whole system will

become unstable and is described by the equations

r
dX1 = x (S-10a)--
dt 2

1
dX2 = Ki'X1 + (Kp'K - 1) x 2 (S-10b)--
dt

The characteristic equation becomes

(5-11)

The roots are real and of unlike sign, A} <0 and 0 < A2 . The phase trajectories are

hyperbolas (Figure 6-7d) with two asymptotes that are given by equation 5-9. The slopes

of these are (1/A}) and (1/A2)' The system is unstable, but there is a unique phase

trajectory (a} =x} +(I/A})x2=O) along which the representative point (RP) moves

asymptotically to the origin.

Now, consider the case where a plant 1I(s+1) is controlled by a fuzzy PI controller

in which the D' (the range of the error change) and E (the range of the error) are chosen

such that ~ and K, produce two distinct negative real roots in its characteristic

equation. This should have a spiral portrait in the phase plane. as in Figure 5-14.

However, if D' is reduced until it is too small, an additional gain of "-1" is included in
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the system loop whenever the representative point RP moves into the region

Figure 5-14 The phase portrait of the first order system (1/5+1)
controlled by a fuzzy PI controller

between L1 and L, (see Figure 5-11). Under these circumstances the phase trajectory will

become hyperbolic since its characteristic equation (Equation 5-11) will have two real

roots of different signs.

As the RP moves into and out of the region between L1 and L, the plant structure will

switch between these two modes of operation. ~ acts as a switching line for the

structure, since at the instant when the RP reaches this line the structure of the system

switches instantaneously from spiral to hyperbolic. Lz can be described by the equation

(5-12)

Note that Ts is introduced into this equation because it will be necessary for the

calculation involving K, and K,

lt is obvious that L1 is another switching line. Although we don't know the exact

value of the proper range D, we do know that it lies it the same quadrant as L, and can
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be expressed as

(5-13)

Since D' < Dthe slopes of L, and L I have the following relation

T -E T -E
s > s
D/ D

The phase plane is then divided by the two lines LI and L, into four regions (see Figure

5-15a)- The structure being spiral in regions I and III, and hyperbolic in region II and

IV- Then, the sliding control phenomenon will be decided by how the asymptotes

a=xI +(1/AI)X2 =0 lie in the phase plane. These four regions are specified by the

following conditions

Region T'E T'EI: Xl + s / x 2 > 0, Xl + s X > 0
D D 2

Region
T-E T-EII: Xl + s / x 2 < 0, Xl + s X > 0
D D 2

Region
T'E T-E

III: Xl + s / x 2 < 0, Xl + s X < 0
D D 2

Region
T'E T-E

IV: Xl + s / x 2 > 0, Xl + s X < 0
D D 2

lies entirely in the union of region I and rn. Therefore, the RP, starting out from the Xl

axis of region I, passes through the line 0-=0 and reaches Lz- Then, at that instant the

system structure switches from spiral to hyperbolic, the RP continues to move in region
!

II along an arc of a hyperbola that deviates from the asymptote (Figure 5-15b)_

Consequently, at a certain time later the RP will reach the switching line LI , the

structure again switches back to a spiral behaviorThe same process happens from

region III to region IV, so the process repeats itself producing periodic oscillations..
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Figure 5-15b also shows that in this region not only the spiral trajectory moves toward

the origin but the hyperbola trajectory tends to approach the origin. Therefore, these

oscillations will be damped and the system is globally asymptotically stable.

Now consider the second case when the asymptote a=x I +(1/A I )X2 =0 lies between

LI and ~, i.e. I r, ·E/D I < I (1/A I ) I < I r, ·E/D' I and the asymptote lies entirely

in the union of region II and IV. Therefore, the RP, starting out from the x, axis of

region I, passes through the line ~ before reaching the line a=O. Then the motion

(III)

(a)
a= Xl + (1/~)X2 = 0

asyDlptote Xl

(I)

a =X 1 +(1/)"1) X2

Ae O

\
\ L 2

\
a=O

(b)

a=o

(c) (d)

Figure 5-15. Switching lines and asymptotes in the phase plane.
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of the VSS takes place in a special regime, called a sliding regime: the system structure

switches back and forth at very high frequency and the RP performs infinitesimal

oscillations about the switching line L, (see Figure 5-15(c» and moves toward the

origin. The reason that this regime appears is that the phase trajectories in spiral and

hyperbolic structures have opposite directions in the neighborhood of the switching line

~. The mathematical existence conditions for this sliding regime in a fuzzy PI controller

case will be discussed in the next section.

Finally consider the case I(1/A1) 1< ITs ·E/D I· The asymptotes u=x1+ (1IA1) X2 =0

lies entirely in the union of region III and I. As shown in Figure 5-15d, the sliding

motion happens in the same way as when I r, ·E/D I < I (1/A1) I < I r, ·E/D' I .

5.4.3 Mathematical existence conditions for a sliding regime

We have explained the formation of a sliding regime in a fuzzy PI controller when

D' is chosen as a too small value to control a plant with transfer function 1I(s+ 1). In

this section, the mathematical existence conditions for it will be discussed in more detaiL

The following inequality (5-14) was first suggested by Dolgolenko (1952)[58] as

a necessary and sufficient condition for the existence of a sliding regime

lim do < 0 <

0 ....+0 dt

Its equivalent is

lim do
0 ....-0 dt

(5-14)

lim 0 do < 0
0 .... 0 dt

(5-15)

Now, let us apply equation (5-14) to verify the existenceofa sliding regime for the

special fuzzy PI controllers discussed in this chapter. Starting from region I, before
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reaching the switching line Lz the system structure (Figure 5-12) is represented by the

set of equations (5-7a) and (5-7b). The switching line L, is described by

(5-16)

Then, the derivative of a along the trajectories of system (5-7a) and (5-7b) can be found

as

do d T'E- = dt (Xl + s / x 2 )dt D

dx;
+

Ts'E dX2= -- -dt D/ dt

At a point on the switching line a=O, from equation (5-16)

(5-17)

(5-18)

and so equation (5-17) becomes

lim
0-' + 0

do
dt

T 'E T -E }{ I s [K s - (Kp + 1)]= x 2 + D/ i D/ (5-19)

For the sliding regime existence inequality (5-14) to hold, equation (5-19) must be

equal to a negative value. Therefore, since x2 is negative in region II, ~e following

inequality should be maintained:

(5-20)
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If c' = (Ts·E)/D't):len this inequality is

(5-21)

For either of the phase-portrait types for the system of Figure 5-12, this inequality

will guarantee that the RP will move toward the switching line (J = 0 from the upper

side of a> O.

For the case of the system described by equations (5-10a) and (5-10b), the derivative

of (J along its hyperbola trajectory in the region II is

lim cia
0-+-0 dt

T-E
= x 2 + s / [( KpK - 1) x 2 + Kix1 ]

D

T-E T-E
= x 2 + s / [( K~ - 1) x 2 - K i s x 2 ]

D D/

T-E T-E
= x 2 { 1 + s / [( KpK - 1) - Ki s / ]}

D D
(5 -22 )

Since x2 is negative, if we want equation (5-22) to be positive to meet the sliding regime

existence condition, then, the following inequality must hold

T-E
s / [(K~ - 1)
D .

T-E
K s <-1

- i /
D

(5-23)

Again, if c' =(T,.E)/D this inequality can be rewritten as

(5-24)

Obviously, this inequality will not hold either for too small a value of 2 , if its right

hand side is positive or greater than -1, or too large a value of K. In section 5.4.1 it has

been mentioned that the value of K is' approximately equal to F2/Fl , the ratio of the
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projected distance from line L, and the distance from line L T 1
1' 00 arge value of K that

means the control action points may exceed the unknown I' L .proper me 1 or simply the

sliding regime existence condition is failed The value of K l' • 1. s approximate y

(5-25)

here

Since the switching of the system structure always happens in the neighborhood of the

hypersurface, i.e. dex:::: I (ex 'D')/E I and K is usually a small positive number.

Now, let us verify the inequality (5-21) and (5-24) by those sliding regime cases

occurring in Figure 5-4, and see what value of K, described by equation (5-25), will

insure that the inequality (5-24) always holds, i.e. K <KMwhere

K =M

1 + sc' _ 1
.1.

(5-26)

The following Table 5-1 shows the results of applying those values of E, D and the

corresponding K., and K, of Figure 5-4a and 5-4b to the calculations of inequality (5-21)

and (5-24). The value of KMis also listed. Since sliding motion can only happen when

KM>K >0 , the table shows that when D=0.1and 0.2, the calculated KM will be

negative. Therefore, there are no sliding regimes in these cases as shown in Figure 5-

-

9(b) and 5-9(c). However, according to the definition C' = T,·E/D',C' increases with

decreasing D'. Thus, if we decrease the D range to 0.05 or 0.025, the corresponding C'

are 0.21 and 0.42 and the calculated KM now become positive which will make the
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sliding regime possible. Actually, Figure 5-9(e) shows that sliding motion did happen

when D was decreased to 0.025.

Ts = 0.0035 K, = 28.57
E=3

1
1 + C' K· - -.!_-D C' C' x, + -c"7 Kp + 1 KMI C'

0.025 0.42 14.381 10.620 12 + 1 0.885

0.05 0.21 10.762 2.238 6+1 0.373

0.1 0.105 11.524 -5.524 3 + 1 - 1.841

0.2 0.0525 20.548 -16.548 1.5 + 1 -11.032

Table 5-1. The C' and KM calculated for Figure 5-9.

Now, applying the same C' and KM calculation procedures for Figure 5-7, which was

a series of experiments done under the condition maintaining K,-T, = 0.1 and K" = 3as

constant and decreasing the U, E and D ranges by the same factor, produces the results

shown in Table 5-2. Since C' are the same, for these four cases, the calculated KM are

all equal to -1.841, i.e. no sliding regime exists. Figure 5-7 confmns this is true.

Ts = 0.0035, K, =28.57, K p = 3

1 C' 1
U E D C' C' K,+-- I + K· - -- K M. C' 1 C'

2.4 12 0.4

0.6 3 0;1
0.105 12.524 -5524 -1.841

0.15 0.75 0.025

0.075 0.375 0.0125

Table 5-2. C' and KM calculations for Figure 5-7.

It has been pointed out in section 5.4; 1 that the E:D ratio is convenient to represent the

sliding regime boundary. Since C' =Ts'E/Dand the sampling time interval T, is a

constant, the C' can also be used to represent this E:D ratio. From the results of Table

5-1 and Table 5-2, other than the value KM ' C' is indeed another suitable index to show
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the existence of a sliding regime. Consequently, we can draw the conclusion that no

sliding regime will exist if C' < 0.106 and sliding will start when C' > 0.21.

5.4.4 The sliding regime caused by choosing too large a value of E

As mentioned in section 5.4.1,the slope of the switching line L, is different from the

proper line L1 when too small a value of D' is chosen while keeping the error range E

constant. However, obviously we can get the same slope by choosing a very large E'

while keeping D constant. A similar analysis has, as its starting point, the decision table

shown in Figure 5-16.

dejk)
-L -M -s 0 +s +M +L
.. ;l..

+ i E'ex
Of;+ ..00 E

W/l ·
+s /t-(!

e(k) 0
dex

-s Ob
¢(! E
~~.

Li·. 1
/p,

e
-L

....
.......

I< D >k D >1

Figure 5-16. The negative sign caused by setting
the error range E too large.

In Figure 5-16, at point (de.,e.), this time if de. is held fixed then the vertical distance

F from this point to the diagonal line L1 can be written as
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de . E
x

D (5-27)

Therefore, if it is in the normal condition, F >0 and the controller output du will have

a positive value. But when E' is too large, as shown in Figure 5-16, du becomes

negative and F <O. So, sliding control may exist if the decision table ranges meet the

following condition.

D'

K, remains the same value because the D range is constant" but now K, must be

multiplied by a factor K according to the following relation

here

defi/
(/ D 1- lex l)JD2 + E 2

(Iexl - I d:"sl )VD2 + E I2
(5-29)

I de~/ I I I I dexE I
D > ex > D

Therefore, similar to Figure 5-4 and 5-5, when a plant l/(s+ 1) is controlled by a fuzzy
/

PI controller of which the error range E is set too large, each time its control action

moves across the line ~, before reaching L1 its structure will change to the one shown

in Figure 5-17. Note that as in Figure 5-5, a gain" -1" is included in the system loop
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ex+ Kp·S+K·K i u 1 y
~ -1- S S + 1

R

Figure 5-17. the new structure of a plant l/(s+l)controlled by a
fuzzy PI controller with too large E'.

to indicate that the controller output du is negative. The whole system thus become

unstable and is described by the equations

dX1 = xdt 2.
(5-30a)

(5 -30b)

The roots of its characteristic equation are real and of unlike sign. Therefore, its phase

trajectories are hyperbolas (Figure 5-14(d) with two asymptotes that are given by

equation (5-9). Applying equation 5-30 (a) and (b) to the inequalities (5-14), which

defined the existence conditions for a sliding regime, a boundary condition for K and

C'is found by produces similar procedures to those used to derive equation (5-26). The

condition is

ct-s.« -
~

1

c l
> K - 1p

(5-31)
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Therefore, for the existence of a sliding regime, we need K >K
m

,

K =m (5-32)

For some large value of error range E, table 5-3 shows the values of C' and K
m

calculated by equation (5-32) and Figure 5-18 shows the corresponding control action

trajectories. In the two cases where E= 15,Km< 1.468, i.e. K can exceed this small

value, so, clearly they are in a sliding regime and the trajectories slide down to the

origin along the diagonal line. However, in the cases where E= 12 and E=7.5,

K, >2.103, i.e. a value too large to be exceeded by K, or the control action points are

too far from the line L, to meet the existence condition.

Other than comparing the K.n, if we look into the calculated C', in Table 5-3, then a

result similar to the previous case of too small a value of D' is found. The sliding

control started when C' is greater than approximately 0.26 and this phenomenon ceased

when it is less than 0.132.

Ts = 0.0035,

1
KmE D U Kp ~ C' K -1 +-

p C'

15 0.1 1.2 6 11.43 0.525 6.905 1.151

15 0.2 2.4 6 22.86 0.263 8.81 1.468

7.5 0.2 2.4 6 45.71 0.131 12.619 2.103
I

12 0.4 2.4 3 28.57 0.105 11.524 3.841

Table 3. calculation of K, and C's for the cases of too large E'.
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(a) The control trajectory of a plant
l/(s+1) controlled by a fuzzy PI
controller with E=15,D=O.1 and
U=1.2. (C'=O.525, K.n=1.151)

(b) the results of setting E=15, D=0.2
and U=2.4 for the fuzzy PI
controller. (C'=0.2625, I<.m=1.468)
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(c) The result of setting E=7.5 D=O.2
and U=2.4 for the fuzzy PI
controller. (C'=0.131, ~=2.103)

(d) result of setting E=12, 0=0.4
and U=2.4 for the pl controller.
(C'=0.105, I<m=3.841)

Figure 5-18. The control action trajectories corresponding to Table 5-3.
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5.4.5 The sliding regime for a general first order plant controlled by a fuzzy PI

controller

Applying the same procedures that we used in section5.4.3and 5.4.4to a general

first order plant with transfer function a/(s+ b), the existence conditions for a sliding

regime can be found. The boundary conditions for K and C' for the too small value of

D range case are

a-s: 'K < b + e-«-o' _ 1
p ~ c/ (5-33)

K =M e-xp
(5-34)

Therefore, for the existence of a sliding regime we need O<K<KM.The K
M

and C' of

a plant 10/(s+ 10) controlled by a fuzzy PI controller with E=3,D=0.03and U=O.3are

calculated as shown in Table 5-4. Note that the value C' =0.35 is just a little smaller

than the first C' of Table 5-1. The sliding regime does exist since KMis positive, and

its control action trajectory is shown in Figure 5-21(b).

Ts = 0.0035
a = 10, b = 10,

1 KME D U Kp x, C' b + a ~C'- C'

3 0.03 0.3 5 14.29 0.35 57.14 1.143

Table 5-4. KMand C' calculation for the plant 10/(s+ 10)
controlled by a fuzzy PI controller. _
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5.5 A Fuzzy integral controller

In the problem of controlling an induction motor, Liaw & Wang[54] tried to surpress

the tendency for a limit cycle to occur around the set-point by replacing the fuzzy

controller with an integral controller. This integral controller was provided with the

capability of error adaptation by setting

K i = 15 - 20' lei

However, in this section a further study about the decision table scaling ranges will

show that any fuzzy PI controller can be easily changed to a fuzzy integral controller

without any additional circuitry.

It is a special case for a fuzzy PI controller to set the ranges D or E to an extremely

large value. If D - > 00 , after scaling, de/D will approach zero for all values of finite

de., i.e. the control trajectory can move only along the vertical zero quantization level

line in the center of the control decision table. This makes the system behave as if de,

=0. When this happens, the inference result will only be decided by the error ex;

therefore, the fuzzy controller becomes an integral controller represented by half of

equation (4-11) as

du = -p ( ex )
x .f2 E

(5-35)

At the extremes ex = +E, the line de, =0 ends at the controller output quantization

levels' ±M', i.e, at the middle of the output range U. So, with ex=Eand dux set equal
/

to U/2, from equation (5-35) the constant P will be

p= u
.f2

(5-36)

and the integral constant T, K, is the same as in equation (4-15)
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U
2'E (5-37)

Figure 5-19 shows the results of a fuzzy PI controller in which D is set equal to

20,OOO,000V to control a plant with transfer function 10/(8 + 10).This plant is chosen

because it is easier to see its overshooting and damping than for the plant 1/(s+1).

Actually, from the relation (5-37), this fuzzy integral controller looks like a digital

integral controller. The effects of the output scaling range U on system response is

similar to the effects of the k, constant of an digital I controller. However, the former

had a longer rise time and smaller overshoot than the latter.

E=3, 0=2,000,000 U

~

-- ---- 0.6
0.3
0.15

:>-'C.. ......
>

o
- 0

~""""'-----::1.. _

Figure 5-19(a) The outputs of a plant with transfer function
10/(s+ 10)is driven by a fuzzy I controller.
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Figure 5-19(b) The output of a plant lO/(s+ lO)driven
by a digital I controller.
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5.6 Modification of the fuzzy PI controller by temporarily switching the decision table

range to a new value.

(1) Narrowing the membership functions near the set point

When control action is close to the set point, sometimes a group of narrow

membership functions are needed to enable fine control. In this experiment, however,

the same triangular membership functions are used for all quantization levels, and the

narrow membership function effect is obtained, temporarily by shrinking the decision

table ranges. Figure 5-20 shows how this is

(a)

3V

5 6

+M +L

4

+5

o

3

o
2

-5

1

-M-L
1

Quantization
level ~ 0

0IL..._-X__~_.-li~---.v:;:-----­

E range ----0> - 3 v

(b)

+M +L+5

o

o-5-M
.
-L

1

01L._~_----:~_~:""'-_J.L..._~t--_~

E range~ -IV

-L -M -5 o +5 +M +L

(c)

o-IV

1

°IL_.Y.._~LJ.--LJ--I-.L.-J'--------:

E range~ -3v

Figure 5-20. Fine control around the set point by
shrinking the E range.

. . E from +3Vto + lV when control action moves intodone by shrinking the error range - -'

. . I I b t 2 and 4 At first when the error value ex is still verythe quantizatron eve e ween . ,

large, the membership functions are shown in Figure 5-20(a), where the E range is ±3V.
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The universe of discourse of the error is quantized from 0 to 6. If the error ex becomes

smaller, the control action will move into the area of the quantization level between

2 and 4, which means -IV <ex <IV. Then, the decision table E range is intentionally

switched to ±1Vas shown in Figure 5-20(b). The result of shrinking the E range is

equivalent to constructing some narrow membership functions near the set point as

shown in Figure 5-20(c).

Figure 5-21(a) shows the effect of shrinking E, D and U by the same ratio r= 15

when a plant 1/(s+l)was controlled by a fuzzy PI controller with E=3V,D=O.IVand

U =O.6V .The figure shows the effect of shrinking action on the system response. The

original control trajectory is shown in Figure 5-21(b) and 5-21(c) shows the effect of

shrinking on the control action. The shrinking effect was introduced when the control

action moved into the region 2<e/E+3<4 ( within 1/3 of range E).

~.... I I I [ l rl~"f'TII-rra'l i I I I i I Eli i n Iii iii iii i I Ii •..,..,

E=3, 0=0.1, U=O.6

o
o..-,, .

I.
J
•" .

" .

[' = 1 -) 15

(a) no shrinking

(b) shrinking

,.. (a). ... .,.,
.. "

(b)

E- I I ..l..J • . . I I • I ..r..l..J-"'~M....~._L\..J...A-t..Lt.•..!-1 -1 I - J. L..W __.I-J-L-,'-"-'.. 000.s.:t,..._..!._L..J..-IMJ- _'-W-J-......l....\. I . o. 00000 S 5. 00 s
'-5.00000 s 1.00 s/d1v

F· 5-21 The effect of temporary decreasing the decision table
igure . di idi .t nstant rranges to a new value by IVI mg I a co .
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Figure 5-21(b). the trajectory before
shrinking, r = 1.

Figure 5-21(c). the control trajectory
after shrinking by r = 15.

(2) Temporarily changing D to a very large value and switching the Fuzzy PI controller

to an integral controller

Liaw and Wang[54] have tried to overcome the limit cycle problem in an induction

motor control task. By switching an integral controller into their system when the fuzzy

control action was close to the set point. A similar technique was applied here.

However, instead of introducing any analog I controller into the control system, the

fuzzy controller itself was transfonned to an integral controller by setting

D=20,000,000V.

Curve (1) of Figure 5-22(a) was the output response of a plant 10/(S+ 10),which

was controlled by a Fuzzy PI controller with E=3V,D=0.03and U=O.3V.Obviously,

it is a sliding control response as shown in Figure 5-22(b), where the overdamped output

has a longer rise time. Curve (2) of-Figure 5-22(a) is the output response when this

plant was controlled by a fuzzy I controller with E=3V,D =20000000Vand U=O.3V.

The system response increased rapidly but with a larger overshoot. Curve (3) shows the

result when the fuzzy controller was modified such that it had the same decision table
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Figure 5-22(a). The output response of a plant 10/(s+ 10)when it is
controlled first by a fuzzy PI controller then it is
temporary switched to a fuzzy I controller.
(1) E=3V,D=0.03V and U=0.3V,
(2) E=3V,D=20000000V and U =0.3V,
(3) result of switching from (a) to (b) when -1V<ex <+ 1V.
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ranges as curve (1) at first, and was switched to the settings of curve (2) whenever it

was driven by ex into the quantization level between 2 to 4. The output response has

a rise time about the same as curve (1) in the beginning but it rises very fast when close

to the set point. The overshoot is also decreased. The control action trajectory of curve

(3) is also shown in Figure 5-22(c).

(3) Shrinking U to a small value around the set point

From equation (4-15) and (4-16) we noted that decreasing D, E and Utogether tends

to keep both K, and K, constant. Figure 5-4 and Figure 5-5 also shows that increasing

K, and ~ will have different effects on the system response. The former will increase

the overshoot and the later will decrease it. Since U appeared both in equation (4-15)

and (4-16), its magnitude will affect K, and K, together. However, decreasing U has the
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Figure 5-23(a) The output response without shrinking U.(r= 1)
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Figure 5-23. The effect of continuously decreasing the fuzzy PI
controller output range U by a shrinking ratio rs.

The plant under control is 10/(s+ 10).
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effect of reducing the open loop gain of the system and seems to decrease the energy

fed to the plant. Therefore, it might help to make the control response settled down at

the set point. The following experiment were done by continuously decreasing U when

those control action moved into the error quantization level 2 to 4 of the decision table.

Figure 5-23(a) shows that a plant 10/(s+ 10)was controlled by a fuzzy controller with

E=2V,D=0.04Vand U =2Vat first, having a strong limit cycle around the set point.

Then, in Figure 5-23(b), U was decreased by continuous shrinking with shrinking factor

r= 1.002, i.e. U was divided by r at each control sampling instant. Figure 5-23(c) is the

result of shrinking by r = 1.03 ,where the oscillation was suppressed quickly. To follow

the input change, the controller had to be switched back to the previous U range, 2.4V,

when ex dropped below the quantization level 1 or rose above the quantization level 5.
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Chapter 6

The characteristics of the pH process
experimental pilot plant

As mentioned early in Chapter 1, the control of pH (the concentration of hydrogen

ions) is a well-known control problem. Usually this problem demands the application

of control method which take into account the non-linear and time varying titration

curve and the strong sensitivity to disturbances near the point of neutrality. Several

methods which have been tried in the past two decades are briefly discussed in section

2.4, and the motivation for applying fuzzy control in this thesis has also been explained

in chapter 1. Now, before starting the fuzzy control experiments, the characteristics of

the pH process experimental plant preferably should be understood through its model

equations and measurements of the process component 110 relations.

6.1. pH Process Model Equations

The method for modeling the dynamics of pH in a stirred tank developed by

McAvoy[8] has been mentioned in chapter 1 and its model equations (1-5) and (1-6) are
/

rewritten here as

(6-1)
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(6 -2 )

In these equations, CA represents acid anion concentration and CBrepresents base cation

concentration in the effluent stream. CAcid and CBase are the acid and the base

concentrations of the acidic and basic streams entering the continuous stirred tank

reactor (CSTR) with flow rate F1 and F2 respectively. V is the volume of the CSTR.

Water molecules are dissociated (split up into hydrogen and hydroxyl ions)

according to the formula

(6 -3)

In chemical equilibrium the concentration of hydrogen H+ (or rather H30+) and

hydroxyl OH- ions are given by the formula

= constant (6-4)

Only a small fraction of the water molecules are dissociated, so, the water activity is

practically unity, i.e. [H20] ~ 1 and we get

= Kw
(6 -5)

where the equilibrium constant K, has the value lO-14[(mole/l)2] at 25°C.

The constraint that the solution remains electrically neutral gives

(6-6)

The concentration of hydroxyl ions can be related to the hydrogen ion concentration

by equation (6-5). Hence
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Then, letting x =CB - CA and solving for [H+] gives

(6 -7 )

x 2 1
= (if + Kw ) 2 x

2

and hence

2 1

[ OU-] = (~ + Kw )"2 + ;

Thus from the definition of pH given in chapter 1

2 1
pH = f( x) = -log [ (~ + s; )"2 - ;] (6-8)

The graph of the function f is called the titration curve. It is the fundamental non-

linearity for the pH control problem. An example of the titration curve has been shown

in chapter Figure 1-2. There is considerable variation in the slope of titration curves.

This can be seen from the derivative of the function f which is

2 1

2 ( x K) 2+ w
4

=
log10 e

1 0pH - 14 + 10 -pH
(6 -9)

The largest slope occurs at pH =7 where f' -2.2 X 106
• However, when pH increases to

10 or decreases to 4 the slope f' =4.3 X 103
• Therefore, the gain can vary by a factor of

order 3. Figure 1-2 also shows the titration curve for a weak acid and strong base. It can

be seen that in this case the curve is not symmetrical about pH = 7and more importantly,

its slope changes more gradually as the point pH 7 is approached from below. This

makes the titration process more controllable, which is why weak acid is sometimes used

as a buffer to slow down the strong acid reaction.
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6.2 Experimental setup

The pH process model plant which has been used for the experiments conducted in

the work reported in this thesis is shown in Figures 6-1 and 6-2.

Figure 6-1. pH process plant model.

Acid
solution
pump

Base
solution
pump

Acid
solution
tank
15l

pH
electrode

Reaction
tank 5/

pH
meter

Base solution magnetic
tank 101 stirrer

Figure 6-2. Schematic of pH process plant model.
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The model plant consists of a reaction tank of volume 51, a base solution tank of

volume 101 and a acid solution tank of volume 151. The acid tank contained a solution

of 0.0032 molll of HCI acid and the base solution tank contained a solution of 0.025

mol/l NaOH. The acid and base solutions were fed to the reaction tank via metering

pumps and mixed in the reaction tank by a magnetic stirrer. The acid metering pump

could be varied manually between 0 - 4511h, and was used to set the flow rate of the

process stream for the CSTR. To keep the volume of the reaction tank constant, an

overflow pipe was connected to the top of the reaction tank. For all the experiments

conducted in this work a flow rate of 0.2511min was used. The base flow was delivered

via a microprocessor-based solenoid driven metering pump set to operate at 100% stroke

length, which enabled the flow rate to be controlled between 0 and 1.8 lIh by an analog

current signal (4-20 rnA). The pH value of the reaction tank was measured by a pH

r---------------,
I

Fuzzy 1(-+--1----,

pH sensor

Acid
Solution
Tank 15 I

Reaction
TankS I

Base
Solution
Tank 10 I

outflow

Figure 6-3 the pH process model plant.
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sensor consisting of a pH electrode and associated meter. The PC based control system

described in section 3.4 was coupled to the pH process plant model in order to conduct

the pH control experiments. A schematic description of the pH process model plant and

controller is given in Figure 6-3. The major component specifications are listed in the

Appendix.

6.3 Static and Dynamic Behavior of the pH process model plant

A block diagram for the pH control process model plant described in Figures 6-1 and

6-2 is shown in Figure 6-4. As shown in-the figure, the control signal from the control

computer is sent to the metering pump unit to control the flow rate of the base solution

into the reaction tank. A dynamic filling block and a non-linear titration characteristics

block represents the accumulation and chemical reaction in the tank, respectively. The

pH value in the reaction tank is measured using a pH meter and represented by a voltage

Overflow pipe
Mixing and reaction tank

Metering pump unit ...-- / ......----------...,
./

u lL- u m ..... L ..... L& pH... Lc ...... ... ,, ...

er dynamic non-linear

filling titration
characteristics

toND ~pH tl - .~ ~'"converter
.....

J

" "

from
D/A
&V/I

convert

pH meter with low pass filter

Figure 6-4. block diagram for a pH control model plant
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signal between 0 - 1400mV. This pH signal is fed back to the control computer via an

anti-aliasing filter of bandwidth 20 Hz.

6.3. 1 Dynamic characteristics

In this strong acid and base pH process, the chemical reaction time is small in

comparison with the dynamics of flow into the tank. The flow dynamics are described

by equation 6-1 and 6-2. When the inlet flows FA and FB are constant, these equations

are linear and first order with time constant T=VI(FA + FB) . At values of pH close to

7, the titration curve dominates the process and masks the effect of the filling dynamics.

However, for pH values below 5 and above 9 the titration curve effects are less

dominant and the filling dynamics become evident in control experiments. Since the

process pilot plant has a reaction tank with volume 51 and was operated with a process

flow rate of 0.25 l/min, its theoretical filling time constant is 20min. Note that the base

flow rate used n the experiments is much smaller than the acid (process) flow rate and

was neglected in this calculation. This value compares well with the time constant

observed in subsequent experiments.

6.3.2 Calibration of pH sensor and actuator

The 0 - 14pH value of the reaction tank is measured by a pH sensor as a signal in

the range 0 - 1400 mV. This signal passes through an anti-aliasing filter of bandwidth

20 Hz and traverses a wire of 4.5m in length before reaching the AID converter.

Therefore, an experiment was conducted to measure the difference between the voltage

at the pH meter and the voltage logged by the control computer. The result of this

experiment is shown in Figure 6-5, where it can be clearly seen that a negative voltage

offset has been introduced at high pH .values, The voltage offset is attributed to the
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resistance in the wire. In order to correct for this, the measured voltage V
x1

received by

the control computer was corrected to Vx = Vx1 +(V
x1

- 300)*23.

Calibration of pH measurement

(1) pH meter voltage
(2) ND converter reading

7 8 9 10 11 1264 52 3a 1

1.4
volt 13

1.2
,-..., 1.1
eoc: 1.-

"0
0.9~

~

""'" 0.8
0
eo 0.7s- 0.60
>-

'--" 05::c 0.40...

03
0.2

0.1
a

pH

Figure 6-5. calibration of pH measurement.
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Figure 6-6 Metering pump characteristics.
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In order to calibrate the base flow rate actuator, a measuring cylinder and stop

watch was used to measure the flow rate from the metering pump corresponding to a

demand flow rate set in the control computer. The results shown in Figure 6-6 indicate

that the flow rate of the metering pump is linear between the settings 0 - 4000 at the

D/A output. Above 4000 it was found that the pump saturated at its maximum flow rate.

6.3.3 Non-linear titration characteristics

The static behavior of the pH process is specified by its titration curve, which

defines the variation in the pH value with the ratio(r= Mb/Manf the mass(mole) of base

and the mass(mole) of acid contained in a vessel. Titration curves are normally obtained

by adding a measured quantity of one reagent to a fixed quantity of a second reagent

contained in a vessel. In this experiment, a measures amount of HCI solution (0.0032

mol/I) was add to 200 ml of NaOH solution (0.025 mol/I) contained in a vessel. The

Titration curve

Hel = 0.0032molll
NaOH = 0.025molll

161.6 20.8 10.530.4

14

13

12

11

10

9

pH 8

7

6

5

4

3

2

1
0.32

Mb/Ma

Figure 6-7 the titration curve of strong acid (HCI) and base (NaOH)

., . h . Figure 6-7 To illustrate the non-linearity of the
resultant titration curve IS s own In .
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system, the static gain K (= ilpH/ilMb) is also calculated f h d . .rom t e ata In FIgure 6-7

and shown in Figure 6-8.

4

3.5

3

Static gain

no = O.0032mol/1
2.5 NaOH = O.025mol/1

K
2

1.5

1

0.5

(K = ~pHJ~Mb)

0.4 0.53 0.8 1 1.6 2 16

Mb/Ma

Figure 6-8. the static gain K =~pH/~Mb

In the experiments of the following chapter, the NaOH solutionmust be used within

two hours after it is made. This is because the NaOH solution will absorb CO2 quickly

and form the 1- and 2- weak acidic bases. Usually the weak acid will act as a buffer

in the titration process, that is it will slow down the reaction when approaching pH 7

and largely increase the time constant. This weak acid buffering phenomenon has been

discussed by McAvoy[8]. Figure 6-9 shows the buffering effect resulting from the

NaOH solution having been left to stand for 5 hours before commencing the titration

experiment.
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0
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Figure 6-9. The titration curve and static gain K
when weak acid is present.

The titration curves in Figure 6-8 and 6-9 were obtained by a conventional chemical

bench experiment. The pH control problem investigated in this thesis is a continuous

flow process where an acidic solution is pumped at a constant rate into a stirred tank

into which a controlled amount of base solution is introduced to control the pH level.

In order to obtain the titration curve for this continuous flow pH process, an

experiment was conducted with the reaction tank initially empty. The acid flow pump

was then switch on at a fixed delivery rate of o.25ml/min and the tank was allowed to

full at which time the mass(mole) of acid in the tank

Once the tank was full, the base flow pump was switched on at its maximum

delivery rate of O.05ml/min. Then, from equation 6-2, the subsequent increase in the

mass of base in the tank followed the first order response
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Similarly, from equation 6-1 the corresponding dec . th' rease In e volume of acid in the

tank followed the first order response

Hence, the ratio of base to acid in the tank: was

r( t) = (6-10)

Clearly, at t=O,r(t) =O.A1so as t~oo,

r( t) = 0.033 ·0.05 = 2.06
0.0032 ·0.25

Thus, this experiment effectively cause ret) to vary from 0 to 2.06.

Figure 6-10 shows the variation in pH with time recorded in this experiment. The

corresponding value of ret) at each of the measured time instances was calculated from

equation 6-10 and the resulting variation in pH with ret) is given in figure 6-11. The

continuous flow titration curve of Figure 6-11 compares well with the bench experiment

titration curve of Figure 6-7, thereby confirming the validity of this continuous flow

titration experiment.
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Figure 6-10 The flow titration experiment.
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Figure 6-11 The resulting variation in pH value with r(t).

The flow titration experiments were repeated and the results are given in Figure 6-12

where curves (2) and (3) show the buffering effect of exposing the NaOH solution
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to arr for 4 and 7 hours, respectively, before commencing the continuous flow

expenment.
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Uoltage range: 0-}1..4U('+/-'u dow . FUNCTION KEV
TiMe base: 4 Min c- 't/~'up d P,) n) F1.. single shoot F2: save F3: re-run

, own F4: hard copy F5: t"raMe (ON/OFF)

(1.)curve at 9:35 aM

(2)curve at 1.3:35 PM

(3)curve at 1.6:35 PM
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1.4

Figure 6-12. effect of weak acid buffering(absorbing CO2)

on titration curve.

6.4 Summary

In this chapter, the characteristics of the pH process experimental model plant have

been described through its model equations and measurements of the process component

I/O relations. The results show that firstly, it is a dynamic process with a time constant

of about 20 min. This time constant is dominated by the volume of the mixing tank as

well as the flow rate of the process stream. Secondly, the titration curve is highly non-

linear, its static gain varying by a factor of order 3 between pH =4 and pH =7. Finally,

it has been demonstrated it is also a time varying process due to the effect of CO2 on

the titration curve.

In summary, we have a time-varying and highly non-linear control problem in this

pH process.
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Chapter 7

Fuzzy control of the pH process pilot
plant

Having discussed the pilot plant in the last chapter, we will now tum our attention

to the experiments performed using this plant. It has been noted that pH control is made

difficult by the nature of the signals involved. The measured value of pH is strongly

affected by the stirring action, as well as by the non-uniform concentration due to the

pulsed injection of the titrant by the metering pump. The result is that the signal

representing the pH appears to be corrupted by a large amount of "noise". The effects

of this noise are reduced by the use of a Butterworth filter, as described earlier, together

with data averaging over one hundred samples. In order to allow time for the averaging

process the sampling time T, is increased to 14ms. To deal with the large time constant

of the pH process, an anti-windup integrator technique is used by all the controller

programs. This means that the controller stops integrating when its output reaches some

saturation value.

Section 7.1 describes a direct comparison between the performance of a digital PI

controller and a fuzzy PI controller in controlling the pH pilot plant. This section

describes experiments to investigate the response of the plant to both a single step input,

and to a set-point tracking task. In both-cases the fuzzy controller performs consistently
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The best result that could be obtained from these digital PI control

better than the digital PI controller. Having established the superiority of the fuzzy

controller, section 7.2 looks in more detail at the differences between the two control

methods when used to control the plant at pH 7, and 8. This shows that the fuzzy PI

controller can make the system settle down at the set-point faster, and with less over-

shoot than the digital PI controller when a strong acid and a strong base are reacting,

with or without buffering. The effects of the U and D ranges on the fuzzy control

response, and the damping effect which occurs when the control action trajectory is

near the set-point, are studied in section 7.3, 7.4 and 7.5. Then, in section 7.6, the

results of the experiments performed in previous sections are used to determine the best

ranges of E, D and U for different value of pH. Finally, in section 7.7 the performance

of the fuzzy controller is investigated for different load concentrations and in response

to a perturbation of the load.

7.1 Comparing the performances of a digital PI controller and a fuzzy PI

controller in the control of the pH process.

We noted in chapter one that the controlof pH is very difficult due to the non-linear

relationship between pH and concentration. When using a conventional digital PI

controller to control the process at a pH of 7, the pH output often oscillates around the

set-point with a large over-shoot and a very long settling time as shown in Figure 1-3.

We shall see in section 7.2, that a series of experiments was performed to investigate

the difficulties of handling this control problem using a conventional digital PI

controller.

. . h . Figure 7-1(a) However if the fuzzy controller developed inexpenments IS s own In . ,

hi th .. li d to the same system a better result is obtained as shown in Figuret IS esis IS app Ie ,
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7-1(b). The pH output settles down more quickly and with a smaller over-shoot.

Therefore, it is better than the digital PI controller.
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Figure 7-1. (a) The control of pH at pH=7 using a digital PI controller.
(b) The same plant controlled by the fuzzy controller developed

in this thesis.

Set-point variation experiments were also performed for both the digital and the

fuzzy controllers. The results of these experiment are shown in Figure 7-2. This again

shows that the fuzzy controller has a better pH output response than that of the digital

PI controller. The controller constants used in these experiments were ~'Ts= 125and

~=1.664 for the digital PI controller, and E=O.2V, D=O.OOO3V and U=4V for

the fuzzy controller. These values are the same as those used in Figure 7-1, although in

section 7.6 it will be shown that these are not the optimum values for the fuzzy

controller.
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Figure 7-2. Response of a pH process under set-point variation when
controlled by (a) a digital PI controller, (b) a fuzzy controller.

Although the response of Figure 7-2 shows the superiority of the fuzzy controller,

if CO
2

contamination is considered, the improvement due to fuzzy control is even more

marked. It was noted in chapter 6 that if a solution of NaOH solution is exposed to air

for a period of time, CO
2

is absorbed by the solution and it becomes a weak acid. This

was shown in Figure 6-7, in which it can be seen that the static gain changes drastically.

If the experiment of Figure 7-2, is repeated for a plant with CO2 contaminated, the
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resulting outputs are as shown in Figure 7-3. This shows that while the performance of

the digital PI controller is degraded by the contamination, that of the fuzzy controller

is little affected. Overall the fuzzy controller has a performance that is much better than

the digital PI controller in both over-shoot and settling time, at each of the pH set-

points. That shows that the fuzzy controller is more robust when the system changes.
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. re 7-3 Results of an experiment similar to that of Figure 7-2 but after
Figu the NaOH had been exposed to air for seven hours. (a) for the

digital PI controller, (b) for the fuzzy controller.
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7.2 Comparing digital and fuzzy PI controllers for different value of K
j
and ~

Having demonstrated the overall superiority of the fuzzy controller we will now

look in more detail at the performance of the digital and the fuzzy PI controllers for

different values of their control parameters.

For pH =7, two experiments were performed, one with a large K, and a small

~, the other with a small K, and a large K; Both the digital and the fuzzy PI

controllers were used and, for comparison, the K, and~ values used were calculated

from the corresponding E, D and U values of the fuzzy controller as described in

Chapter 5. The position formula was applied by the digital PI controller algorithm to

reduce the effects of noise. This was especially useful when ~ is very large.

An experiment was also performed to compare the two methods at pH = 8. The

experiments described in this section, and those described in section 7.3 to 7.5, are

performed by pumping the HCI solution with pH z2.49 into the reaction tank at a

constant rate (750 mllmin) and applying a step change to the set-point.

7.2.1 Digital and fuzzy PI control with large K and small~ at pH = 7

Figure 7-4 shows the performance of the conventional digital PI controller for value

of K;'T
s

of 500, 250, 125 and 62.5, with value of K, of 0.416, 0.832, 1.664 and 3.328.

These values correspond to the E, D and U settings of the fuzzy PI controller shown in

the corresponding graphs of Figure 7-5. From Figure 7-4, it is clear that a good choice

for K; and K, is that shown in (c) with Ki'Ts=125 and ~=1.664. However, for the

fuzzy controller, Figure 7-5 shows that the process pH output settles down more quickly

at (b) and (d), where the settings are E=0.2, D=60, U=100, and E=0.2, D=3.75,

U =25 ,which do not correspond to Figure 7-5 (c). Therefore, the relationship between

the control constants of a digital PI corttroller and the fuzzy decision table ranges as
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described in chapter 5, are not valid in this pH control process. It is not clear why there

are two similar pH responses as shown in Figure 7-5(b) and (d). The effect of the

choice of range U on the control response will be discussed later in section 7.3.

However, it was noted in chapter 5 that when D is too large, the fuzzy controller

behaves like an integral controller. Therefore, these responses may be present different

modes of operation of the controller.

7.2.2 Digital and fuzzy PI control with small Kj and large K, at pH=7

Experiments were next performed to investigate the performance of the controllers

for small value of K, and large values of K, again at pH=7. This experiment produced

some rather unexpected results.

Figure 7-6 shows the results for the digital controller. It can be seen that the pH

outputs oscillates around the set-point with a large limit circle if the constant Ki'Ts=

20 and K, is set to 6666 (see Figure 7-6(a)). However, if the value of KrT, is reduced

to 10, the system response will settle down after 8 cycles as shown in Figure 7-6(b).

However, this damping effect reaches its maximum when K, is doubled, keeping Kj'Ts=

10. As shown in Figure 7-6(c) the settling time is reduced to about 4 cycles.

The experiments of Figure 7.6 were repeated using a fuzzy controller with

corresponding values of E,D and U, and the results obtained are shown in Figure 7-7.

This shows a much better response than that obtained by the corresponding digital PI

controller. The reasons for this will be discussed in later sections.
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Figure 7-7 (a). Result of fuzzy pH control with parameters
corresponding to K's and ~'s of Figure 7-6.
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Figure 7-7. Results of fuzzy pH process control with parameters
corresponding to the K's and ~'s of Figure 7-6.

7.2.3 Comparing digital and fuzzy control at pH - 8

For pH =8, several experiments were performed to compare digital and fuzzy

control. For the digital controller these kept K'T, equal to 15.61 and set~ to 0.2,0.02

and 0.002, while for the fuzzy controller used corresponding values of E,D and U.

The results of these experiments are shown in Figures 7-8 and 7-9. It can be seen that

when the digital controller is applied, damping increases with decreasing ~ as shown

in Figure 7-8. However, for the fuzzy control case, as shown in Figure 7-9, a good

performance is obtained at D= 156, . which corresponds to K.,=O.02. Therefore, the

relationship between the control constants of these two controllers again fails to follow

that suggested in Chapter 5, but again fuzzy controller proves superior to the digital

controller.
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Figure 7-9. Fuzzy control of the pH process at pH=8,with E, D
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of Figure 7-8.

7.3. The effects of the choice of U on the fuzzy pH process control response

To investigate the effects of the choice of U on the pH process response, an

example from the previous section was chosen for further study. The response selected

is that shown in Figure 7-5(b). This example uses values of E=0.2V, D=60V and

E = 1OOV, which correspond to K;-T, = 250 and K, = 0.9. From the figure it is clear that

in response to a step change in the set-point to pH = 7, the output settles down quickly.

The experiment was repeated keeping the value ofE and D unchanged, but reducing

U by a factor of 10 to 1OV. The results obtained were quite different, with the output

response oscillating about the set-point with a very large amplitude failing to settle

down.

To investigate this behavior it is useful to consider the control trajectory on the fuzzy

decision table, together with the fuzzy controller outputs and the error signal. These are
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all shown together in Figures 7-10 and 7-11 for these two experiments.

Note that the scales used for the control output are different in these two figures,

It can be seen that although D is 60V in theses two figures the actual maximum error

changes are only about 0.0002V, therefore, the control trajectory moving in the center

of the decision table looks like an integral controller. However, since U is different by

a factor of 10 between these two cases, their control outputs are not equal. The

maximum accumulated output value for U = 100V is 50V but it is about 14.4V when

U = 1OV. This means that the system needs a greater damping force to settle down the

process around the origin in the latter case. To see the differences between these two

response more clearly, we can reduce the range of the change of error of the phase

planes. Figure 7-12 and 7-13 show the phase plane trajectory redrawn with this range

reduced to 0.0003V. This figure shows that when U= 10V the trajectory moves

vertically and horizontal around the origin. However, when U = 1OOV, the trajectory

moves back and forth rapidly along the error=O line at the origin. This kind of

oscillation probably results from the pH process having a very large static gain K near

pH =7 (see figure 6-5).

The "kink" in the control output of Figure 7-14 is an anomaly introducedby the

action of the anti-windup integrator used.

In Figures 7-14 and 7-15, the trajectories ofFigure 7-12 and7-13 are replottedbut

for clarity only the first 500 and 750 sampling points are shown. The region of interest

in these figures is the center square in each of the phase plane plots. In the case where

U = 100V (Figure 7-14) the control action provides sufficient damping force from the

negative part of the decision table to make the control trajectory pass through the origin

at the error=O point. This is shown in the figure by the trajectory going to the right

hand side of the center square of the phase plane plot. When U = 10 (Figure 7-15) there
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is insufficient damping to make the trajectory pass through the origin. In this case the

control trajectory simply moves around the center of the decision table.
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The noise like oscillation exhibited by the controller when U= 100V causes the

controller output to chatter at the origin with the average of its force just keeping the

process pH at the set-point. This phenomenon suggests that there may be a way of

controlling the pH process such that it settles down to its set-point. If the range D is set

small enough, before reaching the error=O line, the noise like oscillation will drive the

control action trajectory into the negative part of the decision table, thus bringing a

strong damping force to the system. In both Figures 7-10 and 7-11, the recorded

maximum error change value is about 0.0002V. Thus, reducing D to 0.0003V would

seem to be a good choice and will be discussed in the next section.

7.4 An investigation of the effects of setting the error change range D to 0.0003V

or less

In this section, a series of experiments is described which show how the pH control

process responds when the error change range D of the decision table is set to 0.0003V.

Figure 7-16 shows the performance of the system when E=0.2V, D=0.0003V and U

is varied. It can be seen that the system settles down quickly to the set-point pH=7

when U =0.2.The response is slightly worse when U is increased to 4, and is much

worse if U is decreased to 1.

Figure 7-17 shows the results of reducing both the E and the D rangesto half, their

value in the previous experiment. It was noted in chapter 5 that a similar system

response will be obtained if E, D and U are reduced in the same ratio. This can be seen

by comparing the response of Figure 7-17(a) for E=0.1V, D=0.OO015V and U=2V,

with that of Figure 7-16(d) where E=0.2V, D=0.OO03V and U=4V.
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7.5 Enlarging the D range while keeping the error range E constant

Formost of the experiments performed in previous sectionwthe error rangeE was

kept equal to O.2V while the error change D was varied. This value of E was chosen

since it provides a reasonable ±2pH range for the error change. In this section, the

noisy oscillation area of the fuzzy control decision table near the set-point is studied,

to see if there are any other values of D other than O.OOO3V, that can be used to obtain

similar good results.
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7.5.1 The relationship between the strength of the fuzzy controller output and the

sweeping area of the decision table

The strength of these fuzzy controller output is determined by the position of the

control action trajectory on the fuzzy decision table. Fluctuations make the trajectory

sweep out some area. Figure 7-18 shows two shaded boxes A and B which represent

areas swept out by different fragment of the trajectory. The area to the right of the

diagonal line in the decision table corresponds to a positive output while that below the

line corresponds to a negative output. Since box A covers equal positive and negative

area of the decision table, the accumulated output value (produced by integrating the

output over the period corresponding to the fragment) will be equal to zero. However,

in box B, the positive part is larger than the negative part, and the accumulated output

will be positive. This output will act on the system so as to reduce the error.

error change
D

I positive output
I

I
I
I

negativeloutput

fuzzy control decision table

control action trajectory
sweeped area

Figure 7-18. Sweeping areas within the fuzzy decision table.

Let us now consider the effect of expanding the range D by a factor n. Figure 7-19

. f the D range of the table means that
shows the result decision table. The expansion 0
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Figure 7-19 Reducing the swept area by expanding D.

the area swept out by the fragment of the control trajectory are correspondingly smaller.

Thus the accumulated output value is reduced as the D range is expanded. As the

trajectory moves away from the diagonal of the decision table its effect on the control

output increases (as shown in Figure 4-7). Therefore, the effect of expanding the D

range of the table would be expected simply by considering the reduction of the swept

area. It has been found that increasing D by a factor of n is equivalent to reducing U

by a factor of n', This relationship is investigated experimentally in the next section.

7.5.2 An experimental study of the relationship between D and U

In Figure 7-16(c) we looked at the response of the system when E=0.2V,

D=O.OO03V and U =2V. Figure 7-20 shows a set of experiments obtained with the

same value of E but with D increased by a factor of 4 to O.012V. Figure 7-20 shows

responses for value of U of 4, 16, 64, 128 and 256, and from these curves it is clear that

a value of U = 128V produces a response equivalent to that of Figure 7-16(c). This

supports the assertion that increasing D- by a factor of n will get the same result if U is
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increased In the same time by a factor of rr'. Thus increasing D by a factor 4 IS

equivalent to decreasing U by a factor of 64.
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Figure 7-20(e). response of the pH process control when D=0.0012V
and U=256V

7.6 Fuzzy control at pH=5,9 and 10

In section 7 .2.2it was shown that the pH process can be controlled very well at

pH=7 by choosing a small value of D such as 0.0003V. Test were also carried out at

pH=5,9 and 10, using a value of D of 0.0003V, keeping E constant at O.2V and

varying U. Experiment results are shown in Figures 7-21,7- 22 and 7-23.

Since the static gain of the pH process decreases as we move aboveor below a pH

of 7, it follows that a higher value of U is required. Indeed, the results shows that at

pH=5 the best choice for U is 24, while at a pH of 9 the best value for U is 12, and

at pH = 10 the best value for U is 36. Figure 7-21 shows the response of the pH plant

at pH = 5. The static gain is very low in this region and the system requires a high

value of U to drive the plant effectively. Figure 7-21(a) shows the performance of the

system when U = 1. Here we see an obvious limit cycle around the set-point. Increasing

the value of U decreases this effect as shown in Figure 7-21(b) and (c).

Figure7-22 and 7-23 show the behaviorof the fuzzy controlledplantforpH= 9 and

10 respectively. For comparison, by choosing its control constantK, and K; the values

corresponds to Figure 7-22(b), a digital PI controller experiment for set-point pH=10

is also shown in Figure 7-22(c). It is obvious that these two responses are almost the

same.
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7.7 Fuzzy PI control for different load concentrations and with load perturbations

Finally, two experiments were performed to investigate theperformance of the fuzzy

controller in situations not previously investigated. The first of these looked at the effect

of load concentration and the second of the effect of load perturbations. Figure 7-24(a)

shows the response of a digital PI controller with Kj'Ts=125,
~=1.664 when

controlling a pH process having a starting pH equal to 2.82. Figure 7-24 (b) shows the

behavior of the same system when controlled by a fuzzy controller with £=0.2,

D=0.OOO3 and U=4. Obviously, the latter shows less overshooting than the former.

14
13
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J.1 Kp = J..664
10

')

~8 ...
'tl(a) pH 7 ,

6 :::)
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3
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U = 4
~...

...-----I--~-_...------------"j~
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J.4
J.3
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')

a
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6
:l
4
3-=-...-­
2

~L..LLJL1..J....LL.LLLLl--L1...LL~~~~=====::::::~~~tu~~

(b)

Figure 7-24 A process with a stream concentration pH =2. 82controlled by
(a) a digital controller, (b) a fuzzy controller.

A second test was performed using a starting pH of 2.30. The results of this test

h . F' re 7 25 Again the fuzzy controller has a better performance than theare s own In Igu - .

digital controller.

onse to a load perturbation. This was achieved byFigure 7-26 shows the system resp

. t g base solution into the reaction tank. This qualitativesuddenly adding some s ron
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Figure 7-25. A similar experiment to that of Figure 7-28, but
with a process stream concentration pH = 2.3.

experiment indicate that the fuzzy controllercan cope with such perturbations and will

bring the pH back to the set-point.

E = 0.2
o = 0.0003

U = 4

Adding base into

\:eaction tank

Figure 7-26. The load perturbation test of the fuzzy pH control
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7.8 Conclusions from the experiments performed

At the beginning of this chapter, the results of several experiments were presented

which demonstrated the superiority of the fuzzy controller described in this thesis over

a conventional digital controller. These experiments compared the two methods of

control in response to both a single step input change at pH=7 and to a series of

different set points.

Two series ofexperiments were then described which compared the performances

of a conventional digital PI controller and the fuzzy controller in controlling the nominal

plant at different set-points. The first series of experiments used a large value of K, and

a small value of ~ for both controllers. In the second series, K, was made small and

K, large. In the first case, it was very difficult to choose the right control constants for

the two controllers to make the system settle down quickly at the set-point, especially

for pH=7and 8. However, in the second case, when ~ was made very large and the

corresponding value of D was very small, the fuzzy controller was found to be

significantly better than the digital controller in reducing the settling time. To

investigate the reason for this a detailed study of the control output and the control

action trajectory around the set-point was made. The results of this study were described

in section 7.3.

When using a fuzzy controller, very fast oscillationsoccur around the set-point. The

control action trajectory for these oscillations resembles that of noise chattering around

the set-point. Since the output of a fuzzy controller is determined by the position of its

control action trajectory on the decision table, this chattering behavior produces very

rapid fluctuations of the control output. The system is driven by the average of these

fluctuations, and will settle down at the set-point if the average of this output drives the

error input to the fuzzy controller to zero.
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The interaction between the various parameters of the fuzzy controller were

investigated and a simple relationship was found between the values of D and U. It was

found that expanding the range D by a factor of n has a similar effect to reducing U by

a factor of n', In most of the experiments described within this chapter E was set to a

fixed value to give an appropriate pH error range. The relationship between D and U

then allowed the characteristics of the controller to be adjusted by varying a single

parameter (either D or U). The ability to adjust the system's characteristics using a

single control parameter should simplify the application of adaptive techniques to such

a controller.

The final experiments within this chapter looked at the effects of load variations and

perturbations, on the performance of the fuzzy controller. These showed that the fussy

controller performed better than a conventional digital controller for various static values

of the load concentration. They also showed that the fuzzy controller could deal

satisfactorily with perturbations of the load.
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Chapter 8

Conclusion

This thesis has investigated the application of fuzzy logic techniques to the control

of a continuous flow pH process. In the chemical industry, the control of pH is a well­

known problem that presents difficulties due to the large variations in its process

dynamics and the static nonlinearity between pH and concentration. pH control requires

the application of advanced control techniques such as linear or non-linear adaptive

control methods. Unfortunately, adaptive controller rely on a mathematical model of the

process being controlled, the parameters being determined or modified in real time.

Because of its characteristics, the pH control process is extremely difficult to model

accurately. This has motivated the use of fuzzy logic methods in this thesis.

In chapter 2, the basic concepts of fuzzy set theory, fuzzy logic and approximate

reasoning have been discussed. Various methods of incorporating fuzzy reasoning into

a control system to create a fuzzy logic controller were then considered. Chapter 2 also

presented a brief review of previous work on the subject of pH control. This review

concluded that, to date, there has been little or no effect addressed at investigating the

use of fuzzy logic methods in the control of a continuous flow pH process.

In chapter 3, the practical issues of building a fuzzy logic controller and

implementing a fuzzy logic controller in real-time were considered. The chapter then
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described the development of a C language generator to automate the process of

programming a real-time fuzzy logic controller.

Chapter 4 presented a detailed study on the relationship between fuzzy decisiontable

scaling factors and the control constants of a digital PI controller. This study resulted

in a novel method of tuning a fuzzy logic controller by adjusting its scaling factors. This

tuning method forms the bases of the experiments described in the remainder of the

thesis.

Chapter 5 described experiments conducted with the real-time fuzzy logiccontroller

when used to control an analog first order plant. These experiments were carried out in

order to understand the effect of the novel tuning method on the operation of the fuzzy

logic controller prior to its use to control the continuous flow pH process. It was

described that one of the most important characteristics of the tunable fuzzy controller

is its ability to implement a wide variety of control mechanisms simply by modifying

one or two control variables. Thus the controller could be made to behave in a manner

similar to that of a conventional PI controller, or with different parameter values, could

imitate other forms of controller. One such mode of operation uses sliding mode control, .

with the fuzzy decision table main diagonal being used as the variable structure system

(VSS) switching line. A theoretical explanation of this behavior, and its boundary

conditions, were given in the chapter.

In chapter 6, the continuous flow pH process used for the experiments in the

remainder of the thesis was described. The Chapter presented the results of experiments

to obtain the pH process titration curve. This curve, which dominate the pH process, is

time varying and highly nonlinear.

Chapter 7 described an extensive series of experiments using the continuous flow pH

Th
~ of the tunable' fuzzy controller was compared with that of a

process. e pellormance
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conventional PI controller in response to step change in the set . t t b-poin ,a anum er of pH

levels. The results showed not only that the fuzzy controller could b '1 die east y a justed to

provided a wide range of operating characteristics, but also that the fuzzy controller was

much better at controlling the highly non-linear pH process, than a conventional digital

PI controller. The fuzzy controller achieved a shorter settling time, produced less over­

shoot, and was less affected by contamination than the digital PI controller.

8.1 Assessment of the fuzzy PI controller

The main achievement of this research is that it provides an easy way to deal with

a most difficult pH control process. As mentioned in the survey section of chapter 3,

sophisticated control techniques are usually required to handle the non-linearity problems

encountered in pH control processes. Most of the controllers have to change or adjust

their control constants for different pH set-points. However, the simple fuzzy PI

controller developed in this work shows very good performance when the set-point is

changed to a different value or the load (solution concentration) is altered.

Perhaps the most outstanding feature of this PI controller is that it can be used as

a regular PI controller or switched to another type of controller easily by simply

changing the decision table ranges. As has been discussed in chapter 5, this fuzzy PI

controller can even make the system perform as a sliding mode controller, with the

decision table main diagonal line forming the variable structure system (VSS) switching

line.

The fuzzy PI controller shows several saturation or damping effects, which result

from choosing too large or too small a value for the error and the error change ranges.

Sometimes this damping effect may be useful for reducing the overshoot of the system

response or confining the amplitude of the control output.
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Another aspect of this fuzzy PI controller is that it can be used to provide a VSS

by switching the decision table ranges to new settings during the control action. For

instance, chapter 5 shows that the fuzzy PI controller can be switched to an integral

controller by setting D to an extremely large value or be used to diminish the limit cycle

amplitude by continuously shrinking all three decision table ranges together.

8.2 Recommendations for future work

The controller described here is based on Mamdani' s minimum operation method

and used triangular membership functions to represent all the linguistic terms. But there

are several other reasoning methods, such as Larsen's product operation method and the

type 4 reasoning method. Also there are several other membership functions, for

instance, bell shaped and trapezoid shaped membership functions which have not been

tried. Therefore, it may prove useful in further studies to try using these membership

functions and reasoning method in control of the pH process.

The work in testing the fuzzy PI controller was based on experiments with a first

order analog simulation. Some success has been obtained in understanding the fuzzy PI

control response via the corresponding values of conventional PI control constants K"

and K. It is worth studying the behavior of this fuzzy controller with plants of higher

order and, especially, to see if any sliding regimes exist in the higher order fuzzy

systems.

The controller described here was designed for use with a single-input single-output

process. This is not a limitation of the fuzzy logic controllers. So, further work should

id th dOd implement of multi-variable fuzzy controllers and to test theircons1 er e esign an

performance on multi-input and multi-output real processes.
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Appendix A

The Analog Modules Used

for Simulation



This analog module set is a product of Sansonic Electronics Co. Ltd, Taiwan.

It consists of several modules such as Lead/Lag compensator, Phase Mod/Demod , Servo

Amp, Voltage Amp, Phase controller, PID controller, Sum/Dif Amp, Transducer Amp,

Backlash, Saturation/Dead zone, Atenuator, Integrator, Synchro Transmitter, Synchro

Receiver, SCRITRIAC etc., which is specially designed for the school control

experiment laboratory. In this thesis, only Integrator and Sum/Dif Amplifier modules

were applied for constructing a first order plant as shown in the picture below. Their

structures are shown in the next few pages.
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Appendix B

The Model Plant Components

Specification



Specifications of the model plant major component

(1) The metering pump P-1 for the acid solution:

This pump containing a variable, interchangeable control unit which pace the pump

continuously or directly by means of external pulse signals.

control type - 1. power switch +fuse.

2. two-stage float switch connector.

3. metering monitor input.

4. equipped with an analog input which can be used to control the

capacity of the pump proportionally to a 0/4-20 rnA input signal.

control version - 4000 pulses/h, 0/4-20rnA.

Capacity at max. back pressure - 123 psi, at least 47.3 lIh.

Stroking rate at max. back pressure - at least 146 strokes/min.

manufacture and its type - ProMinent Vario, Germany

(2) The metering pump P-2 for the alkaline solution:

This is a microprocessor-based solenoid driven diaphragm-type metering pump for

chemical feeding. The pump capacity can be varied by varying the stroke length

between 100 and 10% and by the variation of the stroking rate between 120 to 1

strokes per minute in the 1:1200 range at least. This pump can monitor its own output.

If certain amount of pump strokes are missing, the pump will stop and showing some

error signal.

The control versions -

Analog control: The stroking rate can be varied between 0 -- 100% according to
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the 0 - 10Vinput analog signal.

Pulse control: This is used to tune the pump to generators of any kind. The pulse

step-down and step-up ratio can be set via keyboard. The number

of strokes predetermined once can be call up by some contact or

some special key.

Capacity at average back pressure - 6 bar: 1.8l/h, 0.25ml/stroke, 120 strokes/min.

manufacture and its type: ProMinent gamma G/4a, Germany

(3) The pH/mY/Temp. Meter:

range: pH: 0 -14.Q<PH, mY: -1999mV -+1999mV,Temp.: 0 -100°C.

resolution: pH: O.OlpH, mY: 1mV, Temp.: O.l°C

accuracy: pH: O.OlpH + 1digit, mY: 0.1 %+ 1digit, Temp.: 0.4°C+1 digit.

Temperature compensation: both Manual and Auto are 0 -100°C.

Recorder output: pH 0 -1400mV

mV -2000mV -+2000mV

Temp. 0 -1000mV

Manufacture and its type: Suntex, SP-701, Taiwan

(4) 486 based pH recorder: Usually, the pH process reaction time takes more than 30

minutes. The storage scope used in chapter 5 can only record about 2 minutes,

therefore, it is not suitable for recording. A 486 based microcomputer storage scope

program is written for this purpose, as shown in figure 6-10. The voltage of its AID

card (PCL818H) is carefully calibrated and shown on the screen and timing is accuratly

controlled through the interrupt procedure by the internal 10 MHz clock.
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