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Background
Rate-coding neurons are often characterized by their tun-
ing curve, that is, the average firing rate, T(x), as a function
of stimulus intensity, x. However the substantial natural
variability in firing rate that often occurs for a fixed stim-
ulus provides a limitation on the fidelity of firing rate
encoding of stimuli. Consequently, stimulus-dependent
variance in firing rate, V(x), is crucial in studies of tuning
curve optimality. Information theory can be used to quan-
tify such limits and to address the question of finding the
tuning curve that maximizes information rate [1].

Firing activity is often modeled as a Poisson point process,
such that V(x) = T(x). However, this assumption can break
down for intensity encoding neurons with monotonically
non-decreasing (e.g. sigmoidal) tuning curves, such as pri-
mary afferent auditory nerve fibers, where refractoriness
can cause firing rate saturation. As the rate nears this
point, variability decreases, and to a first approximation
becomes binomial rather than Poisson, so that V(x) varies
quadratically with T(x). Such neurons are sometimes
called quasi-Poisson.

Results
We have derived a sufficient condition for achieving max-
imum Shannon mutual information between stimulus
intensity and firing rate when the variability is quasi-Pois-
son such that V(x) = s2T(x)(1-T(x)), and s is small [2]. The
sufficient condition leads to analytical expressions for two
ways to achieve maximize mutual information: (i) an
optimal monotonically non-decreasing tuning curve for

any given stimulus distribution and (ii) an optimal stim-
ulus for any given monotonically non-decreasing tuning
curve [2].

The optimal tuning curve for a stimulus with cumulative
distribution function Fx(x) is To(x) = 0.5–0.5cos(π Fx(x)),
while for a tuning curve T(x), the optimal probability den-
sity function of the stimulus is fxo(x) = (dT(x)/dx)/(π
(T(x)(1-T(x)))0.5). Our derivation also provides an expres-
sion for the reduction in mutual information when the
tuning curve and stimulus distribution are not optimally
matched [2]. This expression is a function of the relative
entropy between the stimulus distribution, and a distribu-
tion known as Jeffrey's prior. The derivation makes use of
a relationship between Shannon mutual information and
Fisher information discussed, for example, in [1].

Discussion
Unlike neurons with a 'preferred stimulus' (unimodal
tuning curves), optimality conditions for neurons where
firing rates increase monotonically with stimulus inten-
sity (e.g. sigmoidally) have received little attention. A
notable exception is [3,4], which maximizes Fisher infor-
mation, and considers only Poisson variability. In con-
trast, we maximize mutual information, and consider
quasi-Poisson variability. This leads to a very versatile
analytical solution that allows for refractoriness. A limita-
tion to be addressed in future work is how well the quad-
ratic relationship V(x) = s2T(x)(1-T(x)) compares with
measured variability. Finally, while we assume small s,
our solution provides a lower bound to the achievable
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mutual information for larger s, and is hence a worst-case
scenario.
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