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Abstract 

This project aimed to study the feasibility of making a thermoset sandwich injection 

moulding from a novel thermoset co-injection moulding system. Two thermoset 

polyesters, BMC and a powder coating, were used for all experiments. Flow and cure 

of those materials in a newly designed manifold system were studied and some 

thermoset sandwich injection mouldings have been produced. Despite producing 

novel co-injection mouldings using two thermoset materials together, the results 

showed that the existing system was not applicable for large-scale production of 

sandwich parts and needed some improvements. 

The experiments on the moulding materials and single injection of each material 

gave temperature windows and settings for the co-injection moulding. The results 
from all experiments indicated that temperature and the time of applying heat to a 

thermoset material were very important to its flow ability and formation. Especially 

when producing a sandwich moulding, adequate heat and time was necessary for the 

skin material to form a sufficient layer to cover the core material. Investigation of the 

sandwich moulding cross-sections showed that applying more core injection delay 

time could help to increase the skin thickness. Surface assessment indicated that the 

surface quality was also improved when the skin layer was thicker. However, core 
break-through at the position opposite to the mould gate was found in all sandwich 

mouldings showing that the type of mould gate was also important. A central sprue 

gated mould used in these experiments was found to be not suitable for producing a 

sandwich component using this machine configuration. 

A new manifold design was proposed and was compared to the existing manifold 
designed by using a simulation software package from Moldflowe. Thermoset single 
injection moulding simulation was used to help to understand the flow and cure of a 

thermoset material in both manifold designs. It was shown that the new manifold 

system design was an improvement on the existing one. 
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Chapter 1 

Introduction 

Injection moulding of plastics is a successful process in the plastic industry as it has 

faster production rates compared to other types of plastic manufacturing. A wide 

range of materials including thermoplastics and thermosets can be injected through a 

nozzle and transformed into many useful finished components within a few minutes. 

With new techniques and technologies nowadays, it allows the usage of plastics in 

many applications, which expands the market from domestic general purposes, for 

example, a toaster and a kettle to heavy duty usage, such as high voltage electrical 

boxes and covers. More importantly, some metal parts in the automotive industry are 

being replaced with plastic components, such as engine covers and vehicle panels in 

order to produce a better fuel consumption vehicle. Some of these applications 

require additives to improve the components' properties and prevent them from 

environmental degradation. For example, foaming agent may be used for reducing 

shrinkage of a thick but lightweight part and for the purpose of strength 

improvement, glass fibres are added. However, adding those additives to the 

materials can be disadvantageous. The rough surface of parts filled with glass fibres 

or foaming agent is unsatisfactory in some cases when appearance is important. 

Consequently, an additional process is needed in order to finish the parts and thus 

increase the production time and cost. 



One of the plastic moulding technologies called the co-injection or the 2K-injection 

moulding is an optional solution[]-3]. The process combines the main and the 

secondary operations; plastic injection moulding and surface finish treatment 

together. It produces a thermoplastic component from two materials but presents 

only one plastic outside while the other is encapsulated. Because of this unique 

characteristic, the product can be made with its unwanted surface covered 

completely at the same time. As a result, sometimes the process is referred to as a 

sandwich injection moulding. This technology is also useful for plastic recycling. 

The used material is injected as the inner layer called `core layer' covered by virgin 

material outside called `skin layer' (see Figure 1.1). Sometimes, to reduce production 

cost, cheaper material can also be a `core' and is coated by a more expensive ̀skin'. 

Another example of its useful application is in-mould painting components when an 

unpainted plastic part can be coated by a colour material during the machine process. 

Skin 

Core 

Figure 1.1 Cross section of a sandwich moulding shows skin and core layers. 

The sandwich injection moulding technology is very successful today but is limited 

to thermoplastics. The process of sandwich injection moulding should also be 

possible for thermosets, even though it is more difficult since controlling temperature 

2 



and cross-linking is a problem. The use of recycled materials as the sandwich's core 

is very interesting in term of thcrmosct recycling. Apart from the existing recycling 

methods, such as (i) mixing some regrind material with the virgin polymcr[4"6] and 

(ii) reusing the glass fibre[7], the sandwich technique could offer a further alternative 

of incorporating the regrind in the core so as not to affect the skin properties. 

Another useful application of the sandwich technology is to coat a glass-filled 

thermoset with a paint material. Thermoset materials are notoriously difficult to 

paint. Post mould, the monomer often "pops" from the surface and ruins the 

aesthetics, thus a masking coat is often used. Even so, "popping" can occur in the 

paint oven. Sandwich moulding skin could be used to mask and protect the surface 

from this effect whilst providing the paint. As with the thermoplastic case, a 

coloured component can be made in one cycle without the need for a paint tine. 

However, until this work, no co-injection moulding of thermosets has been reported. 

At the International Automotivc Rcscarch Centre in Warwick Manufacturing Group, 

University of Warwick, a new manifold system was specially designed and installed 

on a Battcnfcld two-barrcl thermoset injection moulding machine to function as a 

novcl thcrmosct sandwich injcction moulding systcm. Sincc thcrc were no cxact 

design rules for a thermoset co-injection system, it was built on a general design and 

it was likely that the system needed some improvements. 

The aim of this projcct was to study the fcasibility of making a thcrmosct sandwich 

injection moulding from the newly designed manifold system and machine with 

regard to how thermoscts flow and cure in the system. Two thcrmosct polyesters, a 
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bulk moulding compound (BMC) from British Industrial Polymer and a black 

conductive powder coating (Interpon) from Akzo Nobel were used in all 

experiments, respectively as the moulding core and skin. This study will focus on the 

following. 

" To produce novel thermoset co-injection mouldings. 

To achieve this first aim, the following objectives are necessary. 

" To study the filling and curing of thermoset polymers when co-injected from 

the injection units through the new manifold into the mould. 

9 To study the effect of temperature during co-injection of BMC and Interpon 

on the mould filling and curing of the materials in the manifold system. 

" To determine the effect of time of injection to the formation of skin and core 

layers in sandwich moulding component. 

" Design a new manifold system to improve the existing system 

The thesis is divided into 9 chapters. Chapter 2 contains a literature review on co- 

injection or sandwich injection moulding technology since it was invented. All 

different techniques to produce a sandwich component are explained with diagrams 

showing how each system works. Previous research including experiment and 

simulation are also discussed at the end of this chapter. 

Chapter 3 contains information on thermoset material properties. This includes the 

characteristics of how these materials cure and flow. Moulding techniques for 

thermosets and their applications are provided. 
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Chapter 4 describes the thermoset co-injection moulding machine, including a 

process description and the general machine design from the feeding units, injection 

units and manifold system to the mould. The current work related to the thermoset 

co-injection moulding is explained at the end of this chapter 

Chapter 5 details the experiments on two thermoset materials, BMC and Interpon, 

which were used as core and skin for the sandwich moulding experiments. This 

chapter focuses on how these materials react to the change of temperature and shear 

rate in terms of curing and flowing. 

Experiments on the thermoset co-injection moulding are provided in Chapter 6. 

These include single injection moulding of each material and sandwich injection 

moulding. Results of all experiments are shown and the problems, which occurred 

during the experiment, are discussed. 

Chapter 7 explains the mechanical design of the existing manifold system. Some 

problems that occurred during injection moulding are pointed out and described. 

Later in this chapter, a new manifold design is proposed. 

The existing manifold system and the new one are compared using Moldflow Plastic 

Insight® 4.1, a simulation programme in Chapter 8. Flowing of a thermoset material 

through each design at the same machine condition setting is studied and discussed. 

Chapter 9 draws the conclusions on the work and makes suggestions for further 

work. 

5 



Chapter 2 

Co-injection moulding 

2.1 Introduction 

Co-injection moulding, which is also sometimes called 2K-injection or sandwich 

injection moulding is a process for producing sandwich structure plastics. The 

machine is used to inject two or more different but compatible thermoplastic 

materials into a mould. As illustrated in Figure 2.1, once the first polymer melt flows 

into the mould and touches the walls, it will form a film or a thin frozen layer with 

some viscous liquid material flowing faster near the centre and slower near to the 

film. This is a characteristic of polymer flow in an injection mould, called 'Fountain 

Flow'. Followed by the second material, which penetrates to the first material and 

forces it to flow further into the mould, a skin-core layered moulding is produced. 

Skin molten layer 

Mould wall Skin froren layer 

. 

Skin 

.:; 
pptycricf: ' polymer 

- 

Fountain flow region 

Figure 2.1 Sandwich moulding and the töuntain flow effect 
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This process can be sequential or simultaneous injection dependent on the machine 

settings. For sequential injection moulding, skin and core materials are injected 

sequentially or orderly; one follows another while for simultaneous injection 

moulding, skin and core materials can be injected almost at the same time or overlap 

each other. These will be explained in detail in section 2.3. In this chapter, the 

applications of sandwich moulding will also be described followed by many types of 

co-injection moulding machines, guidelines for material selection and previous 

studies in this subject. 

2.2 History of co-injection moulding 

The co-injection moulding technology was invented in 1970 by ICI[3,8-10], one of a 

group of companies including Asahi-Dow Corporation, Borg Warner Chemicals, 

Allied Chemical, USM and AMF, who were developing many new techniques for 

thermoplastic foam processing. At that time, producing a part with lower material 

density and acceptable mechanical properties had been achieved but an improvement 

in the surface smoothness of the parts was needed. 

ICI's co-injection moulding technique is schematically shown in Figure 2.2. The 

objective of this technique is to obtain a part with a smooth surface from a solid 

surface injected from one injection moulding machine and fill the moulding's core 

by a material with a blowing agent from another. These polymer melts are injected 

sequentially into a cold mould through an adjustable valve. It is called the Single 

Channel Technique as the materials are injected through only one channel. The first 

polymer injected forms the skin layer and surrounds the core, which is injected 

afterwards. The valve in front of both nozzles functions as a gate to switch between 
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those two materials after getting the required amounts of plastics from each barrel. In 

order to change the thickness of skin, injection moulding parameters, such as 

injection velocity, melt temperature, mould temperature, and melt viscosities are 

varied. 

Skin material 

Core material 

Figure 2.2 Channel Technique[9] 

A disadvantage of the method is that when switching from injection of skin to core, 

the mould cavity pressure drops, so the melt front comes to a temporary stand still as 

shown in Figure 2.3. This is revealed on the finished part as a shadow marks or gloss 

marks. If requirements for the surface finish are high, it might be necessary to paint 

the part after moulding. Details of how this technique works is described more fully 

in section 2.3.1. 
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Figure 2.3 Principle mould filling diagram of the single-channel nozzle co-injection 

moulding process 

In the mid 1970's, a new nozzle design from Battenfeld called the Two Channel 

Technique was developed in order to solve the pressure difference during the 

switching of two materials[3,11 ] (Figure 2.4). This special nozzle was designed to tit 

a machine with two injection units. It is equipped with two separate, concentric 

channels that can be independently operated, opened and closed, hydraulically. As a 

result, it allows injection of skin and core simultaneously, which helps avoid gloss 

marks by maintaining a smooth flow velocity (see Figure 2.5). Typically the duration 
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of the simultaneous phase is 25 percent of the injection time for the skin component. 

The duration is varied dependent on the materials and especially mould geometry. 

An advantage of having two independently controlled injection units is that an 

optimum distribution of core material can be obtained. Normally skin viscosity 

should be slightly lower than core viscosity. If the same material is used in sandwich 

moulding, this is achieved by varying the machine's settings. For example, adjust 

20-30°C higher temperature for the skin to lower its viscosity. In some cases, it is 

useful to increase or decrease the injection velocity and injection delay time of the 

core. Again, all settings are strongly dependent on both material properties and 

mould geometry. 

Barrel B 

Nee 

Barrel A 

Figure 2.4 Battenfeld's two-channel nozzle[ 12] 
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Figure 2.5 Principle mould filling diagram of the 

simultaneous co-injection moulding process 

The Three Channel Technique is used to solve some problems that may occur when 

producing parts with the Two Channel Technique. Similar to the Two Channel 

Technique, an extra channel is applied to the nozzle to produce the third passage for 

the third material. As shown in Figure 2.6, the third channel of Billion's three- 

channel nozzle is used to inject a compatihiliser, which forms some chemical bonds 

between skin and core. This can be used in the case that the two polymers are not 

P (bar) 



compatible or material layers cannot stick to each other, which leads to 

unsatisfactory mouldings. The use ofcompatibiliser overcomes this problem. 

A problem that is normally found in a central gate designed mould is the skin 

thickness at the position opposite of the gate is too thin. It is because the highest 

pressure is developed there and results in the core melt pushing some skin melt to the 

edge of the mould. The three-channel nozzle designed from Kortec gives another 

channel for injecting more skin material into the mould as shown in Figure 2.7. It 

adds additional skin layer there and thus gives a more stable skin thickness. 

iliscrs 

Skin material-p1 6 *-Core material 

core 

.. con eth e mderld 

`Skn 

Figure 2.6 Billion's three-channel nozzle[ 13] 

Figure 2.7 Kortec's three-channel nozzle[ 14] 
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Patented in 1995, Ferromatik Milacron invented a new apparatus for the sandwich 

method of injection moulding, called the Mono Sandwich Technique[15]. As 

claimed in the patent, typical injection moulding apparatus designed to produce 

sandwich mouldings have employed two injection units. Machines of this type have 

disadvantages involving the high initial cost of the required components and 

associated control capacity for close operation monitoring to ensure that the volume 

flow of material is constant through the nozzle into mould when changing between 

the skin material and the core material. 

Ferromatik Milacron proved that the sandwich injection moulding was possible by a 

single injection unit. The machine is simple as it is based on a standard injection 

moulding machine combined with an auxiliary plasticising unit, which has a hot 

runner manifold that can be alternately connected to or disconnected from the main 

injection unit of the moulding machine. As shown in Figure 2.8, two material melts 

are layered in the barrel. These materials are injected into the mould cavity within a 

single injection stroke. The details of how this technology works will be described in 

section 2.3.2. 

l 

Figure 2.8 Mono-sandwich injection moulding 

roke measuring 
stem 
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A strong advantage of Ferromatik's technique is very thin parts are possible[3,16]. In 

other words, a very high core content around 65-75 percent by volume can be 

produced, which is somewhat higher than for the two-channel technique, which can 

use 55-60 percent core volume[2]. Because the machine is based on a normal 

injection moulding machine, it is easy to control and operate. However, since there is 

only one injection unit, materials used in this machine have to be similar in terms of 

operating temperature. Also the lack of detailed control of the injection process 

makes the moulding of complicated shaped parts more difficult. 

Presently, Battenfeld and The International Automotive Research Centre of The 

University of Warwick are developing a new three-material injection moulding 

machine, which is designed based on a co-injection moulding or the two channel 

technology, by adding an extra injection unit placed vertically from the top. An 

intermediate platen is placed to link between those units as shown in Figure 2.9. The 

platen, called a manifold system, is similar to the one that was used in the thermoset 

co-injection machine in this research and will be described in the next chapter. 
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Barrel B 

Barrel A 

Figure 2-9 3K-injection moulding system 

Currently in the co-injection moulding industry, there are new machine and nozzle 

designs, which have been developed from the mono-sandwich techniques. These are 

illustrated in Figure 2.10, a co-injection system from Addmix and 2.11 and 2.12, co- 

injection systems from Twinshot Technologies. 

Material A 
Matorial 8 

Cantroeor I ýI 

Figure 2.10 Addmix co-injection system[ 17] 
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ftc Addmix co-injection system, as shown in Figure 2.10, uses one injection unit to 

mould a sandwich moulding of two different but compatible materials. Moulding 

skin and core are weighed and loaded sequentially to layer in the barrel. A computer 

system, which contains a volumetric metering/feeding control for each material, is 

used to ensure that the amount of materials is accurate. 

The Twinshot co-injection systems are available in two versions. The first version 

uses two screws in one barrel, i. e. the core screw is inside the skin screw as seen in 

Figure 2.11. To start a moulding cycle, the outer screw (skin) charges the skin 

material to the front of the barrel then the inner screw (core) charges the core 

material and layers it at the back of the skin. After that the materials are injected into 

the mould and form a sandwich moulding. 

Skin screw Core screw 
AB 

Figure 2.11 Twinshot co-injection system version I[ 181 

The second version of Twinshot combines the two screws into one as can he seen in 

Figure 2.12. The screw has two sections for separate the skin and core materials 

during metering. To start, the screw rotates to charge molten materials to the front of 

the barrel. Skin material or material A will reach the nozzle before core material or 
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material B, which is delivered to layer behind the skin through the skin screw. After 

that both materials are injected into the mould and form a sandwich moulding. 

Skin screw 

matnnai M 

Figure 2.12 Twinshot co-injection system version II[I8] 

2.3 Sequential and Simultaneous co-injection moulding processes 

The words `Sequential' and `Simultaneous' are used to define co-injection processes 

into two groups by looking at how materials are injected into mould. The machines 

that can inject skin and core materials orderly without any injection time overlap 

between them are called sequential co-injection while the machines that can inject 

materials into mould with an injection time overlap or both at the same time are 

called simultaneous co-injection. All of the techniques mentioned in the last section 

can be summarised as shown in Figure 2.13. 
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Co-injection moulding machine 

Sequential Process II Simultaneous Process 

Single Channel I Mono-sandwich 

ICI Ferromatik-Milacron 

Addmix 

Twinshot I&II 

Two-channel Three-channel 

Battenfeld Billion 

Kortec 

Battenfeld 

Figure 2.13 The different techniques for co-injection moulding process 

ý. 

2.3.1 The sequential co-injection moulding process of a single-channel moulding 

machine 

The following diagram and table describe how a single-channel moulding machine 

of the ICI type works. This kind of machine has a major disadvantage of uneven 

distribution of core material and producing finished parts with gloss marks due to a 

sudden drop of injection pressure during switching materials between skin and core 

as already shown in Figure 2.3. 
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Table 2.1 Operating sequence of the single-channel moulding machine. [9, l O] 

Steps Details 

The injection moulding cycle is started 

by hydraulically closing the mould. 
*w 

Skin and core screws rotate to charge 

the materials while the valve is fully 

closed. 
Step 1 

The switching valve is opened to 

connect the first injection unit to the 

mould. Some of skin polymer is then 

injected. 

Step 2 

After getting adequate skin melt, the 

valve is opened for the second injection 

unit to inject core material. During the 

injection, skin melt is being pushed 

outward. 

Step 3 
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Table 2.1 Operating 

(continue). [9,10) 

sequence of the single-channel moulding machine 

Step 4 

The core material is injected until the 

mould is full. Pressure from the second 

injection unit is used to pack the mould 

to ensure a good surface finish. 

The valve is switched to the first 

injection unit for the second time. The 

_ 
skin melt is injected again to repack the 

mould and conceal core polymer inside 

the skin. This also helps to clear the 

sprue and valve of core polymer in 

order to prepare for the next moulding 

Step 5 cycle. 

The valve is closed. The applied clamp 

force is still held until the moulding is 

cooled down and solidified. During 

that, the screws rotate back to recharge 

the skin and core materials. At the end 

of cooling cycle, the mould is opened to 

eject the finished part then the machine 

Step 6 is ready for the next moulding cycle. 
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2.3.2 The sequential co-injection moulding process of a mono-sandwich 

moulding machine 

The mono-sandwich moulding process is described by Table 2.2. This technique is 

classed as a sequential injection moulding process as the single channel technique. 

However, the operating details are different. In this case no gloss mark is seen. It is 

because both skin and core materials are injected from the same barrel. A short 

overlap injection time of the materials prevents the melt flow front from temporary 

stopping. Consequently, smooth pressure (as shown in Figure 2.14) is developed 

inside mould cavity as is occurred in the simultaneous injection moulding process. 

Table 2.2 Operating sequence of the mono-sandwich moulding machine[ 15,19]. 

Steps Details 

The cycle is started when the mould is 

closed hydraulically. A required 

B amount of skin material, which is 

plasticised in the auxiliary extruder B is 
A 

injected into the main injection unit A. 

Pressure from skin melt inside the main 

Step I barrel will push the screw backward. 

The main screw then rotates to charge 
B 

core material to the front and sit behind 

A the skin material. 

Step 2 
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Table 2.2 Operating sequence of the mono-sandwich moulding machine (continue) 

[15,1 9J. 

B 

A 

Step 3 

After getting enough skin and core 

melts, the extruder B is driven up to 

provide space for the main injection 

unit to move forward and connects to 

the mould. The machine then injects 

both skin and core materials into the 

mould cavity. 

Once the skin material touches the 

B 
mould wall, it forms a thin frozen layer. 

TA 
The screw continues injecting more 

core material into the mould. The core 

melt pushes the skin outward and forms 

Step 4 a sandwich moulding. 

The main injection unit discharges 

B 
some more core melt in order to fill and 

A 
pack the mould. After finishing 

injection cycle, the main unit A retracts. 

Step 5 
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Table 2.2 Operating sequence of the mono-sandwich moulding machine 

(continue)[ 15,19]. 

While the moulding is left to cool down 

LB 

A 

in the mould, the extruder B is 

recharged with skin material and then 

moves down to connect with the main 

Step 6 

Injection of 

BA 
r 

V (nm/sec) 

b 
wu 
3ß 
4) U U 

U 

U 
aý 
a 

U 

unit A to start the new moulding cycle. 

Time (sec) 

Figure 2.14 Principle mould filling diagram of the mono-sandwich co-injection 

moulding process 
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Because core material is used last to pack mouldings, sandwich parts produced from 

this process normally reveal the core material at the sprue end. This is unsatisfactory 

if very high quality surface is needed. Alternatively, an accumulator with a flow 

control valve can be installed alongside the extruder. This valve connects the 

accumulator with the extruder and the mould cavity. After the extruder finishes 

feeding skin melt into the main injection unit, some of the melt is fed to the 

accumulator. This material will be used to pack the mould via the spruc after 

required amount of core material is injected and the injection unit is retracting (at the 

end of step 5 in Table 2.2). 

2.3.3 Simultaneous co-injection moulding process 

More complicated nozzle design and computer control were developed to eliminate 

the limitation of the sequential co-injection moulding process. The following are the 

operating sequence of the simultaneous co-injection machine of Battenfeld and the 

mould filling principle. As illustrated by Table 2.3 and Figure 2.5, cavity pressure 

can be maintained in a smooth curve. The screws and shut-off nozzles are designed 

to function so that there is material flow to the cavity throughout the mould filling 

cycle, thus avoiding melt flow from temporarily stopping. 
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Table 2.3 Operating sequence of the simultaneous 

machine[16] 

of 1111('01( mI lit tllditill 

Steps Details 

The mould is closed and hydraulic 

A clamp force is applied to start a 

moulding cycle. Main injection units A 

B and B are charged with skin and core 

melts respectively and the moved 

Step I forward to face the mould sprue. 

The shut-off nozzle A opens and the 

screw A injects some skin melt into the 

mould. The shut-off nozzle B still 

closes. 

Step 2 

When the screw A reaches the setting 

switching point for starting injection B, 

the shut-off nozzle B opens and the 

screw B starts injecting some core melt. 

Note that during this, skin melt is still 

flowing. The process continues until 

both screws reach the setting stop 

Step 3 points. 
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Table 2.3 Operating sequence of the simultaneous co-injection moulding machine 

(continue) [ 16] 

While the shut-off A is still opening, 

the shut-off nozzle B closes. Screw A 

injects some more material and hold it 

for a few seconds in order to pack the 

Step 41 mould and to ensure that the core 

material is concealed completely inside. 

The shut-off nozzle A closes and the 

cooling cycle starts. The injection unit 

is recharged with new skin and core 

materials for the next injection cycle. 

Step 5 

2.4 Different machine structures and injection unit arrangement 

111,20,21 

Alongside nozzle and screw development, the machine construction has also been 

redesigned and changed. The potential arrangement of the injection units, which is 

dependent on the machine and mould designs and available space of the plant, can he 

as illustrated in Figure 2.15. 

26 



a'g . 

Side view lop plane view 

,. ý ..,. L position 
Vertical unit 

., � Parallel position 

"Piggyback" 
L parallel position 

0T position 
2 Vertical unit 

Figure 2.15 Overview of the available standard arrangements of the injection 

unit[21 ] 

2.4.1 Vertical injection unit 

The second injection unit is mounted on the top, over the fixed platen. For mould 

changing, the injection unit can he slid hack to stand behind the platen. Although this 

unit is the most space saving and frequently used arrangement, the disadvantages of 

the vertical unit is it needs high hall height. 

2.4.2 L position 

The second unit lies as a 90° angle to the first unit but in a different direction from 

the Vertical unit design, as both barrels are lined horizontally. This design is an 

alternative to a low hall height requirement of the vertical design. 
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2.4.3 Piggyback 

The second unit may also be arranged at an angle from above and inject through the 

same opening or a second opening in the fixed platen. This arrangement saves floor 

space like the vertical unit design but requires less hall height. It is particularly 

advantageous for a second injection unit much smaller than the first. 

2.4.4 Parallel position 

The two injection units are parallel. This design does not need a very high hall and 

does not consume much space. This is different from the other designs, which need a 

special design mould or tool channels for leading materials into the mould in order to 

make a sandwich part. The nozzle is placed in front of and connects both injection 

barrels and controls the flow of materials. The disadvantage of this unit is it has a 

limited range of temperature difference between two barrels. Since the barrels are 

parallel and, installed on the same carriage, too much difference of temperature can 

cause a misalignment problem due to unequal expansion of the injection unit. As a 

result, the materials chosen should have the same range of operating temperature. 

With the standard unit arrangement in Figure 2.15, the maximum of six component 

plastics can be achievable as presented by Ferromatik Milacron in Figure 2.16[21]. 

Four injection units can be arranged vertically and one unit at an angle of 45°. The 

mould design requires central injection and two injection points on the top of the 

fixed platen as well as three injection points on the top of the moving platen. 
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Figure 2.16 Design of a six-component injection moulding machine of Ferromatik 

Milacron[21 ] 

2.5 Criteria of selecting raw materialst2,31 

The selection of materials depends on the properties required ibr the finished parts. 

However, when two materials are involved in the process, some rules have to be 

followed. It is necessary to consider how well the skin and core layers of those 

selected materials stick to each other. The following are a guide to good adhesion 

mouldings: 

" The materials offer some degree of bonding at the interface. It is important 

that the finished part is looked like it is made of a sole material. If the part is 

exposed to a mechanical load, the skin layer should not he detached from the 

core layer easily. 
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9 Both materials have approximately the same shrinkage and thermal 

expansion value. The parts produced from a couple of materials with a large 

difference in shrinkage value might have sink marks, voids and warpage. 

Further more, it will lower the interfacial bond strength even though the 

materials themselves have some adhesion. 

For some materials that have no adhesion, compatibiliser may be added to promote 

bonding. An alternative method is to produce mechanical interlock between the 

layers. This can be achieved by very high injection speed, which causes mixing of 

the materials at the interface. [22] 

Tables of compatible and incompatible thermoplastic material combinations have 

been produced[3,23]. An example is shown in Table 2.4. Note that the adhesion 

properties of materials listed in the table are for some exact grades only. It excludes 

the materials that are filled with fibre reinforcements and compatibilisers. Those 

fillers may affect the mould shrinkage and thermal expansion and thus the bond 

strength. 
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Table 2.4 Compatible and incompatible thermoplastic material combinations[3,23 j 
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AI3S + + + + + + + _ _ _ * * + + + 
ASA + + + + + + + - - - * - + + + 
EVA + + + + + +- + + + 
PA6 + + * * * * _ * - - - + + 
PA66 + + * * * * - - - - - + + 
PBT + + * * + + - - + _ _ _ _ - + + 
PC + + * * + + + + + 
PE-HD - - + * * _ _ + + _ * * - - - - - - - 
PE-LD - - + * * _ _ + + _ * * + - * - - - - 
PET + + + + - - + - - - - _ + 
I'MMA + + + * - - - + + 
POM - - - - - - * * - + - - - - - 
PP - - + * - - - - + * - + - - - - - - 
PPO. mod. - - - - - - . . . . . . + + + - * - 
PS-GP * * + - - - - - * - - - - + + + - - - 
PS-111 * - + 

- 

- + + + - - - 
PVAC + 
PVC-W + + 

- 

- - - - + + + 
SAN + + + + + + 
TPU + + - - + _ _ _ _ + + + 

(-) : No adhesion, (*) : Poor adhesion, (+) : Good adhesion 

2.6 Applications of sandwich moulding 

The unique characteristic of sandwich moulding is it can combine two different 

required properties of skin and core materials together. This gives designers the 

flexibility to decide and choose the right materials for the right job. Presently, 

thermoplastics are widely used. Some examples will now follow. [3,24] 

2.6.1 In-mould painting plastic 

Natural colour polymer as the core enclosed by coloured polymer. The core material 

can be a commodity material for a lower cost or an engineering material if it needs to 

be a high strength part. For this application, the painting process can he eliminated as 

the completed coloured part is obtained directly from the machine. 
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2.6.2 Reinforced mouldings 

For the part that needs a high impact strength, a glass filled material can be applied 

for the core layer. Its rough surface can be concealed for an improved surface finish 

by using a smooth or soft touch surface. Coloured polymer can also be applied as the 

skin layer. 

2.6.3 Electromagnetic Interference (EMI) shielding 

Shielding or conductive fillers such as carbon black, aluminium flakes and stainless 

steel fibres are added to the core and coated by colour and/or for the desired surface 

finish. This can be applied for computer, electronic equipment and some automotive 

parts. 

2.6.4 Recycle material application. 

Unpredictable property material from the scrap yard can be mixed with a pure one 

and then injected as the core material. Another pure or virgin material is used as 

skin. This reduces the cost of production and is environmentally friendly. 

2.6.5 Foam core of a very thick part 

A limitation of the thermoplastic injection moulding process is that it is unable to 

produce a very thick part (more than 4 mm) without shrinkage, warping, high 

internal stress, and sinking. Foaming agent added to the material is used to reduce 

the problem and helps in reducing the part weight. However, foaming causes 

unwanted finishing. Again, a painted or smooth layer can be applied outside to 

enclose the foam. 
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2.7 Previous studies in co-injection moulding process 

Some of the studies dealing with co-injection moulding since it was invented are 

listed in this section. The works can be divided into experimental and simulation. It 

can be noted that most of them are based on thermoplastic materials and almost all of 

them are related to the one-channel technique. 

2.7.1 Experiment works 

In the first few years since the co-injection technology was invented, research work 

focussed on the effect of material flow property on mould filling. White and Dee[25] 

studied sequential mould filling of polystyrene and polyethylene in a thin rectangular 

cavity. A special mould (1/2 inch x2 inch x4 inch) consisting of two aluminium- 

clamping blocks with thick glass windows was designed for visualisation by high- 

speed photography. It was found that the skin material should have a much lower 

viscosity than the core to achieve a good sandwich moulding. 

Later White and Lee[26] studied simultaneous mould filling by using a modified 

rheometer. Instead of a capillary die, they installed a small nozzle to the barrel end. 

The rectangular mould with glass windows was used again for visual observation. To 

prepare for the test, two polymer rods were sliced in half and inserted to the 

rheometer barrel. Heat was applied to bring them to a molten state, and then the 

melts were pushed by the rheometer plunger through Dee's special nozzle design. A 

skin-core melt was formed and injected into the mould. They found that the lower 

viscosity melt would encapsulate the higher one and the sandwich moulding was 

achieved. The smaller the viscosity difference between skin and core was, the more 

difficult it was to control the process. 
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With the idea of concealing one plastic inside another, a new method of recycling 

plastics was possible. Donovan et at [27] structured a machine called two-shot 

injection moulding. They installed the second injection unit perpendicular to the first 

and connected them with a special nozzle similar to the two-channel nozzle. Virgin 

and recycled acrylonitrile-butadiene-styrene (ABS) compounds were sequentially 

injected into five different moulds; an end-gated, two-cavity, rectangular plaque 

mould, a centre-gated disc mould, two telephone housings with different thickness 

and a telephone handle. With the scrap material, around 50 percent of the part 

volume could be moulded in the plaque mould and up to around 60 percent was 

successful in the disc mould. For the more complicated shapes like telephone 

housings, the scrap polymer was about 40 percent, which would be increased if the 

cavity filling were well balanced. 

The results from the plaque and disc mould were also compared with a conventional 

(single shot) mould filling simulation. Skin thickness was sectioned and measured 

by an optical comparator attached to a microscope. In general, there was a good 

agreement between the experiment and simulation. 

Continuing the work on the mould and apparatus designed by White and Dec and 

White and Lee, Young et al. [28] took a more detailed look at the influence of 

differences in rheological behaviour of the melts on the phase distribution in 

sequential injection moulding. Six different materials including two polystyrenes, 

two high-density polyethylenes, a low-density polyethylene and a polypropylene 

were used as six different viscosity materials and injected into the rectangular, centre 

gate mould. The viscosity ratio, i. e. the ratio of the core viscosity to that of the skin 

34 



viscosity was compared to the phase distribution. The results of their research 

narrowed down the viscosity window for sequential co-injection. They found that the 

best uniformity of skin and core thickness occurred when the ratio of zero shear 

viscosities was 1.5 to 2.0. By using excessive quantities of skin material, the burst- 

through or breakthrough of core material could be reduced in cases where the core 

viscosity was lower than skin and a more uniform phase distribution could be 

achieved. 

Somnuk and Smith[2] investigated a different moulding type from above. They 

studied the simultaneous co-injection moulding process by using Battenfeld's two- 

channel nozzle unit. Four grades of polypropylene with different viscosities were 

used and injected into end-gated rectangular plaque moulds. A mould with cavity 

dimension of 195 x 138 x3 mm was used for the first case study. A specially 

designed glass-window mould with cavity dimension of 100 x 75 x4 mm was used 

for the second case in order to do a visual study of filling with a high-speed camera. 

By adjusting the volume proportions of materials and the injection speed, it was 

shown that the materials with ratio of viscosities (skin/core) between 0.82 and 1.83, 

measured at a shear rate of 103 second'1, could be successfully moulded with the 

most uniform core distributions and the amount of core material that could be 

concealed was around 55 to 60 percent. The length of simultaneous phase could be 

increased from 5 to 20 percent up to 95 percent of the setting for the skin-metering 

stroke. Too low a core viscosity and too high skin viscosity could cause 

breakthrough. If the core viscosity was lower than skin, more skin material was 

needed to conceal the core inside. However, in this case, the core distribution was 

more uniform. 
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Derdouri et al. [29] focussed on other factors, which are skin/core ratio, material 

melting temperature, injection speed and mould temperature. These factors could 

also influence the mould filling and skin/core forming apart from the viscosity. They 

used a co-injection moulding machine from Engel to inject acrylonitrile-butadiene- 

styrene (ABS) and polycarbonate (PC) into a 76 x 164 x7 mm rectangular plaque 

mould. This mould is unusually thick compared to general moulds used in injection 

moulding. Better skin/core ratio can be obtained but sink marks and voids are also 

likely to happen on the moulding surface. The skin/core volume ratio was varied 

from 85 down to 25 percent. With the changing of material melting temperature, 

injection speed and mould temperature, the maximum flow length of both skin and 

core were plotted. The experiment concluded that at 5-25 mm/s injection speed, 

breakthrough of the core through the skin was a direct function of the skin/core ratio 

and was an effect more sensitive to the mould temperature than to the melt 

temperature. Viscosity ratio also had an important effect on the onset of 

breakthrough and more skin was needed to conceal core material. When the viscosity 

ratio was close to 1, the injection speed had a small effect. 

Many studies have focussed on how various parameters affect to the skin and core 

formation, but Selden[30] looked at a different problem, the chemical compatibility 

of two materials. In his work, he coupled non-compatible polyamide 6 (PA6) and 

polyethylene (PP) by Ferromatik's mono-sandwich injection moulding. Different 

percentage values of compatibiliser were added to the polypropylene. The interfacial 

bond strength between those materials was measured by peel tests. He then measured 

the mechanical strength of finished parts by impact and flexural tests. From the 

result, he suggested that non-compatible materials, like PA and PP, could be made to 
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form a strong interfacial bond by adding a relatively low amount of a suitable 

compatibiliscr. For a tough skin and a brittle core, high impact strength was achieved 

only if the interfacial strength is sufficiently high. Viscous fingering, which was a 

common type of interfacial instability, was found especially in the 0 percent 

compatibiliser specimens, but also in mouldings with a higher percentage of 

compatibiliser. It was noted that those unmodified PAPP sandwich specimens also 

had relatively high strength. This was due to the mechanical interlocking between 

the interface layers caused by interfacial instability. 

Later, Rungseesantivanon[16] studied factors affecting adhesion of polymers in 

simultaneous co-injection. Polyamide 6 and polypropylene with and without 10 

percent of compatibiliser were injected through a two-channel nozzle of a Battenfeld 

co-injection moulding machine into a square plaque mould. Impact and peel tests 

were done to measure the interfacial strength between skin and core layers. It was 

found that compatibiliser, skin layer thickness and simultaneous injection time were 

the major factors to affect skin and core adhesion of incompatible materials. The 

compatibiliser promoted chemical bonding between the materials. However suitable 

conditions like a greater thickness of skin layer and a longer simultaneous injection 

time were necessary to produce good bonding between skin and core. This was 

possible by varying setting parameters such as melt temperature, tool temperature, 

injection speed, length of simultaneous phase and the metering stroke ratio of the 

skin and core. 

Since compatibilisers tend to be expensive, the number of chemical sites available at 

the interface limits the final bond strength. Co-injection moulding of non-compatible 
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materials without adding any compatibilisers was proposed by Goodship and 

Kirwan[22]. It was intended to control the level of turbulent flow where the 

interfacial instabilities occurred, which promoted mechanical interlocks between the 

layers. This occurred without any effects to the surface and skin-core distribution. In 

the research, six different materials consisting of polycarbonate, poly (methyl 

methacrylate), nylon 12, polypropylene, polystyrene and high-density polyethylene 

were used and machine speed was varied in order to find the boundary between 

laminar and turbulent flow. The results were compared with mouldings that had 

compatibilisers added. It was concluded that interfacial instabilities were achieved 

by control of injection speeds. This method was advantageous to the compatibiliser 

added mouldings as there was no surface distortion or halo effect at the layer 

interface. Even though compatibiliser technology offered possibilities for future 

multi-material products, the lack of interfacial mixing with resultant surface defects 

and the cost itself meant that a system that could induce interfacial mixing would be 

an attractive alternative. 

2.7.2 Simulation works 

It was not until around 20 years after co-injection had been invented that the first 

simulation of sequential co-injection moulding process was published. Based on 

conventional injection moulding, Tumg and Wang[31] of AC Technology applied 

the basic theory, Hele-Shaw flow of inelastic, non-Newtonian fluids under non- 

isothermal conditions to their simulation. A numerical analysis using a hybrid Finite 

clement/Finite different/Control-volume numerical scheme had been developed. 

Residence time, which is the duration that a particular material clement had spent in 

the cavity since it entered the cavity, was a major difference used for the calculation. 
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The simulations were done in three cases by varying skin and core viscosity ratio 

from less than 1 to more than 1. Then the results were compared with C-shape plates, 

which were made by injection moulding of two polypropylene resins. Spatial 

distribution of skin and core, injection pressure and clamp forced were predicted. It 

was concluded that the analysis agreed fairly well with the experimental data. 

The concept of a residual time approach was also used to simulate the core and skin 

melt front advancement by Chen et al[32]. In this case, two complicated moulds, a 

plate mould with three different thickness regions and one with a block inserted to 

form weld line and an asymmetric melt flow, were designed to conduct the process 

studies. Transparent and green coloured poly methyl methacrylate (PMMA) resins 

were injected and the results were compared with the analysis. The simulated results 

on the material distribution from the plate mould showed a reasonable agreement 

with the experiments. However the results from the mould with inserts showed slight 

differences. It suggested that more investigations should have been done in both 

cases. 

This work was followed by Schlatter et al[33]. Experiments and simulation studies 

on the co-injection of polystyrenes were performed in order to test the influence of 

processing parameters on the interface location and on the pressure in a centre gated, 

90-mm radius disk mould. The temperature was varied between 200°C to 260 °C. 

Skin and core thickness were observed. The experimental results showed that the 

thickness of the layer would be greater if its viscosity was higher. When changing 

skin or core temperatures and flow rates, the thickness of each layer was also 

changed. This was because increasing those factors resulted in a decreasing of the 
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viscosity. The influence of flow rates was larger than that of the temperature due to 

the larger shear thinning effect. Consequently, it was used as the main factor in the 

then-no-mechanical model simulation. In the case of the disk mould, a numerical and 

experimental comparison of the influence of the flow rate on the interface location 

showed a good agreement. A trial was done on a more complex geometry like a tape 

distributor mould. It was also proved that this simulation model could work very 

well with this industrial case. 

Although the simultaneous co-injection moulding was invented only a few years 

after the sequential moulding, none of the simulation works were focussed on the 

simultaneous moulding technique. Lee et al. [34] presented the first simulation of 

simultaneous sandwich injection moulding based on the Hele-Shaw approximation. 

The results were compared with the experiments done on two injection moulding 

machines with a two-channel nozzle and a visualised rectangular mould assembled. 

The materials used were high-density polyethylene (HDPE), low-density 

polyethylene (LDPE) and polystyrene (PS). Many factors such as material 

temperatures, injection rate and length of simultaneous were varied. The analysis 

gave fairly good results. However, it needed further investigation with regard to 

more complex geometries. 
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2.8 Related works on thermoset co-injection moulding 

At present, the only published work related to the injection of two thermoset 

materials together is by the author[35]. The first conference paper of the co-injection 

moulding of different types of material, thermoset and thermoplastic and thermoset 

and rubber was presented by Hunold[36] in 2001. The first sandwich moulding was 

a combination of a phenolic skin and a polyethylene core. The result was a 

panhandle consisting of approximate 50 percent phenolic and 50 percent 

polyethylene. It was demoulded at a temperature of 160°C while leaving the 

polyethylene in liquid state. The curing time was reduced from 70 seconds to 30 

seconds due to the high core temperature. However, because the polyethylene was 

still liquid, the phenolic skin layer must have been strong enough to fulfil the part 

strength requirements during demoulding. The author suggested that further work 

had to be done to find or develop appropriate compounds, mould and machine 

technology. 

It is not only plastic material that can be used to aid thermoset injection moulding, 

compressed air can also be used to replace the core component. Nunnery of Bulk 

Molding Compounds Inc. (BMCI) presented the first thermoset gas-assist injection 

moulding at the 13 ̀h International Molding in February 2003. [37] The mould cavity 

is first completely filled with BMC and packed. After a delay to allow the film layer 

to set up against the mould wall, the gas pin, which is located as far as possible from 

the gate, is activated and pushes soft uncured material from the centre of the part 

back to the barrel. Using this method, it was claimed that cycle time was reduced and 

material usage was lowered to one third or one half. 
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2.9 Conclusions 

This chapter contained a literature review on the co-injection technology since it was 

invented and explains all different techniques to produce a sandwich component. 

The experimental research published shows that the co-injection moulding process 

has been shown to work successfully. A wide range of compatible materials can be 

used with this technology by varying the machine parameters. Furthermore, the 

recent works have shown that non-compatible materials such as nylon and 

polypropylene are also possible to use if adding a compatibiliscr and having suitable 

machine settings. 

The simulation works on co-injection moulding have been gradually developed and 

are successful to a degree. Prediction of mould filling of a simple mould is accurate 

but the more complicated ones need further study. 

The first processing of thermosets in combinations with thermoplastic or rubber in 

the co-injection moulding process was reported recently. However, there were some 

heat related problems during the experiments, which required more investigation. 

Despite the fact that a lot of research work in co-injection moulding has been done, 

the research has concentrated on thermoplastic materials only. The thermoset co- 

injection moulding is a very novel process, which was influenced by the 

thermoplastic sandwich injection moulding idea. Similar to thermoplastics, the 

viscosity of the material and machine condition setting, such as injection time and 

injection speed can be expected to be the factors affecting mould filling and the 
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sandwich formation. However, the most important factor that needs more 

consideration is the system temperature since it affects directly to the thermoset 

cross-linking networks and hence, the change of material flowability. 
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Chapter 3 

Thermosetting plastics and mouldings 

3.1 Definition 

Plastics can be divided into two types, thermoplastics, and thermosets. [38] Their 

varied characteristics are due to dissimilar structures, which are suitable for different 

functions of work. With the more linear molecules of thermoplastics, they tend to be 

more flexible than thermosets. This polymer can be softened and turned to a viscous 

fluid at high temperatures and solidified at a lower temperature. The process can be 

reversed many times, which is completely different in the case of thermosetting 

materials. 

Tony Whelan and John Goff gave the definition of thermoset in Molding of 

Thermoset Plastics[39] that "a thermosetting plastic or a thermoset is material which 

once shaped by heat and pressure is incapable of being re-processed by further 

applications of heat and pressure ". This is because during moulding the molecular 

chains of thermosets form linkages between each other by means of a chemical 

reaction, which is called cross-linking. The strong and complicated network of 

thermosets prevents the chains from moving or slippage when heat and pressure are 

applied. As a result, plastic parts made by thermosetting material are rigid and hard 

but brittle. 
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As well as thermoplastics, thermosets can be classified broadly referring to their 

physical properties as general purpose, engineering and specialty plastics. General 

purpose or commodities thermosets are characterised by their average mechanical 

properties, higher expansion co-efficient, lower temperature resistance and lower 

production cost. Engineering thermosets have better properties so they are more 

durable and more expensive. Specialty thermosets offer one or more highly specific 

or unusual property. They are very expensive and produced in a small quantity. 

Table 3.1 shows a classification of different thermosets into those three groups. 

Details of their properties and application can be found in many reference works that 

exist. [23,38-40] 

Table 3.1 Classification`of thermosetting materials 

Classification Thermosetting Plastics 

General Purpose Phenolics, Aminos, Polyesters 

Engineering Epoxy, Polyurethane 

Specialty Silicones, Allyls, High-temperature Thermosets 

This chapter will be focussed on the general characteristics of thermosetting 

materials that have been used in the standard injection moulding process. Resin or 
i 

liquid thermosets will not be included as they are beyond the scope of this research. 

Processes involved in shaping and moulding this kind of material will be explained 

briefly including their advantages and disadvantages. Some examples of products 

made of thermosets are listed and thermoset recycling is described in the last section. 
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3.2 Cross-linking and Curing 

The major difference of thermosets and thermoplastics is that the process of 

moulding thermosets cannot be reversed. Once some heat and pressure arc applied to 

a raw thermoset, its molecular chains will start chemical reactions among the others. 

This will form cross-linked networks, which hold all the chains as a single structure 

as illustrated in Figure 3.1 (a). The arrows in the figure show connections among 

chains. The network polymer is very strong as if more heat and pressure are applied, 

the molecular chains are relatively rigid and the plastic part remains in a solid state. 

This is unlike thermoplastic materials, whose chains stay in a group with no inter- 

chain connection. Extra heat and pressure cause the molecular chains to become 

loose and move, thus turning the plastic into a viscous liquid and then back to solid 

state again after it is cooled. 
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The network structure of a cross-linked thermosetting plastic results in high heat 

resistance and high impact properties. A thermoset part will remain unchanged under 
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an application of heat until it is raised to a certain level that can destroy the chemical 

linkages. At this point, the part is decomposing. 

By looking at how the plastic is changed during the cross-linking process, Figure 3.2 

shows the relationship of viscosity and time when applying heat to a thermoset. As 

the heat has two effects on the material here, melting it down and activating the 

cross-linking reaction, the viscosity-time curve is a combination of those effects. The 

curve starts at the first point, to, where the material is heated at a constant 

temperature. After a certain time, the viscosity will drop to 'j', which is the lowest 

viscosity point. It then rises up as the molecular weight increases due to the cross- 

linking effect and continues to increase as the cross-linked network grows through 

time to a point where the liquid turns to gel. This point is called gel point or more 

commonly gel time (tgei). Beyond this, the viscosity is going to infinity, which means 

the melt is completely solidified. 

I 

Viscosity, n 

Time, t 

_, _, _, 
Melting 

Cross-linking 

Figure 3.2 Viscosity and time of a thermoset at a constant temperature 
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Increasing the constant temperature has consequences in decreasing of gel time as 

shown in Figure 3.3. Figure 3.4 shows that the higher the temperature not only does 

it speeds up the curing rate but also reduces the material viscosity, i. e. the material is 

easier flowing. 
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Figure 3.4 Effect of temperature on viscosity and time of a thermoset 
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It is very important to consider the gel time of any materials used in plastic 

production as it implies the critical point where the material starts to solidify and 

block the whole system. Obviously, it is recommended that the maximum duration 

of the molten material that can stay in the machine-feeding unit should be lower than 

the solidification time and certainly depends on the processing viscosity. To roughly 

find this point, usually a wooden probe has a sufficient enough accuracy (±0.5 

minute)[38]. This method was used to find gel times of a thermosetting powder 

coating as shown in Figure 3.3. 

Viscosity of material increases sharply to infinity after the gel time. This means, at 

that point, the thermosetting part is solid enough to be taken off from the mould and 

is ready to be used or sent to the next process. However the moulding is only partly 

cured there. The formation of internal bonds is still going on after the moulding 

cycle by using the internal heat generated from the cross-linking reaction. This 

process needs much more time than the machine setting curing time and results in 

dimensional changes and shrinkage after moulding. To investigate the part, it is 

recommended to wait until its dimension is stable, i. e. 48 hours for some grades of 

DMC (dough moulding compound) and melamine formaldehyde. [39] 

3.3 Flow behaviour of thermoset 

Generally, when injection moulding thermosets, the moulding engineer is always 

looking for a compound that has long flowing characteristics and fast final curing in 

the mould. Flow behaviour of the plasticised thermosets is a very critical aspect of 

processing. To understand the flowing of thermosets, it is worthwhile to start by 

looking at the basic fluid behaviour. 
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3.3.1 Rheological behaviour[411 

Consider a viscous liquid under a simple shear between 2 parallel plates, separated 

by a gap thickness h as illustrated in Figure 3.5. One of the plates is displaced with 

respected to the other at a velocity U by a force F. 

Area A 

h 

F 
U j-z 

y 

Figure 3.5 Simple shear experiment 

The shear rate y and stress r are given by 

y= Ul h (3.1) 

and z=FlA (3.2) 

When a stress is applied to a viscous fluid, the fluid will continue to deform until the 

applied stress is removed. In the case of a Newtonian fluid, Newton defined the 

relationship of the applied stress and shear rate by the following equation. 

T =77Y (3.3) 

where q is a constant called Newtonian viscosity. 

The Newtonian viscosity 'i is a proportion of shear stress and the rate of deformation. 

This value is a property of the fluid and can be used to tell how easy the fluid can 

flow. It is always constant. Only temperature and pressure have an effect to the 

value. 
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The majority of polymers do not demonstrate the Newtonian behaviour. The most 

common case for polymers is their viscosity decreases with increasing shear rate. 

The behaviour is called pseudoplastic or shear thinning. The less common case is in 

the opposite way. The viscosity increases with increasing shear rate, which is called 

dilatant or shear thickening. Some materials that exhibit this behaviour are wet sand 

or wet cornstarch. Commercially, Silly PuttyT' from Dow Corning® Corporation is a 

good sample of a dilatant polymer. These characteristics are illustrated in Figure 3.6. 

Viscosity (1] ) 

Shear thickening 
(Dilatant) 

Newtonian 

Shear thinning 
(Pseudoplastic) 

Shear rate (y ) 

Shear stress (T ) 

Shear thinning 

Newtonian 

Shear thickening 
(Dilatant) 

Shear rate (y ) 

Figure 3.6 The characteristic behaviour of Newtonian and non-Newtonian 

fluid[40,42] 

As shown in Figure 3.6, the viscosity of polymers, which are classed as non- 

Newtonian fluids, is dependent on the shear rate. The viscosity I in Equation 3.1 can 

be rewritten as a function of shear rate as in the following equation. 

z =17(Yv (3.4) 
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There are many various empirical and theoretical works have been done in order to 

explain the flow of non-Newtonian polymers. A simple power law expression is 

suggested and is shown here. 

T =i ' (3.5) 

where rho is a constant zero shear viscosity and n is a power law index, which depend 

on the polymer and temperature. For a pseudoplastic melt, n lies between 0 and 1 

(0<n<1). From Equation 3.1.5, the viscosity of a polymer can be written as 

17 = l7oi "-' (3.6) 

Although Equation 3.6 is simple and can explain the flow quite well, it does not 

properly predict limiting zero shear viscosity. 

This can be achieved by adding more parameters, one of the most popular viscosity 

models is the Bird-Carreau expression, which is 

t1-Ila 
_ [1+W)ý1 

n-1 

(3.7) 
1o - rla 

where A. is a time constant and rya is a constant viscosity at very high shear rate. Since 

tja is usually small compared to other quantities, this equation can be reduced to 
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n-1 

ý1=no11+W)21 (3.8) 

Another popular viscosity model is the modified Cross expression. 

1-n 

T 
+ 

Iii-l! 

with 

(3.9) 

rjo(T) = Aexp[Tb I T] (3.10) 

where rho is the temperature dependent zero shear viscosity. 

r is shear stress of resin at which shear-thinning behaviour begins to 

manifest itself. 

Tb is temperature sensitivity factor. 

A is resin-dependent constant. 

The Cross model includes four material constants (qo, z', A, Tb), which are 

dependent of temperature. However under injection moulding conditions, pressure is 

another factor that needs to be considered. The Cross model, therefore, has been 

developed by the C-Mold Company and used as a filling stage model for the 

simulation programme[43]. Equation 3.9 and 3.10 arc replaced by the Cross-Exp 

model as shown in Equation 3.11 and 3.12. 
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77 _ 
do (T, P) 

+ ýoY 

with 

(3.11) 

i]o(T, p) = Acxp[Tb /T]. cxp(ßp) (3.12) 

where fl characterises the pressure dependence of >jo 

3.3.2 Rheological behaviour of thermoset 

The mathematical models mentioned in the last section can be used to explain the 

flowing behaviour of thermoplastic polymers quite well. Nevertheless, to explain the 

flowing of thermoset, another factor that has to be considered is its complicated 

curing reaction, which leads to the increasing of viscosity with an increasing of time 

during curing. The basic Equation 3.4 is expanded by the dependence of viscosity on 

the cross-linking reaction as following. 

11=11of(Y)g(T)h(a) (3.13) 

where tlo is zero shear viscosity, f (y) is the function of shear rate dependence, g(T) 

is the function of temperature dependence and h(a) is the function of cross-linking 

reaction. 

Using the power law from Equation 3.6, temperature dependence according to 

Arrhenius law (Equation 3.14) and the Catro and Macosko model[44] for 

dependence on degree of cross-linking (Equation 3.15), the following equation is 
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widely successfully used in many simulation work and commercial computer 

software packages for moulding process simulation. [40,45,46] 

Inii(T)=C+ 
AE'' (3.14) 
RT 

A+Ba 

ag 
ry (a) _ (3.15) 

Lag -a 

A+Ra 

a T, a) ° t1oY"-l exp L RT . (3.16) 
aga g 

where rho is the temperature dependent zero shear viscosity. 

y is shear rate. 

n is the power law index lies between 0 and 1. 

AEn is the activation energy of reaction. 

R is the gas constant (8.314JK7'mol*'). 

T is temperature. 

ag is the degree of completeness of curing reaction at the gel point. 

a is degree of cross-linking. 

A, B, C are model parameters. 

At high shear rates it is more accurate to develop the Cross model to predict the 

viscosity of thermosets. Moldflow Company proposed the viscosity model as in 

Equation 3.17. This model has been used in the thermoset mould filling module of 

MoldFlow Plastic Insight, a simulation software packagc. [47] 
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A+Ba 

ii0 (T) as (3.17) 

+ ýl oY 
I +n ag -a 

T; 

with rjo (T) =A exp[Tb I T] (3.18) 

There are further research works that have been done in order to develop the 

viscosity model of thermoset melts, which are very complex and not mentioned 

here[48-50] as the subject is beyond the objective of this thesis. However the 

equations discussed here are adequate for representing the difference between 

thermoplastic and thermoset flow. 

3.3.3 Flow effects of thermoset in the mould[401 

Consider three types of polymer melts flow in the mould as shown in Figure 3.7, 

type A shows the flowing of a Newtonian fluid, type B shows the flowing of typical 

polymer melts or non-Newtonian behaviour and type C show the plug flow 

behaviour, which is common in very high fibre filled polymer melts. 

Figure 3.7 Flowing of fluid in the mould; A: Newtonian fluid, B: non-Newtonian 

fluid and C: high fibre-filled polymer melt 
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Consider the non-Newtonian fluid (Type B), it can he seen from the figure that the 

movement of the melt at the position closer to the wall is slower than the centre. 

Some molecular relaxation may occur when the movement ceases, causing the 

iolymer to return to its disorderly molecular arrangement. In this flow-front, velocity 

lifference is reduced as a result of fibre fill. Type C is the extreme case, which can 

-epresent the flow of a thermoset BMC as a result of high fibre content and cross- 

inking. 

The next flowing behaviour that needs to be focussed on is the cross section of the 

classic fountain flow of polymer in the mould as shown in Figure 3.8. This figure 

shows the effect of the temperature difference between the mould wall and the 

polymer melts to the flow of the polymers. Generally when the plasticised plastic is 

injected into the mould, it will flow as the same pattern as flowing type B in Figure 

3.7. In fact, the mould walls have a very different temperature compared to the melt 

temperature, i. e. much lower temperature in the thermoplastic case and much higher 

temperature in thermoset case. The temperature difference affects the melt 

solidification at the closest area to the wall and results in the fountain flow pattern. 

When fibrous fillers are presented, their fibre orientation is heavily influenced by 

this effect. This is shown in Figure 3.9. 

Figure 3.8 The fountain flow pattern of polymer in the mould 
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Flow 
direction 

Figure 3.9 The fountain flow affects the short fibre orientation of a glass-filled 

polypropylene, showing the short fibre oriented parallel to the flow direction. [5I ] 

It is important to note that there is a significant difference between thermoplastics 

and thermosets in this aspect. When thermoplastic melts flow into the cold mould, 

they are losing a large amount of heat, especially near the mould wall. This causes 

the viscosity to increase. Then the melt forms solid layers near the walls. For 

thermosets, the hot walls cause the viscosity to reduce first so that the material is 

flowing easier and this is followed by an increasing of viscosity due to the cross- 

linking effect. Consequently, the solidified layers of thermosets tend to be much 

thinner and the fountain flow effect is less than with thermoplastic. 

3.4 Thermoset moulding processes139,401 

Shaping a thermosetting material into a component requires processes with the 

capability of melting the material, filling it into a cavity and heating it up until the 

cross-linking reaction is completed. A solid moulding shaped like the cavity is then 

obtained. The processes that can do the work are normally known as compression 
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moulding, transfer moulding and injection moulding processes. Each of them has the 

same concept but is different in details, which will be described briefly here. For the 

injection moulding of thermosets, a more detailed explanation is provided in the next 

chapter. 

3.4.1 Compression moulding 

The compression moulding machine is designed to operate vertically. It consists of 

two halves of mould; one is fixed to the machine base and another is able to open 

and close in order to apply some pressure onto the raw materials. To start the 

process, both mould halves are heated up to a curing temperature. Then the 

stationary halve is filled with some thermoset by hand. The upper halve moves down 

to press the material. Heat and pressure from both halves turn the solid material to a 

viscous liquid. The plastic melt is left to cure in the mould while the excess material 

is forced out between the flash lands. Figure 3.10 shows an operation diagram of the 

compression moulding process. 

Moving half 

Material 
\ 

Material loaded, 
Mould closing 

Fix 

Ejector pins 

Mould opened, 
Moulding ejected 

Figure 3.10 Diagram of compression moulding operations 
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3.4.2 Transfer moulding 

In this process, similarly to compression moulding, the mould halves are heated up 

to a curing temperature before the process starts. However, instead of putting dry 

moulding compound in an opened mould, raw thermoset is heated up first to a point 

of plasticity and then hydraulically forced into the mould, which is already closed 

and clamped. After a sufficient time, the cured moulding and the feed runner are 

removed together. The process is also said to be one-shot injection moulding. Figure 

3.11 shows a simplified diagram of a transfer moulding machine. 

Press 

Transfer moult 

mit 

Figure 3.11 Simplified diagram of a transfer moulding machine 

3.4.3 Injection moulding 

Basically the machine is similar to a thermoplastic injection moulding machine, 

which consists of a reciprocating screw injection unit and a clamped mould. 

Thermoset compound is fed through a feeding hopper in the case of a dry material or 

a stuffer in the case of putty like compound like IMC (bulk moulding compound). 

To produce a component, the reciprocating screw is rotated and moved back to give 
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space for the molten material to accumulate at the front of the screw. It is ,,, at 

generated from the heater and screw rotating that turns the material into melting 

plastic. The mould that has been heated is hydraulically closed and clamped then the 

melt is injected into the mould by the screw moving forward. Again, the moulding is 

left to cure inside and ejected when the cycle is finished. 

The advantages and disadvantages of those three thermoset moulding processes are 

listed in Table 3.2. 
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Table 3.2 Advantages and disadvantages of different thermoset moulding methods 

Advantages Disadvantages 

Compression moulding 
1. Can mould heavily reinforced material 1. Labour intensive, with more material 
2. Best method for mouldings with large handling Involved 

surface area related to thickness 2. Material losses due to the need for flash 

3. Minimum fibre breakage allowance and general wastage 
4. Capital equipment costs are less than 3. Requires secondary operation for flash 

the transfer and Injection mouldings removal 
5. Simple to understand and control 4. Difficult to mould round delicate Inserts 

or pins as high pressure from cold 

material can damage to them 

Transfer moulding 
1. Improved labour utilisation compared 1. More skill In term of process control Is 

with compression moulding required 
2. Shorter cures compared with 2. Mould Is often more complex and costly 

compression moulding 3. Cannot use as a wide range of 

3. Good control of part and flash compounds as with compression 

thickness moulding 
4. Suitable for moulding with inserts 4. Greater risk of distortion and 

directionality of mechanical properties 
5. Care Is required to minimise weld lines 

6. Material losses in central feed system 
Injection moulding 

1. Process offers automatic operation 1. Skill required for setting up and 

2. Rapid cycle times result from a controlling the process 

substantial reduction in cure time 2. More complex machine and mould 

3. Good control of dimension and flash 3. Process is not tolerant to stop-start 
thickness conditions of operations 

4. Good part-to-part consistency 4. More fibre orientation and degradation 

5. Can mould with thin sections than compression moulding 
5. Care is required to minimise weld lines 

6. Loss of material in sprue and runner 
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3.5 Thermoset components 

Thermoset products possess unrivalled thermal resistance, stiffness, creep resistance, 

dimension stability and chemical resistance in relation to other organic polymer 

families as a result of their cross-linked structure. They offer an excellent 

combination of electrical properties, especially resistance to high voltage electrical 

tracking. More importantly, these properties are provided by families of materials, 

which generally are relatively inexpensive when compared with thermoplastics 

offering the same thermal, mechanical, chemical and electrical performances. [40] 

The component made of thermosets can be found in the following applications. 

3.5.1 Automotive industry[52-54] 

Compared to the traditional metal parts, which are heavier and more expensive than 

plastics, plastics give cars better fuel mileage and design flexibility to achieve more 

styling and aerodynamic designs as well as lower production cost, required 

properties and better dent resistance. Car manufacturing uses both thermoplastic and 

thermoset materials in different functions, dependent on their basic properties. The 

cross-linking structure of thermoset materials makes them strong and able to tolerate 

severe conditions such as high heat, UV and chemical substance concentration so 

that it is more suitable to use as under bonnet parts, body panels and structural 

components, while thermoplastic has been used as trim or interior parts where high 

strength is not an issue. 

Some engineering thermoplastic grades such as reinforced nylons are also widely 

used under bonnet as well as BMC. However, they are generally more costly when 

measured on a cost per unit volume basis[53]. 
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3.5.1.1 Exterior 

As plastics allow engineers to have greater freedom in styling, building and placing 

components, a new look of modern car, which can be produced at a lower cost, is not 

impossible. From the front to the back of a car almost every part can be made of a 

non-metal material, either thermosets, thermoplastics, elastomers or a blend of those. 

Some parts that are made of thermosets are, 

" Body panels and bonnets; BMC, SMC, RIM-urethane or unsaturated 

polyester with glass filled are used. 

" Bumpers and fascias are made of unsaturated polyester and polyurethane or 

blending of those with thermoplastics. Glass fibre reinforced is often 

included in the component for added strength and rigidity. 

" Trims, which are important parts designed for exterior's operative and 

aesthetic purposes. This includes mirror housings, door handles, side trims 

and radiator grills. They can be made of polyurethane and unsaturated 

polyester. 

" Headlamp reflectors and headlamps and tail lamp housings: Theses are made 

by injection moulding, the part is made of BMC, SMC or unsaturated 

polyester. The reflectors are coated with high-reflected material to make it 

look like metal. 

3.5.1.2 Interior 

Because of their strength and high environmental resistance, thermosets are mainly 

used in semi-structural applications and non-appearance parts so that not many of 

them are found inside the car. Especially in a component where aesthetic appeal, 

comfort and practicality have a great impact on a customer's decision. 
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Thermoplastics, which are available in a greater variety of colours and are easier to 

process, are often more suitable. However, thermosets are used in the following 

parts. 

" Instrument panels, door handles and central console; by reaction injection 

moulding (RIM), these parts can be made of polyurethane. 

" Window frame; Injection moulding of unsaturated polyester was used in a 

Renault's car model 4. 

" Steering wheel; the material has been used is RIM urethane. 

" Interior trims; also made of RIM polyurethane. 

3.5.1.3 Under bonnet applications 

High heat, electrical and chemical resistances are required in this area. Thermoset is 

used to make many parts under bonnet as well as glass-filled nylon (thermoplastic 

polyamide). The main materials used here are BMC or SMC. Some examples are 

" Engine cover 

" Valve cover 

" Oil pan 

" Rocker arm covers 

" Fuel tank heat shield 

" Intake manifold, etc. 

3.5.2 Electronic industry[55] 

Again, as thermosets provide very good heat resistance and electrical performance, 

they can be used for switches and covers, circuit breakers and fuse carriers. 
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3.5.3 Housing for domestic appliance, business machine and kitchen warel551 

The following thermoset components are produced: 

" Toaster, sandwich toaster, irons and cooker handle, microwave oven and 

dishwasher. 

" Photocopy machine, fax machine, telephone, computer case and etc. 

" Plates, glass, bow and kitchen tools 

3.5.4 Fuel cell Technology 

One potential growth area for thermosets could be in Fuel cells. A Fuel cell is the 

result of the concept of converting hydrogen gas into electricity by a reaction called 

the electro chemical reaction. Figure 3.12 shows the diagram of a fuel cell stack. 

MeaMaee 

cn WkNion lM)w wNA Caulks 

Figure 3.12 Diagram of a fuel cell stack[56,57] 
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One fuel cell stack consists of many fuel cells arranged in series. Bipolar plates 

between each cell are used to electrically connect the cells together and used as the 

flow channels for hydrogen and oxygen, which are the essential inputs for the fuel 

cells. They can be made of a thin structure of machined graphite composite or 

moulded graphite composite. All of the current generated from the electrochemical 

reaction is collected by the end plates, which are placed at the both ends of the stack. 

Generally, a fuel cell stack consists of more than 400 cells arranged in series in order 

to provide an adequate power for a system. [58] 

It was estimated that this new technology would be launched commercially during 

2002 and utilised in automotive sector by year 2005. The requirement of high heat 

resistance, high chemical resistance and easy-to-produce components, with a reliable 

tolerance for producing the bipolar and end plates then give a good opportunity for 

thermoset moulders. [59] 

3.6 Recycling of Thermosets 

It cannot be denied that recycling of waste materials has become a major 

environmental issue nowadays. All materials should be recycled if possible rather 

than being landfilled upon their life cycle completion. Thermoplastic materials have 

an advantage of being recyclable since they are reversible from solid to viscous fluid 

numerous times while the thermoset cycle stops when the plastics are fully cured. 

The environmental pressure therefore pushed thermoset product manufacturers to 

develop processes and equipment to recycle their materials. 
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Two potential techniques for recycling thermosets are (i) regrinding used thermoset 

and mixing the recyclate filler with a virgin material and (ii) chemical degradation 

and pyrolysis of thermoset composites to regenerate basic organic and inorganic raw 

material to reuse. The first technique is more acceptable in industry because of its 

lower processing cost and the lack of pyrolysis facilities. The regrind technique has 

been further expanded to recover only glass fibres by combustion of the polymer in a 

fluidised bed[5,7]. 

Perterson and Nilsson[4] evaluated strength of products added with reground SMC 

scrap. The tests showed that using standard process equipment it was possible to 

mixl0-30 percent recyclate and new BMC and SMC. Improved flexural strength 

with slightly reduced flexural modulus was achieved for SMC containing 10 percent 

reground material but overall mechanical properties decreased when 30 percent 

reground material was added to BMC. 

Dzeskiewicz and Ralston[6] proposed that particle size of recyclate filler affected to 

product strength. They carried out dry blended test and compounded tests of 8.6 and 

17.5 percent of two particle sizes, 32 and 60 mesh, reground material with 20 percent 

glass reinforce BMC. The overall strengths of the material (of both mesh sizes) from 

the dry blend tests were decreased while the results of the compound tests showed 

were acceptable. The 32-mesh sample showed 33 percent decrease in elongation and 

13 percent decrease in tensile strength while the 60-mesh sample showed only 2 

percent elongation drop and greater tensile strength of 1.05 percent. 
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Gruskiewicz and Butler[s] looked at the feasibility of recycling thermosets in 

industry in terms of technical and economic aspects. Many recycled products from 

thermosets had been used and developed in the automotive industry. For example, 

SMC containing recyclate filler was being used commercially on non-Class A body 

panels and interior parts and BMC with recyclate filler had been developed for 

forward lighting applications. Many mouldings utilising recyclate filler had been 

tested and found to meet the requirement of Federal Motor Vehicle Safety Standard 

for forward lighting applications. Similar work with Thick Moulding Compound 

(TMC®) for engine valve cover application showed success with recyclate filler of 

25 percent of the total product weight. The tensile strength was found to be 

equivalent to virgin TMC but the flexural strength dropped to 75 percent of that of 

the virgin TMC. 

4 

Although the recycling of thermoset is technically feasible, the cost of the recycling 

process was higher than producing parts from virgin material due to the lack of an 

infrastructure to recover thermoset components for reprocessing. 

In Europe, a SMC and BMC recycling project, ERCOM, was established by the 

German Federal government in partnership with a group of major raw material 

suppliers in order to recycle SMC and BMC components from motor vehicles to a 

standardised recyclate. Used thermoset components or waste are sent to the ERCOM 

plant from part manufacturers, while parts from dismantled cars come from a 

companion project PRAVDA. The plant had a capacity of 6000 tons per year in 1991 

and was targeted that the recyclate throughput from the plant would be 10000 tonnes 
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per year[4,40]. Unfortunately the process was not economically viable and the 

activities had been discontinued. [60] 

In 2003, the European Trade Association, the GPRMC (Groupement europocn des 

Plastiques Renforces / Materiaux Composites) and the key European fibre reinforced 

plastic suppliers introduced a 'European Composite Recycling Concept' in order to 

fund the high investment needed to develop, validate and promote new recycling 

solutions for fibre reinforced thermosets and thermoplastics. The concept was that 

fibre reinforced plastic suppliers across Europe would financially participate in the 

development of a standardised composite waste management solution for 

the plastic waste. Funding would be used to launch R&D programs to study new and 

improved ways of collecting and recycling the plastics, as well as seeking out and 

developing new markets for recyclate. The target date for the launch of the European 

Composite Recycling Concept was the end of 2003. [61] 

3.7 Conclusions 

This chapter introduced the basic characteristics of thermoset materials and explains 

the differences of the material from thermoplastics in terms of cross-linking and 

curing. Flow and cure of thermosets are the important properties that should be 

considered in any plastic processing. The changes of temperature applied to the 

material affect directly to those properties as can be seen in a decreasing of the 

material's gel time with an increasing of the applied temperature. It is a significant 

parameter that implies the critical point where the material starts to solidify and 

block the whole system. 
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Viscosity of a polymer is used to define the polymer flow and can be described by 

many viscosity models. The function of the cross-linking reaction is added to the 

model used for thermoplastics when describing the flow of thermoset materials. 

When a polymer flows into the mould that has a very different temperature from the 

polymer melt, frozen layers near the mould walls are formed and results in the 

fountain flow pattern. When moulding with a fibre-filled material, this flow pattern 

influences the fibre orientation of the material in the mould. 

The flowing and skin-core formation of thermoplastics, when sandwich injection 

moulding, are also affected by the fountain flow effect. In the case of thermoset, the 

fountain flow effect is less, as the solidified layers of thermosets tend to be much 

thinner. It is likely that the skin-core formation of thermoset sandwich components 

will differ from the thermoplastic sandwich mouldings. 

Thermoset moulding processes, which are compression, transfer and injection 

moulding, were briefly explained. Each process has advantages and disadvantages 

over each other. Choosing a suitable process is dependent on the moulding 

components that are produced. 

The usage of thermoset material in the automotive industry, including exterior, 

interior and under bonnet, and the new fuel cell technology offers a good opportunity 

for thermosets in the market. However, the fact that thermosets are more difficult to 

recycle than thermoplastics and the recycling process is costly, can slow down the 

market growth of thermosets. 
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Recycling thermosets by regrinding used thermoset and mixing with a virgin 

material is more acceptable than the chemical and pyrolysis technique in industry 

because of its lower processing cost. Many researchers showed that the strength of 

the products added with reground materials were acceptable. The components made 

of recycled thermosets were used commercially as a non-Class A body panel and 

interior parts. However, the cost of the recycling process was too high and needed 

more development in collecting used plastics and recycling methods. 

The new thermoset co-injection moulding can be an alternative way of producing 

thermoset components from reground materials. It can improve the surface quality of 

the component, which will expand their usage and applications. 
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Chapter 4 

Thermoset Co-Injection Moulding 

4.1 Introduction 

Co-injection moulding of thermosetting material is a new technology combining the 

technology of thermoset injection and thermoplastic co-injection mouldings. It has 

been invented to make thermoset sandwich parts. The concept is to inject two 

thermosetting plastic melts into a mould simultaneously or sequentially by a two- 

barrel thermoset injection moulding machine equipped with a prototype manifold 

system for working as the novel thermoset co-injection moulding machine. This 

process is different from the ordinary thermoplastic co-injection since material 

temperature and time are the most significant factors. Thermosetting materials need 

sufficient heat to melt and activate the cross-linking and a certain amount of time for 

the reaction to be completed so that a solid moulding is obtained. In other words, the 

injection units and mould tools need to be carefully temperature controlled with a 

suitable processing time, i. e. the time that the material can be left in the system 

without causing a blockage. It should be noted that the material is not only 

influenced by the setting temperatures, but is also affected by frictional heat being 

generated during injection. A high screw rotation, fast injection rate and high back 

pressure can cause the frictional heat in the system to rise. This should be clearly 

understood before setting up the machine. A general guide to the effects of various 

stages of injection moulding thermosets on the material temperature is shown in 

Figure 4.1. 
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Zone 000©0 

Zone a Pre-heating zone 

Zone 8 Plasticising zone 

Effect of screw geometry, rotational speed, back- 
pressure and cylinder temperature control 

one 
Friction dependent upon injection capacity (injection pressure and 
injection speed) and nozzle bore 

Zone Friction caused by sprue and gate cross section 

Zone © Effect of mould heating an curing 

Figure 4.1 Effects of various stages of thermoset injection moulding[62] 

74 

Injection and curing Plasticising 



4.2 Process description 

There are two types of thermosetting materials used in thermoset injection moulding, 

granular material and bulk or putty compounds. The granular materials, for example, 

phenolics, urea-formaldehydes and melamine-formaldehydes are suitable for typical 

gravity feed hoppers, the same type that is used in thermoplastic injection moulding. 

The bulk moulding compound (BMC) or an unsaturated styrene-modified polyester, 

is fed differently, as its putty-like character results in difficulty in flowing through 

the machine's throat. Feeding is carried out by a stuffer unit, which is installed at the 

back of the barrel, in order to force the material to the back of the injection screw by 

hydraulically pushing it down. The screw rotating delivers the material to the front of 

the barrel. General parts of the thermoset co-injection moulding machine specially 

built for this research from Battenfeld are illustrated in Figure 4.2. 

Hopper 
Manifold system 

Figure 4.2 Diagram of the thermosetting co-injection moulding machine 
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Similar to the thermoplastic co-injection moulding process, the injection cycle is 

started when the mould is closed hydraulically and clamp force is applied. This force 

needs to be high enough to keep the mould closed against the maximum injection 

and cavity pressure so that during the injection and holding phases, no material leaks 

from the mould and causes flashing. However, the clamp force should not be too 

high as to exceed the mould's strength. The machine then injects skin and core melts 

from the barrels through the manifold and into the mould that has been heated up to 

the moulding or curing temperature. The injection sequence, and injection time are 

dependent on the material types and the mould geometry. It is also necessary to 

apply holding pressure to pack the moulding in order to maintain the cavity pressure 

to ensure that no sink marks and voids are presented on the surface of the 

component. 

After the required amount of materials is injected into the hot mould, the melts are 

left there until the internal cross-linking networks are strong enough for the plastic to 

maintain the moulding shape. During this time, the barrel A and B, as shown in 

Figure 4.2, are charged with the new materials, which have been fed from a stuffer 

unit and a gravity feed hopper respectively. At the end of the curing phase, the 

mould is opened and then the component is ejected from the mould. Note that the 

cross-linking reaction has been started since the material was beginning to melt in 

the barrels, but at a very slow rate. Most of the reaction happens inside the mould 

and still continues going on, but more slowly even after the part is ejected. The 

operating sequence of the thermoset co-injection moulding will be shown later in 

Table 4.1. Figure 4.3 shows the moulding cycle diagram of the co-injection 

moulding of thermoset. 
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Eject part 
Mould cla 
locked 

Open period Mould close Injection of skin 
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plia Mould opcncc Nl /Injcctio 

Holding 

Cross-linking and solidifying 

Stuffing and screw 
back to recharee 

Figure 4.3 Moulding cycle of thermoset co-injection moulding 

4.3 Thermoset co-injection moulding machine 

As shown previously, the procedure of co-injection moulding of thermosets is 

similar to that of thermoplastics. The main objectives are to melt the polymers, inject 

them into the mould, leave the melts to solidify and then eject the part. However as 

the basic characteristics of thermosets are not the same as thermoplastics, the 

machine has to be modified in some details. 

4.3.1 Feeding unit 

The co-injection moulding machine consists of two main feeding units for feeding 

skin and core materials. Designs of the units are different and depend on the 

materials being used. For the existing machine, the top injection unit has a simple 
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gravity feed hopper, which is suitable for any granular compounds, whereas the 

horizontal barrel is a little more complicated. 

Bulk moulding compound (BMC), which is also known as dough moulding 

compound (DMC) is a modified reinforced thermoset polyester that needs a special 

feeding method. The material is like a dough at room temperature and so is very 

difficult to feed into the barrel. The stuffer unit as shown in Figure 4.4 has been used 

to do the job. The basic idea is to have a piston that can force or pressurise the 

material, which has been fed by hand, down from the hopper through the throat and 

to the back of the injection screw. The system is hydraulically controlled so that at 

the throat, a pressure transducer is installed to get the pressure reading for moulding 

in automatic mode. 

I'ressure 
transducer 

Hopper 

aý 
Hopper throat 

Figure 4.4 Stuff er unit; 

a. ) Loading BMC into hopper and b. ) Fully loaded hopper 
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4.3.2 Barrel, screw and nozzle[23,51,631 

From the stuffcr and the hopper, the materials are fed to plasticise in the injection 

unit, which consists of a rotating screw installed in a barrel. This is where the 

material temperature is brought up to its start melting point. Heating is achieved by 

hot water jackets around the whole barrel. As the heat control of thermosets is very 

critical during plasticising, this is a more effective way to smoothly control the barrel 

temperature than by the heater bands used in thermoplastic moulding. Furthermore, 

the water jackets can be used as a cooling device to remove excess heat when the 

barrel is overheated. This is to ensure that the barrel temperatures are always within 

the setting range. This will be discussed in more detail in section 4.5.2. 

Normally the barrel contains two zones of temperature control. The front zone near 

the nozzle is 1/3 of the effective length of the barrel (Sec Figure 4.5). Setting 

temperature of this zone is around 20-30 °C higher than the rear zone, which is the 

2/3 of the effective length of the barrel near to the feeding unit. Standard barrel 

length per diameter ratio (L/D) is only 12: 1 or 13: 1, while it is more than 20: 1 for 

thermoplastic processing. This is because a smaller amount of thermoset is allowed 

into the barrel at any one time in order to reduce the chance of pre-curing. This 

makes the thermoset barrel look shorter. 

Another basic change between thermoset and thermoplastic moulding machines is 

the screw and nozzle. A thermoset screw is designed to have a blunt tip and normally 

with no non-return valve. The exception is for moulding BMC. In this case, a non- 

return valve is necessary to prevent the material flowing back to the barrel during 

injection moulding. The thermoset screw also has a smaller length per diameter 
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(L/D) ratio compared to a thermoplastic screw. Most of the screws have square pitch, 

i. e. the length of the screw flight is equal to the screw outside diameter and have low 

or no compression ratio. The compression ratio is calculated by taking the volume of 

the first flight of the screw where the material enters the barrel divided by the 

volume of the last full flight near the screw tip. A low compression ratio is required 

as the materials are very fluid in the barrel. 

The nozzle for thermoset injection moulding is normally designed to be easy to take 

out in case of pre-curing in the barrel, so that it can be cleared quickly. This is also 

applied to the extended nozzle, which is used sometimes in order to reduce the sprue 

size. The characteristic of a typical thermoset screw and barrel are shown in Figure 

4.5. 

Front water jacket 

Blunt screw tip for better 
injection control Water out 

t 

f Water in 
Quick removal nozzle 

Front heat control 

Rear water jacket 

Water In 

Water out 
t 

Low compression screw 

Rear heat control 

Figure 4.5 General characteristic of a thermoset screw and barrel[51] 

In Figure 4.6, recommended tool steel grades for thermoset barrel systems are 

shown. A surface treatment, such as chromium plating, nickel plating or nitriding is 
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required, in order to improve the wear resistance of the parts where they contact 

directly to the plastic, as higher abrasion is more likely to occur there. 

Nozzle End Cap Screw Tip Check Ring Screw Barrel 
1113,1113, 1113, D2, R8, S4V, S9, M8, M9, 
S 1, S5,4140/50, 4140/50, R9, R9b, S 13, S 14, CPM®10V 
4140/50 Nitriding135 CPM®9V CPM®9V CPM®9V, (Or equivalent) 
(Or equivalent) (Or equivalent) (Or equivalent) (Or equivalent) CPM®3V, 

Nitridingl35 
(Or equivalent) 

Figure 4.6 Recommended steel for thermoset barrel system showing AISI grades 

and CPM® grades[64] 

4.4 The manifold system 

In order to bring the two plasticised thermosets together and layer them as a 

sandwich moulding, a new manifold was designed internally at the International 

Automotive Research Centre, Warwick Manufacturing Group, University of 

Warwick, and is shown in Figure 4.7. 
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Figure 4.7 a. )The manifold for thermoset co-injection moulding machine. (The 

halves are placed between the injection unit and the heated mould. ) and h. ) The 

cross-section of the manifold nozzle 

The system was installed between the machine injection unit and the mould. It 

consists of two halves, one is fixed to the machine and the other moves on the 

support of four tic bars. When the manifold is closed the system consists of two 

runners that bring two different materials from different directions (vertical and 

horizontal) to a central gate. This gate will lead the materials into the mould to form 

sandwich layers dependent on how the injection moulding machine has been set. 

Table 4.1 shows how the manifold system works when the machine is operating. 

More details of the manifold design will be described in Chapter 7. 
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Table 4.1 Operating sequence of thermosct co-injection moulding 

Steps 

M; 
n 

Step2 

Step 3 

Details 

To start the injection cycle, the 

manifold is hydraulically closed. 

Barrel A (core) and barrel B (skin) are 

charged with some molten thcrmosct 

plastics that is adequate to fully till 

the mould. 

The mould is closed and clamp 

locked. Main injection units A and B 

move forward to face the manifold. 

Then some skin material is injected 

from the B barrel into the mould 

through the manifold runner. 

After a small delay time, screw A, 

which is inside the injection unit A 

moves forward to inject some core 

material into the mould cavity. 
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'f'ahle 4.1 Operating sequence of thermoset co-injection moulding (continue) 

Step 4 

Step 5 

lie two infection units continue 

delivering the materials into the 

mould until the mould is filled by the 

pre-set amount. Injcction of' A then 

stops, while B keeps pushing material 

in by pressure during the holding 

phase. The curing cycle starts after 

this. 

Injection unit A and B are recharged 

with fresh materials and are retracted 

from the manifold (luring the curing 

cycle. Aflcr the curing time is 

reached, the mould is opened to 

release the component. The manifold 

is still closed. 

The injection moulding repeats from 

step 1 to step 5 while the material in 

the manitold is controlled in a liquid 

state. At the end of the work, the 

manifold temperature is brought up to 

the melt's curing temperature. The 

Step 6 
component inside the manifold is 

cured and taken oll' by hand. 
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4.5 Thermoset Moulds[40,65] 

Mould technology for thermosets is similar to thermoplastics. It still consists of the 

basic three parts; feed system, mould cavity and ejection system. However, the fact 

that thermoset materials need heat to activate the cross-linking reaction in order to 

shape the melt while thermoplastics need a lower temperature, leads to different 

temperature control techniques in the mould cavity. 

Mould technology for thermoplastic sandwich injection moulding is the same as for 

conventional tooling, even though an extra material is injected in. The cavity 

pressure profile during injection is changed but the maximum pressure remains the 

same. An exception is the case of foam injection moulding when a foam core is 

injected into a smooth skin, the pressure may be increased due to the core expansion 

and the higher skin density. A special design of nozzle and channels are necessary if 

plastic melts are injected from separated nozzles, in order to layer the two materials 

from their barrels before they flow through the mould sprue. Generally, a single 

injection mould can be used for co-injection. 

A thermoset single injection mould, therefore, was considered suitable for the novel 

thermoset sandwich injection moulding system. Fundamental mould design for 

thermoset is described in the following sections. 

4.5.1 The feed system 

The feed system generally comprises of spruc, runner and gate as shown in Figure 

4.8. Especially wear-resistant steels or chrome plating and hard coated surfaces 

should be used to make the feed system for thermosetting injection moulding as the 
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materials arc normally glass-fibre filled. i'hc sprue is the first part that plastic flows 

through after the mould is closed and is where the machine nozzle applies some 

force in order to seal the mould off. This procedure puts a very high pressure onto 

the sprue surface so it is practical to use a sprue hush, which can he replaced when it 

is wom out. 

Sprue 

; 10 
"" 

---k, ', r 

a 

Primary 

Runner 

Gate 

Secondary 

Runner 

Figure 4.8 The feed system 

The contact surface between sprue and nozzle is also important as it is used to seal 

the connection between them. Plane surfaces are rarely used, as they require higher 

pressure to seal than more general curved or spherical contacts. The two types of 

sprue are shown in Figure 4.9 and 4.10. 

Figure 4.9 Plane surface sprue 

Nozzle 

prue bu 

Figure 4.10 Curved contact surface spruc 
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To get good scaling, spherical radius and orifice diameter of the spruc should be 

larger than those of the nozzle by at least 1 mm. 

The dimension of the sprue is dependent on the dimension of the component and its 

cross-section thickness. The sprue must not freeze before any cross sections so that 

sufficient melt can flow into the mould and enough holding pressure can be applied. 

Normally the sprue has to be tapered around 1-2° to demould easily. Any sharp 

corners should be avoided to facilitate flowing. Furthermore, surface finish inside 

must be perfect to avoid the moulding attaching to the mould fixed half, which leads 

to difficulty in demoulding. In a multi-cavity mould, the sprue connects to a runner 

and demoulding is more difficult. A sprue puller installed in the moving half is used 

to help pull out the moulding and the sprue from the fixing half. More design details 

can be found in the many references available[23,65-68]. 

The runner is a connection part from the sprue. It leads the material into the mould 

cavity or distributes the material to fill all cavities in a multi-cavity mould. Similar to 

the sprue, it should be large enough not to freeze the material before it can fill all 

cavities, but at the same time should not be too large as to waste the material. The 

runner geometry can be many shapes, however it should have a small surface per 

volume ratio as shown in Figure 4.11 a. ). Unfavourable runners as in Figure 4.11 b. ) 

have larger surface over volume ratio and can lead to material freezing during 

injection moulding. The Runner diameter should be at least 1.5 mm more than the 

thickest cross-section of the moulding. Size of the runner is also determined from the 

material flow properties. The lower the viscosity of the material is, the longer and the 
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thinner runner that is permitted. A larger diameter runner promotes flowing of the 

material if a more viscous melt is injected. 

Parting line Parting line 

Parting line 

(a) 

Parting line Parting line 

(b) 

Figure 4.11 Cross sections for runners[65] 

a. ) Favourable Runners b. ) Unfavourable Runners 

The gate connects the cavity with the runner. It is usually the thinnest point of the 

mould. Different types of gate design are shown in Figure 4.12. Gate design for 

thermosetting materials follows the thermoplastic standard (the dimensions can be 

seen in `How to make injection molds'[65]). However because the thermoset 

materials are normally filled with glass fibre, the gate thickness should be larger. 

Practically, with thermosetting materials having fine fillers, 0.25-0.50 mm is the 

minimum gate thickness than can be used. With coarse fillers, 0.75-1.0 mm is the 

minimum[40]. Too small a gate thickness causes excess heat production and then 

pre-curing problems. 
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Figure 4.12 Different types of gate in used in injection moulding 

" Spruc gate 

The sprue gate is the oldest and simplest gate. It is normally used with high viscosity 

materials and positioned at the thickest section. It allows high holding pressure 

resulting in high quality and exact dimensioning. However, it needs a post-operation 

to remove the gate and leaves a visible gate mark on the component. 

0 Edge gate and fan gate 

For multi-cavity moulds, the edge gate is offen applied. The molten material is 

injected from the side of the mouldings. It is necessary to balance the runners so that 

all cavities are completely filled in the same time. Distortion may occur in each 

cavity due to the difference in mould pressure distribution. Applying a fan gate can 

reduce this problem since it gives parallel orientation of the material across the 

whole width and produces uniform shrinkage both in direction of flow and 

transverse. However, a longer gate mark will appear at one side of the component. 
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" Film gate 

A film gate is normally used for a large flat area moulding similar to the fan bate. It 

is used particularly in fibre-filled material to reduce distortion. 

0 Disc gate 

The disc gate, which is sometimes called a diaphragm gate, is used for the 

production of sleeves and cylindrical mouldings, which do not have a very long 

core, i. e. the length of the core over diameter is less than 5 (LCO, ý/DCO, ý < 5). A 

uniform moulding can be achieved without any strength loss and weld lines. A post- 

operation is needed to remove the gate. 

0 Ring gate 

For cylindrical mouldings with a longer core, the ring gate is more suitable and helps 

to reduce distortion of the component. The ring gate can be used as both internal and 

external gate. The latter allows the use of multi-cavity moulding. Both of them 

produce two weld lines and need a post-operation for gate removal. 

0 Tunnel gate 

A tunnel gate is the only gate that can be removed automatically at the time the part 

is ejected from the mould. It is used primarily for small parts in a multi-cavity 

mould and elastic material. Because of high-pressure losses, this gate is suitable for 

simple parts only. 
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4.5.2 Mould temperature control[40,681 

It is necessary for thermoset injection moulding that the moulds arc temperature 

controlled and heated up to a moulding temperature before starting the process. The 

heat sources of the mould can be water, oil or electrically heating. The first two 

methods give more uniform mould temperature within f3°C while the latter can vary 

as much as ±6°C. A more uniform temperature mould will fill easier and produces 

parts with less warpage and more dimensional stability. 

A mould that is heated with steam or oil will have a more uniform mould 

temperature because the heat sources are maintained at a constant temperature. The 

electrically heated mould popularly uses cartridge heaters, with the heaters cycling 

on and off. When they are on, a great deal of heat is generated and must be 

distributed throughout the mould in a way that produces a uniform mould 

temperature. The amount of 1.25 kW for every 45 kg of mould steel or 0.25 to 0.5 

Wcm'3 excluding ejector housing allows the mould to be heated to the moulding 

temperature within 1 to 2 hours. [40] 

Thermocouples are necessary to monitor the mould temperature in electrical closcd- 

loop controlled heating. A minimum of one thermocouple is required in each mould 

half. More should be installed for more accurate control of a larger mould. 

Location of the thermocouples is also important. They should be located not too 

close to the cartridge heaters and cause the heaters to turn off before the mould 

reaches the setting temperature. Also, they should not be too far from the heater or 

too close to the mould surface, as the thermocouples will read the external 
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temperature resulting in an overheated mould. Practically, a distance of 32 to 38 min 

from the cartridge heater and 38 to 51 mm inside the mould are suitable. 

4.5.3 Ejection 

After the moulding is cured, the mould then opens and the part has to be taken off 

before starting the next cycle. It will be difficult to get the component out of the hot 

mould if there is no ejector installed on it. The ejection system is usually actuated 

mechanically by the opening stroke of the moulding machine. Ejector pins will be 

pushed forward by an ejector bar and ejector plate, which are installed at the back of 

the moving half. Then the component is released from the mould. Number and 

positions of the ejector pins depend on the mould configuration as well as on the 

moulding material, as ejection can leave an objectionable mark or distort the 

part. [65] Some thermoset mouldings can be soft and flexible when the mould opens 

and easy to bend and break. 

Some good ejector positions are shown in Figure 4.13. It was suggested the ejector 

pins should be located on the deepest points of ribs and bosses to prevent 

problems[68]. Another method that is also possible is to design the mould with an 

incline angle to facilitate moving (Figure 4.14). Size of the pins is dependent on the 

moulding. However, it is advised not to use pins smaller than 2.4 mm diameter and 

the holes for the ejector pins should be 0.025 mm larger than the pin for a depth of 

13 to 16 mm to prevent material flowing down around the pin and then jamming. [68] 
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Ejector pins 

U. ) U. ) 

Figure 4.13 Ejector pin positions: a. ) Good position and b. ) Bad position[68] 

Ejector pins 

Figure 4.14 Acceptable ejector position with inclined angles to facilitate 

demoulding[47] 

Another advantage of having ejector pins is venting. During injection, material is 

flowing into the mould and fills the cavity. Ideally, having air evacuation prior to 

injection should be the best aid to mould filling. However, the system is complicated 

and needs high maintenance. To get good filling, the mould has to have some holes 

where the air can escape from the mould. These can be placed at the parting line or at 

the back of the ejector pins. 
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4.6 Related works in thermoset injection moulding 

Currently, there is no literature on the thermoset sandwich injection moulding except 

by the author[35]. However, the prior knowledge of the single injection moulding of 

thermoset is beneficial to the processing and improvement of the novel thermoset co- 

injection moulding system. 

Karabut et al[69] studied the uniformity of the thermoset injection moulding process 

by looking at the effect of mould temperature on the size and the strength of 

moulding components. Phenolic powder was injected into a mould, which contained 

three different cavities, a bar, a dumb-bell shaped moulding and a disc. The mould 

temperature was varied at 150,170 and 190°C while the other machine settings were 

constant. At each mould temperature, more than 10 samples were produced and 

measured for weight and dimensions. The results showed that at each mould 

temperature, there was a tendency for weight loss of the moulding from cycle to 

cycle due to heat formation in the barrel, which caused thermal expansion of the 

material. Because the mould was volumetrically filled, this resulted in moulding 

weight reduction. However, the density was found to remain unchanged since the 

material was compacted by the injection pressure during mould filling. The 

shrinkage of the mouldings increased with an increase in mould temperature. This 

was due to higher rates of mould filling and hardening of the material, with more 

degree of volatilcs elimination and more complete curing of the material. A greater 

shrinkage was seen in the direction of moulding and followed the glass fibre flow as 

the same way as thermoplastics. 
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The effects of processing conditions on moulding quality; (a) visual appearance in 

terms of flow lines and surface finish, (b) moulding thickness and distortion, (c) heat 

distortion temperature and degree of cure, (d) flexural modulus and flexural strength 

and (e) weight of mouldings were studied and reported by Whisson and Paul[70]. 

Processing parameters, which were screw speed, back pressure, injection speed and 

injection pressure were varied and additional experiments were also performed at 

different levels of injection temperature, mould temperature and cure time. Plaque 

shaped Phenolics and Urea Formaldehyde components were observed. The results 
I 

showed that optimum machine setting existed to produce mouldings of high gloss, 

minimum flow marks, minimum warpage, heat distortion point and maximum 

mechanical properties, although these were not necessarily identical for each 

property. However, most properties were approaching their optimum for machine 

settings that resulted in the minimum melt viscosity. The machine conditions for 

good gloss were those that produced a maximum flow rate, which was limited by the 

curing condition in the mould. 

Mould temperature had been considered as one of the important factors that affected 

the cure of cross-linking materials. Temperature field and heat balance moulds for 

thermoset and rubber injection mouldings were investigated by patio et al[71]. They 

suggested that the heat required for the processing of these cross-linking materials 

was provided by heaters, exothermal reaction, friction and heat applied to the 

material in the heating chamber. There was also some heat loss to the environment 

during processing. The cyclic temperature change on the mould surface during 

injection is shown in Figure 4.15. This showed that the mould could not stay at a 

constant temperature due to the effect of melt temperature. It was also suggested that 
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the time to reach the minimum temperature at the cavity surface (tk), which was 

influenced by the melt temperature would have to be carefully monitored. 

TA =Tc. 173.8 

TOM 173.3 

~ 1713 Tc------ -"-"- "-"-" .-- 
T 
0) o. E 
d F- 

TK =TCml, 169.3 

td,., 58 s 

tr,. =64s 

Figure 4.15 Cyclic temperature change on the mould surface during injection 

moulding of a thermoset when TA = mould setting temperature, Tom = temperature at 

the beginning of opening the mould, TC = mean temperature of the mould surface, 
TK = contact temperature. tciose = mould closing time and tcy 1, = injection cycle time 

Hadi et al[72] studied the effect of injection temperature on thermoset curing in 

order to reduce the curing times of thermosets. A 34-mm diameter and 7-mm thick 

disc mould with thermoset resin was first heated by immersing the mould in heated 

oil at a temperature varied from 22 to 110°C. These temperatures were called 

injection temperatures. Secondly, the pre-heated mould with resin was soaked in a 

second oil bath, which had a higher temperature of 146°C. This temperature was 

called the mould temperature. The material temperatures were recorded at the mid 

plane of the moulding and used to calculate the state of cure. Curing time at each 

injection temperature was examined from the time when the material reached the 

maximum state of cure. Effects of the injection temperature on the curing time were 

discussed. It was found that the curing cycle time was reduced when increasing the 
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temperature of injection, but that too high an injection temperature may have caused 

pre-curing in the system. 

The curing times obtained from this experimental work may not be applicable to the 

injection moulding of the same material at the same injection temperatures even 

though it was claimed that this simulation of the injection process was an easy way 

to represent the real process. The material and the mould required some time to reach 

the injection and mould temperature when they were immersed into the hot oil bath. 

This is different from the real process in that the injection unit and the mould are 

already maintained at constant temperatures. The curing rate of the material in the 

real process will be very fast as it is injected into the hot mould, while in these 

experiments, the cross-linking started since the mould was immersed in the oil but 

the curing rate was gradually developed as a result of heat transferring from the oil 

through the mould and to the material. The actual curing time of this material can be 

higher or lower than the reported results. However, the effect of too high injection 

temperature on the material pre-curing should be considered. To prevent the pre- 

curing in the system, temperature of the tool before the material enters the mould, i. e. 

manifold temperature, should be controlled at temperature levels that only maintain 

the flow of materials. 

The studies of thermoset recently focused on mathematical models of the material 

properties and cure behaviour, which is beyond the interest of this thesis. The details 

of the research can be found in many referenccs. [48.50,73] 
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4.7 Conclusions 

This chapter introduced the novel thermoset co-injection moulding machine and the 

prototype manifold system. The process description was also explained in detail. 

General machine and mould design for thermosets, which had been used as a guide 

for designing the manifold system, were described. It was shown that there were 

some differences between thermoplastic and thermoset systems. Temperature control 

was the main reason as heat could affect the thermoset flowing and curing. The 

system needed a more effective way to control the temperature in the system than 

thermoplastics. 

A single injection mould with a temperature control unit could be used with the 

thermoset co-injection moulding machine. The thermoset moulds followed the 

general design rules of making plastic injection moulds. However, when using the 

mould with fibre-filled thermosets, a larger gate and runner was required. 

The literature on thermoset injection moulding was mainly focussed on the effects of 

machine parameters and mould temperature on component quality. Naturally, they 

concentrated on the parameters that controlled the material flow and cure in the 

mould. The material temperature and machine parameters will also be considered in 

this research in order to set the process window for the new thermoset co-injection 

moulding and develop the manifold system prototype. 

During the injection moulding cycle, the mould temperature was reduced as a result 

of a lower temperature material being injected into the mould. The mould 
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temperature varies depending on the gate position, i. e. the low temperature region is 

near to the bate since it is the first place where the material enters the hot mould. 

Therefore, curing of the material there is slower than the position further in the 

mould. When co-injection moulding of two thermoset materials, the time of injection 

of the second material (core) into the first material (skin) should be considered since 

the skin may not have enough time to form an adequate layer. 
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Chapter 5 

Material Experiments 

5.1 Introduction 

Prior to the test runs on the co-injection moulding machine, it was necessary to 

understand the materials' properties especially their flow and cure. The experiments 

on the thermoset co-injection moulding were therefore divided into two categories, 

material experiments and injection moulding experiments. In this chapter, the 

experiments on materials are described. 

The materials used in this research were a general grade bulk moulding compound, 

BMC G7B 5580 from BIP Ltd and black thcrmosct polycstcr chips, Intcrpon PM- 

300011-F from Akzo Nobel. The BMC was a grey, putty-like, glass filled 

unsaturated polyester with a density of 1730 Mg. m 3. This material is normally 

injection or compression moulded to produce engineering and electrical components. 

It was proposed to use this material as the core of the sandwich mouldings. Table 5.1 

shows the composition of the material. 

Table 5.1 Composition of BMC G7B 5580 

Components %weight %volume 
Glass-fibre (6 mm length) 15 12 

Mineral filler (including mould release agent) 57 44 

Resin and thermoplastic additive 28 44 
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Intcrpon is a dry unsaturated polyester consisting of a carbon black pigment and 

some other additives. Since the formulation is confidential, the composition of this 

material cannot be presented here. The same material in powder form is used as an 

in-mould paint to coat BMC in the compression moulding technology, as it provides 

more than 90% gloss when using with a finished chrome tool. The material density is 

1250 Mg. rri 3. This material was used as a skin of the sandwich mouldings. 

Interpon has been used with compression moulding but not with an injection 

moulding machine, so this material is new to the injection moulding process. It is 

therefore necessary to examine its properties in terms of the material gelation and 

flowability. These were determined by experiments on gel time, melt flow index and 

viscosity using a capillary rheometer. At the end of the tests, a processing window 

for Intcrpon could be established. 

5.2 Gel test 

Gel time of a cross-linking material is the time that the material changes its state 

from viscous liquid into gel. It is very important for all experiments and processes 

that involve this kind of material as it can show how fast the material reacts to the 

changing of temperature. For more accurate results, cone and plate or parallel plate 

rheometers are used for determining gel time of a thermoset material at a low shear 

rate. This method was tried at the National Metal and Materials technology centre, 

Thailand. However, there was a difficulty with premature curing of the materials 

during testing. 
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The method that was used in this research is more practical and is used in industry. 

Results from this test were less accurate than those from a cone and plate nccomcter. 

However, they were considered to be sufficient enough for this project. 

To prepare materials prior to the test, Interpon chips were crushed down to 

approximately 2-4 mm. This was the same size as the input material feed in the 

vertical barrel. BMC was injected through the horizontal nozzle before the test to 

reduce the fibre length down, so the material that was brought to the test would have 

similar conditions to the material that would enter the manifold during injection 

moulding. 5 grams of each material was weighed and put onto a hot plate. It was 

then levelled down to around 1 mm thickness. 

Temperature of the plate was controlled and varied from 60.200°C. The gel time was 

measured from the time that material started to melt until it turned into gel, which 

was determined by a metal stick. Uncured material would show plastic behaviour 

and could be picked up without breakage. At the gel point, material temperature was 

measured by an infrared pyrometer, Impac Infratherm series 14. The results from this 

test would be used to determine the barrel and manifold temperatures. Figure 5.1 

shows the gel time results of BMC and Intcrpon. 
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Figure 5.1 Gel time results of BMC and Interpon 

Intcrpon started to melt at around 75°C. It can be seen that the gel time of Intcrpon 

decreased dramatically as the temperature increased. Similar results were obtained 

from BMC but at the faster decreasing rate. 

At around 90°C, the gel time of both materials was around 800 seconds. This was 

considered to be sufficient for a test on a melt flow indexer and a capillary nccomctcr 

as the cycle time of both equipments; including charging material, pre-heating, 

testing and cleaning, was less than 12 minutes per test. The temperature of 90°C was 

then set to be the top limit for all experiments in order to prevent the material pre- 

curing in the equipment. The low limit of the temperature was set at 80°C, which 

was 5°C higher than the temperature that the material started to melt. This was to 

ensure that the material was not too viscous to flow through the die. 
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At a temperature higher than 90°C Interpon cured slower than BMC while the 

opposite occurred at the lower temperature. This can effect the sandwich formation 

of both materials when injecting them into the hot mould, which is normally at a 

temperature higher than 90°C. The Interpon skin needs more time to form a solid 

layer than the BMC core at that temperature. It is possible that the BMC core would 

breakthrough the skin and can be seen on the moulding surface. 

5.3 Melt flow index test 

A melt flow indexer is a simple machine used to determine the basic flow ability of a 

plastic material at a single low shear rate. The equipment shown in Figure 5.2 is a 

Ray-Ran 4MPCA melt flow indexer, which consisted of a computer controlled 

heated cylinder, 2.095 mm test die and a piston assembled with a load set. In normal 

operation, the tested plastic is loaded into the hot cylinder, which has been heated 

and controlled at the test temperature. The material in the cylinder is prc-heatcd for 

420 seconds in order to balance the temperature of the melt. After that, the piston, 

which is installed with the load set on the top, moves down and presses the melt 

plastic through the die. Weight of the polymer melt in b/10 minutes is recorded. 
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Figure 5.2 Melt flow indexer simplified diagram 

The materials were prepared the same as they were in the gel time test. Interpon's 

melt flow indexes were determined from the melt flow indexer by setting three 

temperatures that were selected from the gel time test. At those temperatures, it had 

been found that the materials would be in a liquid state tier what was considered a 

reasonable injection moulding processing time, which was assumed to be around 10 

minutes for setting up the first injection cycle and less than 3 minutes tier the 

following cycle. 

By selecting a multi-slicing mode, the melt flow index value (MFI) was measured 

ten times at ten different points, giving an average MN value and the standard 

deviation. Table 5.2 shows the effect of tcrnpcrature on the material Mi. I value. 
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Table 5.2 Interpon melt flow indexes (g/lOmin) and standard deviation at three 

temperatures 

Temp °C MFI STD 
80 11.767 0.170 
85 19.316 0.363 
90 25.099 1.573 

At higher temperature the materials tended to flow more easily as is shown by the 

higher MFI numbers, but the time they could stay in a liquid state was shorter as 

shown by an increase in the standard deviation value. This also means that the 

materials tended to cure more easily at the higher temperature. This is to be expected 

when considering the results from the gel test. 

The standard deviation values showed how stable the Interpon was at each 

temperature. From the data shown in Table 5.2, the high standard deviation value of 

the melt flow indexes at 90°C is much higher than the rest. It shows that during the 

test, the melt flow index of the material in the cylinder varied more than those of the 

other temperatures as a result of cross-linking. This narrowed down the processing 

window from 80-90°C to 80-85°C. 

The BMC that had been injected from the barrel was put into the cylinder and tested 

at 35°C. This temperature was the injection temperature that would be used in the 

injection moulding according to the material data sheet. The melt flow indexer was 

also set to multi-slicing mode in order to find the average MFI value of BMC. 

During the test, the material could not flow through the die as the glass fibres 

blocked the die hole during the test. It was suggested that normally 4 to 6-mm 
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diameter dies are more suitable for the test of material that contained glass- 

fibres[74]. The melt flow indexer therefore could not be used to examine the MFI 

value of the BMC. In order to determine the flow ability of BMC and Intcrpon, it 

was decided to compare the viscosity data ofBMC from the supplier to the viscosity 

of Interpon measured by a capillary rheometer. 

5.4 Viscosity by capillary rheometer 

A capillary rheometer is a tool for plastic rheology determination. Similar to the melt 

flow indexer, the concept is to push a plastic melt through a small diameter die (sec 

Figure 5.3). Instead of measuring the material weight, the melt pressure differences 

between the die entrance and the exit are recorded. The result is the relationship 

between viscosity and shear rate as can be calculated by Equation 5.1-5.3. 

r(AP Po) (5.1) 

y% _Q (5.2) 

4b 
)Vb 

(5.3) 

r is die radius (mm), 

L is die length (mm), 

y is shear rate (1/s), 

Q is polymer melt flow rate (mm3/s), 

¢b is cylinder diameter (mm) and 

vb is polymer melt velocity (mm/s). 
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The proportion of shear stress and shear rate is the polymer viscosity as described in 

chapter 3. 

Plunger 

Polymer melt 

Heating band 

Cylinder 

Die 

uansaucer 

Figure 5.3 Capillary rheometer simplified diagram 

The relationship of viscosity and shear rate of Interpon was determined by a Rosand 

Advanced Extrusion Capillary rheometer. This equipment can provide the polymer 

viscosity at a high shear rate (more than 10,000 1/s), which can occur during 

injection moulding. However, its lmm-diameter (lie can be blocked when using a 

fibre-tilled polymer like BMC. Therefore the relationship ot'viscosity and shear rate 

of BMC was acquired from the material supplier. The data were obtained by using a 

special designed in-line viscosity measurement developed by the National Physical 

Laboratory, UK[45,74]. 

The in-line viscosity measurement is an instrumented injection moulding machine 

nozzle fitted with a general injection moulding machine. It can be used as a normal 
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injection nozzle with a water temperature control unit connected to it in order to 

maintain the melt temperature in the nozzle. Two pressure transducers arc inside the 

nozzle to measure the pressure differences between the two ends when the test 

material is injected from the injection barrel. These pressure differences will be used 

to calculate the material shear rate and viscosity. Figure 5.4 shows the nozzle 

geometry of the in-line measuring system. 
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Figure 5.4 Diagram of the nozzle for the in-line measuring systcm[74]. 

It was claimed that there was reasonable agreement of shear viscosity value 

measured in-line on the moulding machine with value measured using the capillary 

rhcometer[45]. In Figure 5.5, the viscosity of Interpon and BMC arc compared in 

order to determine the difference in flow ability of both materials. 
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Figure 5.5 Relationship between viscosity and shear rate of BMC and Interpon 

Figure 5.5 shows the comparison of BMC and Interpon viscosities at 35°C and 85°C 

respectively. 85°C was the maximum melt temperature of Interpon that was allowed 

in the injection moulding barrel while 35°C was the BMC's barrel temperature. 

From Figure 5.4, the viscosity of BMC is lower than that of Interpon at any identical 

shear rate. Skin/core viscosity ratio is 1.69 at the shear rate of 104 s'1, which is 

typical for injection moulding. If it is assumed that there is no curing reaction during 

injection cycle, this skin/core viscosity ratio can be compared to the results of 

thermoplastic sandwich injection moulding of the previous research. It was reported 

that at high skin/core ratio, the core material could penetrate to the skin easily and 

breakthrough was possible. For the thermoplastic case, this problem could be solved 

by starting injection of the core very late in the injection cycle or by doing sequential 
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injection moulding[2,16]. The material breakthrough is also possible when co- 

injecting Interpon and BMC due to the high viscosity ratio between both materials. 

The starting injection time of the BMC core into the Interpon skin should therefore 

be carefully considered. Sequential injection might be necessary in order to get a 

fully encapsulated sandwich moulding. 

5.5 Conclusions 

This chapter described the experiments on the materials that were carried out before 

the materials were used in the thermoset co-injection moulding machine. The 

experiments were designed to determine the materials' flow abilities and gel times, 

which could be used to optimise the initial temperature settings for the co-injection 

moulding machine. 

The results from the gel time test and the melt flow indexer showed that the suitable 

temperature for processing Interpon was 80-85°C. In this temperature range, the 

materials could stay liquid at a low curing rate for a sufficient time to enable 

injection moulding. 

The gel time test results of BMC and Interpon gave a cross over point at around 

90°C. Beyond this point, Interpon cured slower than BMC. This could affect to the 

formation of the sandwich moulding when co-injecting both materials into the 

mould. The Intcrpon skin layer may have not cured enough when the I3MC core was 

injected in so it is possible that the BMC core can breakthrough the skin and can be 

seen on the moulding surface. 
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Long fibres filled in F3MC caused testing problems when the material was pressed 

through a small diameter die of the melt flow indexer. The fibres lock jammed the 

die so it was unable to examine the viscosity of the BMC by the equipment. The 

viscosity data of BMC therefore were received from the material supplier. 

In-line viscosity measurement is a special designed nozzle equipped with two 

pressure transducers. The nozzle attaches to a conventional injection moulding 

machine and measure the pressure differences of the material between the entrance 

and the exit of the nozzle when the material is injected from the barrel. This system 

was used to measure the viscosity of BMC that had been used in this research. 

As it was claimed that the results from the in-line measurement agreed with the 

result from the capillary rheometer very well, the viscosity data of BMC then was 

compared with the viscosity of Interpon that was obtained by a capillary rheometer. 

A high viscosity ratio between skin (Interpon) and core (BMC) materials at a shear 

rate of 104 s'1 suggested that the core material was easier to flow into the mould than 

the skin and was likely to break through the skin layer. This suggested sequential 

injection might be a solution in order to get a fully encapsulated sandwich moulding. 
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Chapter 6 

Injection Moulding Experiments 

Using test results from the material experiments in the last chapter, BMC and 

Interpon were injection moulded by using the novel thermoset co-injection moulding 

machine. The experiments were started with a single injection moulding of each 

material before moving onto the co-injection moulding. Specifications of the 

machine and tooling are described. The experiments involved in the novel thermoset 

sandwich injection moulding are explained in detail and discussed. 

6.1 Machine and Tooling 

A Battenfeld sandwich injection moulding machine, BA2000/630+630 equipped 

with the UNILOG 9000C control system had been especially designed and built for 

this project. It consisted of a horizontal stuffer-feed injection unit suitable for bulk 

moulding compounds and a vertical hopper-feed unit for granular materials. The 

specification of this machine is given in Table 6.1. 
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Table 6.1 Specification of BA2000/630+630 thcrmosct co-injection moulding 

machine 

Injection Unit Screw diameter 50 mm 
Maximum stroke 180 mm 
Maximum screw speed 280 rpm 
Maximum pressure 1767 bar 
Nozzle contact force 99 kN 
Nozzle stroke 400 mm 

Clamping Unit Clamping design Ilydraulic-double toggle clamping system 
Maximum clamping force 2000 kN 
Locking force 2200 kN 
Distance between tie bars 560x560 mm 
Mould height (adjustable) 200-520 nun 
Maximum daylight 450 mm 

Ejector Ejector force 67 kN 
Ejector maximum stroke 160 mm 

Barrel heating control Type Water temperature controller 
Model GWK teco200 
Maximum temperature 140°C 
Heating capacity 3 kW 
Cooling capacity at 15°C 
cooling water/80-130°C 8 kW 

To join two thermoset materials together in order to form suitable layers for a 

sandwich moulding, a new manifold system had been installed to work as a gate 

channel where the two injected polymers met at the back of the mould spruc. Figure 

6.1 shows the manifold system and how it connects to the mould and injection units. 

114 



Manifc 
p 

0} 

1I°i 

a. I. n. J 

g platen 
Fixed platen 

a. ) 

Heated 

barrel 

Figure 6.1 a. ) The manifold system and b. ) Cross-section of the manifold during 

injection moulding process 

Inside each half of the manifold, PDE cartridge heaters and thermocouples had been 

installed and used to control the operating temperature. The temperature of the 

manifold is very important to maintain the flow ability cif the thermosetting materials 

inside the manifold and must be carefully controlled to ensure that there is no pre- 

curing during injection. Details of heaters and thermocouple positions are in Chapter 

7. 

6.2 Mould 

A central sprue, tray shape mould of dimension 312 x 242 x 2.5 i»m was used in this 

experiment (sec Figure 6.2). It provided a good flat surface with curves at its four 
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sides. For the thermoset injection moulding process, Beat is necessary for the cross- 

linking reaction during curing. Another two sets of four cartridge heaters and two 

thermocouples were placed inside each half of the mould to control the mould 

temperature. All of the heaters, both in the manifold and in the mould, were 

controlled by the machine's control systems. 

Figure 6.2 Front and side view of the tray moulding 

6.3 Materials 

A general grade bulk moulding compound, BMC G7B 5580 from BIP Ltd was used 

as a core material and a black powder coating, Interpon PM-30001 1-F from Akzo 

Nobel was used as a skin material. 

6.4 Experiments 

Each material was moulded separately prior to sandwich injection moulding to study 

the individual flow behaviour in the existing manifold system while changing some 
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temperature parameters. The information from the single injection mouldings was 

used to set up the sandwich injection moulding process. 

6.4.1 Single injection of BMC moulding 

BMC was moulded alone in order to set up a suitable sprue temperature window. 

The molten BMC was injected from the horizontal barrel through the manifold 

runner and then flowed into the mould, while the top runner of the manifold was 

blocked to prevent the material escaping from the system during injection. The 

machine condition setting supplied by the material supplier is given in Table 6.2. 

Table 6.2 Machine condition settings for BMC injection moulding[75] 

Settings BMC G7B 5580 

Barrel Temperature (°C) 35/35 (front/rear) 
Screw Rotational Speed (rpm) 50 

Back Pressure (bar) 0-3 
Injection speed (mm/s) 80 

Mould temperature (°C) 150 (145-1600C) 

Curing time (s) 60-90 

Since BMC and Interpon would be moulded together later, the manifold temperature 

was set at a temperature that both of the two materials could flow through. The 

results from the gel time test in Chapter 5 suggested that the manifold temperature 

could be set at around 70-90°C. Therefore, 80°C was set as the manifold 

temperature. Throughout the process, the manifold was closed. 
i 

1 Minimum and maximum mould temperature that can set. 150°C is a nominal setting. 
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Injection stroke and sprue temperature were varied until the moulding could be 

completed. The sprue temperature2 was at 70°C for the start. This temperature was 

determined to be low enough to quickly remove some heat, which transferred to the 

material from the hot mould, but not too low as to cause a large temperature 

difference between the sprue and the manifold nozzle. The temperature was 

increased from 70°C to 90°C or until pre-curing of the material occurred in the 

sprue, which could be determined by obtaining a short shot moulding and the 

material in the mould sprue became solid. When finishing the whole process, the 

BMC inside the manifold was left to harden and then cleared out. 

A full shot moulding could be made from injecting at a 130mm metering stroke 

when the sprue temperature was around 70-74°C, while a short shot happened at the 

higher temperature. Figure 6.3 shows a full shot moulding obtained from this 

experiment. 

Figure 6.3 Front and back of a E3M( full moulding 

2 The temperature is the outlet temperature of the cooling water. 
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6.4.2 Single injection of Interpon moulding 

As mentioned previously, Interpon had never been used in the injection moulding 

process. Some experiments were needed to find the most suitable mould and 

manifold temperatures to match the settings of the BMC moulding so a process 

window could be set for co-injection moulding of these materials. 

Table 6.3 is the machine settings for Interpon. Under these settings, the melt 

temperature was approximately 80-85°C, which was the optimum temperature 

selected from the gel time and the melt flow index test results in the last chapter. 

Water temperature around the sprue was controlled within 70 to 74°C, the same as 

the settings in the single injection of BMC. Within this range, the material could stay 

liquid more than 1500 seconds (see Figure 5.1 Gel time results from Chapter 5). 

However, the melt temperature in the sprue during injection was likely to be higher 

as it was influenced by the heat transferred back from the hot mould, which would be 

set at 140-150°C. Therefore, the material inside the manifold nozzle and mould 

sprue would need to be investigated during these experiments. 

Curing time for moulding Interpon was set at 90 seconds, which was long enough to 

ensure that the material would be cured at the end of the curing cycle. 

Table 6.3 Settings for single injection moulding of Interpon 

Setting parameters Setting values 
Barrel temperature (°C) 80/60 (Front/Rear) 

Screw rotational speed (rpm) 50 

Back pressure (bar) 0 

Injection speed (mm/sec) 80 
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6.4.2.1 Experiment I: Effect of mould temperature 

The gel time results from Chapter 5 showed that at the temperature above 140°C, 

Interpon reacted to the heat very quickly. Any temperatures above this would be 

possible to use as a curing temperature or mould setting temperature. 

The machine parameters were set as in Table 6.3 while the mould temperature was 

varied at 140,150 and 160°C. Flows of the melts of these three mouldings were 

affected by the mould temperatures only, due to the same machine settings and the 

same conditions of the material in the manifold. The manifold temperature was 

controlled at 80°C. This was to maintain the temperature of the material when it was 

injected from the barrel, which was approximately 80-85°C. This temperature range 

was shown to be the temperature window for Interpon as described in the last 

chapter. Since different levels of heat applied to the material would affect its cross- 

linking and flowing, the curing of the melt inside the mould would be different. The 

results of this experiment would be determined by the moulding size. The mould 

temperature that gave a full short or the largest moulding would be considered as the 

optimum mould temperature for injection moulding using Interpon. 

Figure 6.4-6.6 shows the mouldings of Interpon at different mould temperatures and 

Figure 6.7 shows the comparison of the three mouldings. 
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Figure 6.4 Interpon moulding at 140°C mould temperature 

Figure 6.5 Interpon moulding at 150°C mould temperature 
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Figure 6.6 Interpon moulding at 160°C mould temperature 

Figure 6.7 Comparing the three mouldings, 140,150,160°C mould temperature 

(start from the left) 

At a low mould temperature of 140°C, it was shown that less material could flow 

into the mould than at higher temperatures of 150°C and 160°C. At the higher 

temperatures, the material flow front could go further into the mould because of its 
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lower viscosity and therefore, easier flowing. However the higher temperature also 

caused a higher cross-linking reaction rate and less time for the melt in a liquid state. 

The effect of too high a mould temperature is shown by the result of moulding at 

160°C. Although a similar moulding size was obtained from the 150°C mould 

temperature, the surface finish was different. At 160°C, the melt started to pre-cure 

during injection and left some flow marks on the back surface as shown in Figure 6.8 

and 6.9. 
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Figure 6.8 Some flow marks at the edge near the top of the moulding from Figure 

6.6 
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Figure 6.9 Some flow marks at the other side near to the bottom of the moulding 

from Figure 6.6 

Moulding Interpon by using this machine system presented a problem that was not 

found when moulding BMC solely. After a shot was made, it was not possible to 

continue the next shot like in BMC injection moulding. The system was blocked 

since the connection between the mould sprue and the manifold nozzle could not be 

broken. It was not possible to take the component out of the mould because of the 

opposite taper of the sprue and the nozzle. So, the mould and manifold had to be 

disassembled. This problem will be explained more in Chapter 7. 

As shown by the experiment results in Figure 6.7, the optimum mould temperature 

for moulding Interpon was 150°C. This temperature matched the mould temperature 

of BMC so both materials could share the same mould temperature and curing time. 

Nevertheless, a full moulding could not be achieved at 150°C since the material pre- 

cured before the mould could be fully filled. This could be because of unsuitable 
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manifold temperature. The effect of various manifold temperatures on the mould 

filling therefore was investigated and is explained in the next experiment. 

6.4.2.2 Experiment II: Effect of manifold temperature 

This experiment was designed to find a suitable manifold temperature for Intcrpon 

moulding. Even though 80°C was set for moulding BMC and Intcrpon in the 

previous experiment, this temperature might not be the optimum for the Interpon. As 

a result of the long and small vertical runner through which Intcrpon would be 

injected, internal shear friction could be higher than the horizontal runner of BMC; 

the result could be that the Interpon melt temperature could be increased by the shear 

friction effect. The cross-linking reaction caused by the increasing temperature 

would affect the Interpon curing and flowability. 

From Experiment I, 1 50°C was found to be the optimum mould temperature, so it 

was chosen for this experiment, while the manifold temperature was varied from 65 

to 90°C. After a moulding had been made, the manifold was opened in order to 

examine the material inside to see whether it was still viscous and still able to flow 

into the mould. The results were compared and the manifold temperature that gave 

the largest moulding would be considered as the manifold setting temperature. 

Figure 6.10-6.13 shows the results of this experiment and Figure 6.14 shows the 

comparison of all mouldings. 
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Figure 6.10 Interpon moulding at 65°C manifold temperature 
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Figure 6.11 Interpon moulding at 70°C manifold temperature 
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Figure 6.12 Interpon moulding at 80°C manifold temperature 
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Figure 6.13 Interpon moulding at 90°C manifold temperature 
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Figure 6.14 Comparison of Interpon mouldings at varied manifold temperature 

(Top left: 65°C, Top right: 70°C, Bottom left: 80°C and Bottom right: 90°C) 

The smallest moulding was made when the manifold was set at 65°C. The melt 

inside the manifold was much more viscous than the output from the barrel and was 

the most viscous among all four cases. This was because the material temperature 

was reduced when it flowed through the manifold. The reduction of melt temperature 

decreased the cross-linking rate, which was satisfactory since curing of the material 

before it entered into the mould would block the whole system. However, the low 

temperature also increased the material viscosity and caused difficulty in injecting 

the material through the manifold. 
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A larger and rounder moulding was obtained when the manifold temperature was 

increased to 70°C. Material seemed to flow easier than at 65°C, as the melt inside the 

manifold was less viscous. 

The best mould filling was achieved when the manifold temperature was 80°C. 

Almost the whole mould had been filled as can be seen in Figure 6.12. Inside the 

manifold, the melt was still uncured and viscous. 

When increasing the temperature to 90°C, a smaller moulding was obtained. The 

material was still viscous inside the manifold runner but it started to form a very thin 

black film on the surface. This was a sign of pre-curing although there was no flow 

mark found on the moulding component as seen in Figure 6.8 and 6.9. The pre- 

curing that occurred in the manifold system was also likely to cause a problem in the 

next shot. 

In all four cases, the melts inside the manifold were still able to flow into the mould 

although each of their flow abilities in the mould were different. However, a full shot 
4 moulding could not be achieved from any of these settings. The melts inside the 

manifold nozzle where it connected to the mould sprue (sec Figure 7.3) were then 

examined. It was found that the melt was most viscous inside the manifold nozzle tip 

when the manifold temperature was at 80°C and 90°C, while they were less viscous 

at the lower temperatures. Since the mould sprue was smaller than the nozzle 

diameter, there was a possibility that the melt could be frozen inside the sprue at all 

temperature settings as well. 
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From the two experiments, the optimum temperatures that gave the best filling were 

80°C at the manifold and 150°C at the mould. Almost the whole mould could be 

filled under this condition. Adding BMC from the horizontal barrel could fill the rest 

of the mould and a full shot moulding was possible. Furthermore, these temperatures 

also matched the settings for moulding BMC, so they could be used as the manifold 

and mould temperature for the co-injection moulding of both materials. Pre-curing 

that was likely to happen inside the mould sprue could be reduced as the lower 

temperature of the BMC melt would reduce the Interpon melt temperature down and 

then slow the chemical reaction inside the manifold nozzle and mould spree. 

6.4.3 Sandwich injection moulding of Interpon and BMC 

6.4.3.1 Initial experiments 

The first thermoset sandwich injection moulding was made after the machine 

settings were obtained as described in section 6.4.1 and 6.4.2. The settings for the 

co-injection moulding of Interpon and BMC are shown in Table 6.4. 

Table 6.4 Settings for sandwich injection moulding of Interpon and BMC 

Settings/Material Interpon BNIC G7B 5580 

Barrel temperature (°C) 80/ 60 (front/rear) 35/ 35 (front/rear) 

Screw rotational speed (rpm) 50 50 

Back pressure (bar) 0 0-3 

Injection speed (mm/sec) 80 80 

Mould Temperature (°C) 150 

Curing time (s) 90 
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The overall metering stroke was assumed to be equal to the value used in BMC 

single injection moulding, which was 130mm. 80 and 50 mm were set respectively 

as the initial skin and core metering strokes, which made approximately 60: 40 

percent skin/core ratio. This value was proven to be a good ratio for thermoplastic 

co-injection moulding. [2,16] 

The switchover point was set at 8mm and the core delay time was 0.2 second, i. e. the 

core screw would start to inject BMC into the mould 0.2 second after the skin screw 

reached 8 mm. Figure 6.15 shows the injection diagram for this experiment. 

Injection tim8 (s) 

time 10 s. Stop Inject skr iStart Inject 
(5 mm) 'skin (130mm) 

Cushion 5 mm Skin screw (B"barrea: Interpon) 
i\ I 80 mm 

Core screw (A-barrel: BMC) 
50mm 

Stop Inject Start Inject 
core i 

core 
"" tß(8-5)1s) = Switchover 

point (8.0 mm) 

Overlap time Core delay 
(s) time (0,2 s) 

H 

Figure 6.15 Diagram of injection sequence for sandwich injection moulding of 

BMC and Interpon (The figure is not in scale. ) 

As described in the last chapter, in order to get a fully encapsulated sandwich 

moulding, the machine parameters should have been set to perform sequential 

injection, i. e. no overlap time between skin and core injection. The injection settings 

shown in Figure 6.15 were used to calculate the overlap time. Figure 6.16 shows the 
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ideal injection velocity diagram of the skin screw (Interpon). The co-ordination in 

the figure shows the velocity of the screw when it reaches 8 mnm, which was the 

setting switchover point. 

Injection velocity of Interpon 

B 

Ee 
E 

U 
O4 

N 

w V 
U 

I 

05 10 15 20 75 30 35 40 45 50 55 60 95 l0 IS 00 85 90 45 100 105 110 11, qo 125 130 

Metering stroke (mm) 

Figure 6.16 The injection velocity diagram of Interpon. The co-ordinate represents 

the screw velocity when it reaches 8-mm metering stroke 

The time of simultaneous phase or overlap time in Figure 6.15 can be calculated by, 

tov = lB(8-5mm)"! delav4 

where, 

t0v is the overlap time (second), 

(6. l) 

tB(8-5mm) is the injection time of the skin screw when moving From K-mm to 5- 

mm injection stroke (second) and 

tde,,, yA is the core delay time (second). 

toi will be negative when tcft. /a,, 4 is more than t/i,, Y s,,,,,,,. This means the process is 

sequential co-injection moulding 
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The injection time of the skin when the screw moves from 8 mm to 5 mm and the 

overlap time can be calculated by 

v=u+ at (6.2) 

v2 =u2 +2as (6.3) 

where 

u is initial velocity of the screw (mm/s), 

v is final velocity of the screw (mm/s), 

a is acceleration of the screw (mm/s2), 

s is screw travelling distance (mm) and 

t is screw travelling time (second). 

The screw travelled from 8 mm to 5 mm, which made 3 mm as the screw travelling 

distance. The screw initial velocity was 36 mm/s when the screw travelled to 8-mm 

and the final screw velocity was 30 mm/s at 5-mm. 

Using the Equation 6.2 and 6.3, the screw travelling time from 8 mm to 5 mm was 

0.09 second, which is the tB(8_5,,,,, ) in Equation 6.1. Consequently, the overlap time of 

this setting was -0.11 second, which means the process was sequential co-injection 

moulding. For clarity, this time will be call `Sequential time' and represented in 

positive value. 

The sandwich moulding of the two thermosets is shown in Figure 6.17 and 6.18. 

Despite the fact that there was no pre-curing in the manifold and the spruc, the 

mould was still not fully filled by these settings. The 130-mm metering stroke could 
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not be applied to the Interpon moulding material. This can be explained by the 

difference in volumetric expansion of the two materials inside the barrel. The 

Interpon melt at 80°C expanded more than the BMC melt at 35°C. Because the 

injection shot was measured by volume, and was pushed into the mould by injection 

pressure, a short shot could happen when injecting Interpon at the same stroke as 

BMC. In order to complete the moulding, a higher metering stroke was required. 

Figure 6.17 Thermoset sandwich moulding from the setting in Table 6.3 
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Figure 6.18 Back view of the moulding from the setting in Table 6.3 

It can be seen in Figure 6.17 and 6.18 that the Interpon could not wholly cover the 

BMC. At the front of the moulding, there was a break-through of the core material at 

the middle of the component opposite to the mould sprue as a result of a shear flow 

effect, while at the back BMC flowing lines appeared near to the edges. This showed 

that the film of the Interpon skin was very thin and soft so the BMC fibre could 

sweep out the skin material as can be seen by the white markings, which were 

indicative of fibre flow, in both Figure 6.17 and 6.18. 

This initial experiment showed that the Interpon needed to form a more thick and 

rigid layer before the BMC was injected into the mould. Normally, this can be 

achieved by a higher mould temperature in order to increase the curing rate, or a 

longer curing time, to obtain more cross-linking networks produced between the 
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plastic chains. However, the results from the single injection moulding of lnterpon 

showed that pre-curing inside the mould occurred at the higher mould temperature as 

could be seen on the moulding surface in Figure 6.8 and 6.9. It was decided to give 

more time for the skin to form a thicker layer by reducing the switchover position to 

6 mm and increasing the time delay of injecting the BMC core. 

6.4.3.2 Increasing core injection delay time and skin metering stroke 

This experiment used the same settings as shown in Table 6.3. The injection delay 

time of injecting BMC (core material) was varied and increased to 1.5 seconds in 

order to give more time for the Interpon (skin material) to form a more rigid and 

thicker layer. More skin material was also injected to cover the core breaking 

through at the centre and to fill the rest of the mould. The results are shown in Figure 

6.19 and 6.20. 

Figure 6.19 Front and back of the sandwich moulding of Interpon and BMC when 

using 0.5-second delay time, 6.0mm switchover point and 130: 50 skin/core ratio 
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Figure 6.19 shows the moulding component when increasing BMC delay time to 0.5 

second and reducing the switchovcr point to 6.0 mm. The skin metering stroke was 

increased to 130 mm while the core metering stroke was still at 50 mini. This made a 

165 mm overall metering stroke for the sandwich moulding. 

Break-through of the core still happened at the centre but not on the back of the 

moulding as shown in Figure 6.19. The core was completely covered in the rest of 

the moulding. Even though the overall metering stroke was increased from 130 to 

180 mm, the mould was still not completely filled by this setting. 

Figure 6.20 Front and back of the sandwich moulding of Interpon and BMC when 

using 1.5-second delay time, 6.0mm switch over point and 140: 50 skin/core ratio 

Figure 6.20 shows the moulding component when increasing the BMC delay time to 

1.5 second and using the same switchover point at 6.0 mm. The skin metering stroke 
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was increased to 140 mm. The overall metering stroke for the sandwich moulding in 

this case was 190 mm. 

Again, break-through of the core still happened at the centre of the moulding. No 

core break-through was found in the rest of the moulding. More Interpon was 

injected into the mould so in this case the mould was more fully filled than with 

previous settings. 

Figure 6.21 is the comparison of the three sandwich mouldings that had been made 

using the novel co-injection moulding machine. 

Figure 6.21 Comparison of the three sandwich mouldings produced by the novel co- 

injection moulding machine 

The effect of increasing core delay time and Interpon metering stroke can be seen in 

Figure 6.21. Moulding 6.21a was a result of 0.2-second core delay time, 8-nim 

switchover point and 130-mm overall metering stroke, moulding 6.21b was 
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produced when using 0.5-second core delay time, 6-mm switchover point and 165- 

mm overall metering stroke and moulding 6.21c was produced when using 1.5- 

second core delay time, 6-mm switchover point and 190-mm overall metering stroke. 

The numbers shown underneath each moulding are the sequential times, calculated 

by Equation 6.1-6.3. 

It can be seen that a larger moulding could be produced when increasing the amount 

of skin material. The white circle shape in the moulding, which represented core 

break-though at the moulding centre, was smaller when increasing core delay time or 

the sequential time. Also, a sharper perimeter of the circle was found. This is 

because the skin was allowed to form a thicker and stronger layer, which was more 

difficult to be swept out by the core. 

The shadow marks or gloss mark, which can be found on the surface of 

thermoplastic sandwich mouldings when performing sequential injection moulding 

(see Chapter 2), were not found on the thermoset sandwich moulding surface. This 

was because of the different behaviour of the materials when they are flowing into 

the mould. Thermoplastic melt will form a solid layer right away when it touches the 

cold mould walls, while the hot walls cause the viscosity of the thermoset melt to 

reduce before the cross-linking turns the viscous melt near to the mould wall into a 

solid layer. The flow-front of the thermoset melt was still viscous and not cured 

when the core was injected into the mould. However, if the core delay time was 

increased, it was also possible that the shadow mark could be presented on the 

moulding surface. 
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Figure 6.22 shows cross sections of the sandwich injection mouldings from Figure 

6.21. 

i Sequential time O. 11s 

Sequential time 0.47 s 

Figure 6.22 Cross sections of the sandwich injection mouldings; section A and 

section B are magnified and shown in Figure 6.23 and 6.24, respectively. 

It can be seen from Figure 6.22 that the more sequential time or the more core delay 

time that was set, the less core penetration into skin was obtained. Increasing the 

core delay time not only gave more time for the skin to form a thicker layer but also 

increased the curing of the skin flow front. This resulted in a more viscous skin melt 

inside the mould, which made it more difficult for the core to penetrate into the skin. 

The close-up sections of each moulding are shown in Figure 6.23 and 6.24. 
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Figure 6.23 Magnified view of section A in Figure 6.22 

Consider the skin formation of the sandwich mouldings in Figure 6.23. The skin was 

thicker when the sequential time was increased. The interface between the skin and 

core of the large sequential time was sharper and more defined showing that there 

was less material mixing between the skin and core layer during injection as the skin 

was more viscous when starting injection core. 

The skin film was thickest when applying 1.47-second sequential time. A smaller 

break-through area as can be seen in Figure 6.21 and less core penetration as in 

Figure 6.22 show that the core volume was reduced although the same core amount 

was injected from the barrel. This means the core was packed in the mould and 

mould sprue during injection. 

Figure 6.24 shows the magnification of section B from Figure 6.22. Non-uniform 

skin thickness can be seen here. 
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Figure 6.24 Magnified view of section B in Figure 6.22 

The skin thickness was less uniform near to the moulding edge as a result of more 

curing there. The viscosity of the skin melt, which was pushed into the mould, 

became higher when it flowed further and more difficult for the core to penetrate into 

the skin. A parabolic flow shape in the core as a result of the fountain flow effect, 

which can be seen in thermoplastic sandwich mouldings as explained in Chapter 2, 

was also found in the thermoset case. This can be seen in Figure 6.24 when 

sequential time was 0.47s and 1.47 s. Lumps at the interface between the skin and 

core were found when the skin viscosity was too high and too difficult to be pushed 

further by the core as can be seen in Figure 6.24 at 0.47-second sequential time. 

The sections showed more mixing between skin and core here as can be seen from 

some small skin lines in the core layer in Figure 6.24. Cross-linking between the 

layers started while the core was flowing into the skin. At some positions, the cross 
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linking was very strong enabling the core to pull some skin material with it as it was 

moving forward. 

As explained earlier, all thermoset sandwich mouldings had core break-through at 

the front of the component opposite to the sprue gate. This was affected by high 

shear flow velocity of the core when it was injected into the skin. The flow direction 

of the core changed suddenly 900 from the injection direction and caused very high 

injection pressure at that position. The similar problem was also found and reported 

when moulding a thermoplastic sandwich component using a central gate designed 

mould[3]. However, the skin was only thinner at that position. To add additional skin 

layer there, the three-channel nozzle designed from Kortec provided the third 

channel for injecting more skin material into the mould. A diagram of this nozzle can 

be found in Figure 2.7, Chapter 2. 

In the thermoset case, because of fibre abrasion and the higher density of BMC, the 

BMC core could sweep out the Interpon skin from the front of the component and 

leave a white circle at the centre. Even though more core delay time and more skin 

metering stroke were applied to the core injection, in order to increase the skin 

thickness and reduce the break-through problem, these parameters were not 

significant enough as the problem still persisted. 

Another possible cause for the break-through was that the mould temperature was 

not consistent throughout the mould surface as a result of the lower temperature 

melt. The temperature of the surface around the mould sprue could be lower than the 

preset value, at 150°C in this experiment. Formation of the skin film at that area 
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required more time than the rest of the mould. During co-injection, the film may not 

have formed there when the core was flowing in, so the core could sweep the skin 

out easily. The distribution of the mould surface temperature therefore should be 

further investigated. 

The sprue gate that had been used in this research was therefore considered not 

suitable for the co-injection moulding of a fibre-tilled and a paint material since the 

sandwich area could be obtained only in some areas of the mould. A larger sandwich 

area would be achieved, if the BMC core could be controlled to flow in the mould 

more uniformly. This would reduce the abrasion between the core and the skin layer. 

Figure 6.25 shows the molecular flow of a thermoset material when moving the gate 

from the centre to an edge of the moulding. The gate type that offers the melt flow 

into the mould from the moulding edge is a side gate such as a fan gate and film 

gate. 

a. ) b. ) 

Figure 6.25 Molecular flow at the moulding skin when injecting a thermoset 

material from a. ) Central sprue gate and b. ) Side gate 
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The molecular flow of a thermoset when injecting the melt from a moulding edge 

was similar to the bottom half of the sprue gate moulding but had a larger area of 

good flow uniformity, which would result in a larger sandwich area. However, more 

shear stress and cavity pressure may occur and the melt might be cured before the 

mould could be completed. Therefore, the dimensions of the gate would need to be 

carefully considered. 

Table 6.5 shows the summary of all injection moulding experiments. 
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6.4.3.3 Roughness of the thermoset sandwich injection mouldings 

In order to consider the effectiveness of the Interpon to paint BMC, the thermoset 

sandwich mouldings were cut and the roughness of the surface was measured as 

shown in Figure 6.26. Measuring was carried out on the front surface of the 

mouldings or the surface opposite to the sprue. This is because the best smooth 

surface could be achieved on this face as the result of high injection pressure, which 

was applied directly through the material onto the mould wall during injection. 

Vertical 
roughness 

10 
Horizontal 
roughness 

1 and 3= BMC area 
2 and 4= Sandwich area 

Figure 6.26 The cut sample used to measure roughness of the surface 

The roughness of the moulding surface was measured by using Form Talysurt; a 

stylus instrument for assessment of component form, surface texture and 

dimensional data. A 8.0-mm cut size was used and a minimum of five profiles per 

sample were collected. Using these selections, the equipment would measure a 40- 

mm length of sample at a time. Curvature of the sample was determined during 

measurement and used as a mean value for computing the surface roughness. Figure 
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6.27 shows a graph obtained from the computed data. The roughness was reported in 

the separated text screen output and can be seen in Figure 6.28. 

Ft - Analysis 
FY - Craph Node Cut off ter Reference Isnortl 
F3 - Iwo fo GHH SeAH 

81 1 F4 - Expand 291588 
FS - Exclude 
F6 - 2_Ran9e " 

9.641 U. 

-16,851 us 39.786 a" 

Peak To Valley " 20.757 us 
2_Rýnge " 25.695 us 

TIME= 4'l$ 
DATE, 24-MAR-$* -1- 

Figure 6.27 Roughness data obtained from the Talysurf measuring device 
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A wide range of the data output was available as can be seen in Figure 6.28. This 

included parameters such as surface roughness (Ra), the peak to valley height (R1) 

and surface skew (Rsk). However, the parameter that is universally recognised and 

commonly used to represent the quality of surface finish is the surface roughness 

(Ra). Further details on the derivation of this parameter and other parameters can be 

found in the reference works provided[76,77]. 

Table 6.6 shows the surface roughness (Ra) of the sandwich mouldings, which was 

measured in the horizontal and vertical direction as shown in Figure 6.26. At each 

direction the sample was divided into two areas; including BMC break-through area 

and sandwich area. 

Table 6.6 The roughness of the thermoset sandwich injection mouldings 
Average 

roughness of Average 
Sample Delay Measuring Measuring Roughness 

each roughness time (s) direction area Ra () direction (µm) 
tm 

l H i 491 1 419 1 or zonta . . 
15080* /A 400 1 N . 

V i l 88 388 1 ert ca 1.3 . 

H i t l BMC 4.893 535 2 
2K1508002 2 0 

or zon a Sandwich 2.712 . 
595 3 . . BMC 914 5 i V l . 656 4 ert ca . Sandwich 3.216 

BMC 1.532 
H l i 1 620 

2K1508005 0 5 
zonta or Sandwich 1.707 , 

185 3 
. BMC 462 7 . 

i l V . 750 4 ert ca San dwich 2.039 . 

BMC 1.274 
Horizontal 

Sandwich 1.093 1.184 
2K15 08015 1.5 2 481 1.520 

ti V l 
BMC 1.857 er ca Sandwich 1.233 

-iouau - bmgie injection moulding of Interpon when using 150°C mould temperature and 1su"c; 
manifold temperature 
**See Figure 6.26 
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From Table 6.6, it can be seen that most of the roughness measured at the BMC area 

was higher than the value measured at the sandwich area as a result of the glass fibre 

in the material. The surface was improved when covering the BMC with an unfilled 

material, Interpon in this case, as can be seen from the roughness of the sandwich 

areas. 

The average roughness of the sandwich mouldings was reduced or a better surface 

finish was obtained when increasing skin amount and core delay time. This is clearly 

shown by the average roughness results of the 2K1508005 and 2K1505015 sample. 

When increasing the Interpon metering stroke but using the same injection speed, 

more injection time was needed to deliver the material into the mould, in other 

words, the more time the material needed to stay in the mould. The melt flow front 

would penetrate further in the mould cavity but the viscosity was also increasing due 

to the cross-linking reaction. Injection of core started after a delay time, which 

allowed the skin to form a film or cure layer near to the mould wall. When applying 

more core delay time, the film became thicker as it had more time to build more 

cross-linking networks between molecules. The higher cured layer of the Interpon 

near to the mould wall and at the flow front would perform as a shell when the core 

melt was injected into the mould. The more viscous shell would flow slower and be 

more packed by the core injection, which resulted in a better surface smoothness at 

the sandwich area. The best result from this experiment was when injecting the core 

at 1.5-second delay at the highest overall metering stroke of 190 mm (2K1505015). 

The roughness of the BMC area was also improved when injecting more material 

into the mould and increasing the core delay time due to the same reason explained 
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above. When the skin became more viscous, it was more difficult for the core to 

penetrate so the BMC melt was packed by the new BMC melt from the injection 

unit. 

The roughness results measured in the vertical direction were more than those in 

horizontal direction since the materials could reach the two sides of the mould in 

horizontal direction before the top and the bottom. The melts then were packed there 

more than in the vertical direction. It was not only the surface finish of the sandwich 

area that was improved, but the surface of BMC area was also better. The horizontal 

roughness of the BMC area was surprisingly reduced from 4.893µm (sample 

2K1508002) to 1.532µm (sample 2K1508005) and 1.274µm (sample 2K1508015) 

when more material was injected into the mould. This shows that under a sufficient 

packing pressure of injection moulding, a good surface finish moulding can be 

produced from a fibre-filled thermoset material like BMC. In order to get a good 

surface finish all over the moulding surface, more material was needed to fully fill 

the mould. 

The roughness of the sample 2K1508015 was close to the value measured from the 

Interpon moulding (sample 15080). However, the surface of the Interpon moulding 

could not be considered as the best finish as a result of short shot moulding and 

insufficient packing pressure. The component will be much smoother if the mould is 

completely filled and packed. 
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6.5 Conclusions 

This chapter contained the results of the experiments that were described in the last 

chapter. The initial material test results were used to set up the process parameters of 

the novel thermoset co-injection moulding machine in order to produce a sandwich 

moulding of Interpon and BMC. 

Prior to the co-injection moulding, single injection experiments on each material 

were performed. Suitable mould temperature, manifold temperature and sprue 

temperatures were obtained. 

Single injection moulding of Interpon was found to be more difficult than BMC. The 

reason for this was because Interpon was injected through a more complicated runner 

of the manifold system. Frictional heat during injection affected the material flow 

and cure and caused demoulding problems, which will be further explained later in 

Chapter 7. 

A complete Interpon moulding produced by the novel thermoset co-injection system 

could not be achieved. Pre-curing of the material occurred around the manifold 

nozzle and mould sprue resulting in short shot moulding. Injecting BMC into the 

Interpon in the co-injection moulding process helped to push in the Interpon melt 

and reduce the melt temperature down, so a complete moulding could be achieved. 

Sequential co-injection moulding was set for producing sandwich components of 

Interpon and BMC. Interpon was injected into the mould first and after an amount of 

delay time, BMC followed. This time was called `Sequential time'. 
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A short shot was the result in the initial experiments, even though the overall 

metering stroke was the same as the setting used for moulding a complete BMC 

component. This was because the heat expansion of Interpon in the barrel was more 

than that of BMC. A greater metering stroke was required for Interpon in order to 

complete the mould. 

Another major problem that was found in the co-injection moulding of Intcrpon and 

BMC was break-through of the core on the moulding surface, especially at the 

position opposite to the sprue gate. This showed that the skin film was very thin and 

soft when BMC was flowing into the mould. An increased sequential time and more 

Interpon were applied in the following experiments in order to cover the BMC layer. 

Break-through of the core at the position opposite to the sprue gate may come from 

too low a mould surface temperature at that area. The distribution of the mould 

surface temperature therefore should be further investigated. 

The BMC core could be covered by the Interpon skin in the rest of the moulding 

except the central area opposite to the sprue gate. This gate design was considered 

not suitable for the co-injection moulding of Interpon and BMC. A side gate such as 

fan gate and film gate could be a solution for this. 

Curing of the skin layer was important to the skin and core formation of a thermoset 

sandwich moulding. Sections of the sandwich components showed a thicker skin 

layer when applying more sequential time and skin amount. However, less core 

penetration also occurred as a result of more curing skin. 
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Cross-links of Interpon and BMC were developing throughout the injection cycle. 

Thicker skin was found near to the edge of the moulding as a result of more skin 

curing. At the same area, more mixing between skin and core layer was also found 

since the cross-linking between both materials was developing during injection. 

The surface finish of the sandwich mouldings was determined by measuring the 

roughness of the surface. The results showed the possibility of obtaining a good 

surface finish moulding when applying enough material and pressure into the mould. 

The co-injection moulding might be an alternative method for coating or painting a 

fibre-filled thermoset material in the automotive industry. However, the moulding 

technique needs more improvement in order to achieve production of Class-A 

surface components. 
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Chapter 7 

Manifold system design and improvement 

7.1 Introduction 

The original manifold system had been designed using a general design concept for 

injection mould and tools internally at the International Automotive Research 

Centre, University of Warwick. Two manifold systems were built in order to use 

with the 3K-thermoplastic injection moulding machine (see Figure 2.9) and the 

thermoset co-injection moulding machine. At the time of starting this project, the 

manifold prototype for the thermoset moulding machine was used for initial single 

injection moulding experiments. It was found that thermoset material injected from 

the vertical barrel froze off inside the manifold runner because of too low a 

temperature there. Also, a leakage was found on the plates at the top of the manifold 

system where it was connected to the vertical nozzle, which caused a massive drop 

of injection pressure and resulted in only small amounts of the material being 

injected into the system. By increasing the spherical radius of the manifold plates, 

better sealing was obtained and the leakage problem was solved. Sets of cartridge 

heaters and thermocouples were added to control the manifold temperature and to 

maintain the material flow during injection moulding. This modified manifold was 

then used for all injection moulding experiments in this research. However, short 

shot and pre-curing of material were found during injection moulding as mentioned 

in Chapter 6. 
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This chapter describes how the modified manifold system can be improved by 

looking at the problems that occurred during injection moulding. The first part of the 

chapter explains the functions of each component assembled in the existing manifold 

system and the second part discusses the new design of manifold system. Both 

existing manifold and new manifold system have been analysed using Moldflow 

Plastic Insight®, an injection moulding simulation package, and arc discussed in the 

next chapter. 

7.2 The existing manifold system 

7.2.1 Design concept 

The existing manifold system had been built based on a general design for 

thermoplastic sandwich injection moulds and tools. It comprised of two halves, one 

was fixed on the machine and another one was able to move in order to remove 

excess sprue and runner after the moulding process was finished. Figure 7.1 shows 

the side view and the isometric view of the existing manifold system. 
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Figure 7.1 The existing manifold system a. ) Side view and b. ) Isometric view 

The manifold moving platen consisted of a movable nozzle in the middle, which was 

able to move forward when the manifold was closed and backward when the 

manifold was opened. This was achieved by the forces from a set of springs 

assembled in front of the nozzle. At the closed position, this nozzle was pushed 

against the mould sprue. There was a6 mm-diameter half-circle slot drilled on the 

back of the platen, starting from the top of the manifold to the back of the manifold 

nozzle. The same slot was also drilled on the front of the fixed platen. When both 

halves were closed, those slots would form a vertical runner. This was used to lead 

the skin material from the vertical barrel into the mould. 

There were two sliders installed on the manifold fixed platen, which would push the 

manifold nozzle forward against the mould sprue when the manifold system was 
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closed and clamped. When finishing an injection moulding, the mani101(1 would open 

and the connection between the mould sprue and the nozzle would be parted as the 

nozzle went backward. Solid plastic inside the system would be captured within the 

slider onto the fixed platen. This included the plastic inside the manitbld no/. zle, 

which would be pulled out from the tapered hole. The sliders were then opened by 

hand and so the whole plastic part in the manifold could be pulled out. 

To keep the melt in the processing temperature range, ME cartridge heaters from 

KIT clectrics and type-J thermocouples were installed in both halves of the manilbld. 

The operating temperature could be as high as 500°C however not more than 90°C 

was used in the experiments due to the material properties. Figure 7.2 shows the 

positions of all cartridge heaters and the thermocouples in the manifold. The 

numbers in the figure represent the thermocouple positions and the letters represent 

the sets of the cartridge heaters. 

Manifold moving platen 

1 3 

Figure 7.2 Positions of cartridge heaters and thermocouples in moving and fixed 

platens of the existing manifold system, where -heaters thermocouples 
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7.2.2 Problems during injection moulding 

As described in chapter 6, there were some problems during single injection 

moulding of Interpon and sandwich injection moulding. Full shot moulding could 

not be achieved when injecting Interpon alone, which was caused from material 

being frozen-off inside the mould sprue and manifold runner. Also, the mouldings 

from single and sandwich moulding sometimes jammed inside the mould fixed halt 

since the plastic inside the mould sprue and the manifold nozzle could not be broken 

off. These problems were analysed and the possible causes are shown in Figure 7.3. 

2. Heat transferred t 
to the manifold from 
hot mould. Required 
water jacket to redui 
heat and prevent pn 
curing. 

H 
I- 
10 
O 

C 
O 

N 
C 

1. Long and narrow 
runner, flow directional 
change caused some 
friction heat. 

3. Opposite taper of the 
manifold nozzle and the 
mould sprue. Difficult to 
get rid of plastic if the 
sprue is broken from the 
moulding. 

4. The mould sprue and 

the manifold nozzle did 

not break after the 

manifold opened 

Figure 7.3 Possible cause of the problems during single injection moulding of 

Interpon and sandwich injection moulding 
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1. Long and narrow runner with flow directional change during iº jection 

moulding. 

High shear friction occurred when the material was injected through the long and 

small runner of the manifold, especially where the flow direction changed. This was 

not practical for a highly viscous material. Increasing injection speed to overcome 

material pre-curing due to the cross-linking reaction inside the manifold was difficult 

as the higher injection speed promoted the increasing of the shear friction. 

2. Heat transferred back to the manifold moving platen frone the hot mould. 

Cooling water was required in order to prevent pre-curing. 

Even though there was insulation between the mould and the manifold, cooling 

water was necessary in order to separate the manifold from the mould since the 

manifold nozzle connected to the mould sprue throughout injection moulding. Some 

heat could transfer from the hot mould, which was set at 150°C, to the manifold and 

caused pre-curing of the plastic melt inside the manifold nozzle. Setting temperature 

of the cooling water was also important as it could affect the sprue curing and sprue 

breaking at the end of the moulding cycle. 

3. Opposite tapers of the mould spree and the manifold nozzle 

Normally, a tapered sprue is used to accommodate demoulding. This manifold was 

also designed to have a tapered hole inside the nozzle so the plastic could be 

removed easily from the nozzle. This hole was positioned against the mould spruc, 
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which had an opposite tapered direction. When a short shot happened or a plastic 

component in the mould was not cured enough, the spruc was likely to break from 

the component and become trapped inside the mould fixed half. The only way to get 

rid of the plastic sprue was to dissemble the mould from the manifold. 

4. Sprue did not break at the end of the injection moulding cycle. 

This problem happened when moulding Interpon in both single injection and co- 

injection moulding. In order to break the mould sprue from the manifold nozzle, the 

plastic inside the sprue must be hardened or cured enough but not too cured to 

degrade the melt inside the nozzle, which will be used for the next shot. Hence, the 

material around the connection between the sprue and nozzle was still soft at the end 

of the injection cycle. Practically, due to the elastic characteristic of Interpon and too 

short a distance between the mould sprue and the manifold nozzle, the sprue only 

stretched out when the nozzle moved back and was too elastic to break at the end of 

the mould sprue. Consequently, the whole system was blocked and the component 

could not be taken out of the mould until the whole system was cooled down to the 

room temperature. 
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7.3 New manifold system design concept 

A new manifold system was designed based on the same manifold structure but 

which improved some parts in order to solve the problems that were explained in the 

last section. Following are the design parameters that were considered for designing 

the new manifold. 

" The new manifold system could be installed on the thermoset co-injection 

moulding machine without machine modification. 

" The manifold could be easily disassembled for cleaning. 

9 It would be equipped with a temperature controlled system to maintain the 

material flow during injection moulding. 

" The new manifold nozzle would be able to be disconnected from the mould 

at the end of the injection cycle in order to reduce heat transferring from the 

hot mould. 

" Minimise the shear friction in the system. 

Figure 7.4 shows the side view and the isometric view of the new manifold that has 

been designed following the parameters above and using simulation results from 

Moldflow simulations, which will be explained in the next Chapter. 
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Figure 7.4 The new manifold system a. ) Side view and b. ) Isometric view 

The manifold nozzle is moved from the manifold moving platen to installation in the 

fixed platen. The moving platen is now having only a plain hole in the middle and is 

used for installing the mould fixed half only. This new nozzle will be able to move 

forward to connect to the mould sprue by a pushing force from the horizontal 

injection unit during injection moulding and move backward by a spring set installed 

inside the manifold fixed platen when the injection unit retracts. The nozzle and the 

sprue then separate. This helps to reduce heat transfer from the mould to the melt 

inside the nozzle. As a result, the cooling water unit as installed in the existing 

design manifold is unnecessary. Another advantage of this new nozzle is there is no 

opposite taper hole at the back of the mould sprue so that it gets rid of the blockage 

problem and the moulding can be taken out easily. Table 7.1 shows the operating 

sequence of the new manifold system. 
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Table 7.1 Operating sequence of the new manifold system 

Steps Details 

B 
Manifold To start the injection cycle, the 

manifold is hydraulically closed. Core 

A barrel A and Skin barrel B are 

charged with some molten thermoset 

plastic that is adequate to fully fill the 

Step 1 mould. 

The mould is closed and clamp 

locked. Main injection A and B move 

forward to face the manifold. The 

manifold nozzle is pushed forward to 

against the mould spruc by the A- 

Step2 barrel. 

Some skin material is injected from 

injection unit B. After a small delay 

time, screw A, which is inside the 

injection unit A moves forward to 

inject some core material into the 

Step 3 mould cavity. 
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Table 7.1 Operating sequence of the new manifold system (continue) 

The two injection units continue 

delivering the materials into the 

mould until the mould is fully filled. 

The screw A then stops while B keeps 

pushing some material in by pressure 

in holding phase. The curing cycle 

Step 4 follows. 

Injection unit A and B arc recharged 

with fresh materials and retract from 

the manifold during the curing cycle. 

The manifold nozzle moves 

backward. After the curing time is 

reached, the mould and manifold open 

to release the component. Step 1 to 5 

is repeated again for the next injection 

Step 5 cycle. 

The nozzle is fitted inside the manifold between two rings so that it can be removed 

from the front and the backsides. On the fixed platen, a set of inserts will be screwed 

in to function as a new manifold runner with a larger diameter. All of the 

components are designed for easy disassembly, so the parts can be cleaned easily 
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when pre-curing and blockage occur. Figure 7.5 shows a close up view of the new 

nozzle. 
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Figure 7.5 Close-up view of the new nozzle design 

The new nozzle comprises a smaller inner nozzle screw fitted in an outer nozzle for 

skin and core material, respectively. The skin melt will flow from the vertical runner 

through a hole on the top of the outer manifold, while the core melt will flow 

through the inner nozzle. After finishing the whole injection moulding process, one 

of the rings can be taken off to release the nozzle from the manif'old and then the 

inner nozzle can be unscrewed from the outer nozzle to clear out the trapped 

materials inside. 

The manifold platens will be installed with sets of cartridge heaters and 

thermocouples to maintain the manifold temperature in order to keep the material 
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flowing during injection. Insulation boards at the back of the platens are necessary to 

increase the heaters' efficiency and reduce the heating time. 

This manifold system will be compared with the existing one in terms of flow and 

cure of a thermoset material in the system by using a simulation software package 

and explained in next chapter. Full assembly and part drawings of this new system 

can be seen in Appendix I. 

7.4 Conclusions 

This chapter identified the problems occurring with the existing manifold system that 

was used in this research. These problems resulted in the ability to produce only one 

injection shot in the machine before the need to stop for cleaning. 

A new manifold concept, which was designed to improve the existing manifold 

system, was proposed and explained. It was proposed that this design could solve the 

problems of the existing manifold system so the moulding cycle could be continued 

without having to stop the machine for cleaning. However, it needed more 

experiments to prove the design. The system will now be compared with the existing 

manifold by using a simulation software package. This will be further explained in 

the next chapter. 
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Chapter 8 

Thermoset Injection Moulding Simulation 

8.1 Introduction 

Together with the injection moulding operation itself, plastic injection moulding 

simulation helps moulders to understand the mechanism of shaping plastic from the 

beginning of injecting material into the mould until a finished part is acquired. This 

is very useful for product development as a lot of information can be gained before 

doing the real work on the machine in terms of mould design and process design, 

i. e., it gives sufficient information for making and improving prototype mould tools 

and provides useful results for machine condition settings. Consequently, trial and 

error experiments can be reduced to a few tests and hence, reduction of overall 

product development time and cost. 

Moldflow Plastic Insight® is a simulation software package for plastic injection 

moulding. The software version 4.1 offers a Reactive moulding module, which is 

designed for simulation of thermoset and rubber single injection moulding, reaction 

injection moulding (RIM), structural reaction injection moulding (SRIM) and resin 

transfer moulding (RTM). The analysis module generates results from the 

calculations of many input parameters such as material melt temperature, mould 

temperature, viscosity and gelation using the reactive viscosity model (Equation 8.1 

and 8.2) and Kamal's reaction kinetic equations (Equation 8.3 to 8.5). 
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(C. ý+C2a ) a 

I-so 
1+ 1o__)Y g 

T 

too (T) =B exp(Tb /T) 

where rj is the viscosity (Pa. scc) 

y is the shear rate (1/sec) 

T is the temperature (deg. K) 

a is the conversion or degree of cure (0-1) 

(8.2) 

n, t *, B, Tb, Cl, C2 and a8 are data fitted coefficient, which is constant 

dependent on material. 

da 
_ (K1 + Ksa m )(1- a)" (8.3) 

dt 

K, = A, e(-E, IT) (8.4) 

K2 = A2e(-E2IT) (8.5) 

where n:, n, A1, A2, El and E2 are constant parameters. 

As it was described in chapter 3 and 4, heat has been considered as a very important 

parameter in thermoset processing. The temperature of the material inside the mould 

can therefore be a useful guide to determine the process and settings. This simulation 

programme had been used to help the study relating to flow and cure of a thermoset 

in the manifold system and the mould under different injection parameters by 

investigating the changes of the material temperatures inside the mould. Since there 
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was no material in the database that exactly matched the material that was used in 

the experiment, general grade thermoset polyester without fibre fill was selected for 

the simulations. The results then could not be used to explain the flow behaviour of 

the materials, which were used in the experiments, in the manifold system. However, 

they could help to point out the problems that would happen when injecting a 

thermoset through the manifold in general. 

The first part of simulation considered the whole system including the existing 

manifold runner and the moulding as a plastic component in order to study how the 

material would flow through the whole system when the tool temperature was 

changed from a low level to a high level. At each temperature, the injection speeds 

were also varied from a very fast injection time of 1 second to a very low injection 

time of 5 seconds. 

The second part of the simulation considered filling and curing of the tray mould 

alone, at different mould temperatures varied from 80 to 140°C and different 

injection speeds from 1 to 5 second. It was assumed in this case that there was no 

effect from the manifold on the material flow so the melt temperature was constant at 

80°C before injection into the mould. 

The new manifold system explained in last chapter was designed and analysed using 

Moldflow® with the same set of condition settings as the existing system. The final 

part of the chapter shows the simulation results of this new system. Examples of 

Moldflow simulation screen outputs can be seen in Appendix II. 
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8.2 Moldflow® simulation of the existing manifold system and the 

tray 

In order to study the effect of the runner on mould filling, in this simulation, the 

existing manifold and the tray mould were considered as a single mould, which 

could produce a tray and a manifold runner as a single plastic component. By doing 

this, flowing of the material from the injection nozzle through the manifold runner 

into the mould could be determined. However, the temperature set for the system had 

to be lower than the actual mould temperature for this material, which is normally at 

140-180°C. The simulation could not represent the post process qualities of the 

moulding components such as the percentage of cure, warping and shrinkage ratio. 

The meshing solid model is shown in Figure 8.1. A thermoset polyester was injected 

from the vertical direction as illustrated by an arrow. Points on the figure show 

different positions on the moulding that would be used to represent the melt 

temperatures, which will be discussed in section 8.2.2. 
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Figure 8.1 The meshing model of the tray and the existing manifold runner 

The input tool temperature was varied from 80 to 130°C. At each temperature, 

injection times were changed from I to 5 seconds. Table 8.1 shows the conclusion of 

the filling simulations. 

Since a cross-linking reaction is exothermic, the changing of material temperature is 

an indicator to predict the curing and is therefore, related to the material flow ability 

in the mould. During injection, material temperatures at different positions of the 

tools were recorded. 
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8.2.1 Results of the Moldtlow® simulation of the existing manifold system and 

the tray 

Table 8.1 Conclusion of the polyester mould filling simulation. Using the manifold 

and the tray as a single mould. 

Injection 
time (s) 

Tool 
temperature 
° 1 2 3 4 5 C) ( 

80 0 0 0 0 
� 

90 0 0 0 � � 

100 0 � � � � 

110 0 � � 0 0 

120 � 0 x x x 

130 x x x x x 

�Complete filling obtained without pre-curing reported. 

o Complete filling but pre-curing was reported. 

X Cannot complete filling. Short shot and pre-curing was reported. 

From the simulation results in Table 8.1, it was shown that the mould could be fully 

filled when it was set at 80-120°C, however, pre-curing was reported at some 

injection times. Although the simulation showed that the material pre-cured in the 

cases when injection time was 2 seconds and mould temperature was at 80,90 and 

120°C, the causes of pre-curing at the low temperature of 80°C and 90°C were 

different from the high temperature of 120°C. Figures 8.2-8.4 show the melt 

temperature of the material in the mould at different positions as shown in Figure 

8.1. These three graphs show completely different temperature distributions. At low 

temperature (Figure 8.2), the temperature gaps between each position were uneven 

compared to those at high temperature (Figure 8.4), meaning that as the melt flowed 

through each position in the manifold and the mould, some heat was generated in the 
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system. This was caused by shear friction of a flowing viscous material and resulted 

in some hot spots and pre-curing. This effect was small when compared to the effect 

of using a high mould temperature, which led to high cross-linking rate of the whole 

material inside the mould and the manifold. The moulding at low temperature could 

be completed but the material was viscous and difficult to inject into this 

complicated system. 

Melt temperature at dfferent positions at 80°C mould temperature 
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Figure 8.2 Melt temperature of the material at different positions in the mould and 

manifold. The mould and manifold is at 80°C and injection time is 2 seconds. 
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Melt temperature at dfferent positions at 90°C mould temperature 
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Figure 8.3 Melt temperature of the material at different positions in the mould and 

manifold. The mould and manifold is at 90°C and injection time is 2 seconds. 
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Figure 8.4 Melt temperature of the material at different positions in the mould and 

manifold. The mould and manifold is at 120°C and injection time is 2 seconds. 

Melt temperature at dfferent positions at 120°C mould temperature 
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At 120°C and 130°C, material pre-cured before filling was completed. 't'here were 

two positions where the material had turned solid as shown in Figure 8.5. At 130°C, 

the melts cured inside the manifold where the flow direction changed while at 

120°C, the curing layer moved further inside to the end of the sprue and to the 

middle part of the component. Since the cross-linking reaction rate at 130°C was 

faster than at 120°C, the material cured earlier inside the tool. To get rid off pre- 

curing, the injection time had to be faster. The result from Table 8.1 shows that by 

reducing injection time from 5 to 2 and I second, the mould can be fully filled at 

120°C mould temperature. 
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Figure 8.5 Cured layer fraction results at 120°C mould temperature (left) and 130°C 

(right) (Injection time 4 seconds) 

From Table 8.1, it can be seen that the higher the mould temperature was, the faster 

injection time should have been to compensate an increased cross-linking rate. On 

the other hand, it was found to be difficult to inject very fast at low mould 

temperatures due to the material's high viscosity and hence, high inertia and hot 

spots could occur during injection. 

176 



The inertia did not have much affect when injecting slowly as can be seen from 

Table 8.1. At 5-second injection time, the moulding could be completed at 80- 

100°C. Furthermore, the temperature window was larger if the injection time was 

slower. For example, 120°C mould temperature was the optimum for a1 second 

injection time, 100-110°C were the optimum temperatures of 2 and 3 second, 90- 

100°C were the optimum temperatures of 4 second and 80-100°C were the optimum 

temperatures of 5 second injection time. It should be noted that in this case, too high 

a mould temperature could cause pre-curing before all of the material could be 

injected into the mould. 

8.2.2 Effect of mould temperature and injection speed on material temperature 

Melt temperature at different positions along the flow path is shown in Figure 8.1. 

The points for measuring the effects on each of these positions when the mould 

temperature is varied from 80 to 130°C and injection time is 3 seconds are shown in 

Figure 8.6-8.11. These graphs show the changing of the material temperature during 

injection and curing. Results of other injection times can be found in Appendix III. 
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Melt temperature at dfferent positions at 80°C mould temperature 
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Figure 8.6 Melt temperature of the material at different positions in the mould and 

manifold. The mould and manifold is at 80°C and injection time is 3 seconds. 

Melt temperature at dfferent positions at 90°C mould temperature 
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Figure 8.7 Melt temperature of the material at different positions in the mould and 

manifold. The mould and manifold is at 90°C and injection time is 3 seconds. 
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Melt temperature at dfferent positions at 100°C mould temperature 
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Figure 8.8 Melt temperature of the material at different positions in the mould and 

manifold. The mould and manifold is at 100°C and injection time is 3 seconds. 

Melt temperature at dfferent positions at 110°C mould temperature 
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Figure 8.9 Melt temperature of the material at different positions in the mould and 

manifold. The mould and manifold is at 110°C and injection time is 3 seconds. 
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Melt temperature at dfferent positions at 120°C mould temperature 
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Figure 8.10 Melt temperature of the material at different positions in the mould and 

manifold. The mould and manifold is at 120°C and injection time is 3 seconds. 

Melt temperature at dfferent positions at 130°C mould temperature 
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Figure 8.11 Melt temperature of the material at different positions in the mould and 

manifold. The mould and manifold is at 130°C and injection time is 3 seconds. 
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From the temperature-time plots in Figure 8.6-8.11,100-110°C mould temperatures 

were found to be the optimum temperature of this simulation. As in Figure 8.8 and 

8.9, there were small increases in the temperature at each position, which can be seen 

by small temperature differences between each curve. When the mould was set 

within that range (100-110°C), the viscosity was suitable for the material to flow 

through a complicated system such as this. 

When the mould was set at 80°C, material temperature at each position (as shown in 

Figure 8.1) was higher than the mould setting temperature even though the input 

melt temperature was 80°C. During injection, there was some heat generated in the 

system, which was caused by heat transfer from the mould wall, the cross-linking 

reaction and shear friction. When a viscous material flows through a complicated 

mould system like this, friction could be the main factor that caused the increasing of 

the melt temperature. 

As can be seen in Figure 8.10 and 8.11, when the mould was set at 120°C and 130°C 

respectively, material temperature increased rapidly during injection and went 

beyond the actual mould pre-set temperatures in the curing phase. At 120°C the melt 

temperature curves started to fluctuate. The results in Table 8.1 show that short 

shots mouldings were obtained when injecting slower than 2 seconds at 120°C 

mould temperature and when the mould temperature was at 130°C. This showed that 

a high cross-linking rate was happening inside the system during injection. Since this 

exothermic cross-linking reaction is strongly dependent on the temperature, the 

higher the mould temperature that was set, the higher the reaction rate would be, and 

the more heat that was generated. Ideally, the cross-linking should start in the mould 
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after the whole mould is fully filled or in the curing phase. However, in practice, the 

reaction starts on applying heat to the material in the barrel. All of the machine 

settings that affect to the system and material temperatures must be controlled to 

ensure that the reaction rate is very slow during mould filling and is very fast during 

mould curing. 

The melt temperature curves can be useful for prediction of material flow and 

gelation in a mould system. A good filling case can be seen from Figure 8.8-8.9. As 

explained previously, smooth curves can be seen from the temperature and time 

plots, and the melt temperature at each position is almost constant during injection. 

The effect of chemical reaction and shear friction, which led to an increasing in 

temperature, was very low here. 

A drop-down curve (as seen in Figure 8.6-8.7) occurs when the mould temperature is 

too low. Only a small amount of heat can be transferred to the melt. The melt 

temperature lowers when fresh material is flowing into the mould. Even though the 

temperature is low at the start and the material has almost no chance of pre-curing, 

the problem will occur when the viscous melt flows further in. The melt temperature 

increases due to frictional heat, which is caused by the high viscosity material 

flowing in the system. This will increase the reaction rate during mould filling. 

A fluctuating curve as shown in Figure 8.10-8.11 happens when there is pre-curing 

during injection. This often results in short shot moulding. A close-up figure 

showing the effect of the mould temperature on the melt temperature is shown in 

Figure 8.12. The high peaks of the fluctuation curve represent the high melt 
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temperature due to high cross-linking rate. These show when the material viscosity is 

high due to pre-curing and the melt flow starts to slow down. When more fresh 

material flows into the mould, it pushes the high temperature melt further in so the 

temperature at that position decreases as shown by the low peaks of the fluctuation 

curve. 

Effect of varied mould temperature 
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Figure 8.12 Time and temperature curve of a thermoset polyester in the sprue end 

when varying mould temperature. Injection time is 3 second. 

The injection time-temperature curves can be redrawn as shown in Figure 8.13. This 

figure represents the temperature-time curve shapes of good and bad mould fillings 

when the mould is completely filled. 
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Figure 8.13 The melt temperature during injection and curing phase of a thermoset 

These three curves represent the melt temperature of three thermosets, A, B and C, 

during the injection and curing phase when using a mould that is set at a constant 

temperature. The graph area is divided in to three zones, where zone l is the 

injection phase or mould filling and zone 2 and 3 arc curing phase or mould curing. 

In zone 1, material is being injected into the mould. The heat in the system, which is 

determined by an increasing of temperature, is affected by, 

9 Material temperature 

" Mould temperature 

" Shear friction 

" Cross-linking reaction 
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The shape of the curves depends on the weight that each factor has on the material. 

For curve A, the material A is being injected at a suitable mould temperature. A 

small amount of heat is generated as can be seen by an almost constant temperature 

curve in zone 1. The main factors that affect the changing of the melt temperature are 

heat transfer from the mould and the lower temperature material from the barrel. 

Shear friction and cross-linking have a very small effect here. 

The mould temperature is too low for material B as can be seen from the shape of 

curve B. The melt temperature is reducing because the lower temperature material 

from the barrel is flowing into the mould. There is almost no effect from the cross- 

linking reaction. However, shear friction starts to build up some heat due to the high 

viscosity material when it is at low temperature. The friction will effect to the 

increasing of the melt temperature when it flow further in the mould. 

Curve C shows that the mould temperature is too high for the material C. Material is 

very low in viscosity so there is low shear friction during injection. Heat transfer 

from the mould wall and the fresh material affect the melt temperature but not as 

much as the effect from the exothermic cross-linking reaction. The melt temperature 

of material C is higher than the rest. Since the reaction rate is high, there is a chance 

of pre-curing at some parts of the mould and results in flow marks on the surface. 

In zone 2, the mould is fully filled and no more material is injected in. This is when 

the cross-linking network should start to form and turns the melt into a solid 

component. Heat generation in this zone is from 
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" Mould temperature 

" Cross-linking reaction 

All materials show a rapid increase in the melt temperature. The heat transfer from 

the mould to the material is at the same rate in each curve but each material reacts to 

the heat differently. A very high cross-linking rate occurs with material C, so there is 

a lot of heat generating during curing, which is shown by a very fast increasing rate 

of temperature and a large overshoot temperature from the mould setting 

temperature. A good curing curve is shown by material A when the reaction rate is 

moderate and a smaller overshoot happens at the end of zone 2. 

The curve of material B shows a very slow cross-linking rate due to too low mould 

temperature. The material temperature is increasing slowly and cannot reach the 

mould setting temperature at the end of zone 2. 

In zone 3, cross-linking is continued. The temperatures of material A, B and C are 

equal to the mould temperature, which is controlled by a heat control system. 

Moulding components can be achieved at the end of this zone from material A and 

C. However, the material B, which has the slowest cross-linking rate and needs more 

time for curing among the three materials, might not cure enough for demoulding by 

the end of zone 3. 
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8.3 Moldtlow`R) simulation of the tray 

The complicated runner of the manifold system was omitted from this simulation, in 

order to look at material flow into the mould without any effect from the manifold 

system. This time, the injection point was changed from the vertical to horizontal 

direction. Similar to the simulation in section 8.1, the injection time was varied From 

1 to 5 seconds with the temperature changed from 80 up to 140°C. The meshing 

model and the results are shown in Figure 8.14 and Table 8.2, respectively. 

Scale (200 mm) 

Figure 8.14 Fusion model of the tray 
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Table 8.2 Conclusion of polyester mould filling simulation of the tray mould 

Injection 

Mould time (s) 

temperature 
('C) 1 2 3 4 5 

80 � � � � � 

90 � � � � � 

100 � � � � � 

110 � � � � � 

120 � � � � � 

130 � � 0 x x 

140 � x x x x 

� Complete filling obtained without pre-curing reported. 

o Complete filling but pre-curing was reported. 

x Cannot complete filing. Short shot and pre-curing was reported. 

It can be seen from Table 8.2 that the mould filling results were better than the 

results in Table 8.1. No pre-curing was reported at the temperature below 130°C. 

The process temperature window for this mould was 80-130°C. 

The optimum temperature for all injection times was 120°C, which was 10°C higher 

than the top limit of the optimum temperatures when there was the manifold attached 

to the mould (100-110°C). This means that at least 10°C reduction of the system 

temperature was needed in order to balance between the material flow and cure 

inside the manifold system. In other words, this temperature difference was used to 

compensate the system's heat generation. Figure 8.15 and 8.16 show the melt 

temperatures in the sprue end when the mould was attached with and without the 

manifold system. The mould temperatures of both cases were set at 120°C. It can be 

seen that more smooth curves were reported when the manifold was removed. 
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Effect of Injection speed at 120°C mould and manifold temperature 
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Figure 8.15 The melt temperatures at the mould sprue end at varied injection time 

when the manifold and mould were set at 120°C 
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Figure 8.16 The melt temperatures at the mould sprue end at varied injection time 

when the mould was set at 120°C 
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Although the mould was Cully tilled, pre-curing started to happen at 130°C when 

injected at 3 seconds. At slower injection speeds, the filling process could not he 

completed. Figure 8.17 shows shot size of the components when the mould was set 

at 130°C and 140°C. It is obviously shown that the shot size was dependent on how 

fast the material had been injected. 
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Figure 8.17 Percentage of tilling at different injection time when the mould was set 

at 130°C and 140°C 

As it has been discussed earlier in section 8.1, when the mould was set at a very high 

temperature, the material should be injected into the mould very fast to compensate 

for a high material cure rate. 

For the mould with a simple sprue like this, the mould temperature can he varied in a 

wide range from a low to high temperature. The injection time is the only parameter 

to consider when the mould is set at a high temperature. However, when the mould is 
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connected to a more complicated runner as in the existing manifold system, it is 

important to consider the internal shear friction in the system since it will advance 

the material cross-linking rate and causes pre-curing. The manifold system 

temperature cannot be too low because it will increase the material viscosity and 

reduce the melt flowability. Also, the melt cannot be injected very fast at any 

temperature since it will cause more shear friction in the system. The process 

window of the existing manifold system therefore is very narrow. This limits the 

types of materials that can be used with the machine. 

8.4 Moldflow® simulation of the new manifold 

The simulation in section 8.2 and 8.3 explained how the existing manifold design 

affected the thermoset material flow. The more complicated the manifold was, the 

narrower the processing windows would be or the more difficult it would be to inject 

a thermoset material into the mould. A new manifold had been designed based on the 

problems that occurred during the experiments (see Chapter 7) and analysed using 

Moldflow® simulation. As shown by Figure 8.18, outputs from numerous 

simulations had been used to aid the designed dimensions, which were continually 

modified until a good result was obtained. The simulation in this section shows the 

mould filling of the final design manifold under the same condition settings as the 

existing one. Figure 8.20 shows the meshing model of the new manifold system and 

the tray. The simulation results arc given by Table 8.3. Points on the figure show 

different positions on the moulding that would be used to represent the melt 

temperatures later in this section. 
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Figure 8.19 Meshing model of the new design manifold and the tray mould 
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Table 8.3 Conclusion of polyester mould filling simulation. Using the new designed 

manifold and the tray as a single mould. 

Injection 
time (s) 

TooI 
temperature 
' 1 2 g 4 5 ( C) 

80 � � � � � 

90 � � � � � 

100 � � � � � 

110 � � � � � 

120 � � o o x 

130 x x x x x 

� Complete filling obtained without pre-curing reported. 

o Complete filling but pre-curing was reported. 

x Cannot complete filing. Short shot and pre-curing was reported. 

The simulation results of this new manifold were similar to the result from section 

8.3 when injecting the material into the mould without the existing manifold system 

but the maximum process temperature was lower. The new manifold could operate 

from 80-120°C at almost all injection times. 

At 120°C, the cross-linking reaction started to affect the mould filling at slower 

injection speeds. The material started to pre-cure at 3 seconds and at the slowest 

speed of 5-seconds, mould filling could not be completed. In order to fully fill the 

mould without pre-curing occurred, it was necessary to inject the material faster. It 

can be seen from Table 8.3 that the complete filling without pre-curing was obtained 

when the injection time was reduced to 2 seconds and lower. Figure 8.20 shows the 

changes of material temperature at different positions inside the manifold and the 
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mould when then mould was set at 120°C and the injection time was varied from I 

second to 5 second. 

Figure 8.20 Melt temperature at different positions of 120°C mould temperature 
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Figure 8.20 b. ) 2-second injection time 
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Figure 8.20 c. ) 3-second injection time 
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Figure 8.20 d. ) 4-second injection time 
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Looking at the melt temperature-time curves in Figure 8.20 and comparing them 

with the characteristic curves in Figure 8.13, it can be predicted that the material 

started to pre-cure at some positions when the injection time was more than 3 

seconds (see position C, D and E in Figure 8.20c-8.20c). This matches the results in 

Table 8.3 exactly. 

8.5 Maximum shear rate during simulations of the tray mould, the 

existing manifold and the new manifold system 

The shear rate during injection moulding can be as high as 105 s'' [78]. Table 8.4 

shows the maximum shear rate that occurred during injection from the three 

simulations, which was explained previously in this chapter. 

Table 8.4 The maximum shear rate during injection moulding simulations of the 

tray, the existing manifold and the new manifold system 

Injection time (s) 
Shear rate of the tray 

(s) 

Shear rate of the 

existing manifold (s) 

Shear rate of the new 

manifold (s") 

1 24617 92913 68448 

2 12309 46810 34224 

3 8206 31501 22816 

4 6155 23443 17112 

5 4923 18596 13690 

It can be seen from Table 8.4 that the shear rate was increased when the injection 

time was decreased, in other words, when injecting the material faster. When 

compared to the tray, the shear rate of the same material, when it was injected from 

the vertical direction through the existing manifold system, was much higher at all 

197 



injection times. This also clearly represents that this system was more difficult to 

flow through than the tray mould. 

Normally, high shear rates in the system result in less polymer viscosity. When 

injecting two materials from both vertical and horizontal directions, the vertical 

injected material will be affected by a high shear rate due to the long and 

complicated runner of the manifold, while the horizontal injected material will be 

affected by a lower shear rate. The real viscosity ratio of the materials during co- 

injection moulding therefore cannot be considered at a single shear rate as it was in 

Figure 5.5, Chapter 5. Since the real viscosity of Interpon that was injected from the 

vertical direction was less than the value shown in the graph and the BMC may have 

not flowed at 104 s4 shear rate, the skin and core viscosity ratio would be less. The 

core could be injected earlier with no break-through at the edge of the moulding. 

However, the time for the skin to form an adequate layer also needed to be 

considered as explained in Chapter 6. 

Flowing of a thermoset at a very high shear rate can cause pre-curing. Reducing 

injection speed to decrease the shear rate may also cause the same problem. 

Therefore, a less complicated system is more appropriate for injection moulding of 

thermosets. The shear rate that occurred in the new manifold system was lower than 

the shear rate value in the existing manifold system at any injection time, as can be 

seen in Table 8.4. However, it was still higher than the value in the tray mould. A 

better result will be achieved if the vertical runner is shorter. This means a major 

design change of the horizontal carriage in order to move the vertical barrel much 

further down. 
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8.6 Conclusions 

This chapter presented the mould filling simulations of the existing manifold system 

and the new manifold system. Since there is no simulation software for co-injection 

of thermoset existing presently, thermoset single injection moulding simulation was 

used to help to understand the flow and cure of a thermoset material. The simulation 

results of the existing and new manifold system were compared and discussed. 

The existing manifold system was shown to have a narrow process window, as there 

were many parameters involved during injection. It might not be suitable for using 

with some materials and limits the usage of the machine. 

By considering the melt temperature-time curve of a thermoset at different positions 

in the mould during mould filling, the material pre-curing can be predicted. 

The tray mould represents a simulation of a simple geometry mould without any 

effect from the manifold system. The results showed that this mould could operate at 

a wider range than a complicated mould like the existing manifold. Only injection 

time was a factor to consider when moulding at high temperature. 

The new manifold system was proved to be an improvement over the existing one 

with the results of a simulation software package. This design expands the process 

window and feasibility of using the new system with more types of thermosetting 

materials. It may help improve the flowing of Intcrpon and reduce the short shot 

problem that always occurred when performing single injection of the material 

through the existing manifold. However, practical experiments are necessary in order 
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to prove the simulation results and the existing manifold could not be remachined 

with the scope of this project time scale. 

The shear rate of a thermoset, which flowed through the manifold system, was much 

higher in vertical direction than horizontal direction. This would affect the flow of 

materials into the mould during co-injection moulding since the viscosities of the 

materials were changed. The viscosity ratio of the two materials, therefore, should be 

considered at a real shear rate of each material. 

Moldflow® single injection moulding results will be not 100% accurate for 

prediction of thermoset co-injection and so the results of the manifold design cannot 

be considered to be conclusive. This is because when injecting two materials by co- 

injection through the same system, the melt temperatures at different positions inside 

the mould and manifold will differ from the results of the single injection moulding 

due to more complicated heat transferring between each material and between the 

system and the materials. Heat generation in each material during injection is also 

dependent on the material temperature, curing characteristics and amount of material 

that is injected into the mould. One material may be injected at a lower temperature 

than another, which will reduce the melt temperature of the latter material and hence, 

its curing rate. Even though the simulation results of the single injection moulding of 

the latter material show pre-curing and short shot, a complete filling is possible. In 

the opposite way, the high temperature melt of one material may raise the melt 

temperature and curing rate of another material. As a result, a short shot is also 

possible. Results from the single injection moulding simulation, therefore, may be 
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useful for predicting the pre-curing during injection of two materials that have 

similar input melt temperature, mould temperature and curing rate. 
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Chapter 9 

Conclusions 

The feasibility of making a thermoset sandwich moulding component by using the 

novel thermoset co-injection moulding machine was studied in this research. In order 

to achieve this, a knowledge of thermoset materials, the injection moulding of 

thermosets and the successful thermoplastic co-injection process were very 

important and were used for designing the experiments and improving the manifold 

system. 

Prior to the experiment on the thermoset co-injection moulding machine, 

experimental works focussed on the cure and flow characteristics of two thermoset 

polyester materials, Interpon and BMC, at different temperatures. Temperature and 

time of applying heat to a thermoset material were investigated thoroughly as they 

are the main factors affecting the cross-linking and curing of that material. The 

viscosity of the material also increased when it was in an advanced cure state. The 

experiments on the material characteristics gave a temperature window setting for 

moulding these materials on the co-injection moulding machine. 

The single injection of Interpon and BMC experiments gave more settings 

parameters for moulding these materials by using the newly designed thermoset co- 

injection moulding system. Novel thermoset sandwich moulding components were 

produced and investigated. The results can be summarised as following. 
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9 Core break-through was likely to happen when co-injecting a glass filled 

material as the sandwich core, both at the position opposite to the sprue and 

at some positions on the moulding surface. The break-through on the 

moulding surface was likely to happen when injecting the core too early 

before the unreinforced polyester skin material could form a rigid film. 

Increasing the sequential time gave more time for the skin to form a thicker 

film and it was able to cover the core material. 

" Core break-through occurred at the position opposite to the mould sprue, due 

to the lower temperature of the mould surface where fresh material from the 

barrel was entering into the mould and this was followed by very high shear 

pressure of the core on the uncured skin during injection. Applying more 

sequential time to the process could not solve the problem. The existing 

central sprue gate was considered to be not suitable for the co-injection 

moulding of thermosets. 

" The skin was thicker when more sequential time was applied to the process. 

However, less core penetration was found due to the more viscous skin. 

" Thickness of the skin was not uniform throughout the moulding section. This 

was similar to thermoplastic sandwich mouldings. 

" Surface finish of the sandwich moulding was determined by their roughness. 

It was found that the more skin material that was injected into the mould, the 
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more the moulding was packed and the better surface finish could be 

obtained. 

9 The roughness results showed the possibility of obtaining a good surface 

finished moulding when applying enough material and pressure to the mould. 

The thermoset co-injection moulding might be an alterative method for 

coating and painting a moulding of fibre-filled material. 

9 The existing manifold was found to be not suitable for delivery of the 

materials from the injection units. The runner was too complicated, which 

caused pre-curing and blockage during injection moulding. 

9 The new manifold was designed and validated using a simulation software 

package from Moldflow®. The simulation results showed that this new 

design was proved to be an improvement of the existing manifold. 

Recommendation for the future work 

This work has provided useful information for improving the innovative co-injection 

moulding system for thermosets. The problems during co-injection moulding were 

listed and the suggestions on solving those problems have been made. The following 

future works are recommended in order to improve the existing thermoset co- 

injection moulding system. 

9 The newly designed manifold system that was suggested in Chapter 7 should 

be built and put it into a practical experiment. 
1$ 
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" The machine configuration could be altered to enable a shorter runner for the 

vertical injection. 

9 Since the sprue gate can cause core break-through, a side gate, such as a fan 

gate or a film gate, should be applied to the mould in order to increase the 

sandwich area. 

9 The temperature distribution on the mould surface should be investigated in 

order to get a temperature figure and a suitable time for injecting core 

material. This can be done by applying some thermocouples inside the mould 

platens and recording the temperature profile during injection. 

" After getting a reliable system, applying the system to other thermoset 

materials and determining the machine capability and the material 

compatibility. 
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Drawings of the new manifold system 
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Appendix II 

Examples of Moldflow® simulation screen 

outputs 

The existing manifold system 

Mould temperature 80°C, Injection time 1 second 
Copyright Moldflow Corporation and Moldflow Pty. Ltd. All Rights Reserved. 
(C)2000 2001 2002 2003 
This product may be covered by 

US patent 6,096,088, 
Australian Patent No. 721978, 

and foreign patents and pending applications 

Thermoset Flow Analysis 

Version: mpi410 (Build 03203) 

Analysis commenced at Mon Feb 09 11: 04: 13 2004 
Processing fusion mesh... 
... finished processing fusion mesh 
Date : FEB-09-2004 
Time: 11: 04: 47 
Reading Input data... 
Processing fusion mesh... 
... finished processing fusion mesh 
Processing fusion mesh... 
... finished processing fusion mesh 
File name : 237nofillet801-2 
Reading solver parameters... 
Reading material data... 
Reading process settings... 
Reading finite element mesh... 

Finished reading Input data 

Optimizing node and element numbering... 
... finished optimizing node and element numbering 

Summary of analysis Inputs : 

Solver parameters : 

No. of laminae across thickness = 12 
No. of results at constant Intervals = 20 
No. of profiled results at constant Intervals =0 

Flow rate convergence tolerance = 0.5000 % 
Melt temperature convergence tolerance = 0.2000 C 
Conversion convergence tolerance = 0.2000 % 
Mold-melt heat transfer coefficient = 2.5000E+04 W/m"2-C 
Heat transfer coeff. between pot and pellet (side) = 5000.0000 W/mA2-C 
Heat transfer coeff. between pot and pellet (bot. ) = 5000.0000 W/m"2-C 
Maximum no. of flow rate iterations = 125 
Maximum no. of melt-temp and conversion Iterations = 100 

Material data : 

Polymer 
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Constant polymer density 
RHO = 1.6240 g/cmA3 

Specific heat (Cp) 

Thermal conductivity 

852.0000 J/kg-C 

0 0.8500 W/m-C 

Reactive polymer viscosity 
ALFAgei (C1+CI 2'ALFA) 

ETA = ETAm'( ) if ALFA < ALFAgel 
ALFAgel-ALFA 

ETA = infinity If ALFA > ALFAgel 
ETAo 

where ETAm = 
I+ (ETAo'GAMMAFTAUS)^(1-n) 

ETAo =B" EXP(Tb/T ) 
n=0.0835 
TAUS = 2.7200E+04 Pa 
B= 2920.0000 Pa-s 
Tb = 5880.0000 K 
Cl = 0.1790 
C2 = 102.0000 

N-th order kinetics with induction time 
Total heat of reaction (H) 

where H=2.9000E+04 J/kg 
Isothermal Induction time 
Tind = B1 ' EXP( B2/T ) 
where B1 = 0.0000 s 

B2 = 0.0000 K 
Isothermal curing kinetics 
d(ALFA)/dt = (K1+K2*ALFA^EM)*(1-ALFA)^EN 
where K1 = Al ' EXP(- E1/T) 

K2 = A2 ' EXP( - E2/T ) 
EM= 0.5660 
EN = 2.9950 
Al = 0.00001/s 
A2 = 5.1800E+25 1/s 
E1 = 6.4540 K 
E2 = 2.3900E+04 K 

Gelation conversion (ALFAgei) = 0.0500 

Process settings : 

Machine parameters : 

Maximum Injection pressure 1.7500E+02 MPa 

Conditions at the Pot (pre-conditioning) : 

Pellet diameter = 12.0000 mm 
Pellet length = 20.0000 mm 
Transfer pot temperature = 80.0000 C 
Delay time In the pot = 5.0000s 

Process parameters : 

Fill time = 1.0000 s 
Curing time = 30.0000s 
Melt temperature = 80.0000 C 
Inlet melt conversion = 0.0000 
Melt temperature after preconditioning = 80.0000 C 
Melt conversion after preconditioning = 0.0000 
Mold temperature = 80.00 C 
Ambient temperature = 25.0000 C 
Velocitylpressure switch-over by % volume = 99.0000 % 
Ram speed profile (rel): 

% stroke % ram speed 

0.0000 100.0000 
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56.0000 75.0000 
88.0000 50.0000 
100.0000 25.0000 

Model details : 

Total number of nodes = 10492 
Total number of Injection location nodes 1 

The Injection location node labels are: 
10628 

Total number of elements = 20976 
Number of part elements = 20976 
Number of sprue/runner/gate elements =0 
Number of connector elements 0 

NOTE: The parting plane has not been specified. The global XY plane will be 
used Instead. 

Parting plane normal (dx) = 0.0000 
(dy) = 0.0000 
(dz) = 1.0000 

Average aspect ratio of triangle elements = 1.8487 
Maximum aspect ratio of triangle elements = 5.9607 
Element number with maximum aspect ratio = 2490 
Minimum aspect ratio of triangle elements = 1.1548 
Element number with minimum aspect ratio = 10774 
Total volume = 329.3560 cm"3 

Volume filled Initially = 0.0000 cm"3 
Volume to be filled = 329.3560 cmA3 

Part volume to be filled = 329.3560 cmA3 
Sprue/runner/gate volume to be filled = 0.0000 cmA3 

Initializing variables... 

... finished Initializing variables 
Filling phase: Status: V= Velocity control 

P= Pressure control 
VIP= Velocity/pressure switch-over 

Time I Volumel Pressure I Clamp forcelFlow ratelStatus I 
(s) I (%) I (MPa) I (tonne) I(cm"3/s) 

1 0.001 0.011 0.431 0.001 479.911 VI 
1 0.051 7.49I 37.671 3.72 1462.891 VI 

"" WARNING " Local hot spot encountered. Material gelation may occur. 
1 0.10 114.96 1 49.90 9.70 446.53 VI 

"" WARNING "" Local hot spot encountered. Material gelation may occur. 

1 0.16122.06 1 52.851 13.211 431.331 V 1. 

"" WARNING " Local hot spot encountered. Material gelation may occur. 
0.21 28.89 54.66 1 16.981 416.73 VI 

"" WARNING " Local hot spot encountered. Material gelation may occur. 
0.26135.31 1 56.01 20.951 402.951 V 

"" WARNING "* Local hot spot encountered. Material gelation may occur.. 
0.31141.56 1 57.141 25.231 389.611 VI 

"" WARNING "" Local hot spot encountered. Material gelation may occur. 

1 0.37 48.051 58.081 29.691 375.661 VI 

"' WARNING "' Local hot spot encountered. Material gelation may occur. 
0.42 153.82 1 58.71 33.34 363.281 VI 

"' WARNING '" Local hot spot encountered. Material gelation may occur. 
1 0.47 59.44 1 59.181 36.93 345.791 VI 

"' WARNING " Local hot spot encountered. Material gelation may occur. 
0.52 65.04 59.531 40.371 324.921 VI 

"' WARNING "' Local hot spot encountered. Material gelation may occur. 

0.57 69.781 60.031 44.921 307.22 VI 
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"" WARNING "" Local hot spot encountered. Material gelation may occur. 
0.63174.621 60.56 50.18 289.111 VI 

"" WARNING ** Local hot spot encountered. Material gelation may occur. 
1 0.73 183.53 61.211 58.631 255.721 VI 

"" WARNING " Local hot spot encountered. Material gelation may occur. 
0.78187.61 1 61.451 62.551 240.561 VI 

" WARNING " Local hot spot encountered. Material gelation may occur. 
0.83191.141 61.181 65.461 207.791 V 

"WARNING" Local hot spot encountered. Material gelation may occur. 
0.89194.271 61.111 70.491 176.631 VI 

'" WARNING'" Local hot spot encountered. Material gelation may occur. 

"' WARNING ** Local hot spot encountered. Material gelation may occur. 
0.94 196.89 1 53 
0.99 199.05 

61.231 
I71.84 

I 
11 WP IIVI 

I 0.99(99.05( 61.381 83.831 128.351 PI 
I 1.011100.00 I 61.391 88.041 128.35I PI 

SYNERGY Reactive Molding 4.1 summary report of analysis. 

Date : FEB09-04 
Time : 11: 05: 59 
Name : 237nofillet801-2 

Filling phase results summary: 

Maximum injection pressure (at 0.783 s) = 61.4534 MPa 
Melt temperature after preconditioning = 80.0000 C 
Melt conversion after preconditioning = 0.0000 

End of filling phase results summary: 

Time at the end of filling = 1.0102s 
Injection pressure = 61.3931 MPa 
Injection pressure - extrapolated = 61.3571 MPa 
Total weight = 529.4920 g 
Maximum Clamp force - during filling = 88.0365 tonne 
Clamp force - estimated = 511.6909 tonne 

Filling phase results summary for the part: 

Bulk temperature - maximum (at 0.989 s) = 91.9890 C 
Bulk temperature - 95th percentile (at 0.886 s) = 85.5790 C 
Bulk temperature - 5th percentile (at 1.010 s) = 82.2650 C 
Bulk temperature - minimum (at 1.010 s) = 80.0000 C 
Bulk conversion - maximum (at 1.010 s) = 0.0002 
Bulk conversion - 95th percentile (at 1.010 s) = 1.1947E-06 

Wall shear stress - maximum (at 0.105 s) = 0.2494 MPa 
Wall shear stress - 95th percentile (at 0.105 s) = 0.1836 MPa 

Shear rate - maximum (at 0.105s)= 9.2877E+041/s 
Shear rate - 95th percentile (at 0.105s)= 3734.21001/s 
Melt front area - average = 22.2520 cmA2 
Melt front area - RMS deviation = 9.9328 cmA2 
Melt front velocity = 36.5678 cm/s 
Melt front velocity - RMS deviation = 91.7194 cm/s 

End of filling phase results summary for the part : 

Total part weight 

Bulk temperature - maximum 
Bulk temperature - 95th percentile 
Bulk temperature - 5th percentile 
Bulk temperature - minimum 
Bulk temperature - average 
Bulk temperature - RMS deviation 
Bulk conversion - maximum 

= 529.4920 g 

= 91.9260 C 
= 85.4200 C 

82.2650 C 
= 80.0000 C 

= 83.1840 C 
= 0.9801 C 

= 0.0002 
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Bulk conversion - 95th percentile = 1.1947E-06 
Bulk conversion - average = 4.1658E-07 
Bulk conversion - RMS deviation = 0.0000 

Wall shear stress - maximum = 0.2221 MPa 
Wall shear stress - 95th percentile = 0.1672 MPa 
Wall shear stress - average = 0.1406 MPa 
Wall shear stress - RMS deviation = 0.0279 MPa 

Shear rate - maximum = 2.4147E+04 1/s 
Shear rate - 95th percentile = 924.32201/s 
Shear rate - average = 347.23101/s 
Shear rate - RMS deviation = 1094.49001/s 

Curing phase: 

Time I Status I 
(s) 

2.641 Curing phase I 
4.141 Curing phase I 
5.761 Curing phase I 
7.261 Curing phase I 
8.891 Curing phase 
10.391 Curing phase 
12.01 Curing phase 
13.51 Curing phase 
15.141 Curing phase 

( 16.641 Curing phase 
18.261 Curing phase 
19.761 Curing phase 
21.391 Curing phase I 
22.891 Curing phase 
24.51 Curing phase 
26.01 Curing phase 
27.641 Curing phase 
29.141 Curing phase 

( 30.761 Curing phase ý 
1 31.011 Curing phase I 

Preparing output data... 
Finished preparing output data 

SYNERGY Reactive Molding 
has completed successfully. 

Processing fusion mesh... 
... finished processing fusion mesh 
Weld line/air trap analysis completed 

Preparing output data... 
Finished preparing output data 

SYNERGY Weld-line and air trap 
has completed successfully. 

Execution time 
Analysis commenced at 
Analysis completed at 
CPU time used 

Mon Feb 09 11: 04: 13 2004 
Mon Feb 09 12: 56: 12 2004 

6718.61s 

Mould temperature 120°C, Injection time 1 second 
Copyright Moldflow Corporation and Moldflow Pty. Ltd. All Rights Reserved. 
(C)2000 20012002 2003 
This product may be covered by 

US patent 6,096,088, 
Australian Patent No. 721978, 

and foreign patents and pending applications 

Thermoset Flow Analysis 
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Version: mp1410 (Build 03203) 

Analysis commenced at Mon Feb 02 15: 44: 33 2004 
Processing fusion mesh... 
... finished processing fusion mesh 
Date : FEB-02-2004 
Time : 15: 45: 08 
Reading Input data... 
Processing fusion mesh... 
... finished processing fusion mesh 
Processing fusion mesh... 
... finished processing fusion mesh 

File name : 237nofillet1201-1 
Reading solver parameters... 
Reading material data... 
Reading process settings.,. 
Reading finite element mesh... 

Finished reading input data 

Optimizing node and element numbering... 
... finished optimizing node and element numbering 

Filling phase: Status: V= Velocity control 
P= Pressure control 
V/P= Velocity/pressure switch-over 

Time I Volume) Pressure I Clamp forcelFlow ratelStatus I 
(s) I (%) I (MPa) I (tonne) I(cm^3/s) 

1 0.001 0.011 0.381 0.001 479.911 VI 
1 0.051 7.541 35.651 3.591 462.861 VI 
1 0.10 46.771 9.091 446.541 V 
1 0.16122.181 49.331 12.231 431.161 V 
1 0.21128.82 1 50.901 15.531 416.911 V 
1 0.26 52.101 19.061 403.091 V 
1 0.31141.911 53.151 23.101 388.871 V 
1 0.37 53.941 26.861 375.751 V 
1 0.42 54.501 30.121 363.351 V 
1 0.47 159.531 54.901 33.291 345.591 V 
I 0.52165.121 55.191 36.281 324.721 V 
I 0.57169.921 55.661 40.511 306.751 V 
I 0.63 56.101 45.001 288.621 V 
I 0.68 56.421 48.921 271.381 V 
I 0.73 56.681 52.631 254.801 V 
1 0.78 187.511 56.891 55.731 241.001 V 
1 0.83 56.651 58.341 208.521 V 
1 0.88 56.581 62.791 177.321 V 
1 0.94 196.82 I 56.661 68.291 151.291 V 
1 0.99199.031 I II V/P I 
1 0.99 199.13 I 56.741 74.691 126.951 P 
1 1.011100.001 56.751 77.831 126.951 P 

SYNERGY Reactive Molding 4.1 summary report of analysis. 

Date : FEB02-04 
Time: 15: 46: 21 
Name: 237nofillet1201-1 

Filling phase results summary: 

Maximum Injection pressure (at 0.781 s) = 56.8938 MPa 
Melt temperature after preconditioning = 80.0000 C 
Melt conversion after preconditioning 0.0000 

End of filling phase results summary: 

Time at the end of filling = 1.0089s 
Injection pressure = 56.7453 MPa 
Injection pressure - extrapolated = 56.7453 MPa 
Total weight = 529.4920 g 
Maximum Clamp force - during filling = 77.8341 tonne 
Clamp force - estimated = 472.9088 tonne 
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Fitting phase results summary for the part : 

Bulk temperature - maximum (at 0.626 s) = 106.0130 C 
Bulk temperature - 95th percentile (at 1.009 s) = 99.6800 C 
Bulk temperature - 5th percentile (at 0.104 s) = 84.4370 C 
Bulk temperature - minimum (at 1.009 s) = 80.0000 C 
Bulk conversion - maximum (at 1.009 s) = 0.2066 
Bulk conversion - 95th percentile (at 1.009 s) = 0.0002 

Wall shear stress - maximum (at 0.104 s) = 0.2374 MPa 
Wall shear stress - 95th percentile (at 0.104 s) = 0.1701 MPa 

Shear rate - maximum (at 0.104s)= 9.2015E+041/s 
Shear rate - 95th percentile (at 0.104 s) = 3599.8401 1/s 
Melt front area - average = 22.3023 cmA2 
Melt front area - RMS deviation = 9.9682 cm^2 
Melt front velocity = 36.3033 cm/s 
Melt front velocity - RMS deviation = 90.7840 cm/s 

End of filling phase results summary for the part : 

Total part weight = 529.4920 g 

Bulk temperature - maximum = 104.9000 C 
Bulk temperature - 95th percentile = 99.6800 C 
Bulk temperature - 5th percentile = 87.0500 C 
Bulk temperature - minimum = 80.0000 C 
Bulk temperature - average = 95.5790 C 
Bulk temperature - RMS deviation = 4.1179 C 
Bulk conversion - maximum = 0.2066 
Bulk conversion - 95th percentile = 0.0002 
Bulk conversion - average = 7.3321 E-05 
Bulk conversion - RMS deviation = 0.0007 

Wall shear stress - maximum = 0.2115 MPa 
Wall shear stress - 95th percentile = 0.1544 MPa 
Wall shear stress - average = 0.1257 MPa 
Wall shear stress - RMS deviation = 0.0256 MPa 

Shear rate - maximum = 2.3766E+04 1/s 
Shear rate - 95th percentile = 945.0590 1/s 
Shear rate - average = 353.05401/s 
Shear rate - RMS deviation = 1106.93991/s 

Curing phase: 

Time I Status I 
(s) 

2.631 Curing phase I 
4.131 Curing phase I 
5.761 Curing phase I 
7.261 Curing phase I 
8.881 Curing phase I 
10.381 Curing phase 
12.011 Curing phase 
13.511 Curing phase 

( 15.131 Curing phase 
16.631 Curing phase 
18.261 Curing phase 
19.761 Curing phase 
21.381 Curing phase 
22.881 Curing phase 
24.511 Curing phase 
26.011 Curing phase 
27.631 Curing phase 
29.131 Curing phase 

( 30.761 Curing phase 
1 31.131 Curing phase 

Preparing output data... 
Finished preparing output data 

SYNERGY Reactive Molding 
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has completed successfully. 

Processing fusion mesh... 
... finished processing fusion mesh 
Weld line/air trap analysis completed 

Preparing output data... 
Finished preparing output data 

SYNERGY Weld-line and air trap 
has completed successfully. 

Execution time 
Analysis commenced at 
Analysis completed at 
CPU time used 

Mon Feb 02 15: 44: 33 2004 
Mon Feb 02 16: 08: 35 2004 

1440.89s 

Mould temperature 130°C, Injection time 1 second 

Copyright Moldflow Corporation and Moldflow Pty. Ltd. All Rights Reserved. 
(C)2000 2001 2002 2003 
This product may be covered by 

US patent 6,096,088, 
Australian Patent No. 721978. 

and foreign patents and pending applications 

Thermoset Flow Analysis 

Version: mpi410 (Build 03203) 

Analysis commenced at Tue Feb 03 09: 55: 27 2004 
Processing fusion mesh... 
... finished processing fusion mesh 
Date : FEB-03-2004 
Time : 09: 56: 02 
Reading Input data... 
Processing fusion mesh... 
... finished processing fusion mesh 
Processing fusion mesh... 

... finished processing fusion mesh 
File name : 237nofillet1301.1 
Reading solver parameters... 
Reading material data... 
Reading process settings... 
Reading finite element mesh... 

Finished reading Input data 

Optimizing node and element numbering... 
... finished optimizing node and element numbering 

Filling phase: Status: V= Velocity control 
P= Pressure control 
VIP= Velocity/pressure switch-over 

I 
Time I Volumel Pressure I Clamp forcelFiow ratelStatus I 
(s) I (%) I (MPa) I (tonne) I(cmA3/s) 

I 
0.001 0.011 0.371 0.00 1479.92 IVI 
0.051 7.481 34.701 3.42 1463.01 1VI 
0.10 45.821 8.871 446.871 V1 
0.18121.921 48.401 11.951 431.781 VI 
0.21 128.79 I 50.011 15.26 1416.99 IVI 
0.26 135.28 I 51.241 18.711 403.10I VI 
0.31141.53 1 52.381 22.471 389.761 VI 
0.36147.631 53.461 26.261 376.72I VI 

" WARNING" Local hot spot encountered. Material gelation may occur. 

"" WARNING "" Local hot spot encountered. Material gelation may occur. 
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1 0.42153.82 54.561 29.841 363.42 1VI 
0.47 59.501 55.67 33.241 345.65 VI 

"" WARNING "' Local hot spot encountered. Material gelation may occur. 
1 0.52164.681 56.39 36.22 326.33 VI 

"" WARNING " Local hot spot encountered. Material gelation may occur. 
0.58169.971 61.101 42.731 306.491 VI 

"' WARNING "* Local hot spot encountered. Material gelation may occur. 
0.62174.481 65.94 48.761 289.611 VI 

WARNING "' Local hot spot encountered. Material gelation may occur. 
0.68179.111 74.811 57.081 272.151 VI 

"" WARNING "* Local hot spot encountered. Material gelatlon may occur. 
0.73 183.55 97.391 73.381 255.341 VI 

"" WARNING w" Local hot spot encountered. Material gelation may occur. 
1 0.75184.79 175.001 75.411 255.34 1 M. M. P I 

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwswwwwwwwwwwww 

" SHORT SHOT "" Insufficient Injection pressure. 
ýwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww 

SYNERGY Reactive Molding 4.1 summary report of analysis. 

Date : FEB03-04 
Time : 09: 57: 15 
Name: 237nofillet1301-1 

Filling phase results summary: 

Maximum injection pressure (at 0.746 s) = 175.0000 MPa 
Melt temperature after preconditioning = 80.0000 C 
Melt conversion after preconditioning = 0.0000 

End of filling phase results summary: 

Time at the end of filling = 0.7464 s 
Injection pressure = 175.0000 MPa 
Injection pressure - extrapolated = 78.0601 MPa 

..... ......... ..... . ...... .... .... ......... ....... ... . ...... 

" SHORT SHOT "" Insufficient injection pressure. 
1fff1111ff1ff1/1NN11111ff1f1111ff/f1/11/11ff/f11111ff11N" 

Maximum Clamp force - during filling = 36.9351 tonne 
Clamp force - estimated = 581.3771 tonne 

Filling phase results summary for the part: 

Bulk temperature - maximum (at 0.746 s) = 135.2210 C 
Bulk temperature - 95th percentile (at 0.746 s) = 111.9670 C 
Bulk temperature - 5th percentile (at 0.677 s) = 83.1320 C 
Bulk temperature - minimum (at 0.746 s) = 80.0000 C 
Bulk conversion - maximum (at 0.746 s) = 0.2504 
Bulk conversion - 95th percentile (at 0.746 s) = 0.0089 

Wall shear stress - maximum (at 0.746 s) = 7.9688 MPa 
Wall shear stress - 95th percentile (at 0.731 s) = 0.3522 MPa 

Shear rate - maximum (at 0.731 s) = 1.6113E+05 1/s 
Shear rate - 95th percentile (at 0. 731 s) = 9924.96001/s 
Melt front area - average = 23.1075 cm"2 
Melt front area - RMS deviation = 10.2532 cmA2 
Melt front velocity 46.0332 cm/s 
Melt front velocity - RMS deviation = 105.7000 cm/s 
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End of filling phase results summary for the part: 

Total part weight = 455.5530 g 

Bulk temperature - maximum 
Bulk temperature - 95th percentile 
Bulk temperature - 5th percentile 
Bulk temperature - minimum 
Bulk temperature - average 
Bulk temperature - RMS deviation 
Bulk conversion - maximum 
Bulk conversion - 95th percentile 
Bulk conversion - average 
Bulk conversion - RMS deviation 

135.2210 C 
= 111.9670 C 
= 83.4830 C 
= 80.0000 C 

= 95.6780 C 
= 8.0336 C 

= 0.2504 
= 0.0089 

= 0.0013 
= 0.0039 

Wall shear stress - maximum 7.9688 MPa 
Wall shear stress - 95th percentile = 0.0007 MPa 
Wall shear stress - average = 0.0248 MPa 
Wall shear stress - RMS deviation = 0.3176 MPa 

Shear rate - maximum = 0.00051/s 
Shear rate " 95th percentile = 6.3591E-05 1/s 
Shear rate - average = 1.2792E-05 1/s 
Shear rate - RMS deviation = 4.6423E-05 1/s 

Curing phase: 

Time I Status I 
(s) 

2.371 Curing phase 
3.871 Curing phase 
5.501 Curing phase 
7.001 Curing phase 
8.621 Curing phase 
10.121 Curing phase 
11.751 Curing phase 
13.251 Curing phase 
14.871 Curing phase 
16.371 Curing phase 
18.001 Curing phase 
19.501 Curing phase 
21.121 Curing phase 
22.621 Curing phase 
24.251 Curing phase 
25.751 Curing phase 
27.371 Curing phase 
28.871 Curing phase 
30.501 Curing phase 
30.751 Curing phase 

Preparing output data... 
Finished preparing output data 

SYNERGY Reactive Molding 
has completed successfully. 

Processing fusion mesh... 
... finished processing fusion mesh 
Weld line/air trap analysis completed 

Preparing output data... 
Finished preparing output data 

SYNERGY Weld-line and air trap 
has completed successfully. 

Execution time 
Analysis commenced at 
Analysis completed at 
CPU time used 

Tue Feb 03 09: 55: 27 2004 
Tue Feb 03 10: 44: 41 2004 

2954.06 s 

230 



The tray mould 

Mould temperature 80°C, Injection time 1 second 
Copyright Moldflow Corporation and Moldflow Pty. Ltd. All Rights Reserved. 
(C)2000 2001 2002 2003 
This product may be covered by 

US patent 6,096,088, 
Australian Patent No. 721978, 

and foreign patents and pending applications 

Thermoset Flow Analysis 

Version: mp1410 (Build 03203) 

Analysis commenced at Thu Feb 19 09: 20: 29 2004 
Processing fusion mesh... 
... finished processing fusion mesh 
Date : FEB-19-2004 
Time : 09: 20: 54 
Reading Input data... 
Processing fusion mesh... 
... finished processing fusion mesh 
Processing fusion mesh... 
... finished processing fusion mesh 

File name : traynofillet801-1 
Reading solver parameters... 
Reading material data... 
Reading process settings... 
Reading finite element mesh... 

Finished reading input data 

Optimizing node and element numbering... 
... finished optimizing node and element numbering 

Summary of analysis Inputs : 

Solver parameters : 

No. of laminae across thickness = 12 
No. of results at constant Intervals = 20 
No. of profiled results at constant Intervals =0 

Flow rate convergence tolerance = 0.5000 % 
Melt temperature convergence tolerance = 0.2000 C 
Conversion convergence tolerance = 0.2000 % 
Mold-melt heat transfer coefficient = 2.5000E+04 W/m"2-C 
Heat transfer coeff. between pot and pellet (side) = 5000.0000 W/mA2-C 
Heat transfer coeff. between pot and pellet (bot. ) = 5000.0000 W/m"2-C 
Maximum no. of flow rate iterations = 125 
Maximum no. of melt-temp and conversion iterations = 100 

Material data : 

Polymer : 

Constant polymer density 
RHO = 1.6240 g/cmA3 

Specific heat (Cp) = 852.0000 J/kg-C 

Thermal conductivity = 0.8500 W/m-C 

Reactive polymer viscosity I 
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ALFAgeI (C1+C2'ALFA) 
ETA = ETAm'( ) if ALFA < ALFAgeI 

ALFAgeI-ALFA 
ETA = Infinity if ALFA > ALFAgeI 

ETAo 
where ETAm = 

I+ (ETAo'GAMMA/TAUS)^(1-n) 
ETAo =B" EXP(Tb/T ) 
n=0.0835 
TAUS = 2.7200E+04 Pa 
B= 2920.0000 Pa-s 
Tb = 5880.0000 K 
Cl = 0.1790 
C2 102.0000 

N-th order kinetics with Induction time 
Total heat of reaction (H) 

where H=2.9000E+04 J/kg 
Isothermal Induction time 
Tind = B1 " EXP( B21T ) 

where 1311 = 0.0000 s 
B2 = 0.0000 K 

Isothermal curing kinetics 
d(ALFA)! dt = (K1+K2*ALFAAEM)*(1-ALFA)^EN 
where K1 = Al * EXP(- E1lT ) 

K2A2"EXP(-E2/T) 
EM = 0.5660 
EN = 2.9950 
Al = 0.00001/s 
A2 = 5.1800E+25 1/s 
El = 6.4540 K 
E2 = 2.3900E+04 K 

Gelation conversion (ALFAgei) = 0.0500 

Process settings : 

Machine parameters : 

Maximum injection pressure =1.7500E+02 MPa 

Conditions at the Pot (pre-conditioning) : 

Pellet diameter = 12.0000 mm 
Pellet length = 20.0000 mm 
Transfer pot temperature = 80.0000 C 
Delay time in the pot = 5.0000 s 

Process parameters : 

Fill time = 1.0000s 
Curing time = 30.0000s 
Melt temperature = 80.0000 C 
Inlet melt conversion = 0.0000 
Melt temperature after preconditioning = 80.0000 C 
Melt conversion after preconditioning = 0.0000 
Mold temperature = 80.00 C 
Ambient temperature = 25.0000 C 
Velocity/pressure switch-over by % volume = 99.0000 % 
Ram speed profile (rel): 

% stroke % ram speed 

0.0000 100.0000 
56.0000 75.0000 
88.0000 50.0000 
100.0000 25.0000 

Model details : 

Total number of nodes = 8379 
Total number of Injection location nodes 

The Injection location node labels are: 
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8415 
Total number of elements 16734 

Number of part elements = 16714 
Number of sprue/runner/gate elements = 20 
Number of connector elements 0 

NOTE: The parting plane has not been specified. The global XY plane will be 
used Instead. 

Parting plane normal (dx) = 0.0000 
(dy) = 0.0000 
(dz) - 1.0000 

Average aspect ratio of triangle elements = 1.6619 
Maximum aspect ratio of triangle elements = 5.9907 
Element number with maximum aspect ratio = 16709 
Minimum aspect ratio of triangle elements = 1.1569 
Element number with minimum aspect ratio = 11025 
Total volume = 265.2940 cm"3 

Volume filled initially 0.0000 cm"3 
Volume to be filled = 265.2940 cm"3 

Part volume to be filled = 256.0010 cmA3 
Sprue/runner/gate volume to be filled 9.2934 cm"3 

Initializing variables... 

... finished initializing variables 
Filling phase: Status: V= Velocity control 

P= Pressure control 
V/P= Velocity/pressure switch-over 

I Time I Volume) Pressure I Clamp forcelFlow ratelStatus I 
(s) I (%) I (MPa) I (tonne) I(cm"3/s) 

1 
0.011 1.78I 0.861 0.00 1385.211 VI 

I 0.051 7.631 15.771 0.86 1374.74 IVI 
I 0.101 14.83 I 19.191 3.681 362.20I VI 
I 0.16 21.561 7.571 349.95I VI 
1 0.21128.701 23.311 11.841 338.101 VI 
1 0.26 24.821 16.651 326.521 VI 
1 0.32141.881 25.941 21.121 315.241 VI 
1 0.37148.051 26.731 24.911 304.541 VI 
1 0.42 27.331 28.231 294.091 VI 
1 0.47 159.411 27.971 31.941 280.431 VI 
1 0.52 28.731 36.721 263.931 V 
1 0.58170.34 1 29.511 41.991 247.321 V 
1 0.63174.991 30.091 46.311 233.211 V 
1 0.68179.881 30.541 50.131 218.411 V 
1 0.73184.011 30.891 53.371 205.901 V 
1 0.78188.101 31.331 57.301 193.021 V 
1 0.84 191.771 31.471 60.721 163.361 V 
1 0.89194.671 31.601 63.831 139.931 V 
1 0.94197.191 31.921 68.431 119.601 V 
1 0.98199.031 II( VIP I 
1 0.99 199.361 33.341 100.76 I 95.28 IPI 
1 1.001100.001 33.341 102.671 95.281 PI 

SYNERGY Reactive Molding 4.1 summary report of analysis. 

Date : FEB19-04 
Time : 09: 21: 42 
Name : traynofillet801-1 

Filling phase results summary: 

Maximum Injection pressure (at 1.003 s) = 33.3449 MPa 
Melt temperature after preconditioning = 80.0000 C 
Melt conversion after preconditioning = 0.0000 

End of filling phase results summary: 

Time at the end of filling = 1.0034 s 
Injection pressure 33.3449 MPa 
Injection pressure - extrapolated = 32.5056 MPa 
Total weight = 428.4160 g 
Maximum Clamp force - during filling = 100.0826 tonne 
Clamp force - estimated = 247.2371 tonne 

Filling phase results summary for the part : 
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Bulk temperature - maximum (at 0.469 s) = 82.2460 C 
Bulk temperature - 95th percentile (at 0.469 s) = 82.1250 C 
Bulk temperature - 5th percentile (at 1.003 s) = 81.1280 C 
Bulk temperature - minimum (at 1.003 s) = 80.9490 C 
Bulk conversion - maximum (at 1.003 s) = 9.3491 E-1 0 
Bulk conversion - 95th percentile (at 1.003 s) = 8.6793E-10 

Wall shear stress - maximum (at 0.104 s) = 0.2169 MPa 
Wall shear stress - 95th percentile (at 0.104 s) = 0.1839 MPa 

Shear rate - maximum (at 0.104s)= 1.7271 E+041/s 
Shear rate - 95th percentile (at 0.104 s) = 1501.33001/s 
Melt front area - average = 21.3154 cmA2 
Melt front area - RMS deviation = 7.6270 cmA2 
Melt front velocity = 16.0951 cm/s 
Melt front velocity - RMS deviation = 24.3485 cm/s 

End of filling phase results summary for the part: 

Total part weight = 413.3240 g 

Bulk temperature - maximum = 82.0160 C 
Bulk temperature - 95th percentile = 81.7740 C 
Bulk temperature - 5th percentile = 81.1280 C 
Bulk temperature - minimum = 80.9490 C 
Bulk temperature - average = 81.4420 C 
Bulk temperature - RMS deviation = 0.1955 C 
Bulk conversion - maximum = 9.3491E-10 
Bulk conversion - 95th percentile = 8.6793E-10 
Bulk conversion - average = 6.8073E-10 
Bulk conversion - RMS deviation = 0.0000 

Wall shear stress - maximum = 0.1978 MPa 
Wall shear stress - 95th percentile = 0.1702 MPa 
Wall shear stress - average = 0.1072 MPa 
Wall shear stress - RMS deviation = 0.0540 MPa 

Shear rate - maximum = 5195.75981/s 
Shear rate - 95th percentile = 554.9850 1/s 
Shear rate - average = 140.47801/s 
Shear rate - RMS deviation = 263.1750 1/s 

Filling phase results summary for the runner system : 

Bulk temperature " maximum (at 0.104 s) = 82.3130 C 
Bulk temperature - 95th percentile (at 0.104 s) = 82.2260 C 
Bulk temperature - 5th percentile (at 1.003 s) = 80.0000 C 
Bulk temperature - minimum (at 1.003 s) = 80.0000 C 
Bulk conversion - maximum (at 1.003 s) = 4.9927E-10 
Bulk conversion - 95th percentile (at 1.003 s) = 4.9927E-10 

Wall shear stress - maximum (at 0.104 s) = 0.2092 MPa 
Wall shear stress - 95th percentile (at 0.104 s) = 0.2018 MPa 

Shear rate - maximum (at 0.104 s) = 7615.5801 1/s 
Shear rate - 95th percentile (at 0.104s)= 5112.04001/s 
Melt front area - average = 1.1199 cm^2 
Melt front area - RMS deviation = 0.3689 cmA2 
Melt front velocity = 371.3340 cm/s 
Melt front velocity - RMS deviation = 91.8262 cm/s 

End of filling phase results summary for the runner system : 

Total sprue/runner/gate weight = 15.0925 g 
Bulk temperature - maximum = 81.9430 C 
Bulk temperature - 95th percentile = 81.8590 C 
Bulk temperature - 5th percentile = 80.0000 C 
Bulk temperature - minimum = 80.0000 C 
Bulk temperature - average = 80.7470 C 
Bulk temperature - RMS deviation = 0.6904 C 
Bulk conversion - maximum = 4.9927E-10 
Bulk conversion - 95th percentile = 4.9927E-10 
Bulk conversion " average = 4.8775E-10 
Bulk conversion - RMS deviation = 0.0000 

234 



Wall shear stress - maximum 
Wall shear stress - 95th percentile 
Wall shear stress - average 
Wall shear stress - RMS deviation 

Shear rate - maximum 
Shear rate - 95th percentile 
Shear rate - average 
Shear rate - RMS deviation 

Curing phase: 

Time I Status I 
(s) 

2.63 1 Curing phase I 
4.131 Curing phase I 
5.751 Curing phase I 
7.251 Curing phase I 
8.881 Curing phase I 
10.381 Curing phase I 

( 12.001 Curing phase I 
13.501 Curing phase I 
15.131 Curing phase 
16.631 Curing phase 

( 18.251 Curing phase 
19.751 Curing phase 
21.381 Curing phase 
22.881 Curing phase 
24.501 Curing phase 
26.001 Curing phase 
27.631 Curing phase 
29.131 Curing phase I 
30.751 Curing phase I 
31.001 Curing phase I 

Preparing output data... 
Finished preparing output data 

SYNERGY Reactive Molding 
has completed successfully. 

Processing fusion mesh... 

... finished processing fusion mesh 
Weld linelair trap analysis completed 

Preparing output data... 
Finished preparing output data 

0.1844 MPa 
0.1780 MPa 

= 0.1732 MPa 
a 0.0069 MPa 

= 1723.3101 1/s 
= 1158.64001/s 

= 953.16601/s 
= 342.10401/s 

SYNERGY Weld-line and air trap 
has completed successfully. 
Execution time 

Analysis commenced at Thu Feb 19 09: 20: 29 2004 
Analysis completed at Thu Feb 19 09: 31: 32 2004 
CPU time used 662.16s 

Mould temperature 140°C, Injection time 1 second 

Copyright Moldflow Corporation and Moldflow Pty. Ltd. All Rights Reserved. 
(C)2000 2001 2002 2003 
This product may be covered by 

US patent 6,096,088, 
Australian Patent No. 721978, 

and foreign patents and pending applications 

Thermoset Flow Analysis 

Version: mpi4l0 (Build 03203) 
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Analysis commenced at Thu Feb 19 11: 50: 38 2004 
Processing fusion mesh... 
... finished processing fusion mesh 
Date : FEB-19-2004 
Time : 11: 51: 01 
Reading Input data... 
Processing fusion mesh... 
... finished processing fusion mesh 
Processing fusion mesh... 
... finished processing fusion mesh 
File name : traynofillet1401-1 
Reading solver parameters... 
Reading material data... 
Reading process settings... 
Reading finite element mesh... 

Finished reading input data 

Optimizing node and element numbering... 
... finished optimizing node and element numbering 
Filling phase: Status: V= Velocity control 

P= Pressure control 
V/P= Velocity/pressure switch-over 

ý 
Time I Volume) Pressure I Clamp forcelFiow rateIStatus I 
(s) I (%) I (MPa) I (tonne) l(cmA3/s) 

1 
0.01 1 1.78 0.72 0.00 385.211 

'V 

0.051 7.57 14.011 0.75 1 374.88 VI 
1 0.10114.831 16.961 3.17 362.24 V 
1 0.16121.91 1 19.591 6.511 349.931 VI 
1 0.21128.75 1 22.521 10.341 338.031 VI 
1 0.26 ( 35.451 24.101 14.93 326.401 VI 
1 0.31141.59 1 24.961 18.93 315.75 VI 
1 0.36 147.69 1 25.761 22.571 305.181 VI 

0.421 53.69 27.711 26.151 294.771 VI 

"" WARNING " Local hot spot encountered. Material gelation may occur. 
0.47159.671 30.771 30.60 279.59 VI 

'" WARNING " Local hot spot encountered. Material gelation may occur. 
1 0.52 164.84 32.501 35.98 263.90 VI 

'" WARNING ** Local hot spot encountered. Material gelation may occur. 
0.57 70.011 37.41 42.901 248.19 VI 

Local hot spot encountered. Material gelation may occur. 

'" WARNING ** Local hot spot encountered. Material gelation may occur. 
0.63175.291 47.24 50.231 232.081 V 

"' Local hot spot encountered. Material gelation may occur. 

WARNING ** Local hot spot encountered. Material gelation may occur. 
1 0.68 79.881 76.64 54.591 217.821 VI 

'" WARNING '" Local hot spot encountered. Material gelation may occur. 
1 0.69 80.92 175.001 3.401 217.821 M. M. P I 

......... ...................... ............ ....... ....... ... 

" SHORT SHOT " Insufficient injection pressure. 

........................... ......... ........................ 

SYNERGY Reactive Molding 4.1 summary report of analysis. 

Date : FEB19-04 
Time: 11: 51: 49 
Name : traynofillet1401-1 

Filling phase results summary: 

Maximum injection pressure (at 0.693 s) = 175.0000 MPa 
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Melt temperature after preconditioning 
Melt conversion after preconditioning 

80.0000 C 
0.0000 

End of filling phase results summary : 

Time at the end of filling 
Injection pressure 
Injection pressure - extrapolated 

0.6933 S 
= 175.0000 MPa 

= 50.7631 MPa 

" ýýýýýýH ýýM ýýýýýMHý ýýN f ýýMHHý ýýý ý1H fý Hýý ýNý ýMH 

"" SHORT SHOT "' Insufficient Injection pressure. 

........... ............ .......... ..................... ...... 
Maximum Clamp force - during filling = 17.1526 tonne 
Clamp force - estimated = 345.3360 tonne 

Filling phase results summary for the part : 

Bulk temperature - maximum (at 0.693 s) = 131.6040 C 
Bulk temperature - 95th percentile (at 0.681 s) = 111.6060 C 
Bulk temperature - 5th percentile (at 0.104 s) = 85.2520 C 
Bulk temperature - minimum (at 0.417 s) = 80.5100 C 
Bulk conversion - maximum (at 0.693 s) = 0.0262 
Bulk conversion - 95th percentile (at 0.693 s) = 0.0066 

Wall shear stress - maximum (at 0.693 s) = 1.0631 MPa 
Wall shear stress - 95th percentile (at 0.681 s) = 0.2843 MPa 

Shear rate - maximum (at 0.681 s) = 3.5184E+05 1/s 
Shear rate - 95th percentile (at 0.681 s) = 2206.6001 1/s 
Melt front area - average = 22.7403 cm^2 
Melt front area - RMS deviation = 7.4058 crnA2 
Melt front velocity = 18.7680 cm/s 
Melt front velocity - RMS deviation = 28.9059 cm/s 

End of filling phase results summary for the part : 

Total part weight = 337.7960 g 

Bulk temperature - maximum = 131.6040 C 
Bulk temperature - 95th percentile = 110.4070 C 
Bulk temperature - 5th percentile = 96.7130 C 
Bulk temperature - minimum = 84.6090 C 
Bulk temperature - average = 101.5250 C 
Bulk temperature - RMS deviation = 4.9496 C 
Bulk conversion - maximum = 0.0262 
Bulk conversion - 95th percentile = 0.0066 
Bulk conversion - average = 0.0012 
Bulk conversion - RMS deviation = 0.0031 

Wall shear stress - maximum = 1.0631 MPa 
Wall shear stress - 95th percentile = 0.0001 MPa 
Wall shear stress - average = 0.0045 MPa 
Wall shear stress - RMS deviation = 0.0431 MPa 

Shear rate - maximum = 4.2785E-05 1/s 
Shear rate - 95th percentile = 1.4398E-07 1/s 
Shear rate - average = 1.8868E-07 1/s 
Shear rate - RMS deviation = 1.6814E-06 1/s 

Filling phase results summary for the runner system : 

Bulk temperature - maximum (at 0.693 s) = 120.4010 C 
Bulk temperature - 95th percentile (at 0.693 s) = 119.3330 C 
Bulk temperature - 5th percentile (at 0.693 s) = 80.0000 C 
Bulk temperature - minimum (at 0.693 s) = 80.0000 C 
Bulk conversion - maximum (at 0.693 s) = 0.0262 
Bulk conversion - 95th percentile (at 0.693 s) = 0.0262 

Wall shear stress - maximum (at 0.681 s) = 0.2736 MPa 
Wall shear stress - 95th percentile (at 0.681 s) = 0.2613 MPa 

Shear rate - maximum (at 0.681 s) = 2.2089E+05 1/s 
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Shear rate - 95th percentile (at 
Melt front area - average 
Melt front area - RMS deviation 
Melt front velocity 
Melt front velocity - RMS deviation 

End of filling phase results summary I 

Total sprue/runner/gate weight 
Bulk temperature - maximum 
Bulk temperature - 95th percentile 
Bulk temperature - 5th percentile 
Bulk temperature - minimum 
Bulk temperature - average 
Bulk temperature - RMS deviation 
Bulk conversion - maximum 
Bulk conversion - 95th percentile 
Bulk conversion - average 
Bulk conversion - RMS deviation 

Wall shear stress - maximum 
Wall shear stress - 95th percentile 
Wall shear stress - average 
Wall shear stress - RMS deviation 

Shear rate - maximum 
Shear rate - 95th percentile 
Shear rate - average 
Shear rate - RMS deviation 
Curing phase: 

Time I Status 
(s) I I 

2.32 1 Curing phase 
3.821 Curing phase 
5.441 Curing phase 
6.941 Curing phase 
8.571 Curing phase 

( 10.071 Curing phase 
11.691 Curing phase 
13.191 Curing phase 
14.821 Curing phase 
16.321 Curing phase 
17.941 Curing phase 
19.441 Curing phase 
21.071 Curing phase 
22.571 Curing phase 
24.191 Curing phase 
25.691 Curing phase 
27.321 Curing phase 
28.821 Curing phase 
30.441 Curing phase 
30.821 Curing phase 

Preparing output data... 
Finished preparing output data 

SYNERGY Reactive Molding 
has completed successfully. 

Processing fusion mesh... 
... finished processing fusion mesh 
Weld line/air trap analysis completed 

Preparing output data... 
Finished preparing output data 

SYNERGY Weld-line and air trap 
has completed successfully. 

Execution time 
Analysis commenced at 
Analysis completed at 
CPU time used 

0.681 s) = 2.1069E+05 1/s 
1.0707 cmA2 

0.3083 cmA2 
= 380.6980 cm/s 

82.5449 cm/S 

Or the runner system : 

= 15.0925 g 
= 120.4010 C 
= 119.3330 C 
= 80.0000 C 
= 80.0000 C 

= 84.5690 C 
= 10.0727 C 

= 0.0262 
= 0.0262 

= 0.0166 
= 0.0123 

= 0.0349 MPa 
= 0.0349 MPa 

= 0.0075 MPa 
= 0.0143 MPa 

= 1.9201 E-06 1 /s 
= 1.9201E-06 I /s 

= 7.4877E-07 1/s 
= 7.3816E-07 1/s 

Thu Feb 1911: 50: 38 2004 
Thu Feb 1912: 14: 16 2004 

1417.22s 
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The new manifold system 
Mould temperature 80°C, Injection time 1 second 
Copyright Moldflow Corporation and Moldflow Pty. Ltd. All Rights Reserved. 
(C)2000 2001 2002 2003 
This product may be covered by 

US patent 6,096,088 , Australian Patent No. 721978, 
and foreign patents and pending applications 

Thermoset Flow Analysis 

Version: mp1410 (Build 03203) 

Analysis commenced at Mon Feb 23 16: 35: 08 2004 
Processing fusion mesh... 
... finished processing fusion mesh 
Date : FEB-23-2004 
Time : 16: 36: 04 
Reading Input data... 
Processing fusion mesh... 
... finished processing fusion mesh 
Processing fusion mesh... 
... finished processing fusion mesh 

File name : traynewmanifold801-1 
Reading solver parameters... 
Reading material data... 
Reading process settings... 
Reading finite element mesh... 

Finished reading input data 

Optimizing node and element numbering... 
... finished optimizing node and element numbering 

Summary of analysis inputs : 

Solver parameters : 

No. of laminae across thickness = 12 
No. of results at constant Intervals 20 
No. of profiled results at constant Intervals =0 

Flow rate convergence tolerance = 0.5000 % 
Melt temperature convergence tolerance = 0.2000 C 
Conversion convergence tolerance = 0.2000 % 
Mold-melt heat transfer coefficient = 2.5000E+04 W/m"2-C 
Heat transfer coeff. between pot and pellet (side) = 5000.0000 W/m"2-C 
Heat transfer coeff. between pot and pellet (bot) = 5000.0000 W/m"2-C 
Maximum no. of flow rate Iterations 125 
Maximum no. of melt-temp and conversion iterations = 100 

Material data : 

Polymer : 

Constant polymer density 
RHO = 1.6240 g/cmA3 

Specific heat (Cp) = 852.0000 J/kg-C 

Thermal conductivity = 0.8500 W/m-C 

Reactive polymer viscosity I 
ALFAgel (C1+C2"ALFA) 

ETA = ETAm*( ) If ALFA < ALFAgei 
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ALFAget-ALFA 
ETA = Infinity If ALFA > ALFAgeI 

ETAo 
where ETAm = 

I+ (ETAo"GAMMA/TAUS)^(1-n) 
ETAo =B* EXP(Tb/T ) 
n=0.0835 
TAUS = 2.7200E+04 Pa 
B= 2920.0000 Pa-s 
Tb = 5880.0000 K 
Cl = 0.1790 
C2 = 102.0000 

N-th order kinetics with Induction time 
Total heat of reaction (H) 

where H=2.9000E+04 J/kg 
Isothermal Induction time 
Tind = B1 EXP( B211) 
where 131 = 0.0000 s 

B2 = 0.0000 K 
Isothermal curing kinetics 
d(ALFAydt = (KI+K2*ALFAAEM)"(1-ALFA)^EN 
where K1 = Al * EXP(- E11T ) 

K2 = A2' EXP(- E2/T ) 
EM = 0.5660 
EN= 2.9950 
Al = 0.00001/s 
A2 = 5.1800E+25 1/s 
E1 = 6.4540 K 
E2 = 2.3900E+04 K 

Gelation conversion (ALFAgei) _ 0.0500 

Process settings : 

Machine parameters : 

Maximum injection pressure = 1.7500E+02 MPa 

Conditions at the Pot (pre-conditioning): 

Pellet diameter 
Pellet length 
Transfer pot temperature 
Delay time in the pot 

12.0000 mm 
= 20.0000 mm 

= 80.0000 C 
= 5.0000s 

Process parameters : 

Fill time = 1.0000S 
Curing time = 30.0000 s 
Melt temperature = 80.0000 C 
Inlet melt conversion = 0.0000 
Melt temperature after preconditioning = 80.0000 C 
Melt conversion after preconditioning = 0.0000 
Mold temperature 80.00 C 
Ambient temperature = 25.0000 C 
Velocity/pressure switch-over by % volume = 99.0000 % 
Ram speed profile (rel): 

% stroke % ram speed 

0.0000 100.0000 
56.0000 75.0000 
88.0000 50.0000 
100.0000 25.0000 

Model details : 

Total number of nodes = 11769 
Total number of Injection location nodes =1 

The injection location node labels are: 
6961 

Total number of elements = 23534 
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Number of part elements = 23534 
Number of sprue/runner/gate elements =0 
Number of connector elements =0 

NOTE: The parting plane has not been specified. The global XY plane will be 
used instead. 

Parting plane normal (dx) = 0.0000 
(dy) = 0.0000 
(dz) = 1.0000 

Average aspect ratio of triangle elements = 1.7292 
Maximum aspect ratio of triangle elements = 5.9831 
Element number with maximum aspect ratio = 18958 
Minimum aspect ratio of triangle elements 1.1562 
Element number with minimum aspect ratio 19748 
Total volume = 814.6840 cmA3 

Volume filled Initially = 0.0000 cmA3 
Volume to be filled = 814.6840 cmA3 

Part volume to be filled = 814.6840 cmA3 
Sprue/runner/gate volume to be filled = 0.0000 cm^3 

Initializing variables... 

... finished Initializing variables 
Filling phase: Status: V= Velocity control 

P= Pressure control 
V/P= Velocity/pressure switch-over 

I Time I Volume) Pressure ( Clamp forcelFiow rateiStatus I 
(s) ((%) I (MPa) I (tonne) I(cmA3/s) 

1 0.001 0.021 0.35 0.001 763.95 VI 
1 0.051 7.64 19.46 1.911 737.18 VI 
1 0.101 14.97 20.891 2.38 712.201 VI 
1 0.16122.10 1 21.841 2.841 687.811 VI 
1 0.21 128.83 22.591 3.331 664.941 VI 
1 0.26 23.34 3.97 642.481 VI 
1 0.31 141.57 1 27.561 9.381 621.281 VI 
1 0.36 ( 47.791 36.061 19.951 599.891 V 
1 0.42 38.77 26.74 579.501 V 
1 0.47159.511 40.731 33.931 550.961 V 
1 0.52 42.091 40.621 519.931 V 
1 0.57169.89 1 43.011 46.511 488.841 V 

0.63 174.801 43.751 51.911 459.741 V 
1 0.68 179.061 44.631 58.741 434.37 V 
1 0.73 183.441 45.521 66.651 408.251 VI 
1 0.78187.52 1 46.011 71.891 383.911 V 
1 0.83191.10 1 45.951 75.111 331.701 V 
1 0.89 45.831 77.891 282.191 V 
1 0.94 196.76 1 46.211 84.971 241.961 V 
1 0.99199.00 46.881 94.821 206.451 V 
1 0.99 199.09 1111 VIP 
1 1.01 1100.001 46.811 101.801 206.45I 1PI 

SYNERGY Reactive Molding 4.1 summary report of analysis. 

Date : FEB23-04 
Time : 16: 37: 56 
Name : traynewmanifoid801-1 

Filling phase results summary: 

Maximum Injection pressure (at 0.988 s) = 46.8800 MPa 
Melt temperature after preconditioning = 80.0000 C 
Melt conversion after preconditioning = 0.0000 

End of filling phase results summary: 

Time at the end of filling = 1.0150s 
Injection pressure = 46.8068 MPa 
Injection pressure - extrapolated = 46.6064 MPa 
Total weight = 842.9230 g 
Maximum Clamp force - during filling = 101.3608 tonne 
Clamp force - estimated = 414.9824 tonne 

Filling phase results summary for the part: 

Bulk temperature - maximum (at 0.417 s) = 85.3240 C 
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Bulk temperature " 95th percentile (at 0.470 s) = 84.9030 C 
Bulk temperature " 5th percentile (at 1.015s)- 81.6070 C 
Bulk temperature " minimum (at 1.015 s) = 80.0000 C 
Bulk conversion - maximum (at 1.015 s) = 1.0990E-06 
Bulk conversion - 95th percentile (at 1.015 s) = 4.5500E-07 

Wall shear stress - maximum (at 0.312 s) = 0.2481 MPa 
Wall shear stress " 95th percentile (at 0.365 s) = 0.1879 MPa 

Shear rate - maximum (at 0.105s)= 4.3752E+041/s 
Shear rate - 95th percentile (at 0.365 s) a 3598.55001/s 
Melt front area - average = 23.1627 cm"2 
Melt front area - RMS deviation = 9.4199 cmA2 
Melt front velocity = 40.2749 cm/s 
Melt front velocity - RMS deviation = 78.6645 cm/s 

End of filling phase results summary for the part : 

Total part weight = 842.9230 g 

Bulk temperature - maximum = 85.2040 C 
Bulk temperature - 95th percentile = 84.3020 C 
Bulk temperature - 5th percentile = 81.6070 C 
Bulk temperature - minimum = 80.0000 C 
Bulk temperature - average = 82.8650 C 
Bulk temperature - RMS deviation 0.8709 C 
Bulk conversion - maximum = 1.0990E-06 
Bulk conversion - 95th percentile = 4.5500E-07 
Bulk conversion - average = 1.9014E-07 
Bulk conversion - RMS deviation = 0.0000 

Wall shear stress - maximum = 0.2136 MPa 
Wall shear stress - 95th percentile = 0.1705 MPa 
Wall shear stress - average = 0.1213 MPa 
Wall shear stress - RMS deviation = 0.0461 MPa 

Shear rate - maximum = 1.0770E+04 1/s 
Shear rate - 95th percentile = 970.4640 1/s 
Shear rate - average = 237.90201/s 
Shear rate - RMS deviation = 578.12101/s 

Curing phase: 

Time I Status I 
(s) 
2.641 Curing phase 
4.141 Curing phase 
5.761 Curing phase 
7.261 Curing phase 

( 8.891 Curing phase 
10.391 Curing phase 
12.021 Curing phase 
13.521 Curing phase 
15.141 Curing phase 
16.641 Curing phase 
18.261 Curing phase 
19.761 Curing phase 
21.391 Curing phase 
22.891 Curing phase 
24.511 Curing phase 
26.011 Curing phase 

( 27.641 Curing phase 
29.141 Curing phase 

( 30.761 Curing phase 
31.141 Curing phase 

Preparing output data... 
Finished preparing output data 

SYNERGY Reactive Molding 
has completed successfully. 

Processing fusion mesh... 
... finished processing fusion mesh 
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Weld linelair trap analysis completed 

Preparing output data... 
Finished preparing output data 

SYNERGY Weld-line and air trap 
has completed successfully. 

Execution time 
Analysis commenced at 
Analysis completed at 
CPU time used 

Mon Feb 23 16: 35: 08 2004 
Mon Feb 23 17: 05: 09 2004 

1800.08 S 

Mould temperature 130°C, Injection time 1 second 

Copyright Moldflow Corporation and Moldflow Pty. Ltd. All Rights Reserved. 
(C)2000 2001 2002 2003 
This product may be covered by 

US patent 6,096,088, 
Australian Patent No. 721978, 

and foreign patents and pending applications 

Thermoset Flow Analysis 

Version: mpi410 (Build 03203) 

Analysis commenced at Sat Feb 21 11: 00: 09 2004 
Processing fusion mesh... 

... finished processing fusion mesh 
Date : FEB-21-2004 
Time : 11: 01: 06 
Reading Input data... 
Processing fusion mesh... 
... finished processing fusion mesh 
Processing fusion mesh... 

... finished processing fusion mesh 
File name : traynewmanifold1301-1 
Reading solver parameters... 
Reading material data... 
Reading process settings... 
Reading finite element mesh... 

Finished reading Input data 

Optimizing node and element numbering... 
... finished optimizing node and element numbering 

Filling phase: Status: V= Velocity control 
P= Pressure control 
VIP= Velocity/pressure switch-over 

I 
Time I Volume) Pressure I Clamp forceflow ratelStatus I 
(s) I (%) I (MPa) I (tonne) I(cm^3/s) 

0.001 0.021 0.301 0.001 763.95 1VI 
0.051 7.64 17.741 1.761 737.231 V 

1 0.11115.011 18.971 2.181 712.111 V 
1 0.16 121.95 19.811 2.59 688.42 VI 
1 0.21 128.71 1 20.50 3.021 665.301 V 
1 0.26135.331 21.21 3.591 642.771 VI 
1 0.3141.581 25.15 8.53 621.39 VI 

0.36147.801 33.111 18.26 599.861 VI 
0.42 35.761 24.38 579.641 VI 

1 0.47 37.74 30.501 551.931 VI 
1 0.52 64.821 39.511 36.77 519.27 VI 
1 0.57 169.771 40.921 41.851 489.661 VI 
1 0.63 1 42.121 46.681 460.561 VI 
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0.68 179.04 I 42.42 52.50 434.55) VI 

'" WARNING "' Local hot spot encountered. Material gelation may occur. 
0.73183.481 47.051 62.131 407.991 VI 

"" WARNING "" Local hot spot encountered. Material gelation may occur. 
0.78187.301 52.13 69.761 385.06 1VI 

"" WARNING "" Local hot spot encountered. Material gelation may occur. 
1 0.83 90.94 59.391 76.361 334.191 VI 

'" WARNING "' Local hot spot encountered. Material gelation may occur. 
0.88194.121 75.151 86.44 283.49 VI 

" WARNING " Local hot spot encountered. Material gelation may occur. 
0.90195-051 I 175.001 31.491 283.491 M. M. P 

. ........ ...... ............. .............................. .. 

"" SHORT SHOT "" Insufficient Injection pressure. 

. ........ .... ......................................... ...... 

SYNERGY Reactive Molding 4.1 summary report of analysis. 

Date : FEB21-04 
Time: 11: 03: 05 
Name : traynewmanifold1301-1 

Filling phase results summary: 

Maximum injection pressure (at 0.902 s) = 175.0000 MPa 
Melt temperature after preconditioning = 80.0000 C 
Melt conversion after preconditioning = 0.0000 

End of filling phase results summary: 

Time at the end of filling = 0.9022 s 
Injection pressure = 175.0000 MPa 
Injection pressure - extrapolated = 58.6109 MPa 

"fffffffNffffºfff Hffffffffffffffffffff ffffffffffffffffHff 

"" SHORT SHOT "" Insufficient injection pressure. 

ýýýýa. ca.,.... ****. **a*s****. iia. ****ai***rcaaýýý*ciiiciacaf 

Maximum Clamp force - during filling = 31.7629 tonne 
Clamp force - estimated = 496.8821 tonne 

Filling phase results summary for the part: 

Bulk temperature - maximum (at 0.902 s) = 136.4640 C 
Bulk temperature - 95th percentile (at 0.902 s) = 101.0440 C 
Bulk temperature - 5th percentile (at 0.312 s) = 81.6000 C 
Bulk temperature - minimum (at 0.902 s) = 80.0000 C 
Bulk conversion - maximum (at 0.902 s) = 0.0296 
Bulk conversion - 95th percentile (at 0.902 s) = 0.0050 

Wall shear stress - maximum (at 0.902 s) = 10.7223 MPa 
Wall shear stress - 95th percentile (at 0.885 s) = 0.2362 MPa 

Shear rate - maximum (at 0.885 s) = 2.5559E+05 1/s 
Shear rate - 95th percentile (at 0.885 s) = 3627.2500 1/s 
Melt front area - average = 24.2693 cmA2 
Melt front area - RMS deviation 9.2634 cmA2 
Melt front velocity = 43.1286 cm/s 
Melt front velocity - RMS deviation = 83.0354 cm/s 
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End of filling phase results summary for the part: 

Total part weight = 807.4300 g 

Bulk temperature - maximum = 136.4640 C 
Bulk temperature - 95th percentile - 101.0440 C 
Bulk temperature - 5th percentile = 83.3790 C 
Bulk temperature - minimum = 80.0000 C 
Bulk temperature - average = 90.5230 C 
Bulk temperature - RMS deviation = 6.4479 C 
Bulk conversion - maximum = 0.0296 
Bulk conversion - 95th percentile = 0.0050 
Bulk conversion - average = 0.0009 
Bulk conversion - RMS deviation = 0.0029 

Wall shear stress - maximum = 10.7223 MPa 
Wall shear stress - 95th percentile = 0.0009 MPa 
Wall shear stress - average = 0.0309 MPa 
Wall shear stress - RMS deviation = 0.3772 MPa 

Shear rate - maximum = 0.00861/s 
Shear rate - 95th percentile = 7.6091 E-051/s 
Shear rate - average = 2.1473E-05 1/s 
Shear rate - RMS deviation = 0.00021/s 

Curing phase: 

Time I Status I 
(s) 

2.53 1 Curing phase 
4.031 Curing phase 
5.651 Curing phase 
7.151 Curing phase 
8.781 Curing phase 
10.281 Curing phase 
11.901 Curing phase 
13.401 Curing phase 
15.031 Curing phase 
16.531 Curing phase 
18.151 Curing phase 
19.651 Curing phase 
21.281 Curing phase 
22.781 Curing phase 
24.401 Curing phase 

( 25.901 Curing phase 
( 27.531 Curing phase 

29.031 Curing phase 
( 30.651 Curing phase 
1 30.901 Curing phase 

Preparing output data... 
Finished preparing output data 

SYNERGY Reactive Molding 
has completed successfully. 

Processing fusion mesh... 

... finished processing fusion mesh 
Weld line/air trap analysis completed 

Preparing output data... 
Finished preparing output data 

SYNERGY Weld-line and air trap 
has completed successfully. 

Execution time 
Analysis commenced at 
Analysis completed at 
CPU time used 

Sat Feb 21 11: 00: 09 2004 
Sat Feb 21 12: 10: 51 2004 

4241.23 s 
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Appendix III 

Moldflow® simulation results 
Injection time-Melt temperature plots of the 

existing manifold system and the tray moulding 

Figure App3.1 Injection time-melt temperature plot at 1-second injection time and 

mould temperatures is varied from 80 to 130°C 
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Figure App3.1 b. ) Mould temperature 90°C 
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Figure App3.1 c. ) Mould temperature 100°C 
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Figure App3.1 d. ) Mould temperature 110°C 
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Figure App3.1 e. ) Mould temperature 120°C 
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Figure App3.1 f. ) Mould temperature 130°C 
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Figure App3.2 Injection time-melt temperature plot at 2-second injection time 

and mould temperatures is varied from 80 to 130°C 
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Figure App3.2 b. ) Mould temperature 90°C 
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Figure App3.2 c. ) Mould temperature 100°C 
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Figure App3.2 d. ) Mould temperature 1 10°C 
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Figure App3.2 e. ) Mould temperature 120°C 
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Figure App3.2 f. ) Mould temperature 130°C 
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Figure App3.3 Injection time-melt temperature plot at 3-second injection time 

and mould temperatures is varied from 80 to 130°C 
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Figure App3.3 b. ) Mould temperature 90°C 
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Figure App3.3 d. ) Mould temperature 110°C 
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Figure App3.3 f. ) Mould temperature 130°C 
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Figure App3.4 Injection time-melt temperature plot at 4-second injection time 

and mould temperatures is varied from 80 to 130°C 
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Figure App3.4 b. ) Mould temperature 90°C 
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Figure App3.4 c. ) Mould temperature 100°C 
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Figure App3.4 d. ) Mould temperature 110°C 
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Figure App3.4 e. ) Mould temperature 120°C 
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Figure App3.4 E) Mould temperature 130°C 
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Figure App3.5 Injection time-melt temperature plot at 5-second injection time 

and mould temperatures is varied from 80 to 130°C 
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Figure App3.5 b. ) Mould temperature 90°C 
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Figure App3.5 d. ) Mould temperature I l0°C 
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Figure App3.5 e. ) Mould temperature 120°C 
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Figure App3.5 f. ) Mould temperature 130°C 
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Appendix IV 

Moldflowe simulation results 
Injection time-Melt temperature plots of the new 

manifold system and the tray moulding 

Figure App4.1 Injection time-melt temperature plot at 1-second injection time and 

mould temperatures is varied from 80 to 130°C 
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Figure App4.1 b. ) Mould temperature 90°C 
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Figure App4.1 c. ) Mould temperature 100°C 
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Figure App4.1 d. ) Mould temperature 110°C 
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Figure App4.1 e. ) Mould temperature 120°C 
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Figure App4.1 f. ) Mould temperature 130°C 
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Figure App4.2 Injection time-melt temperature plot at 2-second injection time 

and mould temperatures is varied from 80 to 130°C 
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Figure App4.2 b. ) Mould temperature 90°C 

90.00 Ä_ -4- 
+" tem fei1? u 

88.00 

86.00 

U 

84.00 

82.00 

0 

" N8215 

Y" N9813 
+ N'1837 

IN 

80.00 
0.0000 5.000 10.00 15.00 20.00 25.00 30.00 35.00 

Time(s) 
, 4. 

Figure App4.2 c. ) Mould temperature 100°C 
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Figure App4.2 d. ) Mould temperature 110°C 
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Figure App4.2 e. ) Mould temperature 120°C 
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Figure App4.2 d. ) Mould temperature 1 10°C 
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Figure App4.2 e. ) Mould temperature 120°C 
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Figure App4.2 f. ) Mould temperature 130°C 
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Figure App4.3 Injection time-melt temperature plot at 3-second injection time 

and mould temperatures is varied from 80 to 130°C 

Figure App4.3 a. ) Mould temperature 80°C 
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Figure App4.3 b. ) Mould temperature 90°C 
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Figure App4.3 c. ) Mould temperature 100°C 
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Figure App4.3 d. ) Mould temperature 110°C 
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Figure App4.3 e. ) Mould temperature 120°C 
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Figure App4.3 f. ) Mould temperature 130°C 
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Figure App4.4 Injection time-melt temperature plot at 4-second injection time 

and mould temperatures is varied from 80 to 130°C 
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Figure App4.4 b. ) Mould temperature 90°C 
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Figure App4.4 c. ) Mould temperature 100°C 
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Figure App4.4 d. ) Mould temperature 110°C 
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Figure App4.4 e. ) Mould temperature 120°C 
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Figure App4.4 f. ) Mould temperature 130°C 

150.0 Bulk temperature (nodaD: XY Plot 

140.0 
7 

130.0 

120.0 

110.0 

100.0- 

90.00- 

80.00 
0.0000 5.000 10.00 15.00 20.00 

Time[s] 
25.00 

f N1095 
IF N! l: l5 
4 N8215 

30.00 35.00 

Figure App4.5 Injection time-melt temperature plot at 5-second injection time 

and mould temperatures is varied from 80 to 130°C 

Figure App4.5 a. ) Mould temperature 80°C 
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Figure App4.5 b. ) Mould temperature 90°C 
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Figure App4.5 c. ) Mould temperature 100°C 
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Figure App4.5 d. ) Mould temperature 110°C 
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Figure App4.5 e. ) Mould temperature 120°C 
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Figure App4.5 f. ) Mould temperature 130°C 
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