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Abstract 

Historically, bone defects resulting from trauma, disease or infection are treated with 
autograft or allograft.  Autograft is bone transplanted from a non-critical area of the skeleton 
and allograft is bone donated from another member of the same species.  The drawbacks 
with these treatments such as limited availability, donor site morbidity, high cost and disease 
transmission have driven increasing use of bone graft substitute (BGS) materials.  These 
represent 15% of the £1.6 billion global orthobiologics market.  BGS materials available to 
date are not suitable for use in grafts that are intrinsic to the stability of the skeleton.  Thus, 
the aim for this project was to fabricate an off the shelf and economically viable BGS that 
will support the skeletal structure whilst healing occurs. 
 
This project employed an empirical approach utilising both rapid prototyping (RP) and 
conventional manufacturing processes to produce novel BGSs.  A range of RP techniques 
were attempted and discovered to be unsuitable as a result of their long build and post-
processing times, poor availability of suitable materials, and undesirable surface finish.  
Experiments with injection moulding and laser drilling of polylactic acid (PLA) successfully 
produced 10 mm blocks with a compressive strength of 67 – 80 MPa and compressive 
modulus of 1.5 – 2.2 GPa.  This line of research led to the hypothesis that ceramic extrusion, 
a process hitherto untested for use in bone tissue engineering (BTE), may be feasible for 
production of a novel and high strength BGS. 
 
In collaboration with an international expert in the manufacture of ceramic monoliths it was 
possible, for the first time, to manufacture hydroxyapatite (HA) monoliths by adapting the 
process used for manufacture of automotive exhaust catalysts. These HA monoliths 
exhibited a compressive strength of 142 – 265 MPa and compressive modulus of 3.2 – 4.4 
GPa.  The exceptional strength of these monoliths match the properties of cortical bone 
whilst retaining the high levels of porosity (> 60 %) found in cancellous bone.  This 
combination of strength and porosity will enable treatment of large structural bone defects 
where the high strength will withstand typical skeletal forces whilst the high porosity allows 
blood vessels to infiltrate the monolith and begin the healing process.  Furthermore, these 
HA monoliths support the proliferation and differentiation of human osteoblast-like MG63 
cells and compare very favourably with a market leading BGS material in terms of their 
biological performance. 
 
It is suggested that this work will result in the development of a new family of high strength 
and high porosity BGSs for use in challenging clinical situations.  The International 
Preliminary Examination Report for the patent issued to the author (WO 2007/125323) 
decreed that all 45 claims contained novelty and an inventive step.  Two successful 
applications for research funding have raised nearly £50,000 that helped fund this research 
effort.  Warwick ventures are currently involved in negotiating with medical partners to 
licence this technology for clinical use. 
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Chapter 1  Introduction 

 

 

1.1 Project aim 

The aim for this Engineering Doctorate is to fabricate an off the shelf and economically 

viable bone scaffold using suitable biomaterials and manufacturing methods in order to 

support the skeleton whilst healing occurs. 

 

1.2 Engineering Doctorate portfolio structure 

The authors EngD portfolio comprises seven submissions beginning with Submission 1: A 

Review of Manufacturing Techniques in Bone Tissue Engineering.  This presents an introduction to 

bone tissue engineering (BTE) including a summary of the relevant properties of bone, the 

reasons why bone graft may be required and the surgical approaches for repair of bone 

defects.  It reviews the many different manufacturing techniques that have been attempted in 

order to create the ideal bone scaffold or bone graft substitute (BGS).  These can be split 

into two groups: Rapid Prototyping (RP) and conventional methods.  Both of which have 

their own specific advantages and disadvantages.  After reviewing the manufacturing 

methods it was important to examine the materials most suitable for use in BGSs.  This is 

covered in Submission 2: A Review of Degradable Biomaterials for the Repair of Bone Defects.  This 

reviews the essential requirements of a biomaterial as well as the many different biomaterials 

available and the properties that make them suitable for use in BTE. 

 

An ideal BGS material has many conflicting requirements e.g. high porosity and high 

strength.  Thus a BGS composed of existing materials is likely to have compromised 

properties.  The challenge is to maximise the benefits from these properties and optimise 

them for specific skeletal applications.  In this way Submission 3: Specification for a Bone Scaffold 

defines a more precise specification for a BGS.  This eliminates the inherent uncertainty 
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when designing a product for a wide range of indications and where the precise biological 

mechanisms occurring at the implant site are not fully understood.  This submission also 

examines the market for BGS materials and identifies where there is a gap in the market that 

is open for exploitation.   The principal aim for this submission is to tighten the specification 

in order to provide a focus for the research. 

 

The empirical work begins with Submission 4: A Study of Cell behaviour on Engineered Surfaces.  

This describes an experiment carried out to determine the effect of surface topography on 

cell behaviour.  The original intention was to use RP techniques to create a number of 

different scaffolds on which to culture cells.  This proved difficult and marked a shift in 

emphasis from RP to conventional processing methods.  This study highlighted the effect of 

both the material and surface topography on cell growth and allowed the author, who is an 

engineer by training, to gain an understanding of the biological aspects inherent in this field.  

The next piece of work, Submission 5: The Development of a Methodology to Manufacture an 

Innovative Bone Graft Substitute, further describes the thought processes and empirical approach 

to this research that shaped the direction of this project.  Many different manufacturing 

techniques were attempted prior to identifying an innovative concept for manufacturing a 

novel BGS.  It culminates in describing the author’s attempt to extrude ceramic monoliths 

on a severely limited budget and the realisation that industrial assistance would be essential. 

 

Submission 6: Extrusion of Ceramic Monoliths for use in Bone Graft Substitutes or Bone Scaffolds 

describes the work undertaken in conjunction with an industrial partner to manufacture 

calcium phosphate (CAP) monoliths.  HA was chosen as a benchmark material and it rapidly 

became apparent that HA could be manufactured in this way.  Hence, a set of experiments 

were so designed as to examine their mechanical and biological performance, both of which 

proved to be excellent when compared with an existing BGS material.  The final piece of 

this work: Submission 7 – A clinical perspective on the benefit of extruded monoliths for Bone tissue 

Engineering delves into the clinical need for bone graft materials in greater detail to identify 

specific indications where ceramic monoliths may be beneficial.  A combination of expert 

and clinical opinion combined with reviews of relevant literature helped identify an 

indication where the high strength BGS material created through this research will improve 

on existing products. 
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1.3 Structure of the Innovation Report 

This report has been structured in such a way as to guide the reader through the topic and 

highlight the most important aspects when considering the creation of a novel BGS.  The 

report begins with a background section which covers all aspects of this field and then 

continues to describe the underlying principles of the research methodology and highlights 

of the research.  The main focus for this work has been on manufacturing aspects.  This 

report presents the methodical research undertaken which has led to an innovative approach 

to manufacture a high strength BGS material.  It describes the key innovative aspect in 

further detail before presenting the design for a medical device utilising this technology.  

Finally, it summarises the project and discusses areas for future work. 

 

Chapter 2 presents the background of the project including a description of bone and its 

properties.  This is followed by a glimpse at the conditions that effect human bone and the 

bone grafting techniques available to replace diseased bone.  This includes some recent 

developments in tissue engineering i.e. the use of biological materials to replace or repair 

tissue.  Finally, this chapter reviews the key requirements for a BGS and briefly examines the 

market opportunities for BGS materials. 

 

Chapter 3 explains the project methodology in a chronological fashion.  It starts with the 

experiments using RP techniques and explains the reasons why later work concentrated on 

conventional processing techniques as the primary route to produce a novel BGS.  This 

Chapter then elucidates the conventional processes attempted which led to the discovery 

that extrusion of ceramic monoliths for use as BGSs had not been previously attempted.  

The remainder of the chapter examines the production of hydroxyapatite monoliths and 

their physical, mechanical and biological characterisation. 

 

Chapter 4 presents the results from the characterisation of the HA monoliths including their 

excellent mechanical and biological properties and goes on to compare their performance 

with an existing commercial BGS.  Chapter 5 defines the unique selling points for calcium 

phosphate monoliths and how they may prove beneficial to patients and clinicians in 



 

15 

challenging orthopaedic cases.  This Chapter then summarises the comments made by a 

number of clinicians and experts on the novel BGS produced as a result of this project. 

 

Chapter 6 considers one of the clinical conditions identified in Chapter 5 and describes the 

design process of a device for posterior lumbar interbody fusion utilising the innovative 

BGS material devised during this project.  The Chapter then highlights the hurdles that need 

to be overcome in order to gain approval for such a device.   

 

Chapter 7 is an overview of the project and elucidates the key findings and innovations from 

the project and the recommendations for future research work.  Chapter 8 presents the 

conclusions derived from this work. 
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Chapter 2   Background 

 

 

2.1 Introduction 

The human skeleton has a number of functions: it protects internal organs, provides muscle 

attachment sites to facilitate limb movement, acts as a store for calcium and phosphorus, and 

provides a site for haematopoiesis [1,2].  The adult skeleton contains 206 bones [3], each one 

is able to maintain its shape and structure throughout the life of an individual through a 

continuous process of remodelling.  This allows it adapt to the stresses and strains placed 

upon it according to Wolff’s Law [4-6].  

 

2.2 Bone 

Bone is a biological composite comprising 90 % extracellular matrix (ECM) and 10 % water 

[7].  The ECM is composed of 60 – 70 % inorganic mineral usually referred to as 

hydroxyapatite (HA) which has a similar, but not identical structure to natural bone mineral.  

HA has a chemical formula of Ca10(PO4)6(OH)2 and a Calcium Phosphorus (Ca:P) ratio of 

5:3 (1.66).  Bone apatite is believed to be a carbonate apatite called dahllite that is thought to 

resemble an octacalcium crystal which naturally forms in plates.  It is characterised by 

calcium, phosphate, and hydroxyl deficiency with typical Ca:P ratios between 1.37 and 1.87 

[8].  The remaining 30 – 40 % of bone ECM contains organic components composed of 

type I collagen (90 %) with non-collagenous proteins e.g glycosaminoglycans consituting the 

remainder.  The collagen confers flexibility and fracture toughness to the matrix and the 

inorganic phase confers stiffness. 

 

Macroscopically two types of bone exist.  Cortical bone (also known as compact or dense 

bone) forms the outer shell of all bones and has a dense structure representing 

approximately 80 % of skeletal mass.  Cancellous bone (also known as spongy or trabecular 
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bone) has a porous structure and is found in the centre of all bones.  Figure 2.1 shown 

below is a detailed view of the tibia.  It demonstrates the layout of cortical and trabecular 

bone within the tibia as well as the important anatomical features.  At the bottom right a 

detailed section through the bone demonstrates the porous sponge-like structure of 

trabecular bone surrounded by dense cortical bone. 

 

 
 

Figure 2.1  An anatomical drawing of a human tibia, adapted from [3] 

 

The structure of bone is hierarchical in nature with different features that exist on many 

levels of scale.  Where Figure 2.1 is concerned with the macroscale features or those that can 

be seen with the naked eye.  Figure 2.2 demonstrates the microscale features which include 

osteons, lamellae, canaliculi, and haversian canals.  The Haversian canal in the centre of the 

osteon has a diameter ranging from 50 – 90 µm, within which there is a blood vessel typically 

of 15 µm in diameter [9,10].   
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Figure 2.2  An illustration demonstrating the anatomical features from a section 

through a human long bone [9] 

 

Beyond the microscale features are the nanoscale features consisting of collagen fibres that 

make up the osteons.  These collagen fibres are made up of many collagen fibrils and in the 

gaps between these are the mineral crystals.  The collagen fibres consist of arrays of 

tropocollagen molecules which are composed of three left-handed helices of peptides known 

as α-chains.  These are subsequently bound in a right handed triple helix thus making up the 

collagen fibril with a diameter of 40 to 120 nm.  These fibrils are wound into bundles of 

collagen fibre with a diameter of 0.2 to 12 µm as seen in Figure 2.3.  

 

 
Figure 2.3  An illustration demonstrating the hierarchical organisation of collagen 

fibres [8] 
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Adult bone contains four cell types each with a specific set of functions.  Osteoprogenitor 

cells are mesenchymal cells of bone.  They differentiate into osteoblasts when new bone is 

required, or lie quiescent and are known as bone lining cells when bone is not needed.  

Osteoblasts are bone forming cells that deposit osteoid matrix onto the collagen fibres and 

control the subsequent mineralisation of woven bone into lamellar bone.  Osteocytes are 

osteoblasts that have become entombed by mineralized matrix and may remain in this state 

for years and even decades.  Osteocytes regulate the composition of bone matrix via ion-

nutrient exchange thus maintaining the calcium and phosphate levels in serum.  Osteoclasts 

are large, multinucleated cells able to break down calcified bone matrix.  They originate from 

haemopoietic progenitor cells and can attach themselves to bone where they erode it via 

acidic digestion [7].  Bone is laid down in a highly ordered manner in vivo, where osteoblasts 

lay down bone in the space created by previous osteoclast resorption.  Thus, the structure 

and morphological layout of the bone is preserved [11]. 

 

Bone can only be formed by deposition on a suitable surface that is within 200 µm of a 

blood supply so that it can receive nutrients via diffusion.  These two criteria place 

limitations on the shape and size of developing bone which may form either by 

intramembranous ossification (in the case of skull and facial bones) or endochondral 

ossification (in the case of long bones).  Intramembranous ossification starts after 6.5 weeks 

of gestation and occurs when a primary ossification centre develops in a slab of mesenchyme 

tissue.  Here bone forming cells differentiate from mesenchymal cells and bone is formed 

without the need for cartilage.  Endochondral ossification occurs by calcification of cartilage 

tissue.  This occurs during growth of the foetal skeleton where the limbs need to grow in 

length and diameter.  Bones are rigid and not able to achieve this; therefore cartilage is 

formed as an intermediary tissue and later calcified.  Regions of cartilage persist on the bone 

ends and within the epiphyseal growth plate until bone stops growing in late adolescence 

[2,7].  Bone remodelling is a continual process of resorbtion and renewal that continues 

throughout the life of all mammals.  It is defined as removal and replacement of bone tissue 

without altering its overall shape. 
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The mechanical properties of bone are remarkable and make it challenging to replicate.  It 

possesses excellent strength, stiffness, and fracture toughness whilst also being porous and 

able to support the growth of cells and repair itself.  Its properties derive from the size, 

shape, and organisation of the mineral and matrix phases throughout its structural hierarchy 

[12].  There is a large variation in the reported properties of bone due to many factors 

including its anisotropy, person to person variation, use of aged or osteoporotic bone, and 

the anatomical location of the tested specimen [1,13].  The compressive modulus for cortical 

bone lies in the range 5 – 35 GPa and compressive strength 50 – 250 MPa.  The tensile 

modulus varies from 4 – 30 GPa and tensile strength 90 – 170 MPa [13-18].  It is important 

for any implant replacing bone to match both the strength (so it will not fail in service) and 

stiffness of the native bone to prevent problems with stress shielding (when the implant is 

too stiff) and excessive movement (when the implant has inadequate stiffness).  Both may 

lead to resorbtion of the native bone and failure of the implant [13]. 

 

Table 2.1 provides a summary of the strength and modulus values for cortical and cancellous 

portions of human long bones [16].  It is immediately apparent that cortical bone is at least 

an order of magnitude stronger and stiffer than cancellous bone.  This is due to the differing 

levels of porosity with cancellous bone having significantly greater porosity (30 – 90 %) 

compared with cortical bone (8 – 28 %).  The minimum mechanical properties for a 

structural bone graft material are a compressive modulus of approximately 5 GPa, tensile 

strength ~ 90 MPa and compressive strength ~ 90 MPa. 

 

Table 2.1  Summary of human long bone mechanical properties [13-18] 

 Cortical bone Cancellous bone 
Compressive Strength (MPa) 50 – 250 1.5 – 10 
Compressive Modulus (GPa) 5 – 35 0.05 – 0.9 
Tensile strength (MPa) 90.6 – 170 - 
Tensile modulus (GPa) 3.9 – 29.2 - 
Torsion strength (MPa) 3.1 – 7.4 - 
Torsion modulus (GPa) 5 - 71 - 
Bending strength (MPa) 103 – 238 - 
Bending modulus (GPa) 68 – 98  - 
Bulk porosity (%) 8 – 28 30 – 90  
Pore size range (µm) 5 – 200 1 – 900 
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Healing is the natural response to injury through which dead tissue is replaced by living 

tissue and bone possesses the ability to heal itself.  Fracture healing occurs in two ways: with 

callus and without.  Healing with callus typically occurs in tubular bones in the absence of 

rigid fixation.  The precise number of defined stages in the healing process varies depending 

on author [19-21] but typically the process of fracture healing occurs in five stages.  First is 

tissue destruction and haematoma formation where the damaged blood vessels form a 

haematoma within and around the fracture site, whilst bone at the fracture surfaces dies as a 

result of the loss of blood supply.  The next stage is inflammation and cellular proliferation 

which occurs within 8 hours of the fracture.  During this stage there is inflammation and 

proliferation of cells surrounding the fracture.  The clotted haematoma is slowly absorbed 

and infiltrated by blood vessels and a callus forms around the fracture.  Osteoclasts now 

begin to remove dead bone whilst osteogenic and chondrogenic cells create immature or 

‘woven’ bone from the callus.  Over time the callus is progressively mineralised eventually 

uniting the fracture.  The woven bone is then consolidated into lamellar bone by the action 

of osteoblasts and osteoclasts.  This process is slow and it may be months before the bone is 

strong enough to carry normal loads.  Finally remodelling occurs over a period of years to 

remove excess bone laid down during the healing process and strengthen the union. 

 

Healing without callus occurs when the fracture site is immobile as in the case of internal 

fixation.  It occurs in the same manner except that a large callus does not form since it is not 

required to maintain the integrity of the fracture.  The rate of fracture healing will depend on 

the type of bone involved (cancellous bone heals faster than cortical bone), the state of the 

blood supply (poor circulation results in slow healing), the patient’s general health, and 

finally the age of the patient.  Healing can be twice as fast in children as in adults.  For the 

majority of simple fractures bone healing will proceed normally within a period of weeks or 

months.  However problems with non union occur in up to 10 % of cases and there are 

many other instances in which larger bone defects occur that require surgical intervention 

[22]. 

 

All bodily organs including bone are susceptible to pathological conditions and age related 

degeneration that may require repair through surgical reconstruction.  Defects in bone arise 

principally as a result of disease, trauma, infection or genetic abnormality [23].  When these 
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defects go beyond a ‘critical’ size (which depends on the age, health and lifestyle of the 

patient) they will not heal spontaneously and any void will be rapidly filled with fibrous tissue 

produced by fibroblasts.  These are present throughout the body and are able to proliferate 

rapidly.  Once this fibrous connective tissue is present it prevents any tissue repair or 

replacement from taking place.  Thus, biodegradable membranes, scaffolds, and graft 

materials are essential to prevent undesirable tissue ingrowth and enable the body to heal 

critical sized bone defects.   

 

There are an enormous number of diseases and bone disorders which may lead to the 

requirement for bone graft including neurological afflictions (poliomyelitis, cerebral palsy 

and spina bifida), endocrine disorders (osteoporosis, hypopituitarism and acromegaly), 

metabolic bone diseases (osteomalacia, rickets and hyperparathyroidism), abnormal bone 

development (achondroplasia or osteogenesis aclasis), bone disorders (cystic changes or 

tumours) or spinal conditions (degenerative disc disease, spondylolisthesis or scoliosis).  

Cancer often leads to the need for limb amputations although recent advances in the staging, 

diagnostic imaging and treatment of musculoskeletal sarcomas has led to an increase in the 

number of limb salvage operations (up to 90 %) as an alternative to amputation.  The 

survival rate for limb sparing surgery has been shown to be similar to those treated with 

amputation.  Local resection of the tumour and reconstruction has become the most 

common route for management of bone tumours [24-26]. 

 

In the case of traumatic injuries where the patient is in otherwise good health then healing of 

major injuries should proceed normally.  Complications may occur when these injuries are 

combined with other diseases, infection or disruption to the blood supply (avascular 

necrosis, osteonecrosis, aseptic necrosis or ischemic bone necrosis).  This usually occurs at 

the ends of long bones as a result of traumatic disruption to the blood supply, from long 

term use of medications (cortico steroids) or excessive long term alcohol consumption.  

Infection of bone (osteomyelitis) is classified into acute and chronic.   

 

Acute osteomyelitis occurs when bacteria, typically staphylococcus aureus enter the bone via 

the blood stream.  It causes severe pain and tenderness over the involved bone accompanied 

by a fever.  The bacteria multiply in the bone causing pus to form which eats away at the 
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bone and causes an abscess.  Treatment via antibiotics, surgical drainage and curettage is 

usually successful although chronic osteomyelitis may develop from unsuccessful treatment 

of acute symptoms, surgery or open fractures where the bone has become contaminated 

[27].  In severe cases the bone requires resection and replacement with graft material or 

other implant.  If the infection persists amputation may be required.   

 

In the same way that there a great number of diseases which affect humans there are also a 

large number of bone abnormalities that may arise from genetic or environmental 

circumstances.  These may lead to under or over production of bone (fibrodysplasia 

ossificans progressiva), weak bones (osteogenesis imperfecta) or unusual growth of bones.  

Any one of these situations may require surgical intervention with the use of bone graft to 

correct. 

 

Figure 2.4 illustrates the human skeleton and highlights the areas where bone graft 

procedures are commonly required.  These regions include the specialisms of neurology, 

orthopaedics, opthalmics, maxillofacial and dentistry and whilst bone grafts may be required 

anywhere on the skeleton the ends of long bones, the cervical and lumbar spine, maxilla and 

mandible, and extremities are the most commonly affected areas. 
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Figure 2.4  An illustration of a human skeleton highlighting the areas where bone 

graft materials are commonly required 
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2.3 Current bone grafting solutions 

Historically, orthopaedic reconstruction has made extensive use of non degradable materials 

e.g. stainless steel, titanium, or alumina to replace bone tissue.  These devices are associated 

with long term problems such as loosening, fracture, and the biological reaction to wear 

debris and metallic ion release [24].  In order to spare the patient from a retrieval operation 

and reduce the overall resource required to carry out this procedure, considerable effort is 

being directed towards the development of degradable implants.  This modern approach is 

marked by a shift in emphasis from replacement to regeneration of tissues by use of 

materials which degrade over a period of time and are replaced by native tissue [28].  When a 

bone graft is required the primary route for the surgeon is to transplant bone from another 

site on the same individual for use at the defect site, this is known as autograft.  When this is 

not available bone donated from another member of the same species (allograft), from 

another species (xenograft) usually porcine or bovine in origin, or synthetic materials may be 

used [29].  Since 1940 autografting has been used extensively in maxillofacial surgery but it 

was not until the 1980s that allograft bone banking, vascularised autograft and bone graft 

substitutes (BGSs) became routinely available [29,30].   

 

Autograft is considered as the ‘gold standard’ in terms of performance.  This technique 

promotes osteogenesis, osteoinduction and osteoconduction.  Osteogenesis is the creation 

of new bone via cells and proteins within the graft, osteoinduction is the biologically 

mediated recruitment or differentiation of pluripotent cells into chondrocytes and 

osteoblasts essential for bone formation and osteoconduction is the facilitation of blood 

vessel ingrowth into a three dimensional (3D) scaffold [26,31,32].   Autograft has no 

associated risk of viral transmission, excellent success rates, offers structural support and is 

eventually remodelled into the surrounding bone through creeping substitution.  

Unfortunately, there are few sites from which bone can be harvested without serious 

complications.  The iliac crest is most commonly used but bone can also be harvested from 

Gerdy’s tubercle, the distal radius, and the distal tibia.  Its availability is limited, and often 

severely limited when it is required for the most challenging cases.  Autograft harvest 

requires a separate surgical procedure with associated risks, costs and time [8].  Furthermore 

autograft is associated with 8.5 – 20 % risk of complications which include blood loss, nerve 
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injury, hernia formation, infection, arterial injury, fracture, cosmetic defects and chronic pain 

[33,34]. 

 

Allograft is available off the shelf from bone banks in a number of geometric forms and has 

excellent mechanical properties although these vary from batch to batch.  It has been 

associated with delayed healing, poor remodelling [35], and disease transmission [36].  It is 

also expensive at around £250 for a femoral head (a revision hip arthoplasty may require 4 – 

6 donor hips [8]) and often has limited availability [37].  Recent reports in the press 

describing the illegal removal of cadaver bones from diseased bodies for the allograft black 

market have raised serious concerns about the quality and safety of this product [38].   

 

The US Navy Tissue Bank was established in 1951 and since then strenuous efforts have 

been made to improve the safety of bone banking.  These include the exclusion of donors 

with systemic or infective disease and screening for human immunodeficiency virus (HIV) 

and other viruses.  There have been reported cases of HIV transmission and bacterial 

contamination from allograft bone.  As a result, bone banks now undertake secondary 

sterilisation although this degrades the mechanical properties of the bone.  Both allograft 

and xenograft are highly immunogenic and can stimulate a potent incompatibility reaction.  

This can be improved by processing the bone, for example by freezing, freeze drying, 

gamma irradiation or chemical means.  This eliminates any osteogenic capacity leaving only 

an osteoconductive scaffold.  Xenograft has similar performance to allograft but with the 

additional risk of animal derived diseases including bovine spongiform encephalopathy 

(BSE) [29]. 

 

The drawbacks with conventional grafting methods have led to a great deal of research and 

development into synthetic alternatives known as bone graft substitutes (BGSs) or bone 

scaffolds.  These can be broadly classified by their constituent material: polymer (synthetic 

and natural), ceramic, glass or a composite of two or more.  The most common polymeric 

materials in use belong to the polyester family and a subset of this the poly(α-hydroxyacids).  

These contain polylactide (PLA) and polyglycolide (PGA) which have excellent mechanical 

properties and can be combined to alter the rate of degradation.  They degrade to 

monomeric acids and then carbon dioxide via respiration and the citric acid cycle in the 
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kidneys [39,40].  These degradation products are acidic and may lead to a local decrease in 

pH around an implant and subsequent cell lysis.  For this reason they are often combined 

with calcium phosphate filler materials e.g. hydroxyapatite (HA) or tricalcium phosphate 

(TCP) which serve to reinforce the matrix and neutralise the surrounding environment due 

to their basic degradation products [41-43]. 

 

The calcium phosphates have also been used on their own because of their excellent 

biocompatibility and osteoconductivity.  Recent work has determined that macrostructure, 

microstructure, and chemical composition are critical to their osteoinductive potential 

although the precise mechanisms behind this are not fully understood [33,44,45].  Of the 

glassy materials, the most famous is Bioglass® (45S5) developed by Hench et al in 1969 and 

available in resorbable and non resorbable variants [46].  It exhibits a strong bond to bone, 

has been shown to upregulate the expression of genes related to osteoblast activity [47,48], 

and has found extensive use in maxillofacial and dental applications.  Its moderate 

mechanical properties limit its use as a BGS for load bearing applications. 

 

The principal advantages of BGSs are unlimited supply, easy sterilisation and storage, 

predictable mechanical properties, excellent bone ingrowth and moderate cost [49].  There is 

an ever expanding choice of BGSs available on the market, typically in the form of powders, 

granules or blocks.  These are summarised in  

 

Table 2.2 which elucidates the manufacturer and brand name, material, published 

information on porosity and strength and approved indications.  Establishing the cost for 

each BGS proved extremely challenging since the price paid varies between institutions and 

as such they are commercially sensitive.  The majority of these BGS materials are indicated 

as fillers for bony defects which are not intrinsic to the stability of the skeleton, those that 

are able to offer some structural support for the skeleton are dense materials [50-73].  Few 

are indicated for use at infected sites or in the presence of systemic disease.  Load bearing 

capacity is not essential for all indications particularly if the material is mixed with bone 

marrow aspirate and allowed to clot before use.  This forms a highly osteoinductive bone 

graft with excellent handling properties, able to fill large non structural defects e.g. acetabular 

defects after revision hip arthoplasty and posterolateral lumbar fusions.  
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Table 2.2  BGS materials available in the market in 2009 

Manufacturer 
& brand name 

Availablility Material Strength Porosity
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AAP 
Cerabone 
 

granules and 
blocks 

Bovine derived 
HA 

Low
 

100 –
1500 µm

N Y N N [50,74]

Ostim 
 

Injectable 
paste 

HA Moderate N/A N Y N N [50,74]

PerOssal Porous 
morsels 

Nano HA N/A High N Y Y N [50] 

Apatech 
Actifuse Granules, 

mouldable 
paste 

Si substituted
HA 

N/A High N Y N N [51,74]

Berkeley advanced biomaterials 
Bi-Ostetic Blocks and 

granules 
60% HA
40% β-TCP 

N/A high N Y N N [74,75]

Cem-Ostetic Injectable 
paste 

Nano HA Low N/A N Y N N [75] 

GenerOs Granules Β-TCP N/A high N Y N N [52,75]
Biocomposites 
Stimulan Pellets or 

injectable 
paste 

Calcium
Sulphate 

N/A N/A N Y Y N [53] 

Allogran N pellets HA N/A N/A N Y N N [53] 
Allogran R pellets β-TCP N/A N/A N Y Y Y [53] 
Gene X Injectable 

paste
Biphasic CaP N/A N/A N Y N N [53,54]

Biomet      
Endobon 
 

Blocks or 
granules 

Bovine derived 
HA 

Low 45-85%
100-
1500 µm 

N Y N N [55] 

Calcibon 
 

Paste or 
granules 

Carbonated 
calcium 
deficient HA 

4-7 MPa 
comp. 

150-550 
µm 

N Y N N [55] 

Collapat II Fleece Collagen & HA N/A N/A N Y Y Y [55] 
Biogran 
 

300 µm 
granules 

45S5 Bioglass N/A N/A N Y N N [55] 

Mimix 
 

Injectable 
paste 

Tetra calcium 
phosphate & α-
TCP 

20 MPa 
comp. 

200 µm N Y N N [55,74]

OsteoStim 
 

Granules Calcium sodium 
phosphate

N/A N/A N Y Y N [55,74]

CAM implants 
CamCeram 
 

Blocks and 
granules 

60% HA 
40% β-TCP 

Low High N Y N N [56,74]

Ceramisys      
ReproBone 
 

granules 60% HA 
40% β-TCP 

N/A > 80 % N Y N N [57,74]
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PermaBone granules HA 
Non resorbable

N/A N/A N Y N N [57,74]

Ceraver 
Calciresorb granules β-TCP N/A N/A N Y N N [74,76]
Cerapatite granules HA N/A N/A N Y N N [76] 
Calciresorb 35 granules 65% HA 35% 

β-TCP 
N/A N/A N Y N N [76] 

Ceraplast Injectable 
paste, pellets 

Calcium 
Sulphate 

N/A N/A N Y N N [76] 

Curasan 
Cerasorb Blocks and 

granules 
β-TCP N/A high N Y N N [74,77]

DePuy 
α-BSM 
 

Injectable 
paste 

Calcium 
phosphate with 
Ca:P = 1.45 

N/A low N Y N N [58,74]

Healos Sheets Type I bovine 
collagen & HA 

N/A N/A N Y N N [59,60]

Dot GmbH 
BONITmatrix Granules 13% silicon 

dioxide (w/w) 
HA & β-TCP 
(60:40) 

N/A 100 –
1000 µm

N Y N N [61,74,78]

Exactech  
OpteMX 
 

Granules, 
wedges, 
blocks 

60% HA 40% 
β-TCP 

N/A 70 % N Y N Y [74,79]

IsoTis 
OsSatura BCP Granules 80% HA 

20% β-TCP 
N/A 75% N Y N N [63,64]

OsSatura TCP Granules β-TCP N/A 75% N Y N N [80] 
Kasios 
TCP granules, 

blocks and 
wedges 

Pure β-TCP N/A 200-500 
µm  
60–80 %

N Y N N [65] 
 

TCH granules, 
blocks and 
wedges 

75% HA
25% β-TCP 

N/A 200-500 
µm 
60–80 %

N Y N N [65] 

JectOs Injectable 
paste 

55% DCPD 
45% β-TCP 

N/A < 5 µm 
40 % 

N Y N N [65] 

Kyocera - Japan Medical Materials 
Osteograft-S 
 

Blocks or 
granules 

HA N/A N/A N Y N N [66,74]

Mitsubishi Pharma 
Biopex injectable 

paste 
HA N/A N/A N Y N N [74] 

Novabone 
Putty Injectable 

putty 
45S5 Bioglass N/A N/A N Y N N [67,74]

PerioGlass particles 45S5 Bioglass N/A N/A N Y N N [67,74]
MPB Blocks and 

granules 
45S5 Bioglass N/A High N Y N N [67,74]

Olympus Terumo 
OSferion block and 

granules 
Β-TCP N/A 100-

400µm 
75% 

N Y N N [68,74,81]
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OSferion 60 block and 
granules 

Β-TCP 15 – 20 
MPa 

100-
400µm 
60% 

N Y N N [81] 

Boneceram P blocks and 
granules 

HA N/A 50-300 
µm 
35-48% 

N Y N N [81] 

Boneceram K blocks and 
granules 

HA  N/A Dense Y Y N N [81] 

Olympus spine (Orthogem) 
Tripore blocks and 

granules 
HA/TCP N/A N/A N Y N N [74,82] 

Orthovita 
Vitoss blocks and 

granules 
β-TCP N/A 100 –

1000 µm 
90 % 

N Y N N [74,83]

Cortoss Injectable 
paste 
(Non 
resorbable) 

Bisphenol-A 
dimethacrylate 
& baria-
boroalumino-
silicate glass  

N/A N/A Y Y N N [74,83]

Ossacur 
Colloss 
 

Cotton like Collagen-
lyophilisate 

N/A N/A N Y N N [55,84]  

Targobone Cotton like Collagen-
lyophilisate 

N/A N/A N Y Y N [85] 

OsteoBiologics (now Smith & Nephew)
Polygraft Granules, 

cylinders, 
blocks 

PLGA, calcium 
sulphate, PGA 
fibres 

N/A high
 

N Y N N [69] 

Pentax 
Apaceram powder and 

block 
HA N/A N/A N Y N N [74,86]

Smith and Nephew 
Jax CS/TCP granules Calcium 

Sulphate or β-
TCP 

N/A N/A N Y N N [87] 

Styker 
HydroSet Injectable 

cement 
HA N/A N/A N Y N N [74,88]

BoneSource injectable 
cement 

HA No No N Y N N [74,88]

BoneSave granules 80% β-TCP
20% HA 

No No N Y N N [74,88]

Synthes 
Norian SRS injectable 

paste 
Carbonated 
apatite 

N/A N/A N Y N N [74,89]

ChronOs Granules and 
blocks 

β-TCP N/A N/A N Y N N [74,89]

Therics 
TheriLok 
TheriWedge 

Granules, 
wedges, 
blocks 

β-TCP N/A N/A N Y N N [73] 

TheriGraft injectable 
putty

β-TCP N/A N/A N Y N N [73] 

Wright 
Osteoset® Pellets and Calcium N/A N/A N Y Y N [90] 
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 injectable 
putty

Sulphate

Cellplex blocks and 
granules 

TCP N/A N/A N Y N N [74,90]

Zimmer 
CopiOs granules and 

blocks 
Calcium 
phosphate and 
type I collagen 

N/A N/A N Y N N [72,91]

 

There is currently a need for structural synthetic bone graft materials that can be used as a 

substitute to allogenous or autogenous graft materials in large defects, for example in 

resections for infection or tumour.  In these instances bone grafts can be as large as 20 cm 

and their location (joints, spine, and long bones) require them to be able to bear load and be 

used with instrumentation to maintain the stability of the skeleton.  A graft material capable 

of replicating the properties of allograft without its inherent risks would represent a major 

step forward in bone grafting.  Furthermore, a BGS material with cortical bone matching 

mechanical properties may prove beneficial in other indications e.g. interbody spinal fusion 

where high strength and osteoinductivity are required to ensure rapid fusion.   

 

An important area for consideration is how the healing environment alters according to 

anatomical location e.g. metaphyseal defects, long-bone fractures, interbody spine fusion or 

posterolateral spine fusion.  Each will have different levels of difficulty in forming new bone, 

metaphyseal defects may only require an osteoconductive material whereas a posterolateral 

fusion will not succeed with a purely osteoconductive material as a result of the poorer 

blood supply.  A poorly vascularised site will lead to problems with nutrient diffusion into 

the graft and affect the maximum size of the defect that can be successfully treated [31].  

Therefore, it is important to validate that a material will work as intended for each site into 

which it is implanted [26].   

 

In challenging cases it is often not enough to use a purely osteoconductive material and new 

techniques are required, for example, tissue engineering.  This requires a new and multi-

disciplinary understanding of materials that considers many new factors which include: 

developmental biology, genetic engineering, and cell biology as well as the surgical 

techniques required for their use.  A satisfactory outcome when repairing any defect is 

dependent on restoration of an adequate blood supply and the ability to maintain implant 
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stability and controlled loading whilst repair is underway.  Large structural defects present 

the greatest clinical challenge and in order to improve the chances of successfully repairing 

them it is necessary to consider the use of tissue engineering [92].  This is examined in the 

following section. 

 

2.4 Tissue Engineering 

Tissue engineering (TE) is the regeneration of tissues through an in depth understanding of 

the complex mechanisms and processes occurring in the human body by combining 

knowledge from many disciplines [93].  Engineers, materials scientists and chemists examine 

methods to create a bone-like scaffold whilst life scientists examine the body’s response to 

them at the same time as searching for methods to accelerate and improve the likelihood of 

successful healing.  In this respect there are five main strategies being pursued: (i) in situ 

targeting of connective tissue progenitor cells (PCs), these originate from stem cells, have 

finite potential to self renew and generally give rise to one or more differentiated 

phenotypes, (ii) homing of connective tissue PCs, (iii) transplantation of connective tissue 

PCs, (iv) transplantation of culture expanded cells, and (v) transplantation of genetically 

modified cells.   

 

In situ targeting (i) is the promotion of desired tissue formation by stimulating activation, 

proliferation, and differentiation of PCs.  A BGS aims to prevent the encroachment of 

adjacent tissues and provide a surface on which cells can attach.  Examples of targeting 

include the use of acellular BGSs combined with locally delivered growth factors [94,95], 

stimulation by mechanical or magnetic means and use of systemic pharmacological methods.  

Growth factors were discovered by Marshal Urist when he found that demineralised bone 

matrix (DBM) can induce the transformation of mesenchymal stem cells into osteoblasts 

which then form bone [96].  These osteoinductive agents are known as bone morphogenetic 

proteins (BMPs) and are members of the transforming growth factor beta (TGF-β) 

superfamily.  There are currently two BMP products approved by the Food and Drug 

Administration (FDA), Stryker Biotech osteogenic protein OP-1 (rhBMP-7) indicated for 

anterior lumbar interbody fusions (ALIF) and open tibial fractures, and Medtronic Sofamor 

Danek Infuse® bone graft (rhBMP-2) indicated for recalcitrant long bone nonunions and 
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revision posterolateral spinal arthrodeses.  These have a potent osteoinductive effect and can 

be used alone or more commonly in combination with a carrier material.  BMP materials are 

costly although recent trials have shown that the high upfront cost is offset by a decreased 

length of hospital stay as well as a reduction in post surgery complications [97].  A potential 

complication of BMP use is leakage to surrounding tissues resulting in bone formation at 

unintended sites.  Hence delivery and containment of the BMP is essential for success.   

 

Homing (ii) is the recruitment of cells from the circulatory system.  Recent studies suggest 

that therapies may become available which direct osteoprogenitor cells to the site of bone 

repair via the circulatory system.  Transplantation of autologous bone (iii) is of particular 

benefit in regions which have been compromised by previous trauma, infection, irradiation, 

scar or poor blood supply.  Bone marrow aspirate (BMA) can be used to extract the relevant 

cells without the inherent risks of taking autologous bone, this can be combined with 

acellular BGSs to enhance the rate of healing.  Mesenchymal stem cells from a number of 

human tissues including muscle, adipose, and bone marrow can be expanded in vitro (iv) and 

used to regenerate bone, muscle, tendon and cartilage [98].  The cell expansion is able to 

generate a large number of PCs but at significant cost and risk in terms of contamination 

with bacteria or reduction in the proliferative capacity of the cells.  Cells lack the ability to 

form three-dimensional (3D) structures instead they randomly migrate to form a two-

dimensional (2D) layer of cells [99].  Therefore bioreactors are used to culture the cells onto 

3D matrices [100].  It is also possible to use the human body as a natural bioreactor either by 

implanting the scaffold into a highly vascularised ectopic (muscular) site which will result in 

the rapid vascularisation of the scaffold or by injecting a hyaluronic acid gel into a surgically 

created void between the periosteum and native bone.  This will be converted to bone over a 

period of weeks [101,102].  This technique is currently applied clinically for repair of cartilage 

defects and clinical trials are underway for repair of bony defects. 

 

The transplantation of cells which have been genetically modified (v) to secrete osteogenic 

proteins is known as gene therapy.  It has shown tremendous promise for treatment of 

massive bone loss but recent clinical trials led to two deaths, an outcome not acceptable for 

the treatment of non fatal musculoskeletal conditions [103,104].  In many cases where 

promising results have been obtained for bone healing via the previously mentioned 
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strategies there is a lack of clinical evidence with few randomised clinical studies and no cost 

versus benefit analysis [22].  A more elegant solution is to harness the natural power of the 

body to heal bone defects by creating a BGS with inherent osteoinductive properties.  

Recent work has found that growth factors or biocatalysts are not necessary in tissue 

engineering.  This is primarily because the surface properties of the material can be tailored 

to affect the cell response to the implant [105] and secondly because human blood contains 

all of the cells and signalling molecules that are necessary for the healing of bone defects.  

Any object implanted into the body will generate an immune response and hence 

inflammation.  Following this a number of cells, specifically PCs which are able to 

differentiate into any type of cell.  It is the function of the BGS to recruit relevant cells and 

control the process of cell differentiation such that it is colonised with cells and eventually 

bone.   

 

An important area of current research is concerned with investigating how cells respond to 

an implant as a result of its surface properties.  These may be inherent to the material or 

created through surface modification techniques.  Research to date makes it clear that 

material surface properties, such as roughness, wettability, surface mobility, chemical 

composition, electrical charge, and crystallinity can have a profound effect on cell response 

[41].  The cellular response to most synthetic biomaterials is greatly influenced by surface 

chemistry.  Surfaces only acquire biological activity after a layer of protein is adsorbed onto 

the surface which provides anchorage sites for cells, nutrients, and signalling epitopes that 

control cell behaviour [106].  It is believed that the chemical properties of a surface directly 

influence cell behaviour via plasma membrane contact.  Different cells types react differently 

to material surfaces therefore tailored surfaces can be developed to suit a range of different 

in-vivo applications.  The following section highlights the essential requirements of a BGS. 
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2.5 Specifications for a BGS 

The specification for an ideal BGS is covered extensively in Submission 3.  The creation of a 

‘bone like’ graft material is not a simple task, there are a number of important aspects that 

must be considered.  A synthetic graft material requires suitable mechanical properties to 

resist the dynamic stresses and strains imposed upon it according to its anatomical location 

and skeletal movement.  It must have a porous surface and completely open porosity with 

fully interconnected pores to facilitate the ingrowth of bone, initially via angiogenesis and 

then through the normal bone remodelling process.  Porosity is also necessary for the 

diffusion of nutrients and gases as well as removal of metabolic waste from cell activity 

[107,108].  Many aspects of porosity have been found to influence cell response to a scaffold 

including the volume fraction, size, nature and interconnectivity of the pores, as well as the 

density and stiffness of the struts between pores [8,109].   

 

The minimum pore size is regarded to be 100 µm due to cell size, migration requirements 

and nutrient transport.  However, pores 300 µm and larger are recommended in order to 

facilitate enhanced formation of de novo bone and blood capillaries [110].  It is essential that 

these pores are fully interconnected to facilitate ingrowth of blood vessels 

[49,99,107,111,112].  In addition to macroporosity, defined as pores greater than 10 µm, 

microporosity has been demonstrated to influence osteoinduction.  Increased microporosity 

enhances bone formation in calcium phosphate BGSs, although the precise biological 

mechanisms remain unclear [113,114]. In an in vivo (yucatan minipig) comparison of two 

different HA structures, one with an orthogonal array of 330 µm holes and the other with 

similarly sized radial holes and a central channel of 1.2 – 2.0 mm, the larger channel was 

found to have an intact piece of bone within it after 9 weeks of implantation demonstrating 

that channels of this size may be beneficial for BGS materials [115]. 

 

The measurement of porosity and the analysis of explanted bone scaffolds can be carried out 

using microcomputed tomography (µCT).  This technique has recently been developed from 

conventional CT imaging and has become a valuable tool to study the process of tissue 

engineered bone growth [116].  It is possible to construct a 3D model of a bone sample with 

a resolution of 2 µm thus enabling the structure of the bone to be visualised as well as blood 
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vessels within the bone itself.  This technique has shown itself to be useful not only for 

visualising bone but also for assessing the in-growth of de novo bone into an explanted 

scaffold after in vivo experiments [117-119]. 

 

The materials that comprise the BGS should be biocompatible, biodegradable, 

osteoinductive, osteoconductive and not elicit any unsatisfactory immune responses.  The 

rate of degradation needs to occur in a predictable manner in sequence with bony ingrowth 

and ideally be adjustable to account for patient age, health, smoker or non smoker, 

anatomical location, and proximity to a good blood supply [108].  A material that maintains 

strength for a period of time and then completely disintegrates is less preferable to one 

which steadily declines in strength.  An ideal timescale for degradation is regarded to be 

between 6 and 24 months depending on the likely healing rate.  This is dependent on the age 

and health of the patient, the implant site and its proximity to a good blood supply and the 

size of the defect.  The ability to sterilise the implant without compromising its properties is 

vitally important to eliminate the risk of infection. Finally it is important to understand the 

clinical indication or intended use for a BGS since this will effect the requirements for the 

implant. 

 

Any material implanted into the human body is immediately subjected to a barrage of 

proteins, saccharides, lipids, and other solutes found in all bodily fluids.  The larger cells 

arrive later when the smaller molecular processes are already well underway.  All biomaterials 

react in some way to physiological fluids, none are inert.  In the past, biomaterials have been 

concerned with minimising their impact on the bodily environment or their biocompatibility.  

Now, tissue engineering is concerned with a bioactive approach.  In this way biomaterials 

can be used to directly influence physiological processes and enhance the rate of healing.  In 

addition to possessing a structural function a BGS should mimic the in vivo environment to 

promote cell proliferation, differentiation, and maintenance of phenotype as well as function.  

This means that when a biomaterial is placed adjacent to a tissue to be regenerated it must 

induce the migration and proliferation of the relevant cell types [31].  
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2.6 The bone graft market 

The worldwide orthopaedics market is currently enjoying consistent expansion (4% per 

annum) principally as a result of an ageing generation of post war ‘baby boomers’ who are 

now reaching the age where orthopaedic products are required to maintain their quality of 

life [120].  This has coincided with increased patient expectations in terms of the quality of 

life they can expect as they grow older and the increasingly extreme activities that are 

undertaken by older people.  Furthermore, the population is now living significantly longer 

thereby increasing the likelihood that some form of orthopaedic product will be required in 

their lifetime.  

 

There are approximately 600,000 bone graft procedures carried out annually in the US.  

Some 50% of these are in spinal arthrodeses, and 35 – 40 % in general orthopaedic 

applications [24].  In 2008 the global orthobiologics market was worth £1.65 billion and 

growing at 9 % per annum.  At this time BGSs represented approximately 20 % of the total 

value of the bone graft market, although this has been rapidly increasing due to greater 

experience and confidence in their use.  Allograft and demineralised bone matrix (DBM) 

together made up the largest group of the orthobiologics market (~ 40 %) and growth 

factors are an ever increasing presence, up from 22 % in 2006 to 30 % in 2008 [121,122].     

 

The introduction of the BMPs has been met with great enthusiasm by orthopaedic surgeons 

although their use has not yet been optimised and they are often used as a last resort.  High 

doses of growth factor are required to produce adequate bone formation, typically in doses 

up to a million times greater than its normal concentration in bone.  Naturally there are 

concerns about both the safety and cost of such an approach [103].  These concerns are 

thought to be partially attributable to the collagen scaffolds used to deliver them which make 

inefficient protein delivery systems, calcium phosphate ceramics on the other hand are 

reported to be excellent delivery vehicles [104]. 

 

The global market for spinal devices was worth £3.8 billion per annum in 2008 and growing 

at 13 % per annum making it a highly attractive segment in which to target a new medical 

device [122].  A high strength degradable BGS which could be developed into a novel and 

improved spinal implant has the potential to be both highly beneficial for the patient and 
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achieve excellent sales.  The following section examines the empirical methodology 

employed for this project with the aim of creating an innovative BGS material. 
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Chapter 3  Methodology 

 

 

3.1 Introduction 

An extensive review of the manufacturing methods attempted for the creation of an ideal 

BGS was carried out and is presented in Submission 1.  There are two main approaches to 

this problem: those using Rapid Prototyping (RP) techniques and those using more 

conventional methods such as injection moulding or solvent casting.  It is noteworthy that 

the majority of these techniques are engineering solutions to a biological problem.  It was 

apparent to the author in the early stages of the project that the ideal solution would be to 

replicate the process by which bone is formed in vivo.  To this end time was spent 

understanding developmental bone processes and whether it was feasible to create bone by 

first making a protein and collagen matrix, then seeding it with cells which could be 

encouraged to deposit HA crystals onto it.  In this way the natural process where a child’s 

cartilaginous bone ossifies into adult bone could be replicated.  Unfortunately, this approach 

would require a team with a diverse range of skills to be successful and so a more 

conventional engineering approach was followed.  This led to the initial approach of 

examining the readily available RP machines for their suitability to manufacture a novel 

BGS. 

 

3.2 Experimental work using rapid prototyping methods 

The RP machines available at Warwick consisted of Stereo Lithography (SLA), three 

Dimensional Printing (3DP), and Selective Laser Sintering (SLS).  All of these had been 

attempted previously to manufacture BGSs but at this time none were in use commercially.  

This was not considered an obstacle for this project since there was still scope for innovation 

using these processes and RP processes were and remain a highly fashionable research area.     
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Many researchers have attempted to replicate the natural structure of trabecular bone since it 

has an ideal porous geometry [123].  Biomimicry is a term that has been adopted to describe 

the mimicking of natural phenomena and in this instance refers to the manufacture of bone 

in such a way as to mimic its natural structure [39,124-128].  The process of mimicking the 

native structure of cancellous bone has been simplified greatly by recent advances in three 

dimensional (3D) imaging.  µCT is defined as being capable of achieving an isotropic voxel 

spacing of < 100 µm and recent studies have generated 3D datasets of bone with a 

resolution of 2 µm [129].  It enables a 3D data set to be generated quickly and non 

destructively, a process which until recently required histomorphometry.  This is an 

extremely time consuming process involving considerable expertise in the preparation of 

histological slices and use of image recognition software [117,130,131].  In any µCT system 

there are a number of factors that affect the resolution.  These are the inherent resolution of 

the detector, the focal spot size, the amount of geometric magnification, the stability of the 

sample rotation mechanism, and the algorithm used to construct the CT images [118].  

Clearly, µCT is a powerful technique not only for visualising the natural bone with 

remarkable detail but also for visualising implants that have been tested in vivo in order to 

establish whether blood vessels and bone have been able to grow within the scaffold. 

 

A µCT dataset of a 10 mm diameter core sample from a lamb femur was obtained from 

Skyscan (Kontich, Belgium) and the images of each slice were combined into a 3D model 

and exported as an STL file using Mimics (Materialise, Leuven, Belgium).  The STL file is 

then converted into the file format for the relevant RP machine using Magics (Materialise) 

and the 3D model was then constructed.  Initial experimentals were intended to determine 

which RP processes were capable of direct replication of the bone sample and thus be 

suitable for further research.  A number of RP techniques were attempted including stereo 

lithography (SLA), three dimensional printing (3DP), selective laser sintering (SLS) and 

selective laser melting (SLM).   

 

SLA was capable of replicating the dataset with little trouble although its requirement for 

support structures to cope with overhanging features means there are some additional 

elements in the model.  Figure 3.1(a) is an image of an SLA model at four times scale 

showing the intricate detail of the model.  This process is capable of achieving a 20 µm 
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resolution, similar to the actual µCT data [132].  At the time of conducting these experiments 

the major stumbling block for adoption of SLA was the lack of availability for UV curable 

biopolymers.  Research is still underway to find a suitable UV curable biopolymer for direct 

implantation but none are commercially available at present [133,134].  SLM is able to 

produce intricate models of high melting point metals direct from powder.  This is a new 

process and it was thought that it could be developed to produce degradable magnesium 

alloy or ceramic implants direct from powder.  The mechanical properties of magnesium are 

well suited for BTE but it degrades rapidly in vivo with the formation of large quantities of 

hydrogen gas which must be eliminated from the body [135].   

 

SLM is a recently introduced process which is similar to SLS but employs a more powerful 

laser capable of melting metals.  This process was attempted using stainless steel to 

determine if it was suitable for further research.  Figure 3.1(b) is an SLM model in stainless 

steel at twice normal scale.  This demonstrates how the inherent resolution is beginning to 

affect the accuracy of the model.  When the data is produced at 1:1 scale the pores and solid 

parts blend together to form an almost continuous component. 

 

 
Figure 3.1 Images of (a) lamb femur µCT data replicated via stereo lithography scale 

x 4 and (b) selective laser melting scale x 2 [scale bar = 10 mm] 
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3DP was employed to create an alumina replica of the bone sample.  Alumina powder is 

mixed with polyvinyl alcohol (PVA) powder which acts as a binder.  Initial attempts using 

this method were carried out at five times normal size as the resolution of the machine was 

not capable of resolving all of the microscale detail in the bone data.  The resolution is a 

function of the powder size and morphology as well as the nozzle size of the print head.  

The models produced were very weak and fractured during firing.  It proved difficult to 

achieve suitable binder burnout such that the gases produced did not fracture the model.  

The problems associated with 3DP meant that it was abandoned as a research direction. 

  

Further experimental work concentrated on selective laser sintering (SLS) which at this time 

was a new technique, and few researchers had investigated its use for manufacture of BGSs 

[136].  Hence this was a promising technique for innovative research.  For this reason it was 

decided to use SLS to create a series of samples, each set using different machine parameters.  

These samples would be tested both mechanically and biologically to establish their 

suitability for use as a BGS.  The material chosen for use with SLS was polycaprolactone 

(PCL) a commonly used biopolymer.  PCL is an aliphatic polyester that has been tested 

extensively for use in tissue engineering.  It has a low melting point of 58 – 63°C and a low 

glass transition temperature of -62°C.  It degrades by microorganisms as well as 

hydrolytically in-vivo.  It is a regulatory approved biodegradable polymer proved to be tissue 

compatible by use as sutures and long term drug delivery systems [137].  The degradation 

time of PCL is quite slow when compared to other biodegradable polymers and as such it is 

suitable for BTE.  Unfortunately it turned out to be impossible to manufacture a PCL BGS 

via SLS for a number of reasons described fully in Submission 4.   

 

These experiments with RP techniques highlighted both the positive and negative aspects 

relevant to producing a BGS and are summarised in Table 3.1.  Positive aspects of all RP 

methods included their ability to seamlessly integrate with medical imaging systems and 

enable production of complex patient specific implants with specifically designed porosity.  

These would possess adequate strength and be suitable for direct implantation after ensuring 

their sterility.  Rapid prototyping techniques were originally developed for one off 

manufacturing of components for design verification and function testing.  These processes 
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have now developed to such an extent that they are termed rapid manufacturing or direct 

manufacturing processes and can be considered for mass production of BGS materials.  3DP 

is currently in use commercially for manufacture of highly porous blocks and wedges 

[65,138].   

 

The disadvantages of RP methods vary according to the individual process and are 

mentioned below.  SLS machines are expensive to purchase, require a long cool down time 

for the powder bed, waste large amounts of raw material (a real problem with expensive 

biomaterials) and the final products have a loose powdery surface.  SLA machines are cheap 

to purchase but expensive to run in terms of the resin required.  More significantly there are 

no high strength UV curable biopolymers commercially available.  They also require 

additional support structures within the 3D model that need to be removed prior to post 

curing with UV light.  From the experiments carried out as part of this research it became 

apparent that RP techniques may not be the ideal solution for manufacture of a high 

strength and economically viable BGS.  Thus, attention was focused onto more conventional 

processes. 
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Table 3.1  Summary of Rapid Prototyping processes 

Process Materials Advantages Disadvantages Ref’s 
Stereo 
Lithography 
(SLA) 

UV 
curable 
polymers  

Integration with 
medical imaging 
High resolution – 20 
µm 
Direct production of 
ceramics is possible 
Low cost machine 
Quick build speed

Expensive raw materials 
Availability of suitable UV 
degradable biopolymers 
Models require removal of 
support structures 
Models require a UV post 
cure 

[108] 

Selective 
Laser 
Sintering 
(SLS) 

Polymer Integration with 
medical imaging 
Good mechanical 
strength  
Sintering of powder 
particles provides 
microporosity 
No support structures 
required 
 

Expensive machine 
Resolution determined by 
powder size and laser spot 
size – typically 1 mm 
High process temperature 
degrades polymer 
Highly sensitive to raw 
powder 
Loose powdery surface 
Lengthy post processing 
time 
High energy consumption 
Large amounts of waste raw 
material

[108] 

Selective 
Laser 
Melting 
(SLM) 

Metals, 
polymers 
or 
ceramics 

Integration with 
medical imaging 
Good mechanical 
strength  
No support structures 
required 

Expensive machine 
Resolution determined by 
powder size and laser spot 
size – typically 2 mm 
Lengthy post processing 
time 
High energy consumption 

 

3D printing 
(3DP) 

Polymer 
or 
ceramic 

Integration with 
medical imaging 
Suitable for a wide 
range of materials 
Biocatalysts and cells 
can be incorporated 
into scaffold 
No support structures 
required 
Low cost process 

Resolution determined by 
powder size and print head 
Use of toxic solvents 
Lack of mechanical strength 
Manufacture of ceramic 
components is challenging 
 

[139,140]
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3.3 Experimental work using conventional methods 

The experimental work using RP techniques with µCT bone data crystallised an idea to 

create a simple, regular and porous structure.  The requirement for high porosity infers that 

the implant will be significantly weaker than a solid block of material.  Therefore any 

porosity should be structurally ordered as for example in a space frame lattice.  In this way 

the material can be arranged in a structurally efficient manner.  Replicating the structure of 

cancellous bone is not necessarily the ideal method of achieving this as recent work has 

established that a great deal of the strength in bone comes not from the trabeculae but from 

the glue like material in the voids which bind the elements together [141].  Figure 3.2 

illustrates a simple block with an array of holes in each face and it was the intention to 

replicate this using a number of conventional techniques. 

 
Figure 3.2  A 3D CAD model demonstrating a cube with structured porosity 

 

Conventional machining was attempted first.  An array of 1 mm holes with a 2 mm pitch 

were drilled into one face of PCL and PCL/HA composite blocks.  The low melting point 

of PCL (~ 60°C) made it difficult to machine satisfactorily.  Further experiments were 

carried out to establish if a pure HA blocks could be machined in a similar fashion.  Three 

sets of samples were fabricated by compressing HA powder and then sintering them at 

different temperatures.  The first set of samples were left as compressed (HA0), the second 

set were sintered at 600°C (HA600), and the final set were sintered at 1150°C (HA1150).  Of 
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these, only the HA600 set proved possible to machine although only with great care.  

Machining of the holes is a time consuming process and so a number of other methods were 

considered to create an array of holes in a block of material, one of which was to use a laser.  

Pulsed laser drilling, also known as percussion laser drilling uses a number of laser pulses to 

create a via or hole in a piece of material.  When the laser irradiance is kept below a 

threshold value the work piece material is melted and not vaporised in which case the 

molten material is ejected from the hole by an assisting gas [142,143].  There were two lasers 

available for use at Warwick: Carbon Dioxide (CO2) and Neodymium doped Yttrium 

Aluminium Garnet (Nd-YAG).   

 

A series of experiments were carried out to determine if lasers could create an array of holes 

in different materials.  Three sets of biopolymers were used PCL, PCL/HA composite, and 

polylactic acid (PLA).  Each of the samples was moulded into a flat sheet approximately 5 

mm thick.  The results of drilling a series of holes in these materials with a wide range of 

settings demonstrated that PCL was not suited to laser drilling due to its low melting point.  

PCL/HA proved more suitable with well defined holes, although it still showed excessive 

melting.  Polylactide (PLA) is a degradable polyester used commonly in medical implants.  It 

has a melting point of 185°C and proved straight forward to laser machine.  The holes were 

perfectly circular, neat on entry and exit and exactly 350 µm in diameter.  Thus PLA was 

selected for further trials and an injection moulding tool was manufactured to mould 10 mm 

cubes of material.  These cubes were then assembled into a jig and the laser programmed to 

drill an array of 25 holes in each face.   

 

Each face required sixteen seconds to laser drill the 25 holes.  Laser drilling of all three faces 

was accomplished in under two minutes.  The results from the laser drilling of PLA cubes 

are shown in the scanning electron microscopy (SEM) micrographs in Figure 3.3.  The 

striking feature in these images is the precision of the holes.  These experiments 

demonstrated that this technique can be used to create porous blocks of biopolymer with a 

regular and organised porosity.   

 

The experimental attempts to manufacture a porous block of material utilising novel 

methods have raised some interesting points.  Machining is not an efficient method of 
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producing a porous block of material and gave poor results in PCL, PCL/HA composite 

and HA.  Laser processing of PCL yielded poor results but PLA proved highly satisfactory 

and when formed into a cube of material and laser drilled resulted in a highly satisfactory and 

rapid method to create a porous cube.  Laser drilling of HA blocks proved impossible 

although whilst discussing the results of these trials with Dr. Kajal Mallick we stumbled 

upon the idea of a simpler method to create a porous ceramic structure.   

 

 
Figure 3.3 SEM micrographs of a laser drilled PLA cube (a) a view of the top surface 

of the cube showing some of the melt debris on the surface of the PLA as well as the 

regular spacing and circular nature of the holes (b) is a close up of one of these holes 

demonstrating a hole diameter of 347 µm (c) is a view on one corner of the cube and 

shows the holes generated by laser in each of the surfaces (d) is a magnified image of 

the top hole in image (c) 
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The idea was to use a monolithic ceramic structure that would provide the basic scaffold.  

Additional porosity could then be added by laser drilling if necessary.  The ceramic 

monoliths would be manufactured using a similar process to that used for the ceramic ‘brick’ 

in an automotive catalyst.  Using this existing mass production process would enable a highly 

porous yet strong implant to be manufactured at low cost thus providing a significant 

advantage over existing materials.   

3.4 Extrusion of ceramic monoliths 

A ceramic monolith is described as a porous, unitary, ceramic body.  Its method of 

fabrication yields both remarkably high porosity and strength, a combination highly sought 

after in BGS materials.  The process to manufacture ceramic monoliths for use as the 

substrate in automotive catalytic converters is well established.  Ceramic powder is mixed 

with binders and lubricants and then kneaded under vacuum to yield a clay like paste free of 

any air inclusions.  This paste is then forced though a die to create the form as seen in Figure 

3.4.  The ‘green’ component is air dried at 30 - 100°C.  The drying phase is an important part 

of the process where the water is eliminated from the green component resulting in 

shrinkage.  This is where cracks may form that can be large enough to break the monolith.  

The temperature and humidity of this process must be controlled carefully to dry out the 

monolith slowly and uniformly to achieve high compaction with no cracking.  The monolith 

is then cut to shape and heated to burn off the binders, subsequently it is fired to sinter the 

ceramic particles together [144].   

 

The innovative and novel aspect of this research is to make use of an existing manufacturing 

process and successfully adapt it to a new field of application.  The initial aim was to 

establish if calcium phosphate ceramics including hydroxyapatite (HA) and β-tricalcium 

phosphate (β-TCP) could be extruded into monoliths suitable as BGS materials.  The 

extrusion process enables the longitudinal porosity to be controlled by the extrusion die and 

the lateral porosity to be controlled by the initial paste formulation and processing 

conditions. 
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Figure 3.4 An image demonstrating ceramic monoliths with hexagonal and square 

cells 

 

 

A device capable of extruding a ceramic paste through a die to form a monolith was 

designed and manufactured, as seen in Figure 3.5.  The precise design details are described in 

Submission 6.  A series of experiments were then carried out using a range of paste 

formulations composed of HA powder, binder and water.  None of these resulted in the 

successful extrusion of a monolith and it became clear that industrial expertise would need 

to be sought.  In order to facilitate this process it was necessary to have a patent to protect 

the idea and funding to cover costs for equipment and expertise.  A patent was filed which 

can be found in Submission 5 and a number of bids for research funding were written the 

principal one can be found in Submission 6.   
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Figure 3.5  A CAD model of the ceramic monolith extrusion apparatus 

 

Once the patent had been filed a number of companies were approached in search of an 

industrial collaboration.  A rigorous process to find a suitable partner was carried out which 

is described in detail in Submission 6.  Briefly, a two page proposal was created and then 

distributed to over 15 companies with expertise in this field.  Two of these companies 

expressed an interest in collaborating.  After a two month period of negotiation and 

discussion a leading international manufacturer of engineering ceramics were chosen as our 

partner.  This led to proof that calcium phosphate ceramics could be extruded into 

monoliths and on only the second trial a highly satisfactory monolith was obtained (Figure 

3.6).  The next step was to manufacture a range of different monoliths and subject them to a 

series of mechanical and biological tests in order to determine their suitability as a BGS 

material.  The original aim was to examine a wide range of variables including the material, 

cell pitch, wall thickness, wall porosity, and sinter temperature.  After discussions with our 

partner it was apparent that the time to manufacture approximately 100 samples of each 

variant would require significant time and be difficult to fit into their schedule.  Hence, it 

was decided to concentrate on two easily adjusted variables, the paste formulation and die 

dimensions. 

10 cm 
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Figure 3.6  An image of the second industrial extrusion attempt with a 50% HAP 100 

and  50% HAP 200 paste through a 28/70 die 

 

The material chosen for the trials was HA since this would provide an excellent benchmark 

against existing BGS products.  The monoliths were produced using two different paste 

formulations.  Paste 1 was composed of 50:50 mix of two different raw powders HAP 100 

and HAP 200.  Figure 3.7 is a series of SEM images of the raw powders, HAP 100 has a 

mean particle size of 24 µm and HAP 200 has a mean particle size of 9 µm. Paste 2 

contained HAP 200 only.  The other variable that was simple to adjust, and thought to have 

an effect on the mechanical and biological properties of the scaffold was the die 

specification.  The die is used to alter the cell pitch (CP) and wall thickness (WT) of the 

extruded monoliths.  Two different dies would be used for these experiments, the 28/70 and 

a finer 12/300 die.   The 28/70 designation refers to the WT in thousandths of an inch (mil) 

and the number of cells per square inch (CPSI) (Figure 3.8). 
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Figure 3.7  SEM images of raw HA powder (a) and (b) are HAP 100, images (c) and 

(d) are HAP 200 

 

 
 Figure 3.8  A schematic view of monolith cells demonstrating cell pitch (CP) and 

wall thickness (WT) 
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In order to reduce the overall number of experiments it is possible to use Taguchi methods 

or design of experiments (DOE).  These methods allow the effect of changing a large 

number of variables to be established without having to test each unique combination of 

variables.  DOE can be extremely powerful when undertaking experiments that are likely to 

have reliable results with each experimental iteration.  Unfortunately, biological experiments 

are associated with large variances and so the confounding that often occurs in DOE would 

lead to results which cannot be easily interpreted.  For this reason it was decided to carry out 

a full factor two factorial experiment as shown in Table 3.2.  An extra sample with high 

porosity was also added to help further understand the effects on mechanical and biological 

properties.  One hundred samples of each sample type were manufactured for the 

mechanical and biological evaluations. 

 

Table 3.2  HA monolith configuration details 

 DIE 1 
(12/300) 

DIE 2 
(28/70) 

PASTE 1 
HAP 100/HAP 200 50:50 

A
1150°C Sintered

B 
1150°C Sintered 

PASTE 2 
HAP 100/HAP 200 0:100 

D 
1200°C Sintered

E 
1200°C Sintered 

PASTE 2 
HAP 100/HAP 200 0:100 

C 
1150°C Sintered 

 

 

3.4.1 Physical and mechanical characterisation of HA monoliths 

Each sample type A, B, C, D and E were subjected to a series of tests to establish their 

physical properties.  These included:  

• A-axis compression strength and modulus, the A-axis is the primary axis in line with 

the extrusion direction (measured using 3 cells by 3 cells, 20 mm in height for the 

28/70 samples, and 15 mm diameter and 5 mm height for the 12/300 samples) 

• 3 point bending strength and modulus (measured over a 10 mm span with a sample 

size of 20 mm (length) x 4 mm (width) x “wall thickness”) 

• Wall porosity and median pore diameter (determined using mercury porosimetry) 

• Material composition (determined by X-Ray diffraction (XRD)) 

• Microscopy to visualise the macro and micro porosity  
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3.4.2 Biological characterisation of HA monoliths 

The biological characterisation of the HA monoliths examined: 

• Cell attachment to scaffolds (assessed by actin fibre patterns) 

• Expression of osteoblastic markers (alkaline phosphatase (ALP) and osteocalcin 

(OC)) 

• Cell proliferation (assessed by MTT assay) 

 

A wide range of cell types have been used for cell culture studies including human 

fibrosarcoma (HT1080) [145], human osteosarcoma cells (SaOS-2 & MG-63) [146-151], 

neonatal rat calvaria osteoblasts [152,153], L929 fibroblasts [154,155], mesenchymal stem 

cells (MSC’s) [156,157],  and bone marrow stromal cells (BMSC’s) [158-160].  For these 

experiments two different human osteoblastic cell lines were available: MG63 and SAOS2, 

both of which were examined for their suitability.  Both MG63 and SaOS-2 cell lines 

expressed ALP and OC mRNA and secreted detectable levels of ALP and OC protein into 

the media.  The MG63 cells were chosen for future studies principally because of their 

higher growth rate and thus subsequent reduction in overall experimental time.   

 

Successful attachment to a BGS is demonstrated by appropriate cell growth, cellular 

proliferation, and formation of actin fibres.  Figure 3.9 is a confocal microscopy image of 

MG63 and SaOS-2 cells growing on the monoliths and demonstrates the lower cell numbers 

seen in SaOS-2 cell culture.  MG-63 cells are commercially available cells derived from a 

human osteosarcoma cell line and they provide an appropriate model for studying cell 

proliferation and adhesion on engineered surfaces.  In a comparison between human 

osteoblast and MG-63 osteosarcoma cells [161] numerous differences were found but they 

are still a valuable tool for analysing bone cell behaviour.  It is important to mention that 

there are strict guidelines governing the use of human osteoblast cells and so MG-63’s 

provide valuable information without the requirement for ethical approval. 
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Figure 3.9  Confocal microscopy images (x40) of Actin fibre staining.  (a) MG63 cells 

and (b) SaOS-2 cells stained with DAPI (blue, nucleus) and phallodin (red, actin 

fibres) [scale bar = 50 µm] 

 

MG63 cells were grown on 3D scaffolds and ribonucleic acid (RNA) was extracted after six 

and thirteen days in culture.  The expression of ALP and OC was analysed using the reverse 

transcriptase polymer chain reaction (RT-PCR) process and gel electrophoresis.  Figure 3.10 

is an image of a gel demonstrating the relative levels of AP and OC expression compared 

with the 18S control after six and thirteen days in culture. The 18S controls differences in 

RNA quantity and PCR process.  The intensity of the bands were measured and the results 

from OC and AP divided by the 18S values.  These results are plotted in Figure 3.11 and 

Figure 3.12. 

 

At six days expression of OC and AP are similar for all samples and the control.  After 

thirteen days some changes may be apparent (sample size = 1).  Expression in the control 

remains constant whilst samples A, B and E demonstrate increased osteoblastic gene 

expression compared with C and D.  This suggests that A, B and E are better than C and D 

at encouraging the osteoblastic phenotype.  Ideally, gene expression tests would be carried 

out on all samples in parallel with cell proliferation.  However, the time consuming nature of 

these experiments coupled with a limited number of samples led to the decision to use cell 

numbers (measured by MTT) as the primary performance measure for the samples. 
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Figure 3.10  Images extracted from a plate reader demonstrating expression of ALP 

(a) and OC (b) mRNA in MG63 cells after 6 and 13 days in culture   
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Figure 3.11 Relative AP expression for HA samples and the control at 6 and 13 days 

in culture 
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Figure 3.12 Relative OC expression for HA samples and the control at 6 and 13 days 

in culture 

 

The cell proliferation test procedures were the same in each case.  The experiments were 

carried out in triplicate, samples (A – E) were loaded into 12 well culture plates.  MG63 cells 

which had been maintained in culture under standard conditions were subdivided and seeded 

onto the sterile scaffolds with 1 x 105 cells.  After culture at 37°C for a set period of time (3, 

6, 9, 13 days) the samples were subjected to the standard (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazoliumbromide) (MTT) assay to assess cell proliferation.  A detailed description 

of this process can be found in Submission 6. 
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Chapter 4   Analysis and characterisation 

of  HA monoliths 

 

4.1 Results of physical and mechanical characterisation  

The results for the physical characterisation are shown in Table 4.1, each test examined five 

specimens of each sample type.  Samples A, B, and C were sintered at 1150°C and samples 

D and E at 1200°C.  In each case the cooling rate was the same at 30°C/hour.  The cell 

configuration of each scaffold is different to the actual die due to the overall shrinkage of the 

material during sintering.  The wall thickness of samples A, C and D varied from 0.28 to 0.33 

mm and for samples B and E between 0.58 and 0.63 mm.  The cell pitch for samples A, C 

and D varied from 1.08 to 1.16 mm and for samples B and E between 2.48 and 2.53 mm.  

Figure 4.1 demonstrates the differences in monolith structure due to the different extrusion 

dies. 

 

 
Figure 4.1  Image comparing the influence of die on the sample.  (a) Sample A using 

a 12/300 die and (b) sample B using the 28/70 die 
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Samples A and B have a wall porosity of ~ 14%, samples D and E ~ 22% and C ~ 33% as 

measured by mercury porosimetry.  The high wall porosity of sample C is responsible for its 

low strength (142 MPa).  Figure 4.2  is the mercury porosimetry plot for each sample 

demonstrating the nature of the porosity in each scaffold, all having median pore diameters 

of 0.20 – 0.43 µm.  Bending strength tests were carried out on the wall thickness associated 

with DIE 2 (1.08 – 1.16 mm) for the three different sintering and paste conditions as shown 

in Table 4.1.  Mean values for bending strength ranged from 33 – 46 MPa and bending 

modulus from 29 – 57 GPa.  

 

Table 4.1  Physical properties for the samples undergoing biological testing 

Sample number A B C D E 

HAP100/200 (by mass) 50/50 0/100 
Binder (mass %) 10 15 
Kneading water (mass %) 46 50 
Firing temperature (°C) 1150 1150 1150 1200 1200 
Cooling rate (°C/hour) 30 30 30 30 30 
Cell configuration (mil/CPSI) 11/548 23/105 13/475 11/533 25/101
Wall thickness (mm) 0.28 0.58 0.33 0.28 0.63 
Cell pitch (mm) 1.08 2.48 1.16 1.10 2.53 
Wall porosity (%) - 15 33 - 22 
Bending strength (MPa) (σ) - 46 (3) 33 (5) - 46 (7) 
E modulus bending (GPa) (σ) - 57 (4) 29 (4) - 46 (5) 
A-axis compressive strength (MPa) (σ) 265 (29) 243 (40) 142 (8) 233 (52) 263 (63)
E modulus A-axis comp. (GPa) (σ) 4.1 (0) 4.4 (0.1) 3.2 (0.1) 3.9 (0.5) 4.2 (0.3)
Median pore diameter (µm) 0.23 0.25 0.40 0.43 0.35 
Pore Volume (cc/g) 0.036 0.047 0.124 0.066 0.079 
Bulk Porosity (%) 54.4 59.5 63.1 58.3 61.6 
 



 

60 

 
Figure 4.2  Mercury porosimetry plot of wall porosity for HA monolith samples A, B, 

C, D and E 
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Figure 4.3  A-axis Force versus displacement plot for sample A in compression 
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A typical force displacement plot for scaffold A is shown in Figure 4.3.  The scaffolds fail in 

an explosive fashion with little warning.  It is worth noting their virtually constant modulus 

all the way to failure.  The A-axis compressive strength and modulus have been plotted onto 

a graph which compares their properties versus other common biomaterials both porous 

and dense (Figure 4.4).  The results clearly demonstrate that scaffolds A, B, D, and E all have 

similar mechanical properties, whilst C is approximately 50% weaker.  All are excellent with a 

strength within the range of cortical bone and a peak modulus of 4.4 GPa which is just 

below the lower range of cortical bone (5 – 35 GPa) [13-18].  These values are superior to 

any porous degradable bioceramic currently available. 

 

 
 

Figure 4.4  A plot of compressive strength and elastic modulus comparing a range of 

biomaterials with bone and HA monoliths, adapted from [47] 

 

The material properties, particularly the crystallinity and stoichiometry (minimal defects in 

the final composition) of the material have a large effect on both the degradation rate and 

osteoconductivity of the scaffolds and so a great deal of attention needs to be paid to the 

fine details of material analysis.  The compositional analysis is crucial in order to establish 
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whether the manufactured components meet the requirements for stoichiometry and 

crystallinity.  To this end a XRD analysis of each material is shown in Figure 4.5 and 

demonstrates that each material used is 100% phase pure and crystalline HA. 

 

 
 

Figure 4.5  XRD plot for HAP 100/200 50:50 sintered at 1150°C (top), HAP 100/200 

100:0 sintered at 1150°C (middle) and HAP 100/200 100:0 sintered at 1250°C (bottom) 

compared with HA standard 

 

SEM analysis of scaffold A reveals the microstructural details of the material.  Figure 4.6 (a) 

reveals the mix of large and small particles characteristic of the HAP 100/200 powder mix.  

Figure 4.6 (b) shows the boundary between a large and dense HAP 100 particle and the 

smaller HAP 200 particles which are sintered in a porous matrix.  Figure 4.6 (c) clearly 

demonstrates the micro sized particles of HA (~ 1 µm) that form the matrix.  Figure 4.6 (d) 

is a highly magnified image of the porous area demonstrating that the particles are well 

sintered which explains the observed excellent compressive strength.  Figure 4.7 is a series of 

SEM images of a fixed and polished example of sample A.  Again the large HAP 100 

particles are evident in a matrix of micron sized HAP 200 particles.   
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Figure 4.6  SEM images on the end of a cell wall for scaffold A, (a) illustrates the 

entire wall thickness with large particles from HAP 100 visible [scale bar = 20µm]  

(b) illustrates the boundary between one of the large particles and the smaller 

particles of HAP 200 [scale bar = 10 µm]  (c) illustrates the porosity of the monolith 

[scale bar = 1µm] and (d) illustrates how the particles have been sintered together 

[scale bar = 1 µm] 
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Figure 4.7  SEM images on the end of a polished cell wall for scaffold A, (a) 

illustrates a number of monolith cells [scale bar = 200µm] (b) illustrates the entire 

wall thickness with large particles of HAP 100 visible   (c) illustrates the wall 

microporosity [scale bar = 10 µm] 

(d) illustrates the porosity in more detail [scale bar = 1µm] 
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4.2 Results of biological characterisation 

4.2.1 Results of biological experiment 1 

The MTT assay results from experiment 1 are presented in Figure 4.8, the lines represent the 

mean of the three tests.  The most striking result is that sample C did not support the 

growth of MG-63 cells.  The other samples demonstrate excellent cell proliferation during 

the experiment although cell growth has stabilised after 9 days of growth.  A and B appear to 

have the greatest cell proliferation followed closely by D and E. 
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Figure 4.8  Graph of MTT assay results for each sample in biological experiment 1 
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The results for sample C demonstrate zero cell growth.  A possible reason for the lack of cell 

growth of sample C was to be found in the colour of the cell culture media which was 

different for each sample.  A and B were shown to have a light pink colour whilst C, D and 

E were bright pink.  The colour of the media is affected by its pH and so the pH of the 

media for each sample was measured.  The results shown in Figure 4.9 demonstrate that 

sample C is having a significant effect on media pH.  The poor performance of sample C 

was postulated to involve a water soluble toxic substance present on the scaffold surface.  In 

order to confirm the validity a second, identical experiment was set up but this time each of 

the scaffolds was equilibrated, or soaked in media for 24 hours prior to seeding with cells. 
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Figure 4.9  Graph of media pH after equilibrating the samples in media for 24 hours 
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4.2.2 Results of biological experiment 2 

The MTT results from experiment 2 are presented in Figure 4.10.  It can be seen that sample 

C now performs similarly to all of the other scaffolds.  The mean results from each scaffold 

cross over one another and show remarkably similar rates of cell proliferation.  It is useful to 

consider the performance of these samples versus the empty control.  MTT assays were 

carried out to assess the number of live cells remaining in each culture plate well for all of 

the samples and the control.  Figure 4.11 demonstrates the large number of cells growing in 

the empty well versus samples A to E.  A more valuable result can be obtained by summing 

the assay results for the cells on the samples and the cells remaining in the culture wells, 

these are presented in Figure 4.12.  
 

 
Figure 4.10  Graph of MTT assay results for each sample in biological experiment 2 
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Figure 4.11  Graph of MTT assay results for each sample in experiment 2 versus the 

control 

 

Figure 4.12 demonstrates the total number of cells in culture and highlights that the total 

number of cells in culture for samples A, B and D is greater than the control up to day 9 and 

samples C and E have less cells than the control.  All samples show a steep decrease in total 

cell count from day 9 to 13 and perform worse than the control at day 13.  This is most 

likely as a result of the difficulty in supplying the cells on the monoliths with nutrients 

because of their 3D structure.  This graph demonstrates a difference in the total number of 

cells in culture between samples A and B (paste 1) and C, D and E (paste 2).  Samples A and 

B have a higher total cell count which may reflect the ability of the material to support 

osteoblast proliferation. 
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Figure 4.12  Graph of summed MTT assay results for cells on samples and cells in 

wells from experiment 2 

 

4.2.3 Comparison with an existing BGS material 

In order to gain an appreciation of how the HA monoliths performed when compared with 

an existing BGS material it was deemed prudent to carry out the same tests on a market 

leading product.  Orthovita Vitoss® was chosen as it has been in the market place for many 

years and would provide a useful indicator of performance.  Vitoss® is a β-TCP ceramic 

foam used as a void filler for bony defects.  Equilibrated and non equilibrated samples of 

Vitoss® were seeded with cells in an identical fashion to previous experiments.  When the 

results for Vitoss® and the HA monoliths are compared the cell proliferation for samples A, 

B, D and E compare favourably for both unwashed and washed samples.  However, these 
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experiments were not carried out at the same time.  Therefore, in order to confirm these 

results it was necessary to carry out a further experiment to compare them directly.  Figure 

4.13 presents the data from unwashed samples and Figure 4.14 presents the washed sample 

data.  Washing of the samples in media for 24 hours appears to have a detrimental effect on 

the Vitoss® samples but a positive effect on the HA monoliths.  Figure 4.15 shows the 

purple formazan attached to the scaffolds after incubation in MTT.  Each of the HA 

monoliths has extensive cell growth on the horizontal surfaces with some penetration into 

the channels and around the periphery of the scaffold.  Equally the Vitoss has good cell 

growth on the horizontal surfaces but no cell penetration into the foam.  It also has little 

growth on the underside of the cylinder.   Overall, the results show a remarkable similarity 

between the HA monoliths and Vitoss® although the phenomenon relating to the surface of 

the HA monoliths required further investigation. 
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Figure 4.13 MTT results comparing unwashed HA monoliths with β-TCP Vitoss  
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Figure 4.14 MTT results comparing washed HA monoliths with β-TCP Vitoss 

 

 
Figure 4.15  Image demonstrating the formazan staining on HA monoliths and 

Vitoss® after 9 days of cell culture and incubation in MTT for 30 minutes 



 

72 

4.2.4 Further sample analysis 

Gas chromatography mass spectrometry (GCMS) is used to identify different substances 

within a test sample.  To establish if there are any contaminants in the manufactured 

monoliths, samples A – E, a sample of Vitoss, and a blank sample were placed in glass 

bottles with 400 ml of methanol and allowed to soak for 24 hours.  After this time a 100 µl 

sample of the methanol from each bottle was placed into a separate tube on the GCMS and 

analysed.  The results for sample C are seen in Figure 4.16 where the X axis represents the 

time taken for the molecule to exit the column (retention time) and the Y axis is the relative 

intensity.  Six of the peaks are identified although only two of these peaks are identified with 

greater than 85 % confidence.  These relate to hexamethylcyclotrisiloxane and 

octamethylcyclotetrasiloxane. 

 

When the results for each sample are combined and these peaks examined in further detail it 

is evident that samples C, D, and E all have higher concentrations of these chemicals than 

samples A and B which in turn have higher concentrations than Vitoss or the blank sample.  

Figure 4.17 shows the hexamethylcyclotrisiloxane peak for each sample clearly 

demonstrating that samples C and E have high concentrations with Vitoss and the blank 

sample very low in comparison.  Hexamethylcyclotrisiloxane and 

octamethylcyclotetrasiloxane are both based on a ring of Silicon to Oxygen bonds and are a 

possible cause of the basic media present in the initial biological experiments although it 

unclear if the poor cell proliferation is due to the alkalinity of the media or the chemical 

itself.  There are a number of possible sources for this contamination which include the raw 

material, the mixing/kneading process, the die and the furnace.  Our industrial partner has 

examined the paste in detail and found no contamination that may have led to the siloxane 

contamination.  One of the most probable areas where contamination may have occurred is 

during the firing process.  As an example of this one set of samples that were manufactured 

had a pink tinge to them most probably as a result of iron contamination during firing.  

These were discarded but they highlight that very small levels of contamination can have a 

profound effect on the final material.  It is clear that the production of medical implants 

such as these should use stringent control of raw materials and processing conditions 

including the use of clean rooms and dedicated furnaces which are free from contamination. 
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Figure 4.16 A GCMS plot for sample C with a methanol solvent 
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Figure 4.17 A magnified comparison of the GCMS hexamethylcyclotrisiloxane peak 

for A – E and Vitoss 
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Chapter 5  Clinical and expert opinion 

 

 

5.1 The key benefits of calcium phosphate monoliths 

The most important aspect of the extruded HA monoliths is the manufacturing process.  

Extrusion of ceramic monoliths is a highly consistent mass production process that can be 

used to produce consistent, high quality implants economically.  The process enables any 

bioceramic to be formed into a highly porous and yet strong implant.  Initial experiments 

using HA have produced monoliths with a bulk porosity of between 54 % and 63 % 

combined with a high compressive strength of 142 – 265 MPa and compressive modulus of 

3.2 – 4.2 GPa.  These values compare favourably against cortical bone (Table 5.1) and are 

significantly higher than Vitoss® a BGS material currently in the market [13,17,18].  

 

Table 5.1  Comparison of strength and porosity for HA monoliths versus bone  

 Monoliths Bone Bone Vitoss 
Material Hydroxyapatite Cortical Cancellous β-TCP 
Compressive 
Strength (MPa) 142 – 265 50 – 250 1.5 – 10 0.1 – 0.6 

Compressive 
Modulus (GPa) 3.2 – 4.4 5 – 35 0.05 – 0.9 0.001 – 0.01 

Bulk porosity (%) 54.4 – 63.1 8 – 28 30 – 90  88.0 – 92.4 
Channel size (mm) 1.08 – 2.53 - - - 
Pore size range (µm) 0.2 – 0.5 5 – 200 1 – 900 1 – 1000 
 

 

The open structure of the HA monoliths provides an open channel structure that can be 

rapidly vascularised thus providing nutrients to cells throughout the entire scaffold not just 

at the surface as with conventional foamed ceramics.  In addition, the channel walls are 

microporous providing an excellent environment for cell attachment and proliferation.   
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A further advantage of the open channel structure is the ease with which nutrients can be 

delivered throughout the scaffold in a bioreactor for tissue engineering applications.  The 

linear channels in the material allow for cell culture media to be easily passed through it such 

that cells can be grown within the material rather than around the periphery.  Furthermore 

the open structure allows for simple application of a coating to the implant.  This may be a 

biopolymer (natural or synthetic) or other bioceramic (including bioactive glasses).  A 

coating can be used to improve the mechanical and the biological properties of the sample.  

The coating could be impregnated with antibiotics to prevent infection or growth factors to 

enhance the rate of healing. 

 

The open cell structure of the extruded monoliths allow it to be packed with demineralised 

bone matrix (DBM) or morselised autogenous bone both of which are highly osteogenic 

materials.  In this way any implant will have structural integrity provided by the ceramic 

scaffold, contain osteogenic material and maintain its location at the implant site until full 

healing has occurred. 

 

These monoliths can be manufactured in sizes suitable for use in massive (greater than 50 

mm) structural grafts.  Furthermore it can be formed directly after extrusion to conform 

with the geometries of irregular shaped bones in the skeleton.  These may include curved 

extrusions to replace curved bones e.g. the hip or a rib as seen in Figure 5.1(a).  It is also 

possible to mimic the ends of long bones using reduction extrusion as seen in Figure 5.1(b).  

In this way the internal structure of the graft will be maintained and have the greatest 

possible mechanical strength. 
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Figure 5.1 Illustrations of sections through curved (a) and reduction extruded (b) 

monoliths that can be utilised to mimic the natural form of bone, adapted from [162] 

 

Extruded monoliths can also be machined using conventional techniques into patient 

specific implants, and can be easily shaped, using hand tools, by the surgeon in theatre.  It 

can also be manufactured with a functionally gradient structure (FGS) such that the porosity 

and strength can be altered across the section of the extrusion to suit a particular application.  

Figure 5.2 demonstrates some typical monolith extrusion profiles (triangles, squares and 

hexagons) and in the bottom right a FGS where the structure is mimicking the cross section 

through a long bone.  In this case the centre of the implant is highly porous and the density 

of material increases towards the periphery. 

 
Figure 5.2  An illustration demonstrating four readily achievable extrusion profiles 
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5.2 Clinical input to this research 

A vital part of any medical engineering project is to involve the end customer right from the 

beginning in order to develop new products which are clinically beneficial.  In this case 

surgeons represent the end customer as it is them who must be convinced of the efficacy for 

any new product.  To this end every opportunity to present this work to clinicians has been 

seized as well as seeking advice from experts in the field to identify the indications where 

ceramic monoliths may prove clinically beneficial.  During the course of this research the 

author has written a number of bids for funding to support this research.  One of these 

successful bids was used to pay a medical device expert to review the results of the work on 

HA monoliths.  A summary of the main comments from a number of experts in the field are 

organised into specific topics and set out below:  

 

Indications where monoliths may be beneficial 

• “Treatment of long bone segmental defects, approximately 50 mm in size and larger” 

• “Spinal applications that require high compressive strength. Current blocks suffer 

from low strength and bone incorporation is generally poor” 

• “An implant that was strong enough to cope with the mechanical loads around the 

spine and have the patients own cells present in the scaffold to increase the rate and 

likelihood of successful interbody fusion was considered to be ideal” 

• “For large defects it is important the BGS can be retained with screws, hence 

understanding its performance with screws is important to understand for both 

attachment of soft tissues and structural location at the defect site” 

• “Spinal applications are attractive, particularly if good surface area contact can be 

provided to prevent subsidence, and if the implant modulus could be tailored to be 

less rigid than current materials.  Problems with current spinal implants include the 

small contact area which leads to subsidence into exposed bone and subsequent loss 

of correction and intervertebral spacing.  As well as the rigidity of current implants 

being a problem, reduced modulus may help to stress the bone and give faster 

ingrowth and incorporation” 
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• “Replacing the bone removed during bone tumour surgery” 

Tissue Engineering 

• “There was a strong desire for any BGSs to be suitable for use with growth factors” 

• “Equally there was a desire for tissue engineered products cultured with autologous 

cells prior to surgery in order to increase the chance of successful integration” 

Barriers to uptake 

• “Previous experience of calcium phosphate ceramics will mean that surgeons will be 

sceptical of their high strength” 

• “Spinal applications are a possibility but there may be a ‘leap of faith’ required from 

surgeons” 

• “Clinical data is essential to clinicians, in particular demonstration of bony 

ingrowth/incorporation into large defects” 

Resorbability 

• “Synthetic materials remain in the body for a significant time after implantation. The 

material should be capable of significant resorbtion.  A composite of HA/TCP is 

preferred to pure HA” 

General points raised 

• “There is significant interest in new BGSs and especially biological solutions” 

• “There is a possible move back to autograft in the future for budgetary reasons” 

• “A clinical or science champion is essential” 

• “It is important to have an approved product (CE marked) in order to achieve 

success” 

Highlighted concerns 

• “The maximum size of defect that could be treated in terms of actually getting 

nutrients into the scaffold and then ossifying it” 

• “The product as it stands appears suitable for use in long bone segmental defects but 

may not have adequate strength for spinal applications” 

• “The compressive strength of the material is very good but further consideration 

needs to be given to understanding and improving the tensile strength and fracture 

toughness” 
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Addressing these concerns will require further research.  The maximum defect size that can 

be treated by a BGS will depend on a number of factors including patient health, their 

weight and whether they smoke.  Healing of large defects will almost certainly require use of 

growth factors and depend on establishing an adequate blood supply to the region.  The 

literature contains examples of massive allografts up to 24 cm in length healing successfully 

[163-165].  However the survival rate of massive allografts at 216 months is reported to be 

only 56.6 %.  The majority of these fail because of infection, a problem which may be 

eliminated by use of synthetic materials [164]. 

 

The use of HA monoliths for spinal implants is an interesting possibility and their 

compressive strength is adequate as described in Chapter 4.  In spinal applications the cost 

of implant failure is high, hence current spinal cages are made of titanium, carbon fibre, or 

polyetheretherketone (PEEK).    Maintenance of disk height during spinal fusion is closely 

related to favourable outcome but is often impossible to achieve because of subsidence.  

This is a particular problem when the vertebral endplate is resected [166].  In this case an 

implant which induces rapid formation of a bony bridge between the vertebrae and then 

degrades over time will not suffer from subsidence and loss of correction as occurs in 

existing rigid non degradable implants [167]. 

 

A spinal implant would need extensive strength and fatigue testing to prove its suitability.  

Also further understanding of the fracture toughness, tensile and shear properties will need 

to be obtained in order to increase confidence in their suitability as a high strength bone 

graft.  A number of comments were made regarding the suitability of HA for use in BGSs as 

it is thought to degrade too slowly in vivo.  The material is easily altered and future work 

should concentrate on maintaining the strength achieved while increasing osteoinductivity 

and degradation rate.  There is also an issue related to altering the beliefs of surgeons and 

making them consider the use of new and innovative materials and methods.  Surgeons are a 

conservative group of people unwilling to take any risk.  Therefore new products will need 

to prove their efficacy before being applied clinically. 
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Chapter 6  Design of  an implant utilising 

ceramic extrusion 

 

 

6.1 Introduction 

Feedback from clinicians and experts in the medical device field highlighted the spine and 

particularly spinal fusion as an indication where extruded calcium phosphate monoliths may 

be clinically beneficial.  The cost of lower back pain in the US exceeds £50 billion annually 

mostly through indirect costs as a result of lost wages and productivity.  This provides 

enormous incentive to prevent spinal problems occurring and reduce their effects when they 

do.  Particularly since 5% of the patients who present with lower back pain are responsible 

for 75% of the total costs [168] and are therefore easy targets for large improvements.  

 

The spine consists of 30 bones connected together through compressible intervertebral discs 

which provide its flexibility.  It is divided into four main parts: the cervical spine (C1 – C7),  

thoracic spine (T1 – T12), lumbar spine (L1 – L5) and the sacrum (S1 – S5) as can be seen in 

Figure 6.1.  Again there are a wide range of conditions that may cause back pain but two 

common conditions are spondylolisthesis where one vertebra shifts forward over another 

and spondylosis where the intervertebral discs degenerate.  Other conditions such as bulging 

and herniated discs can be seen in Figure 6.2.  Once the intervertebral disc has degenerated 

there is little option but to fuse the vertebra in a technique called spondylosyndesis 

(interbody fusion).  When fusion is successful it should eliminate back pain and other any 

neurological symptoms.  
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Figure 6.1 Illustration of the anatomy of the human spine [169] 
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Figure 6.2  Conditions that may lead to the requirement for spinal fusion [170] 

 

The approach taken for interbody fusion will vary according to patient and surgeon but the 

posterior approach is commonly used.  Posterior lumbar interbody fusion (PLIF) is a 

complex procedure requiring the removal of the intervertebral disc, decompression of the 

spine, insertion of a spinal cage and bone graft into the space and finally the use of pedicle 

screw fixation to prevent any movement of the fused segment.  An essential element of a 

successful interbody fusion is large quantities of bone graft material [171].  Figure 6.3 

demonstrates the basic procedure for an L4 – L5 PLIF and is described below.  First the L4 

spinous process is removed (a), then the L5 superior facets (b), then the ligamentum flavum 

to expose the nerves (c).  The nerves are retracted and the intervertebral disc material 

removed (d) then a chisel is used to flatten the vertebra end plates (e).  Now the spinal cage 

is inserted (f) and located centrally (g) before a large quantity of autologous bone graft is 

inserted (h).  Finally this process is repeated for the other side of the vertebra until the final 

view appears as in (i).  The final layout of cages and autograft bone is shown in Figure 6.4 

demonstrating the large quantity of bone graft material used. 
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Figure 6.3  The procedure for posterior lumbar interbody fusion, adapted from [171] 

 

 

Figure 6.4  The final layout of spine cages and autograft for a PLIF procedure [171] 

 

Once the cages and bone graft have been inserted into the intervertebral space 

instrumentation in the form of pedicle screws is used to rigidly fix the two vertebrae 

together.  Cervical or lumbar fusion can also be carried out using an anterior approach 

through the front of the body.  The perceived advantages of an anterior lumbar interbody 

fusion (ALIF) or anterior cervical interbody fusion (ACIF) are that the muscles in the back 

around the spine are not damaged or cut during the procedure which avoids muscle 
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weakness.  Furthermore the use of minimally invasive techniques with the anterior approach 

can reduce patient recovery time [170].  Each of these approaches are used frequently 

depending on the preferences of the surgeon and as such there are a large number of devices 

available that cater for both.  The largest companies involved in producing interbody fusion 

devices are Stryker, Medtronic Sofamor Danek and Synthes.  An image showing some of the 

devices produced by these companies is shown in Figure 6.5.  These take a wide range of 

forms and are all beautifully engineered devices. 

 

 
Figure 6.5  Image demonstrating a range of spinal interbody fusion devices [172-174] 
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6.2 Important design features 

There are a number of important features that an interbody fusion device must incorporate 

in addition to all of the standard requirements for an implant as set out in the MDD: 

• A tapered implant can be useful and is used to restore the natural curve (lordosis) to 

the spine 

• Two cages are often used to give enhanced stability and make it simpler to insert the 

device particularly during PLIF 

• The device should be as porous as possible to promote bone ingrowth and complete 

fusion 

• The implant needs to be available in a number of heights from 11 – 17 mm  and 

ideally with a taper of between 0° and 8°  

• The implant should be radiolucent so that its position can be verified by X-ray 

during the procedure and checked for accuracy 

• Typical materials are titanium, stainless steel, carbon fibre and PEEK for high 

strength and a modulus similar to the natural bone 

• High maximum strength and resistance to fatigue are essential 

• Any device needs to have secure attachment to instrumentation used to locate it 

• The device must resist being squeezed out of its ideal location, serrations and spikes 

are often used to accomplish this 

 
Most of these requirements are simple design problems that can be solved with good design 

practice.  The issue of maximum strength and fatigue resistance are inherent to the material 

selected for the device.  Titanium, carbon fibre and PEEK are used extensively because of 

their biocompatibility and strength.  None are biodegradable and may lead to subsidence, 

loosening, migration and metallic ion absorbtion.  Porous ceramic materials have been 

avoided to date since the cost of failure will be high.  So when considering the use of a 

calcium phosphate spinal implant a great deal of care needs to be taken over making sure 

that it will survive the worst case loading scenario. 
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The ultimate compressive strength of a vertebral body is reported to be 8,000 N.  Typical 

PLIF and femoral ring allograft (FRA) spacers have a compressive strength of over 25,000 N 

[175].  Earlier testing of 15 mm diameter extruded HA monoliths showed them to have a 

compressive strength of 24,000 – 34,000 N.  If a safety factor of three is chosen then the 

maximum load to failure should be greater than 8,000 x 3 = 24,000 N for any spinal implant. 

 

The typical loads on the spine during a number of activities are significantly lower than this 

although the loads do not always act in the axial direction.  The loads in the lumbar spine 

during ‘very fast’ walking are reported to be 2.5 times body weight.  So for a 100 kg person 

the maximum load in the lumbar spine is likely to be 2,500 N [1].  One study examined loads 

in the lumbar spine of patients implanted with an instrumented vertebral body replacement 

which measured a maximum of 700 N load when sitting whilst carrying a weight at arms 

length [176].  This is a static situation and loads are likely to be higher during dynamic 

loading although it should be remembered that patients having undergone a lumbar fusion 

will not be instantly mobile. 

 

Another consideration is the forces which are likely to occur during bending where only one 

side of the implant will be loaded thereby greatly increasing the stress within one side of the 

implant.  Any ceramic device for spinal fusion would have to undergo extensive in vitro 

testing to establish its suitability prior to any implantation trials being carried out.   

 

In addition to compressive strength it is important to consider the resistance to implant 

expulsion.  Many of the existing devices have saw teeth or spikes to prevent expulsion.  The 

maximum shear force that a human disc can withstand is approximately 150 N and any new 

device should easily exceed this.  The pullout force is typically determined with a clinically 

relevant axial load (around 450 N) and then a simple pull out test.  PLIF devices have been 

found to have a pullout of around 1200 N which is thought to be adequate.  Teeth were 

found to increase the pull out load by more than 3 times and as such are an important 

feature of the design [175]. 

 

The final consideration is the fatigue life of the implant.  Clearly the implant is intended to 

promote the ingrowth of bone within and around it which will reinforce it over time.  
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Mature fusion is usually seen at six to nine months although studies have shown that the 

technical success (indicated by fusion) tends to be greater than clinical success (indicated by a 

decrease in pain) [175].  Any device should be designed to degrade at a rate that is 

proportional to the ingrowth of load bearing bone.  It is imperative that the device does not 

begin to degrade before the de novo bone is able to bear a proportion of the load.  This is 

particularly important in patients who may heal more slowly such as the elderly and those 

suffering from systemic disease.  Another point of note is that lumbar fusions with 

segmental pedicle screw fixation are reported to have a 100 % fusion rate whereas those 

without instrumentation are only 58.6 % successful.  This demonstrates a need for additional 

fixation either from pedicle screws or from screws that go through the interbody implant 

and into the vertebrae [175].  

 

Spinal fusion is reliant on the biological healing process which is dependant on many factors 

including the extent of the instability problem, the type of bone graft used, the surgical 

technique and the patient’s anatomy and lifestyle.  Many of the studies carried out have 

contradictory results most probably as a result of the large number of unknown contributory 

factors.  From the items discussed above it is now possible to design a theoretical interbody 

fusion device.  This is elucidated further in the following section. 

 

6.3 Design of a lumbar interbody fusion device 

The aim for this section is to design a PLIF device using the innovative manufacturing 

process for BGS material that has resulted from the author’s research.  This initial design will 

then be assessed by neuro surgeons and a number of design iterations carried out until an 

implant suitable for manufacture and testing has been designed.  Figure 6.6 is a 3D image of 

the pelvis and lumbar spine generated from CT data available from the visible human 

project.  The CT data is imported into Mimics where the bone is highlighted using 

thresholding and a 3D model of the bone is exported into a CAD program (Solidworks). 
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Figure 6.6  A 3D rendering of the bones in the pelvis and lumbar spine 

 

Once the data is in the CAD system, measurements can be taken of the actual size of the 

vertebra (Figure 6.7) and this information used to design the PLIF device.  In this case a 

monolith with a cell pitch of 2.5 mm and wall thickness of 0.5 mm was chosen to provide 

excellent open channel porosity designed to promote rapid fusion.  The device is made in 

two halves to allow for easy posterior insertion and it has serrated teeth to prevent expulsion 

from the interbody space.   
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Figure 6.7  A CAD model of L4 vertebra and its approximate dimensions 

 

The teeth for the initial design are only cut in one direction although there is evidence that 

suggests pyramidal shaped spikes hold the implant in place more satisfactorily.  For ceramic 

implants there is little prior knowledge and so this would have to be determined empirically.  

Figure 6.8 is a CAD model demonstrating the preliminary design for a PLIF implant utilising 

ceramic monolith manufacturing methods.  Some additional features visible are the 

chamfered lead in to ease insertion of the implant, and the teeth have rounded spaces 

between them rather than sharp corners so that there are no stress concentration points that 

may lead to early implant fracture.  In addition, the surface area of the implant in contact 

with the vertebra has been maximised to prevent subsidence of the implant and the profile 

has been matched to the form of the vertebra. 
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Figure 6.8  A 3D CAD model of a proposed PLIF device utilising ceramic extrusion 

 
 

6.4 Planning for medical implant approval 

The orthopaedics market is subject to increasingly strict regulatory scrutiny.  The UK market 

is governed by the Medicines and Healthcare products Regulatory Agency (MHRA), the US 

market by the Food and Drug Administration (FDA), and the Ministry for Health, Labour, 

and Welfare in Japan [177].  This has led to an increase in the investment of money and time 

required to gain product approval and has led many of the small companies developing these 

products to seek strategic alliances with much larger companies to make use of their global 

marketing, purchasing, and logistics operations.  The European market has recently adopted 

the European Medical Devices Directive which has harmonised regulations allowing any 

manufacturer with a CE marked product to sell anywhere in Europe. 

 

Medical devices in Europe are regulated by the MDD (Medical Devices Directive) 

93/42/EEC.  Generally speaking the responsibility for ensuring compliance to this directive 

is down to the competent authority in each member state, typically the Ministry for Health.  

These competent authorities appoint notified bodies to administer the requirements of the 

10 mm 
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directive and compliance with this directive means that a product may carry the CE mark.  

In the UK the notified bodies are autonomous certification agencies such as the BSI or SGS. 

 

Medical devices are classified according to the level of risk which they pose.  The classes are 

I, II, IIA, and III, where class III devices pose the highest risk.  BGS materials will be either 

Class IIB or III (Rule 8, Annex IX), the final classification will depend on the application 

and whether there is any biological effect or any degradation of the device.  A simple 

hydroxyapatite (HA) device which degrades very slowly in vivo may be classified IIB but small 

changes to the material composition to make it degrade more quickly or have enhanced 

biological performance will mean that it would fall into Class III.  Hence it is prudent to 

assume that a BGS material with ‘ideal’ properties will fall into Class III.  This was 

confirmed by the Medicines and Healthcare products Regulatory Agency (MHRA). 

 

Class III devices require both full quality assurance and an EC Design Examination.  The 

full quality assurance means that the company selling the product needs to have a quality 

management system that complies with ISO 13485:2003.  This is ISO 9000:2000 with 

additions specific to medical devices.  The design examination is a review of technical 

documentation pertaining to the device by an expert in the particular field in question.  

Compliance with these requirements is assured by the notified body who can be selected 

based upon location, cost, and working relationship.  Class III devices take longer and cost 

more than IIB devices to have certified. 

 

There are a number of key documents required to meet the terms of the MDD.  These are: 

• Essential requirements review – this is normally in table form and sets out how each 

item in Annex I is addressed. 

• Risk analysis – should be carried out according to ISO 14971 and set out all the risks 

along with appropriate management or mitigation actions. 

• Biocompatibility – there are a range of standard tests set out in ISO 10993 which 

relate to biocompatibility.  This section may amount to an extensive review of the 

literature with the possibility of using animal testing to give a high level of 

confidence 
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• Clinical evidence – the amount required depends on the device and its intended use.  

Use of materials that have already been proved to be biocompatible significantly 

reduces the amount of work required and may even eliminate the need for clinical 

testing in humans 

• Sterilisation validation – the final product needs to be supplied sterilised and in 

suitable packaging.  There are many ways of carrying out the actual sterilisation but it 

is important that the validation is carried out after the manufacturing process has 

been established since any changes may influence the level of residual micro-

organisms and hence the efficacy of the device 

 

There are a large number of harmonised standards in existence within the EU, none of 

which are a requirement but if met can be used to demonstrate that the essential 

requirements have been met.  There are also a number of US and Japanese standards which 

would have to be conformed to if the product was to be sold in these markets. 
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Chapter 7   Overview 

 

 

 

This research project has required a thorough understanding of the background material 

related to the specifics of bone tissue engineering.  From the point of view of an engineer 

some of the biological and material science aspects have been hard to grasp and as such this 

research has focused principally on the engineering aspects and particularly on innovative 

methods to manufacture bone graft substitute materials.  Extensive research into the 

properties of natural bone made clear the scale of the challenge to replicate its properties for 

an innovative BGS.  There are even today significant gaps in our knowledge related to bone 

and the mechanisms that lie behind its remarkable properties.  BTE is truly a 

multidisciplinary field and in time will be understood more completely thereby opening up 

the possibility to grow bone in the lab that mimics the properties of bone precisely.  For 

now the best achievable result is to create a strong and porous material whose properties 

induce bone formation and which will degrade over time to be replaced by natural bone. 

 

To this end the methodology for this project focused on gaining an understanding of a range 

of manufacturing methods and how they might be used to create a novel BGS.  At the 

beginning of this project RP was a new and fashionable research area and so a number of 

these methods were attempted with limited success and a realisation that they were not the 

answer for production of an economically viable BGS.  Extensive research in this area would 

certainly have resulted in innovative work.  However, the problems highlighted by the 

manufacturing trials coupled with more practical problems such as machine availability led to 

a renewed enthusiasm for the conventional processes such as machining and injection 

moulding.  The original premise that a block of material with ordered porosity would 

perform well both structurally and biologically led to a number of processes being 

attempted.  The most successful of these was laser drilling of PLA cubes which resulted in a 

highly porous cube of material that could be shaped by a surgeon, in theatre, to match the 
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specific geometry of the defect.  An unsuccessful attempt to create similar porosity in a HA 

block led to the realisation that extruded ceramic would have very similar properties and 

could be manufactured more efficiently.  Further research revealed that extrusion of calcium 

phosphate ceramics for BTE had not previously been attempted.  This catalysed a number 

of events including the design of a device to extrude ceramic paste, the writing of a patent to 

protect the idea and the writing of research grants to fund further research.   

 

The extrusion of a ceramic paste to form a monolith is not a straightforward process and 

requires precise preparation as well as the correct machinery and processing conditions.  The 

initial attempts by the author using an experimental extrusion device proved unsuccessful 

and served merely to demonstrate the inherent difficulties of the process and that expert 

advice was essential.  A successful research grant for £30,000 from Warwick Innovative 

Manufacturing Research Council (WIMRC) meant it was possible to purchase suitable 

equipment and expertise to carry out further research.  The previously filed patent enabled 

the author to safely discuss the idea with a number of companies interested in manufacturing 

HA monoliths.  Eventually a collaboration with a manufacturer of ceramic monoliths for 

exhaust gas catalysis was set up which meant that the WIMRC grant could be used to pay for 

biological testing.  This collaboration led to rapid proof that hydroxyapatite could be 

extruded to form a high strength and high porosity monolith that may be suitable for use as 

a BGS.  Therefore an experiment was designed to establish the mechanical and biological 

performance of extruded HA monoliths.  The expertise of our collaborator meant that a 

range of samples could be produced in large numbers such that a series of experiments could 

be carried out to establish the preliminary mechanical and biological properties of this 

innovative material.  The patent has now gone through Patent Cooperation Treaty (PCT) 

stage and the International Preliminary Report on Patentability has shown all 45 claims to be 

novel. 

 

The material chosen for the extrusion experiments was hydroxyapatite which has been used 

extensively in the clinical setting for many years.  At the time of this decision it was thought 

that HA would make an excellent benchmark material.  However, advice from clinicians 

after the experiments has made it apparent that HA is now unfashionable and its degradation 

rate considered to be too slow.  An in vivo study followed up the implantation of porous HA 
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blocks into humans over 109 months and found them to be virtually unchanged [178].   

Thus a commercial BGS is more likely to make use of a HA and β-TCP composite or an ion 

substituted HA both of which will degrade more quickly in vivo and have greater 

osteoinductive potential.  The use of β-TCP may reduce the overall mechanical properties of 

the device, however ion substitution of HA has been reported to reduce its degradation time 

and increase its strength [179-182].  Recent work demonstrated that electrical polarisation of 

porous HA has a significant effect on osteogenic cell activity and may prove beneficial for 

HA monoliths [183].  Overall the HA used in this study was proved to be phase pure by 

XRD and its use has provided a useful benchmark material.  Further work should examine 

the use of more degradable and osteoinductive materials. 

 

The compressive strength and modulus achieved by these HA monoliths is remarkable given 

their high level of overall porosity (> 50%).  The compressive strength for samples A, B, D 

and E is 233 – 265 MPa which matches cortical bone.  Sample C with high porosity walls 

had a compressive strength of 142 MPa in the lower range of cortical bone.  The 

compressive modulus for scaffolds A, B, D and E is 3.9 – 4.4 GPa which, although lower 

than cortical bone (5 – 25 GPa), is still an exceptional achievement.  Particularly when 

compared with other BGS ceramic foams, such as Vitoss whose properties are between two 

and three orders of magnitude lower.  It is anticipated that the strength of the monoliths 

could be improved with further process enhancements which may include the use of finer 

dies.  This will increase the CPSI and decrease the wall thickness of the monolith.  This is 

known to increase the A-axis compression strength for a given material although the 

manufacturing process is likely to be more challenging. 

 

The mechanical property values are calculated along the primary axis (A) of the monoliths 

and these will be lower when tested in other axes.  The ideal use of this material will be for 

specific indications where the principal axis can be aligned with the requirements for the 

implant.  Further consideration must be given to the fracture toughness, tensile and shear 

strength of the monoliths which were not measured on these samples because of their small 

size.  Further work should examine these properties in more detail using larger monolith 

extrusions which will also be used to measure the B and C axis compressive strengths using 

cores from a larger monolith (Figure 7.1).  Another consideration for a load bearing implant 
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is fatigue life.  It will be necessary to generate a stress versus cycles to failure (S-N) curve for 

the monoliths such that the life of an implant can be predicted and designed to survive until 

a proportion of the load has been taken by native bone growing into the monolith channels.  

A fatigue test was carried out on sample A at three times the maximum load in the spine 

during fast walking (~ 7500 N) for 100 compression cycles.  This resulted in no damage to 

the sample.  Future work will need to extend this to many millions of cycles and carry out 

the tests in a wet environment as this is known to have a significant effect on fatigue life 

[184]. 

 

 
Figure 7.1  Diagram describing the A, B and C axis monolith orientations 

 

The first biological experiment highlighted a problem with sample C regarding the 

proliferation of cells in culture.  Not only were the cells not proliferating they were actually 

being killed in the tissue culture well.  A possible explanation for this was that a water 

soluble toxic substance was present on the scaffolds.  This was confirmed as equilibration of 

the scaffold in media for 24 hours prior to use eliminated this problem (as demonstrated by 

experiment 2).  The results from experiment 1 do not show clearly that this cell death 

phenomenon was limited to sample C alone and in fact it was apparent on both D and E, 

although the effects were less pronounced.  Samples C, D and E are all made from Paste 2 

which is composed of 100% HAP 200.  Results from the GCMS analysis of each sample 

type revealed the possibility that the samples were contaminated with hexamethyltrisiloxane 

and octamethylcyclotetrasiloxane in concentrations that reflected the levels of cell death seen 

in Experiment 1.  The exact composition of each paste in terms of binders, lubricants and 
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other ingredients remains confidential.  However the results from the GCMS have been 

analysed by our industrial partner who have determined that the contaminants did not 

originate in the paste.  Thus they are likely to have been introduced during the firing process. 

 

It is unclear if the cell death phenomenon is due to the pH of the media or directly because 

of the chemical present on the samples.  The pH of the media following addition of the 

samples was: A - 8.1, B - 7.6, C > 9.5, D - 8.5, E - 8.5 and in the case of C the pH was 

greater than 9.5, an environment not conducive to a healthy cell population.  The cause of 

this still requires further work to determine if the chemicals identified are the cause of cell 

death directly or via an increase in pH.  Either way they need to be eliminated from the 

samples by careful preparation and rigorous quality standards.  Any future work should 

produce the samples in a clean environment and use furnaces that have not been 

contaminated with impurities from other materials. 

 

Biological experiment 1 suggested that there may be differences between the rates of 

proliferation on the different HA monoliths.  However, because of the cell death problems 

outlined above more realistic results were obtained using equilibrated or washed samples 

(experiment 2) where the results for each sample are similar.  It is clear that the MG63 cells 

proliferate well on each sample type and the differences noted on the washed samples in 

Figure 4.10 are unlikely to be biologically important.  The decrease in growth rate between 

days 9 and 13 is not unusual and probably reflects the length of culture time as osteoblasts 

are known to change their proliferation rate in long-term culture.  It is also worth noting that 

there is significant variation in the biological results.  Even though each experiment was 

carried out in triplicate it is often necessary to carry out at least three sets of experiments in 

order to get a statistically accurate average.  In this case there was insufficient resource to 

manufacture the large number of samples required for three separate sets of experiments.  

Future work to examine the effect of material composition on cell growth could be carried 

out more easily by using small flat samples of the material rather than extruded monoliths 

which are time consuming to produce in large numbers. 

 

Confocal imaging of the cellular distribution did not suggest that there was a significant 

difference between the samples.  It appeared as though the cells were not evenly distributed 



 

99 

throughout the monoliths and prefer to grow on the horizontal surfacess.  They may not be 

migrating down the channels because it is difficult to ensure adequate flow of media into 

them.  This suggests that analysis of the proliferation of cells on the monolith walls could be 

more appropriately carried out on calendered (extruded flat) sheets of material.  Furthermore 

it may be necessary to investigate the use of a 3D culture system for future testing of the full 

scaffolds.  Analysis of the expression of ALP and OC showed no significant difference and 

suggested that all the HA monoliths were similar in their ability to promote development of 

the osteoblastic phenotype.  It was not possible to analyse the quantity of deposited calcium 

on the scaffolds directly due to the high calcium content of hydroxyapatite.   

 

Overall the biological experiments proved that HA monoliths perform almost identically to 

Orthovita Vitoss® - a commercially available BGS, in terms of MG63 cell proliferation.  The 

physical form of Vitoss® versus the HA monoliths is somewhat different and so these results 

are in no way definitive.  They merely serve to suggest that both materials are similarly able 

to support the proliferation of osteoblastic cells.  Furthermore the production process used 

for Vitoss is highly satisfactory in that there are no toxic substances present and indeed the 

initial state of Vitoss appears to promote cell growth.  The biological experiments also 

highlight the limitations with two dimensional (2D) cell culture testing when comparing 

different 3D structures.  It is a useful technique for examining cell-surface interaction but for 

3D structures its value is limited.  The structure of the monoliths will become much more 

important when testing in vivo or in 3D cell culture. 

 

The monoliths created to date have enormous potential to be used as BGSs and later in 

BTE.  These samples demonstrate many benefits over the existing market offerings 

including high strength and ordered porosity that will make them ideal for both BTE and as 

a delivery vehicle for osteogenic materials e.g. demineralised bone matrix (DBM).  Monoliths 

are most suited for applications requiring high compressive strength.  The tensile properties 

of the calcium phosphate ceramics are generally poor and when applied to massive bone 

grafts particularly long and slender struts there is a high chance of failure occurring.  Equally 

the fracture toughness of HA is lower than many of the engineering ceramics.  For this 

reason there is a need for research to improve the mechanical properties further through 

changes to the material composition, addition of filler materials (including fibres), increasing 
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the wall density of the monolith and by coating the monolith with additional polymer or 

ceramic layers.  These coatings could further enhance the osteogenic potential by including 

BMPs that elute slowly as the polymeric coating degrades.  These materials could be termed 

drug eluting monolithic bone substitutes (DEMBS).     

 

The material properties of a BGS are of the utmost importance and further work should 

concentrate on identifying a suitable highly osteoinductive bioceramic through either ion 

substitution or creation of suitable composites with osteoinductive crystallinity and 

stoichiometry.  The work to date demonstrates that adjustments to extrusion process 

parameters have minimal effects on cell proliferation.  The most important aspects are the 

material itself and the elimination of any foreign substances on the implant.  It has been 

speculated that osteoclasts modify the bone surface in such a way that osteoblasts know 

where to lay down new bone.  It is a possibility that this surface could be analysed and then 

replicated on a BGS thus promoting bone growth.  As new techniques are developed to help 

our understanding of material surfaces there is the likelihood that surfaces will be tailored to 

suit specific cell and tissue types.  This research has a long way to go but advances are being 

made all of the time that create many exciting possibilities for the future of material 

development for tissue engineering. 

 

The global orthobiologics market was worth £1.65 billion and growing at 9 % per annum in 

2008.  It is highly competitive and crowded with similar offerings for low strength void 

filling materials.  Extruded calcium phosphate monoliths are uniquely positioned to provide 

a high strength, high porosity alternative to these materials.  However, it is still highly 

conceptual and although opinion from experts and clinicians is highly favourable all 

recognise that this concept needs to be developed into a successful product capable of 

solving key clinical needs.  To this end a device for use in posterior lumbar interbody fusion 

was designed and in the future will be developed in conjunction with clinicians to provide a 

degradable and osteoinductive device.  This will outperform the existing non degradable, 

passive materials.  There are a number of other indications where this innovative BGS may 

prove beneficial including long bone segmental defects particularly where high strength is 

required.  It is expected that it will provide a viable alternative to allograft for massive 

structural grafts. 
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The ability to form large ceramic monoliths pre-firing into specific geometries that relate to 

particular bones in the skeleton is of particular benefit.  The plastic paste that emanates from 

the die after extrusion can be easily shaped by various means to form a porous and high 

strength implant.  This technique is likely to prove useful in forming the irregular bones in 

the skeleton including those found in and around the maxilla and mandible as well as at the 

end of long bones and in the spine.  Ideally a range of standard forms would be available off 

the shelf rather than having to manufacture custom implants for individual patients.  These 

could then be trimmed in theatre by the surgeon to suit the defect.  In load bearing 

applications it will be important to consider the load conditions and align the internal 

structure of the monolith to resist this.  In the case of the PLIF device designed during this 

project the load is primarily compression and the primary axis of the monolith is situated so 

that it aligns with the faces of the vertebrae and can allow a flow of blood through the 

implant to enhance the rate of healing.  This situation would also be the case for segmental 

long bone defects where the structure of the monolith is aligned with the principal load axis 

and the flow of blood.  It is likely that epiphyseal defects will heal more rapidly than mid 

shaft defects due to the improved blood flow. 

 

The logical next step for this work would involve recruitment of a medical device company 

to add to our existing collaboration.  It is expected that a medical company will have access 

to many experts who can quickly determine the indications where this innovative BGS is 

likely to succeed, help design suitable implants and catalyse the process of putting a product 

into the market place.  There are still a number of process related problems that need to be 

solved; particularly contamination of the samples, but by far the greatest challenge will be 

attaining a CE mark.  Achieving approval of a device is greatly simplified by using an existing 

material as in this case.  This is likely to eliminate the need for human clinical trials to gain 

approval and therefore greatly reduce the time to market.  The CE mark will be obtained by 

carrying out an extensive review of the clinical literature as well as a risk analysis and a 

number of other tasks, but all these can be carried out within one year.  Once a CE mark is 

obtained it will be simpler to carry out human trials which will be needed to provide the 

clinical evidence of efficacy as required by clinicians. 
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This project has now reached an impasse where significant investment is required to take it 

further towards a commercial reality.  It is expected that the patent written during this 

project will form the start of a family of patents to protect individual applications of this 

novel method to manufacture synthetic bone.  The author is presently in discussions with a 

number of medical companies who are interested in commercialising this concept. 



 

103 

 

Chapter 8   Conclusions 

 

 

 

This work has demonstrated that calcium phosphate monoliths can be manufactured using 

an established ceramic extrusion process.  These monoliths possess important physical and 

biological properties considered essential in bone graft substitutes.  The research has resulted 

in a number of key conclusions which are highlighted below: 

 

 

The bone graft substitute market 

In 2008, the global orthobiologics market was worth £1.65 billion and growing at 9 % per 

annum.  Of this total value, BGSs currently have a market share of 20 % although this is 

increasing rapidly due to greater clinical understanding and therefore confidence in their use.  

There are approximately 600,000 bone graft procedures carried out annually in the US, 50% 

of which are in spinal arthrodeses and 35 – 40 % used in general orthopaedic applications.   

 

The global market for spinal devices was worth £3.8 billion per annum in 2008 and is 

growing at 13 % annually.  Thus, it is a highly attractive market segment in which to target a 

new medical device.   

 

The BGS market is populated with approximately 65 products manufactured by 32 

companies mainly offering void filling products with low strength.  There is currently an 

urgent need for a BGS with properties similar to autograft and allograft for use in a wide 

range of clinical conditions, especially for high strength applications. 
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Manufacturing process research 

A wide range of manufacturing processes have been attempted by researchers worldwide to 

produce an ‘ideal’ BGS.  These are broadly classified into Rapid Prototyping (RP) and 

conventional methods.  Each RP process has specific disadvantages which include long build 

and post-processing times, poor availability of suitable materials, and undesirable surface 

finish.  In particular, the SLS process is highly sensitive to the precursor powder and its 

morphology, the components must be cooled after processing and then have the unbonded 

powder removed from the component leaving a loose powdery surface.  SLA suffers from a 

poor availability of UV curable biopolymers as well as the requirement for support structures 

in the model and subsequent removal of them.   

 

Conventional manufacturing techniques include solvent casting and particulate leaching, 

injection moulding and machining.  Solvent casting has been investigated extensively and has 

well documented disadvantages which include poor repeatability, trapped solvent or 

porogen, poor mechanical strength and unconnected pores.  Machining, extrusion, and 

injection moulding are well understood, low cost mass production techniques that are likely 

to prove useful for the manufacture of low cost and off the shelf BGSs. 

 

Injection moulded and laser drilled PLA cubes were manufactured as a part of this research 

work with a compressive strength of 67 – 80 MPa and compressive modulus of 1.5 – 2.2 

GPa.  Laser drilling of ceramics proved more challenging but opened up a new research 

direction in the extrusion of ceramic monoliths. 

 

Material properties research 

The genesis of a novel BGS is a huge challenge requiring a thorough understanding of the 

interaction between biomaterial and cells.  Early research indentified that 20 % more cells 

would grow on the surface of a ceramic (HA) filled polymer (PCL) compared with PCL 

alone.  Hence the inclusion of a bioactive calcium phosphate ceramic in a BGS is highly 

beneficial in terms of cell proliferation. 

 

There is no existing single material that is considered ideal for a BGS.  Each has their own 

positive and negative merits.  The material should be selected or developed according to its 
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specific application.  It is important to state here that this work was not focused to develop 

novel synthetic biomaterials but to utilise off the shelf materials.  This was so designed as to 

ease the path to innovation and eventual device approval.  

 

The essential specifications for a BGS have been identified during this work.  These include 

mechanical properties, porosity, form or shape of the product, BGS market, clinical 

requirements including the ability to be sculpted by the surgeon in theatre and possess ‘eye 

appeal’ to aid with product sales.  The specification for a BGS will alter dependent upon the 

indication for which it is intended.  Hence the design of a specific device can only proceed 

following determination of a detailed specification for a particular indication.  

 

Hydroxyapatite monoliths 

HA monoliths have been successfully manufactured with compressive strength ranging from 

142 – 265 MPa and compressive modulus ranging from 3.2 – 4.4 GPa.  These values are 

comparable with cortical bone whose compressive strength ranges from 90 – 215 MPa and 

compressive modulus 5 – 25 GPa.  Such high strength has been achieved whilst retaining a 

level of porosity of 54.4 – 63.1 %.  This compares favourably with cancellous bone whose 

porosity varies from 30 – 90 %.  This high porosity in the form of channels ranging from 

1.08 - 2.53 mm will aid the supply of nutrients and removal of metabolites, thus making it 

possible to successfully heal large defects.  These values were achieved after only two 

process iterations.  There is, however room for improvement and optimisation in the future. 

 

The nature and value of the monolith porosity achieved is suitable as a delivery vehicle for 

demineralised bone matrix (DBM).  This can be packed into the channels forming a highly 

osteoinductive matrix.  Also, the channels allow for simple coating with a range of 

biodegradable biopolymers which may elute drugs.  This in turn will enhance both the 

healing and mechanical properties of the fabricated implant. 

 

HA monoliths have been proved comparable with a market leading bone substitute, 

Orthovita Vitoss® in terms of cell proliferation as measured by MTT assay, and cell 

differentiation as measured by expression of ALP and OC.  Current work employed 2D cell 

culture testing, a deeper understanding of the biological performance will be obtained using 
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3D cell culture or in vivo experimentation.  A recent leading opinion paper highlighted the 

wide range of test methodologies and animal models previously attempted and determined 

that most experimental settings do not represent the actual clinical conditions faced [185].  

Therefore, the in vivo testing strategy should be carefully considered prior to starting 

experimentation. 

 

The biological testing results confirm that the material composition of the HA monolith has 

a significant effect on cell response as compared to the minimal effect of the wall thickness 

and cell size.  The future work should examine the effect of alternative calcium phosphate 

ceramics on mechanical and biological properties. 

 

This work has highlighted the need for stricter control over the manufacturing process in 

order to eliminate any sources of contamination in the final product.  The future work 

should employ dedicated furnaces and clean manufacturing facilities to ensure strict quality 

control. 

 

The extrusion of ceramic monoliths is a process capable of manufacturing highly consistent 

and economical implants.  It is eminently flexible allowing any ceramic or glass ceramic 

material to be extruded.  Hence, it is possible to manufacture a range of monoliths where 

bioresorption time and bioactivity can be tailored to suit a specific indication. 

 

The sintered HA monoliths have successfully been machined into patient specific forms and 

they can easily be shaped by surgeons in theatre to conform with bony defects.  The 

monoliths can also be shaped pre-firing into any range of complex geometric forms that will 

match any bone in the skeleton.  Thus it is possible to manufacture and market a range of 

off the shelf standard products available to surgeons for many indications. 

 

This research has successfully met the challenge of collaborative relationships with clinicians 

in order to identify suitable indications for this innovative technology.  Discussions with 

various experts and clinicians alike have thus far identified a number of indications where 

there is an urgent need for high strength bone graft materials.  These include lumbar and 

cervical fusion, revision hip and knee arthroplasties as well as large segmental defects arising 
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from trauma, infection and disease.  To this end, a specification for a posterior lumbar 

interbody fusion device was established and a theoretical design study carried out to 

successfully produce the first medical device utilising this technology. 

 

Much effort has also been expended in establishing the critical collaborations for this 

research.  These include our industrial partner who are a leading International manufacturer 

of ceramics and our academic partners who are Warwick University Medical School and the 

department of Biological Sciences, without whom this work could not have been completed. 

 

Output 

An international patent (WO 2007/125323) filed in the UK with priority date 27th April 

2006.  The International Preliminary Examination Report (IPER) from the European Patent 

Office determined that all 45 claims contained novelty and an inventive step.  Furthermore 

43 of the 45 claims therein contained industrial applicability. 

 

Four funding proposals have been submitted, two of which have been successful and raised 

nearly £50,000.  These have funded the manufacture and biological testing of the HA 

monolith samples as well as costs related to the patent and expert advice necessary for 

commercialisation. 

 

Thus far there have been constraints on publication of this work due to filing of the patent.  

Now the work is in the public domain and hence two publications are in preparation for 

submission to high impact International journals. 

• “Calcium Phosphate Monoliths for High Strength Bone Graft Applications” 

• “The Market for Bone Graft Substitute Materials and Future Research Directions” 

 

A poster presentation at the Bioversity conference in December 2008. 

 

Discussions are now ongoing with a number of interested medical companies who wish to 

collaborate on this project in the future. 
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Bone tissue engineering is a multi disciplinary challenge that will engage many researchers for 

the years to come.  The background to this topic has been examined in great detail and so 

the author has become more knowledgeable in human anatomy and pathology, orthopaedic 

surgery, the biological sciences, material science and engineering.  Overall, this work has 

proved that it is possible to manufacture porous calcium phosphate monoliths with 

compressive strength comparable with cortical bone and compressive modulus just below 

cortical bone whilst retaining a remarkable level of porosity compared to cancellous bone.  

Furthermore, the biological properties have been found to match one of the most clinically 

respected BGSs on the market.  It is expected that this work will result in a new family of 

high strength, high porosity BGSs for use in some of the more challenging clinical situations 

that can be introduced to the market within two years. 
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