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SPECTRAL EXPANSIONS OF OVERCONVERGENT MODULAR

FUNCTIONS

DAVID LOEFFLER

Abstract. The main result of this paper is an instance of the conjecture made

by Gouvêa and Mazur in [GM95], which asserts that for certain values of r the
space of r-overconvergent p-adic modular forms of tame level N and weight k

should be spanned by the finite slope Hecke eigenforms. For N = 1, p = 2 and

k = 0 we show that this follows from the combinatorial approach initiated by
Emerton [Eme98] and Smithline [Smi00], using the classical LU decomposition

and results of Buzzard–Calegari [BC05]; this implies the conjecture for all r ∈
( 5
12

, 7
12

). Similar results follow for p = 3 and p = 5 with the assumption of a

plausible conjecture, which would also imply formulae for the slopes analogous

to those of [BC05].
We also show that (for general p and N) the space of weight 0 overcon-

vergent forms carries a natural inner product with respect to which the Hecke

action is self-adjoint. When N = 1 and p ∈ {2, 3, 5, 7, 13}, combining this with
the combinatorial methods allows easy computations of the q-expansions of

small slope overconvergent eigenfunctions; as an application we calculate the
q-expansions of the first 20 eigenfunctions for p = 5, extending the data given

in [GM95].

1. Background

Let Sk(Γ1(N)) denote the space of classical modular cusp forms of weight k
and level N . It has long been known that these objects satisfy many interesting
congruence relations. One very powerful method for studying the congruences
obeyed by modular forms modulo powers of a fixed prime p is to embed this space
into the p-adic Banach space Sk(Γ1(N), r) of r-overconvergent p-adic cusp forms,
defined as in [Kat73] using sections of ω⊗k on certain affinoid subdomains of X1(N)
obtained by removing discs of radius p−r around the supersingular points; this space
has been used to great effect by Coleman and others ([Col96, Col97]).

It is known that there is a Hecke action on Sk(Γ1(N), r), as with the classical
spaces, and these operators are continuous; and moreover, at least for 0 < r < p

p+1 ,

the Atkin-Lehner operator U is compact. There is a rich spectral theory for compact
operators on p-adic Banach spaces (see [Ser62]), and this is a powerful tool for
studying the spaces Sk(Γ1(N), r). In this paper, we shall attempt to make this
spectral theory explicit in the case N = 1, k = 0, for certain small primes p.

2. A useful basis

In all the computations in this paper, we shall restrict to the case of tame level
1; hence we shall write Sk(r) for Sk(SL2(Z), r), regarded as a Banach space over
Cp.

Recall that if ψ is any lifting of the mod p Hasse invariant to a modular form

in characteristic 0, and E is any elliptic curve over Cp such that |ψ(E)| > p−
p

p+1 ,
then E has a canonical p-subgroup; hence, for 0 < r < p

p+1 , the r-overconvergent

locus X0(1)≥p−r is isomorphic to a certain subregion of X0(p). (This is proved in
[Kat73], using the theory of the Newton polygon.)
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If p is one of the primes 2, 3, 5, 7, or 13, then X0(p) has genus 0. We shall pick
an explicit uniformiser for this curve, and identify in terms of this uniformiser the
image of X0(1)≥p−r under the canonical subgroup map, and hence obtain a basis
for our space Sk(r).

Theorem 1. Let p be one of the primes 2, 3, 5, 7, or 13. Let fp be the function[
∆(pz)

∆(z)

] 1
p−1

.

Then fp is a rational function on the modular curve X0(p), and the forgetful functor
gives an isomorphism between the region of the modular curve X0(p) where |fp| ≤ 1
and the ordinary locus X0(1)ord. Moreover, for any r ∈ [0, p

p+1 ), this extends to an

isomorphism between the region where |fp| ≤ p
12r
p−1 and X0(1)≥p−r .

Proof. That fp is a rational function on X0(p) is clear from the fact that ∆(z) and
∆(pz) are both classical modular forms of weight 12 and level p, and ∆ has no
zeros on X0(p). It has a zero of order 1 at z =∞ by inspection of its q-expansion,
and no other zeros as ∆ does not vanish on the complex upper half-plane; so it is
a uniformiser for X0(p).

It remains to prove that the subsets defined by |fp| ≤ p
12r
p−1 agree with the r-

overconvergent locus as defined in [Kat73] using lifts of the Hasse invariant. For
p = 2 this is proved in [BC05, §4]; for p ≥ 5 it is [Smi01, Prop 3.5]. In the
remaining case p = 3 Smithline uses a different measure of supersingularity and it
is not immediately obvious this agrees with the valuation of the Hasse invariant;
we show that the two do in fact agree below, in §7. �

Corollary 2. For any 0 ≤ r < p
p+1 , the space S0(r) = S0(SL2(Z), r) of r-

overconvergent p-adic tame level 1 cuspidal modular functions (modular forms of
weight 0) has an orthonormal basis (cfp, (cfp)

2, (cfp)
3, . . . ) where c is any element

of Cp with |c| = p
12r
p−1 .

(This follows as we have given an isomorphism between this space and a p-adic
closed disc, and the algebra of rigid-analytic functions on a p-adic closed disc with
uniformising parameter x is the Tate algebra Cp〈x〉.)

Theorem 3. Let U be the Atkin-Lehner operator acting on S0(r), and let u
(r)
ij

be the matrix coefficients of U with respect to the basis defined above. Then the
following results hold:

(1) u
(r)
ij = cj−iu

(0)
ij .

(2) There is a p × p matrix M (r), which is ‘skew upper triangular’ (that is,

M
(r)
ij = 0 if i+ j > p+ 1), with the property that

uij =

p∑
a,b=1

M
(r)
ab u

(r)
i−a,j−b

for all i, j > p.

(3) u
(r)
ij = 0 if i > pj or j > pi, so in particular U(fkp ) is a polynomial in fp of

degree at most pk.

Proof. Part (1) is an elementary manipulation. Given this, it is clearly sufficient
to prove the existence of M when r = 0. This result is well-known for p = 2, and
may be found in Emerton’s thesis [Eme98]; it is apparently initially due to Kolberg.
The same approach may be used for the other values of p, or alternatively one may
deduce the result from [Smi00, Lemma 3.3.2], where it is shown that there is a
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polynomial Ip(x, y) of degree p in each variable such that Ip(V (fp),
1
fp

) = 0, where

V is the operator induced by q 7→ qp. Smithline produces this identity by noting
that there exists a polynomial Hp of degree p+ 1 with integer coefficients such that
Hp(fp)
fp

is the level 1 j-invariant, and thus we have

Hp(p
−12/(p−1)/fp)

p−12/(p−1)/fp
=
Hp(V (fp))

V (fp)

since both sides are equal to V (j). Clearing denominators and cancelling the factor
V (fp)− p−12/(p−1)/fp (which is clearly not identically zero) gives Ip, and it is thus
clear that Ip has integer coefficients, total degree p+1, constant coefficient equal to
1 and all linear terms zero. Multiplying by f jp , applying U and using “Coleman’s
trick” — the identity U(fV (g)) = gU(f) — gives the required recurrence, with
Mab being the coefficient of xayb in −Ip(x, y). So part (2) of the theorem follows.

Finally, since U(1) = 1 and coefficients of the recurrence are polynomials in fp
of degree at most p, it follows by induction that U(f jp ) must be a polynomial of
degree at most pj in fp; thus uij = 0 if i > pj. On the other hand, it is immediate
from the q-expansion that if j > pi, U(f jp ) must vanish to degree i at the origin, so
uij = 0 in this region as well. �

The polynomials Hp are easy to compute by comparing q-expansions, and hence
we can easily determine the polynomials Ip explicitly (they are tabulated in [Smi00,
§3.3]) and thus the matrices M . For example, when p = 2 we find that

M (0) =

(
48 1
212 0

)
,

and when p = 3,

M (0) =

 270 36 1
26244 729 0
531441 0 0

 .

Corollary 4. The operator U is an “operator of rational generation” in Smithline’s
sense; that is, there exists a rational function R(x, y) whose Taylor series expansion
is equal to

∑
i,j uijx

iyj. The function R is equal to

−y
p

∂

∂y
log Ip(x, y).

3. Computations of slopes

If X is any compact operator acting on a p-adic Banach space, it has a (possibly
empty!) countable set of nonzero eigenvalues, for each of which the generalised
eigenspace

⋃∞
k=1 Ker

[
(U − λi)k

]
is finite-dimensional. The p-adic valuations of

these eigenvalues are known as the slopes. The finite slope eigenvalues occur as the
inverses of roots of the characteristic power series det(I − tX).

In our case, it is known that U is compact for r ∈ (0, p
p+1 ). Given the values of

u
(r)
ij for 1 ≤ i, j ≤ N , it is easy to calculate the characteristic power series of this

N × N matrix (since the entries are rational); and the general theory of compact
operators tells us that this will converge rapidly to the characteristic power series of
U . So we can easily calculate approximations to the eigenvalues, and in particular
we can determine the slopes. The results obtained will be independent of r, since
it is known that any overconvergent U -eigenform of finite slope must extend to a
function on X0(1)≥p−r for all r < p

p+1 (see [Buz03]).

The slopes of U are somewhat mysterious; the complete list of slopes is known
only for p = 2, tame level 1 and weight 0 by [BC05], and for 2-adic, 3-adic and
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5-adic weights near the boundary of weight space by [BK05], [Jac03] and [Kil06]
respectively. There are conjectures ([Buz05], [Cla05]) for a general weight, prime
and level, but these appear to be rather inaccessible at present.

In the approach of [BC05], the next step would be to attempt to decompose the
U operator as U = ADB where A is lower triangular, B is upper triangular, D is
diagonal, and both A and B have all diagonal entries 1. If this factorisation exists
(which is the case if none of the top left r× r minors are singular) then it is unique,
and can be calculated rapidly by Gaussian elimination; usefully, the i, j entry of
each of A,B,D is determined by umn for mn ≤ max(i, j), so in our case the entries
of these matrices are rational and can be calculated exactly using our algorithm for
calculating U .

Conjecture 5. For p ∈ {2, 3, 5} and all r in some open interval containing 1
2 ,

the U operator acting on Sk(r) has a factorisation U (r) = A(r)DB(r), where A(r)

and B(r) have entries in OCp
and are congruent to the identity modulo p, and the

entries of D are given by the following formulae:

p Dii νpDii

2
24i+1(3i)!2i!2

3 · (2i)!4
1 + 2ν2

(
(3i)!
i!

)
3

33i(6i)!(2i)!i!

2 · (3i)!3
2i+ 2ν3

(
(2i)!
i!

)
5

52i(10i)!(3i)!2i!

3 · (5i)!3(2i)!
i+ 2ν5

(
(3i)!
i!

)
This is known in the case p = 2, by [BC05] (for r = 1

2 , but we extend the result

to all r ∈ ( 5
12 ,

7
12 ) below). For p = 3 and p = 5 it is open, but a calculation of Uij

for 1 ≤ i, j ≤ 100 suggests that the conjecture holds for r ∈ ( 1
3 ,

2
3 ) in both cases.

However, the same computation suggests that the entries of A and B are not given
by any hypergeometric term (as they are divisible by too many large primes).

If this conjecture is true, then lemma 5 of [BC05] would tell us that the Newton
polygon of ADB is the same as that of D, so the ith slope would be equal to the
valuation of the ith diagonal entry of D. Indeed, Frank Calegari has conjectured
formulae for the slopes for p = 3 and p = 5 (cited in [Smi04]), and these agree with
those given in the third column above. Furthermore, these formulae also appear to
agree with the combinatorial recipe of [Buz05]; but without a concise formula for
Aij and Bij , there does not seem to be any chance of proving these results by this
method.

For p = 7 and p = 13 the pattern is much less clear; there still appears to be an
ADB factorisation with A and B congruent to the identity, but the entries of D do
not appear to be given by any simple hypergeometric form. It is interesting to note
that in these cases, there are several distinct “slope modules” in the conjectural
picture of [Cla05], so one would not expect all the slopes to be given by a single
simple formula.

4. Computations of eigenfunctions

If M is an n× n matrix over a p-adic field, then calculating the eigenvalues and
eigenvectors of M to any desired degree of accuracy is computationally very easy,
as Hensel’s lemma allows easy calculation of the eigenvalues. More generally, if M
is the matrix of a compact operator and Mn is the n× n truncation, then one can
calculate the eigenvectors of M using Mn: if λ is an eigenvalue of M , and n is
sufficiently large compared to the slope of λ, then there will be an eigenvalue λn of
Mn which is highly congruent to λ, and and as n→∞, λn will converge to λ and
the associated eigenvectors vn will converge to an eigenvector of M .
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Let us do this in the case p = 5 (for comparison with the calculations in [GM95]).
We begin by fixing a value of r; in this case, it is convenient to choose r = 1

3 , since
in this case we may take c = p and the uij are all rational. We now take an N ×N
truncation of the matrix of U and diagonalise this using the PARI/GP functions
polrootspadic() and matker(); this gives an approximate U -eigenfunction. As
it is necessary to divide by entries of the matrix in this computation, the resulting
eigenvector is known to slightly less precision than the eigenvalue; but this is not
a serious problem as calculating the roots of p-adic polynomials is computationally
very easy – working modulo 5300 is no problem on current machines.

If we takeN = 3, we obtain three eigenvalues of slopes σ1 = 1, σ2 = 4 and σ3 = 5,
and three corresponding approximate eigenfunctions φ1, φ2 and φ3. Repeating the
calculation for a range of N , it seems that changing N does not change φ1 mod 58,
so the value obtained for N = 3 is apparently already correct to this precision;
moreover, taking N = 4 is enough to give it mod 510, and N = 5 gives it mod 516.
So the functions obtained appear to be converging very rapidly in the q-expansion
topology (or, equivalently, in the supremum norm on X0(1)ord). The first 30 terms
of the q-expansion of the first few φi is given modulo 515 in §8.

5. Spectral expansions

It is a standard consequence of the spectral theory that for each nonzero eigen-
value λi of U , there is a projection πi onto the corresponding generalised eigenspace,
and this projection commutes with U . Since for any x ≥ 0, the set Ix of indices i
such that λi has slope ≤ x is finite, one can form for any h ∈ Sk(r) the series

ex(h) =
∑
i∈Λx

πi(h).

This is known as the asymptotic U -spectral expansion of h. This will not generally
converge as x → ∞; but it is uniquely determined by the property that for any x
there exists ε > 0 with νp

(∥∥Uk(h− ex(h))
∥∥) ≥ (x+ ε)k for all k � 0.

For p = 2, 3, 5, all the generalised eigenspaces are conjecturally one-dimensional,
spanned by eigenfunctions φi, so we should obtain a sequence of constants ci(h) =
πi(f)/φi. In principle, the spectral theory gives an explicit form for the spectral
projections πi. The first projection π1 is easy, as one simply iterates the process of
applying U and dividing by the eigenvalue λ1. One can then consider h′ = h−π1(h)
and iterate U on this; the same process of iterating and dividing by λ2 should
converge to the second projection π2, but this is unstable with regard to small
errors in the calculation of π1(h) – such errors will inevitably grow at a rate of
(λ1/λ2)k until they swamp the desired answer. So this method is not really usable
in practice.

However, the symmetry properties of U provide us with an alternative approach.
Let g = p6/(p−1)f , so (g, g2, g3, . . . ) are a basis for S0( 1

2 ).

Theorem 6. Define the symmetric bilinear form 〈, 〉 on S0( 1
2 ) by

〈gi, gj〉 =

{
i (i = j)

0 (i 6= j)
.

Then U is self-adjoint with respect to this form; and for all i such that the λi
eigenspace is 1-dimensional and 〈φi, φi〉 6= 0, the spectral projection operators πi
are given by πi(h) = ci(h)φi where

ci(h) =
〈h, φi〉
〈φi, φi〉

.
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Furthermore, the same formula in fact gives us a pairing S0(r)×S0(1− r)→ Cp
for any r ∈ ( 1

p+1 ,
p
p+1 ).

Proof. If p ∈ {2, 3, 5, 7, 13}, then we can show that U is self-adjoint with respect to

this bilinear form by proving that u
(1/2)
ij = j

iu
(1/2)
ji . This follows from Corollary 4

above; the generating function R(x, y) is y
p
∂
∂y log Ip(x, y), and from the construction

of Ip we see that it satisfies

Ip(x, y) = Ip(p
−12/(p−1)y, p12/(p−1)x),

so after an appropriate rescaling we see that x ∂
∂xR(x, y) is symmetric in x and y,

implying the result.
However, one can prove this in general – without the assumption that X0(p)

have genus 0 – by using the theory of residues of p-adic differential forms. This
theory is developed in [FvdP04]; for a general rigid space X/k we can construct

sheaves of finite differentials ΩfX/k, and the notion of residue of a differential at a

point can be defined in a consistent way. Now, if α and β are in S0( 1
2 ), and w

denotes the Atkin-Lehner involution on X0(p), then the differential

w∗(α).dβ

is defined on the annulus |A| = p−1/2 (a “ring domain”) and thus has a residue at
the cusp ∞. It is readily seen that if we define

〈α, β〉 = Resz=∞w
∗(α).dβ

then this agrees with the above definition when p ∈ {2, 3, 5, 7, 13} (it is sufficient
to check the result when α and β are powers of f ; in this case it is immediate from
the fact that w∗(g) = 1

g .)

Let Φ1 and Φ2 be the two canonical maps X0(p2) → X0(p), namely Π1 :
(E,C) 7→ (E,C[p]) and Π2 : (E,C) 7→ (E/C[p], C/C[p]); this gives a symmet-
ric correspondence on X0(p), and the operator on functions corresponding to the
trace of this correspondence is U . So we may write

〈Uα, β〉 = Res∞∈X0(p) w
∗(Uα) dβ

= Res∞∈X0(p) U(w∗α) dβ

= Res∞∈X0(p) Φ2∗Φ
∗
1w
∗α dβ

= pRes∞∈X0(p2) Φ∗1w
∗α dΦ∗2β

= Res∞∈X0(p) w
∗α dΦ1∗Φ

∗
2β

= 〈α,Uβ〉.

It now follows that any two eigenfunctions with different eigenvalues must be
orthogonal, and the explicit form for the spectral projection operators is immediate.

�

(Exactly the same argument also shows that the operators T` are self-adjoint for
` 6= p.)

This pairing allows us to calculate spectral expansions extremely easily for func-
tions h that are at least 1

2 -overconvergent, given sufficiently accurate knowledge
of the eigenfunctions themselves. As in the previous section, we shall take p = 5.
Then the function h = 1

j is r-overconvergent for all r < 5
6 , and the constants ci
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turn out to be:
i ci
1 8295001
2 54 × 7540786
3 54 × 2165317
4 58 × 8075994
5 59 × 4502966
6 510 × 4930721
7 512 × 7120582
8 514 × 7314891
9 518 × 2324226

10 522 × 1076376
...

...

Here, as in the tables of eigenfunctions in §8, we use a relative precision of O(510)
– that is, we write a general element of Z5 in the form 5ab where b ∈ (Z/510Z)×.
These numbers appear to be tending 5-adically to zero extremely rapidly, suggesting
that the U -spectral expansion is in fact convergent, at least in the (rather feeble)
q-expansion topology.

One might optimistically make the following conjecture:

Conjecture 7 (Gouvêa-Mazur spectral expansion conjecture, strong form). Let h
be any r-overconvergent modular function, where r ∈ ( 1

p+1 ,
p
p+1 ). Then the spectral

expansion of h converges to h, in the supremum norm of X0(1)≥p−r .

One cannot expect this to work for r ≤ 1
p+1 , for two reasons. Firstly, since the

eigenfunctions themselves are not necessarily any more than p
p+1 -overconvergent,

we cannot guarantee that the linear functional 〈·, φi〉 even makes sense. More
seriously, if r < 1

p+1 then there exist nonzero functions in the kernel of U ; the

spectral expansion of any such form is always zero.

6. The spectral expansion conjecture

Let us now suppose either that p = 2, or that p = 3 or 5 and Conjecture 5 above
holds. We shall show that this implies the spectral expansion conjecture.

Let A(r) and B(r) be the matrices occurring in the LDU factorisation of U (r).
(D is clearly independent of r.)

Lemma 8. For p = 2, Conjecture 5 holds for all r ∈
(

5
12 ,

7
12

)
; that is, for any r

in this range, A(r) and B(r) have entries in OC2
and their reductions modulo the

maximal ideal are equal to the identity matrix.

Proof. Since by construction A is lower triangular, B is upper triangular and their
diagonal entries are 1, it is sufficient to prove that A( 7

12 ) and B( 5
12 ) have entries in

OC2
. Conveniently, we may choose c to be an integer power of p in these cases, so

the matrices have entries in Qp. Suppose 2j ≥ i > j ≥ 0. Then we shall show the

stronger statement that a
(7/12)
ij /j = b

(5/12)
ji /i ∈ Z2. From [BC05] we know that

a
( 7
12 )
ij = 2j−ia

( 1
2 )
ij = 2j−i · 6ij

(
(2j)!

2jj!

)2(
2ii!

(2i)!

)2
(2i− 1)!

(i+ j)!

(2j + i− 1)!

(3j)!

(
j

i− j

)
.

The first two bracketed terms are clearly in Z×2 , so we can safely ignore them. If
we put i = j + t, what is left is

21−t · 3ij
(

(2j + 2t− 1)!

(2j + t)!

)(
(3j + t− 1)!

(3j)!

)(
j

t

)
.
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If t is odd, we are safe, as the two factorial terms each simplify to products of t− 1
consecutive integers, and each product contains t−1

2 even integers which cancel all
the factors of 2 in the denominator. If t is even, then we are in slightly more trouble.
The first product always ends on an odd integer so it has t

2 −1 even terms, and the

second one depends on j; if 3j + 1 is even, we get t
2 even factors, but if (3j + 1) is

odd, then we are one short. However, this occurs only if j is even, and consequently
i is even; so aij/j ∈ Z2, as claimed. �

Theorem 9. Let K be a field complete with respect to a non-archimedean valuation,
with ring of integers OK and maximal ideal MK . Let S be the space of sequences
over K with entries tending to zero. Then if M is any operator on S given by a
matrix of the form ADB where D is diagonal with strictly increasing valuations and
A,B have entries in OK congruent to the identity modulo MK , then we can find a
matrix C, also with integral entries congruent to the identity, such that C−1MC is
diagonal.

Proof. The statement is not affected by conjugating M by any matrix congruent
to the identity, so we conjugate by B−1, allowing us to assume without loss of
generality that M = AD. It is known (see [BC05]) that M has the same Newton
polygon as D. Hence, for every j there is an eigenvector vj such that Mvj = µjvj
with

µj

Djj
∈ O×K , and vj is unique up to scalars. We normalise vj so it is integral

with norm 1.
Suppose Dvj = ηjwj , where wj has norm 1 and ηj ∈ K. Then since A =

Id mod MK , µjvj = ADvj = ηjAwj . Comparing norms, we see that εj = η−1
j µj ∈

O×K , and reducing mod MK we have εj vj = A wj . But A is the identity, and
consequently εj vj = wj . This is impossible unless vj has all its components zero
outside the jth.

Now if C is the matrix whose jth column is vj , then we evidently have MC = CE
where E is the diagonal matrix with Eii = µi, and since C is congruent to the
identity, it is necessarily invertible (since the series (1 + T )−1 = 1 − T + T 2 + . . .
converges whenever |T | < 1). �

Corollary 10 (Spectral expansion theorem). For any r ∈
(

5
12 ,

7
12

)
, the finite slope

eigenfunctions form an orthonormal basis of the space S0(r); that is, for all h ∈
S0(r), the sum

∞∑
i=1

πi(h)

converges to h, and ‖h‖ = supi ‖πi(h)‖.

Note in particular that this implies that the kernel of U is zero for all r > 5
12 ; it

is in fact known that the kernel is zero for r ≥ 1
p+1 , by Lemma 6.13 of [BC06].

7. Appendix A: Overconvergent forms at small level

In this appendix, we finish off the proof of Theorem 1 in order to show that
the space we work with really is the same as the space of r-overconvergent p-adic
modular forms, for each p ∈ {2, 3, 5, 7, 13}. Since we work only with weight zero
forms, the problem of whether or not the sheaf ω⊗k descends does not arise, and
hence the problem is reduced to identifying in terms of our chosen uniformiser the
region of X0(p) corresponding to the r-overconvergent locus. For p ≥ 5, the Hasse
invariant lifts to level 1 via the classical level 1 Eisenstein series Ep−1, so we can
measure overconvergence directly using this form; the argument is given in [Smi01,
Prop 3.5]. However, for p = 2 and p = 3, the Hasse invariant does not lift to
characteristic 0 in level 1, so we need to introduce auxiliary level structure. The
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case p = 2 is covered in [BC05, §4], using a weight 1 θ series of level 3 as a Hasse
lifting, so we are left with the case p = 3. Smithline shows that in this case the
region where |f3| ≤ 36r coincides with the region where |E6| ≥ 3−3r, for all r < 3

4 ;
so we must compare the valuations of E6 and the Hasse invariant.

Consider the 2-stabilised Eisenstein series E′2 = 2E2(2z) − E2(z), which is a
modular form of weight 2 and level Γ0(2). Since E2(z) ≡ E2(2z) ≡ 1 mod 3, E′2 is
a lift of the mod 3 Hasse invariant. Using our parameter f2 on X0(2), we have the
identities

E′62
∆

=
(1 + 26f2)3

f2

and
E2

6

∆
=

(1 + 26f2)(1− 29f2)2

f2
.

The supersingular region corresponds to |1 + 26f2| < 1; in this region |f2| = 1,
so if |1 + 26f2| > 3−2, then |1 + 26f2| = |1 + 26f2 − 9.26f2| = |1 − 29f2|. Since
supersingular curves have good reduction, |∆| = 1 also, hence

|E′2| ≥ 3−r ⇐⇒
∣∣∣∣E′62∆

∣∣∣∣ ≥ 3−6r

⇐⇒
∣∣∣∣E2

6

∆

∣∣∣∣ ≥ 3−6r

⇐⇒ |E6| ≥ 3−3r

for all r < 1, and the result follows.

8. Appendix B: q-expansions of small slope 5-adic eigenfunctions

The following list gives the first 20 terms of the q-expansions of the 20 smallest
slope 5-adic eigenforms, with the coefficients given to a relative precision of O(510).
This computation took less than 1 minute on a standard laptop PC.

φ1 = q + 8528631q2 + 8596652q3 + 2788848q4 + 5× 610813q5 + 6727787q6

+ 2747331q7 + 5× 3412617q8 + 6989312q9 + 5× 4155753q10 + 538817q11

+ 9643146q12 + 6371187q13 + 5536986q14 + 5× 9298076q15 + 8198461q16

+ 3226656q17 + 5179372q18 + 5× 9335108q19 + 5× 7582174q20 +O(q21)

φ2 = q + 441709q2 + 2550713q3 + 4301618q4 + 54 × 2356503q5 + 2966642q6

+ 3223594q7 + 5× 9703174q8 + 7251077q9 + 54 × 9677377q10 + 3828592q11

+ 5453634q12 + 4410268q13 + 3763396q14 + 54 × 1117889q15 + 1692896q16

+ 2395464q17 + 4642468q18 + 5× 2705229q19 + 54 × 8143729q20 +O(q21)

φ3 = q + 7123391q2 + 727387q3 + 8909193q4 + 55 × 6386403q5 + 6931192q6

+ 3140781q7 + 5× 2842166q8 + 3306102q9 + 55 × 3855698q10 + 1486467q11

+ 1481191q12 + 909182q13 + 3295871q14 + 55 × 5659586q15 + 2077746q16

+ 7148211q17 + 2935007q18 + 5× 6743039q19 + 55 × 1590279q20 +O(q21)
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φ4 = q + 2764444q2 + 5364423q3 + 7074448q4 + 58 × 6938782q5 + 8303937q6

+ 2059419q7 + 5× 5835813q8 + 6128137q9 + 58 × 9032833q10 + 9024817q11

+ 9297879q12 + 3774838q13 + 3966786q14 + 58 × 3159036q15 + 908886q16

+ 1286194q17 + 2888953q18 + 5× 3751388q19 + 58 × 5567336q20 +O(q21)

φ5 = q + 5791436q2 + 3059457q3 + 3403033q4 + 59 × 8921438q5 + 6832127q6

+ 3955981q7 + 5× 3439059q8 + 6952557q9 + 59 × 7517468q10 + 9760342q11

+ 7351831q12 + 8002297q13 + 231841q14 + 59 × 79791q15 + 4456166q16

+ 7616646q17 + 5698727q18 + 5× 7110866q19 + 59 × 6515204q20 +O(q21)

φ6 = q + 6831044q2 + 1698148q3 + 2950248q4 + 510 × 6825297q5 + 6519012q6

+ 8819044q7 + 5× 5659178q8 + 8713237q9 + 510 × 7635693q10 + 4926567q11

+ 6568829q12 + 5335163q13 + 6117561q14 + 510 × 3121831q15 + 9149661q16

+ 3456869q17 + 7282553q18 + 5× 82178q19 + 510 × 464281q20 +O(q21)

φ7 = q + 8461691q2 + 7744062q3 + 4618543q4 + 513 × 9616002q5 + 8166342q6

+ 9150156q7 + 5× 7971386q8 + 1468177q9 + 513 × 860632q10 + 5105092q11

+ 4044791q12 + 5464782q13 + 1658171q14 + 513 × 1617624q15 + 6957796q16

+ 2187611q17 + 8154182q18 + 5× 4201019q19 + 513 × 4662586q20 +O(q21)

φ8 = q + 9458634q2 + 1415388q3 + 310018q4 + 514 × 7929152q5 + 341242q6

+ 8941094q7 + 5× 5522594q8 + 6133252q9 + 514 × 1385868q10 + 1356842q11

+ 6694484q12 + 1201868q13 + 8361846q14 + 514 × 4325351q15 + 165471q16

+ 8543864q17 + 8163393q18 + 5× 8748199q19 + 514 × 6016611q20 +O(q21)

φ9 = q + 1036606q2 + 8499877q3 + 6100798q4 + 519 × 9288232q5 + 7872462q6

+ 6770081q7 + 5× 8252407q8 + 2114087q9 + 519 × 4598717q10 + 7406442q11

+ 7211221q12 + 9554887q13 + 6194461q14 + 519 × 1422464q15 + 9065311q16

+ 5385831q17 + 659347q18 + 5× 9351018q19 + 519 × 2209136q20 +O(q21)

φ10 = q + 8935814q2 + 2184043q3 + 7194158q4 + 520 × 9176128q5 + 844127q6

+ 1292144q7 + 5× 1755091q8 + 8018557q9 + 520 × 1173192q10 + 9267217q11

+ 6670794q12 + 8784078q13 + 1023341q14 + 520 × 3438004q15 + 9735791q16

+ 7839479q17 + 9681648q18 + 5× 9158266q19 + 520 × 2941474q20 +O(q21)

φ11 = q + 8097156q2 + 5482427q3 + 4624273q4 + 521 × 3090372q5 + 6130737q6

+ 9435206q7 + 5× 3663802q8 + 7112412q9 + 521 × 1525782q10 + 9588067q11

+ 2822446q12 + 9371737q13 + 4796011q14 + 521 × 4517844q15 + 9306236q16

+ 2578856q17 + 6765897q18 + 5× 5575723q19 + 521 × 1143306q20 +O(q21)
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φ12 = q + 9675784q2 + 6753913q3 + 116218q4 + 524 × 8946888q5 + 8811542q6

+ 8069219q7 + 5× 6507279q8 + 2269902q9 + 524 × 1463317q10 + 3569092q11

+ 4386034q12 + 8715668q13 + 4467696q14 + 524 × 9032119q15 + 3147446q16

+ 1255689q17 + 5281293q18 + 5× 2446659q19 + 524 × 4273334q20 +O(q21)

φ13 = q + 852841q2 + 6464712q3 + 8669718q4 + 525 × 9222513q5 + 2306167q6

+ 7752656q7 + 5× 1741296q8 + 4498152q9 + 525 × 5178183q10 + 8249092q11

+ 3428716q12 + 4365957q13 + 5551946q14 + 525 × 1789381q15 + 4399821q16

+ 7853311q17 + 7277957q18 + 5× 2773209q19 + 525 × 4930084q20 +O(q21)

φ14 = q + 3696344q2 + 5088573q3 + 4864773q4 + 528 × 7513547q5 + 4948987q6

+ 9082919q7 + 5× 5387723q8 + 4212787q9 + 528 × 7887793q10 + 5486817q11

+ 6445179q12 + 264638q13 + 9163761q14 + 528 × 9742181q15 + 5608361q16

+ 3782269q17 + 5653853q18 + 5× 2678998q19 + 528 × 1361081q20 +O(q21)

φ15 = q + 5997936q2 + 2852832q3 + 6767908q4 + 529 × 3494278q5 + 239127q6

+ 8242231q7 + 5× 5754659q8 + 1331682q9 + 529 × 8544583q10 + 7742217q11

+ 9202956q12 + 5295922q13 + 6847716q14 + 529 × 4110921q15 + 7441416q16

+ 6452396q17 + 9423977q18 + 5× 2768516q19 + 529 × 6717924q20 +O(q21)

φ16 = q + 7855519q2 + 4239748q3 + 3954673q4 + 530 × 8731987q5 + 1047337q6

+ 7593044q7 + 5× 6656568q8 + 7374337q9 + 530 × 2676878q10 + 5407692q11

+ 536154q12 + 2961238q13 + 6487961q14 + 530 × 8403651q15 + 524436q16

+ 8063044q17 + 6134653q18 + 5× 7095743q19 + 530 × 4787751q20 +O(q21)

φ17 = q + 3058366q2 + 808487q3 + 3957143q4 + 535 × 4332043q5 + 2667867q6

+ 2677656q7 + 5× 9265831q8 + 2140627q9 + 535 × 8177988q10 + 8770592q11

+ 1797641q12 + 6220257q13 + 4023221q14 + 535 × 7870816q15 + 1693096q16

+ 9074636q17 + 4429232q18 + 5× 7074024q19 + 535 × 3867524q20 +O(q21)

φ18 = q + 4792184q2 + 9735438q3 + 3075793q4 + 536 × 9618893q5 + 6310342q6

+ 6556094q7 + 5× 1549289q8 + 6307052q9 + 536 × 7085437q10 + 8972592q11

+ 2599209q12 + 5715468q13 + 956796q14 + 536 × 5570759q15 + 552671q16

+ 2538389q17 + 2900318q18 + 5× 6364319q19 + 536 × 1100899q20 +O(q21)

φ19 = q + 3408581q2 + 217102q3 + 1581998q4 + 539 × 2535503q5 + 9752262q6

+ 1937831q7 + 5× 7503797q8 + 7627362q9 + 539 × 6413743q10 + 6787817q11

+ 7664171q12 + 3969712q13 + 21561q14 + 539 × 3787931q15 + 4478661q16

+ 4153256q17 + 4630822q18 + 5× 6899078q19 + 539 × 8331244q20 +O(q21)
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φ20 = q + 7376064q2 + 5111168q3 + 6655533q4 + 540 × 1816457q5 + 9314002q6

+ 8378394q7 + 5× 6422316q8 + 8376307q9 + 540 × 2303998q10 + 9013467q11

+ 8230044q12 + 8742078q13 + 48716q14 + 540 × 7907401q15 + 463666q16

+ 6617104q17 + 6593773q18 + 5× 2535366q19 + 540 × 7084706q20 +O(q21)

Acknowledgements

I would like to thank Barry Mazur for initially bringing this problem to my
attention, and for many helpful conversations while I was working on it; Kevin
Buzzard and Frank Calegari, for assistance with the proof of Theorem 9; and finally
the anonymous referee, whose suggestions improved the exposition substantially.

References

[BC05] Kevin Buzzard and Frank Calegari. Slopes of overconvergent 2-adic modular forms.

Compos. Math., 141(3):591–604, 2005, math/0311364.
[BC06] Kevin Buzzard and Frank Calegari. The 2-adic eigencurve is proper. In John H. Coates’

Sixtieth Birthday, volume 4 of Documenta Mathematica Extra Volumes, pages 211–232.
Bielefeld, Germany, 2006, math/0503362.

[BK05] Kevin Buzzard and L. J. P. Kilford. The 2-adic eigencurve at the boundary of weight

space. Compos. Math., 141(3):605–619, 2005.
[Buz03] Kevin Buzzard. Analytic continuation of overconvergent eigenforms. J. Amer. Math.

Soc., 16(1):29–55 (electronic), 2003.

[Buz05] Kevin Buzzard. Questions about slopes of modular forms. Astérisque, 298:1–15, 2005.
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