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Abstract

We define a universal Fréchet set S of a Banach space Y as a subset containing a

point of Fréchet differentiability of every Lipschitz function g : Y → R. We prove a

sufficient condition for S to be a universal Fréchet set and use this to construct new

examples of such sets. The strongest such result says that in a non-zero Banach

space Y with separable dual one can find a universal Fréchet set S ⊆ Y that is

closed, bounded and has Hausdorff dimension one.
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Chapter 1

Overview

1.1 Lipschitz functions and differentiability

We shall investigate Lipschitz functions defined on Banach spaces. Throughout, all

Banach spaces will be over the field of real numbers. We shall denote the unit sphere

of a Banach space X by S(X).

Definition 1.1. If X and Y are Banach spaces a mapping f : X → Y is said to be

Lipschitz if there exists L ≥ 0 such that

‖f(x)− f(y)‖Y ≤ L‖x− y‖X

for all x, y ∈ X. The smallest such constant L is denoted Lip(f).

We are interested in investigating where such mappings are locally linear.

Definition 1.2. If X and Y are Banach spaces a mapping f : X → Y is said to be

Fréchet differentiable at x ∈ X if we can find a bounded linear operator f ′(x) : X →
Y such that for every ε > 0 there exists a δ > 0 such that

‖f(x+ h)− f(x)− f ′(x)(h)‖ ≤ ε‖h‖

for any h ∈ X with ‖h‖ ≤ δ.

We note that there is another common notion of differentiability that applies

to mappings between Banach spaces. First another definition.

Definition 1.3. If X and Y are Banach spaces and f : X → Y then for x ∈ X we

say that f is differentiable in the direction e ∈ X \ {0} if the limit

f ′(x, e) := lim
t→0

f(x+ te)− f(x)

t
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exists. If e ∈ S(X), the number f ′(x, e) is then called the directional derivative of f

at x in the direction e.

We may now define the notion of Gâteaux differentiability.

Definition 1.4. If X and Y are Banach spaces a mapping f : X → Y is said

to be Gâteaux differentiable at x ∈ X if we can find a bounded linear operator

f ′(x) : X → Y such that for each e ∈ S(X) the directional derivative f ′(x, e) exists

and is given by

f ′(x, e) = f ′(x)e.

In this thesis we shall be exclusively concerned with Fréchet differentiability.

We remark that if f is Fréchet or Gâteaux differentiable then the operator

f ′(x) that appears in the respective definitions is unique and is called, respectively,

the Fréchet or Gâteaux derivative of f at x.

Further, if a function f : X → Y is Fréchet differentiable at a point x ∈ X
then f is also Gâteaux differentiable at x and the two derivatives coincide. In gen-

eral, however, Fréchet differentiability is a strictly stronger property than Gâteaux

differentiability, even for Lipschitz functions.

On the other hand the two notions do in fact coincide for Lipschitz functions

defined on a finite dimensional Banach space; see [5]. In this case we may simply

speak of differentiability.

The question of whether a Lipschitz function is somewhere Fréchet differen-

tiable is answered in the simplest possible case, in which X = Y = R, by a classical

theorem, which says that such a function is differentiable almost everywhere in the

sense of Lebesgue measure.

Theorem 1.5 (Lebesgue). If f : R→ R is a Lipschitz function that is not differen-

tiable at any point in A ⊆ R then A has Lebesgue measure zero.

Proof. See for example [12].

What is less well known is that this statement has a converse.

Theorem 1.6. If A ⊆ R has Lebesgue measure zero, then there exists a Lipschitz

function f : R→ R such that f is not differentiable at any point in A.

Proof. We use the fact that a null set may be covered by a countable collection of

open intervals whose union has arbitrarily small Lebesgue measure. Let I0 = R. Now

for each n ≥ 1 find In, a countable union of open intervals, such that A ⊆ In ⊆ In−1
and

m(In ∩ I) ≤ |I|
2n

2



for any maximal interval I ⊆ In−1, where m(A) denotes the Lebesgue measure of

the set A ⊆ R.

Now if

x ∈ R \
⋂
n

In

let

g(x) = (−1)nx

where nx is the maximal integer n ≥ 0 with x ∈ In, if such exists. We note that g

is defined almost everywhere, is Borel measurable and is bounded by 1, so is locally

integrable. Defining f : R→ R by

f(x) =

∫ x

0
g

we note that f is Lipschitz with Lip(f) ≤ 1, as |g| ≤ 1.

Suppose now that x ∈ A so that x ∈ In for every n. For each n, pick a

maximal interval (an, bn) with

x ∈ (an, bn) ⊆ In.

We note that as the Lebesgue measure of In+1 ∩ (an, bn) is less than or equal

to (bn − an)/2n+1 we have g(x) = (−1)n on (an, bn), except on a set of measure at

most (bn − an)/2n+1. Hence we may estimate the difference quotient

∣∣∣∣f(bn)− f(an)

bn − an
− (−1)n

∣∣∣∣ ≤ 1

bn − an

∫ bn

an

|g − (−1)n|

≤ 1

bn − an
· bn − an

2n+1
· 2

=
1

2n
.

It follows that
f(bn)− f(an)

bn − an
does not converge as n→∞. As an, bn → x we see that f ′(x) does not exist. That

holds for all x ∈ A.

In fact the exact characterization of the possible sets of non-differentiability

of a Lipschitz function f : R → R is known. We first recall that a Gδ subset of

a topological space is a countable intersection of open sets and a Gδσ subset is a

3



countable union of Gδ sets.

Theorem 1.7 (Zahorski). Given a set A ⊆ R, there exists a Lipschitz function

f : R→ R such that

A = {x ∈ R such that f ′(x) does not exist}

if and only if A is a Gδσ subset of R with Lebesgue measure zero.

Proof. See [27].

1.2 Universal sets

We now look at the case in which the domain has dimension greater than one. The

following generalization of Lebesgue’s theorem is also classical.

Theorem 1.8 (Rademacher). If m ≥ 1 and f : Rm → R is a Lipschitz function

that is not differentiable at any point in A ⊆ R then A has Lebesgue measure zero.

Proof. See [12].

Rather surprisingly, the converse to this statement turns out to be false for

m ≥ 2.

Theorem 1.9 (Preiss). If m ≥ 2 there exists a Lebesgue null set S such that if

f : Rm → R is Lipschitz then there exists x ∈ S such that f is differentiable at x.

Proof. See [23, Corollary 6.5] and Theorem 4.11.

In fact the proof of Preiss shows that under the assumptions of Theorem 1.9

one may take S to be any Lebesgue null Gδ set that contains every line that passes

through two points of Rm whose coordinates are rational.

Definition 1.10. If Y is a Banach space we call a set S ⊆ Y a universal Fréchet set

if for every Lipschitz g : Y → R there exists y ∈ S such that g is Fréchet differentiable

at y.

Theorem 1.9 shows that any Euclidean space of dimension at least two has

universal Fréchet sets with Lebesgue measure zero. Most optimistically we may ask

the following.

Question 1.11. If Y is a Banach space, is there a complete characterization of

universal Fréchet sets in Y ?

4



This question is wide open, for any Y of dimension at least two. However in

this thesis we shall prove some partial results: we derive a sufficient condition for

a subset S ⊆ Y to be a universal Fréchet set and then use that to construct some

non-trivial examples of such sets.

The first question to ask is whether a given Banach space Y has the property

that every Lipschitz f : Y → R has at least one point of Fréchet differentiability. We

already know the answer is affirmative if Y is finite dimensional, by Rademacher’s

theorem. The next theorem will generalize this statement. First another definition.

Definition 1.12. A Banach space Y is called Asplund if every separable subspace

of Y has a separable dual.

Theorem 1.13 (Preiss). If Y is an Asplund space, g : Y → R is a Lipschitz function

and O ⊆ Y is a non-empty open subset of Y then there exists y ∈ O such that g is

Fréchet differentiable at y.

Proof. See [23].

Remark 1.14. We make two quick remarks.

1. Unlike the classical Lebesgue and Rademacher theorems, Preiss’s result is not

an almost-everywhere result. Instead, a point of Fréchet differentiability is

constructed explicitly, by an involved iteration argument.

2. The proof of Theorem 1.9 was in fact obtained as a byproduct in establishing

Theorem 1.13.

We now mention that the condition that Y is Asplund in Theorem 1.13

cannot be weakened. First we recall the following definition.

Definition 1.15. If (Y, ‖ · ‖) is a Banach space then an equivalent norm on Y is a

norm ‖ · ‖′ : Y → R on Y such that there exist A,B > 0 with

A‖y‖ ≤ ‖y‖′ ≤ B‖y‖

for all y ∈ Y .

We now quote the following.

Theorem 1.16 (Asplund). If Y is not an Asplund space then there is an equivalent

norm ‖ · ‖′ on Y that is non-Fréchet differentiable at every point y ∈ Y .

Proof. See [4].

5



As any equivalent norm is a Lipschitz function, any non-Asplund Y has a

nowhere Fréchet-differentiable Lipschitz g : Y → R.

Therefore, it is sensible to investigate the collection of universal Fréchet sets

in a Banach space Y if and only if Y is Asplund. If the latter is true, then the space

Y itself is at least such a set; if the latter is false then Y has no such sets.

The first improvement on Theorem 1.9 we shall mention, also in the case in

which Y is finite dimensional, was obtained by Maleva and the author in [8].

Theorem 1.17. If n ≥ 2 then there exists a compact and null subset S ⊆ Rn

containing a differentiability point of every Lipschitz function.

See Chapter 4.3 of this thesis.

Subsequently this result was improved further by obtaining a bound on the

Hausdorff dimension of such a set.

Theorem 1.18. If m ≥ 1 then there exists a compact set S ⊆ Rm of Haus-

dorff dimension one containing a differentiability point of every Lipschitz function

g : Rm → R.

See [9] and Chapter 4.4.

Finally, the result was generalized to include the case in which Y is an infinite

dimensional Banach space.

Theorem 1.19. If Y is a non-zero Banach space with separable dual then there

exists a closed and bounded universal Fréchet set in Y of Hausdorff dimension one.

See [10] and Chapter 4.5.

We note that the condition that Y has separable dual is exactly equivalent

to demanding that Y is a separable Asplund space.

1.3 Sigma porosity

We now discuss an important necessary condition that S ⊆ Y must satisfy if S is a

universal Fréchet set.

We start with the definition of porosity at a point.

Definition 1.20. If A is a subset of a metric space Y then A is said to be porous

at a point y ∈ Y if there exists λ > 0 such that for all δ > 0 there exist y′ ∈ Bδ(y)

and r ≤ δ such that r > λd(y′, y) and

Br(y
′) ∩A = ∅.

6



This allows one to define a porous set.

Definition 1.21. A subset A of a metric space is said to be porous if the set A is

porous at every x ∈ A.

Finally we define a σ-porous set as follows.

Definition 1.22. A subset A of a metric space is said to to σ-porous if A is a

countable union of porous subsets of A.

We remark that the family of σ-porous subsets of Y is a σ-ideal. More

detailed information about σ-porous sets may be found in [28].

We can see the connection between porosity and differentiability immediately

by proving a very simple observation.

Lemma 1.23. If Y is a Banach space and A ⊆ Y is non-empty then the distance

function

f(y) = ‖y −A‖ := inf
a∈A
‖y − a‖

is not Fréchet differentiable at any porosity point of the set A.

Proof. For any y ∈ A, as f(y) = 0 and f is non-negative function, the only possible

value of the derivative f ′(y) is zero. However, by the porosity property, there exists

λ > 0 such that for all δ > 0 we can find y′ ∈ Bδ(y) with

‖y′ −A‖ ≥ λ‖y′ − y‖.

Since then
f(y′)− f(y)

‖y′ − y‖
≥ λ

for y′ arbitrarily close to y, this quotient cannot converge to 0 as y′ → y. Hence the

Fréchet derivative f ′(y) does not exist.

The following more general fact is slightly less trivial.

Lemma 1.24 (Kirchheim, Preiss, Tǐser). If Y is a separable Banach space and A

is a σ-porous subset of Y , then there exists a Lipschitz function f : Y → R such that

f is not Fréchet differentiable at any point of A.

This result, in the special case in which A is a countable union of closed

porous subsets of Y , is due to Preiss and Tǐser. A proof appears in [5]. Kirchheim

subsequently observed that the condition of closedness is really not necessary so

that the result holds for any σ-porous A.
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Thus, a necessary condition for S to be a universal Fréchet set is that S is not

σ-porous. To start our investigation we may ask whether there exists a compact,

null subset of a finite dimensional Euclidean space that is not σ-porous. The answer

is affirmative.

Theorem 1.25. For n ≥ 1 there exists a compact and Lebesgue null σ-porous subset

S ⊆ Rn with no porosity points.

Proof. See [29].

Hence, it is sensible to hope to find compact, null universal Fréchet sets in

Euclidean spaces.

1.4 Outline of the approach

The obvious approach to constructing universal Fréchet sets in finite dimensions

would be to construct a singular measure µ such that every Lipschitz function is

differentiable µ-almost everywhere. Then any null set S with µ(S) > 0 would be an

example of a universal Fréchet set. However the following result shows that such a

measure cannot exist, at least in the plane.

Theorem 1.26 (Alberti, Csörnyei, Preiss). If S ⊆ R2 is Lebesgue null then then

there exists a Lipschitz function g : R2 → R2 that is not differentiable at any point

y ∈ S.

Proof. See [1].

Equivalently, if S is a null subset of the plane then we can find a pair of real

valued Lipschitz functions on the plane that have no common point of differentiabil-

ity in S. If, on the other hand, there was a measure µ with the property mentioned

above then every pair - indeed every countable collection - of Lipschitz functions

would have a common point of differentiability on any Lebesgue null subset S with

µ(S) > 0.

The following however is still open.

Conjecture 1.27. There exists a singular measure µ on Rn, for n ≥ 3, such that

every Lipschitz f : Rn → R is differentiable µ-almost everywhere.

As a measure approach does not seem to work, at least in an obvious way,

our methods for constructing universal sets are much closer to those of Preiss in [23],

in which a point of Fréchet differentiability is constructed by an explicit algorithm.

In fact our methods draw heavily from the techniques of Preiss in [23].
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The method used in [23] can be adapted to show the following.

Theorem 1.28. Suppose Y has an equivalent norm that is Fréchet differentiable on

Y \ {0} and O is a non-empty Gδ subset of Y such that for every y ∈ O and ε > 0

there exists

δ0 = δ0(y, ε) > 0

such that for any δ ∈ (0, δ0) and any u, v ∈ Bδ(y) there exists a line segment

[u′, v′] ⊆ O with ‖u′ − u‖ < εδ and ‖v′ − v‖ < εδ. Then O contains a point of

Fréchet differentiability of every Lipschitz g : Y → R.

However it is easy to check that any set O with this property is somewhere

dense, so that its closure cannot be Lebesgue null if Y is finite dimensional.

Lemma 1.29. If O has the properties of Theorem 1.28 then O is dense in some

non-empty open subset of Y .

Proof. For each n ≥ 1 let

Un =

{
y ∈ O such that δ0(y, 1/2) ≥ 1

n

}
.

As O is Gδ and ∪nUn = O there exists Un such that Un is somewhere dense in Y ,

by Baire’s theorem. It quickly follows that one can find an open set U such that for

any x ∈ O and any y ∈ U there exists x′ ∈ O with

‖x′ − y‖ ≤ ‖x− y‖
2

.

It follows that O is dense in U .

Crucially, in [8], the single set O in Theorem 1.28 was replaced by a family

of sets (Si)i∈I indexed by a partially ordered set I, with Si ⊆ Sj whenever i ≤ j.

The condition, replacing the hypothesis of Theorem 1.28, is that for any y ∈ Si and

i < j one can find sufficiently many line segments in Sj nearby the point y.

In this thesis we use a slightly different approach; to prove S is universal we

construct a bundle π : X → S where X is a complete space. We then show that for

x ∈ X one can find, near y := πx, line segments in Y that lie in π(N) where N is a

small neighbourhood of x in X.

A brief outline of the proof that S is universal is as follows.

Given a Lipschitz function f : Y → R, we first find a point y ∈ Y and

a direction e ∈ S(Y ), the unit sphere of Y , such that the directional derivative

f ′(y, e) exists and is in some sense locally maximal.

9



We then prove f is differentiable at y with derivative

f ′(y, e)e∗

where e∗ is the Fréchet derivative of the norm at e.

A heuristic outline goes as follows. Assuming, on the contrary, that we can

find η > 0 and a vector λ with small norm such that

|f(y + λ)− f(y)− f ′(y, e)e∗(e)〉| > η‖λ‖

then we construct an auxiliary point y + h lying near the line y + Re and calculate

the ratio
|f(y + λ)− f(y + h)|

‖λ− h‖
.

We find that this is at least f ′(y, e) + ε for some ε > 0. By using an appropriate

mean value theorem it is possible to find a point y′ on the line segment [y+h, y+λ]

and a direction e′ ∈ S(Y ) such that f ′(y′, e′) ≥ f ′(y, e) + ε. This contradicts the

local maximality of f ′(y, e) and so f is differentiable at y. The details are contained

in chapters 2 and 3.

1.5 Comments on higher dimensional codomains

We have confined our attention so far to functions whose codomains have dimension

one. This thesis is exclusively concerned with this case.

Only a few positive results are known about the case where the codomain is

a space of dimension at least two.

One may conjecture the following.

Conjecture 1.30. If n,m are positive integers then there is a null subset S ⊆ Rn

containing a point of differentiability of every Lipschtz f : Rn → Rm if and only if

n > m.

We have already mentioned that the case m = 1 is known to be true. The

case in which n > m = 2 will be addresed in [11], building heavily on methods due

to Lindenstrauss, Preiss and Tǐser, who proved the following.

Theorem 1.31 (Lindenstrauss, Preiss, Tǐser). If H is a separable Hilbert space

then any Lipschitz function f : H → R2 has a point of Fréchet differentiability.

See [19].
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Equivalently, any pair of real valued Lipschitz functions defined on H has a

common point of Fréchet differentiability.

The only significant partial result towards Conjecture 1.30 for n ≥ 3 uses a

weaker notion of Fréchet differentiability, which is sometimes quite useful.

Definition 1.32. If X,Y are Banach spaces and f : X → Y , ε > 0 and x ∈ X then

we say that f is ε-Fréchet differentiable at x if there exists δ > 0 and a bounded

linear mapping f ′(x)ε : X → Y such that

‖f(x+ h)− f(x)− f ′(x)εh‖ ≤ ε‖h‖

for ‖h‖ ≤ δ.

Remark 1.33. It is easy to check that a function f : X → Y is Fréchet differentiable

at x ∈ X if and only if f is ε-Fréchet differentiable at x for every ε > 0.

Theorem 1.34 (de Pauw, Huovinen). If n ≥ 3 then there exists a Lebesgue null set

S ⊆ Rn such that if ε > 0 and f : Rn → Rn−1 is Lipschitz, there exists x ∈ S such

that f is ε-Fréchet differentiable at x.

Proof. See [21].

In [14, 17] the notion of ε-Fréchet differentiability is studied in relation to

Lipschitz mappings with the emphasis on the infinite dimensional case.
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Chapter 2

A criterion for Fréchet

differentiability

In this chapter we aim to prove that if f : Y → R is a Lipschitz function and

(y, e) ∈ Y × S(Y )

is such that the directional derivative f ′(y, e) is in some sense ‘almost locally maxi-

mal’ around y, then the function f is Fréchet differentiable at y with derivative

f ′(y) = f ′(y, e)e∗,

where e∗ is the Fréchet derivative of the norm ‖ · ‖ at e ∈ Y .

A similar result was proved by Preiss in [23, Theorem 4.1 and Theorem 6.3].

The method we use is the same, in outline, as that of Preiss. The result we prove

requires slightly weaker conditions on the pair (y, e); given ν > 0 we only require

that

f ′(y′, e′) < f ′(y, e) + ν

holds for a collection of pairs (y′, e′) with y′ ∈ F , where the set F is allowed to vary

with ν.

In fact, we prove the result of this chapter in more generality than we need

to establish the main results of this thesis.

In all the examples we consider in Chapter 4, the set F we construct contains

line segments, close to y, that point in a dense set of directions in Y . In Theorem 2.1

we only demand that the set F contains a large portion, in the sense of Lebesgue

measure, of curves that belong to a collection that closely approximates a dense set
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of line segments nearby y.

Further, we also give an explicit bound on the radius of ε-Fréchet differen-

tiability of a function satisfying the conditions of Theorem 2.1. See Lemma 2.5.

Finally we note that a related result, proved by Maleva and the author, also

appears in [8, Lemma 4.3], for the case in which Y is a Hilbert space.

To set the notation for this chapter, if Y is a Banach space we denote the

unit sphere of Y by S(Y ) and, given y ∈ Y and δ > 0, we use Bδ(y) to denote an

open ball in Y , with centre y and radius δ. We use m(A) to denote the Lebesgue

measure of a measurable subset A of the real line.

The principal aim of this chapter is to establish Theorem 2.1.

Theorem 2.1. Let (Y, ‖ ·‖) be a real Banach space and let f : Y → R be a Lipschitz

function with Lip(f) ≤ L, where L > 0. Suppose that (y, e) ∈ Y × S(Y ), the

directional derivative f ′(y, e) exists and is non-negative and the norm ‖·‖ is Fréchet

differentiable at e with derivative e∗ ∈ Y ∗.
Suppose further that for each ν, η, µ > 0 there exists a set F = Fν,η,µ ⊆ Y

and s∗ = s∗(ν, η, µ) > 0 with the following properties.

1. If s ∈ (0, s∗) and

‖y1 − y‖ < s and ‖y2 − y‖ < s

there exists an almost-everywhere-differentiable Lipschitz curve γ : [0, 1] → Y

with

‖γ(0)− y1‖ ≤ ηs, ‖γ(1)− y2‖ ≤ ηs (2.1)

‖γ′(t)− (y2 − y1)‖ ≤ ηs for almost all t ∈ [0, 1] (2.2)

m({t ∈ [0, 1] such that γ(t) /∈ Fν,η,µ}) ≤ µ. (2.3)

2. If (y′, e′) ∈ Fν,η,µ×S(Y ) is such that the directional derivative f ′(y′, e′) exists,

f ′(y′, e′) ≥ f ′(y, e) and

|(f(y′ + te)− f(y′))− (f(y + te)− f(y))| (2.4)

≤ 106
√

(f ′(y′, e′)− f ′(y, e))L · |t|

for every t ∈ R, then

f ′(y′, e′) < f ′(y, e) + ν. (2.5)

Then f is Fréchet differentiable at y and its derivative f ′(y) is given by the formula

f ′(y) = f ′(y, e)e∗. (2.6)

13



The following Lemma, due to Lindenstrauss and Preiss, can be understood

as an improvement of the standard mean value theorem, on the real line. It is a

consequence of the fact that the Hardy-Littlewood maximal operator is of weak type

(1, 1).

Lemma 2.2. Suppose a < b are real numbers and h : [a, b]→ R a Lipschitz function

whose Lipschitz constant is ≤ 1. Assume that∫ b

a
|h′(t)|dt ≥ 2|h(b)− h(a)|.

Then there is a measurable set A ⊆ (a, b) so that

1. m(A) ≥ 1
16

∫ b
a |h

′(t)|dt,

2. h′(s) ≥
∫ b
a |h

′(t)|dt/8(b− a) for every s ∈ A,

3. |h(t)− h(s)| ≤ 8
√
h′(s) · |t− s| for every s ∈ A and t ∈ [a, b].

Proof. See [15, Lemma 1].

Lemma 2.3. Suppose that −s < ξ < s, 0 < ∆ < 1 and ψ : R → R is a Lipschitz

function with Lip(ψ) ≤ 3,

|ψ(ξ)| ≥ 2∆2

104
s (2.7)

and

|ψ(t)| ≤ ∆4

105
|t| for all s ≤ |t| ≤ 2s

∆
. (2.8)

Then there exists a measurable set B ⊆ (−s, s) with

m(B) > 4∆2s/106

such that if τ ∈ B then ψ′(τ) exists, ψ′(τ) ≥ 2∆2/106 and

|ψ(t+ τ)− ψ(τ)| ≤ 105
√
ψ′(τ) · |t| for |t| ≤ s/∆ (2.9)

|ψ(t+ τ)− ψ(τ)− ψ(t)| ≤ 105
√
ψ′(τ) · |t| for |t| > s/∆. (2.10)
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Proof. Note, using (2.7) and (2.8), that∫ s

−s
|ψ′(t)| ≥ |ψ(ξ)− ψ(−s)|+ |ψ(s)− ψ(ξ)|

≥ 2|ψ(ξ)| − |ψ(−s)| − |ψ(s)|

≥ 4∆2s/104 − 2∆4s/105

≥ 3∆2s/104

and 2|ψ(s) − ψ(−s)| ≤ 4∆4s/105 < 3∆2s/104, by (2.8) once again. Hence, using

Lemma 2.2 with (a, b) = (−s, s) and h = ψ/3, we can find a measurable set

A ⊆ (−s, s)

with

m(A) ≥ 1

48

∫ s

−s
|ψ′(t)| ≥ 1

48

3∆2s

104
>

6∆2s

106
(2.11)

such that for all τ ∈ A we have

ψ′(τ) ≥ 1

16s

∫ s

−s
|ψ′(t)| ≥ 1

16s

3∆2s

104
>

2∆2

106
(2.12)

and, for any t ∈ [−s, s],

|ψ(t)− ψ(τ)| ≤ 14
√
ψ′(τ) · |t− τ |. (2.13)

Let B be the set of τ ∈ A with |τ | < (1−∆2/106)s. Note from (2.11) that

m(B) >
6∆2s

106
− 2∆2s

106
=

4∆2s

106
.

For any τ ∈ B and s ≤ t ≤ 2s/∆ we have, using (2.8) and (2.13),

|ψ(t)− ψ(τ)| ≤ |ψ(t)− ψ(s)|+ |ψ(s)− ψ(τ)|

≤ ∆4(t+ s)/105 + 14
√
ψ′(τ) · |s− τ |

≤ 4∆3s/105 + 14
√
ψ′(τ) · |s− τ |

≤ 40 ·
√

1

2
106ψ′(τ) · |t− τ |+ 14

√
ψ′(τ) · |t− τ |

≤ 105
√
ψ′(τ) · |t− τ |,

where, in the penultimate line, we used ∆2s/106 ≤ s−τ ≤ t−τ , from the definition of

B, and (2.12). An identical calculation proves this inequality for −2s/∆ ≤ t ≤ −s.
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Using (2.13) once more, along with the observation that if |t| ≤ s/∆ and τ ∈ B

then |t+ τ | ≤ s/∆ + s ≤ 2s/∆, we may then deduce (2.9).

Finally to obtain (2.10) we let |t| > s/∆ and use Lip(ψ) ≤ 3, |τ | ≤ s

and (2.8):

|ψ(t+ τ)− ψ(τ)− ψ(t)| ≤ 3|τ |+ |ψ(τ)|

≤ 3|τ |+ 3|τ − s|+ |ψ(s)|

≤ 3s+ 6s+ s = 10s

< 10∆|t|

≤ 20∆|t− τ |

≤ 20

√
1

2
106ψ′(τ) · |t− τ |

≤ 105
√
ψ′(τ) · |t− τ |,

by (2.12) again.

Lemma 2.4. Let Y be a real Banach space, f : Y → R be a Lipschitz function with

Lip(f) ≤ 1 and let ∆ ∈ (0, 1) and M ∈ [0, 1]. Suppose y ∈ Y , e ∈ S(Y ) and s > 0

are such that

|f(y + te)− f(y)−Mt| ≤ ∆4

105
|t| (2.14)

for |t| ≤ 2s/∆. Suppose further that ξ ∈ (−s, s) and h ∈ Y satisfy

|f(y + h)− f(y)−Mξ| ≥ 2∆2s/104 (2.15)

and γ : [−s, s]→ Y is an almost-everywhere-differentiable Lipschitz curve such that

γ(±s) = y ± se and γ(ξ) = y + h, (2.16)

‖γ′ − e‖ ≤ ∆ almost everywhere, (2.17)

m

({
τ ∈ [−s, s] such that ‖γ′(τ)‖ > 1 +

∆2

106

})
≤ 2∆2

106
s. (2.18)

Then we can find a measurable set C ⊆ (−s, s) with

m(C) > 2∆2s/106

such that for all τ ∈ C then γ′(τ) exists and is non-zero and, letting

y′ = γ(τ) and e′ =
γ′(τ)

‖γ′(τ)‖
,
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the directional derivative f ′(y′, e′) exists with f ′(y′, e′) ≥M + ∆2/106 and

|(f(y′ + te)− f(y′))− (f(y + te)− f(y))| (2.19)

≤ 106
√
f ′(y′, e′)−M · |t|

for all t ∈ R.

Proof. Extend γ to R by γ(t) = y + te for |t| ≥ s. Note that Lip(γ) ≤ 2 and

‖γ(τ + t)− (γ(τ) + te)‖ ≤ ∆|t| (2.20)

for any t, τ ∈ R, using (2.17), the fact γ is Lipschitz and ∆ ∈ (0, 1).

Define ψ : R→ Y by

ψ(t) = f(γ(t))− f(y)−Mt. (2.21)

Then Lip(ψ) ≤ 3, from Lip(γ) ≤ 2, Lip(f) ≤ 1 and M ∈ [0, 1].

We have |ψ(ξ)| ≥ 2∆2s/104 using (2.16) and (2.15).

For s ≤ |t| ≤ 2s/∆ then

|ψ(t)| = |f(y + te)− f(y)−Mt| ≤ ∆4

105
|t| (2.22)

by (2.14).

Hence by Lemma 2.3 we can find a measurable set B ∈ (−s, s) with

m(B) > 4∆2s/106 (2.23)

such that for all τ ∈ B, ψ′(τ) exists with

ψ′(τ) ≥ 2∆2/106 (2.24)

and (2.9) and (2.10) hold.

Let

C = {τ ∈ B such that γ′(τ) exists with 0 < ‖γ′(τ)‖ ≤ 1 + ∆2/106}. (2.25)

Then C is measurable with

m(C) ≥ m(B)− 2∆2

106
s >

2∆2

106
s
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by (2.17) and (2.18); note that (2.17) implies that γ′ 6= 0 almost everywhere.

For any τ ∈ C then as γ′(τ) exists and is not equal to 0, we may define

y′ = γ(τ), e′ =
γ′(τ)

‖γ′(τ)‖
.

We may note, from (2.21) and the fact that ψ′(τ) exists and f is Lipschitz,

that f ′(y′, e′) exists with

ψ′(τ) = f ′(γ(τ), γ′(τ))−M

= f ′(y′, e′)‖γ′(τ)‖ −M. (2.26)

Now for |t| ≤ s/∆,

|(f(γ(t+ τ))− f(y′))− (f(y + te)− f(y))|

≤ |f(γ(t+ τ))− f(y′)−Mt|+ |f(y + te)− f(y)−Mt|

= |ψ(t+ τ)− ψ(τ)|+ |f(y + te)− f(y)−Mt|

≤ 105
√
ψ′(τ) · |t|+ ∆4

105
· |t| (2.27)

using (2.9) and (2.14).

For |t| > s/∆ then as γ(t) = y + te,

|(f(γ(t+ τ))− f(y′))− (f(y + te)− f(y))|

= |(f(γ(t+ τ))− f(γ(τ)))− (f(γ(t))− f(y))|

= |ψ(t+ τ)− ψ(t)− ψ(τ)|

≤ 105
√
ψ′(τ) · |t|. (2.28)

by (2.10).

Now using Lip(f) ≤ 1 and (2.20),

|f(y′ + te)− f(γ(t+ τ))| ≤ ∆|t|

and so by (2.27), (2.28) and ψ′(τ) ≥ 2∆2/106,

|(f(y′ + te)− f(y′))− (f(y + te)− f(y))| ≤ 2 · 105
√
ψ′(τ) · |t| (2.29)

for all t ∈ R.

Recall that as τ ∈ C ⊆ B, ψ′(τ) exists and we have ψ′(τ) ≥ 2∆2/106
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from (2.24). Hence by (2.25),

‖γ′(τ)‖ ≤ 1 +
∆2

106
≤ 1 +

1

2
ψ′(τ). (2.30)

Now from (2.26),

ψ′(τ) = f ′(y′, e′)‖γ′(τ)‖ −M.

As ψ′(τ) ≥ 2∆2/106 > 0 and M ≥ 0 we deduce f ′(y′, e′) ≥ 0.

Hence from (2.30),

ψ′(τ) ≤ f ′(y′, e′)(1 + ψ′(τ)/2)−M

≤ f ′(y′, e′)−M + ψ′(τ)/2.

using f ′(y′, e′) ≤ Lip(f) ≤ 1 in the final line.

Thus

f ′(y′, e′)−M ≥ ψ′(τ)

2
≥ ∆2

106

using (2.24) once again.

Finally from (2.29) we may now deduce (2.19).

The following lemma gives an estimate on the size of the neighbourhood of

ε-Fréchet differentiability of f at y ∈ Y .

Lemma 2.5. Let ε ∈ (0, 1) and f : Y → R be a Lipschitz function with Lip(f) ≤ 1.

Suppose that (y, e) ∈ Y × S(Y ) and that e∗ ∈ Y ∗, M ∈ [0, 1], ∆ ∈ (0, ε) and δ > 0

satisfy

‖e+ h‖ ≤ 1 + e∗(h) +
ε

103
‖h‖ for ‖h‖ ≤ 2∆2

104ε
(2.31)

|f(y + te)− f(y)−Mt| ≤ ∆4

105
|t| for |t| ≤ 104εδ

∆3
. (2.32)

Suppose further that if

s ∈
(

0,
104εδ

∆2

)
(2.33)

and h ∈ Y with

‖h‖ =
2∆2s

104ε
(2.34)

then
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1. for π = ±1, there exist almost-everywhere-differentiable Lipschitz curves

γπ : [0, 1]→ Y

with γπ(0) = y + h, γπ(1) = y + πse and

‖γ′π − (πse− h)‖ ≤ ∆

8
‖πse− h‖ (2.35)

almost everywhere,

2. there exists a set D ⊆ [0, 1] with m(D) ≤ ∆2/106 such that if

v ∈ [0, 1] \D

and π = ±1 then γ′π(v) exists,

0 < ‖γ′π(v)‖ ≤ ‖πse− h‖ ·
(

1 +
∆2

107

)
(2.36)

and, defining

y′ = γπ(v) and e′ = π
γ′π(v)

‖γ′π(v)‖
, (2.37)

if the directional derivative f ′(y′, e′) exists, f ′(y′, e′) ≥M and for any t ∈ R,

|(f(y′ + te)− f(y′))− (f(y + te)− f(y))| ≤ 106
√
f ′(y′, e′)−M · |t| (2.38)

then we have

f ′(y′, e′) < M +
∆2

106
. (2.39)

Then f is ε-Fréchet differentiable at y with

|f(y + h)− f(y)−Me∗(h)| ≤ ε‖h‖ (2.40)

for any h ∈ Y with

‖h‖ ≤ δ.

Proof. We suppose, for a contradiction, we can find ‖h‖ ≤ δ such that

|f(y + h)− f(y)−Me∗(h) > ε‖h‖. (2.41)
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We write h = ru where u ∈ S(Y ) and r ≥ 0 and define

ξ = re∗(u)

and

s =
104εr

2∆2
.

This equation, with r = ‖h‖, implies (2.33) and (2.34). We let γπ : [0, 1]→ Y

and D ⊆ [0, 1] be given by (1) and (2) in the statement of the present lemma.

As ∆ < ε < 1 we have |ξ| ≤ r ≤ s/2.

Further from
r

s
=

2∆2

104ε

we deduce by (2.31) that∥∥∥e− π

s
ru
∥∥∥ ≤ 1− π

s
re∗(u) +

ε

103
· r
s

= 1− π

s
re∗(u) +

2∆2

107
. (2.42)

We may now note for t ∈ [0, 1] \D and π = ±1, using (2.36), that

‖γ′π(t)‖ = s
∥∥∥e− π

s
ru
∥∥∥ · (1 +

∆2

107

)
≤ s

(
1− π

s
re∗(u) +

2∆2

107

)
·
(

1 +
∆2

107

)
=

(
s− πξ +

2∆2

107
s

)
·
(

1 +
∆2

107

)
≤ |s− πξ| ·

(
1 +

4∆2

107

)
·
(

1 +
∆2

107

)
≤ |s− πξ| ·

(
1 +

∆2

106

)
, (2.43)

where, in the penultimate line, we have used |ξ| ≤ r ≤ s/2 so that |s − πξ| ≥ s/2

and, in the final line, we have used ∆ ∈ (0, 1).

Now let ρ : [−s, s] → [0, 1] be a function that is affine on [−s, ξ] and [ξ, s]

with ρ(ξ) = 0 and ρ(−s) = ρ(s) = 1.

Write

E = ρ−1(D) ⊆ [−s, s] (2.44)

and note that as the magnitude of the gradient of ρ is 1/(ξ + s) on [−s, ξ] and
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1/(s− ξ) on [ξ, s] we have

m(E) ≤ (ξ + s) ·m(D) + (s− ξ) ·m(D)

= 2s ·m(D) ≤ 2∆2s

106
. (2.45)

Define γ : [−s, s]→ Y by γ(t) = (γπt ◦ ρ)(t) where

πt = −1 for t ∈ [−s, ξ]

πt = +1 for t ∈ [ξ, s]. (2.46)

We shall now verify the conditions of Lemma 2.4 for Y , ε, f , ∆, M , y, e, s,

ξ, h and γ.

We already know that f : Y → R is Lipschitz with Lip(f) ≤ 1, ∆ < ε < 1,

M ∈ [0, 1], (y, e) ∈ Y × S(Y ) and s > 0.

Since
2s

∆
≤ 104εδ

∆3
,

using r ≤ δ, we deduce (2.14) from (2.32).

As

ε‖h‖ = εr =
2∆2s

104
,

we derive (2.15) from (2.41).

We know that γ : [−s, s] → Y is Lipschitz and differentiable almost every-

where as γπ and ρ are Lipschitz and differentiable almost everywhere.

We readily derive (2.16) from γπ(0) = y + h, γπ(1) = y + πse, ρ(ξ) = 0 and

ρ(−s) = ρ(s) = 1.

From (2.35) and the fact ‖h‖ = r ≤ s/2 we have for almost all t ∈ [0, 1] and

π = ±1 that γ′π(t) exists and

‖γ′π(t)− (πse− h)‖ ≤ ∆

4
s.
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Therefore, by (2.46), for almost all t ∈ [−s, s], we can find π ∈ {−1, 1} with

‖γ′(t)− e‖ = ‖(γπ ◦ ρ)′(t)− e‖

= ‖γ′π(ρ(t))
1

πs− ξ
− e‖

=
‖γ′π(ρ(t))− πse+ ξe‖

|πs− ξ|

≤ 2

s
‖γ′π(ρ(t))− πse+ ξe‖

≤ 2

s

(
‖γ′π(ρ(t))− (πse− h)‖+ ‖ξe− h‖

)
≤ 2

s

∆

4
s+

2

s
‖ξe− h‖

≤ ∆

2
+

4r

s

≤ ∆,

where, in the penultimate line, we have used |ξ| ≤ ‖h‖ = r and, in the final line, we

used
r

s
=

2∆2

104ε
<

∆

8
,

by 0 < ∆ < ε.

Thus we have verified (2.17).

Finally, if

t ∈ [−s, s] \ (E ∪ {ξ})

then, as ρ(t) ∈ [0, 1] \D from (2.44), we have for some π = ±1,

|γ′(t)| = |γ′π(ρ(t))| · |ρ′(t)|

≤ |γ′π(ρ(t))| · 1

|πs− ξ|

≤ 1 +
∆2

106
,

using (2.43). Hence from (2.45) we may derive (2.18).

We let the measurable set C ⊆ (−s, s) be given by Lemma 2.4. Note that as

m(C) >
2∆2s

106

and

m(E) ≤ 2∆2s

106
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we may pick

τ ∈ C \ (E ∪ {ξ}).

Then as τ ∈ C we know γ′(τ) exists, γ′(τ) 6= 0 and, defining

y′ = γ(τ) and e′ =
γ′(τ)

‖γ′(τ)‖
,

then f ′(y′, e′) exists with

f ′(y′, e′) ≥M +
∆2

106
(2.47)

and such that (2.19) holds.

Letting v = ρ(τ) then v ∈ [0, 1] \D from (2.44). Further from (2.46),

y′ = γπ(v) and e′ = π
γ′π(v)

‖γ′π(v)‖

for some π ∈ {−1, 1}.
Hence as f ′(y′, e′) exists, f ′(y′, e′) ≥ M and (2.38), we deduce from (2.39)

that

f ′(y′, e′) < M +
∆2

106
.

This contradicts (2.47). We are done.

We require one more simple observation before proving Theorem 2.1.

Lemma 2.6. Suppose that Y is a Banach space, η, µ > 0 and γ : [0, 1] → Y is an

almost-everywhere-differentiable Lipschitz mapping with

‖γ(0)− y1‖ ≤ η

‖γ(1)− y2‖ ≤ η

‖γ′ − (y2 − y1)‖ ≤ η almost everywhere.

Then there exists an almost-everywhere-differentiable Lipschitz curve γ : [0, 1] → Y

such that γ(0) = y1, γ(1) = y2,

‖γ′ − (y2 − y1)‖ ≤
4η

µ
almost everywhere, (2.48)

and

m({t ∈ [0, 1] such that γ(t) 6= γ(t)}) ≤ µ. (2.49)

Proof. We can assume that µ < 1; otherwise we may simply take γ to be an affine

mapping with γ(0) = y1 and γ(1) = y2.

24



Note first that by the mean value theorem,

‖γ(t)− (1− t)y1 − ty2‖ ≤ 2η (2.50)

for any t ∈ [0, 1].

We now let γ(t) = γ(t) for µ/2 ≤ t ≤ 1 − µ/2 and define γ to be affine on

[0, µ/2] and [1−µ/2, 1] with γ(0) = y1 and γ(1) = y2. We only need to check (2.48).

Indeed for t ∈ (0, µ/2),

‖γ′(t)− (y2 − y1)‖ =

∥∥∥∥γ(µ/2)− y1
µ/2

− (y2 − y1)
∥∥∥∥

=
‖γ(µ/2)− (µ/2)y2 − (1− µ/2)y1‖

µ/2

≤ 4η

µ
,

using (2.50) in the final line. A similar proof shows that the bound also holds for

t ∈ (1 − µ/2, 1). Finally the bound is also true for almost all t ∈ (µ/2, 1 − µ/2)

because then γ′(t) = γ′(t).

Proof of Theorem 2.1. We assume the conditions of Theorem 2.1. We may take

L = 1, without loss of generality.

Let M = f ′(y, e) ≥ 0 and ε ∈ (0, 1). We shall verify the conditions of

Lemma 2.5.

As the norm ‖ · ‖ is Fréchet differentiable at e ∈ Y with derivative e∗ we may

pick ∆ ∈ (0, ε) such that (2.31) is satisfied.

Further, as the directional derivative f ′(y, e) exists and equals M , there exists

δ > 0 such that (2.32) holds. We may take

δ <
∆2

104ε
s∗(ν, η, µ), (2.51)

where

ν =
∆2

106
, η =

∆4

1015
and µ =

∆2

107

and s∗ is given by the conditions of Theorem 2.1.

If

s ∈
(

0,
104εδ

∆2

)
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and

‖h‖ =
2∆2s

104ε

then we have, using 0 < ∆ < ε < 1,

2‖h‖ ≤ s < s∗(ν, η, µ). (2.52)

Thus, for each π = ±1, we can find an almost-everywhere-differentiable Lipschitz

curve γ : [0, 1]→ Y with

‖γ(0)− (y + h)‖ ≤ ηs and ‖γ(1)− (y + πse)‖ ≤ ηs

‖γ′(t)− (πse− h)‖ ≤ ηs for almost all t ∈ [0, 1]

and such that

m({t ∈ [0, 1] such that γ(t) /∈ Fν,η,µ}) ≤ µ. (2.53)

By taking γπ = γ, as in Lemma 2.6 with

y1 = y + h and

y2 = y + πse,

we have that γπ is an almost-everywhere-differentiable Lipschitz mapping with

γπ(0) = y + h, γπ(1) = y + πse,

‖γ′π(t)− (πse− h)‖ ≤ 4ηs

µ

≤ ∆2

107
· s

2

≤ ∆2

107
‖πse− h‖ (2.54)

for almost all t ∈ [0, 1] and

m({t ∈ [0, 1] such that γπ(t) /∈ Fν,η,µ, for some π = ±1}) ≤ 4µ ≤ ∆2

106
(2.55)

by (2.53) and (2.49). As ∆ < 1 we have verified (2.35) and hence (1) of Lemma 2.5.

To establish (2) of Lemma 2.5 we let D be the set of all t ∈ [0, 1] such that

for some π = ±1,

1. γπ(t) /∈ Fν,η,µ or

2. γ′π(t) does not exist or
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3. γ′π(t) = 0 or

4. ‖γ′π(t)− (πse− h)‖ > 1
107

∆2‖πse− h‖.

By (2.55) and the fact that γ′π(t) exists and is non-zero for almost all t ∈ [0, 1],

with (2.54), we have

m(D) ≤ ∆2

106
.

It is immediate that for v ∈ [0, 1] \D we have (2.36).

Finally if we assume (2.37) and (2.38), then as y′ ∈ Fν,η,µ we deduce (2.39)

from (2.5). Hence (2) is satisfied.

Hence by Lemma 2.5, for h ∈ Y with ‖h‖ ≤ δ,

|f(y + h)− f(y)− f ′(y, e)e∗(h)| ≤ ε‖h‖.

As ε ∈ (0, 1) was arbitrary, we are done.
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Chapter 3

An optimization algorithm

In this section, given a Banach space Y , we shall show how to find a point y ∈ Y
and direction e in the unit sphere of Y with almost locally maximal directional

derivative

f ′(y, e),

where

f : Y → R

is a Lipschitz function. Eventually we shall combine this construction with the

criterion proved in the previous chapter, to show that the point y we arrive at is a

point of Fréchet differentiability of the function f ; see Theorem 4.2.

The basic idea behind the proof - to take a sequence of pairs (yn, en) with

the directional derivative f ′(yn, en) almost maximal, subject to some constraints,

and to argue that (yn, en)→ (y, e) for some (y, e) with the desired properties - goes

back to Preiss; see [23].

The main difference between the algorithm presented in [23] and the one here

is that we do not optimize over Y itself; instead we let π : X → Y be a bundle over

Y , where X is a complete space, and find a point x ∈ X and direction e ∈ Y such

that the directional derivative f ′(πx, e) is almost locally maximal, for x ∈ X.

A similar result was also proved, by the author and Maleva in [8, Theorem

3.1], for the case in which Y is a Hilbert space. Instead of working over a bundle, in

this paper we optimize over a family (Si)i∈I of closed subsets of the Hilbert space,

indexed by a partially ordered set I.

Further, the proof in [8] achieved the convergence of the direction vectors en

by adjusting the Lipschitz function f by a small linear piece at each stage of the

iteration. This method appears not to work for general Banach spaces; thus in this
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chapter we instead achieve this convergence by making a small change to the norm

‖ · ‖ of Y at each step of the construction. This latter idea is due to Preiss; see [23].

We recall that a complete space X is a topological space whose topology can

be induced by a complete metric. Given a Banach space Y we let S(Y ) be the unit

sphere of Y and, given a metric space X, x ∈ X and δ > 0, we denote by Bδ(x) and

Bδ(x) the open and closed balls in X, respectively, with centre x and radius δ.

Theorem 3.1. Let

(a) X be a complete space,

(b) (Y, ‖ · ‖) be a Banach space,

(c) π : X → Y be a continuous map,

(d) Θ: (0,∞)→ R be a real-valued function with Θ(t)→ 0 as t→ 0+ and

(e) µ > 1.

Suppose now that g : Y → R is a Lipschitz function such that the set

D := {(x, e) ∈ X × (Y \ {0}) such that g′(πx, e) exists}

is non-empty.

Then there exist

(1) a Lipschitz function f : Y → R, with f − g linear and Lip(f) ≤ 3Lip(g),

(2) a norm ‖ · ‖′ on Y , with

‖y‖ ≤ ‖y‖′ ≤ µ‖y‖

for all y ∈ Y , and

(3) (x, e) ∈ D with ‖e‖′ = 1 such that the directional derivative f ′(πx, e) ≥ 0 is

almost locally maximal in the following sense. For any ε > 0 there exists an

open neighbourhood Nε of x in X such that if (x′, e′) ∈ D with

(i) x′ ∈ Nε, ‖e′‖′ = 1 and

(ii) for any t ∈ R

|(f(πx′ + te)− f(πx′))− (f(πx+ te)− f(πx))|

≤ Θ(f ′(πx′, e′)− f ′(πx, e))|t|, (3.1)
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then we have f ′(πx′, e′) < f ′(πx, e) + ε.

Moreover, if the original norm ‖ · ‖ is Fréchet differentiable on Y \ {0} then the

norm ‖ · ‖′ can be chosen with this property too.

The purpose of this chapter is to prove Theorem 3.1.

We let d be a complete metric on X. Without loss of generality we may take

Lip(g) = 1/3, µ ≤ 2 and Θ(t) > 0 for all t > 0. Further since

|(f(πx′ + te)− f(πx′))− (f(πx+ te)− f(πx))|

≤|f(πx′ + te)− f(πx′)|+ |f(πx+ te)− f(πx)| ≤ 2|t|

for all t ∈ R whenever f : X → R is a Lipschitz function with Lip(f) ≤ 3Lip(g) = 1

and x, x′ ∈ X, e ∈ Y with ‖e‖ ≤ 1, we may assume that Θ(t) ≤ 2 for all t > 0.

Lemma 3.2. There exists a function Ω: (0,∞)→ (0,∞) such that

1. Ω(t) ≥ 2Θ(t) for all t ∈ R,

2. Ω(t)→ 0 as t→ 0+,

3. Ω is continuous and, for each a > 0, Ω is uniformly continuous on [a,∞),

4. if A,B > 0 then Ω(A) + 2B ≤ Ω(A+B).

Proof. For each n ∈ Z let

β(2n) = sup
0<t′≤2n+1

Θ(t′) ≤ 2.

We may uniquely extend β to (0,∞) by imposing the property that β is affine on

each interval of the form [2n, 2n+1] for n ∈ Z. Note that β is continuous, increasing

and β(t) ≥ Θ(t) for every t > 0 since, choosing n ∈ Z with 2n ≤ t < 2n+1, we have

β(t) ≥ β(2n) ≥ Θ(t).

Further for t ≤ 2n where n ∈ Z, we have

β(t) ≤ β(2n) = sup
0<t′≤2n+1

Θ(t′)

and as Θ(t)→ 0 as t→ 0+ we deduce that β(t)→ 0 as t→ 0+.

We now let Ω(t) = 2β(t)+2t. Then (1) and (2) are immediate as β(t) ≥ Θ(t)

and β(t)→ 0 as t→ 0+. As β is continuous so is Ω. But as β(t) is increasing with t

and is bounded above by 2 it converges as t→∞. Hence β is uniformly continuous
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on [a,∞) for any a > 0; therefore so is Ω. Finally for (4) we may use the fact that

β is increasing to deduce that for A,B > 0,

Ω(A+B) = 2β(A+B) + 2A+ 2B

≥ 2β(A) + 2A+ 2B

= Ω(A) + 2B.

We now begin the iteration procedure that will construct the required pair

(x, e) ∈ D.

As D 6= ∅ we can pick (x0, e0) ∈ D. By rescaling e0 if necessary and by replacing e0

with −e0 if necessary we can assume that ‖e0‖ = 1 and g′(πx0, e0) ≥ 0.

We let e∗0 ∈ Y ∗ with e∗0(e0) = 1 and ‖e∗0‖ = 1, and then we define f : Y → R
by

f = g +
2

3
e∗0. (3.2)

Note that

Lip(f) ≤ Lip(g) + 2/3 = 1. (3.3)

As f − g is linear the set D is precisely the set of all (x, e) ∈ X × Y \ {0} such that

f ′(πx, e) exists.

We can prove a very simple observation immediately.

Lemma 3.3. If (x, e) ∈ D with f ′(πx0, e0) ≤ f ′(πx, e) then e∗0(e) ≥ 1/2.

Proof. We may write the inequality f ′(πx0, e0) ≤ f ′(πx, e) as

g′(πx0, e0) +
2

3
≤ g′(πx, e) +

2

3
e∗0(e).

As g′(πx0, e0) ≥ 0 and Lip(g) = 1/3 we deduce

2

3
≤ 1

3
+

2

3
e∗0(e)

from which the result follows.

Now define σ0 = 16, δ0 = 1, t0 ∈ (0, 1/2) with t20 < µ − 1, the norm p0 be

the original norm ‖ · ‖ of Y and w0 = wp0 , where the latter is defined as follows.

Definition 3.4. If p is a norm on Y and (x, e) ∈ D then we write

wp(x, e) =
f ′(πx, e)

p(e)
.
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Further for σ ≥ 0 we let Gp(x, e, σ) be the set of all (x′, e′) ∈ D such that

wp(x, e) ≤ wp(x′, e′)

and

|(f(πx′ + te)− f(πx′))− (f(πx+ te)− f(πx))|

≤
(
σ + Ω(wp(x

′, e′)− wp(x, e))
)
|t|

for all t ∈ R, where the function Ω is given by Lemma 3.2.

For n ≥ 1 we shall pick

pn, wn, σn, tn, εn, Dn, xn, en, νn,∆n, δn

in that order where

• pn are norms on Y ,

• wn are weight functions defined on D,

• Dn are non-empty subsets of D ⊆ X × Y \ {0},

• (xn, en) ∈ Dn,

• σn, tn, εn, νn,∆n, δn > 0.

After defining the set Dn and choosing εn > 0 we shall pick (xn, en) ∈ Dn ⊆
D such that weight wn(xn, en) is within εn of its supremum over Dn. We shall show

that pn → p∞ and (xn, en)→ (x∞, e∞) for some norm p∞ on Y and (x∞, e∞) ∈ D.

The constants δm > 0 will be used to bound d(xn, xm) for n ≥ m whereas σm > 0

will bound ‖en − em‖ and tm > 0 will control the differences between the norms pn

and pm for n ≥ m.

Given y ∈ Y and e ∈ Y \ {0} we use the notation ‖y − Re‖ to denote the

distance between the point y and the one dimensional subspace of Y generated by

e. This distance is calculated with the original norm ‖ · ‖ on Y .

Algorithm 3.5. Given n ≥ 1 choose

(1) pn(y)2 = pn−1(y)2 + t2n−1‖y − Ren−1‖2 for all y ∈ Y ,

(2) wn = wpn - see Definition 3.4,

(3) σn ∈ (0, σn−1/16),
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(4) tn ∈ (0, tn−1/2) with t2n < σn−1/16,

(5) εn ∈ (0, t2nσ
2
n/2

13),

(6) Dn to be the set of all pairs (x, e) ∈ D with d(x, xn−1) < δn−1, ‖e‖ = 1 and

(x, e) ∈ Gpn(xn−1, en−1, σn−1 − ν)

for some ν ∈ (0, σn−1/2),

(7) (xn, en) ∈ Dn such that wn(x, e) ≤ wn(xn, en) + εn for every (x, e) ∈ Dn,

(8) νn ∈ (0, σn−1/2) such that (xn, en) ∈ Gpn(xn−1, en−1, σn−1 − νn),

(9) ∆n > 0 such that

|f(πxn + ten)− f(πxn)− f ′(πxn, en)t| ≤ σn−1|t|/32 (3.4)

|f(πxn−1 + ten−1)− f(πxn−1)− f ′(πxn−1, en−1)t| ≤ σn−1|t|/32 (3.5)

for all t with |t| ≤ 4∆n/νn,

(10) δn ∈ (0, (δn−1−d(xn, xn−1))/2) with ‖πx−πxn‖ ≤ ∆n whenever d(x, xn) ≤ δn.

That pn defines a norm on Y is almost immediate; the proof of the triangle

inequality follows from the formula

pn(y) =

√√√√‖y‖2 +

n−1∑
m=0

t2m‖y − Rem‖2

and Minkowski’s inequality, and the other properties are straightforward to check.

Note that (6) implies that (xn−1, en−1) ∈ Dn, and so Dn 6= ∅; further as

Lip(f) ≤ 1 and pn(e) ≥ ‖e‖ = 1, for (x, e) ∈ Dn, we see

sup
(x,e)∈Dn

wn(x, e) ≤ 1.

Therefore we are able to pick (xn, en) ∈ Dn with the property of (7).

The definition (6) of Dn then implies that we can find νn with the property

of (8). Further, we have d(xn, xn−1) < δn−1 by (6) and (7); as π is continuous at xn

we may choose δn as in (10).

We collect some rather simple facts.

Lemma 3.6. The following six statements hold.
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1. The sequences σn, tn, εn, δn, νn all tend to 0 as n→∞.

2. If n ≥ 1 and (x, e) ∈ D then pn(e) ≥ pn−1(e) and wn(x, e) ≤ wn−1(x, e) with

equality in both cases if (x, e) = (xn−1, en−1).

3. For each n ≥ 1, Bδn(xn) ⊆ Bδn−1(xn−1).

4. For each n ≥ 1, ‖y‖ ≤ pn(y) ≤ µ‖y‖ ≤ 2‖y‖ for any y ∈ Y .

5. For each n ≥ 1 we have

wn(xn, en) ≥ wn(xn−1, en−1) = wn−1(xn−1, en−1).

6. For each n ≥ 1 then if (x, e) ∈ D,

|f ′(πx, e)−f ′(πxn−1, en−1)| ≤ 2|wn(x, e)−wn(xn−1, en−1)|+4‖e−en−1‖. (3.6)

7. If (x, e) ∈ Dn where n ≥ 1 then e∗0(e) ≥ 1/2.

Proof. Item (1) is immediate from Algorithm 3.5(3),(4),(5),(8) and (10). Likewise

items (2) follows from Algorithm 3.5(1),(2) and Definition 3.4. For item (3) we may

note from Algorithm 3.5(10) that

δn < δn−1 − d(xn, xn−1).

Hence if d(x, xn) ≤ δn then

d(x, xn−1) ≤ δn + d(xn, xn−1) < δn−1.

For item (4) we can use Algorithm 3.5(1),(4) to deduce

pn(y)2 = ‖y‖2 +

n−1∑
m=0

t2m‖y − Rem‖2

≤ ‖y‖2 +

n−1∑
m=0

(
t0
2m

)2

‖y‖2

≤ ‖y‖2 + 2t20 · ‖y‖2

≤ (2µ− 1) · ‖y‖2 ≤ µ2‖y‖2

as t20 ≤ µ− 1. Then we simply note that µ ≤ 2.
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For item (5) we note that (xn, en) ∈ Gpn(xn−1, en−1, σn−1 − νn) by Algo-

rithm 3.5(8). Hence Definition (3.4) implies wn(xn−1, en−1) ≤ wn(xn, en). We have

already proved the equality wn(xn−1, en−1) = wn−1(xn−1, en−1) in (2).

Next for item (6), using pn(en−1) ≤ 2 from (4),

|f ′(πx, e)− f ′(πxn−1, en−1)|

≤ 2
|f ′(πx, e)− f ′(πxn−1, en−1)|

pn(en−1)

≤ 2

∣∣∣∣f ′(πx, e)pn(e)
− f ′(πxn−1, en−1)

pn(en−1)

∣∣∣∣+ 2|f ′(πx, e)|
∣∣∣∣ 1

pn(en−1)
− 1

pn(e)

∣∣∣∣
≤ 2|wn(x, e)− wn(xn−1, en−1)|+ 2

‖e‖
pn(en−1)pn(e)

|pn(e)− pn(en−1)|

≤ 2|wn(x, e)− wn(xn−1, en−1)|+ 4‖e− en−1‖,

where, in the penultimate line, we are using Lip(f) ≤ 1 and, in the final line,

‖pn(en−1)‖ ≥ ‖en−1‖ = 1, ‖pn(e)‖ ≥ ‖e‖ and the fact that

|pn(e)− pn(en−1)| ≤ pn(e− en−1) ≤ 2‖e− en−1‖,

using the triangle inequality and (4) again.

Finally for (7) we note that if (x, e) ∈ Dn then wn(xn−1, en−1) ≤ wn(x, e)

so that by (4) and (5), w0(x0, e0) ≤ wn(x, e) ≤ f ′(πx, e). Hence by Lemma 3.3,

e∗0(e) ≥ 1/2.

We next require a slightly more complicated calculation.

Lemma 3.7. The following three statements hold.

(i) If n ≥ 1 and (x, e) ∈ Dn+1, then (x, e) ∈ Gpn(xn−1, en−1, σn−1 − νn/2).

(ii) If n ≥ 1 then Dn+1 ⊆ Dn.

(iii) If n ≥ 0 and (x, e) ∈ Dn+1, then ‖e− en‖ ≤ σn/8.

Proof. For n = 0, condition (iii) is satisfied by ‖e‖ = ‖en‖ = 1 and σ0 = 16. It

suffices now to check that if n ≥ 1 and condition (iii) is satisfied for n − 1, i.e.

‖e′−en−1‖ ≤ σn−1/8 for all (x′, e′) ∈ Dn, then (i)-(iii) are satisfied for n; the lemma

will then follow by induction on n.

Thus we may let n ≥ 1 and assume that

‖en − en−1‖ ≤
σn−1

8
(3.7)
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as (xn, en) ∈ Dn.

To establish (i) we let (x, e) ∈ Dn+1. We have

d(x, xn) < δn (3.8)

and

(x, e) ∈ Gpn+1(xn, en, σn − ν) (3.9)

by Algorithm 3.5(6), for some ν ∈ (0, σn/2), and we wish to verify

(x, e) ∈ Gpn(xn−1, en−1, σn−1 − νn/2). (3.10)

First note that as wn+1(x, e) ≥ wn+1(xn, en), from (3.9), we have

wn(x, e) ≥ wn+1(x, e) ≥ wn+1(xn, en) = wn(xn, en) ≥ wn(xn−1, en−1) (3.11)

using Lemma 3.6(2) and (5).

Now for |t| < 4∆n/νn, using first (3.4), (3.5) and then Lip(f) ≤ 1,

|(f(πx+ ten−1)− f(πx))− (f(πxn−1 + ten−1)− f(πxn−1))|

≤ |(f(πx+ ten−1)− f(πx))− (f(πxn + ten)− f(πxn))|

+ |f ′(πxn, en)− f ′(πxn−1, en−1)| · |t|+
1

16
σn−1|t|

≤ |(f(πx+ ten)− f(πx))− (f(πxn + ten)− f(πxn))|+ ‖en − en−1‖ · |t|

+ |f ′(πxn, en)− f ′(πxn−1, en−1)| · |t|+
1

16
σn−1|t|.

We may now apply (3.7) and (3.9) to deduce

|(f(πx+ ten−1)− f(πx))− (f(πxn−1 + ten−1)− f(πxn−1)|

≤
(
σn − ν + Ω(wn+1(x, e)− wn+1(xn, en)) +

3

16
σn−1

)
|t|

+ |f ′(πxn, en)− f ′(πxn−1, en−1)| · |t|

≤
(

1

4
σn−1 + Ω(wn(x, e)− wn(xn, en))

)
|t|

+ (2(wn(xn, en)− wn(xn−1, en−1)) + 4‖en − en−1‖) |t|

≤
(

3

4
σn−1 + Ω(wn(x, e)− wn(xn, en)) + 2(wn(xn, en)− wn(xn−1, en−1))

)
|t|

≤ (σn−1 − νn/2 + Ω(wn(x, e)− wn(xn−1, en−1))) |t|, (3.12)
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for |t| < 4∆/νn, where we have used σn ∈ (0, σn−1/16), from Algorithm 3.5(3),

and then Lemma 3.6(2),(5),(6), Lemma 3.2(4) and νn ∈ (0, σn−1/2), from Algo-

rithm 3.5(8).

Now we consider the case |t| ≥ 4∆n/νn. As d(x, xn) < δn from (3.8) we have

‖πx− πxn‖ ≤ ∆n ≤ νn|t|/4

from Algorithm 3.5(10), so we get

|(f(πx+ ten−1)− f(πx))− (f(πxn−1 + ten−1)− f(πxn−1)|

≤ 2‖πx− πxn‖+ |(f(πxn + ten−1)− f(πxn))− (f(πxn−1 + ten−1)− f(πxn−1)|

≤ νn|t|/2 + (σn−1 − νn + Ω(wn(xn, en)− wn(xn−1, en−1))) |t|

≤ (σn−1 − νn/2 + Ω(wn(x, e)− wn(xn−1, en−1))) |t|,

using (xn, en) ∈ Gpn(xn−1, en−1, σn−1 − νn), from Algorithm 3.5(8), wn(xn, en) ≤
wn(x, e), from (3.11), and the fact Ω is increasing, from Lemma 3.2(4).

Then (3.12) together with this last inequality verifies (i).

Further, for (x, e) ∈ Dn+1 we have ‖e‖ = 1 and d(x, xn−1) < δn−1, using

d(x, xn) < δn and Lemma 3.6(3). From (i) we see then that (x, e) ∈ Dn; hence (ii).

Finally to see (iii), let (x, e) ∈ Dn+1 with n ≥ 1 and recall that

wn(xn, en) = wn+1(xn, en) ≤ wn+1(x, e).

We deduce from Definition 3.4,

wn(xn, en) ≤ pn(e)

pn+1(e)
wn(x, e)

≤ pn(e)

pn+1(e)
(wn(xn, en) + εn) (3.13)

using (x, e) ∈ Dn, from (ii), and Algorithm 3.5(7).

Writing d := ‖e− Ren‖ ≤ 1 we note that tn < t0 < 1/2 so that

pn(e)

pn+1(e)
=

1√
1 + t2nd

2/pn(e)2
≤ 1− t2nd

2

4pn(e)2

using the fact that 1/
√

1 + x ≤ 1− x/4 for 0 ≤ x ≤ 1.
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Substituting this inequality into (3.13) we obtain

t2nd
2

4pn(e)2
wn(xn, en) ≤ εn

(
1− t2nd

2

4pn(e)2

)
≤ εn.

But pn(e) ≤ 2 and

wn(xn, en) ≥ w0(x0, e0) = g′(πx0, e0) +
2

3
>

1

2
,

using Lemma 3.6(5) and g′(πx0, e0) ≥ 0, so that, using Algorithm 3.5(5), we have

d2 < σ2n/2
8 and so

‖e− ten‖ ≤
σn
16

(3.14)

for some t ∈ R.

Now |e∗0(e − ten)| ≤ σn/16 ≤ 1/2, for n ≥ 1, and e∗0(e) ≥ 1/2, e∗0(en) ≥ 1/2

by Lemma 3.6(7). Hence t ≥ 0.

Then from (3.14) and ‖en‖ = ‖e‖ = 1 we get that

|1− t| ≤ σn
16

and so

‖e− en‖ ≤
σn
8

using (3.14) once again.

We now show that the sequences xn, en and pn converge and establish some

properties of the limits. We first quote a lemma for determining the Fréchet differ-

entiability of the norm p∞.

Lemma 3.8. If the norm of a Banach space Y is Fréchet differentiable on Y \ {0},
if em ∈ Y and tm ≥ 0 with

∑
t2m < ∞, then the function p : Y → R defined by the

formula

p(y) :=

√√√√‖y‖2 +
∞∑
m=1

t2m‖y − Rem‖2

is an equivalent norm on Y that is Fréchet differentiable on Y \ {0}.

Proof. See [23, Lemma 4.3].

Lemma 3.9. We have xm → x∞ ∈ X, em → e∞ ∈ S(Y ) and pm → p∞ where

(i) d(x∞, xm) < δm and ‖e∞ − em‖ ≤ σm/8 for all m ≥ 0,
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(ii) p∞ is a norm on Y with

pm(y) ≤ p∞(y) ≤ (1 + t2m)pm(y) ≤ µ‖y‖

for all y ∈ Y and m ≥ 0; further pm is Fréchet differentiable on Y \ {0}
provided this is true of the original norm ‖ · ‖ of Y ,

(iii) If (x, e) ∈ D and n ≥ 1 then |wn(x, e)− w∞(x, e)| ≤ t2n where w∞ := wp∞,

(iv) (x∞, e∞) ∈ D with w∞(x∞, e∞) > 0 and wm(xm, em)↗ w∞(x∞, e∞),

(v) (x∞, e∞) ∈ Gpm(xm−1, em−1, σm−1 − νm/2) and

(vi) (x∞, e∞) ∈ Dm for all m ≥ 1.

Proof. For n ≥ m ≥ 1, by parts (ii) and (iii) of Lemma 3.7 we have

(xn, en) ∈ Dn+1 ⊆ Dm+1

and ‖en − em‖ ≤ σm/8. Hence d(xn, xm) < δm from the definition of Dm+1 in

Algorithm 3.5(6).

As (X, d) and (Y, ‖ · ‖) are complete and δm, σm → 0 we have xm → x∞ ∈ X
and em → e∞ ∈ Y where d(x∞, xm) ≤ δm and ‖e∞ − em‖ ≤ σm/8. The former

implies

x∞ ∈ Bδm(xm) ⊆ Bδm−1(xm−1)

for all m ≥ 1, using Lemma 3.6(3). Finally as em ∈ S(Y ) for all m we have

e∞ ∈ S(Y ) too.

For item (ii) we note by Lemma 3.8 that

p∞(y) :=

√√√√‖y‖2 +

∞∑
m=1

t2m‖y − Rem‖2

is a norm on Y that is Fréchet differentiable on Y \ {0} provided this is true of ‖ · ‖;
further from tm+1 ∈ (0, tm/2),

p∞(y)2 = pn(y)2 +

∞∑
m=n

t2m‖y − Rem‖2

≤ pn(y)2 + 2t2n · ‖y‖2

≤ (1 + 2t2n)pn(y)2

≤ (1 + t2n)2pn(y)2.
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We then may note that 1 + t2n ≤ 1 + t20 ≤ µ.

For (iii),

|wn(x, e)− w∞(x, e)|

=

∣∣∣∣f ′(x, e)( 1

pn(e)
− 1

p∞(e)

)∣∣∣∣
= |f ′(x, e)| · |p∞(e)− pn(e)|

pn(e)p∞(e)

≤ ‖e‖ t2n · pn(e)

pn(e)p∞(e)

≤ t2n

using Lip(f) ≤ 1, |p∞(e)− pn(e)| ≤ t2npn(e) from part (ii) and p∞(e) ≥ ‖e‖.
We now show that the directional derivative f ′(πx∞, e∞) exists.

For n ≥ m we have (xn, en) ∈ Dm+1; therefore by part (i) of Lemma 3.7 we

know

(xn, en) ∈ Gpm(xm−1, em−1, σm−1 − νm/2). (3.15)

Now from Lemma 3.6(5), w0(x0, e0) > 0 and Lip(f) ≤ 1 we have

wn(xn, en)↗ L

for some L ∈ (0, 1]. By part (ii) of the present lemma and tn → 0 we also have

w∞(xn, en)→ L and wn+1(xn, en)→ L. Note then that for each fixed m,

wm(xn, en)− wm(xm−1, em−1) −−−→
n→∞

sm,

where

sm :=
p∞(e∞)

pm(e∞)
L− wm(xm−1, em−1) −−−−→

m→∞
0. (3.16)

As wm(xn, en) ≥ wm(xm−1, em−1) from (3.15) we have sm ≥ 0 for each m. Taking

n→∞ in (3.15) we obtain

|(f(πx∞ + tem−1)− f(πx∞))− (f(πxm−1 + tem−1)− f(πxm−1))| ≤ rm|t| (3.17)

for any t ∈ R, where

rm := σm−1 − νm/2 + Ω(sm)→ 0 (3.18)
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by Lemma 3.2(2). Using ‖e∞ − em−1‖ ≤ σm−1 and Lip(f) ≤ 1:

|(f(πx∞ + te∞)− f(πx∞))− (f(πxm−1 + tem−1)− f(πxm−1))| ≤ (rm + σm−1)|t|.
(3.19)

Let ε > 0. Note that as

f ′(πxm−1, em−1) = pm−1(em−1)wm−1(xm−1, em−1)→ p∞(e∞)L

we may pick m such that

rm + σm−1 ≤ ε/3 and |f ′(πxm−1, em−1)− p∞(e∞)L| ≤ ε/3 (3.20)

and then δ > 0 with

|f(πxm−1 + tem−1)− f(πxm−1)− f ′(πxm−1, em−1)t| ≤ ε|t|/3 (3.21)

for all t with |t| ≤ δ. Combining (3.19), (3.20) and (3.21) we obtain

|f(πx∞ + te∞)− f(πx∞)− p∞(e∞)Lt| ≤ ε|t|

for |t| ≤ δ. Hence the directional derivative f ′(πx∞, e∞) exists and equals p∞(e∞)L.

Therefore (x∞, e∞) ∈ D with

w∞(x∞, e∞) = L.

As L > 0 and wn(xn, en)↗ L, we obtain (iv).

From (3.16) we may now deduce

sm = wm(x∞, e∞)− wm(xm−1, em−1).

As sm ≥ 0 for all m, we have wm(x∞, e∞) ≥ wm(xm−1, em−1) for all m.

Further from (3.17) and (3.18),

|(f(πx∞ + tem−1)− f(πx∞))− (f(πxm−1 + tem−1)− f(πxm−1))|

≤ σm−1 − νm/2 + Ω(wm(x∞, e∞)− wm(xm−1, em−1))|t|

for any t. Hence

(x∞, e∞) ∈ Gpm(xm−1, em−1, σm−1 − νm/2).
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This establishes (v).

Finally (vi) follows immediately from (i),(iv),(v) and ‖e∞‖ = 1.

We are left needing to verify that the weight w∞(x∞, e∞) is almost locally

maximal in the sense of Theorem 3.1.

Lemma 3.10. If ε > 0 then there exists δ > 0 such that whenever

(x′, e′) ∈ Gp∞(x∞, e∞, 0)

with d(x′, x∞) ≤ δ then we have w∞(x′, e′) < w∞(x∞, e∞) + ε.

Proof. Find n ≥ 1 with εn+ 2t2n < ε and then pick ∆ > 0 such that for |t| < 8∆/νn,

|f(πx∞ + te∞)− f(πx∞)− f ′(πx∞, e∞)t| ≤ 1

16
σn−1|t| (3.22)

|f(πxn−1 + ten−1)− f(πxn−1)− f ′(πxn−1, en−1)t| ≤
1

16
σn−1|t|. (3.23)

Using Lemma 3.9(i) and the continuity of π we can find

δ ∈ (0, δn−1 − d(x∞, xn−1)) (3.24)

such that

‖πx′ − πx∞‖ ≤ ∆ (3.25)

whenever d(x′, x∞) ≤ δ.
We now suppose, for a contradiction, that

(x′, e′) ∈ Gp∞(x∞, e∞, 0)

d(x′, x∞) ≤ δ

w∞(x′, e′) ≥ w∞(x∞, e∞) + ε.

(3.26)

As w∞(x′, e′) is invariant if we scale e′ by a positive factor, as is the membership

relation (x′, e′) ∈ Gp∞(x∞, e∞, 0), we may assume that ‖e′‖ = 1.

First we shall show that (x′, e′) ∈ Dn.

Since (3.24) and d(x′, x∞) ≤ δ imply d(x′, xn−1) < δn−1, to prove (x′, e′) ∈
Dn it is enough to show that

(x′, e′) ∈ Gpn(xn−1, en−1, σn−1 − νn/4); (3.27)

see (6) in Algorithm 3.5.
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First note that as wn+1(x, e) ≥ wn+1(xn, en), from (3.9), we have

wn(x, e) ≥ wn+1(x, e) ≥ wn+1(xn, en) = wn(xn, en) ≥ wn(xn−1, en−1) (3.28)

using Lemma 3.6(2) and (5).

Then for |t| < 8∆/νn, using first (3.22), (3.23) and then Lip(f) ≤ 1,

|(f(πx′ + ten−1)− f(πx′))− (f(πxn−1 + ten−1)− f(πxn−1))|

≤ |(f(πx′ + ten−1)− f(πx′))− (f(πx∞ + te∞)− f(πx∞))|

+ |f ′(πx∞, e∞)− f ′(πxn−1, en−1)| · |t|+
1

8
σn−1|t|

≤ |(f(πx′ + te∞)− f(πx′))− (f(πx∞ + te∞)− f(πx∞))|+ ‖e∞ − en−1‖ · |t|

+ |f ′(πx∞, e∞)− f ′(πxn−1, en−1)| · |t|+
1

8
σn−1|t|.

Note now that ‖e∞ − en−1‖ ≤ σn−1/8 from Lemma 3.9(i). Further, using

(x′, e′) ∈ Gp∞(x∞, e∞, 0)

we have

|(f(πx′ + te∞)− f(πx′))− (f(πx∞ + te∞)− f(πx∞))|

≤ Ω(w∞(x′, e′)− w∞(x∞, e∞)) · |t|

for all t ∈ R. Hence

|(f(πx′ + ten−1)− f(πx′))− (f(πxn−1 + ten−1)− f(πxn−1)|

≤
(

1

4
σn−1 + Ω(w∞(x′, e′)− w∞(x∞, e∞))

)
|t|

+ |f ′(πx∞, e∞)− f ′(πxn−1, en−1)| · |t|

≤
(

1

4
σn−1 + Ω(w∞(x′, e′)− w∞(x∞, e∞))

)
|t|

+ (2(wn(x∞, e∞)− wn(xn−1, en−1)) + 4‖e∞ − en−1‖) |t|

≤
(

3

4
σn−1 + Ω(w∞(x′, e′)− w∞(x∞, e∞))

)
|t|

+ 2(wn(x∞, e∞)− wn(xn−1, en−1))|t|

≤
(

7

8
σn−1 + Ω(wn(x′, e′)− w∞(x∞, e∞))

)
|t|

+ 2(w∞(x∞, e∞)− wn(xn−1, en−1))|t|
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for |t| < 8∆/νn, where we have used Algorithm 3.5(3) and then Lemma 3.6(6)

with (x, e) = (x∞, e∞). In the final line we note from Lemma 3.9(ii),(iii) and

Algorithm 3.5(4) that w∞(x′, e′) ≤ wn(x′, e′) and

|wn(x∞, e∞)− w∞(x∞, e∞)| ≤ t2n < σn−1/16.

Finally by Lemma 3.2(4) and νn ∈ (0, σn−1/2),

|(f(πx′ + ten−1)− f(πx′))− (f(πxn−1 + ten−1)− f(πxn−1)|

≤
(
σn−1 − νn/4 + Ω(wn(x′, e′)− wn(xn−1, en−1))

)
|t|. (3.29)

Now we consider the case |t| ≥ 8∆/νn. From d(x′, x∞) ≤ δ and (3.25) we

have

‖πx′ − πx∞‖ ≤ ∆ ≤ νn|t|/8

so we get, using (x∞, e∞) ∈ Gpn(xn−1, en−1, σn−1 − νn/2) from Lemma 3.9(v),

|(f(πx′ + ten−1)− f(πx′))− (f(πxn−1 + ten−1)− f(πxn−1))|

≤ |(f(πx∞ + ten−1)− f(πx∞))− (f(πxn−1 + ten−1)− f(πxn−1))|

+ 2‖πx′ − πx∞‖

≤ (σn−1 − νn/2 + Ω(wn(x∞, e∞)− wn(xn−1, en−1))) |t|+ νn|t|/4

≤
(
σn−1 − νn/4 + Ω(wn(x′, e′)− wn(xn−1, en−1))

)
|t|, (3.30)

where, in the final line, we have noted from Lemma 3.9(iii) and

w∞(x′, e′) ≥ w∞(x∞, e∞) + ε ≥ w∞(x∞, e∞) + εn + 2t2n

that

wn(x′, e′) ≥ wn(x∞, e∞).

From (3.29) and (3.30) we deduce (x′, e′) ∈ Dn. It follows from Algo-

rithm 3.5(7) that

wn(x′, e′) ≤ wn(xn, en) + εn ≤ w∞(x∞, e∞) + εn,

by Lemma 3.9(iv).

Using Lemma 3.9(iii) once more,

w∞(x′, e′) ≤ w∞(x∞, e∞) + εn + t2n < w∞(x∞, e∞) + ε.
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This contradicts our assumption

w∞(x′, e′) ≥ w∞(x∞, e∞) + ε,

completing the proof.

Proof of Theorem 3.1. We verify the conclusions of the theorem.

First, item (1) is immediate from (3.2) and (3.3). For item (2) we define

‖ · ‖′ = p∞

and then the inequality ‖y‖ ≤ ‖y‖′ ≤ µ‖y‖ holds for all y ∈ Y by Lemma 3.9(ii).

For (3) we define

x = x∞

e = e∞/‖e∞‖′.

Then Lemma 3.9(iv) shows that (x, e) ∈ D. That ‖e‖′ = 1 is immediate from the

definition of e.

Now given any ε > 0 we choose δ > 0 as in Lemma 3.10 and then define the

open neighbourhood Nε of x in X by

Nε = Bδ(x).

If (x′, e′) ∈ D with x′ ∈ Nε and ‖e′‖′ = 1 then from Definition 3.4 we have

w∞(x∞, e∞) = f ′(πx, e)

w∞(x′, e′) = f ′(πx′, e′).

Subsequently if (3.1) is satisfied then as 2Θ ≤ Ω, from Lemma 3.2(1), and

‖e∞‖′ ≤ µ‖e∞‖ ≤ 2

we have

(x′, e′) ∈ Gp∞(x∞, e∞, 0).

Then by Lemma 3.10, as x′ ∈ Bδ(x),

w∞(x′, e′) < w∞(x∞, e∞) + ε,
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and so

f ′(πx′, e′) < f ′(πx, e) + ε.

Finally, by Lemma 3.9(ii), if the norm ‖·‖ is Fréchet differentiable on Y \{0}
then so is the norm ‖ · ‖′.
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Chapter 4

Universal Fréchet sets

4.1 A criterion for universality

Definition 4.1. Given a Banach space Y we say that a subset S ⊆ Y is a universal

Fréchet set if for every Lipschitz function f : Y → R there exists y ∈ S such that f

is Fréchet differentiable at x.

We remark that if Y is an Asplund space then, by Theorem 1.13, any non-empty

open subset of Y is a universal Fréchet set. If, on the other hand, Y is not Asplund

then by Theorem 1.16, there exists a nowhere Fréchet-differentiable Lipschitz func-

tion f : Y → R; in fact f may be taken to be equal to a certain equivalent norm on

Y . It follows that any non-Asplund Y has no universal Fréchet sets.

We now prove a sufficient condition for a set S ⊆ Y to be a universal Fréchet

set. We use the notation Bδ(y) and Bδ(y) to denote open and closed balls in Y ,

respectively, with centre y and radius δ. As usual we shall use S(Y ) to denote the

unit sphere of a Banach space Y .

Theorem 4.2. Let X be a non-empty complete space, Y be a Banach space with

an equivalent norm that is Fréchet differentiable on Y \ {0} and π : X → Y be a

continuous function.

Suppose that for every η, µ > 0, x ∈ X and every open neighbourhood N

of x in X there exists δ0 = δ0(x,N, η, µ) > 0 such that for any δ ∈ (0, δ0) and

y1, y2 ∈ Bδ(y) where y = πx, there exists an almost-everywhere-differentiable Lips-
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chitz γ : [0, 1]→ Y with

‖γ(0)− y1‖ ≤ ηδ, ‖γ(1)− y2‖ ≤ ηδ (4.1)

‖γ′(t)− (y2 − y1)‖ ≤ ηδ for almost all t ∈ [0, 1] (4.2)

m({t ∈ [0, 1] such that γ(t) /∈ π(N)}) ≤ µ. (4.3)

Then the image π(X) is a universal Fréchet set in Y . In fact, writing Dg ⊆ Y for

the set of points of Fréchet differentiability of a Lipschitz function g : Y → R, the

intersection Dg ∩ π(X) is a dense subset of π(X).

Proof. As the conditions of the theorem are invariant under a renorming of Y and

as the set of points of Fréchet differentiability of any Lipschitz function is unchanged

under such a renorming, we may assume that the original norm ‖ · ‖ of Y is Fréchet

differentiable on Y \ {0}.
Let x ∈ X and y = πx ∈ Y and

δ ∈ (0, δ0(x,X, 1/2, 1/2)).

Pick y1, y2 ∈ Bδ(y) with ‖y2− y1‖ ≥ δ. We may find a Lipschitz curve γ : [0, 1]→ Y

with

‖γ′(t)− (y2 − y1)‖ ≤ δ/2 (4.4)

for almost all t ∈ [0, 1] and such that

m({t ∈ [0, 1] such that γ(t) /∈ π(X)}) ≤ 1/2. (4.5)

Let now g : Y → R be Lipschitz with Lip(g) ≤ 1. Note then that

g ◦ γ : [0, 1]→ R

is a Lipschitz function so by Lebesgue’s theorem it is differentiable almost every-

where.

Using (4.4) and (4.5) we may pick t ∈ [0, 1] such that γ(t) ∈ π(X), γ′(t)

exists and is non-zero and (g ◦ γ)′(t) exists. Write γ(t) = πx where x ∈ X. As g is

Lipschitz we deduce that g′(γ(t), γ′(t)) exists. Therefore the set

D := {(x, e) ∈ X × (Y \ {0}) such that g′(πx, e) exists}

is non-empty because it contains (x, γ′(t)).
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Define Θ: (0,∞)→ R by

Θ(s) = 106
√

3s,

and µ = 2. Then conditions (a)-(e) of Theorem 3.1 are readily verified and we have

already established that D 6= ∅.
Let the Lipschitz function f : Y → R, the norm ‖ · ‖′ on Y , (x, e) ∈ D and,

for each ν > 0, the open neighbourhood Nν of x ∈ X be given by the conclusion

of Theorem 3.1. Note that Lip(f) ≤ 3, that we may take ‖ · ‖′ to be Fréchet

differentiable on Y \ {0} and finally

‖z‖ ≤ ‖z‖′ ≤ 2‖z‖ (4.6)

for all z ∈ Y .

We claim that y = πx is a point of Fréchet differentiability of f . As Fréchet

differentiability in (Y, ‖·‖) is equivalent to Fréchet differentiability in (Y, ‖·‖′), since

the two norms are equivalent, it suffices to verify the conditions of Theorem 2.1 for

(Y, ‖·‖′), applied to the Lipschitz function f , L = 3 and the pair (y, e). To accomplish

this, we let ν, η, µ > 0 and prove the existence of

F = Fν,η,µ

s∗ = s∗(ν, η, µ)

such that (1) and (2) of Theorem 2.1 hold, with the norm ‖ · ‖ replaced by ‖ · ‖′.
We shall take

Fν,η,µ = π(Nν)

s∗(ν, η, µ) = δ0(x,Nν , η/2, µ).

Suppose s ∈ (0, s∗), ‖y1 − y‖′ < s and ‖y2 − y‖′ < s. Then

s ∈ (0, δ0(x,Nν , η/2, µ))

and, from (4.6), we have ‖y1 − y‖ < s, ‖y2 − y‖ < s.

Thus there exists an almost-everywhere-differentiable Lipschitz curve

γ : [0, 1]→ Y
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such that

‖γ(0)− y1‖ ≤ ηs/2, ‖γ(1)− y2‖ ≤ ηs/2

‖γ′(t)− (y2 − y1)‖ ≤ ηs/2 for almost all t ∈ [0, 1]

m({t ∈ [0, 1] such that γ(t) /∈ π(Nν)}) ≤ µ.

Thus by (4.6),

‖γ(0)− y1‖′ ≤ ηs, ‖γ(1)− y2‖′ ≤ ηs

‖γ′(t)− (y2 − y1)‖′ ≤ ηs for almost all t ∈ [0, 1].

This verifies condition (1) of Theorem 2.1.

For condition (2) we can note that if y′ ∈ Fν,η,µ, ‖e′‖′ = 1 and

|(f(y′ + te)− f(y′))− (f(y + te)− f(y))|

≤ 106
√

(f ′(y′, e′)− f ′(y, e))L · |t|

for all t ∈ R, then as Fν,η,µ = π(Nν) we may write y′ = πx′ where x′ ∈ Nν . As L = 3

and Θ(s) = 106
√

3s, the conditions (3)(i) and (3)(ii) of Theorem 3.1 are satisfied,

with ε replaced with ν, so we deduce that

f ′(πx′, e′) < f ′(πx, e) + ν,

which verifies (2.5).

As all the conditions of Theorem 2.1 are satisfied we deduce that f is Fréchet

differentiable at y = πx ∈ π(X). As f − g is linear, g is also Fréchet differentiable

at y ∈ π(X). Hence π(X) is indeed a universal Fréchet set in Y .

To verify the last observation of the present theorem, it suffices to note that

if y ∈ π(X) and ε > 0 then by the continuity of π we may pick a non-empty open

set N ⊆ X such that

π(N) ⊆ Bε(y).

Then as the restriction bundle π|N : N → Y satisfies the conditions of the present

theorem, as can easily be checked, any Lipschitz g : Y → R contains a point of

Fréchet differentiability in

π(N) ⊆ π(X) ∩Bε(y).

It is convenient to reformulate Theorem 4.2 for the case in which the set we
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wish to prove universal is a closed subset of the Banach space Y . This reformulation

is closer in spirit to the approach in [8].

Corollary 4.3. Let Y be a Banach space with an equivalent norm that is Fréchet

differentiable on Y \ {0} and (Fλ)0<λ<1 be a family of non-empty, closed subsets of

Y with Fλ ⊆ Fλ′ whenever λ ≤ λ′.
Suppose that for every η, µ > 0, 0 < λ < 1 and

y ∈
⋃

0<λ′<λ

Fλ′

there exists δ1 = δ1(y, λ, η, µ) > 0 such that, for any δ ∈ (0, δ1) and y1, y2 ∈ Bδ(y),

there exists an almost-everywhere-differentiable Lipschitz curve γ : [0, 1]→ Y with

‖γ(0)− y1‖ ≤ ηδ, ‖γ(1)− y2‖ ≤ ηδ (4.7)

‖γ′(t)− (y2 − y1)‖ ≤ ηδ for almost all t ∈ [0, 1] (4.8)

m({t ∈ [0, 1] such that γ(t) /∈ Fλ}) ≤ µ. (4.9)

Then for each λ ∈ (0, 1) the set Fλ is a universal Fréchet set. In fact, writing

Dg ⊆ Y for the set of points of Fréchet differentiability of a Lipschitz function

g : Y → R, the intersection Dg ∩ ∪0<λ<tFλ is a dense subset of ∪0<λ<tFλ, for any

t ∈ (0, 1).

Proof. For each λ ∈ (0, 1) we let

F ′λ :=
⋂
λ′>λ

Fλ.

Fix t ∈ (0, 1) and define X ⊆ (0, t)× Y by

X = {(λ, y) such that y ∈ F ′λ}.

Note that X 6= ∅. We claim that X is a complete space; indeed if we take ∆ to be

a complete metric on (0, t) then we may check that the metric

d((λ′, y′), (λ, y)) = max(∆(λ′, λ), ‖y′ − y‖) (4.10)

is a complete metric on X as follows.

Suppose that (λn, yn) is a Cauchy sequence in (X, d). As ((0, t),∆) and

(Y, ‖ · ‖) are complete we deduce that λn → λ ∈ (0, t) and yn → y ∈ Y . We wish

to show that (λ, y) ∈ X. Note that if λ′ ∈ (λ, 1) then as λn < λ′ for sufficiently
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high n we have yn ∈ F ′λn ⊆ Fλ′ . As the latter set is closed we deduce that y ∈ Fλ′ .
This holds for every λ′ ∈ (λ, 1) so that y ∈ F ′λ. Hence (λ, y) ∈ X, proving that X is

indeed complete.

The map π : X → Y given by

π(λ, y) = y

is of course continuous.

We shall now verify the conditions of Theorem 4.2. Given η, µ > 0, x =

(λ, y) ∈ X and an open neighbourhood N of x in X, to show the existence of

δ0(x,N, η, µ) we may assume, without loss of generality, that N is an open ball

N = {x′ ∈ X such that d(x′, x) < ψ}

in X and η ∈ (0, 1).

We then pick λ′ ∈ (λ, t) with ∆(λ′, λ) < ψ and let

δ0(x,N, η, µ) = min

(
δ1(y, λ

′, η, µ),
ψ

3

)
.

If δ ∈ (0, δ0) then as δ ∈ (0, δ1(y, λ
′, η, µ)), for any y1, y2 ∈ Bδ(y) there exists

an almost-everywhere-differentiable Lipschitz curve γ : [0, 1]→ Y with

‖γ(0)− y1‖ ≤ ηδ, ‖γ(1)− y2‖ ≤ ηδ (4.11)

‖γ′(t)− (y2 − y1)‖ ≤ ηδ for almost all t ∈ [0, 1] (4.12)

m({t ∈ [0, 1] such that γ(t) /∈ Fλ′}) ≤ µ. (4.13)

Using y1, y2 ∈ Bδ(y), (4.11), (4.12), η < 1 and δ < δ0 ≤ ψ/3 we deduce that

γ(t) ∈ B3δ(y) ⊆ Bψ(y)

for all t ∈ [0, 1].

Thus if γ(t) ∈ Fλ′ then as

d((λ′, γ(t)), x) = d((λ′, γ(t)), (λ, y)) < ψ,

by (4.10), we have (λ′, γ(t)) ∈ N and so γ(t) ∈ π(N). Therefore

m({t ∈ [0, 1] such that γ(t) /∈ π(N)}) ≤ µ
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by (4.13).

Hence by Theorem 4.2, we deduce that π(X) ⊆ Fλ is a universal Fréchet set.

This holds for every λ ∈ (0, 1).

The final observation again follows by noting that if y ∈ Ft′ for some t′ ∈ (0, t)

and ε > 0, then the collection

(Fλt+(1−λ)t′ ∩Bε(y))0<λ<1

still satisfies the conditions of the present theorem, so contains, for each λ, a point

of Fréchet differentiability of any Lipschitz function g : Y → R. Therefore so does( ⋃
0<λ<t

Fλ

)
∩Bε(y).

Remark 4.4. We make two short remarks.

1. The condition that Y has an equivalent norm that is Fréchet differentiable on

Y \{0} is always satisfied if Y ∗ is separable - that is if Y is a separable Asplund

space. See [4]. We shall make a brief remark about the case in which Y is

non-separable in the final section of the thesis.

2. If Y is a Banach space then we say that a function g : Y → R is locally

Lipschitz if for every y ∈ Y there exists an open neighbourhood U of y in Y

and a constant LU > 0 such that for every z, w ∈ U ,

|g(z)− g(w)| ≤ LU‖z − w‖.

It is easy to show that if X, Y and π : X → Y satisfy the conditions of The-

orem 4.2 then the set π(X) contains a Fréchet differentiability point of every

locally Lipschitz g : Y → R. Let x ∈ X, y = πx and let U be an open neigh-

bourhood of y ∈ Y as above. Then one can extend g|U to a Lipschitz function

g : Y → R. As the points of Fréchet differentiability of g are dense in π(X) we

can find such a point y ∈ π(X)∩U ; then y is a point of Fréchet differentiabil-

ity of g. Similarly, if (Fλ)0<λ<1 satisfies the conditions of Corollary 4.3 then

∪0<λ<1Fλ contains a point of Fréchet differentiability of every locally Lipschitz

g : Y → R.
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4.2 The original example of Preiss revisited

By Rademacher’s theorem, every subset of a Euclidean space with positive Lebesgue

measure is trivially seen to be a universal Fréchet set. The converse however is false

in any Euclidean space of dimension at least two. The original proof of this statement

is due to Preiss - see [23] - and in this section we shall revisit his example.

We first recall the elementary fact that any Gδ subset of a complete metric

space is a complete topological space.

Lemma 4.5. If (Y,∆) is a complete metric space and O = ∩n≥1On, where the sets

On are open, then the subspace topology on O is induced by a complete metric d

where

d(x, y) = ∆(x, y) +
∞∑
n=1

1

2n
min

(∣∣∣∣ 1

∆(y,Ocn)
− 1

∆(x,Ocn)

∣∣∣∣ , 1) .
Proof. It is straightforward to check this formula defines a metric on O. That d

induces the subspace topology on O, considered as a subset of Y , follows from the

inequality ∆(x, y) ≤ d(x, y) and the fact that d is a continuous function on O ×O,

with respect to the metric ∆; the latter holds as d is a uniform limit of continuous

functions.

Finally if (ym)m≥1 is a Cauchy sequence in O then as ∆(ym, yn) ≤ d(ym, yn)

and (Y,∆) is complete we have ∆(ym, y) → 0 for some y ∈ Y . Further, for each

n ≥ 1 the sequence (
1

∆(ym, Ocn)

)
m≥1

is Cauchy; therefore it is a bounded sequence. It quickly follows that ∆(y,Ocn) > 0

for all n ≥ 1 so that y ∈ O. Hence d is complete.

Theorem 4.6. Suppose that Y is a Banach space with separable dual, T is a dense

subset of Y and S ⊆ Y is a Gδ subset of Y containing every line segment joining

two points of T . Then S is a universal Fréchet set in Y .

Proof. We let the space X = S with the topology inherited from Y ; as S is Gδ, X

is a complete space. Let π : X → Y be the inclusion map; clearly π is continuous.

Note that Y has an equivalent norm that is Fréchet differentiable on Y \ {0} by

Theorem 1.16. The conditions (4.1)-(4.3) of Theorem 4.2 can be satisfied for any

δ0 > 0 by taking γ to be an affine map and using the density of T . Therefore

π(X) = X = S is a universal Fréchet set.

Instead of proving directly that S may be taken to be Lebesgue null if Y =

RM for M ≥ 2, we shall show the stronger fact that S may be taken to have
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Hausdorff dimension at most one for any Banach space Y with separable dual.

We first recall the definition of Hausdorff dimension.

Definition 4.7. If S is a metric space then we call a sequence (Ci)i≥1 of subsets of

S a countable cover of S if S = ∪i≥1Ci. We then define, for any non-negative real

number d,

CdH(S) = inf
∑
i≥1

diameter(Ci)
d

and then define the Hausdorff dimension

dH(S) = inf{d > 0 such that CdH(S) = 0}.

We may consider any subset S of a Banach space Y as a metric space in its

own right and apply this definition to calculate its Hausdorff dimension.

Lemma 4.8. If Y is a Banach space and L is a countable union of line segments

in Y then there exists a Gδ subset O of Y with L ⊆ O and such that the Hausdorff

dimension of O is less than or equal to one.

Proof. We first note that it is easily checked that CdH is countably subadditive, when

considered as a set function defined on subsets of a metric space, and that if l is a

line segment of length at most one, d > 0 and k is a positive integer then

CdH(B1/k(l)) ≤ k ·
(

4

k

)d
= 4d · k−(d−1), (4.14)

as we may cover B1/k(l) with k open balls of radius 2/k. Here, as usual, Br(S)

denotes the open r-neighbourhood of S

Br(S) :=
⋃
y∈S

Br(y)

for any S ⊆ Y and r > 0.

Now let L be a countable union of line segments in a Banach space Y . One

may write

L =
⋃
m≥1

Lm

where each Lm is a line segment in Y of length at most one.

We let

On =

∞⋃
m=1

B1/2m+n(Lm)
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and

O =
∞⋂
n=1

On.

Note that O is a Gδ subset of Y , containing L. We must verify that the

Hausdorff dimension of O is no greater than one.

Let d > 1. It suffices, by Definition 4.7, to show that

CdH(O) = 0.

But for each n,

CdH(O) ≤ CdH(On)

≤
∞∑
m=1

CdH(B1/2m+n(Lm))

≤
∞∑
m=1

4d · 2−(m+n)(d−1)

= 4d · 2−(n+1)(d−1)

1− 2−(d−1)

using the countable subadditivity of CdH , (4.14) and d > 1. The right hand side

tends to 0 as n→∞ so we deduce that

CdH(O) = 0

for all d > 1, as required.

Corollary 4.9. Any Banach space Y with separable dual has a universal Fréchet

set S ⊆ Y with Hausdorff dimension at most one.

Proof. This is immediate by combining Theorem 4.6 with Lemma 4.8.

We may remark that, for non-trivial Y , the Hausdorff dimension of a such a

set S must in fact be exactly one.

Lemma 4.10. If Y is a Banach space with Y 6= {0} and S ⊆ Y has Hausdorff

dimension less than one then there exists a Lipschitz function g : Y → R that is not

Fréchet differentiable at any y ∈ S.

Proof. Let π ∈ Y ∗ with ‖π‖ = 1. As π is Lipschitz and Hausdorff dimension is

non-increasing under taking the Lipschitz image, the set

π(S) ⊆ R
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has Hausdorff dimension less than one. Hence π(S) has Lebesgue measure zero. By

Lemma 1.6 we can therefore find a Lipschitz function f : R → R that is nowhere

differentiable on π(S). We let g : Y → R be given by

g = f ◦ π.

We note that g is Lipschitz. Let e ∈ S(Y ) with πe 6= 0. For any y ∈ S and t ∈ R,

g(y + te)− g(y) = f(πy + (πe)t)− f(πy).

As f is not differentiable at πy ∈ π(S), we deduce that the directional derivative

g′(y, e)

does not exist for any y ∈ S; hence g : Y → R is not Fréchet differentiable at any

y ∈ S.

Finally, we use the elementary fact that any subset of Y = RM with Hausdorff

dimension strictly less than M has Lebesgue measure zero to deduce the following,

from Corollary 4.9.

Corollary 4.11. If M ≥ 2 then RM has a universal Fréchet set of Lebesgue measure

zero.

See [23, Corollary 6.5], and the subsequent remark, for the original presen-

tation of this result.

4.3 A compact null universal Fréchet set in Euclidean

space

Although the universal sets we constructed in the previous section can be taken to

be Lebesgue null, in finite dimensional Euclidean space, their closure necessarily has

positive measure. In this section, for our second non-trivial example of a universal

Fréchet set, we shall re-derive the result, due to Maleva and the author [8], that

in any Euclidean space of dimension at least two, such a set may be taken to be

compact as well as Lebesgue null.

To demonstrate this, we shall construct a family of compact and Lebesgue

null sets (Fλ)0<λ<1 that satisfy the conditions of Corollary 4.3.

We shall work in RM where M ≥ 2. We shall denote the standard inner

product on RM by 〈, 〉, the Euclidean norm on RM by ‖ · ‖ and we shall respectively
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denote open and closed balls, in the Euclidean norm, by Br(x) and Br(x). It will

also be convenient to use the supremum norm ‖ · ‖∞ on RM ; we shall denote balls

in this norm by B∞(a, r) and B∞(a, r).

The construction we give here is very similar to the one in [8]; in fact the

example of a compact null universal Fréchet set coincides exactly in the case M = 2.

We shall construct a set system (Fλ)0<λ<1 such that if λ′ < λ and x ∈ Fλ′ then in

Fλ one can find, nearby x, pieces of a dense set of hyperplanes, with co-dimension

one in RM . In fact hyperplanes are not strictly necessary; to apply Corollary 4.3 we

only require that Fλ contains sufficiently many line segments nearby x.

Definition 4.12. We define the following.

1. Let (Nn)n≥1 be a sequence of odd integers with Nn > 1 such that Nn →∞ and∑
n

1
NM

n
=∞.

2. For λ ∈ [0, 1] put d0 = d0(λ) = 1 and, for each n ≥ 1, set

dn(λ) =
1

N1N2 . . . Nn−1Nλ
n

and dn = dn(1) =
1

N1N2 . . . Nn−1Nn
.

3. For each n ≥ 1 define the lattice Cn ⊆ RM by

Cn = dn−1

((
1

2
, . . . ,

1

2

)
+ ZM

)
. (4.15)

4. Given λ ∈ [0, 1] define the set Tn(λ) ⊆ RM by

Tn(λ) =
⋃
c∈Cn

B∞

(
c,

1

2
dn(λ)

)
. (4.16)

5. Given λ ∈ [0, 1] define the set Fλ ⊆ RM by

Fλ = RM \
∞⋃
n=1

Tn(λ). (4.17)

We note that for λ′ ≤ λ we have Tn(λ′) ⊇ Tn(λ) so that Fλ′ ⊆ Fλ.

Lemma 4.13. For each λ ∈ [0, 1] the set Fλ is a closed, non-empty subset of RM

with Lebesgue measure zero.
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Proof. The set Fλ is closed as each Tn(λ) is open and it is non-empty as it contains

0. We now verify that Fλ has Lebesgue measure zero.

For each n ≥ 0 we define sets Dn and Rn of disjoint open M -dimensional

hypercubes as follows. Let D0 = ∅ and R0 = {(0, 1)M}. Given n ≥ 1 divide

each hypercube in the set Rn−1 into NM
n equal open cubes. Let Dn comprise the

central cubes of each such division and let Rn comprise all the remaining cubes. By

induction each cube in Dn and Rn has side dn and the centres of the cubes in Dn

belong to the lattice Cn.

Now for each m ≥ 1,

Fλ ⊆ RM \

(
m⋃
n=1

⋃
c∈Cn

B∞

(
c,

1

2
dn

))

so that

Fλ ∩ [0, 1]M ⊆ [0, 1]M \
m⋃
n=1

⋃
Dn =

⋃
Rm,

and as |Rm| = (NM
1 − 1) . . . (NM

m − 1) we can now estimate the Lebesgue measure

of Fλ ∩ [0, 1]M as follows:

m(Fλ ∩ [0, 1]M ) ≤ |Rm|dMm =

(
1− 1

NM
1

)
...

(
1− 1

NM
m

)
.

This tends to 0 as m→∞, because
∑ 1

NM
r

=∞. Therefore the Lebesgue measure

m(Fλ ∩ [0, 1]M ) = 0.

Furthermore, from (4.15), (4.16) and (4.17), Fλ is invariant under translations by

the lattice ZM . Hence m(Fλ) = 0 for every λ ∈ [0, 1].

Given a non-zero vector a ∈ RM we use the notation a⊥ to denote the

hyperplane of all vectors perpendicular to a:

a⊥ := {x ∈ RM such that 〈x, a〉 = 0}.

If a ∈ ZM \ {0} we call the set a⊥ a rational hyperplane.

The following is a simple observation.

Lemma 4.14. If y, c, a ∈ RM and d > 0 with a 6= 0 and the affine hyperplane y+a⊥
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intersects the hypercube B∞(c, d) then we have

|〈y − c, a〉| < dM1/2‖a‖. (4.18)

Proof. Letting y′ be a point of intersection, we have 〈y′−y, a〉 = 0 and ‖y′−c‖∞ < d.

Hence

|〈y − c, a〉| = |〈y′ − c, a〉|

≤ ‖y′ − c‖ · ‖a‖

≤M1/2 · ‖y′ − c‖∞ · ‖a‖

< M1/2 · d · ‖a‖.

The next couple of lemmas show that we can shift any rational hyperplane

slightly to make it avoid Tn(λ) for large values of n.

Lemma 4.15. If λ ∈ [0, 1], a ∈ ZM \ {0}, x ∈ RM and I ⊆ R is a closed interval

of length at least 3L where

L :=
M1/2dn(λ)

‖a‖

and n ≥ 1 is such that

Nλ
n ≥ 4M1/2‖a‖

then we may find a closed subinterval I ′ ⊆ I of length at least L such that the affine

hyperplane x+ µa+ a⊥ does not intersect Tn(λ) for any µ ∈ I ′.

Proof. We may assume that I = [t, t+ 3L] for some t ∈ R. We claim we may either

take I ′ = [t, t+ L] or I ′ = [t+ 2L, t+ 3L].

Assuming, for a contradiction, that there exists

µ1 ∈ [t, t+ L] and µ2 ∈ [t+ 2L, t+ 3L]

with

(x+ µia+ a⊥) ∩ Tn(λ) 6= ∅

for i = 1, 2, then we may find c1, c2 ∈ Cn with

(x+ µia+ a⊥) ∩B∞
(
ci,

1

2
dn(λ)

)
6= ∅.
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Then

|〈x+ µia− ci, a〉| <
dn(λ)M1/2

2
‖a‖ (4.19)

for i = 1, 2, by Lemma 4.14. We also note that

L ≤ |µ2 − µ1| ≤ 3L. (4.20)

Using the triangle inequality on (4.19) we obtain

|〈(c2 − c1)− (µ2 − µ1)a, a〉| < dn(λ)M1/2‖a‖ = L‖a‖2. (4.21)

If 〈c2 − c1, a〉 = 0 then

|µ2 − µ1| · ‖a‖2 < L‖a‖2

contradicting (4.20).

If 〈c2 − c1, a〉 6= 0 then, as c2 − c1 = dn−1l for some l ∈ ZM , we have

|〈c2 − c1, a〉| = dn−1|〈l, a〉| ≥ dn−1,

since a ∈ ZM . Hence from (4.21) and (4.20),

dn−1 − 3L‖a‖2 < L‖a‖2.

This can be re-written

dn−1 < 4dn(λ)M1/2‖a‖

i.e.

Nλ
n < 4M1/2‖a‖,

which contradicts the condition given in the statement.

Either way we have a contradiction.

Lemma 4.16. If λ ∈ [0, 1], a ∈ ZM \ {0} and n ≥ 1 are such that

Nλ
m ≥ 4M1/2‖a‖

for all m ≥ n, then for any y ∈ RM there exists y′ ∈ RM with

‖y′ − y‖ ≤ 3M1/2dn(λ)

such that the affine hyperplane y′ + a⊥ does not intersect Tm(λ) for any m ≥ n.
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Proof. Let

Lm(λ) =
M1/2dm(λ)

‖a‖

for m ≥ n. Using Lemma 4.15 and Lm+1(λ) ≤ Lm(λ)/3 for m ≥ n, from

dm+1(λ) =
dm(λ)

N1−λ
m Nλ

m+1

≤ dm(λ)

3
,

we may inductively construct a sequence of nested closed intervals

[0, 3Ln(λ)] = In ⊇ In+1 ⊇ ...

with |Im| = 3Lm(λ) for each m ≥ n such that for any m ≥ n and µ ∈ Im the affine

hyperplane x+ µa+ a⊥ does not intersect Tm(λ).

Taking

µ ∈
∞⋂
m=n

Im

we may set y′ = y + µa and note that as µ ∈ In we have

‖y′ − y‖ = µ‖a‖ ≤ 3Ln(λ)‖a‖ = 3M1/2dn(λ).

We now show how to avoid Tn(λ′) for low values of n and some value λ′ ∈
(0, 1).

Lemma 4.17. If n ≥ 1, 0 ≤ λ < λ+ ψ ≤ 1, x ∈ RM \ Tn(λ) and

0 < α < 1− 1

Nψ
n

then

Bαdn(λ)/2(x) ∩ Tn(λ+ ψ) = ∅.

Proof. If x /∈ Tn(λ) then for every c ∈ Cn we have

‖x− c‖∞ ≥
1

2
dn(λ).
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Then for any x′ ∈ Bαdn/2(x),

‖x′ − c‖∞ ≥ ‖x− c‖∞ − ‖x′ − x‖∞

≥ 1

2
dn(λ)− ‖x′ − x‖

≥ 1

2
dn(λ)− αdn(λ)

2

≥ 1

2
dn(λ)−

(
1− 1

Nψ
n

)
dn(λ)

2

=
1

2
dn(λ+ ψ).

This holds for every c ∈ Cn so that

x′ /∈ Tn(λ+ ψ).

Combining Lemma 4.16 and Lemma 4.17 we obtain the following.

Theorem 4.18. If ε > 0, ψ > 0 and a ∈ ZM \ {0}, there exists

δ2 = δ2(ε, ψ, a)

such that for any δ ∈ (0, δ2), λ ∈ (0, 1) with 0 ≤ λ < λ+ψ ≤ 1, x ∈ Fλ and y ∈ RM

there exists y′ ∈ Bεδ(y) such that

(y′ + a⊥) ∩Bδ(x) ⊆ Fλ+ψ.

Proof. Pick α > 0 with α < 1−N−ψn for all n ≥ 1. Find n0 ≥ 1 such that

6M1/2 < εαNψ
n

and

Nψ
n ≥ 4M1/2‖a‖

for n > n0. Choose δ2 > 0 such that 2δ2 < dnα for n ≤ n0. Let δ ∈ (0, δ2). Pick a

minimal n such that dn(λ)α < 2δ. Note that n > n0 so that 6M1/2 < εαNψ
n . Given

y ∈ RM , by Lemma 4.16 we can find y′ ∈ RM with

(y′ + a⊥) ∩ Tm(λ+ ψ) = ∅ (4.22)
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for all m ≥ n where

‖y′ − y‖ ≤ 3M1/2dn(λ+ ψ)

= 3M1/2N−ψn · dn(λ)

≤ εα

2
· 2δ

α

= εδ.

Now for m < n we have dn(λ)α ≥ 2δ, by the minimality of n, so that

Bδ(x) ∩ Tm(λ+ ψ) = ∅ (4.23)

by Lemma 4.17.

Combining 4.22 and 4.23 we deduce that for all m ≥ 1,

(y′ + a⊥) ∩Bδ(x) ∩ Tm(λ+ ψ) = ∅

so that

(y′ + a⊥) ∩Bδ(x) ⊆ Fλ+ψ

as required.

We now wish to replace the condition that a ∈ ZM \ {0} with a ∈ S(RM ),

the unit sphere of RM , and to obtain a uniform estimate over a belonging to the

latter. To accomplish this we note the that the set of scalar multiples of elements of

ZM is dense in the unit sphere and then use the fact that the unit sphere is totally

bounded.

Corollary 4.19. If ε, ψ > 0 there exists

δ3 = δ3(ε, ψ)

such that if a ∈ S(RM ), 0 ≤ λ < λ+ψ ≤ 1, δ ∈ (0, δ3), x ∈ Fλ and y ∈ Bδ(x), then

there exists y′ ∈ RM with ‖y′− y‖ < εδ and a′ ∈ S(RM ) with ‖a′− a‖ < ε such that

(y′ + a′⊥) ∩Bδ(x) ⊆ Fλ+ψ.
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Proof. Find a1, ..., an ∈ ZM \ {0} such that

S(RM ) ⊆
⋃

1≤i≤n
Bε

(
ai
‖ai‖

)

and set

δ3 = min
1≤i≤n

δ2(ε, ψ, ai).

It follows immediately that the set system (Fλ)0<λ<1 satisfies the conditions

of Corollary 4.3. Hence we deduce the following.

Corollary 4.20. For M ≥ 2 there exists a compact, null universal Fréchet set in

RM .

Remark 4.21. We make two quick remarks.

1. As any universal Fréchet set is non-σ-porous, the sets we have constructed

are examples of closed, null, non-σ-porous subsets of RM , for M ≥ 2. Such

sets were originally constructed by Zaj́ıček in [29]. In fact one of the sets

constructed in the aforementioned paper is precisely our set F1.

2. Since the set system we construct has the strong property that one can find

pieces of hyperplanes of codimension one, nearby a suitable set of points, it is

natural to conjecture that the sets we have constructed should contains a point

of Fréchet differentiability of every Lipschitz

f : RM → RM−1

at least for the case M = 3. This will be investigated in [11], building on work

of Lindenstrauss, Preiss and Tǐser; see [19].

4.4 A compact universal Fréchet set of Hausdorff di-

mension one in Euclidean space

So far we have shown, in finite dimensional Euclidean space, that a universal Fréchet

set may be constructed with Hausdorff dimension one. We have also shown, sepa-

rately, that such a set may be constructed to be compact and Lebesgue null. The

set the former construction gives, however, is necessarily somewhere dense, so that
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its closure has positive Lebesgue measure. It can be checked that the Hausdorff di-

mension of the set given by the latter construction is equal to the dimension of the

underlying space. One may ask, therefore, if we may combine the features of these

two examples and construct, in Euclidean space, a universal Fréchet set that is com-

pact and has Hausdorff dimension one. We shall answer this question affirmatively

by proving the following.

Theorem 4.22. If M ≥ 1 then there is a compact universal Fréchet set S ⊆ RM

with Hausdorff dimension one.

See also [9].

We shall start by working in a more general setting. First, we fix some

notation. If (Y, d) is a metric space then, as is standard, we use d(y, S) to denote

the distance from a point y to a set S

d(y, S) := inf
z∈S

d(y, z)

and given r > 0 we define the open and closed r-neighbourhoods of S by

Br(S) = {y ∈ Y such that d(y, S) < r}

Br(S) = {y ∈ Y such that d(y, S) ≤ r}.

As before we use Br(y) := Br({y}) and Br(y) := Br({y}) to respectively denote the

open and closed balls of radius r centred at a point y ∈ Y .

Theorem 4.23. We fix the following data. Let

• (Y, d) be a metric space,

• (Kr)r∈R be a collection of compact subsets of Y indexed by a metric space

(R, γ), with the property that if γ(s, r) ≤ δ then

Ks ⊆ Bδ(Kr), (4.24)

i.e. H(Kr,Ks) ≤ γ(r, s) for every r, s ∈ R where H is the Hausdorff metric,

• O be a Gδ subset of Y containing a γ-dense subset of (Kr)r∈R, i.e.

∀r ∈ R, ε > 0 ∃s ∈ R such that Ks ⊆ O and γ(s, r) < ε, (4.25)

• (An)n≥1 be a strictly increasing sequence of positive integers and the metric

space (I,∆) comprise all (λ, T ) such that λ ∈ [0, 1] and T = (Tn)n≥1 is a
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strictly increasing sequence of positive integers with supn
Tn
An

< ∞, with the

metric ∆ given by

∆((λ′, T ′), (λ, T )) = max

(
|λ′ − λ|, sup

n

|T ′n − Tn|
An

)
.

If the space (R, γ) is totally bounded - that is for every ε > 0 there exists

a finite subset R(ε) ⊆ R such that for every r ∈ R there exists s ∈ R(ε) with

γ(s, r) < ε - then for any r0 ∈ R with Kr0 ⊆ O we can find a collection (Si)i∈I of

subsets of Y with

Kr0 ⊆ Si ⊆ O for every i ∈ I, (4.26)

such that the following hold.

(1) For each ε, ψ > 0 and i = (λ, T ) ∈ I with λ < 1 there exists

δ4 = δ4(ε, ψ, i) > 0

such that the following property holds. If δ ∈ (0, δ4), y ∈ Si and s ∈ R with

Ks ⊆ Bδ(y) there exists t ∈ R and j ∈ I such that Kt ⊆ Sj, γ(t, s) < εδ and

∆(j, i) ≤ ψ.

(2) The set X is a closed subset of I × Y where

X := {(i, y) such that y ∈ Si}.

(3) For every i ∈ I and ψ > 0 then F = F (i, ψ) is a closed subset of Y where

F := {y ∈ Y such that y ∈ Sj for some j ∈ I with ∆(j, i) ≤ ψ}.

Proof. Using (4.25) and the fact that R is totally bounded, for each ε > 0 we can

find a finite set R(ε) ⊆ R with Kr ⊆ O for every r ∈ R(ε), such that for every r ∈ R
there exists s ∈ R(ε) with γ(s, r) < ε.

We write O =
⋂∞
k=1Ok where Ok are open subsets of Y with Ok+1 ⊆ Ok for

each k ≥ 1.

Let R0 = {r0} and w0 = 1.

For each k ≥ 1 we define a non-empty finite set Rk ⊆ R and wk > 0, with

Kr ⊆ O for every r ∈ Rk, by the recursion

• Rk = Rk−1 ∪R(wk−1/k)
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• wk ∈ (0, 1/k) is such that Bwk
(Kr) ⊆ Ok for every r ∈ Rk.

Such a wk exists because for every r ∈ Rk we know Kr ⊆ O ⊆ Ok, Kr is

compact, Ok is open and the set Rk is finite.

Given k ≥ 1 and λ ∈ [0, 1] we put

Mk(λ) =
⋃
r∈Rk

Bλwk
(Kr) (4.27)

and then define Si for each i = (λ, T ) ∈ I by

Si =
∞⋂
n=1

MTn(λ). (4.28)

Note that as Mk(λ) ⊆ Ok we have Si ⊆ OTn for each n ≥ 1 and hence Si ⊆ O
since Tn → ∞. Further, as r0 ∈ R0 ⊆ Rk we have Kr0 ⊆ Mk(λ) for all k ≥ 1 and

λ ∈ [0, 1], so that Kr0 ⊆ Si for every i ∈ I. Hence (4.26).

We now verify (1). First note that we may assume that ε < 1 and that

ψ ≤ 1− λ where i = (λ, T ).

As Tn → ∞ and An → ∞ we may pick k0 such that Tk0 > 2/ψε and

Ak0 > 1/ψ. Let δ4 > 0 be such that 2δ4 ≤ ψwTn for all n < k0.

Suppose that δ ∈ (0, δ4). As wTn → 0 we may pick a minimal k with

ψwTk < 2δ. Note that k ≥ k0. Put j = (λ′, T ′) ∈ I where λ′ = λ+ ψ ∈ [0, 1] and T ′

is given by

T ′l = Tl for l < k

T ′l = Tl + 1 for l ≥ k.

We have ∆(j, i) = max(|λ′ − λ|, supl≥k 1/Al) = ψ as λ′ − λ = ψ and Ak ≥
Ak0 > ψ−1.

Now let y ∈ Si and Ks ⊆ Bδ(y). Pick t ∈ R(wTk/(Tk + 1)) ⊆ RTk+1 with

γ(t, s) < wTk/(Tk + 1)

< ψwTk/ψTk

< 2δ/ψTk0 < εδ,

where we have used Tk0 > 2/ψε and ψwTk < 2δ.

Note that if l ≥ k then T ′l ≥ Tk + 1 so that t ∈ RTk+1 ⊆ RT ′l . Hence
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Kt ⊆MT ′l
(λ′) for l ≥ k by (4.27). However for l < k we have

wT ′l λ
′ − wT ′l λ = wTlψ ≥ 2δ (4.29)

using the minimality of k with wTkψ < 2δ. As y ∈ MT ′l
(λ) we conclude B2δ(y) ⊆

MT ′l
(λ′) using the definition (4.27) and (4.29). Then from γ(t, s) < δe ≤ δ, (4.24)

and Ks ∈ Bδ(y),

Kt ⊆ Bδ(Ks) ⊆ B2δ(y) ⊆MT ′l
(λ′).

Hence Kt ⊆MT ′l
(λ′) for all l ≥ 1 so that, using (4.28), Kt ⊆ Sj as required.

This establishes (1). Before turning to (2) we note that for any k ≥ 1 the set

Hk := {(y, λ) such that y ∈Mk(λ)} (4.30)

is a closed subset of Y × [0, 1]. Indeed if (yd, λd) ∈ Hk with

(yd, λd)→ (y, λ) ∈ Y × [0, 1]

then using (4.27) we have d(yd,Krd) ≤ λdwk where rd ∈ Rk. But as Rk is finite

we may assume, passing to a subsequence if necessary, that rd = r is a constant

sequence. Then taking the d→∞ limit we obtain, using yd → y and λd → λ, that

d(y,Kr) ≤ λwk where r ∈ Rk. Hence y ∈ Mk(λ) and (y, λ) ∈ Hk so that Hk is

indeed closed.

To establish (2), suppose that (id, yd) ∈ X with

(id, yd)→ (i, y) ∈ I × Y.

Note that yd ∈ Sid . Write id = (λd, T d) and i = (λ, T ). For each fixed n then

for sufficiently high d we have T dn = Tn so that yd ∈ MTn(λd) and (yd, λd) ∈ HTn ;

see (4.28) and (4.30). As HTn is closed we deduce that (y, λ) ∈ HTn ; hence y ∈
MTn(λ) for each n ≥ 1. We conclude y ∈ Si and (i, y) ∈ X. Hence (2).

Finally for (3) we suppose that yd ∈ F and yd → y ∈ Y . We aim to show

y ∈ F . Find jd = (λd, T d) ∈ I with yd ∈ Sjd and ∆(jd, i) ≤ ψ for all d. Write

i = (λ, T ).

By passing to a subsequence if necessary we may assume that λd → λ′ ∈ [0, 1]

where |λ′ − λ| ≤ ψ. Further as |T dn − Tn| ≤ ψAn we may assume, after passing

to another subsequence if necessary, that for each fixed n we have T dn = T ′n for

sufficiently high d, where |T ′n − Tn| ≤ ψAn and T ′n < T ′n+1. Note that j := (λ′, T ′)

is an element of I with ∆(j, i) ≤ ψ. It is enough, therefore, to prove that y ∈ Sj .
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Fixing n ≥ 1 we have, using yd ∈ Sjd and (4.28), yd ∈ MT d
n
(λm) so that for

sufficiently high d, yd ∈ MT ′n(λd) and so (yd, λd) ∈ HT ′n . As the latter set is closed

we deduce that (y, λ′) ∈ HT ′n and y ∈MT ′n(λ′).

This holds for every n ≥ 1; hence y ∈ Sj , establishing (3).

We note that the metric space (I,∆) used in Theorem 4.23 is complete; in

fact it is isometric to a closed subset of l∞(R) by the mapping (λ, T ) 7→ (yn)n≥0

where y0 = λ and yn = Tn
An

for n ≥ 1. We also note that (λ,A) ∈ I for any λ ∈ [0, 1]

so I 6= ∅.

Theorem 4.24. If M ≥ 1, T is a dense subset of the open unit ball B0(1) ⊆ RM

and O is a Gδ set containing every line segment [u, v] with u, v ∈ T then there exists

a closed subset F ⊆ O such that F is a universal Fréchet set.

Proof. Let Y = RM with the Euclidean metric and let (R, γ) be the collection of

line segments with endpoints in B1(0), with the metric

γ([u, v], [u′, v′]) = max(‖u′ − u‖, ‖v′ − v‖).

We note that (R, γ) is totally bounded and that the other hypotheses of Theo-

rem 4.23 are readily verified. We may then let (Si)i∈I be the collection of subsets

of O given by the conclusion of Theorem 4.23.

Let i0 ∈ I. We note that as

X = {(i, y) such that y ∈ Si for some i ∈ I with ∆(i, i0) < 1}

is a Gδ subset of I × Y , using Theorem 4.23(2), it is a complete topological space.

We also note that X 6= ∅.
The map π : X → Y given by π(i, y) = y is continuous. To complete the

verification of the conditions of Theorem 4.2 we note that if x = (i, y) ∈ X and N

is an open neighbourhood of x in X then we may pick ψ, r > 0 with

{j ∈ I such that ∆(j, i) < ψ} ×Br(y) ⊆ N (4.31)

and

Br(y) ⊆ B1(0), (4.32)

and then, for any η ∈ (0, 1) and µ > 0, set

δ0(x,N, η, µ) = min

(
1

2
r, δ4

(η
2
, ψ, i

))
.
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Then if δ ∈ (0, δ0) and y1, y2 ∈ Bδ(y) we may find a segment [u, v] ⊆ Sj with

‖u− y1‖ ≤ ηδ/2 and ‖v − y2‖ ≤ ηδ/2, so that

‖(v − u)− (y2 − y1)‖ ≤ ηδ,

where j ∈ I with ∆(j, i) < ψ. This verifies (4.1) and (4.2). Note now that as

η ∈ (0, 1) we have u, v ∈ B2δ(y) ⊆ Br(y). Hence u, v ∈ B1(0) by (4.32) and further,

as ∆(j, i) < ψ, we have {j} × [u, v] ⊆ N , using (4.31), and therefore [u, v] ⊆ π(N).

Hence (4.3), and so the hypotheses of Theorem 4.2 are satisfied.

We conclude, from Theorem 4.2, that π(X) is a universal Fréchet set. Hence,

so is the set

F = {y ∈ Y such that y ∈ Si for some i ∈ I with ∆(i, i0) ≤ 1}.

But, by Theorem 4.23(3), F is a closed subset of Y = RM . Further, as Si ⊆ O for

all i ∈ I we have F ⊆ O. We’re done.

Corollary 4.25. If M ≥ 1 then there exists a universal Fréchet set S ⊆ RM such

that S is a compact set of Hausdorff dimension one.

Proof. This is now immediate from Theorem 4.24, Lemma 4.8 and Lemma 4.10.

4.5 A closed and bounded universal set of Hausdorff

dimension one in Banach spaces with separable dual

In this section we wish to establish the following.

Theorem 4.26. If Y is a non-zero Banach space with separable dual there exists

a universal Fréchet set S ⊆ Y such that S is closed, bounded and with Hausdorff

dimension equal to one.

See also [10].

As we have already proved this result for Y = RM where M ≥ 1, we may

take Y to be infinite dimensional. We note that in this case, one cannot demand

that S is compact since, as the following simple result shows, any compact subset of

an infinite dimensional Banach space is porous. As in the previous section, we use

the notation d(y, S) to denote the distance between a point y ∈ Y and a set S ⊆ Y
in any metric space Y .

Lemma 4.27. If Y is an infinite dimensional Banach space and K ⊆ Y is compact

then for every ε > 0 there exists y ∈ Y with ‖y‖ = ε and d(y,K) > ε/3.
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Proof. We may assume that ε = 1. It is well known that one may find an infinite

collection (en)n∈N in Y with ‖en‖ = 1 and ‖en − em‖ ≥ 1 for m 6= n. Assuming,

for a contradiction, that we cannot find n with d(en,K) > 1/3 then we can pick

kn ∈ Kn for each n with ‖kn − en‖ ≤ 1/3. It then follows that ‖kn − km‖ ≥ 1/3 for

all m 6= n, contradicting the compactness of K.

To establish Theorem 4.26 we shall, as in the previous section, start by

working in greater generality. As before we use Br(S) and Br(S) to respectively

denote open and closed r-neigbourhoods of a set S ⊆ Y and Br(y) and Br(y) to

respectively denote open and closed balls of radius r and centre y ∈ Y .

Theorem 4.28. Let

• (Y, d) be a metric space,

• (Kr)r∈R be a collection of compact subsets of Y indexed by a metric space

(R, γ), with the property that if γ(s, r) ≤ δ then

Ks ⊆ Bδ(Kr), (4.33)

i.e. H(Kr,Ks) ≤ γ(r, s) for every r, s ∈ R where H is the Hausdorff metric,

• O be a Gδ subset of Y containing a γ-dense subset of (Kr)r∈R, i.e.

∀r ∈ R, ε > 0 ∃s ∈ R such that Ks ⊆ O and γ(s, r) < ε, (4.34)

• (An)n≥1 be a strictly increasing sequence of positive integers and the metric

space (I,∆) comprise all (λ, T ) such that λ ∈ [0, 1] and T = (Tn)n≥1 is a

strictly increasing sequence of positive integers with supn
Tn
An

< ∞, with the

metric ∆ given by

∆((λ′, T ′), (λ, T )) = max

(
|λ′ − λ|, sup

n

|T ′n − Tn|
An

)
.

Suppose that the following condition is satisfied for some constants ρ, ε0 > 0.

For every ε ∈ (0, ε0) there exists a set R(ε) ⊆ R such that

• for all s ∈ R there exists t ∈ R(ε) with γ(t, s) < ε,

• every set in Y of diameter at most ρε only intersects Kr for finitely many

r ∈ R(ε).
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Then, given r0 ∈ R with Kr0 ⊆ O and α0 > 0, we can find a collection (Si)i∈I of

subsets of Y with

Kr0 ⊆ Si ⊆ O ∩Bα0(Kr0), (4.35)

for every i ∈ I, such that the following hold.

(1) For each ε, ψ > 0, i = (λ, T ) ∈ I with λ < 1 and y ∈ Si there exists

δ5 = δ5(ε, ψ, i, y) > 0

such that the following property holds. If δ ∈ (0, δ5) and s ∈ R with Ks ⊆ Bδ(y)

there exists t ∈ R and j ∈ I such that Kt ⊆ Sj, γ(t, s) < εδ and ∆(j, i) ≤ ψ.

(2) The set X is a closed subset of I × Y where

X := {(i, y) such that y ∈ Si}.

(3) For every i ∈ I and ψ > 0 then F = F (i, ψ) is a closed subset of Y where

F := {y ∈ Y such that y ∈ Sj for some j ∈ I with ∆(j, i) ≤ ψ}.

To prove this result, we may assume ρ ∈ (0, 1). Write O =
⋂∞
n=1On where

On are open subsets of Y with On+1 ⊆ On for each n ≥ 1.

We first observe that we may replace the sets R(ε) with sets R′(ε) that have

the additional property that if r ∈ R′(ε) then Kr ⊆ O.

Lemma 4.29. For every ε ∈ (0, ε0) we can find R′(ε) ⊆ R such that Kr ⊆ O for

all r ∈ R′(ε) and

• for all r ∈ R there exists t ∈ R′(ε) with γ(t, s) < ε,

• if B ⊆ Y has diameter at most 4
5ρε then the set FB(ε) is finite where

FB(ε) := {t ∈ R′(ε) with Kt ∩B 6= ∅}. (4.36)

Proof. For each s ∈ R take ts ∈ R to be such that Kts ⊆ O and γ(ts, s) < ρε/10,

using (4.34). Then set

R′(ε) = {ts for all s ∈ R(4ε/5)}.

It is clear that Kr ⊆ O for every r ∈ R′(ε) and that for every r ∈ R we can find

t ∈ R′(ε) with γ(t, r) < 4ε/5 + ρε/10 < ε.
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Now if t ∈ FB(ε) then, writing t = ts with s ∈ R(4ε/5), we see that from

γ(ts, s) < ρε/10 and (4.33) that Ks intersects Bρε/10(B); this set has diameter at

most ρε so the set FB(ε) is finite.

We now define the set

T = {(r, w, α) ∈ R× (0, ε0)× (0,∞) such that Kr ⊆ O and w ≤ α}. (4.37)

Note that as Kr0 ⊆ O and α0 > 0 we can find w0 > 0 with (r0, w0, α0) ∈ T . Let

R0 = {(r0, w0, α0)}. (4.38)

We shall now construct, for each k ≥ 1, a set Rk ⊆ T inductively by adding,

for every (r, w, α) ∈ Rl where l < k, a collection Rk,l = Rk,l(r, w, α) of elements

(t, v, β) of T with Bv(Kt) ⊆ Ok such that the set of Kt well approximates the

collection (Ks)s∈R in Bα(Kr).

First let

rk,l ∈ (0, ρ/10) (4.39)

for each 0 ≤ l < k.

Lemma 4.30. If 0 ≤ l < k and (r, w, α) ∈ T then there is a set

Rk,l = Rk,l(r, w, α) ⊆ T

such that

1. for every s ∈ R with Ks ⊆ Bα(Kr) there exists (t, v, β) ∈ Rk,l such that

γ(t, s) ≤ 10

ρ
rk,lw,

2. if (t, v, β) ∈ Rk,l then β = rk,lw < α/10 and v < ε0/k,

3. if (t, v, β) ∈ Rk,l then Bv(Kt) ⊆ Ok and Kt ⊆ B2α(Kr),

4. if B ⊆ Y has diameter at most 8rk,lw then the set F = FBk,l(r, w, α) of all

(t, v, β) ∈ Rk,l such that Kt intersects B is finite,

5. there exists v > 0 such that (r, v, rk,lw) ∈ Rk,l.

Proof. For each t ∈ R with Kt ⊆ O we can pick vt ∈ (0, ε0/k) such that vt ≤ rk,lw

and

Bvt(Kt) ⊆ Ok,
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as Kt ⊆ O ⊆ Ok, Kt is compact and Ok is open. Now let

ε =
10

ρ
rk,lw.

Note that ε < w < ε0 from (4.39) and (4.37) and that for any t ∈ R′(ε)∪{r}
we have Kt ⊆ O. So we may set

Rk,l = {(t, vt, rk,lw) for any t ∈ R′(ε) ∪ {r} with Kt ⊆ B2α(Kr)}.

Observe that Rk,l ⊆ T , using the definition of vt.

To see item (1), for s ∈ R with Ks ⊆ Bα(Kr) then pick t ∈ R′(ε) with

γ(t, s) < ε. Then γ(t, s) ≤ w ≤ α so that Kt ⊆ Bα(Ks) using (4.33). It follows that

Kt ⊆ B2α(Kr) so that (t, vt, rk,lw) ∈ Rk,l.
Items (2) and (3) are immediate.

For (4) note that if (t, vt, rk,lw) ∈ F then as t ∈ R′(ε) ∪ {r} and B has

diameter at most 4
5ρε we have

t ∈ FB(ε) ∪ {r};

see (4.36). As this set is finite then so is F .

Finally item (5) is immediate with v = vr.

Recall from (4.38) that we have defined R0 ⊆ T . Now for k ≥ 1 define

Rk ⊆ T by the recursion

Rk =

k−1⋃
l=0

⋃
(r,w,α)∈Rl

Rk,l(r, w, α). (4.40)

Note that for any (t, v, β) ∈ Rk we have

Kt ⊆ O and Bv(Kt) ⊆ Ok (4.41)

and

0 < v ≤ min
(
β,
ε0
k

)
(4.42)

using (4.37) and Lemma 4.30(2)-(3).

Lemma 4.31. If y ∈ Y and k ≥ 0 there exists δk = δk(y) > 0 such that the set

Fk = Fk(y) is finite where

Fk := {(r, w, α) ∈ Rk such that d(y,Kr) ≤ δk + 3α}.
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Proof. Let y ∈ Y . For any δ0 > 0 we pick, the set F0 ⊆ R0 will be finite. Suppose

now that k ≥ 1 and we have picked δl > 0 for every 0 ≤ l < k such that Fl is finite.

Pick δk > 0 such that for every l < k we have δk < δl and, for any (r, w, α) ∈
Fl, δk < rk,lw. We shall show that Fk is finite.

Suppose that (t, v, β) ∈ Fk. We may write (t, v, β) ∈ Rk,l(r, w, α) where l < k

and (r, w, α) ∈ Rl, using (4.40). Note that Kt ⊆ B2α(Kr) by Lemma 4.30(3). Hence

d(y,Kr) ≤ d(y,Kt) + 2α

≤ δk + 3β + 2α

≤ δl + 3α

using δk < δl and β = rk,lw < α/10 from Lemma 4.30(2). Hence (r, w, α) ∈ Fl and

so δk < rk,lw. We get d(y,Kt) ≤ δk + 3β < 4rk,lw so that

Kt ∩B4rk,lw(y) 6= ∅

and

(t, v, β) ∈ F
B4rk,lw

(y)

k,l (r, w, α);

see Lemma 4.30(4).

We conclude that

Fk ⊆
k−1⋃
l=0

⋃
(r,w,α)∈Fl

F
B4rk,lw

(y)

k,l (r, w, α),

which is finite.

Definition 4.32. If k ≥ 1, λ ∈ [0, 1] and w > 0 we define Mk(λ,w) to be the set of

y ∈ Y such that there exist integers n ≥ 1,

0 = l0 < l1 < ... < ln = k

and (rm, wm, αm) ∈ Rlm for 0 ≤ m ≤ n with

1. (rm, wm, αm) ∈ Rlm,lm−1(rm−1, wm−1, αm−1) for 1 ≤ m ≤ n

2. d(y,Krm) ≤ λαm for 0 ≤ m ≤ n

3. d(y,Krn) ≤ λwn

4. wn = w.
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We then let

Mk(λ) =
⋃
w>0

Mk(λ,w). (4.43)

Note that using Definition 4.32(3) and (4.41) we have

Mk(λ) ⊆
⋃

(r,w,α)∈Rk

Bλw(Kr) ⊆ Ok. (4.44)

Further from (4.38), (4.40), Lemma 4.30(5) and Definition (4.32)(2),

Kr0 ⊆Mk(λ) ⊆ Bα0(Kr0) (4.45)

for all k ≥ 1 and λ ∈ [0, 1]. Finally if Mk(λ,w) 6= ∅ then by Lemma 4.30(2),

w < ε0/k. (4.46)

Lemma 4.33. For any k ≥ 1 the set

Hk := {(y, λ) such that y ∈Mk(λ)}

is a closed subset of Y × [0, 1].

Proof. Suppose that (yd, λd) ∈ Hk with (yd, λd)→ (y, λ) ∈ Y × [0, 1]. It suffices to

show that (y, λ) ∈ Hk.

For each d ≥ 1 then as yd ∈Mk(λ
d) we can find nd ≥ 1, 0 = ld0 < ... < ld

nd = k

and (rdm, w
d
m, α

d
m) ∈ Rlm for 0 ≤ m ≤ nd such that

• (rdm, w
d
m, α

d
m) ∈ Rldm,ldm−1

(rdm−1, w
d
m−1, α

d
m−1) for 1 ≤ m ≤ nd (4.47)

• d(yd,Krdm
) ≤ λdαdm for 0 ≤ m ≤ nd (4.48)

• d(yd,Krd
nd

) ≤ λdwdnd . (4.49)

As 1 ≤ nd ≤ k we may assume, passing to a subsequence if necessary, that nd = n is

constant. But then as 0 ≤ ldm ≤ k we may assume, passing to another subsequence,

that ldm = lm is constant for each 0 ≤ m ≤ n with 0 = l0 < l1 < ... < ln = k.

Fixing m then as d(y, yd)→ 0, λd ≤ 1 and

d(y,Krdm
) ≤ d(y, yd) + λdαdm,

from (4.48), we have (rdm, w
d
m, α

d
m) ∈ Flm(y) for d sufficiently high; see Lemma 4.31.
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As this set is finite we can assume, passing to another subsequence, that

(rdm, w
d
m, α

d
m) = (rm, wm, αm)

is constant for each 0 ≤ m ≤ n, with (rm, wm, αm) ∈ Rlm . Further from (4.47)-(4.49)

we have

• (rm, wm, αm) ∈ Rlm,lm−1(rm−1, wm−1, αm−1) for 1 ≤ m ≤ n

• d(yd,Krm) ≤ λdαm for 0 ≤ m ≤ n

• d(yd,Krn) ≤ λdwn;

taking the d→∞ limit and using yd → y, λd → λ we obtain

• (rm, wm, αm) ∈ Rlm,lm−1(rm−1, wm−1, αm−1) for 1 ≤ m ≤ n

• d(y,Krm) ≤ λαm for 0 ≤ m ≤ n

• d(y,Krn) ≤ λwn,

so that y ∈Mk(λ) and (y, λ) ∈ Hk.

Up to this point we have let rk,l ∈ (0, ρ/10) be arbitrary; see (4.39). We now

further stipulate that if 0 ≤ l < l′ ≤ k then we have

rk+1,k ≤
1

k
and rk+1,l ≤

1

k
rl′,l. (4.50)

Lemma 4.34. Suppose k ≥ 1, 0 ≤ λ < λ+ ψ ≤ 1, w > 0 and y ∈Mk(λ,w). Then

1. Bψw(y) ⊆Mk(λ+ ψ,w),

2. if 2δ ∈ (ψw,ψα0) and ε ∈ (20/ρψk, 1) then for all s ∈ R with Ks ⊆ Bδ(y)

there exists t ∈ R with γ(t, s) < εδ and Kt ⊆Mk+l(λ+ ψ) for all l ≥ 1.

Proof. From Definition 4.32 we can find integers n ≥ 1,

0 = l0 < l1 < ... < ln = k
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and (rm, wm, αm) ∈ Rlm for 0 ≤ m ≤ n with

• (rm, wm, αm) ∈ Rlm,lm−1(rm−1, wm−1, αm−1) for 1 ≤ m ≤ n (4.51)

• d(y,Krm) ≤ λαm for 0 ≤ m ≤ n (4.52)

• d(y,Krn) ≤ λwn (4.53)

• wn = w. (4.54)

Note that

αm = rlm,lm−1wm−1 < αm−1 (4.55)

for each 1 ≤ m ≤ n by Lemma 4.30(2).

To establish (1), suppose d(y′, y) ≤ ψw; then from (4.52) and (4.53),

d(y′,Krm) ≤ λαm + ψw for 0 ≤ m ≤ n

d(y′,Krn) ≤ λwn + ψw.

Using (4.42), (4.54) and (4.55) we have w = wn ≤ αn ≤ αm so that

d(y′,Krm) ≤ (λ+ ψ)αm for 0 ≤ m ≤ n

d(y′,Krn) ≤ (λ+ ψ)wn;

combining these with (4.51) and (4.54) we get y′ ∈Mk(λ+ ψ,w), as required.

We now turn to (2). We claim that we can find m with 0 ≤ m ≤ n and

(t, w, α) ∈ Rk+1,lm(rm, wm, αm) (4.56)

where 2δ ≤ ψαm and γ(t, s) < εδ.

To see this suffices, note first that from (4.33) and ε ≤ 1 we have

Kt ⊆ Bδ(Ks) ⊆ B2δ(y) ⊆ Bψαm(y). (4.57)

Let l′l = ll and (r′m, w
′
m, α

′
m) = (rm, wm, αm) for l ≤ m and l′m+l = k + l for l ≥ 1

and, using (4.56) and Lemma 4.30(5), pick inductively

(r′m+l, w
′
m+l, α

′
m+l) ∈ Rl′m+l,l

′
m+l−1

(r′m+l−1, w
′
m+l−1, α

′
m+l−1)

for each l ≥ 1, with r′m+l = t; then for any y′ ∈ Kt, as

d(y′,Krl) ≤ d(y,Krl) + ψαm ≤ (λ+ ψ)α′l
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for l ≤ m, using (4.55) and (4.57), while d(y′,Krm+l
) = 0 for l ≥ 1, we have

y′ ∈Mk+l(λ+ ψ) for l ≥ 1 as required.

We now establish the claim. Suppose first that 2δ ≤ ψαn. Then as

Ks ⊆ Bδ(y) ⊆ Bλαn+δ(Krn) ⊆ Bαn(Krn),

using (4.52), we may pick, by Lemma 4.30(1), (t, w, α) ∈ Rk+1,k(rn, wn, αn) with

γ(t, s) ≤ 10

ρ
rk+1,kwn ≤

10

ρ

1

k

2δ

ψ
< εδ

using (4.50) and 2δ ∈ (ψwn, ψ). Thus we can satisfy the claim with m = n.

Suppose instead that ψαn < 2δ. As 2δ ≤ ψα0 we can find m with

ψαm+1 < 2δ ≤ ψαm (4.58)

where 0 ≤ m ≤ n− 1. Then as

Ks ⊆ Bδ(y) ⊆ Bλαm+δ(Krm) ⊆ Bαm(Krm),

we may pick, by Lemma 4.30(1), (t, w, α) ∈ Rk+1,lm(rm, wm, αm) with

γ(t, s) ≤ 10

ρ
rk+1,lmwm ≤

10

ρ

1

k
rlm+1,lmwm =

10

ρ

1

k
αm+1 <

10

ρ

1

k

2δ

ψ
< εδ

using (4.50), (4.55) and (4.58). Thus the claim is satisfied.

Proof of Theorem 4.28 For each i = (λ, T ) ∈ I we define the set Si by

Si =
∞⋂
n=1

MTn(λ). (4.59)

Note that as Mk(λ) ⊆ Ok by (4.44) we have Si ⊆ OTn for each n ≥ 1 and hence

Si ⊆ O since Tn → ∞. Further as (r0, w0, α0) ∈ R0 ⊆ Rk we have Kr0 ⊆ Mk(λ) ⊆
Bα0(Kr0) for every k ≥ 1 and λ ∈ [0, 1] by (4.45); hence (4.35) holds for every i ∈ I.

We now verify (1). First note that we may assume that ε < 1 and that

ψ ≤ 1− λ where i = (λ, T ). Using (4.43) we find wn > 0 with y ∈ MTn(λ,wn). As

Tn →∞ and An →∞ we may pick k0 such that Tk0 > 20/ρψε and Ak0 > 1/ψ. Let

δ5 ∈ (0, ψα0/2) be such that 2δ5 ≤ ψwTn for all n < k0.

Suppose that δ ∈ (0, δ5). As wTn → 0 by (4.46) we may pick a minimal k ≥ 1

with ψwTk < 2δ. Note that k ≥ k0. Put j = (λ′, T ′) ∈ I where λ′ = λ + ψ ∈ [0, 1]
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and T ′ is given by

T ′l = Tl for l < k

T ′l = Tl + 1 for l ≥ k.

We have ∆(j, i) = max(|λ′ − λ|, supl≥k 1/Al) = ψ as λ′ − λ = ψ and Ak ≥
Ak0 > ψ−1.

Now let Ks ⊆ Bδ(y). By Lemma 4.34(2) since y ∈ MTk(λ,wTk), 2δ ∈
(ψwTk , ψα0) and ε ∈ (20/ρψTk, 1), from δ < δ5 and k ≥ k0, we can find t ∈ R with

γ(t, s) < εδ and

Kt ⊆MTk+l(λ
′)

for l ≥ 1. But for l < k we have 2δ ≤ ψwTl , using the minimality of k, and

BψwTl
(y) ⊆ MTl(λ

′, w) by Lemma 4.34(1) so that as Kt ⊆ B2δ(y), from γ(t, s) <

εδ ≤ δ and (4.33), we deduce finally that Kt ⊆MTl(λ
′, w).

Hence Kt ⊆MT ′l
(λ′) for all l ≥ 1 so that, using (4.59), Kt ⊆ Sj as required.

To establish (2), suppose that (id, yd) ∈ X with

(id, yd)→ (i, y) ∈ I × Y.

Note that yd ∈ Sid . Write id = (λd, T d) and i = (λ, T ). For each fixed n then for

sufficiently high d we have T dn = Tn so that yd ∈ MTn(λd) and (yd, λd) ∈ HTn ; see

(4.59) and Lemma 4.33. As HTn is closed and yd → y, λd → λ we deduce that

(y, λ) ∈ HTn ; hence y ∈MTn(λ) for each n ≥ 1. We conclude y ∈ Si and (i, y) ∈ X.

Hence (2).

Finally for (3) we suppose that yd ∈ F and yd → y ∈ Y . We aim to show

y ∈ F . Find jd = (λd, T d) ∈ I with yd ∈ Sjd and ∆(jd, i) ≤ ψ for all d. Write

i = (λ, T ).

By passing to a subsequence if necessary we may assume that λd → λ′ ∈ [0, 1]

where |λ′ − λ| ≤ ψ. Further as |T dn − Tn| ≤ ψAn we may assume, after passing

to another subsequence if necessary, that for each fixed n we have T dn = T ′n for

sufficiently high d, where |T ′n − Tn| ≤ ψAn and T ′n < T ′n+1. Note that j := (λ′, T ′)

is an element of I with ∆(j, i) ≤ ψ. It is enough, therefore, to prove that y ∈ Sj .
Fixing n ≥ 1 we have, using yd ∈ Sjd and (4.59), yd ∈ MT d

n
(λd) so that for

sufficiently high d, yd ∈ MT ′n(λd) and so (yd, λd) ∈ HT ′n . As the latter set is closed

we deduce that (y, λ′) ∈ HT ′n and y ∈MT ′n(λ′).

This holds for every n ≥ 1; hence y ∈ Sj , establishing (3).

We shall now show that the existence of R(ε) is guaranteed whenever (Y, d)

81



is an infinite dimensional Banach space and (R, γ) satisfies some further mild con-

ditions.

Lemma 4.35. Suppose (Y, d) is an infinite dimensional Banach space, (R, γ) is

separable and has the property that whenever r ∈ R and y ∈ Y then Ks = y + Kr

for some s ∈ R with

γ(s, r) ≤ 1

4ρ
‖y‖. (4.60)

Then for every ε > 0 there exists a set R(ε) ⊆ R such that

1. for all r ∈ R there exists s ∈ R(ε) with γ(s, r) < ε,

2. if r, s are distinct elements of R(ε) then d(Kr,Ks) > ρε.

Most natural choices of (R, γ) in Y , an infinite dimensional separable Banach

space, satisfy the conditions of Lemma 4.35 with ρ = 1/4. Note that the conclu-

sion (2) implies that any set of diameter at most ρε can only intersect Kr for at

most one element r ∈ R(ε), so that we may apply Theorem 4.28.

To establish Lemma 4.35 we first prove the following.

Lemma 4.36. If Y is an infinite dimensional Banach space and (Kn)n≥1 are com-

pact subsets of Y then for any ε > 0 we can find yn ∈ Y with ‖yn‖ = ε for each

n ≥ 1 such that K ′n := yn +Kn satisfy d(K ′n,K
′
m) > ε/3 for n 6= m.

Proof. Suppose n ≥ 1 and we have chosen (ym)1≤m<n such that d(K ′m,K
′
l) > ε/3

for 1 ≤ l < m < n. It suffices to pick yn such that d(K ′n,K
′
m) > ε/3 for 1 ≤ m < n.

The difference set

K := Kn − ∪1≤m<nK ′m = {k − k′ where k ∈ Kn, k
′ ∈ Km for some m < n}

is compact so that we may find y ∈ Y with ‖y‖ = ε and d(y,K) > ε/3, using

Lemma 4.27. Then d(0,−y +K) > ε/3 so that, choosing yn = −y,

d(0,K ′n − ∪1≤m<nK ′m) > ε/3.

Proof of Lemma 4.35 Let (rn)n≥1 be a dense sequence in R. By Lemma 4.36 we

can find yn ∈ Y with ‖yn‖ = 3ρε such that K ′n := yn +Krn satisfy d(K ′n,K
′
m) > ρε

for n 6= m. Now we may pick r′n with Kr′n = yn +Krn = K ′n and

γ(r′n, rn) ≤ 1

4ρ
‖yn‖ =

3

4
ε
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using (4.60). Setting R(ε) = {r′n where n ∈ N} we are home.

Corollary 4.37. If Y is an infinite dimensional Banach space with separable dual,

T is a dense subset of Y and O is a Gδ set containing every line segment [u, v]

with u, v ∈ T then there exists a closed and bounded subset G ⊆ O such that F is a

universal Fréchet set.

Proof. We may view Y as a metric space. Let (R, γ) be the collection of line segments

in Y with the metric

γ([u, v], [u′, v′]) = max(‖u′ − u‖, ‖v′ − v‖).

We note that (R, γ) satisfies the conditions of Theorem 4.28 by Lemma 4.35 with

ρ = 1/4. Let (Si)i∈I be the collection of subsets of O given by the conclusion of

Theorem 4.28.

Let i0 ∈ I. We note that as

X = {(i, y) such that y ∈ Si for some i ∈ I with ∆(i, i0) < 1}

is a Gδ subset of I × Y , using Theorem 4.28(2), it is a complete topological space.

We also note that X 6= ∅.
The map π : X → Y given by π(i, y) = y is continuous. To complete the

verification of the conditions of Theorem 4.2 we note that if x = (i, y) ∈ X and N

is an open neighbourhood of x in X then we may pick ψ, r > 0 with

{j ∈ I such that ∆(j, i) < ψ} ×Br(y) ⊆ N (4.61)

and then, for any η ∈ (0, 1) and µ > 0, set

δ0(x,N, η, µ) = min

(
1

2
r, δ5

(η
2
, ψ, i

))
.

Then if δ ∈ (0, δ0) and y1, y2 ∈ Bδ(y) we may find a segment [u, v] ⊆ Sj with

‖u− y1‖ ≤ ηδ/2 and ‖v − y2‖ ≤ ηδ/2, so that

‖(v − u)− (y2 − y1)‖ ≤ ηδ,

where j ∈ I with ∆(j, i) < ψ. This verifies (4.1) and (4.2). Note now that as

η ∈ (0, 1) we have u, v ∈ B2δ(y) ⊆ Br(y). Hence, from ∆(j, i) < ψ, we have

{j} × [u, v] ⊆ N , using (4.61), and therefore [u, v] ⊆ π(N). Hence (4.3), and so the

hypotheses of Theorem 4.2 are satisfied.
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We conclude, from Theorem 4.2, that π(X) is a universal Fréchet set and that

the set of points Dg of Fréchet differentiability of any Lipschitz function g : → R
has dense intersection with π(X) in π(X). Hence

G := {y ∈ Br(y0) such that y ∈ Si for some i ∈ I with ∆(i, i0) ≤ 1}

is also universal, for any (i0, y0) ∈ X. But, by Theorem 4.23(3), G = F ∩ Br(y0)

where F is a closed subset of Y . Hence G is a closed and bounded subset of Y .

Further, as Si ⊆ O for all i ∈ I we have G ⊆ O. We’re done.

Corollary 4.38. If Y is a Banach space with separable dual then there exists a

universal Fréchet set S ⊆ Y such that S is closed, bounded and has Hausdorff

dimension one.

Proof. This is now immediate from Theorem 4.37, Lemma 4.8 and Lemma 4.10.

Remark 4.39. Since any totally bounded metric space (R, γ) clearly satisfies the

condition in Theorem 4.28 that R(ε) exists for all ε > 0, one does not really need

to separate the finite and infinite dimensional cases as we have done here. A more

unified approach, relying just on Theorem 4.28, will be taken in [10].

4.6 The non-separable case

We have proved the existence of a closed and bounded universal Fréchet set of

Hausdorff dimension one in any Banach space with separable dual - that is, in any

separable Asplund space. We already know that any non-Asplund space has no

universal Fréchet sets. In this final section, we make a few quick remarks about the

remaining case, in which the Banach space is a non-separable Asplund space.

We already know that such a space does indeed have universal Fréchet sets;

by Theorem 1.13 any non-empty open set is an example. We may do slightly better

and construct a universal Fréchet set in Y that is nowhere dense. First we need to

quote a useful result, due to Preiss, that allows us to reduce the task of proving the

existence of a point of Fréchet differentiability on a non-separable space to proving

it for the restriction of the function to a particular separable subspace, which may

depend on the function.

Theorem 4.40 (Separable reduction). If Y is a Banach space, Z is a separable

subspace of Y and g : Y → R is a Lipschitz function then there exists a separable

subspace W of Y with Z ⊆ W such that g is Fréchet differentiable at every point

y ∈ Y such that g|W is Fréchet differentiable.
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Proof. See [24] and [15].

Corollary 4.41. If Y is a non-zero Asplund space then there exists a closed uni-

versal Fréchet set S ⊆ Y whose complement is dense.

Proof. If Y is one dimensional we may take, by Lebesgue’s theorem, S to be any

closed and bounded subset with dense complement whose Lebesgue measure is pos-

itive. Suppose now that Y has dimension at least two. Let Z be a two dimensional

subspace of Y . Let

π : Y → Z

be a continuous linear map with ‖π‖ = 1 and π(Z) = Z. Let (Fλ)0<λ<1 ⊆ Z be any

collection of subsets satisfying the conditions of Corollary 4.3.

Set

F ′λ = π−1(Fλ) ⊆ Y.

Let g : Y → R be Lipschitz. Find W as in Theorem 4.40 with Z ⊆W . Note

that as W is a separable subspace of an Asplund space Y it has separable dual,

so has an equivalent norm that is Fréchet differentiable on W \ {0}. It is readily

verified that (F ′λ ∩W )0<λ<1 still satisfies the conditions of Corollary 4.3. Therefore

each set F ′λ ∩W contains a point of Fréchet differentiability of g|W . Therefore F ′λ
contains a point of Fréchet differentiability of g.

This holds for every Lipschitz g : Y → R so that F ′λ is a universal Fréchet set

in Y .

But using chapter 4.3 we may take the sets Fλ ⊆ Z to be compact and null

and, therefore, to have dense complement in Z. It follows immediately that the sets

F ′λ are closed and have dense complement in Y .

Remark 4.42. As a final comment, however, we note that a universal Fréchet set

S in a non-separable Banach space Y cannot have Hausdorff dimension one - or

indeed finite Hausdorff dimension. If DH(S) < ∞ then we can find d > 0 with

CdH(S) = 0; see Definition 4.7. Hence for every δ > 0 there must exist a cover of S

by a countable collection of sets, each of which has diameter less than δ. It follows

that there exists a countable subset of Y whose closure contains S, so that S lies in

a separable subspace of Y and S is therefore porous. Hence, using Lemma 1.23, S

is not a universal Fréchet set.
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