The Library
Holomorphic curves and minimal surfaces in Kähler manifolds
Tools
Arezzo, Claudio (1996) Holomorphic curves and minimal surfaces in Kähler manifolds. PhD thesis, University of Warwick.

PDF
WRAP_THESIS_Arezzo_1996.pdf  Submitted Version  Requires a PDF viewer. Download (3579Kb) 
Official URL: http://webcat.warwick.ac.uk/record=b1402604~S1
Abstract
Our work is concerned with the relation between a complex differential geometric property,
namely holomorphicity, and a metric one, namely to be conformal and minimal,
of immersions (possibly branched) of Riemann surfaces into Kahler manifolds.
A well known theorem (Wirtinger's Inequality) states that every holomorphic surface
inside a Kahler manifold is area minimizing w.r.t. variations with compact support.
Of course, the converse is not true in general. However, there are important situations,
as in the resolution of the Frankel Conjecture by Siu and Yau, when it is. A first
motivation for our research is to understand to which extent is the converse true. In
Chapter 1 we discuss this problem after having briefly recalled the basic notions and
background material that will be needed in the sequel.
We first tried to prove some general existence result for immersions into riemannian
manifolds, which are area minimizing among classes of maps sharing some topological
properties. Following the line of the proof of the existence theorem for minimal surfaces
incompressible on the fundamental group, due to SacksDhlenbeck and SchoenYau, in
Chapter 2 we prove existence of minimal surfaces incompressible on the first homology
group. We apply this result to the theory of Abelian Varieties, and we present here a
new proof, completely based on riemannian techniques, of a classical result about the
Schottky Problem, i.e. the characterization of the jacobian locus inside the space of
principally polarized abelian varieties of complex dimension 2 and 3.
A crucial step in the proof of this result is the fact, proved by Micallef, that a
converse of Wirtinger's Inequality holds for immersions of closed surfaces of genus 2
and 3 into flat T4 or T6, respectively. As for the Schottky problem, also for minimal
surface theory, the situation becomes more difficult as the dimension of the target torus increases.
In Chapter 3 we give a unified presentation of an unpublished theorem of Micallef
(Theorem 3.4.1) with our research work. In particular we give a very explicit way
to construct stable minimal immersions of surfaces of genus r ≥ 4 into flat tori of dimension 2r and of genus r ≥ 7 into flat tori of dimension 2( r  1). The existence of
such examples represents a major difficulty in the attempt to apply minimal surface
theory to the theory of abelian varieties.
In his thesis Micallef proved a converse of Wirtinger's Inequality for isometric stable
minimal immersions of complete oriented surfaces into R4, with the euclidean metric,
provided that the Kahler angle of the immersion omits an open set of [0,π]. In Chapter
4 we show that this result does not depend on the linear structure of R4, but on a
riemannian property of its flat metric, namely the fact that it is hyperkähler. We prove
in fact the same theorem replacing R4 with any hyperkähler 4manifold.
In the same Chapter we give also a description of known results about the relation
between the Kähler angle and the Gauss lift (or the Gauss map, in the case of euclidean
space) associated to an immersion.
In the last Chapter we go back to the study of periodic minimal surfaces.
The results we proved in Chapter 2 and 3 pointed out many natural questions about
uniqueness and rigidity of periodic minimal surfaces with some topological constraints.
In Chapter 5 we describe a framework for the study of this kind of problems that
we believe to be very promising in many different situations, and we study in detail
this setting for immersions of surfaces of genus r into flat T2r. Our approach makes
transparent a deep connection between algebraic properties of an algebraic curve and
riemannian properties of the conformal minimal immersions into some flat torus of a
fixed closed Riemann surface. Using previous results of Pirola and classical theorems
about algebraic curves, such as the Torelli and the Infinitesimal Torelli Theorems, we
give fairly complete answers to the problems about uniqueness and rigidity of minimal
maps. In particular we see that these minimal immersions do not share the same rigidity
properties as holomorphic and harmonic maps, but nevertheless they generically do not
come in families.
We are convinced that a deeper study of periodic minimal surfaces in fiat tori from
the riemmanian point of view could give some new results in the theory of algebraic curves, especially about the structure of the singular locus of the theta divisors. We
believe that our approach gives already some new insight on known phenomena.
Item Type:  Thesis (PhD)  

Subjects:  Q Science > QA Mathematics  
Library of Congress Subject Headings (LCSH):  Riemann surfaces, Kählerian manifolds, Immersions (Mathematics), Holomorphic functions  
Official Date:  November 1996  
Dates: 


Institution:  University of Warwick  
Theses Department:  Mathematics Institute  
Thesis Type:  PhD  
Publication Status:  Unpublished  
Supervisor(s)/Advisor:  Micallef, Mario  
Extent:  96 p.  
Language:  eng 
Request changes or add full text files to a record
Repository staff actions (login required)
View Item 
Downloads
Downloads per month over past year