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0.2 Summary

Our work is concerned with the relation between a complex differential geometric prop-
erty. namely holomorphicity. and a metric one, namelv to be conformal and minimal,
of immersions (possibly branched) of Riemann surfaces into Kahler manifolds.

A well known theorem (Wirtinger's Inequality) states that every holomorphic sur-
face inside a Kahler manifold is area minimizing w.r.t. variations with compact support.
Of course, the converse is not true in general. However. there are important situations,
as in the resolution of the Frankel Conjecture by Siu and Yau. when it is. A first
motivation for our research is to understand to which extent is the converse true. In
Chapter 1 we discuss this problem after having briefly recalled the basic notions and
background material that will be needed in the sequel.

We first tried to prove some general existence result for immersions into riemannian
manifolds, which are area minimizing among classes of maps sharing some topological
properties. Following the line of the proof of the existence theorem for minimal surfaces
incompressible on the fundamental group, due to Sacks-Uhlenbeck and Schoen-Yau, in
Chapter 2 we prove existence of minimal surfaces incompressible on the first homology
group. We apply this result to the theory of Abelian Varieties, and we present here a
new proof, completely based on riemannian techniques. of a classical result about the
Schottky Problem, i.e. the characterization of the jacobian locus inside the space of
principally polarized abelian varieties of complex dimension 2 and 3.

A crucial step in the proof of this result is the fact. proved by Micallef. that a
converse of Wirtinger’'s Inequality holds for immersions of closed surfaces of genus 2
and 3 into flat 7' or TS. respectively. As for the Schottky problem. also for minimal
surface theory. the situation becomes more difficult as the dimension of the target torus
increases.

In Chapter 3 we give a unified presentation of an unpublished theorem of Micallef
(Theorem 3.4.1) with our research work. In particular we give a very explicit way

to construct stable minimal immersions of surfaces of genus r > 4 into flat tori of



dimension 2r and of genus r > 7 into flat tori of dimension 2(r — 1). The existence of
such examples represents a major difficulty in the attempt to apply minimal surface
theory to the theory of abelian varieties.

In his thesis Micallef proved a converse of Wirtinger's Inequality for isometric stable
minimal immersions of complete oriented surfaces into R%. with the euclidean metric.
provided that the Kahler angle of the immersion omits an open set of [0. 7]. In Chapter
4 we show that this result does not depend on the linear structure of R4, but on a
riemannian property of its flat metric, namely the fact that it is hyperkahler. We prove
in fact the same theorem replacing R* with any hyperkahler 4-manifold.

In the same Chapter we give also a description of known results about the relation
between the Kahler angle and the Gauss lift (or the Gauss map. in the case of euclidean
space) associated to an immersion.

In the last Chapter we go back to the study of periodic minimal surfaces.

The results we proved in ("hapter 2 and 3 pointed out many natural questions about
uniqueness and rigidity of periodic minimal surfaces with some topological constraints.
In Chapter 5 we describe a framework for the study of this kind of problems that
we believe to be very promising in many different situations, and we study in detail
this setting for immersions of surfaces of genus r into flat T?". Our approach makes
transparent a deep connection between algebraic properties of an algebraic curve and
riemannian properties of the conformal minimal immersions into some flat torus of a
fixed closed Riemann surface. Using previous results of Pirola and classical theorems
about algebraic curves, such as the Torelli and the Infinitesimal Torelli Theorems. we
give fairly complete answers to the problems about uniqueness and rigidity of minimal
maps. In particular we see that these minimal immersions do not share the same rigidity
properties as holomorphic and harmonic maps, but nevertheless they generically do not
come in families.

We are convinced that a deeper study of periodic minimal surfaces in flat tori from

the riemmanian point of view could give some new results in the theory of algebraic



curves, especiallv about the structure of the singular locus of the theta divisors. We

believe that our approach gives already some new insight on known phenomena.
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Chapter 1
Introduction

1.1 Basic notions and definitions

All the material contained in this section is well known. For a detailed study we refer

to the books of Osserman ([11]) and Lawson ([31]).

1.1.1 Minimal immersions of surfaces

(‘onsider an immersion f: ¥ — (1/.g) of a topological surface into a riemannian man-
ifold, and a smooth compactly supported section ¢ of the normal bundle to ¥ s.t.
supp(r)NIY = 0. Every such variation is induced by a family /2 ¥ x (=1.1) — (M. g).

with the lollowing properties:
I. fy = I'(-.t) is an immersion for all ¢.

2. fu = f
; f{(()\_:) = -flas f()l' dn t.

4. /';(%)hzo(p) = v(p) forall p e X.

We then consider the variation of area induced by ¢ and we have:

dA(fe(Y))

dAie) = dt

| = — / g(H.v)dVols. (1.1)
t=0 A

L]



where H is the mean curvature vector of the immersion f and dV olx is the volume
form induced by f on the surface.
We say that fis minimal if H = 0, i.e. if it is a critical point for the Area functional

among compactly supported variations.

1.1.2 Isothermal coordinates and conformal harmonic maps

Given any immersion f: Y — (M., g) of a topological surface into a riemannian manifold,
we can consider an atlas U = {U,. 4. ys} of isothermal coordinates for the metric
induced by f (see [31]), which define on ¥ a conformal structure ps. The metric on ¥
= 9(fy 117

A direct calculation shows that if f:(¥,h) — (A.g) is an isometric immersion,

[

induced by f is given on U, by A(dz? + dy2), where A = g( fz. f)

we have Apf = H. Therefore we have that f: ¥ — (A.g) is minimal if and only if
f: (X, f*(g)) — (M, g) is harmonic.

On the other hand it is easy to check that, for any positive function A on X,
Axpf = 0 if and only if Apf = 0. Therefore the space of harmonic maps from a
surface is a conformal invariant.

This argument gives an equivalence between the following two data:

1. f:¥ — (M.g) a minimal immersion of a topological surface into a riemannian
manifold.
2. f:(E.pn) — (M.g) a conformal harmonic map from a Riemann surface into a

riemannian manifold.

The equivalence described above is crucial in the study of minimal immersions of
surfaces, because it allows us to put techniques of complex geometry into play.

Our first observation is that holomorphic maps of Riemann surfaces into Kahler
manifolds are minimal immersions. Let us recall that a map between complex manifolds
f:(N.J)— (M.J') is holomorphic if J' o df = df o J at every point in .V. i.e. if the
tangent space to f(.\)is J'-invariant. .\ simple direct calculation (see [31]) proves the

following:



Theorem 1.1.1 If (M..J'.g) is a Kdhler manifold, and f as above is holomorphic.

then f is minimal.

Remark 1.1.1 The above Theorem holds in the more general situation of J-holomorphic
submanifolds of symplectic manifolds (M.w). equipped with an almost complex structure

J tamed by w and metric w(J-.-).

As we will see later, holomorphic submanifolds of Kahler manifolds are not just

critical points of the Area functional, but they are in fact minima.

1.1.3 Second variation of Area

As we have seen above minimal immersions are critical points of the Area functional.
A way to measure how far a minimal immersion is from being a minimum for this
functional is given by the second variation of Area, i.e. the second derivative of the
Area in the direction of a compactly supported normal variation. A direct calculation

(see [50]) shows that

2 3 2
*A(v) = d—A%;(Ll)[ = - / {g(Av.v)—|Bv|* - E g(R(v.e;)e;,v)}dVols, (1.2)
t=0 ¥ i=1

where

A(W) =) (Ve (Ve () = (Ve o, ()",

2

{¢;} is an orthonormal basis of the tangent space to the surface. L is the projection on
the normal bundle, ¥ is the connection on ¥ induced by the Levi-Civita connection of

(M.g) and B is the second fundamental form of f.

Definition 1.1.1 1. A minimal immersion f is stable if 02A(v) > 0 for every

scction v of the normal bundle with compact support.

2. A section v of the normal bundle with compact support is callcd a Jacobi field
along f if 9*A(v) = 0. The dimension of the space of Jacobi fields (which is

naturally a vcctor space) is called the Nullity of f. and denoted by Nul(f).



It is in general a very hard problem to calculate the nullity of a minimal immer-
sion. In fact we will see in this thesis that. for minimal immersions into some Kihler
manifolds, this space heavily depends on classical algebraic properties of the induced
conformal structure.

A first result that we will use in this thesis is the following (see [50]):

Theorem 1.1.2 If f:(X.J) — (M. J', g) is holomorphic and (M.J'.g) is Kdhler then

Nul(f) = dimpH (v), where v is the normal bundle to .

1.2 Holomorphic curves and minimal surfaces in Kahler

manifolds

The starting point of our research is the well known Wirtinger's Inequality (quoted
as W-I in the sequel) which states, in the version proved by Federer ([20]) that a
complex submanifold of a Kahler manifold minimizes volume in its homology class.
This elementary, but remarkable, fact inspired much research in the theory of minimal
submanifolds of a Kahler manifold, mainly in the attempt to prove some converse of it.
A straight converse in general does not hold; there are mainly two reasons to believe

this:

1. to minimize volume is a purely metric property not depending, in general, on
a specific complex structure on the target manifold. So, for example, we can
consider a manifold with a metric which is Kahler w.r.t. more than one complex
structure. In this situation submanifolds which are holomorphic w.r.t. different

complex structures are all volume minimizing in their homology classes.

2. there are topological restrictions on the tvpe of classes representable by holomor-

phic submanifolds; for instance. we recall the following theorem ([22]):

Theorem 1.2.1 inalytic submanifolds of compler dimension p of a projective

manifold of complcr dimension n reprcsent homology classes which arc Poincard

dual to cohomology classes of type (n — p.n — p).
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Therefore a reasonable attempt to prove the converse to the Wirtinger's Inequality

has to focus on homology classes of special type.

Let us also recall that a refined version to the converse of the above theorem is the
outstanding Hodge Conjecture. which has been proved by Lefschetz for p = 1 even for

integral linear combinations:

Conjecture 1 On a projective manifold M every rational cohomology class of type
(p,p) is a rational linear combination of Poincaré duals of fundamental classes of an-

alytic subvarieties of M.

We want to underline the fact that even if this conjecture turns out to be true in
general, it does not answer the problem of finding volume minimizing submanifolds in
these classes. Observe also that the Hodge Conjecture deals with projective manifolds,
while we are interested in the larger class of Kahler ones.

There are situations where the above obstructions become empty: the first case is
when we have a Kahler manifold s.t. every 2p—homology class is Poincaré dual to a
cohomology class of type (n — p,n — p). This is the case, for example, of the complex
projective space with the Fubini-Study metric, where the converse to the Wirtinger’s
Inequality has been shown to hold, even allowing integral currents as competitors for
the volume functional, and replacing the volume minimizing hypothesis with the weaker

assumption of stable, by Lawson and Simons ([32]):

Theorem 1.2.2 A closed integral current in PC" is stable if and only if it is an integral

chain of algebraic varieties.

We also recall that an affirmative answer to the converse to the W-I in the case of
area minimizing 2-spheres in Kahler manifolds of positive bisectional curvature. led Siu
and Yau ([51]) to the well known solution of the Frankel Conjecture.

There is also another situation. somehow antithetic. when the obstructions above
can be overcome: suppose we are dealing with riemannian manifolds which are Kahler

w.r.t. a large family of complex structures. so large that every 2p cohomology class is of

11



type (p.p)in the Hodge decomposition induced by some compatible complex structure.
This is the case, for example, of hyperkahler manifolds. A plausible converse to W-I

will then be in the case of surfaces:

Problem 1 Is any area minimizing map of a Riemann surface into a Kahler manifold
for which the obstructions described above vanish, holomorphic with respect to some

complex structure compatible with the metric?

This is the central problem discussed in this thesis.

The above question has been studied by many authors in the last twenty years and
we want now to give a brief account of results related to our work.

A fundamental tool to answer our main problem is the so called Kdhler angle as-
sociated to an immersion of a surface in a Kahler manifold. It appears very clearly in

Federer’s proof of the W-I, where he in fact shows the following ([31]):

Proposition 1.2.1 Let ¥ be a 2-dimensional oriented real submanifold of a Kdhler
manifold (M,w). Then

wig(p) = w(er.e2)dVoly(p)
where {¢;} is an orthonormal basis of T,X..

It is easy to see that w(ey,e;) is a real number whose absolute value is not more

than 1. Therefore we can define:

Definition 1.2.1 The Kdhler angle of ¥ at p is that angle o s.t. cos(a) = w(ey.ez).

with the above notations.

W-I for surfaces, as stated at the beginning of this section, follows directly from the

above proposition, just by a comparison of the area of a holomorphic surface and the

area of a homologous one using Stokes’s Theorem ([31]).

It is easily seen that, as a function of p. a is a smooth function away from the points

where o = 0 or o = 7. where it is just Lipschitz.

12



The notion of Kahler angle was first explicitly introduced by Lichnerovicz and stud-
ied in detail by Chern-Wolfson ([13]) and Eells-Wood ([17]) in their study of minimal
immersions in the complex projective space. Its relevance in our context is that it gives
a measure of how far is ¥ from being holomorphic. In fact ¥ is a holomorphic subman-
ifold if and only if a is identically zero on it. Points where the Kihler angle vanishes
are usually called complez points. while points where the Ixdhler angle is equal to 7 are
called anticomplex points. Surfaces with the property that a is identically equal to 5
are called lagrangian surfaces (observe that this is equivalent to the familiar definition
of lagrangian submanifolds in symplectic geometry because a = 7 if and only if the
restriction of the Kahler form to ¥ vanishes identically). A surface without complex

and anticomplex points is called totally real.

Remark 1.2.1 A first observation to be made is that a minimal surface in a Kdhler
surface has only isolated complex and anticomplex points. unless it is holomorphic or
antiholomorphic ([53]). A simple proof of this fact is the following: denoting by J
the complex structure on M, and = a complez coordinate on ¥ induced by isothermal
coordinates, it is not difficult to see (we give a complete proof of this claim in Chapter
4) that having called:
= Vo
where L denotes the projection on the complezified normal bundle vc = v ®g C to the
surface, we have that
s®dz
is a global holomorphic section of vec ® AV(E). The claim now follows casily. because

compler and anticomplex points are zeros of this section.

Wolfson ([54]) first wrote the Ricci and the (‘odazzi-Mainardi equations for an
immersion in a Kahler {-manifold in terms of the Kédhler angle. He proved, using
the method of moving frames, that in such a manifold a satisfies the following two
equations:

dd(In(sin’a)) = =V —1(K + K, )dV ol (1.3)

13



Bé(ln(tanzg—)) = —v—1Ric (1.4)
Remark 1.2.2 Equation 1.3 is a direct consequence of the holomorphicity of s ® dz=.

There are two direct consequences of these equations. due also to Wolfson:
Theorem 1.2.3 Let ¥ be a compact connected surface without boundary.

1. If M is a compact Kdhler - Einstein 4-manifold of negative scalar curvature. and
[:X — M is a totally real minimal immersion. possibly branched, then f(¥)isa

Lagrangian submanifold of M.

2. If M is a hyperkihler 4-manifold and f:¥ — M is a totally real minimal im-
mersion, possibly branched, then f(X) is a submanifold holomorphic w.r.t. some

complex structure on M compatible with the Calabi- Yau metric.

We want to underline the fact that Wolfson does not require any stability property
of f.

A careful analysis of the Kahler angle for minimal immersions in the projective
plane gave a very detailed description of such maps in [9]. [13]. [17] and [18].

The Kahler angle plays a role also in Micallef’s work on stable minimal surfaces in
R* ([36]). We recall that the Grassmannian of oriented two-planes in R* with its natural
symmetric space structure is isometric to 52 x S?. Therefore we can look at the Gauss
map G of an immersion into R* as a map from the surface to 5% x $2. In particular
it is a classical result ([44]) that this map is holomorphic (taking on the sphere the
orientation opposite to the standard one) if and only if the immersion is minimal. In
(‘hapter 4 we will see that these 52 factors parametrize the space of complex structures
on R*. either oriented or anti-oriented. \We will see that if J € 52 is not in the image

- . . . . 4
of the Gauss map G of a minimal immersion [ into R*. then

stnag(p) ,

l = . 1.5

P (G =T ) (1.5)

where p is the stereographic projection from .J and 7 is the projection 52 x 5% — §?

on the factor containing .J.

14



One of the main Micallef’s results is then:

Theorem 1.2.4 Let F:Q — R* be a stable minimal isometric immersion of a complete
oriented surface, and assume that there exists a complex structure J compatible with
the euclidean metric on R*, s.t. aj(Q) C [e.7], € > 0, where ay is the Kdihler angle

relative to J. Then ay is constant and there exists a compatible compler structure J

s.t. aj vanishes identically.

By the equation 1.5 the above statement is equivalent to the following, which is

Micallef’s original one.

Theorem 1.2.5 A stable minimal isometric immersion into R* of a a complete ori-
ented surface, whose Gauss map has the property that one of the two projections on the

two-spheres omits an open set, is holomorphic w.r.t. an orthogonal compler structure.

For sake of completeness we recall that by a well known theorem due to Chern
([11]) and Osserman ([43]) we know that, in the case of the euclidean --space, if both
projections on the spheres of the Gauss map omit an open set then M is a plane.

The following results of Micallef ([37]) and Micallef-Wolfson ([38]) give a fairly
complete description of the relation between holomorphicity and stability of minimal

surfaces in hyperkdhler 4-manifolds:
Theorem 1.2.6 Every full stable minimal immersion of a Riemann surface into any
flat 4-torus T* is holomorphic w.r.t. some complex structure compatible with the metric

on T%.

Theorem 1.2.7 Let (),w) be a hyperkdhler 4-manifold, not necessarly compact and ©
a closed oriented surface. If f: ¥ — M is a stable minimal surface whose normal bundle
admits a holomorphic section. then f is holomorphic w.r.t. some compler structure on

M compatible with the hyperkdhler metric.

The main tool used for proving the above theorems is a version of the second
variation of area in Kihler manifolds first introduced in [36] and [38]. sensitive also to

(he complex geometry of the normal bundle to the immersion.

5



The proofs of Theorems 1.2.5 and 1.2.6 make deep use of the linear stuctures of R*

and T%. As we will see in Chapter 4 it is possible to extend some similar results to

hyperkahler 4-manifolds.
These results leave an interesting open question (already asked in [16]) :

Is every stable minimal surface in a K3 surface with the Calabi-Yau Ricci flat metric,

holomorphic w.r.t. some compatible complex structure?

16



Chapter 2

On Minimal Surfaces

Incompressible in Homology and

Abelian Varieties

2.1 Introduction

In mimimal surface theory one often tries to find immersions of surfaces which are
critical points. or even minima. of the Area functional among immersions with some

extra topological conditions. For example one can ask the following questions:

Problem 2 1. Given a 2-homology class 3 € Hy(M.Z). where M is a ricmannian
manifold of dimension greater than 2, does there exist a minimal. or arca nini-

mizing surfacc, whose fundamental class represents 3¢

20 Given a continuous map w: Y — M. where M ois a ricmannian manifold of di-
mension greater than 2.0 docs there crist an arca minimizing map with the sanme

induccd action on the fundamental group as u 7

There is an immense literature about these problems. and we do not even attempt
to eive a description of the known results. Clearly there are no relations between these

two problems for a general M but for manifolds with a particularly simple topoloey as

Lv



tori, it is possible to find some connections. In fact. since Ho(T™.Z) = \2(H(T™.Z)).
we have that the images of all maps with the same action on the first homology group
represent the same 2-homology class.

About the second problem the most significant result has been found by Schoen-Yau
({49]) and Sacks-Uhlenbeck ([46]), who independently proved that the answer is ves for
every riemannian manifold M of dimension at least 3. provided the action of u on the

fundamental groups is injective.

Theorem 2.1.1 Let ¥ be a closed topological surface of genus > 1, M a riemannian
manifold of dimension at least 3 and let w:¥ — M be a continuous map such that
Uy T (X) — (M) is injective. Then there evists a branched minimal immersion
f:X — M with the same action on m(X) as u and such that Area(f) < Area(g) for

every C®-map g: ¥ — M with the same action on 7,(X) as u.

The minimal surfaces constructed in this way are called. for obvious reasons, incom-
pressible on T1(X).

The above theorem has been used to establish some fundamental connections be-
tween geometric and topological properties of riemannian manifolds (see, for example,
[49]). Sacks and Uhlenbeck produced examples of non-uniqueness of such maps even
when restricting themselves to fixed homotopy classes.

Unfortunately this beautiful theorem does not apply when A/ is a flat torus, since
the fundamental group of a torus is commutative. This suggested us to study the

following variation of the second problem above:

Problem 3 Given a continuous map w: S, — M whose induced action on the first
homology group is injective, does there erist an area minimizing map from ¥, to M

with the same induced action as u in homology?

Problem 3 is the central theme of this (‘hapter.

Alreadyv in the case when ) is a torus we see that the answer to this problem cannot

be affirmative: in fact if we consider an abelian surface. i.e. a complex 2-dimensional

—
(V9



torus endowed with an integral 2-form of tvpe (1.1), there could be, in general. some
classes with holomorphic representative given by the sum of two elliptic curves. Taking
then an injective homomorphism from Hq(X3.Z) to Hy(T*.Z) which induces such a
class in the above sense, we see that the area minimizing map is not defined on a
Riemann surface of genus 2, but it is defined on the disjoint union of two Riemann
surfaces of genus 1. This suggests that one has to allow some non homotopically
trivial curves to collapse in the image to contractible curves (or even points). and that
the conformal structure induced by a minimizing sequence for the area functional can
degenerate to a conformal structure in the boundary of the Riemann moduli space.
Nevertheless, since we are allowing just homologically trivial curves to collapse, it is
natural to conjecture that the area minimizing map is defined on the quotient of the
original topological surface modulo a finite set of homologically trivial curves. If this
happens to be the case, then it would be possible to compare the action on the first
homology group of the area minimizing map with the action of our initial continuous
map, since they would be defined on two naturally isomorphic groups. In this Chapter
we show that this is in fact what happens.

We will use the fact that it is possible to compactify the Riemann moduli space by
adding the set of Riemann surfaces with nodes obtained by collapsing a set of admissible
simple closed curves. A Riemann surface with nodes is a connected complex space T
such that every point p has a neighbourhood isomorphic either to the open disk in
the complex plane, or to two disks whose centers are identified with p; in this case we
say that p is a node of $'. The connected components of ©\{nodes} are called the
parts of the Riemann surface with nodes. We will consider in this Chapter Riemann
surfaces with nodes obtained from a smooth surface by collapsing a set of homologically
trivial curves. The first homology group of the topological space obtained in this way
is naturally isomorphic to the group of the smooth surface; keeping this identification
implicit we can compare the action on the first homology group of a map from the

smooth surface. with the action on the first homology group of a map from the Riemann

19



surface with nodes.

Our result is then the following:

Theorem 2.1.2 Let ¥ be a closed topological surface of genus r > 1. M a rieman-
nian manifold of dimension at least 3, and let u: S — M be a continous map such
that u,: Hy(X.Z) — Hy(M,Z) is injective. Then there erists a Riemann surface with
nodes obtained by collapsing a set of homologically trivial curves {7k}. whose parts are

e\ {py, ..., pL Y, with the following properties:

1. Vi3 fi: X, — M s.t. f; is a branched conformal minimal immersion and Area(f;) <
Area(g) for every C*-map g:X,, — M with the same action on Hy(Z,.) as the

one induced by the restriction of u to S,,.

2. If f:U{X,,} — M is the map given by the maps f; on each ... we have f, = u,
on Hyi(X,Z) in the sense above. Furthermore, after having defined Area(f) =
> Area( f;), we get Area(f) < Area(s) for every C*-map s:¥ — M with the

same action on Hi(X.,Z) as u.

Beyond the formal difficulty of the statement. the content of our theorem, loosely
speaking, is that the programme of Schoen-Yau and Sacks-Uhlenbeck works even in the
case where there is a set of homologically trivial curves which collapses to points (or
becomes contractible curves) in the image. It is important to underline the fact that,
in general, we lose the connectedness of the image of the area minimizing map. The
strategy of the proof is based on ideas and previous results due to Sacks-Uhlenbeck
[46].

We will carry out in the second section an explicit example of a minimizing process
in a class of maps whose action on H;(¥.Z) is not injective, but not zero. The limit
map is in this case a constant map. and thus the original action on H; is forgotten
in the limit. This example suggests that our assumption on the action on homology
should be the weakest possible.

Theorem 2.1.2 can be applied in a significantly larger class of situationss than

Theorem 2.1.1. For instance. we will apply the previous result in the case of M =
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177, r > 2. the even dimensional flat tori. Since. by results of Micallef ([36].[37]) a
smooth stable minimal immersion of ¥, — 72" is holomorphic with respect to some
complex structure compatible with the metric of the torus. for r = 2 and 3. we are able

to prove. by riemannian methods. a classical theorem in Algebraic Geometry (see for

example [29]):

Theorem 2.1.3 If (T*.») is a principally polarized abelian surface then. either it is
the jacobian of « Riemann surface of genus 2 or. it is the canonically polarized product
of two elliptic curcves.

If (T®,w) is a principally polarized abelian threcfold then. either it is the jacobian of
a Riemann surface of genus 3 or, it is the canonically polarized product of threc elliptic
curves or the canonically polarizcd product of a jacobian of a Ricmann surface of genus

2 and an elliptic curve.

For real dimension greater than 6 there is no analogue of the theorem of Micallef. Ac-
tually in the next ('hapter we will show that for any nonhyperelliptic Riemann surface of
genus r > 4. there exists a conformal stable minimal immersion
f: 8, — (T*",g)into a flat torus. which is not holomorphic with respect to any complex
structure compatible with the flat metric g.

As we mentioned at the beginning of this section, Sacks and Uhlenbeck. in [46] found
examples of non uniqueness of area minimizing maps among maps with a prescribed
action on the homotopy group. A fortiori uniqueness will in general fail among maps
with a fixed injective action on homology. \We leave open the question (that will be
discussed in Chapter 5) about the uniqueness of area minimizing maps among those
maps from ¥, to 777 with a fixed injective action on the first homology group. .\~ we
will explain in Chapter 5. the reason for which it seems plausible to us that such a
s result mayv hold ix the fact that both homotopic harmounic maps in flat tori

uniquenes

and homotopic holomorphic maps in complex tori are rigid by classical results in these

subjects.



This problem seems to us particularly interesting since it is the right analogue of

the Torelli theorem for minimal immersions.

2.2 Proof of the Main Result

As we mentioned in the introduction we will adapt the strategv used by Sacks and
Uhlenbeck for the case of injectivity on 71(X). We will need many classical theorems
about harmonic maps and minimal immersions and for this reason we will adopt the
same notation as [46]. We recall that if f:¥ — (M .g) is a smooth map. (1/.g) a
riemannian manifold and ¥ a Riemann surface with conformal structure u. then we

define the energy of f to be

(o) = [ tracentgg(df.df) a1

where h is any metric on ¥ compatible with pu.
We sav that f is harmonic with respect to u if f is a critical point of £(-.x). On

the other hand f is called minimal if it is a critical point of the Area functional:

Af) = [ dettagio(a.af))E 1

The next theorem (see [£7]) indicates the line of our argument:

Theorem 2.2.1 Let f: S — (M. g) be harmonic with respect to the conformal structure
1t and suppose  is a critical point of E(f. ) with respect to all smooth variations of p,

then f is a conformal branched minimal immersion.

What the previous theorem suggests. and what Schoen-Yau and Sacks-Uhlenbeck
did in their case. is that we need to minimize & in two steps. first by moving the map
in the space of C1-maps with the same action on H{(E.Z) (on 71(X) in their situation).
while keeping the conformal structure fixed and then varving the conformal structure
on %. This first step was done in the course of proving Theorem 2.1.1. using previous

results of Lemaire [33]. by proving the following:



Theorem 2.2.2 [¢¢ u:(X.u) — (M.g) be continuous. Then there erists a map
[ (X, 1) — (M. g) which is harmonic with respect to the conformal structure p. which
has the same action on 71(X) as u. and for which E(f.p) is the minimum of &(-. p)

among all such maps.

Remark 2.2.1 In the above theorem it is not necessary to assume the injectivity of u.
on m1(X). We note that if in addition £(f.u) < E(g.v). for all g s.t. g. = f- on (%)
and for all conformal structures v, then A(f) < A(l) for every immersion | such that

[ =l on m(X). In particular, we have that such f is a stable minimal immersion.

In order to prove our result we need a stronger theorem since there are infinitely many

actions on m;(X) which give the same action on H{(X.Z).

Theorem 2.2.3 Let u: X — M be continuous. Then. for each conformal structure p
on X and Riemannian metric g on M. there exvists a map f:(S.u) — (M.g). with the
same action on H1(X.Z) as u, for which E(f.u) is the minimum among all such C1

maps. In particular f is harmonic and stable.

Proof: The existence of a harmonic map with the same action on H{(¥.Z) as u is
clearly assured by theorem 2.2.2 by picking an action on (Y ) which induces the fixed
action on Hy(X,Z). Of course the minimizing property of this map is not directly given
by 2.2.2. Nevertheless the proof of theorem 2.2.2 given in [49] (Lemma 1.1 and 1.1)
works also in our case after having noticed that. since it is possible to define an action
p on 71 (X) of a map in the Sobolev space HZ(X. ). then the induced action j on

H(Y.Z) is well defined.



Remark 2.2.2 Lemma 1.1 in [49] shows in fact that a sequence with bounded energy
{fi} always has a subsequence {l;} which converges pointwise almost everywhere, and
therefore there crists iy € N with the property that [ = Lix on 71(X), Vi.j > {y. This

was not a priori required to prove our theorem.

The content of theorem 2.2.3 is that the first minimizing process works even among
maps with a prescribed action on H1(X,Z). In order to show that the second procedure

also works we need a major result in Riemann surface theorv. We just recall that

1. a Riemann surface with nodes is a connected complex space ¥ such that every
point p has a neighbourhood isomorphic either to the open disk in the complex
plane, or to two disks with centres identified corresponding to p; the connected

components of £\ {nodes} are called the parts of ©.

2. Counsider a surface ¥ and the set of couples (. f), where p is a conformal structure
on ¥ and f: ¥ — Y is a diffeomorphism. We say that (x. f) is equivalent to (v, g)
if fog™:(S.v) — (Z,u) is homotopic to a biholomorphic map. The set of
equivalence classes [(u, f)] is called the Teichmiiller space T(X) with base ¥ (see

[26] for an introduction to the subject).

3. On 7(Z) there is a canonical group action. Let 1/od(X) be the set of homotopy
classes of orientation preserving diffeomorphisms ¢: ¥ — ¥. AMod(X). called the
mapping class group. acts on 7(¥) by pulling back conformal structures on X.

The quotient 7(X)/Mod(Y) = R(X) is the space of all conformal structures on

¥ up to biholomorphic equivalence, and is called the Riemann moduli space.

We will make use of the following theorem contained in [1]:

Theorem 2.2.4 Therc erists a compactification R(S) of R(X) such that the points of
73(3)\72(2) corrcspond to the sct of Riemann surfaces with nodes that can be obtained
from © by collapsing to a point a sct of admissible (scc [1] for a prccise crplanation of

this concept) simple closcd curves on L.



Remark 2.2.3 By the above theorem the equivalence class of a conformal structure i~
s.t. [peo] € 7@(2) can be described as follows: we can see a conformal structure with
nodes fi, on a surface ¥ as a smooth conformal structure p on each part of S\UK _ 9.
where v, are admissible simple closed curves on S. If we have a diffeomorphism
fiX — (X, pso) we define the conformal stucture with nodes (f~1)*(u~) on T as the

one which has nodes f~1(v,,) and parts the inverse image of the parts of (.~ ) with

(smooth) conformal structures (f=1)*(1t).

Suppose now p: H1(X,Z) — Hy(M.Z)is an injective homomorphism and let us consider

the functional c‘f,,: 7(X,) — R defined by:

E([(p. F))) = inf{E(w.p)tn=po(fT1)} .

If we consider (v.g) equivalent to (u.f) and h a biholomorphic map homotopic to

fog™!, then, by the conformal invariance of the energy. we have

{5(¢,M)|¢’* =po (f_l)*} = {5(¢’ © /2.1/)|(U'0 h)* =po (!/_1)*}

which shows that gp is well defined.
In order to prove the main result we need now another theorem due to Sacks and

Uhlenbeck ([46]):

Theorem 2.2.5 Lect s;:(S. ;) — (M. g) be harmonic for the conformal structure p; on
S, with p; — p and E(s;.p;) < K. Then there exists a finite set of points {p1..... Pq}
and a subsequence t; which converges in C1(S\{p1.....pg}) to @ map s harmonic w.r.t.

poand E(s,p) < liminf;_~ E(t;.v;). where {v;} is the corresponding subsequence of
{ni}-

Lemma 2.2.1 Supposc [(,ul.fl)] is a minimizing scquence for t?p and let o2 ¥ — M
be such that a‘?p([(;ll-fl)]) = S(op ) (o caists by Theorem 2.2.3). Than onc of the
following situations occurs:

1. I} C {au} and a finitc sct of points P s.t. p; — p. where pois a smooth

conformal structurc on L. 0, — © in CHYX \ P.M) harmonic w.r.t. pu. and

N
DA |



dip € N s.t. f;. = = on m1(X). Yi.j > iy. Furthermore oo fig 15 @ branched
minimal immersion, conformal w.r.t. (figl)*(,u), which minimizes area among all

Cl-maps with the same action on H{(X.Z) as u.

2. i} € {m} st i — foo. where po is a conformal structure with nodes
on X. Let {p1....,pr} and {S1.....%,} be the nodes and the parts of (S, s)
respectively. Then each p. is obtained by collapsing a homologically trivial curve
¥r; furthermore for every part %, there exists a finite set of points P, s.t. 0; — ©
in CHEN\{UF_ {7, }. UL _, P}, M), where ¢ is harmonic on each part of (X, ptac).

and 3ig € N s.t. fix = fjx on m1(X). Vi. 7 > io.

Furthermore it is possible to extend 1 = lim ¢; o f;, to a map 7 defined on the
disjoint union of the closures S; of the parts, which minimizes area among all

Cl-maps which induce p on H{(Z,7Z).

Proof:

1. Suppose p; — p with g smooth conformal structure. Then by Theorem 2.2.5
there exists a subsequence of {¢;} (that we call again {¢;}) such that ¢; — ¢
harmonic w.r.t. p away from a finite set of points {p;..... pr}. By a well known
theorem of Sacks-Uhlenbeck ([47]) ¢ can be extended to a harmonic map on &
that we indicate by ¢. Since the convergence is in C}(X\ {finite set of points}, M)
we have that 3 175 € N s.t. qg* = ¢ for 1 > 1. Then <;~S* = U, 0 (f[._l)* which
proves that the actions on Hy(Y¥,Z) of the diffeomorphisms f; stabilize to an

isomorphism

fiot HI(S.Z) — Hy(S.Z) .

Then ¢ o fi, has the same action on Hi(Y.Z) as u. Furthermore. suppose that
there exists ¢* with the same action on Hy(¥.Z) as v and A(v') < A(oo f;,). Since
we can approximate ¢ with immersions (by theorem 2.9 in [25] and because M hax

dimension greater than 2). we may consider the conformal structure g, induced by
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Y on ¥. We would then have £(v. ) = 24(v) < QA(CSOin) < 5(5°fio~ = (1)

which yields a contradiction.

. Suppose u; — pi. a conformal structure with nodes. Then by Theorem 2.2.4 we
have that (¥, u. ) is a Riemann surface with nodes {p;..... pr} obtained from
Y by collapsing to p. a simple closed curve 5,. Choose for each r a sequence of
annular neighbourhoods D} of v, s.t. D7 — p in S and the change of conformal
structure on ¥ from p; to p;y; is restricted to the interior of Ur D7 (the existence
of such D7 is assured by a result of Bers [8]). Setting 5; = T\ U, D7. then for
each j we have a smooth harmonic map ¢’: 5; — (1, g) which is the C'—limit
of {@Isj} away from a finite set of points. For [ > j it is clear that 5, C 5
and then ¢' extends ¢/ by unique continuation theorem for harmonic maps (see
[48]). Letting | — oo we then get a smooth harmonic map ¢: ¥' — (A, g) where
> = \{71,...,7%} again as a C'—limit of ¢! away from a finite set of points.
Let us consider the harmonic extension ¢ of ¢ to &' U {(21, .L"l) ..... (k. .L‘;C)}, the
closed disconnected Riemann surface obtained adding (:l'r.:c;) to each node p,.
Since the convergence is C! away from a finite set of points and from U,’?:l{'yr}
and since q~§*([’yr]) = 0V r we have that 3ip € Ns.t. ¢u([y,]) =0Vr and Vi > 4.
But ¢i = po (f7').. implies that [f~'(5,)] € kerp. Since p is injective, and
f is a diffeomorphism, we have proved that 5, is homologically trivial for every
r = 1,....m. We have then proved that 7, = p. where 7 = oo fi,- We want
now to show that this map minimizes area among all maps with this property.

As in the first part of the proof, suppose that there exists ¢» with the same action

on Hi(X.Z) as v and A(¢") < A(7). We would then have. for the conformal

structure s, induced by u.
E(vop) = 2A00) < 2A(0) = 0. fig (1) -

On the other hand. since o is the C!—limit of ol awav from a finite set of points

and from U”_ {7,}. we have that E(f;.f{-’;(;t)) < limj—c (0. 7). which gives a

.. -
contradiction.



Lemma 2.2.2 Let 7 be as in 2.2.1. Then Nl Minimizes area among all maps with its

action on Hq(3S;. Z).

Proof: Let us call for simplicity Mg = v Suppose suppose that there exists ¢ with the
same action on H1(S;,Z) as v and A(¢') < A(v). By approximating v with immersions.
we can consider the conformal structure y,;, induced on ¥; by v'. We would then have. by

theorem 2.2.3, an energy minimizer x w.r.t. the conformal structure jx,. and therefore
E(x i) < E(%, 1) = 2A() < 2A(0) < £ fi (e )

Let us define ¢ = £(v, iﬁ(l‘%lg,.)) —&(\.pty). We claim that ¢ > 0 implies the existence
of a smooth map s: £ — A s.t. A(s) < A(o fi,) with the same action on H(Z.Z) as
$. Lemma 2.2.1 would then give a contradiction. Suppose for simplicity that (¥, o)
has two parts (then there is necessarly one node, because Hy(S; U Sy, Z) = H1(X.Z)),
31 and X9, and ¢ = 1. Then there exists a disk D; in (fl.m,) with center at p

s.t. Xx(Dp) is contained in a geodesic ball of M, B(zg.g). and &( ) <

o114}

\lDl ) ;LVUI'IDI

and a disk D5 in (EZ’“OOb‘:i) with center at the node. s.t. ©(D;) is contained in a
geodesic ball of A, B(yo, 5). and 5(v|D2,fi0*(;z%)|D2) < §. Let us call r; and r; the
radii of D; and D, respectively. Consider in D; a complex coordinate = centered at
p the disks Ul = {z | |2] < é&1} and U} = {z | |z| < é2}. and analogously on D;.
Ul = {w| |w] < &} and U = {w| |w| < b}. with 0 < §; < 6. Let us call cf the
boundary curves of Ul-j . Consider now the Riemann surface
S = (ENHUEA ) ~

where ~ is the equivalence relation induced by the map zw = é;¢6,. Geometrically this
construction (called by many authors “plumbing” of Riemann surfaces) corresponds to

: SAVEE e 1 with o2 1 oieh o2
glue the two open Riemann surfaces S\ U} identifying ¢; with ¢5. and ¢; with ¢} (see

figure below). Dy \ (' in S is conformally equivalent to an annulus
Ay ={z]6 < <}
and D, \ [} is conformally equivalent to an annulus
Ao ={w] & <l <}
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Consider in A; the curve ¢} = {z | |z] = é&.685 € (62.71)} and in A, the curve
¢t = {w | |w = 635.63 ¢ (02.79)}.  We want to construct now two maps
LW = {z | |z] € [62,83]} — M. and fEWE = {z | |2] € [83.74]} — M st
E(fi,v) < & for i = 1,2, where v is the conformal structure on 5. Let v:[0.1] — M be

a geodesic joining zg and yg. The function

[-log(%)

2log($)

fi(r) =~( )

maps ¢; on zo and ¢? on 7(%) and has energy

Then for é2 sufficiently small, we have £(f},v) < . To construct fZ we consider the
map ¢: W2 — D; given by g(pe?) = 1%13__5—55’16"9. g maps the annulus W onto D,
and it is easy to verify that £(y o g’”¢|w12) < CS(\,N¢|D1 ). where (' is the supremum
of all products of partial derivatives of g. A simple calculation gives C' = (;5_%3)2.
Observe that C = 1+ A with A > 0 which tends to 0 as é3 approaches 0. Finally we

map the "plumb” W between ¢l and ¢} in S constantly on 7(%) Repeating all these

constructions on Dy, we can define a map f from S to M in this way:
J(2) ifze 1

) ifreW

p(a)  if v € S\ Dy



¥ (L/z)

f satisfies the following properties:

1. fis a Lipschitz function

2.
. R .
ECf 1/)Sc(\-llu/r)+(1+/\)(g+g.)+g+6+c'(77§§2\D2-f;0(/1x))S

for 63 sufficiently small.

[t is casy to check that this implies the existence of a C'-map ¢ homotopic to f s.t.
E(g.r) < E(o. ). This proves the claim.

If (Y.<) has more than two parts we can repeat this construction the necessary
number of times. obtainine the same contradiction. after having noticed that the inter-

soction of the closures of two parts can be just one point. @]
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This Lemma clearly concludes the proof of Theorem 2.1.2.

Remark 2.2.4 There are some observations to be made: the case of injectivity on
T1(X) (i.e. the setting of theorem 2.1.1) is included in case 1 of 2.2.1. However.
injectivity on m1(X) is not necessary for case 1 of 2.2.1 to arise. For instance. the
Jacobi embedding j: S, — T is not injective on (%) (since 71(T?") is abelian) but
the conformal structure p of the lemma is clearly smooth. Actually this shows that for
any smooth conformal structure there exist infinitely many flat tori (I'*".g). taking any
flat metric hermitian w.r.t. the complez structure on the jacobian of ¥. and a map
¥ — (T?", g) which minimizes area among all maps with the same action on Hy(S,Z)

for every g.

Remark 2.2.5 As we mentioned in the introduction, Sacks and Uhlenbeck, ([{6]),
found examples of the failure of uniqueness of area minimizing maps with a fized injec-
tive action on the fundamental group of a surface. A fortiori this means that we cannot
hope in general to get uniqueness of area minimizing maps among maps with a fired
injective action on the first homology. Despite this failure of uniqueness, we conjecture

the following kind of rigidity for minimal surfaces in flat tor::

Conjecture 2 Given any flat torus (T*",g) and any injective homomorphism p from

H(%,,7Z) to Hi(T*,Z), the Riemann surface and the map obtained in Theorem 2.1.2

are unique.

This conjecture plays the part played by the Torelli Theorem in the theory of holomor-
phic curves in principally polarized abelian varietics ([{]) as we will see in Chapters 3
and 5. It seems to us particularly intriguing the possibility to reconstruct the confor-
mal structures induced by the areca minimizing maps just from two data, as the latticc
defining the torus. and the action on the first homology group. Chapter 5 is devoted to

the study of thc above Conjecturc.

Example: 2.2.1 [t is interesting to analyze in dctail what happens to the minimizing

process just deseribed in the casc of a map which (s not injeetive on the first homology
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group. In this simple example we are able to write explicitly the energy minimizing map,
with a fized (non injective) action on homology, for every fized conformal structure on
the domain, and then to minimize the £-functional. We show that the limiting map is
a constant map. Since our starting action on homology was not the zero map, we can
conclude that if u collapses a generator of H1(%.7Z) then the map that we obtain by the
second minimizing process collapses another generator. showing that we can not relazx
our hypothesis in Theorem 2.1.2.

Our simple example can be constructed as follows: let u be a complexr number of
the form u = iL, with L € RY and let T;, = C/.\ be a one-dimensional complex torus.
where A is the lattice generated over Z by 1.1L. If we consider the standard flat metric
on C and project it onto Ty, we get that T, is isometric to Si X S1 where S§ is the
circle of radius R. Let us call uy, the conformal structure on Ty, obtained in this way.
We then consider T? = §1x ST with the standard metric. and a map ur: S} x §} — T*?
defined by ur(¢,0) = (%,O.,O). This map clearly collapses one of the generators of

H(Tp,Z). We have that

472 Arn?
= —d df = = .

This shows that, denoting by ¢, any map given by Theorem 2.2.3, E(dn,pn) — 0
as n — 0o. i.e. as py, goes to the boundary of the space of conformal structures of
one-dimensional tori. The conformal structure with nodes i~ has precisely one node,
obtained by collapsing a simple closed curve representing the kernel of (ur)«. Removing
this point, the topological space remaining is homeomorphic to a sphere with two points
removed.

Suppose now r: 51 X S} — T? is a map which induces the same action on H{(Tr.7Z)
as up. We now claim that E(v.pr) 2 E(up.pr), with equality iff v = ug up to trans-

lations on T3: let us call v(0.8) = (v1(0.8). v2(0.0)). We have then

2= ()11 ary ary U
—= —_— 16d
(o pe) / / (80)+(()o)+(()o)]( @



We easily have that

2 S 9, L
E(.) = [ Ty +(92y d0>7</ gy = 2T

Therefore

2 2rL 0?)1 C)Ll 01)2 47)
// +( )+( ) (do)]d0d0>L

with equality if and only if v differs from up, by a translation.

The sequence of energy-minimizing maps uy converges in the Cl-topology to the
constant function é(p) = (0.0,0), Vp € T on compact subsets. This agrees with the
well known fact that the only harmonic maps from the two sphere to a Riemann surface

of genus greater than zero, are the constant functions.

2.3 Minimal surfaces in Abelian Varieties

We will study in detail the case when A is a flat torus 7%27.7 > 1. We will give in the
next Chapter a detailed description of the moduli spaces of flat and complex tori. Here
we just recall that in this latter space there are two subsets particularly interesting for
algebraic geometric reasons. The first is the space of principally polarized tori and the
second is the space of jacobians of smooth Riemann surfaces. It is well known that the
jacobian locus is contained in the space of principally polarized tori, but the relation
between these spaces is, in general, a very hard problem (see for example [4]. [3]).

Writing a 2-form w on T?" w.r.t. a basis of the lattice which defines T?". we have

w = Z a;;jdx; Ndrj .
1<i<j<2r

where z; are the coordinates given by the lattice and «,; € Z.

It is a classical fact that the jacobian variety of every Riemann surface carries a
natural principal polarization given by the intersection form on the surface. We say
that a complex structure .J on 1'*" is polarized by a 2-form « if w is of tvpe (1.1)

. . . . . - . y'-) .
w.r.t. J. Furthermore we say that J is compatible with a ricmannian metric g on 1~

if g(JN.JY) = g(N. Y)YV Y € 1(T™).
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Definition 2.3.1 A principal polarization o of (T?".J) is a2-form = s.t. J is polarized

by w and there exists a basis of the lattice w.r.t. which
w = Z de; Nde,. ;.
1<i<5<2r

We will use the following results due to Micallef ([37]):

Theorem 2.3.1 Every full conformal stable minimal immersion of a hyperelliptic Rie-
mann surface into any flat 2r-torus T?" is holomorphic w.r.t. some complex structure

compatible with the metric on T?".

The main scope of this section is to give a new proof, based on our existence result,

Theorem 2.1.2, of the following classical results of Algebraic Geometry (see [29]):

Theorem 2.3.2 If (T*.w) is a principally polarized abelian surface then either it is
the jacobian of a Riemann surface of genus 2 or it is the canonically polarized sum of

two elliptic curves.

Theorem 2.3.3 If (T%.w) is a principally polarized abelian threefold then either, it is
the jacobian of a Riemann surface of genus 3 or. it is the canonically polarized sum
of three elliptic curves or, the canonically polarized sum of a jacobian of a Riemann

surface of genus 2 and a elliptic curve.

Proof of Theorem 2.3.2:

Suppose we have a principal polarization w on T? and a compatible complex structure
J. We can then choose a flat metric ¢ s.t. J is compatible with g. Furthermore
let us consider the Abel-Jacobi map j:(Sy.u) — J(Z2,4) of a Riemann surface of
genus 2, where T(Eo. 1) = (T*.J.=x) is the jacobian of the Riemann surface. Given a
i

principally polarized 4-torus (T!, ) there exists a real linear isomorphism o: 1% — 1

s.t. ¢*(w) = w because w is a principal polarization and both « and « can be then

written as ) )
w = dog Ndryg, . w = E dor, ANdisy,
=1

=1
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w.r.t. some bases of the lattice defining T¢. Of course we will have lost in general any
complex property of the composite map ¢ loj: ¥y — (T*.J..) because in general o will
be far from holomorphic. The map u = ¢! o 7 has the property that u.: H{(%,.Z) —
H.(T*,Z) is an isomorphism: in fact J= 1s an isomorphism by construction. and o is
a real isomorphism. We can then apply theorem 2.1.2 to the map «. The minimizing

process would then give us one of the following possibilities:

1. amap 4:(Xs,v) — T* which minimizes area among all maps with the same action

on Hi(Xy,Z) as u;

2. two maps i;: (E’i, v;) — T* conformal minimal immersions s.t. the map
@: 21U X2 — T given by u(q) = 4;(q) if ¢ € S, minimizes area among all maps

with the same action on H1(X,,Z) as u.

In fact we observe that in general the minimizing procedure could give rise also to
minimal spheres in the target manifold; in the case of flat tori it is well known that
such maps have to be constants and therefore we get just minimal surfaces of positive
genuses.

In case 1 it is easily seen (not necessarly invoking Theorem 2.3.1, as we will show
in Chapter 3 Theorem 3.3.3) that such an immersion has to be holomorphic w.r.t.
some complex structure J compatible with the metric ¢g. In case 2. using if necessary
translations in R*, since i, is an isomorphism, and since the only minimal tori of flat

tori are 2-dimensional linear subspaces, we have a decomposition
4 _ =iy m o2
T = (X)) u(X])

in linear subgroups. We now claim that the tangent cone to a(¥{)U u( $2) at the origin
is the union of two planes holomorphic w.r.t. the same compatible complex structure
J: we prove this claim in Lemma 2.3.1. Since all compatible complex structures on
(T4.g) are invariant by translations. and @, are holomorphic at the origin. they have

to be holomorphic at every point. This shows that the decomposition above realizes

('["‘\ .j) as the sum of two elliptic curves.
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Our next claim is that in both cases J = +J. Suppose again we are in case 1. We
prove that (7%..J. ) is isomorphic to the jacobian of (¥,.v): we use a theorem due
to Calabi ([10]) which states that. given a flat metric ¢ on a torus and a two-form «.
there exists a unique complex structure compatible with g and which makes .« a form
of type (1,1). In our case we have that both J and J are compatible with ¢ and by
assumption J is polarized by w. On the other hand. once we see . as a pairing between
vectors of the lattice defining T, we have by construction that @*(w) = \ where \ is
the intersection form on ¥,. The universal property of the Abel-Jacobi map (Theorem
3.3.1) implies then that (T4, J,w) is the jacobian of (£5.v) and then J is polarized by
w and then we have J = +J and the claim follows directly.

The same argument applied in case 2 to each #; shows directly that in this case
(T4, J) is biholomorhic to (1)@ d2(T?) and that also the principal polarization splits

as the sum of the canonical polarizations of the two elliptic curves. a

Remark 2.3.1 There are classical examples of jacobians of Riemann surfaces of genus
2 which are biholomorphic to the sum of two elliptic curves but we don't get these
elliptic curves from the procedure just described since they don't repreSent the principal

polarization which makes this sum a jacobian of a smooth Riemann surface.

A similar strategy as above works in the case of complex dimension 3. First we
need to know that there aren’t full minimal conformal immersions of nonhyperelliptic
Riemann surfaces in (T, g) different from the holomorphic ones and then using Theo-

rem 2.3.1 for the hyperelliptic case. We need the following result which will be proved

in the following Chapter (see Theorem 3.3.2):

Theorem 2.3.4 If f:S3 — (T%.g) is a stable minimal immersion then it is holomor-

phic w.r.t. some complex structure compatible with the metric g.

Proof of Theorem 2.3.3:

We can apply the same argument as in the d-dimensional case with the extra care due
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to the fact that a Riemann surface can be pinched by our minimizing process in such

a way as to obtain a conformal stable minimal immersion of one of the following:

1. a Riemann surface of genus 3. or

2. a Riemann surface of genus 1 and a Riemann surface of genus 2. or

3. three Riemann surfaces of genus 1.

In case 1 and 3, by Theorems 2.3.4 and 2.3.1. the same argument as in the 1-
dimensional case gives either a jacobian of a Riemann surface of genus 3. or the po-
larized product of three elliptic curves. The second case needs some extra care; first
we observe that, having called again @ the area minimizing map. @(X,) is contained in
a 4-dimensional subtorus T% of T°. because the action of @ is injective on Hq(Z,.Z).
Therefore, as in Theorem 2.3.2. we know that 4(X,) is holomorphic w.r.t. some com-
plex structure compatible with the flat metric. By translating the surfaces in the torus,
we can assume that 4(Y,) and @(X;) intersect at the origin and, since branch points
are isolated, we can also assume that the origin is not a branch point of these surfaces.

Let now J, be a complex structure on 7% compatible with the metric Ylpa - such
that @: Sy — (7. .J,) is holomorphic.

We first observe that under our assumptions there has to exist a point p € u(X3)
s.t., having called P; the plane T,(#(Y2)) translated to the origin, and P, the plane
T,(i(S,)), P, ® Ps = R* in fact since & is holomorphic w.r.t. J; we have that
T,(@(X2)) N To(@(X2)) is an even dimensional subspace of R*; moreover it can not be

equal to P, for all p because @ is a full immersion. We then have a splitting
Té =P+ P+ Ps.

Lemma 2.3.1 implies the existence of a complex structure on span(P;. Py). compatible

: . g ) ar i nd the sa " the couple
with the metric g o 5 s.t. Py and P, are complex lines. and the same for p

Py.P;. On the other hand ./, is a complex structure compatible with Il oo 1y pyy L

P, and P; are complex lines. This easilv implies that there exists a complex structure.
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J.on T®. compatible with the metric and s.t. u(¥X;) and u(X;) are holomorphic w.r.t.
this complex structure. Repeating at this point the same proof as in Theorem 2.3.2.

we can conclude the proof also in this case. a

Therefore next lemma concludes the proof of the previous theorems:

Lemma 2.3.1 Suppose u: (2211 U 2222) — (M.g) (notation as in Theorem 2.1.2) is area
minimizing and dimM > 4. Suppose further that 3p; € S?J_.j = 1.2 s.t. w(p) =
u(p2) = q and i is an immersion at py and py. Then the planes Il = w;.(T,, E{J_) are
simultaneously holomorphic with respect to a complex structure on T = span{Il;. 15}

which is orthogonal w.r.t. g .

Proof: This Lemma would be an immediate consequence of Corollary 4 in [40] if
ﬁ(E}l U 2?2) were area minimizing among currents. However we do not know this.
Nevertheless we can still appeal to the following result which is contained in the proof of
Theorem 2 in [40]: let By and B; be a pair of flat 2-disks in (R*, eucl) of radius r. which
intersect at ¢. In [40] Morgan constructs a map f from an annulus A into the ball of R*
centered at ¢ of radius 7. s.t. 9f(A) = dB;UdB, and A( f(A)) < A(By)+A(Bz) —er?,
€ > 0, unless By.B, are simultaneously holomorphic w.r.t. an orthogonal complex
structure in R%. Let us now consider the ball BM(r) of radius r in T3, (p1) M, and let
Bj(r) be BM(r) N1II;. For r sufficiently small we can also assume that 112-_1 exists on
TPy (pi) (Bi(T))-

Let us also denote by R* the linear span of II;. Il in T4 () M.

If B;(r) are not simultaneously holomorphic w.r.t. an orthogonal complex structure.

then we have a map

frd =R C Ty M

defined by Morgan using B1(r) and Ba(r).

To simplify the notation let us also define
S5 =SNG (g ) (Bi(r)

\We can then define a map F: 5, U S U A — M by
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Uz fres;
P ) v €D,

€'I])ﬂ1(p1)(f(l')) lf L E -”1

It is easily seen that

e F induces a Lipschitz function on the connected sum of S}l and ©?

o A(F(51USUA)) =
= A(@(Z))) + A(@2(33)) + A(F(A)) = A(in(S1\ 51)) — A(aa(32 \ S3))
SA(G(Z] UE2)) 4 2nr% + O(r3) — er? — (2002 + O(73)) =
= A(W(SL US2)) +0(r%) - er.

Therefore, for r sufficiently small, we have a Lipschitz map, and therefore also a

Cl-map, that we call F. from a smooth Riemann surface Yiiti, to (M.g) s.t.

e Finduces the same action on homology as u;
o A(F) < A(u),

hence getting a contradiction with Theorem 2.1.2. O

The problem of recognizing jacobians among principally polarized abelian varieties
by means of minimal surface theory seems harder to settle because of Theorem 3.4.1,
which will be proved in Chapter 3.

Of course Theorem 3.4.1 does 'not imply that we can’t obtain any result, but we
would need some analogue of Micallef’s results (2.3.1) restricting ourselves to the ho-
mology classes which come from principal polarizations since the general result is false

by 3.4.1. This will be the subject of further investigations.
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Chapter 3

On Stable Minimal Surfaces in

Flat Tori

3.1 Introduction

We consider a topological surface ¥,. a torus T2r = 51 x...x 5! and an isomorphism
p from Hi(¥,.Z) to Hi(1°". 7).
Let us first observe that p give rise to a unimodular 2-form on %" in the following
way: consider a svmplectic basis for Hy(X,.Z). {a,. %;}.i=1,....r. and define
.
“p = Z P(“/)* A /)(‘ji)x .
=1
where * denotes the canonical isomorphism between H{(T?.7Z) and HYT? 7).
A crucial simple observation is that if u: X, — 7= is a map inducing p on homology.
then
u(wp) = \s, -
where \_ is the intersection form on the surface.

We want to study the spaces:

RJI = {flat metrics g on 7" | there exists a complex structure J compatible with

g s.1. ('l")". J.wp) is the jacobian of some <mooth Riemann surface of genus r}
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R* = {flat metrics g on 72" | there exists a conformal stable minimal immersion
¢:(Z,, 1) — (T?". g) such that o, = p and o is not holomorphic w.r.t. any
complex structure compatible with g} .

In this Chapter we want to study the following problem:
Problem 4 For which p is R* # (?

The following easy consequence of the Universal Property of the Abel-Jacobi map
(Theorem 3.3.1) suggests to study R7%° in the moduli space of flat structures on the

torus:

Proposition 3.1.1 Let u:(X,,n) — (T?",g) be a map s.t. u is holomorphic w.r.t. a

compatible complex structure J, and u, = p; then we have

1. (T*,J,w,) is isomorphic, as principally polarized abelian variety, to

T(Zp, ).

2. J is the unique complex structure compatible with g and which is positively po-

larized by w,.

As it is well known, the problem of recognizing jacobians among principally polar-
ized abelian varieties is a very hard one (see for example [5] and [29]). We believe it
would be very interesting to study whether it is possible to give a riemannian charac-
terization of R7%¢ in the moduli space of flat structures.

The second section is devoted to a discussion of moduli spaces of flat, complex,
Iahler, and polarized structures on the torus.

A direct dimensional count shows that given any w,. the set of flat metrics which
admit a compatible complex structure J s.t. (T?%".J.w,) is the jacobian of some Rie-
mann surface has (real) dimension 6r — 6 + r2. while the space of flat structures has
dimension 212 + r. Therefore R7? is not the whole space of flat structures for r > 4.

Proposition 3.1.1 and Theorem 2.1.2 in (‘hapter 2 suggest the following (mentioned
also in [34]):
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Conjecture 3 1. For r = 2.3, every stable minimal immersion ¥, — (T*".g) is

holomorphic w.r.t. some compatible complez structure.

2. For v > 4 and for any isomorphism p, there crists a flat metric and a stable
minimal immersion ¢: S, — (T, g) such that 0. = p and o is not holomorphic

w.r.t. any complex structure compatible with g.

We shall discuss these guesses in section 3.4 and 5.

A fruitful way to study these problems is to look at the conformal structures induced
by stable minimal immersions.

By a mentioned result of Micallef (Theorem 2.3.1) we know that if such a map
induces a hyperelliptic conformal structure. then it has to be holomorphic w.r.t. some
compatible complex structure. When the surface inherits a nonhyperelliptic structure
the same conclusion for r = 3 (also for unstable maps) follows from the fact that there
aren’t non trivial quadrics containing the canonical image of the Riemann surface. The
same argument answers affirmatively the above guess for » = 2 without using Theorem
2.3.1. On the other hand since there are non trivial quadrics containing the rational
normal curve in CP?, which is the canonical image of any hyperelliptic Riemann surface
we have to appeal to Theorem 2.3.1 for r = 3. This also implies the existence of unstable
minimal maps S5 — (T, ¢g) inducing hyperelliptic structures on Y3 (see Remark 3.3.2).

Theorem 3.4.1, which we will prove in Section 4, completes the list of possibilities
in terms of induced conformal structures.

A natural question is then whether some flat T* or T® could contain stable mini-
mal surfaces. non holomorphic w.r.t. any compatible complex structure (of course of
genus higher than 2 or 3). By a result of Micallef ([36]) mentioned in the introduction
(Theorem 1.2.6) we know that this cannot happen in 7.

The main idea of the proof of Theorem 3.4.1 is to take an holomorphic map, given
by the Abel-Jacobi map into the Jacobian of the Riemann surface. and to deform the
map and the torus destroying holomorphicity but not stability and conformality. A

crucial step in the proof of Theorem 3.4.1 is to find a connection between a classical
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algebraic geometrical property of nonhyperelliptic Riemann surface, given by Noether's
Theorem and the space of Jacobi fields of the Abel-Jacobi map. Noether-type theorems
have been the subject also of very recent investigation. In fact using a nice result of
Colombo-Pirola ([14]) and of Gieseker ([21]) we show that the proof of Theorem 3.4.1

can be adapted to prove the following result:

Theorem 3.1.1 1. Forr > 7, there exists a dense subset DI of the moduli space of
Riemann surfaces of genus r, s.t. if y € D7. then there exists a conformal stable
minimal immersion f:(%,, ) — (R*"=Y/A.eucl) into a flat torus. which is not

holomorphic w.r.t. any compatible complez structure.

2. Forr > 9, there exists a dense subset D} of the moduli space of Riemann surfaces
of genus r, s.t. if u € DY, then there exists a conformal stable minimal immersion
fi(Zr, 1) — (R20=2)/A, cucl) into a flat torus, which is not holomorphic w.r.t.

any compatible complez structure.

3. Forr > 12, there exists a dense subset D} of the moduli space of Riemann surfaces
of genus r, s.t. if u € D, then there exists a conformal stable minimal immersion
f1(S, 1) — (R2=3)/A, cucl) into a flat torus. which is not holomorphic w.r.t.

any compatible complex structure.

We refer to section 4 for a discussion about the geometry of the sets Dj]. and in
particular about the existence of families of Riemann surfaces in these sets.

In the same section we show that the strategy of the proofs of Theorems 3.4.1 and
3.1.1 can not be adapted to prove the existence of stable minimal immersions in flat
tori of dimension 6.

We are actually convinced that the method used to prove theorem 3.1.1 can be

adapted to prove similar results in the case of T, in T2r=k) with r — k > 3.
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3.2 Moduli of Tori

We shall be interested in 3 different geometric structures on a torus 72" = R2" /2" =

1] U
St X ... x S1. namely a constant complex structure. a flat structure and a Kihler

structure. In this section we describe these structures and the relations between them.

3.2.1 Complex Tori

The space of complex tori can be described in two ways. differential geometrically and
complex analytically. In this subsection we will give these two classical descriptions

and relate them.

o We start with the differential geometrical point of view. In this description a
complex torus is the differentiable manifold 72" together with a constant complex
structure .J on its tangent bundle (where .J constant means dJ = 0: from now on

we will drop the adjective constant).

The space C,, of complex structures on R?" can be seen to be the homogeneous
space Gl(2n.R)/Gl(n.C) as follows: let Jy be the standard complex structure on

R2”, and consider the map from GI(2n.R) to C,,. defined by:
¢ -1
Ar— A7 Jpd .

This map is surjective because for any complex structure we can find a basis of
R2" w.r.t. which it can be represented by Jo. The map o induces an equivalence
relation on GI(2n.R) by 4 ~ Bif and only if o(4) = o B). Each equivalence class
of this equivalence relation is in 1 — 1 correspondence with the invertible matrices

which commute with Jo; this space can be identified with Gl(n.C). where an

_ By B,
element B = By + (B, gets identified with
- B, B,
Two complex tori (7-"..J) and (T?"..J") are biholomorphic if and only if there

exists M :R%?" — R-" s.t. {MZ"”} = {Z*} and MJ = J'M.ie. M€ Sl(2n.Z)

and M A~1Jo.\ = B~'JpBJ. This is equivalent to B = LAM™! for some L ¢

44



Gl(n,C) and M € S1(2n.Z). We can therefore conclude that the space of complex
tori is
Gl(2n.R)

(3.1)
Gl(n.C) Sl(2n.7)

with the actions just described.

o In the theory of several complex variables and Algebraic Geometry. a complex
torus is defined as C*/A. where A is alattice of maximal rank. We can associate to
A a matrix of GI(2n.R) by expressing a basis of .\ w.r.t. a basis of C* = R?". We
call this matrix A again. Of course such a matrix is well defined up to the action
on the right of S1(2n,Z) which corresponds to picking a different basis of the
lattice. Two complex tori. C*/A and C*/A\’, are biholomorphic if there exists a
linear map L: C* — C™ s.t. [L(A)] = [A] ([ ]is the class in GI(2n.R)/SI(2n.Z)).
Thus, the space of complex tori is, once again, described by

Gl(2n.R)

/ (3.2)
Gl(n.C) Sl(2n.Z)

It is very clear from the above descriptions that a torus (R*™/A..Jy) as seen in
complex analytical point of view. corresponds to the torus (R?7/Z*", A7 JpA) in the

first picture.

3.2.2 Flat Tori

As explained in the introduction we are interested in Ricci-flat metrics over tori. but
since every Ricci-flat riemannian metric on a torus is invariant by translations. we can

identify the space of Ricci-flat metrics on T2 with the space of constant flat metrics

on R2™.

Again we want to distinguish two ways of proceeding. In the following subsections

the relevance of this distinction will appear evident.

o Let 72" be R2"/Z?*" and R, be the space of flat metrics on R?*. By analogy with



the case of complex tori, we define a map from GI/(2n.R) to R, by
AL Aty

The map v is onto because if G is the matrix representation of any flat metric
w.r.t. any basis of R**. and A is the matrix relating any basis orthonormal
w.r.t. G with the fixed basis. we have G = A'.\. The freedom of choosing the
orthonormal basis gives directly that each equivalence class of the equivalence
relation induced by 1 (defined as in the case of complex tori) is in one to one

correspondence with GI(2n.R)/O(2n.R).

We then get an identification of R, with GI(2n.R)/O(2n.R). Fix now a basis of
Z*" and a metric ¢ on R?". Let G be the matrix representation of ¢ w.r.t. the
fixed basis (again defined up to the action of SL(2n.Z)). Now (1T%". g) is isometric
to (T?",¢') if and only if 3 M:T — T’ s.t. M'G'M = G, ie. M'B'BM = A'A,

and hence B = OAM with O € O(2n.R) and M € SL(2n.Z).

e Consider now T%* = R**/A and go the standard metric on R*'. In this case
(R2"/A, go) is isometric to (R?"/A.go) if and only if there exists 1/: R** — R*"
s.t. M'M = Id and (after having fixed a basis of \) [M(\)] = [A] ([] is the

class in Gl(2n,R)/Sl(2n.Z) as in the case of complex tori).

Therefore we get once again:

Gl(Qn,R)/ (3.3)

O('Zn.R)\ Sl(2n.7Z)

The way to pass from one point of view to the other is given by the following:

(R?"/\.go) = (R*/Z2". g) with (i = AN

3.2.3 Kahler Tori

We want now to study the space A, of Kahler structures on R-". \ Kahler structure is

given by a complex structure J and a flat metric g which is hermitian w.r.t. J. Since we
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have described complex structures and flat structures in different wayvs it is clear that
also for Kahler structures we may take two different points of view. The descriptions

of the two possibilities are very similar to the ones given above. and therefore we just

indicate the main ideas.
o Consider the map o: GI(2n.R) — K,, defined by
A (g.J)=(A"A. A7) .
1. ¢ is surjective because every complex structure compatible with ¢ is of the
form O~1J0O.0 € O(2n.R), for anv J compatible with g.
2. the equivalence classes of the equivalence relation induced by o are given by

O(2n,R)N GI(n.C) = U(n).

Therefore (R*"/Z?".¢,J) and (R?*/Z?".g4'.J') are equivalent as Kihler mani-
folds if and only if 3 M:R?" — R?" s.t. {MZ*'} = {Z?*} and M A~ JpA =

B~1JoBM, and M'A*AM = BB, that we have seen to imply
1. M € Sl(2n,Z)
2. B=LAM = OAM.

Therefore the moduli space of Kahler structures on the torus is given by:

Gl(2n,R)*
U'(n) Sl(2n,7Z)

(3.1)

¢ On the other hand if we adopt the algebraic geometric point of view in the descrip-
tion of complex tori. it is more natural to define a Kihler torus as (C*/.\. go).
In this case the equivalence of Kahler structures corresponds to the existence
of L:C* — C" s.t. L'L = Id and [L(.\\)] = [\'] (where [ ] is the class in
Gl(2n.R)/SI(2n.Z) as in the case of complex tori). Therefore we get again:

Gl(2n.R)*
["(n )\ SU(2n.7Z)

(3.5)

Once again we directly see that

(C"/\.go) = (R*/Z*". J.g) with ¢/ = A\ and A7'Jp\ = J.
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3.2.4 Polarized Tori

Given a two form on a complex torus. it is a classical problem whether this gives rise to
an embedding of the torus into the projective space such that in cohomology the two
form is equivalent to the restriction of a multiple of a generator of H?(PC".Z). This
question can be answered in a very satisfactory way using Kodaira embedding theorem.
If @ is the fixed form. then ) gives an embedding if and only if @ is of type (1.1).is
positive definite and represents an integral class. These are the Riemann relations for
the complex torus and the form @. In the case @ is of tvpe (1.1) w.r.t. a complex
structure J., we say that Q) polarizes J. A very natural question to ask is then which
is the space of complex structures polarized by a fixed 2-form. It is easily seen that
this is the case if and only if J'Q = M is symmetric (these are part of the so-called
Real Riemann Relations). For the rest of this section we assume that @ is also non
degenerate.

We also say that Q is a positive polarization w.r.t. J if @ polarizes J and JIQ is
positive definite.

Let us define Ag to be the space of complex structures positively polarized by such
Q. We do not try to describe in different ways this space. since it is a classical subject

of Algebraic Geometry (see [29] chap.8). We just remark that dimp.Ag = n® + n.

3.2.5 Geometry of the moduli spaces

We want now to give a geometric description of the moduli spaces of complex and flat

tori. using the results of the previous subsections.

Let us first define the space H, of hermitian matrices and the space O, of complex

structures compatible with a fixed metric on R?":

H, = Gl(n.C)/U(n) .On =020.R)[U(n) .
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Therefore we have the following picture:

A direct dimensional count shows that dimzC, = 2n? dim=K, = 3n%. dim=0,, =
n? —n, dimpR,, = 2n? + n and dimpH, = n?%. but we recall that. bv a theorem of
Siegel (see Kodaira-Spencer [28]). C,/S1(2n,Z) is not even a topological manifold for
n> 2.

In what follows we are going to disregard the action of SI(2n.Z) on the above spaces.
since, as we will see later in this Chapter, our problems about minimal surfaces will
deal with marked tori.

Let us first study the space C,,. Let @ be a non degenerate integral 2-form on R?".
For each complex structure J positively polarized by (). we define Fy to be the set of

complex structures J s.t. .J is compatible with the (unique) metric g, s.t. (g.J,Q)is a

Kahler triple.
Proposition 3.2.1 1. Ch = UjeagFy.
2. J#J = FynFp =10,
3. For each J, FyN Ag = {J}, and the intersection is transversal.

Proof:

1. For any J' € C,. consider any metric ¢ hermitian w.r.t. J'. By a theorem of
Calabi ([10]) the couple (g.@Q) gives rise to a complex structure Jy o compatible

with g and which positively polarizes . Therefore J el

2. A complex structure J € Fj; N Fyp has to be compatible with two metrics g
and ¢’ s.t. (g.J.()) and (¢’.J".Q) are Kahler triples. s we have seen in the

previous subsections. this implies that J = O"J'0. for some orthogonal matrix
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O. Therefore J and J' are both compatible with ¢ (and ¢’) and then. by the

uniqueness part of ("alabi’s Theorem. J = .J'.

. We are going to find canonical models for the tangent spaces of these spaces using
the discussion above. First we need to observe that a variation J(t) of complex
structures can be given by a family of C-linear map 6;: T%' — T19, where these
are the eigenspaces of J(0), and Tto’1 are the —+/—1-eigenspace of J(t): ; can
be defined by the formula T2' = {L + 6,(L) | L € T°'}. Choosing complex

coordinates {z'} w.r.t. J(0). we can write

P

Suppose now that #; describes a family of complex structures all compatible with

a fixed metric g. Define now a tensor
=) [pdF @d: = > g flds o dz.
Clearly we have g(L 4 8;(L). M + 6,(M)) = 0VL. M € T%! and then
g(8:(L), M) + g(8:(M). L) = 0 .

Putting L = 0—8:,— M = u_):l in this equation we get gl-jf;j + g;jfl—j = 0 which proves
that the tensor ¢ is a skew-symmetric (0, 2)-tensor.

Suppose on the other hand that 6; parametrizes a family of complex structures

all polarizing a fixed @. In this case we get
Q(8(L). M)~ Q(8:(M).L)=0 VL.M €T

But with the same choice of L and 1/ as above. we find that Q(6;(L). M) =
v —1g5; £/ and Q(6:(M).L) = \/—1g;jfl—j. This shows that the tensor
v = Z g;jf;:’(lfl ® d-='

is symmetric.
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We have then in the first case a canonical identification with skew-symmetric
(0, 2)-tensors, while in the second one we get symmetric (0.2)-tensors under the

same construction; this proves the last stament of the proposition. a

The above proposition justifies then the following picture:

-

A similar description can be given also of R,. For this scope we define:
Definition 3.2.1 1. Rg = {flat metrics g | ¢~ 1Q is a complex structure}.
2. G, = {flat metrics g' | g’ hermitian w.r.t. g 1Q}.
Proposition 3.2.2 1. Ry = UgeroGy,
2. g9 =>G,NGy=0.

Proof:

1. Given ¢’ € R,. there exists (again by ('alabi’s Theorem) a complex structure
Jg,q st (¢'.Jy0.Q) is a Kéhler triple. Defining ¢(-.-) = Q(Jg 0 ). we have
g' € Gy

2. Let § € (/g N Gigr. By definition § has to be hermitian w.r.t. J, = ¢~ 1Q and

Jy = g"lQ- But then J, = Jg by uniqueness in (‘alabi’s Theorem and therefore

g:g’. O



3.3 Periodic Minimal Surfaces

From now on we indicate by ¥, a Riemann surface of genus r and not just a topological
surface. As we said in the introduction, given a Kahler manifold, any complex subman-
ifold minimizes volume in its homology class. In the case of complex tori the theory of
holomorphic curves in them is a classical subject in algebraic geometry. It is in fact well
known that to any Riemann surface X, of genus n > 1 one can associate a complex torus
of real dimension 2n, called the Jacobian of the surface, in the following way: take a ba-
sis of the space of holomorphic sections of the canonical bundle Ho(K') = H¥(Z,, C),
{wi,...,wn}, and consider A = {Re(fo wi, .. .,fg W s fa Wy, . fa lw, )} varying o €
H1(Z,,Z)}. The complex torus (R?"/A.Jo) is the jacobian of ¥,. J(X,). The map
Jpo: Zn — J(Yn), defined by jp(p) = {Re(fp’; Wiyeonn p’; <. p’; Wi, ... fp’; lw,)} is
called the Abel-Jacobi map. and. by classical theorems due to Abel and Jacobi, it is a
holomorphic embedding. This map will play a key role in this Chapter. We will base

some decisive considerations on the following well known:



Theorem 3.3.1 (Universal property of the Abel-Jacobi map)
If f: X, — (R%/ . J) is a full holomorphic map. then [ factors through J(E,), e

there ezxists a C-linear map A: J(E,) — (R*/AN.J) s.t.

DR AN AW
Jpo

N T4 (3.7)
J(Zr)

commutes. In particular J(Z,) contains a codimension k compler subtorus. given by

the kernel of A.

The basic tool in studying minimal surfaces in flat tori is given by the following:

Theorem 3.3.2 (Generalized Weierstrass Representation)
If f: X, — (R*™/A, go) is a conformal minimal immersion, then. after a translation.
f can be represented by f(p) = Re( pI;:) 7. - ...fpﬁ) N2n ), where n; € HO(K), Y2 2 = 0,

and {Re(f m,..., [ mn)lo € Hi(S,.Z)} is a sublattice of \.

The above theorem is the basis of the whole theory of periodic minimal surfaces
(see [34]) which goes back to the end of the last century.

The following discussion and results in this section are due to Micallef; they are
included here for sake of completeness.

Suppose now that f: ¥, — (R*/A, cucl) is a minimal immersion. By the above
theorem f(p) = Re(fpi wM). where M is a r X 2n complex matrix and w = (w;..... Wy )
is a basis of H°(L'). Suppose f is holomorphic w.r.t. some complex structure J
compatible with cucl. We have already observed that. if Jy is the standard complex
structure compatible with eucl. then the set of all compatible complex structures is
described by O'JoO where O is an orthogonal transformation. By the Universal Prop-
erty of the Abel-Jacobi map. we then have that there exists a complex linear map
L: (R¥/\'. Jo) — (R*"/(AOY). Jo). where (R*"/.\'. Jy) is the jacobian of E,. Therefore
for some pp € ¥,. we have that f =0%f = Loj,. which gives in matrix representation

f' _ Re(f]f; MOt = Re (/11; «L(Id, ild,)). This proves the following:



Lemma 3.3.1 Let f: S, — (R**/\.cucl) be a full minimal immersion in a flat torus.
gwen by f(p) = Re(f,{i wM), and J a complex structure given by OtJoO.uwith
O € 0(2n,R).

Then J is compatible with the euclidean metric and f is holomorphic w.r.t. the com-

plex structure J if and only if there erists L, a complex r x n matrir. s.t.

M = L(Id, ild,)O0.

Corollary 3.3.1 A full minimal immersion f:X, — (R?"/\.cucl) given by

f(p) = Re(fpi wM) is holomorphic w.r.t. some complezx structure compatible with the

metric if and only if MM® = 0.

Proof: By Lemma 3.3.1 we have to prove that M AM*' = 0 implies M = L(Id, iId,)0
with L a complex r X n matrix and O € O(2n,R). Since f is full, we have n < r, and
then it is clearly sufficient to prove this claim for r = n also for not full immersions.
because, under our assumption, f defines a minimal immersion (not full now) into a

flat forus of dimension 2r. We associate to M the 2r x 2r real matrix A/ given by

A C
M = where M = (A +¢B C + iD). The condition M M?* = 0 is then

B D

equivalent to
AA' 4+ CCt-BB' - DD'=0 (3.8)

AB*+ BAt+ CD'+ DC*=0.

But - AAU+CCt BAY 4 DC

MM = (3.9)
AB*+ (D! BB'+ DDt

and then MM? = 0 if and only if M M! is an hermitian. semi-positive definite (by

Cauchy-Schwarz inequality) matrix of Gi(r.C). This means M Mt = P2, where P is

also semipostive definite and M = PO.0 € O(2r.R).

1 0 .

Then M = P O and therefore M = P([I, i1,)0O as we wanted. O
0 1

This simple corollary gives as casy consequence that there aren’t full minimal con-

. - . . e 6 :
formal immersions of nonhyperelliptic Riemann surfaces of genus three in (R"/ . cuel)

N



different from the holomorphic ones. The above claim can be proved in the follow-
ing way: by the Weierstrass representation theorem (see [34]) a minimal conformal

immersion f of ¥3 into a flat (R®/A. eucl) is given by

f(p) = Re | (m(2).....n6(=))d=.

where 7;,...,76 are R-linearly independent holomorphic differentials on 5 and the

conformality assumption translates into

6
> nf=0. (3.10)
i=1

But for a nonhyperelliptic surface of genus 3 Noether’s theorem shows that the canonical
curve in CP? is not contained in any quadric and then (3.10) has to be a quadric of
rank zero. Choosing {w;,wq,w3} a basis of H1%(L3.C) we get n = «M where n and
w are the vectors (7;) and (w;) respectively, M € M(3 x 6,C) and (3.10) becomes

wMMiw? =0 and then MM? = 0. Corollary 3.3.1 then gives:

Corollary 3.3.2 If f:X3 — (R®/A,eucl) is a minimal immersion inducing a non
hyperelliptic conformal structure on Y3, then it is holomorphic w.r.t. some complez

structure compatible with the metric.

Remark 3.3.1 The same argument as in the proof of Corollary 3.3.2 proves the fol-

lowing result:

Corollary 3.3.3 Every conformal minimal immersion f: ¥y — (T*. eucl) is holomor-

phic w.r.t. some compatible complex structure.

Remark 3.3.2 The conclusion of Corollary 3.3.2 holds also for stable minimal im-
mersions when the induccd conformal structure 1s hyperelliptic. by Thcorem 2.3.1.

o ~ SRR 6 . . :
One may wondcr whether any full minimal immersion ©3 — (R%/.\. cuel) is stable;

we will show. using oncc again Corollary 3.3.1, that this is not the casc. First we need

to observe that the canonical image of a hyperclliptic Ricmann surfacc of genus three



is contained in a non trivial quadric: this follows directly from the fact (see [4]) that

such a X3 is the Riemann surface of the algebraic function
2 _ .
w = (z—ay) --(z —ag) .

Therefore it has a basis of holomorphic differentials of the form

dz dz ,dz
W= —. Wp=2—. wg=z"—,
w w w

where z,w are coordinates over C? (see [{] for a discussion of this classical result).
Therefore the quadric of rank three X} = XoX, contains the canonical image of the
Riemann surface. By the discussion above it is then clear that, having taken as M any

3 x 6 complex matriz with ReM and ImM of mazimal rank, and s.t.

0 10
MM:=1]| 1 0 0 (3.11)
0 0 1

then the map
f(p) = Re /p(gM), (modA)

Po

is a full conformal minimal immersion not holomorphic w.r.t. any compatible complez

structure and therefore unstable by theorem 2.3.1. For example
M=—| 14i 1-¢ —i -1 i 1 (3.12)

satisfies all the required properties.

3.4 Stability of Minimal Surfaces in Flat Tori

In this section we prove the main theorems about the existence of stable minimal
surfaces in flat tori not holomorphic w.r.t. any compatible complex structure. Our

strategy is the same for both cases: we consider either the Abel-Jacobi map of the
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Riemann surface into its jacobian or a projection of this map into a lower dimensional
complex torus, on which we put a flat metric compatible with this complex structure.
This map is, by Wirtinger’s inequality. a conformal stable minimal immersion of the
starting Riemann surface in this flat torus. We then deform this map and the torus.
but not the conformal structure, in such a wayv to destrov holomorphicity. but to save

all the other properties.

Theorem 3.4.1 For any nonhyperelliptic Riemann surface of genus r > 4. there erists
a conformal stable minimal immersion f: X, — (R?/A.eucl) into a flat torus. which is

not holomorphic with respect to any complex structure compatible with the flat metric.

The proof of this Theorem is due to Micallef. I want to thank him for having let
me include it so as to be able to refer to it in the remaining part of this Chapter. We
also remark that this result follows directly from the results in the last Chapter.

Proof: Given a nonhyperelliptic Riemann surface ¥, we know, by Noether’s The-
orem (see [4]), that its canonical image is contained in a quadric of rank £,3 < k < 7.
Therefore there exists a basis of HY(L'), w = (w1,....w;) s.t. Zle w? = 0. We then
consider the family of maps fs: &, — (R*"/A;. cucl) defined for s € (—€,€). by

p p

whl) = Re(/ M- Mo2r)

Po

fs(p) = Re(/

Po

where
Idy 0 1eldy, 0
M =
0 Id.—s 0 dd i .
We observe that fs is a harmonic map, since it is given by integrals of holomorphic

differentials. and moreover we have

2r k
2 2
Sipey i

Therefore f, is a conformal minimal immersion for all s.



We still have to prove the stability and the non holomorphicity. This latter is easily

settled using the result of the previous section. We notice in fact that

Idp 0
MMt=(1—e»)|

0 0
which is zero if and only if s = 0; then, by our version of the Universal property of the
Abel-Jacobi map, fs cannot be holomorphic w.r.t. any compatible complex structure.
In order to prove the stability of f, for small values of s. we need first to calculate the
space of Jacobi fields of fy. Since fy is holomorphic, by Simons™ Theorem 1.1.2. the
space of Jacobi fields is the space of holomorphic sections of the normal bundle vY,.

To calculate this dimension we consider the following exact sequence:
0—-TY, —C —v¥, —0
and the associated long exact sequence:
0 — HY(C') X HO(vE,) L HYTS,) £ HY(C) — -
Since this sequence is exact we have immediately h%(vS,) = dimcHO(vS,) > r. By
Serre-Kodaira duality HY(TX,) = (H°(2K))* and HY(C") = (H°(C" @ L'))*, where
I is the canonical bundle of %,. We observe that if ¢ is injective then ¢ = 0, and

therefore kery = HO(vY,) = imy = C". To study when this is the case we consider

the dual map of ¢, ¢*: HY(C" ® k') — H°(2K). In the dual sequence
d *
0— vy —(TC ) L ryr—0

dfy is just the pullback, via fo, of 1-forms from 72" to ¥,. Therefore if (7;) is an r-uple
of holomorphic differentials on ¥, then o (M. --- ) =m -« + ...+ 0w, Where -
is the symmetric product between holomorphic differentials.

We want to compare the image of ©~ with the image of the classical Noether map
N:HY(K)® HOL) — HO(2L). defined by N(a® J) =a- 3. ImXN is clearly the span

over the complex of {w; -w;}ic;. But.if

Q= E ajj < -

1<)

ON



then we define

.
= g -5
J=i

and we get

o (My....np) = Zau witwy

<y

Then ImN = I'm¢*. The surjectivity of N ( and therefore of ©™)in the nonhyperel-
liptic case is assured by Noether’s Theorem. [4]. We then have that the space of Jacobi
fields of the Abel-Jacobi map has the least possible dimension, since translations on
the torus clearly induce Jacobi fields on the surface.

The first claim is that the family of normal bundles to f,(%,). v(s). is in fact a
smooth family of bundles. In order to see this let us first recall that each f, is an
embedding. This follows directly from Abel’s Theorem for minimal immersions (see
[34]). Since the family f, is smooth in s it is clear that f*(T(T?")) is a smooth family

of bundles; moreover the pull back metrics are given by

k
g = (L+e™) ) w2

which is again smooth in s. This clearly proves the claim. since v(s) is the orthogonal
complement of TS, in f(T(T?")). The second claim is that the family of operators
0% Ay, on v(s) forms as well a smooth family of operators. i.e. for every ¥, smooth
family of smooth sections of v(s). %Ay, (vs)) is smooth in s. This follows directly
from the formula 1.2 in Chapter 1. A theorem of Kodaira ([27], pag 325) then implies
the continuity of the eigenvalues of the operator 02A. Since at s = 0 we have already
observed that 0%2.A4 has the least number of Jacobi fields. the continuity of the eigenvalues
implies that for s sufficiently small. the space of Jacobi fields has to be the space of
translations. since no eigenvector associated to a positive eigenvalue can become a

Jacobi field. and the translations cannot become negative eigenvectors. This concludes

the proof. O

We want to apply the ideas used in the proof of the previous Theorem also to the

case of minimal immersions of surfaces of genus r into flat tori of dimension less than
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2r.

Theorem 3.4.2 1. For r > 7. there exists a dense subset D7 of the moduli space of
Riemann surfaces of genus r. s.t. if i € Di. then there exists a conformal stable
minimal immersion f: (S, p) — (R2=1)/\. cuel) into a flat torus. which is not

holomorphic w.r.t. any compatible complex structure.

2. Forr > 9, there exists a dense subset D5 of the moduli space of Riemann surfaces
of genusr, s.t. if u € D}, then there exists a conformal stable minimal immersion
fi(2,p) — (R2(T_2)/A,eucl) into a flat torus, which is not holomorphic w.r.t.

any compatible complex structure.

8. Forr > 12, there exists a dense subset D} of the moduli space of Riemann surfaces
of genus v, s.t. if u € D, then there exists a conformal stable minimal immersion
(1) — (R?C=3) /A eucl) into a flat torus, which is not holomorphic w.r.t.

any compatible complex structure.

Proof: We first prove the following

Lemma 3.4.1 On the generic Riemann surface of genus r > 6, there exists an open

set of subspaces of complex dimension r — k. k = 1,2 and 3, V;; C HY(K), s.t.

1. Vk®‘/'kJ- — HO(2K) is injective, where L means the orthogonal complement w.r.t.

the polarization on the Riemann surface
2. Vi ® HO(N) — HC(2K) is surjective.

Proof: By a Theorem of Gieseker ([21]) on each nonhyperelliptic Riemann surface there
exists an open and dense set of subspaces 1" C HO(K), with dimzV = 3. VQHO(K) —
HO(2K) surjective. and for the generic three dimensional subspace 11" C 1L also the
map 1" ® HO(K) — HO(2K) is surjective. Consider now V% containing 1". 2 holds
directly. 1 also holds: in fact for & = 1 there is nothing to be proved: for k& = 2,

('ondition 1 follows directly from the Base Point Free Pencil Trick ([1]): for k = 3 we
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can choose Vj in such a way that Vkl ® HO(K) — H°(2RK) is surjective and therefore

it has to be an isomorphism. This clearly implies 1. O

As in the proof of Criterion 2 in [15] the above Lemma implies that there exists
a dense subset D} of the Riemann moduli space s.t. if y € Dy then there exists a

subspace Vi C HO(I\') of dimension r — & s.t.

1. for any basis {n1.....,7,_i} of 1} . its periods define a sublattice of the jacobian

and
2. Vi, @ H(K) — H°(2L) is surjective.
We now observe that
dimc(Vy @ Vi /A*V;) = %(7 —k)r—k+1)and dimcH°(2K)=3r -3 .

Therefore the map V;, ® V), — HY(2K) has non trivial kernel for £ = 1 and » > 7.
k=2and r>9, k=3 and r > 12. This means that the canonical image of (¥,. u) is
contained in a non zero quadric involving just {7y..... Nr—k}. 1.e. there exists a basis
of Vi, w = {wi..... Woektoste Yo wi=0n<r—k

Now we can adapt the proof of Theorem 3.4.1 to our case.

Let
Fsi (S p) — (REM/ A euel)

be defined by

where
Id, 0 ie’ld, 0

0 Id_i_n 0 d, -,
As in Theorem 3.4.1 fo is a holomorphic map with just trivial Jacobi fields. because
the map o™: HO(C 1 ® I) — H°2K) is surjective by construction.
Therefore we can again conlcude that f, is a family of minimal immersions. con-

formal w.r.t. g and not holomorphic w.r.t. any compatible complex structure again
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by Corollary 3.3.1. To prove that [fs is stable for s sufficiently small. we need just to
observe that the space V} is base point free by 2. and therefore fy is free of branch

points. The same argument used in the proof of Theorem 3.1.1 concludes the proof. O

Remark 3.4.1 1. The proof of the above theorem requires r > 7 in order to ensure
the existence of a quadric through the canonical curve involving just a set of
differentials whose periods form a sublattice of the whole periods lattice. For
r < T this could be false: fix for example r = 4 and k = 1 (we refer to [14]
for a study of D). If there exists a three dimensional subspace V7 C HO(K) s.t.
V@ HYK)— H%2K) is surjective, then such a map has to be an Isomorphism.
In particular V ® V. — H%2K) cannot have non trivial kernel. This actually
shows that the strategy of the above theorems cannot be used to produce stable non

holomorphic minimal immersions into flat tori of dimension 6.

2. A natural question is whether D} contains families of Riemann surfaces. From
Colombo-Pirola’s analysis one easily gets that Di does not contain any family,

while D] and DY contain families of (real) dimensions 4r—4 and 2r—2 respectively.

The strategy of the proofs of theorems 3.4.1 and 3.1.2 deserves some comments.

There are two questions we want to study:

o if we keep fixed the conformal structure p. is it possible to find a smooth family
¢1: X — (J(X). eucl) of non congruent minimal immersions all conformal w.r.t.

p and s.t. ¢ is the Abel-Jacobi map?

e Is it possible to characterize the possible families of lattices \; for which there

exists a smooth family ¢;: & — (R?*"/As. eucl) as above?

The answer to the first problem is known to be negative. In fact. such a family
would form a family of homotopic harmonic maps which. by Hartman’s ['niqueness
Theorem 5.1.1 (see [23]). has to be constant up to isometries of the torus.

Thercfore the latticc Ao has to move, but how? This question is a special case of a

problem studied in Chapter 5. What happens is that there exists an open subset V7 of
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dimension 272 4+ 6 — 57 of the space of flat tori. s.t. \; € 1" and for every \; C V. there
exists a smooth family of stable conformal minima] immersions 01 ¥ — (R*™™/ \,. eucl).
each of which is not holomorphic w.r.t. any compatible complex structure (apart from
¢o of course). This follows directly from the fact that the period map (see Chapter 53)
is a local isomorphism around ¢q. In fact the remaining 6r — 6 directions in the moduli

space of flat tori, correspond precisely to the infinitesimal deformations of conformal

structures.

3.5 Stable non holomorphic minimal surfaces

In the previous section we have proved the existence of stable non holomorphic minimal
surfaces in flat tori. We have remarked that we have to construct also special flat tori
to exibit these examples. We want now to prove that the space of flat tori in which
these surfaces exist is in fact generic. i.e. it is an open and dense subset of the moduli
space of flat tori described in section 2. In order to do this we have to analyze how
special are the holomorphic ones. The first observation is the following: consider a
map u: %, — T2 s.t. u, is an isomorphism p on H,(%,,Z); as we have seen in the
introduction, we can associate to such a map an integral non degenerate 2-form ¢ on
T?" s.t. u*(Q) = \, where \ is the intersection form on the surface. We first want to
be able to recognize the flat metrics for which there exists an immersion holomorphic

w.r.t. a compatible complex structure. In a similar way to the proof of Theorem 2.1.3

we have the following:

Proposition 3.5.1 Let u;: %, — T? . i=1..... p be a collection of maps s.t.
1. w; is holomorphic w.r.t. a complexr structure J,.
2w s Hi(S,,-Z) — Hy(T*".Z) is an isomorphism.

. AL R . . N N ” N
and let Q; be the integral 2-form on 1'°™ constructed from ;. as in the introduction.

Then

(R ot Q)

=1
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is isomorphic as principally polarized abelian variety to
ea'zijzl j(Srl) :

Proof: This propostion follows directly from the Matsusaka-Ran Criterion (see [29]).
but we give here a simpler direct proof. We prove that for each i. (1", J;.Q;) is
isomorphic to J(X,,). First we notice that ¢); polarizes J;: in fact by the Universal
Property of the Abel-Jacobi map j (Theorem 3.3.1) we know that u; = 1; o j where
M;: J(Z,,) — (T?",.];) is a complex linear map. Moreover. by the construction of j.
we know that j*(Q’) = x, where @’ is the principal polarization on the jacobian of the
surface. Therefore M*(()) = Q’. and since M, is a complex linear map, we have the

claim. Therefore the map AM; is the isomorphism we were looking for. O

We are now in position to prove genericity of stable non holomorphic minimal
immersions.

Fix a topological surface of genus r. ¥,, and an isomorphism
p: Hi(S,,Z) — H\(T*.Z).
Let us define

there exists u: S, — (T?".g) minimal

M, = {flat tori of dimension 2, (T2, g),

stable non holomorphic w.r.t. any compatible complex structure with u, = p} .

The results proved in section 3 show that M, = 0 for r=2.3.
Theorem 3.5.1 For all r > 4. M, is open and dense in the space of flat tori.

Proof: Let us fix a symplectic basis {asi}oo = 1.7 of Hi(Y,.Z) and define

i = plag) i = i (‘onsider a continuous map « from the surface to the torus with p
i = .

as action on H(Y,.Z). Using the main result in (‘hapter 2. we know that there exists

a stable minimal immersion it of a Riemann surface of genus r. possibly with nodes.

. . . ) AP
s.t. @, = p. s above. let Q be the integral non degenerate 2 form on 7~ induced
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by p,ie. @ = > AF A pur. If @ is holomorphic w.r.t. J. then by Proposition 3.5.1
we know that (7", .J. Q) is isomorphic. as polarized abelian variety. to the canonically
polarized sum of the jacobians of the closures of the parts of the Riemann surface with
nodes, on which % is defined. Moreover. by construction. this isomorphism has to send
a symplectic basis for the sum of the jacobians into the symplectic basis of (T2".J.Q)
given by {A;, pi}-

Therefore the flat metrics for which such a map exists, form smooth families of
(real) dimensions 72 4 6(r — k) — 6(p — k) + 2k (which is less than r? 4+ r for r > 4!),
where k is the number of elliptic curves among the ¥, . whose closures intersect in the

moduli space of flat metrics. 0

Using Proposition 3.5.1 we can moreover describe when nodes occur in the area
minimizing process among maps with a fixed injective action in homology. Let us
construct an explicit example: consider the flat “square™ {-torus, T4 = (RY/Z. g0).
and a 2-form on it. Q = dz1 A das + dzg A dzy. where 2; are the standard coordinates

on R%. The set of compatible complex structures is described by

(0 -z -y —z\

x 0 -y
y —z 0 X

\: y - 0/

where {z,y. € R |22 +y* +* = 1}

Consider a closed topological surface of genus 2, Y. and the isomorphism
p: Hi(X,Z) — H{(T*.Z), defined by p(a;) = ¢; Vi=1...., 4. where {a;} is a symplec-
tic basis for H1(Z.Z). and {¢;} is the canonical basis of R%. Suppose now to minimize

area among all maps with action p on Hi(¥,Z). Observe that
\(a.3) = Q(pla).p(3)). Va. .l € H(Y.Z) .

\We are therefore in the situation of the beginning of this section. If. running the
minimizing process. we get a «table minimal immersion of a Riemann surface of genus
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2, then, by Corollary 3.5.1, we would have that there exists a compatible complex
structure J on T%, s.t. (T%,.J. Q) is isomorphic to a jacobian of some Riemann surface.
On the other hand, it easily seen that the only compatible complex structures which
polarizes () are given by » = z = 0.y = +1. But in both these cases the abelian
surface we get is isomorphic to the canonically polarized product of two elliptic curves.
and therefore, by the Matsusaka-Ran criterion ([29] and Chapter 1 for an alternative
proof), it can’t be the jacobian of a Riemann surface of genus 2. This contradiction
implies that nodes have to occur in the limit of the area minimizing process.

This idea is clearly very effective to describe the occurence of nodes in the mentioned
minimizing process in flat tori of dimension 4 and 6. where it is relatively simple to
distinguish jacobians among all abelian varieties and where by Theorems 2.3.1 and
Corollary 3.3.2, we know that we have to end up with a map holomorphic with respect
to some compatible complex structure. The main results of this Chapter show that

this is not always the case.

Remark 3.5.1 We want to conclude this Chapter with a discussion of some natural

questions arising from our research, which will be left to future investigation.

Problem 5 Given a principally polarized abelian variety (T?".J.Q), is it true that de-
generation to a Riemann surface with nodes in the minimizing procedure is independent

of choice of g hermitian w.r.t. J¢

Observe that if r < 4 and the abelian variety is a jacobian of a smooth Riemann
surface, then the answer is yes. because if for some g hermitian w.r.t. J we get nodc s,
then (T, J.Q) is the sum of jacobians of Riemann surfaces of lower genus. which s

impossible. 1We believe the answer should be yes in general.

Problem 6 If (1% .J.Q) is a principally polarized abelian varicty, which docs not con-
tain any principally polarizcd abelian subvaricty. then. after having fired a ricmannian

metrie hermitian w.r.t. J. the minimizing procedurc grees a minimal immersion of a

Ricmann surfacc with nodes.
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Despite the simplicity of the above statement. we do not know what is a reasonable
guess. If r < 7 we know that if the minimizing procedure degenerates then we would
get a minimal immersion of a Riemann surface of genus k < 3, ¥, inside a subtorus
(TZk’ngzk)’ which has to be holomorphic w.r.t. a complexr structure J' compatible with
9| ox - In order to answer affirmatively Problem 6 in this case, one should prove that

the natural inclusion (T**.J') — (T?",J) is holomorphic.
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Chapter 4

Stable Complete Minimal
Surfaces in Hyperkahler
Manifolds

4.1 Introduction

In the previous ('hapter we have studied the relation between stability and holomor-
phicity for minimal immersions of closed surfaces in flat tori; we want now to study the

same problem for possibly open surfaces in +-manifolds. The main question we study

is the following:

Problem 7 (/ivccn an isomctric stable minimal immersion F: M — N of a complcte
oriented surface M ointo a hyperkdhlcr A-manifold N, is F holomorphic with respeet to

some orthogonal compler structure on N ¢

In general the answer to the above problem is negative: Ativah and Hitchin (7]
have found an example of a minimal two-sphere in the hyperkahler 4-manifold ,\71‘_3.
the universal cover of the centered 2-monopoles in R? with finite action, which is not
holomorphic w.r.t. any compatible complex structure on .W‘J. and which has been

proved to be stable by Micallef and Wolfson ({38]).
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In this Chapter we will find a sufficient condition on the immersion for the problem
to have a positive answer.

We recall (see Chapter 1) that for locally embedded submanifolds 1/ in .V the
property to be a complex submanifold of (N..J ) can be expressed by sayving that the
tangent space T,M is J-invariant for each p € 3. When \ has real dimension 4 a
way to measure the J-invariance of TM is given by the Kihler angle: it follows from
Wirtinger’s inequality that if w is the restriction of the Kihler form of (N.J)to T,
we can write w = cosadVold and that M is a complex submanifold if and only if
a=0on M.

It is possible to express the stability condition in terms of the Kahler angle. Micallef
and Wolfson ([38]) proved that if M is stable and o is a section with compact support

of the normal bundle then

= 1
/ {|100|? — 2[|da|? + stin2a]|U|2}dV01 >0,
M

where S is the scalar curvature of N. Using this formula, they proved (Corollary 5.3
pag. 260) that if IV is hyperkahler (see section 2 for the definition). A is compact and
the normal bundle admits a holomorphic section, then the immersion F' is holomorphic
with respect to one of the complex structures of V.

We'll apply the previous formula in the case N is hyperkahler and M not necessarely
compact. The crucial problem is then to produce a holomorphic section of the normal
bundle with appropriate growth and to do this we’ll need some further hypothesis.

To overcome this problem we assume that the composition of the Gauss lift (see
section 2 for the definition) with the projection over the sphere 5 omits an open set.
A key observation. due to Eells and Salamon ([16]). is that. under our assumptions.
this map is anti-holomorphic. extending the analogy with the Gauss map of minimal

surfaces in the euclidean space. This will allow us to prove the main result of this

(‘hapter:
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Theorem 4.1.1 Let F: M — N be an isometric stable minimal immersion of a com-
plete oriented surface M into a 4-dimensional hyperkihler manifold N. If the Gauss
lift Fi: M — Sy = N x 5% omits an open set of 52, then F is holomorphic with respect

to some orthogonal complex structure of N.

About the assumption on the Gauss lift in the above theorem. we recall that the
image of the Gauss lift of the stable two sphere found by Atiyah and Hitchin mentioned
before, is the whole 52.

As we will see in the proof of the main theorem the condition on the Gauss lift is
equivalent to the requirement for the Kahler angle to omit an open set of [0, w]. As we

explained in the Chapter 1, this shows that our theorem generalizes Theorem 1.2.5.

4.2 Notations and Definitions

Let N be a riemannian manifold with metric g, M a Riemann surface and F: M — N
a map. Let V denote the Levi-Civita connections on T'Al and F -ITN.
Let now assume that dimN = 4 and N is oriented. In this case the Hodge-star

operator x: A2 (TN) — A%(TN), gives rise to a decomposition
A TN)=AL(TN)® AL(TN).

where A% (T N) are the eigenspaces corresponding to the eigenvalues +1. The elements
of A% are called self-dual and antiself-dual forms respectively. Let St = S(A%) be the
two-sphere bundle of unit vectors. The Grassmann bundle G5 is the bundle whose fibre
at © € N is Go(T:N), the space of oriented two dimensional subspaces of T,N.
We can associate to an immersion F: M — N another map. called the Gauss lift of
F, F: M — Gy defined by
F(p) = F(T,M)

which is an element of Go(T,.N) where F(p) = «. In the case of immersions in the
euclidean space it is possible to avoid the difficulty of working with bundles in the

following way: given F: M — R" define yp: M — Go(R™) where yp(p) is the two plane
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F.(T,M) translated to the origin. - is called the Gauss map. We recall that G,(R")
may be identified with a quadric Q,_, in CP"™ !, and that a conformal immersion
is harmonic if and only if yr: M — Q,_5 is anti-holomorphic (see Chern [11]). It is
well known that @), is diffeomorphic to §2? x §2 using Pliicker coordinates (e.g. see
Chern-Spanier [12]). The same happens also in the general case: indeed Go(T,N) is
isomorphic to (S4)s X (5-); and so we have two projections pi:Gy(T.N) — Sy and
two new maps Fy: M — Sy, Fy = ps o F'. Hence if ¥ = R™, F+ is the projection of
7F onto the first S? and this gives the relation between our theorem and Micallef's.

It is possible to give an interpretation of the bundles Sy in terms of almost complex
structures over V. In fact if w € 54 on the z-fiber, then it is clearly possible to choose
an oriented orthonormal basis {¢;} of T,V such that w = e; A €3 + e3 A ¢4. Defining
Jey = e3,Jez = eq and J? = —1. we get an almost complex structure over N oriented
consistenly with N. If 6; is the dual basis of ¢; then w = 6; A 8, + 05 A 84 is the
fundamental 2-form associated to the almost complex structure .J given by ¢g(JX,Y).
In the case of S_ we get contrariwise oriented almost complex structures over N.

By definition a riemannian manifold is called hyperkdhler if it admits a family of
compatible complex structures parametrized by 52, with respect to each of which the
manifold is Kahler. In this case S; = N x S? and every point of the sphere represents
a complex structure on N.

Let (N,g,J) be an hermitian manifold. i.e. g is a riemannian metric, J a complex
structure such that g(JX,JY) = ¢g(X,Y) for every X,Y € TN, w the fundamental

9-form and v the fundamental 2-vector of V. If ¢; is a unitary basis of T(1O V| i.e.

n

U:—iZGk/\ék.

k=1

Let us denote by Tél’l);\' the space of (1.1)-vectors orthogonal to ». So we have
ASTN)=TRON g TOD N ¢ Co 2 TN
It is easy to prove that.if dim N = 4.
ASrNy=1" Ny AS(r V) = TN pTONN g Co . (4.1)
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If y is a point in the z- fibre of 5S4, then 7,5, = Vy 3 'H, where V, is the space of

vertical vectors, i.e. those tangent to the fiber (54)r. By (4.1) Vy: is isomorphic, via

an isomorphism v, to Tf’O)N & Téo'z);\'.

By the above observation y fixes an almost complex structure, J-(y)- on T N. For
any y in the z-fibre of 5. Telre, defines an isomorphism between H, and T.N. We
will denote this isomorphism with u. So we can define an almost complex structure J;

(warning: this is called .J; in [16]) on $ by
J1(vy, hy) = (Iyv,. Tr(yyhy) -

where [ is minus the standard complex structure on S2. This means that the vectors
of type (1,0) with respect to J; in T y94+ are given by (T (1.0) y > (T(0 2) N)¥. Let us

recall the following (see Eells-Salamon [16]) :

Theorem 4.2.1 If F: M — N is a conformal and harmonic immersion, then Fy s

J1- holomorphic.

Proof: First we observe that if w is the fundamental 2-vector associated to an almost
complex structure .J of N then for every X € 7'5;.Vyw € T205, @ T(®2) S . Then

if J is the almost complex structure defined by F,. we have
Viepowe 720 g 7(02)
*az

At a point p € M,

1 0
F+(P)=€1 Ner +e3Ney = —(1+*)(F*(—

0
3 9z G2

where z is a complex coordinate centered at p given by isothermal real coordinates on

M and A is the conformal factor of the immersion, i.e. A is the square of the length of

F*(aa—z). So we have

19X 1 9 d 9 .9
Vigw= 3ot 5o (1=9l(Vp 2 (B DA+ (F gt ) MY o (R 5]

The (2.0) component with respect to .J; is then zero because (F.=-) A (VF._%(F,’,;—’:))

vanishes since F' is harmonic.

-1
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Since

w)” .

- 0 0
F+*(5;) = (FXE)“-I- (Vi

we have to show that F+*(53;) is a (1.0) vector with respect to JJ;. But this follows
from the fact that F), (p) is a complex structure such that p is a complex point for F.
a

Then we are in the following situation: given an hyperkihler manifold N and a

minimal isometric immersion F: M — N we have
. F+ v r 12 ™ 2 P
M—5 =Nx5 —5§ —Cu{x}.

where 7 is the projection on the second factor and p is the stereographic projection. On
5% we are considering the usual complex structure so that 7 o F is anti-holomorphic.
If the Gauss lift £, omits an open set of 52 we have, after composition with a stereo-
graphic projection with pole in this open set and conjugation. a bounded holomorphic
map from M to C. Let us call this function g. This will be a crucial point in the proof

of our theorem.

4.3 Proof of the main result

Micallef and Wolfson ([38]) proved that the stability condition implies that. for every

compactly supported section o of the complexified normal bundle vc:
M{|0—UfZ — 2[|da|? + 35.5i712a]|0|2}dV01 >0
where § is the scalar curvature of N. If .V is hyperkahler then 5 = 0. So we have
|0o|? > 2/ \da|?|o|* . (4.2)
A M

Suppose there crists a global holomorphic section o of v~ in L*. Then, taking a
cut-off function fg such that fr = 1 on Br(p). fr =10 outside Byr(p) and |[d(fr)| < &

evervwhere, applying 1.2 to fo we get
2 [ Jdalflof? < 2 / d(fr) o2
J‘I ‘\I
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Letting R — oo we have that. since o € L%. da = 0 and so a is constant on M. Now.
as in [54], choose a point p € M and a complex structure on 7.\ such that IT,M is a
complex subspace of Tr(,)N. The Kihler angle of this complex structure vanishes at
p, but it is still constant on M. Then the immersion is holomorphic with respect to this
complex structure of N.

So the following lemma concludes the proof of the theorem:

Lemma 4.3.1 If the hypotheses of the theorem hold then there erists a global holomor-

phic section o of the complezified normal bundle such that o is square integrable.

Proof: Let W be an open set of 52 s.t. 11" C §2\ F(M). and J a complex structure
on N corresponding, via the discussion in section 2. to a point in 1. We then have
1 —cosay < 1—¢, ¢ >0, everywhere on A . Since F is conformal there exist {ej.e;}
local real vector fields in F,(T M) such that F*(%) = \/X(Fl — 1€y). where ) is the

2

conformal factor of the immersion; then we complete {e;.e3} to a local orthonormal

basis of TN, {e1,....¢4}. Defining

h = ea o fr = Je
fa = e . fa = —Jey

(1.3)

we have directly that
< Fr(p) fi N fat fa N fa > = cosay(p). (-1.4)

This means, by the discussion in section 2. that the angle between .J as a point of
the sphere and F+ (p) is precisely the Kahler angle at p and therefore the stereographic
projection of F,, from the point corresponding to J in S5? has norm li_’c%‘s“—é;

We will indicate the hermitian product of X and ¥ by g(X.Y)and Y-} = g(X.Y).
so that the - product is complez bilinear. Define s = [J F %)]i . where .J is a complex

structure on N and L is the projection onto the normal bundle vz.

s is a local holomorphic section of v-. in fact:
D.s = D:((JFE(35) = [JE(:)) =

= (VF.%(-]}‘:(((—')‘—_))).L _ (VF.%([.][_(%)]I))L ‘



where D is the covariant derivative in the normal bundle and Y is the covariant deriva-
tive on V. The first term vanishes because .J is parallel and F is harmonic: the second

term vanishes also. To prove this first observe that

VE(ENT = 3JF(Z)- FAZ)E(2)+

_ (4.6)
+(JE52) - Fo(#5)) Fa( )]
but
0 0
JF,( y)'F*(F)_O (+.7)
and then
0 1 0 0 .0
(Vg OUF(ON)] > = )\[(]F(()N) F"‘(B—z))(vF‘%hE”L (4.8)

and then again harmonicity (i.e. A\ 2 F.== d~ = (0 ) proves our claim.

Then ﬁg is a local meromorphic section of vz: in fact we have D.s = fs. where f

is a complex valued function such that (a s3) — fs-& and therefore f = 'IUJI iy

So we have

D) = #pr)s+ ppDals) = (&) + gel)s =

Since the Gauss lift omits the open set 117 of §? and it is holomorphic. taking p € ",
the function h defined by the conjugate of p o 7 o F.. where p is the stereographic
projection from the point p. is bounded and holomorphic. So 1/ admits (see Ahlfors-

Sario [2] and Springer [52]) a square integrable holomorphic differential ;3. In a local

chart (U, z). 3 = (d=z. Hence 0 = N h( is a global meromorphic section of v-: in fact.
if (V' w) is another local chart such that "NV # @ we have J = {'duw. where ' = ,’—“g
and Jw = 5%;% on "NV and so o(w)=0c(z)on (' NV

To prove that o is square integrable we look at the zeros of ~ which are the points

where

. ) : |
(g(J I (j) \/T(H—“x)) 9(-]1‘1(%)-\@(’:i‘*‘fﬂ))):(\/X”'””J-O)‘—‘(O-O)-

-1
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Hence they are the anti-complex points of I with respect to J (because there are no
complex points w.r.t .J by assumption).

We have then
5 1 ¢
Rl =
||5|2 <l Il——cosal\/X

which is a locally bounded function. Hence

Z_h(2 < C)3)?

|52

and then is in L2, since /3 is in L2. a



Chapter 5

On the Torelli and the

Infinitesimal Torelli Theorems for

Minimal Immersions

5.1 Introduction

In this Chapter we study rigidity of minimal immersion of closed surfaces in flat tori.

First let us recall ([23]. [41]):

Theorem 5.1.1 If fi and [, are homotopic harmonic maps of a closed Riemann sur-

face in a flat torus. then they differ by a translation.
This suggested to study the following:

Problem 8 Given a flat torus T = (R"/\.eucl) and two homotopic mimimal im-

mersions of a surface of genus v into T". are they congruent?

For n = 3 Meeks ([31]) has shown that the answer is neeative for surfaces of genus 3.
We want to studyv this problem for n = 2r. An indication that the answer could be

affermative comes from a well known theorem in Aleebraic Geometry. known as the

Torelli Theorem:



Theorem 5.1.2 The jacobians of two Riemann surfaces are isomorphic as polarized

abelian varieties if and only if the two Riemann surfaces are biholomorphic.

Holomorphic maps in a fixed Abelian variety A are special minimal maps in a fixed
flat torus, just by choosing any flat metric hermitian w.r.t. the complex structure on
A. The Torelli theorem then states that the equivalence class of a jacobian and a
topological information (the polarization) determine uniquely the candidate conformal
structure for the Riemann surface to embed holomorphically in it.

For our approach a more sensible way to state Torelli's theorem is the following:
consider a symplectic basis of closed curves {a;.3;} i = 1..... r on the topological
surface of genus 7, and let us indicate by 7, the moduli space of Riemann surfaces of

genus r marked in this way. We can then define a map, called the period map. in this

way:
M:7, — M(r x 2r.C)
(S, o5 = ( wy [ ),
where {w; } is the basis of holomorphic differentials on ¥, dual to the curves {ay,...,ar}.

Another way to state Torelli’s theorem is that II is injective. This suggested to try to

see the holomorphic as a special case of Problem 8.
By the Weierstrass Representation Theorem ([31]). we know that a conformal min-

imal immersion ¢: ¥, — (R"/A.eucl) of a closed Riemann surface of genus 7 is given,

P P
¢(p):Re(/ wl,...,/ Wy )
Po Po

with the following conditions

up to a translation, by

1. w; are holomorphic differentials on ¥,

n
Y wi=0. (5.1)
1i=1

3. {Re( [, wi----x [ wa)lo € Hi(E,.Z)} is a sublattice of \.

S



In order to solve Problem 8 it is convenient to keep track of a fixed marking of
the Riemann surface (i.e. of a basis of curves for the first homology of the topological
surface of genus r), as we have seen for holomorphic maps. In fact we do not want
to know just if two minimal immersions can give rise to the same set of periods, but
also if these periods come from the same set of closed curves on the surface. We will

therefore consider the space

M”' = {[E’/'aaiaﬁi]vwl-, -e e, W2r I [Eraai-ﬂi] €7, 212;1 w‘l-2 =0, (5 2)

{w;} are independent over the reals} .

We can now generalize in an obvious way the notion of period mapping for minimal
immersions. It is in fact immediate to check that II is well defined by the following

formula:

I: M, — GI(2r.R)

/falwl farwl fﬂlwl fﬁr“‘l\
falwg farw2 fﬁIUJQ fﬁr(.U2

(5.3)

K fal wor ... far wWar fﬁl W2y eee fﬁr Wor /
Our first result is the following:

Theorem 5.1.3 II is not injective for v > 3: by Theorem 5.1.1 the points giving the

same periods correspond to distinct Riemann surfaces.

The proof of Theorem 5.1.3 allows us to refine the information about the induced

conformal structures coming from Hartman's Uniqueness Theorem:

Corollary 5.1.1 There exist two minimal immersions, one inducing a nonhyperelliptic

structure and another inducing a hyperelliptic structure. which give rise to the same

periods.
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We recall that the moduli space of flat tori (i.e. flat tori up to isometries) is given
by (see Chapter 3):

O(2r.R)

Isior.z). (5.4)

From the geometric point of view it is natural to consider two minimal immersions
in two different tori to be the same if one is the composition of the other with an
isometry of the torus. Therefore a more sensible definition of period map would be
II(p) = [[II(p)]], where [[ ]] indicates the equivalence class in (5.4). But the elements
of Si(2r,Z) leave the lattice fixed and then by composing a minimal immersion with
such an element (different from the identity) we would get a minimal immersion in the
same torus, but with a different action on the first homology groups. We can therefore
disregard this action in studying Problem 8.

We observe that the orthogonal group O(2r.R) acts on M, too in the following way:
since we are looking at full minimal immersions we can write, up to reordering of the
coordinates in R?", a point in M, as p = {[Z,, ;. Bi].w(Id, A)}, where w = (w1, ..., wy)
is a basis of holomorphic differentials of ¥, and A is a complex r X 7 matrix, with
invertible imaginary part. We can then define O(p) = {[S,. a;, 3;].w(Id, A)O}.

It is immediate to see that II(O(p)) = II(p)O. The above discussion implies the
following:
Proposition 5.1.1 The answer to Problem § is affirmative if and only if the induced
map II: M,/O(2r,R) — GI(2r.R)/O(2r,R) is injective.

Theorem 5.1.3 implies therefore that the answer is negative for v 2 3. It became
natural then to ask whether the flat metrics for which such minimal immersions exist

are special in the moduli space of metrics on a torus. Our next result shows that this
is not the case:

Theorem 5.1.4 For cvery flat torus (T* . eucl). r > 3. there exists an injective homo-
morphism p from Hi(Y,.Z) lo H{(T?.Z). and two (non congruent) mimimal immer-
stons from Y, to (T2 . cucl) inducing p in homology inducing two diffcrent conformal

structures on the surface,

S0



We can also show that one of the two minimal immersions in Theorem 5.1.4 can be
choosen among stable ones, but we do not know whether it is possible to choose both
such maps to be stable.

For r = 2 we will show that II is injective (see below for a discussion of this case)
using a very different approach. We will see that this implies also that Problem 8 has
an affermative solution in this case.

Because of the negative solution the our basic problem, it became natural to study
whether there could exist families of homotopic non congruent minimal immersion in

a fixed flat torus. We have therefore studied the following question:
e Is II an immersion?

Clearly this question makes sense only at smooth point of .M,. In section 2 we study
the geometry of this space, which is linked with classical theory of Algebraic Curves.
In particular we have that Mg is a smooth manifold and that for r > 3, M, is an
analytic variety of real dimension 472, and which is the union of two subvarieties, M,
and M of the same dimension as M, and which project on the hyperelliptic locus and
the nonhyperelliptic locus respectively. We will see that both M! and M/ are smooth.
We believe it would be interesting on its own to study the locus £, = M0 M, which

contains the points corresponding to the Abel-Jacobi maps of hyperelliptic surfaces.

Remark 5.1.1 It is clearly possible to adopt a similar point of view to study minimal
immersions of £, into T". defining a suitable moduli space M?™, for any n greater or
equal to three. The three dimensional case has been extensively studied by Pirola in
[45]. The geometry of M3 and M} is related to very classical problems in the theory
of algebraic curves. For crample the structure of the singularitics of the irrcducible
components of these moduli spaces for r > 6 is still subject of currcnt e search (sce [4]
for r = 4,5), and is closcly related to the singularities of the singular locus of the theta

divisor.
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Once again when restricting our attention to those minimal maps which are holo-
morphic w.r.t. a fixed complex structure compatible with the metric. this problem
has been extensively studied in Algebraic Geometry and is known in the literature as
Infinitesimal Torelli Theorem. In this very special context Qort-Steebrink ([42]) proved
the hyperelliptic Riemann surfaces of genus r > 3 are points where the differential of
the classical period map has some non trivial kernel. while thev proved it to be an
immersion restricting either to the hyperelliptic locus and to the non hyperelliptic one.
We believe that the proofs (see section 2) of our theorems give some insight on the
reasons of this phenomenon.

A crucial step to prove our main results is to make a deailed study of the period
map at the points corresponding to the Abel-Jacobi maps jx, of hyperelliptic Riemann
surface. Using Oort-Steebrink’s theorem ([42]) we show that ker(dIl,, ) = 0 at the
points corresponding to the Abel-Jacobi maps of hyperelliptic Riemann surfaces. On
the other hand we know that at these points there are non trivial Jacobi fields. This
shows that the first order variation of conformal structure inducing such Jacobi fields
has to be nonhyperelliptic.

Our main result in this direction is the following:
Theorem 5.1.5 1. II is an immersion everywhere for r = 2,

2. Forr > 3 I is an immersion on an open and dense subset of M! containing the

Abel-Jacobi maps of the nonhyperelliptic Riemann surfaces,

3. Forr >3 H|M, is an immersion on an open and dense subset of M’ containing
T

the Abel-Jacobi maps of the hyperelliptic Riemann surfaces.

We refer to section 2 for a precise discussion about the above statement.

We also prove that with suitable restrictions of the domain the period map is in-
jective. First let us observe that we can write S w? = 0 as wQu' = 0. where
W = (W1.---s w,) is a basis of HO(L') (we can assume this by reordering the coordi-

nates in T27). and Q is a complex r x r symmetric matrix. We sayv that the minimal
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immersion induces a quadric through the canonical curve of ¥,.

As we have proved in Chapter 3 the minimal immersions which induce the quadric
@ = 0 are precisely the maps holomorphic w.r.t. a complex structure compatible with
the metric. In the last section. using an argument similar to one we used in Chapter 2 in
the proof of Theorem 2.1.3. we prove that the period map is injective when the domain
is restricted to this class of maps. By Corollaries 3.3.3 and 3.3.2 we then directly get

the following consequences:
Corollary 5.1.2 1. The period map is injective for r = 2,
2. The period map is injective on M.

Let us finally recall that all full minimal immersion of a surface of genus r in T?" are
in fact embeddings. This was remarked in [35] too. and follows easily from the Abel's
Theorem for minimal immersions.

We believe this approach to the study of minimal immersions in flat tori or in the
euclidean spaces to be extremely promising as far existence is concerned; unfortunately.
since it basically relies on implicit function tvpe arguments. one is still hungry for

explicit examples.

5.2 Moduli spaces of minimal immersions and period map.

In this section we give a description of a space which parametrizes the set of full minimal
immersions of surfaces of genus r > 2 in flat tori of real dimension 2r. The basic tool.
which has been recalled in the introduction, is the Weierstrass Representation Theorem
for such maps. This theorem tells us that a space parametrizing such maps is given by
M., defined in section 1. This space is clearly an analytic variety. and the first thing

we want to know is its dimension:

Lemma 5.2.1 For r > 2 .M, has real dimension Ar*, and. for r > 3, it is the union
of two analytic subvarieties of the samc dimension. one ML owhich projeets onto the

hyperelliptic locus. and the other M} onto the non-hypcrelliptic onc.
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Proof: Let us first denote by h the natural projection h: .M, — 7. defined by
h([Zr, o, Bi], w1, ... war) = [Er. a;. B;]. We first observe that we need to consider sep-
arately the case of conformal harmonic maps of hyperelliptic Riemann surfaces from
the nonhyperelliptic ones: in fact a 2r-uple of holomorphic differentials defines a con-
formal map if it induces, in the sense described in the introduction. a quadric containg
the canonical image of the Riemann surface. But the space of quadrics containing
the canonical image of a Riemann surface is a vector space whose dimension depends
only on the fact that the Riemann surface is hyperelliptic or not. For the same reason
(which, we recall, does not hold in the case of M. n < 2r). we have that taking an
open set V" of a nonhyperelliptic surface contained in the nonhyperelliptic locus, and
an open set V' of a hyperelliptic surface contained in the hyperelliptic locus. R=1(V)

and A~1(V’) are smooth open sets.

e Case 1: r=2. The Teichmiiller space of Riemann surfaces of genus 2 has real
dimension 6. The choices of basis of holomorphic differentials are parametized
by GI(2,C). therefore giving a space of real dimension 8. By the Weierstrass
Representation Theorem a minimal immersion is given by

P
¢(p) = Re( | w,wd).

po
where w is basis of holomorphic differentials and A is a complex 2 X 2 matrix.

Observe that in this notation the conformality equation becomes

w(Id+ AA =0 (5.5)

But for » — 2 there are no non trivial quadrics containg the canonical curve of
a Riemann surface and therefore Id + AA" = 0. This means that we can choose
A in the space of orthogonal complex matrices (multiplied by 7). which has real

dimension 2. Then the dimension of .M is 6 + X + 2 =16 = 1-2?% as claimed.

o Case 2: ¥, nonhyperelliptic. (‘onsider now a fixed nonhyperelliptic Riemann

surface of genus r > 3. It follows from Noether's Theorem (see [4]) that the space

S



of quadrics in P! containing the canonical image of the surface is a vector space

of real dimension (7 — 2)(r — 3). Therefore, using the same argument as above.

around this surface we have an open subset of .\, of dimension
6r — 64+ 4+ (r—2)(r—=3)—r(r+1)=4r>.

o Case 3: Y, hyperelliptic. In the same wayv we know that the vector space
of quadrics in P"~! containg the rational normal curve (i.e. the image of a
hyperelliptic surface via the canonical map) is a vector space of real dimension
(r—1)(r —2). Once again restricting ourselves to an open set of the hyperelliptic

locus we get a manifold of dimension
dr =244 H(r=2)r = 1) = r(r+1)=4r.
The lemma follows now directly. O

Remark 5.2.1 The geometry of M, deserves some comments. By lemma 5.2.1 we
have that not every point in M. is a limit of points of M. despite the nonhyperelliptic
locus is dense in T,. The points of M!. with this property, i.e. the set MIaM. =L,,
seems to us to correspond to very special minimal immersions of hyperelliptic Riemann
surfaces. For ezample the Abel-Jacobi maps js, of hyperelliptic surfaces give points in
L., but clearly these are not all. We believe a more detailed investigation of this set to

be interesting on its own.
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Proof of Theorem 5.1.5: By the above lemma the period map has domain and
codomain of the same dimension, and therefore by proving theorem 5.1.3 we will prove
that it is a local isomorphism around an open and dense subset of M,. The crucial step

in this direction has been made by Pirola in [45], see also [6], who proved the following:

Theorem 5.2.1 If p € M,, there is an isomorphism v between kerdll, and the space
of Jacobi vector fields along the minimal immersion corresponding to p, modulo the

constant vector fields.

This theorem is our fundamental tool in the proofs of Theorems 5.1.3 and 5.1.5.

The proof of Theorem 5.1.5 in fact reduces to exibit minimal immersions free of
branch points with just 2r independent Jacobi fields. The (real) analycity of the period
map then shows that if there is a point where it is an immersion, it has to be an
immersion on an open and dense subset of the domain. Some care is required since,
because of the subtle geometry of .\, described in Lemma 5.2.1 and in the above
remark, we need to find such immersions in .M/ and in .M.

The existence of points in .\’ corresponding to minimal immersions with the least
number of Jacobi fields can be proved showing directly that the Abel-Jacobi map of
the nonhyperelliptic Riemann surfaces has just trivial vector fields as we have shown

in Chapter 3. This is not the case for the .\bel-Jacobi map of a hyperelliptic Riemanu
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surface of genus 7 > 2. We want to study in detail what happens at the points of L,
corresponding to the Abel-Jacobi maps of hyperelliptic surfaces.

By a result of Simons ([50]). we know that the space of Jacobi fields is given by
H°(v(X,)) (see [38] for an alternative simpler proof). We consider now the following

exact sequence:

0—-TY, —C — v, —0

and the associated long exact sequence:
0— HYC) X Hvx,) L HYTS,) L HYC ) — ...

Since this sequence is exact we have immediately h%(vS,) = dimcHO(vY,) > r. By
Serre-Kodaira duality H}(TX,) = (H%(2K))*and HY{(C") = (H%(C" > L))", where K is
the canonical bundle of ¥,. As we have seen in the proof of the main results of Chapter
3, we recall that im¢* = imN, where N: HO(K')® HO(K) — HO(2L) is the symmetric
product of holomorphic differentials. It is a classical result ([19]) that , since %, is
hyperelliptic, demgpim/N = 4r — 2. This implies that dimpkerd(= dimgimy*) = 2r — 4.

Therefore dimg H°(vY, ) = 4r—4 and then there exist 2r —4 non trivial Jacobi fields
independent over the reals. By an explicit calculation Oort and Steebrink ([42], pag.
174-177) proved the following result: let IIj, be the restriction of the period map to the
set of maps holomorphic w.r.t. a fixed complex structure on R?”. Then kerd(Il;)s, is
transversal to (Tx, H,). where H, denotes the hyperelliptic locus.

Hence we have

o ker(dll);, = kerd(Ily)s, = tmy,
o imy@ Ty H, =Ts 7. and

o imyNnTIy H, =0.

Suppose now that there exists 7(#) € .M,.. s.t. 5(0) corresponds to the Abel-Jacobi
map of a hyperelliptic Riemann surface ¥.. jc,. and that %H(‘/U))lf:o = 0. By the

mentioned result of Pirola ([15]), we have that 5 induces a non trivial Jacobi vector field



v along js, (unless A(7y(?)) does not depend on ¢, and therefore - t) would be constant
up to translations by Theorem 5.1.1), but, as we observed above. 0 # v(v) € Kerdll.
and therefore the first order deformation of conformal structure induced by ~ has to
be non hyperelliptic, and then %71 +=o Cal not be a tangent vector to M’ at jy, . This
proves that despite the existence of non trivial Jacobi fields along such maps the period
map restricted to M is a local isomorphisms, since the deformations induced by such
vector fields push the conformal structure out of the hyperelliptic locus.

This argument and Theorem 5.2.1 prove the Theorem 5.1.5. O

Remark 5.2.2 By the discussion in the proof of theorem 5.1.5, it follows directly that
the generic minimal immersion has the least number of Jacobi fields. It seems plausible
to conjecture that the points in L, are precisely the ones corresponding to mimimal

immersions with non trivial Jacobi fields.

5.3 Non injectivity of the period map.

In this section we use the tools of the previous section to prove that the period map

can not be injective.

Proof of Theorem 5.1.3 and of Corollary 5.1.1:

Consider the Abel-Jacobi map ¢g of a hyperelliptic Riemann surface of genus r > 3.
We can clearly find a sequence of nonhyperelliptic Riemann surfaces of the same genus
whose Abel-Jacobi maps ¢; converge to ¢g. As recalled in section 2 at ¢; the period

map is a local isomorphism since they have just trivial Jacobi fields, and moreover IT} ,

is a local isomorphism at ¢y too: therefore we get:

o TI(M)ATI(M") £ 0.

Since M! and .\ fiber over the hyperelliptic and the nonhyperelliptic locus re-

spectively. not just the maps are different but also the induced conformal structures.

a
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Remark 5.3.1 W now obscrec that if (M) n ICMT) # 0 we have that there  rists
an open sct U of GI(2r.R) ~.t. U C I(ML)n (M), again because M i~ a local

tsomorphism at ¢y for all t and H| » is a local isomorphism at Op.
- I8

By the above remark. and since around every o; all minimal immersions are stable.

we have that we can choose ¢/ in such a wayv that for every p € U. 17 Y(p)N.\1" contains

-

a stable minimal immersion. \We therefore casily get the following:

Corollary 5.3.1 For cocry flal torus (T cucl), there crists an mjcctive homomor-

phism p: H{(Y,,Z) — Hy(T?" Z), and two full minimal imme rsions o. ¢ such that
1. ¢* - (/7* = P,

2. @ is stable.

S

. @ anduccs a nonhypcrclliptic conformal structurc on the surfacc, while ¢ induces

a hyperclliptic one.

Proof: The set of flat tori wich satisfv the properties of the corollary contains an open
set W by Remark 5.3.1. But given any torus 77, there exists an isogeny 1: 12" — 17",
where T2 € W. Therefore 0,7 and v,Z are full conformal minimal immersions in 772"
with the same action on homologv. Morcover. by the above remark. we can choose ¢ to
be stable; this easily implies that 0,7 is stable too. for every 7: in fact every variation

of ¢poZ(¥,) lifts to a variation of o(Z,) for which J-A is the same. a

We want now to studyv the period map for r = 2.3. By the mentioned (‘orollaries
3.3.3 and 3.3.2. we know that every minimal immersion of a surface of genus 2 into
anv flat T has to be holomorphic w.r.t. some complex structure compatible with the
metric.

We want to prove that the period map Il is injective when we restrict the domain
to this class of maps. Suppose we have a minimal immersion or Xy — (12 cucl)

holomorphic w.r.t. J and =.t. it induces an isomorphism on homology. A\~ we have

seen in Chpater 3 we can associate to such a map a 2-form «. which pulls back via

NG



¢ to the intersection form on the surface. As in the proof of Theorem 2.1.3. we have
that (T%",w, J) is isomorphic. as principally polarized abelian variety. to the jacobian
of X,. Moreover J has to be the unique complex strucutre compatible with the flat
metric and which is positively polarized by ... Therefore J is completely determined
by the isomorphism on homology and by the the flat metric. It is then impossible, by
the classical Torelli Theorem. to have two distinct Riemann surfaces, which give rise to

the same periods. This proves the following generalizations of the Torelli Theorem:

Theorem 5.3.1 II is injective on the set of minimal immersions holomorphic w.r.t.

(also possibly different) compatible compler structures.

The above theorem leads directly to the following consequences:
Corollary 5.3.2 1. Forr =2, 1II s injective.

2. 1I is injective on MY.

3. For r > 3, I is injective on the subset of M corresponding to stable minimal

1Mmmersions.

A simple corollary of Theorem 5.3.1 is that the map ¢ constructed in C'orollary
5.3.1 has to be unstable for r = 3 since every stable minimal immersion inducing a
hyperelliptic structure has to be holomorphic w.r.t. some compatible complex structure.

It would be then interesting to know whether the period map is injective restricting
the domain to the set of stable minimal immersion also of non hyperelliptic surfaces.

Clearly this question is a special case of the Conjecture 2 in C‘hapter 2.

Remark 5.3.2 The infinitesimal study of the period map led us to show that I 1s
generically an immersion. It is still reasonable to ask whether it is possiblc to deform
the Abel-Jacobi map of a hyperelliptic Ricmann surface through minimal inmcrsions in
the same torus. Qur analysis of the pe riod map docs not give an answr to this problem
(excepl of course for r = 2). A special situation is when r = 3:if such a fanuly o(t)

crists. then by the abouve discussion. the induced conformal structures have to change.
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Then by Oort-Steebrink’s theorem it has to become nonhyperelliptic, i.e. o(t) € M3 for
t # 0. But the period map is injective on this set, then getting a contradiction. For
r > 4 the induced conformal structures still should become nonhyperelliptic, but we do

not know whether the period map is injective on M.
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