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Abstract

The quotient space of all smooth and connected curves represented by a fixed number
of boundary points is a finite-dimensional Riemannian manifold, also known as a shape
manifold. This makes the preservation of locality a critically important issue when re-
ducing the dimensionality of shapes on the manifold. We present a completely unsuper-
vised clustering algorithm employing diffusion maps for locality-preserving embedding
of shapes onto a much lower-dimensional space. The algorithm first obtains a non-linear
low-dimensional embedding of shape context features of outer boundary contours of
the shapes. Considering the embedded coordinates as a new minimalist representation
of shapes, a clustering of shapes is obtained using a finite mixture model. The proposed
clustering algorithm is computationally efficient, as it relies on clustering in a very low-
dimensional space, and produces much improved results (88.6% for a 7-class dataset) as
compared to clustering with conventional linear projections.

1 Introduction

With an ever increasing amount of image data at one’s disposal, a plausible clustering of the
data has become a well sought after goal in recent years. Such a clustering can be applied
to data visualisation, data organisation, exploratory data analysis, only to name a few ap-
plications. Shape can be used as a vital clue for these applications when the data happens
to contain images of objects. The 2D shape, also referred to as simply shape in the remain-
der of this paper, of a 3D object is a function of the object’s 3D geometry and its reflectance
function or texture (internal parameters) as well as illumination and camera location (exter-
nal parameters). Shape analysis is one of the key problem areas in computer vision with a
range of applications in areas such as object recognition, image retrieval, and object-based
video coding. Most of the existing literature on shape analysis can be broadly categorised
into two classes in terms of representation: (1) landmark or keypoint based methods, and (2)
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outer contour based methods. The former kind of techniques face the limitations that they
require the keypoints to be marked, manually or automatically, and a correspondence be-
tween keypoints of different shapes should be found for analysis purposes. The latter type
of methods overcome this limitation by first representing the object’s 2D shape image as a
silhouette. A contour of the outer boundary is obtained, often by edge detection, and is then
regarded as shape of the object. A finite sampling, consisting of say n points p; = {x;,v;}
where (x;,y;) are coordinates of the ith boundary point, of the outer boundary can, there-
fore, be used to represent an instance (in ®%") of 2D shape of the corresponding 3D object.
A suitable representation of shapes should be invariant to affine transformations of shape
Kendall|[1984], Bookstein| [1986]], in turn requiring # to be large and potentially invoking the
curse of dimensionality. To circumvent this problem, classical shape analysis methods such
as Cootes et al. [1995], Leventon et al.|[2000] employ principal component analysis (PCA) to
reduce the dimensionality of the problem. One of the basic assumptions that these methods
make is that the subspace corresponding to the major modes of variation for a particular
class of shapes is linearised. The reality, however, is that such subspaces may be far from
linear. In fact, the space of all ‘smooth” connected closed curves is infinite-dimensional and
is not a vector space, but locally linear (i.e., a manifold) Michor and Mumford| [2003]. And
the resulting quotient space is a finite-dimensional Riemannian manifold Michor and Mum-
tord| [2003], Klassen et al. [2004], Brun| [2007], often termed as a shape manifold. For these
manifolds, a locality preserving non-linear dimensionality reduction (NLDR) method (see
van der Maaten et al|[2008] for a review of recently developed NLDR methods) is required.
In this context, we define the problem of shape clustering as follows:

Problem Definition: Given a set ) = {()y, O,..., Q. } containing shapes
from c different classes, where (), = {C]l},] = 12,...,N; = |Q],
Y.i Ni = N, the total number of shapes, and C; € C!is a connected closed

curve, represented by n boundary points of the form {p = (x,y)} in the
Euclidean plane, find a non-linear mapping

¥R R

where m << n, such that clustering in " yields a plausible grouping of
similar shapes.

In a recent paper, Yankov & Keogh [Yankov and Keogh! [2006] have proposed an algorithm
for clustering of shape manifolds using a variant of isomaps, termed by the authors as b-
isomaps, in a semi-supervised manner. They showed that isomap projection results in a
much better separation of clusters and estimated the intrinsic dimensionality of the shape
manifolds using the ‘elbow’ of the curve of residual variance when plotted against the num-
ber of coordinates of the projection, resulting in 3 coordinates for a four-class shape dataset
of diatoms. However, a limitation of the work in|Yankov and Keogh|[2006] is that it is not en-
tirely unsupervised, in that the cluster quality is checked by comparing the resulting labels to
ground truth labels and only the best clustering results are reported. Moreover, the authors
found that the clustering accuracy using top 3 coordinates went down when a dataset with
relatively large (four) number of classes was used, from 98% for two-class diatoms dataset
to 80% for four classes from the Marine creatures dataset. In another very relevant paper
Etyngier et al|[2007], Etyngier et al. proposed a deformable model framework integrating
non-linear shape priors using diffusion maps. The work in Etyngier et al. [2007] did not,
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Figure 1: Block diagram of the proposed clustering algorithm.

however, address the clustering problem.

In our earlier work Rajpoot et al.[[2007], we have shown a diffusion maps based frame-
work for learning the shape manifolds to be significantly more effective than linear subspace
projection. In this paper, we extend the framework proposed in Rajpoot et al.|[2007] to unsu-
pervised clustering of shape manifolds. We conjectureﬁ that an isometry exists between X7,
the space of shapes with n points in 2D, and a shape manifold whose exact geometry is un-
known to us but whose different sub-manifolds correspond to different shapes. We propose
a shape clustering algorithm which employs diffusion maps for non-linear embedding of
the feature vectors extracted from a given set of unknown and unseen 2D shapes into a very
small dimensional space. It is shown in Section |3 that the low-dimensional embedding pre-
serves the locality of shapes on a high-dimensional manifold. Clustering of low-dimensional
embedding is obtained using a finite Gaussian mixture model, since the resulting clusters
can be of elongated shapes as noted in Yankov and Keogh|[2006], and Bayesian information
criterion (BIC) Fraley and Raftery|[1998] is employed to determine the number of modes in
the mixture model. Results of clustering thus obtained can be used for exploratory analysis
of a database of shapes and for visualisation purposes.

The remainder of this paper is organised as follows. A description of the proposed clus-
tering algorithm is given in the next section, followed by a presentation of the experimental
results and their discussion in Section {3l The paper concludes with a summary and some
future directions.

2 The Clustering Algorithm

A block diagram of the proposed clustering algorithm is given in Figure[l| Input to the algo-
rithm is a dataset consisting of shape images belonging to c different classes. We first extract
feature vectors for each of the shape images using shape context, as described in Section[2.1]
The feature vectors are used to form a Markov matrix, described below in Section with

I This conjecture may be regarded as an extension of Kendall’s theorem in Kendall [1984] which states that an
isometry exists between X3, the space of labelled triangles in 2D represented by 3 vertices in R2, and S?(1/2),
the sphere of radius 1/2 in 3.
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the help of a shape similarity measure (Section2.2). Low-dimensional embedding of all the
shape images is computed using eigenvectors of the Markov matrix. The embedded coor-
dinates are then considered as a minimalist representation of the shapes and a clustering is
obtained using finite mixture models, as described in Section Clustering by finite mix-
ture models takes place by using the Expectation-Maximisation (EM) framework and can be
achieved in both semi-supervised and unsupervised manners. In a semi-supervised setting,
the algorithm requires the user to input the number of clusters (i.e., modes in the mixture
model) to be found in the dataset. In an unsupervised setting, the algorithm determines
the number of clusters by finding the number of modes that maximise the BIC [Fraley and
Raftery [1998].

2.1 Feature Extraction

As mentioned above, a desirable representation of shape should factor out any translation,
scale, and rotation transformations. In order to learn the structure of shape manifolds of
different classes in an unsupervised manner, it is crucial that such a representation employs
features related to a shape that are associated with main shape characteristics. Several fea-
tures for shape representation, also known as shape descriptors, have been proposed in the
literature (see Zhang and Lu [2004] for a survey on the topic). For a given shape, we first
extract its corresponding outer boundary C which consists of n boundary points p; = (x;, i),
fori =1,2,...,n. The number of boundary points # is fixed by employing a cubic spline in-
terpolation for re-sampling the boundary points. In our earlier work Rajpoot et al.|[2007], we
used Fourier descriptors (FDs) to represent C. While being simple to compute, just requiring
a fast Fourier transform in O(n) time, the FDs are inherently rotation invariant and can be
easily made scale invariant by dividing the magnitude of high frequency Fourier coefficients
by the DC component.

In this paper, we employ shape context (SC), recently proposed by Belongie et al. |Be-
longie et al. [2002] as a powerful descriptor for shapes. The main idea of SC is to describe
a distribution of points in the log-polar neighbourhood of a given point p; in the form of a
coarse histogram /; computed as follows Belongie et al.| [2002],

hi(k) = #{q # pi: (9 — p:) € bin(k)} (1)

Vk = 1,2,...,K, where K denotes the total number of bins, which are uniform in the log-
polar space. This idea is also illustrated in Figure [2| taken from Belongie et al. [2001]. The
histogram h; as computed by equation (1)) defines the shape context for p;. This rich descrip-
tion of contextual information about the neighbourhood of a point on the shape boundary
lends itself to an efficient solution for the point correspondence problem and proves to be
useful for our purpose of shape clustering as well.

A vector containing the histogram count values h;(k), Vi = 1,2,...,n and Vk for a shape
C can then be regarded as a feature vector f for that shape. In all our experiments, n = 300
and the number of bins for histograms at each of these n points is 60, 5 bins for logr and
12 for orientation, yielding 18,000-dimensional feature vector for every shape. It is worth
noting here that since shape context rearranged as a feature vector is not inherently affine
invariant, it poses an interesting challenge for our clustering algorithm. It will be shown
that the nonlinear embedding of shapes by diffusion maps indeed preserves the locality of
shapes on their manifold.
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Figure 2: Shape context: (a) a character shape; (b) edge image of (a); (c) a point p on shape
(2) and all the vectors originating from p to all other points on the edge image; (d) log-polar
histogram of the vectors in (c), termed as the shape context of p (reprinted from Belongie
et al. [2001]).
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Figure 3: Adjacency graph depicting relationships between different shapes in the database;
Nodes of the graph represent shapes and edges represent similarity between nodes with
their lengths inversely proportional to w;;.

2.2 The Shape Similarity Measure

In order to ensure that the low-dimensional embedding will preserve the locality of shapes
of different internal and external parameters on the shape manifold, a suitable similarity
measure is required. We define the similarity between two feature Vectorsﬂ fiand f;,i,j =
1,2,...,N, using a Gaussian kernel of width € as follows,

f —f ‘2
wl-]- = ZU(fi, f]) = exp <—||12€]|> . (2)

The above pairwise similarity measure is also used as the main property of an edge between
nodes i and j in an adjacency graph, where node i of the graph represents feature vector for
the ith shape image in the dataset, as shown in Figure

2Since our goal in this work is unsupervised clustering of shapes, without loss of generality we will drop the
superscript from the shape contour C; and its corresponding feature vector f;, as in Figure[l} for the remainder
of this paper.
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2.3 Markov Matrix

A Markov random walk is defined on the graph by defining the state-transition matrix P =
[pij], also known as the Markov matrix, with its (7, j)th element p;; given by,

Pi = a(e) 3)
where d(f;) denotes the degree of node i in the graph and is calculated as follows,

d(f;) = ) w(fi,z). (4)

ze()

It is worth noting that unlike most similarity matrices used in other manifold learning meth-
ods, such as Isomaps Tenenbaum et al|[2000] and Laplacian eigenmaps Belkin and Niyogi
[2003], this matrix is generally not symmetric.

24 Embedding in a Low-Dimensional Space

Let {A;} be the sequence of eigenvalues of P such that [Ag| > |A1| > - -, and {¢;} be the cor-
responding eigenvectors. A mapping from the shape feature set () to a lower-dimensional
Euclidean space R, where m << n is the dimensionality of the lower-dimensional sub-
space, is given by (see Lafon and Lee|[2006]], Coifman and Lafon! [2006] for details),

Y:fr— (Allpl(f),)\zll)z(f),. . ,/\mlpm(f)) . (5)

The above mapping gives an initial low-dimensional embedding at t = 1. Spectral fall-off
is the main factor contributing to dimensionality reduction. The mapping ¥ evolves as time
t increases. The above mapping at time t > 1 can be computed by scaling the diffusion
coordinates ;(f), i = 1,...,m, with A! as follows|Coifman and Lafon|[2006],

O (A1 (£), Ao (£), -, Abytp(£)) - (6)

For large value of ¢, large-scale structures in the data can be captured with fewer diffusion
coordinates|Coifman and Lafon| [2006].

2.5 Clustering in the Embedding Space

Spectral graph embedding of shapes residing on a very high-dimensional manifold to a
much lower-dimensional space using diffusion maps results in a set of elongated clusters,
representing shapes of similar kinds, provided an appropriate value is chosen for the Gaus-
sian kernel parameter . We found that a mixture model representation of these clusters
is more effective than the standard k-means (kM) or fuzzy C-means (FCM) clustering algo-
rithms. Let F;,i = 1,2,..., N denote embedding of the shape context feature vectors for all
shapes in a given dataset. Using the GMM, the probability mass function of an arbitrary
feature vector’s embedding F is given by,

P(F) =) a; gi(Fu;, L)), 7)
=1
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where a; denotes weight of the jth Gaussian g;(F), whose mean vector y#; and covariance
matrix Xy determine its position and shape. The parameters aj, p;, and X; are estimated with
the help of EM. Using priors 4; and likelihood p(F|aj, p;, Zj) of an embedding F for the jth
Gaussian, its posterior probability p(j|F) can be computed. A label k is assigned to the shape
image corresponding to F, where k maximises the posterior,

k = argmax p(j|F). (8)
j=1.2,...c

In order to determine the number of clusters, c, we utilise the Bayesian information criterion
(BIC), as suggested in [Fraley and Raftery| [1998]. Choosing a value of ¢ which maximises
the BIC value for a range of c ensures that the sum of squared errors between actual em-
beddings and the embeddings estimated by GMM is minimised while penalising the model
complexity.

3 Experimental Results

Our experimental dataset consisted of a subset of the MPEG-7 core experiment (CE) Shape-
1 Part-B dataset and comprised of 140 images of objects from seven classes (20 images per
class): apple, car, carriage, device7, flatfish, guitar, teddy. Although the num-
ber of classes chosen for our experiments is not very high, it is in agreement with other shape
clustering studies found in the literature, such as Yankov and Keogh! [2006]. As mentioned
earlier in Section 18,000-dimensional shape context feature vectors were extracted per
shape image in the dataset. These feature vectors were embedded in !, a Euclidean space
with only 10 coordinates, using both conventional linear projection with principal compo-
nent analysis (SC+PCA) and diffusion maps (SC+DM). Figure |4{shows top three coordinates
of the embeddings thus obtained. It can be seen from Figure [(a) that while two of the seven
classes, namely carriage and guitar, are clearly separated using SC+PCA, the remain-
ing classes are mixed up in the embedding. This is in sharp contrast with Figure [#(b), which
shows that most of the classes have not only well separated but also relatively compact clus-
ters. In order to illustrate this point clearly, we also show in Figure 5|shape images overlaid
onto their embedding using only top two diffusion coordinates. An embedding of this kind
can be used for exploratory data analysis, when no prior knowledge about the different
kinds of shapes is available, and visualisation of relationships between shapes belonging to
different classes. In this Figure, it can be seen that SC+DM effectively separates at least four
of the seven classes using just two diffusion coordinates. The remaining three classes (car,
flatfish, and guitar) that appear to be mixed up towards the bottom-right corner of
Figure [5a) can also be separated to some extent, provided an efficient clustering method is
employed. It can also be noted from both Figures [d] and [5| that the resulting clusters in the
embedded coordinate space are not necessarily spherical in nature. Therefore, we employ
a general elliptical Gaussian mixture model (GMM) in an unsupervised EM framework to
assign class labels to all shapes in our dataset.

Final clustering results obtained by using a fixed number of clusters (c = 7), or number
of modes of the GMM, for both SC+PCA and SC+DM with five embedding coordinates are
shown in Figures [f| and [/l These qualitative results show that SC+DM is more effective
than SC+PCA in terms of grouping together shapes belonging to the same class. While
SC+PCA divides guitar shapes into two clusters (1 and 3) and lumps together car and
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flatfish shapes (cluster 4), SC+DM effectively groups most of the shape images with
the exception of guitar (cluster 2). For an objective comparison, we use two clustering
performance measures: adjusted Rand Index (aRI) Martinez and Martinez| [2004], which
is based on counting pairs of points found in same clusters in two clustering results and
those found in different clusters in the two results, and variance of information (VI) Meila
[2007], which is an information theoretic metric for comparing two clustering results based
on entropies and mutual information of the two associated random variables. A higher value
of aRI means better grouping, whereas a lower value of VI implies better clustering. For both
the performance measures, clustering results obtained by either of SC+PCA and SC+DM are
compared to the ground truth labels. Performance curves with each of the measures plotted
against the number of embedding coordinates m with a fixed number of clusters (¢ = 7)
for both SC+PCA and SC+DM are shown in Figure 8| From this Figure, it can be seen that
SC+DM outperforms SC+PCA in terms of both the measures, achieving steady values at
m = 5 and suggesting that no further gains are made by adding more projected coordinates.
The overall accuracy of SC+DM is 88.6% as compared to 72.9% for SC+PCA. When we utilise
the BIC to determine the number of clusters for GMM, better clustering performance with a
higher value of aRI and a lower value of VI than the steady-state values found in Figure
can be achieved, as shown in Figure[9] With m = 6, we get the minimum value for aRI and
the maximum value for VI, suggesting perhaps that this may be the intrinsic dimensionality
of the dataset. These results demonstrate the effectiveness of the proposed shape clustering
method.

4 Conclusions

In this paper, we have extended the shape manifold learning framework presented in |Ra-
jpoot et al.| [2007] to unsupervised clustering of shapes. The proposed clustering algorithm
employs diffusion maps, a nonlinear dimensionality reduction method, to embed the fea-
ture vectors of shapes in a given dataset onto lower-dimensional spaces. An unsupervised
clustering of the embedding employs the Bayesian information criterion (BIC) to determine
the number of clusters and is shown to effectively reveal the prevalent groups of shapes in
the dataset. The proposed method is also shown to be significantly more sensitive than PCA
for grouping together shapes that may be considered relatively difficult. The method is yet
to be tested for a relatively large dataset with large number of classes. Since solving the
eigenvalue problem for a large matrix can be highly demanding in terms of computational
power and storage requirements, Nystrom'’s extension can be employed for embedding the
shape context feature vectors |Lafon et al. [2006]. To the best of our knowledge, selection of
kernel width e for diffusion maps is an open question. Finding a suitable answer to this
question and investigating robustness of the proposed algorithm to noise are some of the
future directions for this work.
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Figure 4: Embeddings of the SC feature vectors using top 3 coordinates of () PCA and (b

Diffusion Maps.
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Figure 5: Images of shapes overlaid on their respective positions in the embedded space
using top two diffusion coordinates (SC+DM with m = 2), showing (a) all shapes with 4
relatively well-separated classes (apple, carriage, device7, and teddy) and (b) zoomed
segment of the space containing remaining three classes (guitar, flatfish, and car)
apparently mixed up in the embedding as seen towards the bottom right of (a).
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Figure 6: Clustering results for SC+PCA (m = 5,c = 7).
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Figure 7: Clustering results for SC+DM (m = 5,c = 7).
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Figure 8: Plots of performance measures against number of embedded coordinates () for
clustering results using SC+PCA and SC+DM for a fixed value for number of clusters (c = 7):
(2) adjusted Rand Index (aRI) and (b) Variance of Information (VI).
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Figure 9: Plots of performance measures against number of embedded coordinates () for
clustering results using SC+PCA and SC+DM for BIC-based model selection: () adjusted
Rand Index (aRI) and (b) Variance of Information (VI).
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