THE UNIVERSITY OF

WARWICK

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick
http://go.warwick.ac.uk/wrap/3722

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

An Investigation of Model-Based Techniques for

Automotive Electronic System Development

by

Yue Guo

A thesis submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Engineering
School of Engineering

University of Warwick

YYYVYYYI
NNNAANY

(

September 2009

Table of contents

Contents

List of Tables
List of Figures
Acknowledgements
Declarations
Abstract
Abbreviations
Chapter 1 Introduction
Chapter 2 Literature review
2.1 System
2.1.1 Concept of System
2.1.2 Characteristics of a System
2.1.3 Discussion
2.2 System of Systems
2.2.1 Concept of System of Systems
2.2.2 Characteristics of System of Systems
2.2.2.1 Autonomy
2.2.2.2 Belonging

2.2.2.3 Connectivity

Vi

Xiii

XV

Xvii

XiX

-12 -

-13-

-14 -

-14 -

-15 -

-15-

-16 -

-16 -

Table of contents

2.2.2.4 Diversity -17 -
2.2.2.5 Emergence -18 -
2.2.3 Summary -19-
2.3 System Engineering and System of Systems Engineering -19-
2.4 Automotive system development -23-
2.4.1 Overview -23-
2.4.2 Model-based design -24 -
2.4.3 Auto coding and code verification - 26 -
2.4.4 Discussion - 29 -
2.5 Systems Modelling Language -30 -
Chapter 3 Driver Information System for the 4x4 vehicle -34 -
3.1 Introduction -34 -
3.2 Driver Information System and 4x4 Information System - 36 -
3.2.1 Driver Information System - 36 -
3.2.2 4x4 Information System -38 -
3.3 Driver Information System architecture -41 -
3.4 Characteristics of the 4x4 Information System -43 -
3.5 Discussion - 46 -

Chapter 4 Modelling of the 4x4 Information System using SysML and

MATLAB Simulink/Stateflow -47 -

4.1 Introduction - 47 -
4.2 Model built in SysML -48 -
4.2.1 The modelling process - 48 -
4.2.2 Structure model -51 -

4.2.2.1 Block definition diagram -51-

Table of contents

4.2.2.2 Internal block diagram -53 -
4.2.3 Function model - 56 -
4.2.3.1 Use case diagram - 56 -
4.2.3.2 Sequence diagram - 61 -
4.2.3.3 State machine diagram -63 -
4.2.3.4 Activity diagram - 67 -
4.2.4 Other diagrams in the model - 69 -
4.2.5 How diagrams fit together in the model -71-
4.2.6 Summary of the diagrams -73-

4.3 Part of the model developed using MATLAB Simulink/Stateflow - 76 -

4.4 Discussion -82 -
Chapter 5 Code generation and verification - 86 -
5.1 Function model simulation and comparison - 86 -
5.2 Code generation -91-
5.3 Automatic code verification and code comparison -95 -
5.4 Code inspection and analysis -104 -
5.5 Discussion -112 -

Chapter 6 Real-time simulation and animation of the 4x4 Information

System interface -114 -

6.1 Introduction -114 -
6.2 Experimental set-up -115-
6.2.1 Hardware platform -116 -
6.2.2 Further development of the Simulink/Stateflow model -117 -
6.3 Real-time simulation of the 4x4 Information System interface -120 -

6.4 Animation of the real-time simulation -123 -

Table of contents

6.5 Discussion -126 -
Chapter 7 Conclusion and future work -127 -
References -134 -
Appendix A Functionality of the 4x4 Information System -148 -
Appendix B Diagrams in the model built in ArtiSAN Studio - 158 -
Appendix C Diagrams in the model built in Simulink/Stateflow -174 -

Appendix D Analysis result of the C code produced from ARTiISAN Studio
-179 -
Appendix E Analysis result of the C code produced from Real-Time

Workshop -191 -

List of tables

List of Tables

Table 3-1. Hard keys of the Driver Information System. -37 -
Table 3-2. Features of the vehicle. - 38 -
Table 3-3. Driver information on networks. -42 -
Table 4-1. Viewpoint specification--Structural viewpoint. -49 -
Table 4-2. Viewpoint specification--Behavioural viewpoint. -50 -
Table 4-3. Use case text - Display air suspension status. -59 -
Table 4-4. Use case text - Display compass information. - 60 -
Table 4-5. List of diagrams in SysML model. -73-
Table 4-6. Functions covered by the diagrams in SysML model. -75-
Table 4-7. List of diagrams in Simulink/Stateflow model. -81-

Table 4-8. Functions covered by Stateflow diagrams in Simulink/Stateflow model.

-81-
Table 5-1. Test cases for verifying the functional equivalence of the model. - 87 -
Table 5-2. C code length under different target files. -105 -

List of figures

List of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

2-1. A representative for the system structure. -10 -
2-2. Vehicle system. -11-
2-3. Engine system. -11-
2-4. A general depiction of a system. -12 -
2-5. Powertrain System elements. -13-
2-6. Automotive Driver Information System. -13-
2-7. Automotive System of Systems. -14 -
2-8. Belonging of automotive System of Systems. -16 -
2-9. Connectivity of automotive System of Systems. -16 -
2-10. Diversity of automotive System of Systems. -17 -
2-11. Emergence of automotive System of Systems. -18 -
2-12. VV-model in System Engineering. -21-
2-13. Automotive electronic system development process. -24 -
2-14. The overlap between the UML and SysML (adapted from [25]). -31-
2-15. The Systems Modelling Language taxonomy (adapted from [25]). - 32 -
3-1. Modern information and entertainment system: 2002 Cadillac CTS. - 35 -
3-2. 4x4 Information System on the vehicle. - 36 -
3-3. Driver Information System. - 36 -
3-4. Driver Information System settings. -37-

Vi

List of figures

Fig. 3-5. Automotive System of Systems. -41 -
Fig. 3-6. Driver Information System architecture. -42 -
Fig. 3-7. The 4x4 Information System. -43 -
Fig. 3-8. The 4x4 Information System. -45 -
Fig. 4-1. Network class. -51-
Fig. 4-2. Key class. -52 -
Fig. 4-3. Internal block diagram: Driver Information System overview. -53-
Fig. 4-4. MOST System of Systems overview. - 55 -
Fig. 4-5. Use case diagram: 4x4 information use case. -57 -
Fig. 4-6. Suspension information use case. - 58 -
Fig. 4-7. Sequence diagram: view steering angle (high level). -61 -
Fig. 4-8. Sequence diagram: view steering angle (detailed level). - 62 -
Fig. 4-9. Display of HDC from Home Menu screen. -63 -
Fig. 4-10. State machine diagram: Driver Information System. - 64 -
Fig. 4-11. State machine diagram: displaying 4x4 information. - 65 -

Fig. 4-12. State machine diagram: displaying terrain optimization settings. - 66 -

Fig. 4-13. State machine diagram: displaying centre and rear differential lock

information. - 67 -
Fig. 4-14. Activity diagram: view TO settings and change the TO mode. - 68 -
Fig. 4-15. Activity diagram: view steering angle. - 69 -
Fig. 4-16. Text diagram: layout of the display. -70 -
Fig. 4-17. Text diagram: air suspension selector. -70 -
Fig. 4-18. Interactions among diagrams in the model. -71-
Fig. 4-19. Stateflow diagram: Driver Information System. - 76 -
Fig. 4-20. Stateflow diagram: display off-road information. -77 -

vii

List of figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

4-21. Stateflow diagram: TO settings. -78 -
4-22. Stateflow diagram: view centre differential. -78 -
4-23. Simulink/Stateflow model of the 4x4 Information System. -80 -
5-1. Simulation in ARTiSAN Studio - OffRoad Information. - 88 -
5-2. Simulation in Simulink/Stateflow - OffRoad Information. - 89 -
5-3. Simulation in ARTiISAN Studio - Display TO mode. -90 -
5-4. Simulation in Simulink/Stateflow - Display TO mode. -90 -
5-5. Code generation in ARTiISAN Studio for the model of 4x4 Information
System. -91-
5-6. Code generation in Real-Time Workshop Embedded Coder for the model
of 4x4 Information System. -92 -
5-7. Parameter configuration of Real-Time Workshop Embedded Coder. - 93 -
5-8. Parameter configuration of solver. -94 -
5-9. Parameter configuration of optimization. -94 -
5-10. Analysis result of the C code produced from ARTISAN Studio. - 96 -
5-11. Warning message window of the C code produced from ARTiSAN
Studio. -97 -
5-12. Analysis result of the C code produced from RTW. -97 -
5-13. Warning message window of the C code produced from RTW. -98 -

5-14. Distribution of orange checks by categories of the C code produced from

state machine diagram. -99 -

5-15. Distribution of orange checks by categories of the C code produced from

Stateflow diagram. -99 -

5-16. Distribution of checks by file of the C code produced from state machine

diagrams of the model built in ARTiSAN Studio. -100 -

viii

List of figures

Fig. 5-17. Distribution of checks by file of the C code produced from Stateflow
diagrams in Simulink/Stateflow model. -101 -

Fig. 5-18. RTE view of the C code produced from state machine diagrams of the
model built in ARTiSAN Studio. -102 -

Fig. 5-19. RTE view of the C code produced from Stateflow diagrams in
Simulink/Stateflow model. - 103 -

Fig. 5-20. RTE view of the C code produced by selecting “ert_shrlib.tlc” target file

from Stateflow diagrams in Simulink/Stateflow model. - 106 -
Fig. 6-1. Animation of sequence diagram in ARTiSAN Studio. -115-
Fig. 6-2. Hardware platform for the real-time simulation. -116 -
Fig. 6-3. Real-time simulation set-up. -117 -

Fig. 6-4. Output state activities from states in the Simulink/Stateflow model. - 117 -

Fig. 6-5. Output state activities in Simulink. -118 -
Fig. 6-6. Simulation of output state activities in Simulink. -119 -
Fig. 6-7. Variables in ControlDesk model. -120 -
Fig. 6-8. Instruments in ControlDesk experiment. -121 -
Fig. 6-9. Layout of input signals in ControlDesk. -122 -
Fig. 6-10. Simulation of 4x4 information screen in ControlDesk. -122 -
Fig. 6-11. Display shows “Home” screen during real-time animation. -123 -
Fig. 6-12. Display shows “Audio Video” during real-time animation. -124 -
Fig. 6-13. Display shows “4x4 Info” during real-time animation. -124 -
Fig. 6-14. The real-time animation of 4x4 Information System interface. -125-
Fig. 7-1. The model-based design of the 4x4 Information System. -128 -
Fig. A-1. The 4x4 Information System display. - 148 -
Fig. A-2. Steering angle data changes. - 150 -

List of figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

A-3. Transfer gearbox data. - 150 -
A-4. Air suspension status. -151 -
A-5. Control panel and buttons. -151 -
A-6. TO settings button. -154 -
A-7. TO settings display. -154 -
A-8. HDC. - 155 -
A-9. Compass view. - 156 -
A-10. A scenario of off-road driving. - 157 -
B-1. Block definition diagram 1: network class. - 158 -
B-2. Block definition diagram 2: key class. - 159 -
B-3. Block definition diagram 3: sensor class. - 159 -
B-4. Block definition diagram 4: gateway_class. - 159 -
B-5. Block definition diagram 5: sensor_local connection_interface_class.
- 159 -

B-6. Internal block diagram 1: Driver Information System of Systems

overview. - 160 -
B-7. Internal block diagram 2: MOST System of Systems overview. - 160 -
B-8. Use case diagram 1: Driver Information System use case. -161 -
B-9. Use case diagram 2: 4x4 information use case. -161 -
B-10. Use case diagram 3: suspension information use case. -162 -
B-11. Text diagram 1: layout of the display. -162 -
B-12. Text diagram 2: air suspension selector. -162 -
B-13. Sequence diagram 1: return to home menu screen from other screens

(HL - B). - 163 -

List of figures

Fig.

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

B-14.

B-15.

B-16.

B-17.

B-18.

B-109.

B-20.

B-21.

B-22.

B-23.

B-24.

B-25.

B-26.

B-27.

B-28.

B-29.

B-30.

Sequence diagram 2: change to 4x4 information screen from other

screens (HL - B).

Sequence diagram 3: view steering angle (HL - B).
Sequence diagram 4: view steering angle (HL - W).
Sequence diagram 5: view steering angle (DL - B).

Sequence diagram 6: view steering angle (DL - W).

- 163 -

- 163 -

- 164 -

- 164 -

- 164 -

Sequence diagram 7: choose different views in 4x4 information screen

from home menu screen (HL - B).

- 165 -

Sequence diagram 8: view main gear and transfer gear change from

home menu screen (HL - B).

- 165 -

Sequence diagram 9: view terrain optimization (TO) settings from home

menu screen (HL - B).

- 165 -

Sequence diagram 10: display of hill descent control (HDC) from home

menu screen (HL - B).

- 166 -

Sequence diagram 11: display of suspension status from home menu

screen (HL - B).

- 166 -

Sequence diagram 12: display of differential status from home menu

screen (HL - B). - 166 -
Sequence diagram 13: an off-road driving example (HL - B). - 167 -
State machine diagram 1: Driver Information System. - 167 -
State machine diagram 2: off-road information. - 168 -
State machine diagram 3: displaying gear position. - 169 -
State machine diagram 4: displaying transfer gear status. - 169 -

State machine diagram 5: displaying centre and rear differential lock

information.

-170 -

Xi

List of figures

Fig. B-31. State machine diagram 6: displaying TO settings. -170 -
Fig. B-32. State machine diagram 7: displaying HDC status. -171 -
Fig. B-33. State machine diagram 8: chassis view. -171-
Fig. B-34. Activity diagram 1: getting to the 4x4 information screen. -172 -

Fig. B-35. Activity diagram 2: select access height and viewing of new height
information. -172 -

Fig. B-36. Activity diagram 3: view TO settings and change the TO mode. - 173 -

Fig. B-37. Activity diagram 4: view steering. -173 -
Fig. C-1. Stateflow diagram 1: Driver Information System. -174 -
Fig. C-2. Stateflow diagram 2: display off-road information. -175 -
Fig. C-3. Stateflow diagram 3: view main gear. -175-
Fig. C-4. Stateflow diagram 4: view transfer gear. -176 -
Fig. C-5. Stateflow diagram 5: view centre differential lock. -176 -
Fig. C-6. Stateflow diagram 6: view rear differential lock. -176 -
Fig. C-7. Stateflow diagram 7: view TO settings. -177 -
Fig. C-8. Stateflow diagram 8: view HDC status. - 177 -
Fig. C-9. Stateflow diagram 9: chassis view. -178 -

Xii

Acknowledgements

Acknowledgements

First and foremost, | would like to express my sincere gratitude to my supervisor,
Dr. R. Peter Jones. | am indebted to him for the opportunity to conduct research at
the University of Warwick. Without his consistent and illuminating instructions,
this thesis could not have reached its present form. His keen and vigorous academic
observation enlightens me not only in this thesis but also in my future study.

I am very grateful to Mr. Ross McMurran for allowing me to be involved in the
research project at the International Automotive Research Centre (IARC) and
providing me with useful knowledge of in-vehicle infotainment system.

I would like to express my heartfelt gratitude to Dr. Arun Chakrapani Rao who
has provided me with valuable knowledge in system modelling. He was
particularly gracious and responsive when | encountered problems or had
questions.

Sincere gratitude also goes to my colleagues at IARC: Mark Amor-Segan,
Gunny Dhadyalla, Dr. Yingping Huang, Dr. Jittiwut Suwatthikul, Dr. Suguna
Thanagasundram, Dr. Bo Wang, Dr. Caizhen Cheng; the former IARC members:
Dr. David Antory and Roopa Arun.

| appreciate the contribution to this thesis made in various ways by my
wonderful friends, in particular: Yue Li, Yupeng Wu, Xiang Yuan and Xiangyu

Kong.

Xiii

Acknowledgements

Special thanks go to my beautiful wife Nan Peng for her love, encouragement
and great confidence in me all through these years.

As always, the people who matter most are left until last — my beloved parents,
Yun Song and Chengzhu Guo. My deepest gratitude goes to my parents for their

endless and unconditional love. I will always love you.

Yue Guo

September, 2009.

Xiv

Declarations

Declarations

| hereby declare that the material in this thesis has not been submitted for a higher

degree at any other university. This thesis entirely contains research work carried

out by Yue Guo under the supervision of Dr. R. Peter Jones, unless references are

given.

Some parts of the following chapters were submitted for publication:

Chapter 3:

Chapter 4:

Yue Guo, Arun Chakrapani Rao and R. Peter Jones, “Architectural
and Functional Modelling of an Automotive Driver Information
System Using SysML,” in Proceedings of 2008 IEEE/ASME
International Conference on Mechatronic and Embedded Systems
and Applications, pp. 552-557, Beijing, China, October. 2008.

Yue Guo, Arun Chakrapani Rao and R. Peter Jones, “Architectural
and Functional Modelling of an Automotive Driver Information
System Using SysML,” in Proceedings of 2008 IEEE/ASME
International Conference on Mechatronic and Embedded Systems
and Applications, pp. 552-557, Beijing, China, October. 2008;

Yue Guo and R. Peter Jones, “A Study of Approaches for Model
Based Development of an Automotive Driver Information

System,” in Proceedings of 2009 IEEE International Systems

XV

Declarations

Chapter 5:

Conference, pp. 267-272, Vancouver, British Columbia, Canada,
March. 2009.

Yue Guo and R. Peter Jones, “A Study of Approaches for Model
Based Development of an Automotive Driver Information
System,” in Proceedings of 2009 IEEE International Systems
Conference, pp. 267-272, Vancouver, British Columbia, Canada,

March. 2009.

XVi

Abstract

Abstract

Over the past decades, the adoption of electronic systems for the manufacturing of
automotive vehicles has been exponentially popularized. This growth has been
driven by the premium automobile sector where, presently, diverse electronic
systems are used. These electronic systems include systems that control the engine,
transmission, suspension and handling of a vehicle; air bag and other advanced
restraint systems; comfort systems; security systems; entertainment and
information (infotainment) systems. In systems terms, automotive embedded
electronic systems can now be classified as a System of Systems (SoS).
Automotive systems engineering requires a sustainable integration of new methods,
development processes, and tools that are specifically adapted to the automotive
domain. Model-based design is one potential methodology to carry out design,
implement and manage such complex distributed systems, and their integration into
one cohesive and reliable SoS to meet the challenges for the automotive industry.
This research was conducted to investigate the model-based design of a 4x4
Information System, within an automotive electronic SoS. Two distinct
model-based approaches to the development of an automotive electronic system are
discussed in this study. The first approach involves the use of the Systems
Modelling Language (SysML) based tool ARTISAN Studio for structural

modelling, functional modelling and code generation. The second approach

XVii

Abstract

involves the use of the MATLAB based tools Simulink and Stateflow for
functional modelling, and code generation. The results show that building the
model in SysML by using ARTISAN Studio provides a clearly structured
visualization of the 4x4 Information System from both structural and behavioural
viewpoints of the system with relevant objects. SysML model facilitates a more
comprehensive understanding of the system than the model built in
Simulink/Stateflow. The Simulink/Stateflow model demonstrates its superior
performance in producing high quality and better efficiency of C code for the
automotive software delivery compared with the model built in ARTISAN Studio.
Furthermore, this Thesis also gets insight into an advanced function development
approach based on the real-time simulation and animation for the 4x4 Information
System. Finally, the Thesis draws conclusions about how to make use of

model-based design for the development of an automotive electronic SoS.

xviii

Abbreviations

Abbreviations

ABS Antilock Braking System

CAN Controller Area Network

ECU Electronic Control Unit

HDC Hill Descent Control

HEV Hybrid Electric Vehicle

HLDF High Level Display Front

HMI Human Machine Interface

LCD Liquid Crystal Display

MOST Media Oriented System Transport
OMG Object Management Group

RTE Run Time Error

RTW Real-Time Workshop

RTWEC Real-Time Workshop Embedded Coder
SE System Engineering

SoS System of Systems

SoSE System of Systems Engineering
SysML Systems Modelling Language

TO Terrain Optimization

UML Unified Modelling Language

Xix

Chapter 1

Chapter 1

Introduction

In the late 1880s, the first automobile was built in Mannheim, Germany, by Karl
Benz. In 1908, the Ford Model T which is generally regarded as the first affordable
automobile was built. In these early stages of the automotive industry, the use of
electrical systems on the vehicle was very limited, supporting ignition and lighting
only [1]. Those vehicles provided minimal driver information through an analogue
display. For example, the Ford Model T only included basic instruments such as
mechanical speedometer, engine temperature and fuel level indicator as the
information system. There was no entertainment system at that time.

The first practical car radio was believed to be invented in the early 1920s by
William Lear. It was the first and only entertainment system on the vehicle during
that period. In the 1960s, the tape player was installed and the CD player was first
introduced in 1984 [2].

The electrical system evolved slowly until the microprocessor was introduced
in 1971. One of the first microprocessor applications in cars was an advanced
ignition system built by Delco-Remy for the 1977 Oldsmobile Toronado [3]. As

part of electronic control unit (ECU), the microprocessor can process more

Chapter 1

information and display it to the driver. The ECU was used for engine management
for the first time at that period. Other applications of ECUs in vehicles included
transmission-shift control, Antilock Braking System (ABS) and instrument cluster
as shown in Fig. 1-1. However, in the early days of automotive electronics, each
new function was implemented as a stand-alone ECU which is a subsystem

composed of a microprocessor, memory, input and output [4].

Transmission-shift Control [« » Engine Management
A A
A y

Antilock Braking System Instrument Cluster

Fig. 1-1. Conventional data transfer.

As shown in Fig. 1-1, data exchanges through point-to-point links between
ECUs. This requires a large number of wires and therefore soon reached its
practical limits. Besides, the amount of associated connectors is very difficult to
manage [5, 6].

In response to these practical limits, the industry moved from point-to-point
data communication to data bus technology. In the mid-1980s, Bosch developed
the Controller Area Network (CAN), one of the first and most enduring automotive
control networks [7]. CAN is a communication technique that consists of a twisted
pair of copper wires in which data is transmitted on a special network as shown
schematically in Fig. 1-2 [1]. Far fewer connections are needed by using this CAN
network on the vehicle. The room saved can be used to accommodate more sensors,
actuators and ECUs. As a result, more vehicle information can be processed and

delivered to the driver.

Chapter 1

Transmission-shift Control Engine Management

CAN

Antilock Braking System
Traction Control System Instrument Cluster
Electronic Stability Program

Fig. 1-2. CAN bus topology.

Later in the 1990s, a new network protocol called MOST was introduced in the
automotive vehicles [8]. MOST is the acronym of Media Oriented Systems
Transport. It is a fiber-optic network protocol with capacity for high-volume
streaming. It is designed for multimedia applications in the automotive
environment. MOST gives the advantages of ease of use, cost effectiveness and
flexibility. It supports real-time and high volume data transmission such as data
from a navigation system and from the DVD player which made its first
appearance in vehicles in the late 1990s.

As a result of the emergence of electronic control and networking technologies,
the past 30 years have witnessed a near exponential growth of in-vehicle,
embedded electronic systems as shown in Fig. 1-3 [9]. This growth has been driven
by the premium automobile sector where, presently, electronics and software
account for around 40% of the value of some vehicles [10]. Current in-vehicle
electronic systems are diverse and include: systems that control the engine,
transmission, suspension and handling of a vehicle; air bag and other advanced
restraint systems; comfort systems; security systems; entertainment and
information (infotainment) systems [4]. Such wide ranging functionality is enabled
by networks of up to 50, or more, ECUs that are distributed throughout a vehicle.

Individual ECUs host software that is required to interact with devices such as

Chapter 1

sensors and actuators, and other ECUs, within time constraints. The ECUs are
linked by a communication network, consisting of several data bus technologies
that provide transmission rates which have also been subject to near exponential
growth. In systems terms, automotive, embedded electronic systems can now be
classified as a System of Systems (SoS) [11]. SoS means large-scale concurrent
and distributed systems the components of which are systems themselves [12]. A
detailed description of definition and characteristics of SoS will be given in

Chapter 2.

E/E Content
A

Function
osc ¢ Growth
Lane- g
keeping . DiagRfostics
Traction

Rear Multi- Is6 Control
media gateiite

Radi
Auto lights . N
) Adaptive
Auto wipers Headlam

In Car PC

. Water
Pump

EM Valves
IVDC

E-Connectivity

Steer-by-
Wire
Volcs Activall Brake-by-
ABS Adv. oice Activation Wire
Instruments i e Restraints Blind Spot
. ESP Keyless Detection Fuel Cell
smission Control EPAS Vehicle

1980 1990 2000 2010 Year

Surround Acc
Sound
. Telematics
Adaptive PT
suspension

eater

Buses Active
Navigatio steering

Security

Engine

Fig. 1-3. Evolution of vehicle electrical/electronic features (adapted from [11]).
The design, implementation and management of such complex distributed
systems, and their integration into one cohesive and reliable SoS are presenting
new challenges for the automotive industry. To meet these challenges, it is
necessary to develop new methodologies for capturing the requirements for the SoS,

at the outset of the product development process, and conveying the requirements

Chapter 1

through the stages in the product development process. Model-based design is one
such potential methodology [13-16].

At present, model-based design is increasingly replacing system specification
in plain text form. Such a model precisely formulates the specification documents
and avoids interpretation leeway. Most importantly, the reliability and functionality
of automobiles are largely dependent on software and electronic applications in
recent years [17]. Such a model is unambiguous because it clearly defines the
structure and functionality of the system or SoS by using advanced modelling
techniques such as various modelling languages and tools [18]. It helps the
engineer to gain the understanding of the system through a graphical visualization
before the development. Thus, the entire automotive electronic system can be built
up optimally. Moreover, auto coding is the trend of automotive software
development. The development cycle has been reduced by more than half over the
past two decades which has benefited from this technique [19, 20]. Various types
of code can be generated from the model through the proper tools. Therefore, such
a model can also shorten the development cycle from the code generation aspect.

The Unified Modelling Language (UML) [21] is a modelling language which
has been playing an important role in software engineering. It has the potential to
support innovative SoS modelling which ties the architecture, design and
verification aspects in a unified perspective [22]. However, there are some
problems and challenges with UML, such as syntactic and semantic overlap, and
immature constructs [23, 24]. In order to overcome these challenges and enable it
to handle the system engineering, the Systems Modelling Language (SysML) [25]
is adapted from UML. The final SysML specification was released in April 2007

by the Object Management Group (OMG) - the US-based industry standards body

Chapter 1

that manages and configures the SysML. SysML is defined on the website of the
OMG as “a general purpose graphical modelling language for specifying, analyzing,
designing and verifying complex systems that may include hardware, software,
information, personnel, procedures and facilities” [26]. SysML is intended to unify
the various modelling languages currently used by systems engineers in a similar
manner to how UML unifies the modelling language used in the software industry.
SysML extends the application of UML to systems which are not purely software
based, and can in particular be applied to design heterogeneous embedded systems
and SoS [18, 27].

At present, system engineers use a wide range of modelling languages, tools
and techniques such as MATLAB/Simulink [28] which is a well known modelling
and simulation environment. MATLAB is used in a wide range of applications,
including signal and image processing, communications, control design, test and
measurement. Simulink which is integrated with MATLAB provides an
environment for modelling, simulating and analyzing multi-domain dynamic
systems. In particular, they can be used for model-based design for control systems.
Coupled with the Real-Time Workshop, Simulink facilitates the automatic code
generation for real-time implementation of embedded systems. Stateflow, the other
product developed by the MathWorks extends Simulink with a design environment
for developing event-driven systems that contain control and supervisory logic.

This Thesis is going to explore model-based design. SysML based tool
ARTISAN Studio [29] will be investigated for structural modelling. Both
ARTISAN Studio and MathWorks Simulink/Stateflow will be explored and
compared for functional modelling. Their capacity for the code generation will also

be examined. The static analysis tool, PolySpace [30] is utilized to perform

Chapter 1

automatic code verification for the C code generated from both ARTISAN Studio
and Simulink/Stateflow.

The research reported in this Thesis will be conducted via a case study
involving the model-based design of a “4x4 Information System”, which is
incorporated into the infotainment system installed in high-end premium Land
Rover vehicles.

Having investigated the model-based design of the 4x4 Information System, the
ability to easily construct a real-time animation of the system from the
automatically generated C code is examined by using dSPACE ControlDesk [31].
The Thesis presents the outcome of this research and draws conclusions about how
to make use of model-based design for the development of an automotive
electronic SoS.

This Thesis is structured as follows:

Chapter 2 provides background literature on the System and SoS, System
Engineering (SE) and System of Systems Engineering (SoSE), automotive system
development process, and the modelling languages used in this research.

Chapter 3 presents an overview of the Driver Information System and a
detailed description of its 4x4 Information System chosen as the pilot study for this
Thesis.

Chapter 4 discusses two distinct model-based approaches to automotive
electronic system development. The first approach involves the use of the SysML
based tool ARTISAN Studio for structural modelling, functional modelling and
code generation. The second approach involves the use of the MATLAB based
tools Simulink/Stateflow for functional modelling, and code generation. In this

chapter, the advantages and disadvantages of two approaches for the development

Chapter 1

of an automotive electronic SoS are explored and compared. Conclusions are
drawn on how to make use of the model-based design to meet the challenges in the
automotive industry.

Chapter 5 demonstrates the coding implementation through both approaches
in order to further investigate functional modelling. The attention focuses on the
comparison of quality and efficiency of the code.

Chapter 6 explores the real-time simulation and animation of the 4x4
Information System interface by using dSPACE ControlDesk and the C code which
is generated from the Simulink/Stateflow model.

Chapter 7 provides the conclusion of the Thesis and discusses the future

work.

Chapter 2

Chapter 2

Literature review

In this chapter, the literature of System, SoS, SE and SoSE are reviewed. The
automotive electronic system development process is discussed with current and
foreseeable challenges. New technologies to address these challenges are also

discussed.

2.1 System

2.1.1 Concept of System
In this section, a detailed account of various definitions of System is given from
published literature in various domains. How Systems have been clarified in
various domains is detailed.

Various definitions have been used for systems. In [32], a system has been
defined as a set of interrelated elements working together for some purpose.
Examples of systems can be seen in various domains, such as a biological system, a

management system and an automotive powertrain system.

Chapter 2

In biology, a system could be a group of organs that work together to perform
some function, such as the digestive system. All these systems have inputs, outputs,
and maintain a basic level of equilibrium.

In business, a business component system is a set of cooperating business
components to deliver a solution to a business problem, for example, an invoice
management system or a payroll system.

In science, a system is a group of interacting, interrelated or interdependent
elements forming a complex whole. An ecosystem is an example of a system in
science.

The element is the basic component of a system. A system element can be
either physical or conceptual [33]. It is irreducible, i.e., it can not be made by the
other elements. An element which has no relationship with any other element of the
system is not recognised as a part of that system. The components of a system are

as shown below in Fig. 2-1.

| Subsystem 1| | Subsystem 2| | Subsystem 3| ‘ Level 1

| Subsystem 4| | Subsystem 5| | Subsystem 6| ‘ ‘ Level 2

Fig. 2-1. A representative for the system structure.

A system could consist of one or more subsystems. Subsystems could be made
up by the lower level subsystem or elements which is the basic component of a

system [34]. The System can be viewed at different levels as shown in Fig. 2-1.

-10 -

Chapter 2

Vehicle System
I

| | |

| Powertrain system | | Chassis system | | Body system | | Information system |
I I

| | | | |

|Transm|sswn| | Engme | Suspensmn | Brake |NaV|gatlon system| Driver information

system
| Fuel system || Cooling system” Ignltlon system | Starter notor ﬁ

Fig. 2-2. Vehicle system.

Fig. 2-2 is an example vehicle system. This system consists of four subsystems
which are the Powertrain System, the Chassis System, the Body System and the
Information System. Suspension and brake are subsystems of the chassis system. A

brake system has two elements which are disc and caliper.

Engine System

[

Fuel system [| Cooling system|| Ignition system | (Starter motor

Fan system

Fig. 2-3. Engine system.

Radiator

A cooling system is one of the subsystems in the engine system as shown in Fig.
2-2. It can be viewed at a more detailed level as shown in Fig. 2-3. In this diagram,
the cooling system is a subsystem of the engine system and it has the fan system
and radiator as its component. Therefore, it can be seen that system is a relative
concept. It can be a small system consisting of just one component or a large

system with several subsystems.

-11 -

Chapter 2

Systems can be classified in many different ways. From the viewpoint of their
basic properties, systems can be divided into static or dynamic, linear or nonlinear,

continuous or discrete and so on.

2.1.2 Characteristics of a System

Environment

\ i

Subsystem >

Inputs / \ Outputs
Inleraction

Subsystem < Subsystem >

-

Yy

System

Fig. 2-4. A general depiction of a system.

A general depiction of a system is as shown in Fig. 2-4. The characteristics of a
system are shown in this diagram. The subsystem is a set of elements, which is a
system itself, and a part of the whole system. Each subsystem has its own function.
Therefore, interaction within each subsystem should be stronger than with other
subsystems. A system exists within an environment. It has a boundary separating
itself from the external disturbance within its environment [33].

Every system interacts with its environment through two groups of interactions.
The first one originates outside the system and does not depend on what happens in
the system directly. This group of interactions is called the inputs to the system.
The other group of interactions is generated by the system. This group of
interactions is called outputs of the system. Output is the way by which systems

affect the environment. A system returns output to its environment as a result of its

-12 -

Chapter 2

functioning [35]. Each system has a certain input and output. Systems receive

inputs and generate outputs [33].

Accelerate demand — Torque

Vehicle speed
Transmission EEEEE———

A Y

Brake demand — | Engine

Gear settings ———»|

Powertrain System

Fig. 2-5. Powertrain System elements.
Fig. 2-5 is an example showing the characteristics of the Powertrain System.
Accelerate demand, brake demand and gear settings are the inputs. Engine and
transmission are the subsystems and they interact through the torque change.

Vehicle speed is the output of this system.

2.1.3 Discussion

Visualising a set of elements and their interrelationships as a system allows
engineers look into the essential characteristics of a specific situation. Engineers
study general properties of systems by emphasizing the system’s inputs and outputs
to exclude of external disturbance and all other details [33]. Nowadays, a system is
becoming more and more complex. An example of Driver Information System is

shown in Fig. 2-6.

Vehicle System
I

| Powertrain system | | Chassis system | | Body system | | Information system |
|Transm|ssmn| | Engme | Suspensmn | Brake | |NaV|gat|on system| SD;S\{g:nlnformatmn

| Fuel system || Cooling system” Igmtlon system | Starter notor ﬁ

Fig. 2-6. Automotive Driver Information System.

-13 -

Chapter 2

The Driver Information System on the modern vehicle provides the driver with
the ability to view information and status relating to the Powertrain System, the
Chassis System and the Body System. For example, as shown in Fig. 2-6, the
Driver Information System can display the gear selection and suspension height to
the driver. A large amount of interaction and data exchange are needed to facilitate
such advanced functions. The data delivery requires additional connection among
these subsystems on the vehicle. Consequently, the automotive electronic system
quickly expands to the very large or super system. The conventional approach to
realize the automotive system as a system to carry out analysis and design activities
is no longer suitable for very large modern automotive electronic systems.
Therefore, in order to look into the causality and interrelationship of a large system
or super system, developers investigating it as a SoS is discussed in the next

section.

2.2 System of Systems
This section provides a detailed description of definition and characteristics of SoS.

2.2.1 Concept of System of Systems

r—————---- |
Powertrain System [~ — - Information System |
|- - > ———— — = -
[
re
- |
b
- |
e
Chassis System — — o Body System

Fig. 2-7. Automotive System of Systems.
As shown in Fig. 2-7, an automotive system is presented as a typical SoS. It

contains four main systems which are Powertrain System, Chassis System,

-14 -

Chapter 2

Information System and Body System. Each system can work independently and
has its own functions. They also connect together as a vehicle in order to realize
some higher level functions which each system can not achieve alone. Some
connections between the systems are weak whilst the connection is strong between
the subsystems and elements inside the system. These connections can be changed,
added or removed without affecting the function of the whole SoS. For example,
with the development of the automotive industry, an airbag is a standard piece of
equipment in the vehicle and it is a component of the Body System. It requires the
signal from the Chassis System for deploying the airbag. Therefore, the Chassis
System and the Body System have to collaborate in order to enable the correct
function of the airbag. It is an example that shows systems are required to be

integrated as an automotive SoS to deliver some advanced functions.

2.2.2 Characteristics of System of Systems
Five different characteristics have been proposed in [12] to distinguish a SoS from

a System. They are autonomy, belonging, connectivity, diversity and emergence.

2.2.2.1 Autonomy

The systems in a SoS are integrated and collaborate to achieve the goal of the SoS.
Systems within a SoS have individual functions and a level of autonomy. As shown
in Fig. 2-7, a typical automotive SoS consists of four systems which are the
Powertrain System, Chassis System, Information System and Body System. Each
system has independent functions. For example, the Powertrain System has certain
inputs such as accelerate demand, brake demand and gear settings and outputs such
as the vehicle speed and so on. It has the ability to work and maintain its own

functions independently.

- 15 -

Chapter 2

In contrast, within a system, there is little or no autonomy for subsystems or

elements of the system. Therefore, autonomy is one of the characteristics of SoS.

2.2.2.2 Belonging

Powertrain System

Chassis System — — - Body System

Fig. 2-8. Belonging of automotive System of Systems.
As shown in Fig. 2-8, belonging is another characteristic of SoS. Developers
choose what systems to belong to a SoS. Specifically, new systems can be added
into a SoS whilst one or more systems can be removed from a SoS without
affecting the function of the whole SoS. Some of the latest systems in the vehicle
such as the Information System and its various subsystems like navigation have
been gradually integrated into a vehicle. This means that they could either be

present in a vehicle or not.

2.2.2.3 Connectivity

r———-——-—--7 I
Powertrain System — — Information System I
— —_—— —_——_——a
7
_ [
- |
Chassis System — — Body System

Fig. 2-9. Connectivity of automotive System of Systems.

-16 -

Chapter 2

Some connections between systems in the SoS are weak. They can be added,
removed or changed. In Fig. 2-9, dashed lines show some connections between
systems in the automotive SoS. These connections can be enabled or disabled at
any time depending on the different requirements. To enable these connections,
more information can be delivered and used between different systems.

For example, after enabling the connection between the Powertrain System and
the Information System, the engine speed and gear setting can be viewed from the
Information System. The suspension information like vehicle height can be
displayed through the connection between the Chassis System and the Information
System. The central locking information can be displayed as well if connection is
enabled between the Body System and the Information System. Furthermore, in
order to enable certain functions several systems need to be connected together. For
example, if people do not wear the seat belt when they start the engine and drive,
some models of vehicle give a warning flash or sound. It means this function needs
at least the Powertrain System, the Body System and the Information System to
collaborate together in order to enable this function. Besides, these connections can
be removed if people choose not to view this information in the Information

System and it will not affect the function of automotive system as a SoS.

2.2.2.4 Diversity

Infotainment system

l

|

Information system Entertainment system
Navigation system | [Instrument cluster Phone CD DVD

Fig. 2-10. Diversity of automotive System of Systems.

-17 -

Chapter 2

The function of a system is usually very limited but the SoS can satisfy several
different requirements at the same time and present various functions. The
automotive Infotainment System shown in Fig. 2-10 is such an example. This SoS
not only displays some necessary information like engine speed, temperature and
fuel level but also provides navigation information, radio, CD and DVD which
make the Information System merge with the Entertainment System. Within an
automotive SoS, information can be delivered and used between different systems
to enable many advanced functions which satisfy various requirements from safety,

performance, comfort, etc.

2.2.2.5 Emergence

Input 1 System 1 Output 1
Input 1

Input 2 Output 2 —» System1 |- — - System2
System 2 Inout 2 OUTPUT
p—> |

Input 3 / I >
Input 3 Output 3
pu System 3 P —> +

M System3 [~ — - System4
Input 4 System 4 Output 4

OUTPUT = Output 1 +2 +3 +4

Fig. 2-11. Emergence of automotive System of Systems.
The input and output of a system is predictable. This is because the connection
within a system is fixed and very strong so that the causality is determined. But in
the SoS, due to the belonging and connectivity characteristics, the structure and
interaction inside the SoS are changeable. Therefore, the behaviour of the SoS can
not always be predicated by aggregating the inputs and outputs of all individual
systems. For example, consider a SoS consisting of four systems which is shown
on the left of Fig. 2-11. The inputs and outputs of each system are represented as

the arrowed lines. When these systems are grouped together, their output as a

-18 -

Chapter 2

whole SoS does not equal the aggregation of the individual outputs. It is critical to
identify and study the interaction and connection of the systems therein in order to
predict the behaviour of this SoS. It is especially crucial when testing and proving
the behaviour of the SoS. In the case of an automobile, the introduction of a large
number of electronic components leads to the emergence of new properties of the
automotive electronic SoS which influence the behaviour of such an SoS. The
interaction and integration of the automotive electronic SoS have to evolve to

accommodate the increasing complexity and other emergent properties.

2.2.3 Summary

Five different characteristics of SoS have been discussed. They are autonomy,
belonging, connectivity, diversity and emergence. A large system can be viewed as
a SoS when one or more characteristics are satisfied. Such a SoS may include new,
modified, or unmodified systems; and some systems may be evolving and their
future is unpredictable. These complexities of a SoS cause difficulties in
communicating requirements and integration [36]. To handle the development and
modification of a SoS consideration needs to be given to the SE and SoSE which

are discussed in the next section.

2.3 System Engineering and System of Systems Engineering

SE is an interdisciplinary approach and means to enable the realization of
successful systems [37]. The discipline of SE has been recognized for 50 years as
essential to the development of complex systems [38]. Since its recognition in
1950s [39], SE has been applied to products as varied as ships, computers and
software, aircrafts, environmental control, urban infrastructure and automobiles

[40-42]. The need for SE emerged with the increase in complexity of systems and

-19 -

Chapter 2

projects. A system can become more complex due to an increase in size as well as
with an increase in the amount of data, variables, or the number of fields that are
involved in the design [43, 44]. The development of the automobile is such an
example of SE.

SE encourages the use of tools and methods to better comprehend and manage
complexity in systems. Some examples of these tools are listed below [45-48]:

e Modelling and Simulation,

e Optimization, System dynamics,
e Systems analysis,

e Statistical analysis,

e Reliability analysis,

e Decision making.

[18] indicates “three evils” of SE: complexity, a lack of understanding and
communication issues. Models play important and diverse roles in SE to address
“three evils”. A model can be defined in several ways, including [49]:

e An abstraction of reality designed to answer specific questions about the real
world.

e Animitation, analogue, or representation of a real world process or structure.

e A conceptual, mathematical, or physical tool to assist a decision maker.

Building the model in the above ways can allow engineers to identify
complexity, aid understanding and improve communication. In addition,
model-based design integrates modelling into a design, development and validation
process as shown in Fig. 2-12. It can be applied to a number of different tools and

methodologies [13]. The V-model has been a very popular process in SE and it has

-20 -

Chapter 2

been very successful at playing the role of designing, developing, and deploying

new equipment or systems to satisfy specific needs or requirements.

Development

Fig. 2-12. V-model in System Engineering.

At present, systems engineers are facing challenges with the scope, scale, and
shape of systems problems in large scale, complex, networked environments.
Engineers are increasingly required to expand the capabilities of the system
through the integration of systems into SoS to meet various requirements. Because
SoS engineers are starting with existing systems with independent owners,
objectives and development processes, they are faced with a new set of conditions
for their engineering processes [50].

e Increased chance of latent error, bugs, or mismatches.
e Increased number of ways the SoS can fail.

e Decreased user ability to discern failures.

e Increased need for complex systems.

In addition, there are issues beyond complexity that need to be addressed.
These include: ambiguity; human social dynamics; sustainability; and methodology
[51]. Although SoSE is a term that has been used to represent a set of developing

processes and methods for designing and implementing solutions to SoS problems

-21 -

Chapter 2

[52], it has not received universally accepted definition, underlying perspectives
related to philosophy, methodology, or standards [53]. [54] has concluded that the
current state of SOSE development appears to be bifurcated into two separate paths.
The first path engages SoSE from a technically dominated perspective, e.g.
interoperability, information technology, net-centricity and technical integration
[55]. Producing an “integrated product” is the fundamental purpose. This path
utilizes “hard systems” thinking and development and emphasis is placed on
objectivity in results and their interpretation. In contrast, the second path is more
closely related to “soft systems” thinking, dominated by concerns with human,
social, contextual and higher level inquiry to produce purposeful responses to
complex system problems [56, 57]. Attention is focused on the interpretative nature
of understanding complexities in complex problem domains.

Although there is not a broadly accepted approach, it appears that the
convergence can be found in the following points which are representing the
primary focus in SOSE [54].

e SoSE involves the integration of multiple, potentially previously independent,
systems into a higher level system.

e SoSE enables the collaboration of systems in a SoS and generates capabilities
beyond what any of the constituent systems is independently capable of
producing.

e SoSE brings systems together in order to perform a higher level
mission/purpose for which each member system plays an integral role, but
none of the contributing systems can accomplish independently.

It is discussed and indicated in [58, 59] that the SE processes as documented in

the SE standards: IEEE 1220, EIA/IS-632, EIA-632, ISO 15288 [60-65], and the

-22 -

Chapter 2

guide: 1SO TR 19760 [66], are a necessary and sufficient set of processes to
address above objectives in SOSE. However, it has to be recognized that SoSE is
carried out under some level of uncertainty and it involves factors in multiple levels
and domains. Compared with traditional SE that seeks to optimize an individual
system, SOSE seeks to optimize a network of various systems brought together to
meet specific requirements [67, 68]. Focusing on the automotive industry, attention
has to be given to the new techniques in model-based design in order to allow it to
evolve and be capable of managing automotive electronic SoS development which

is investigated in this Thesis.

2.4 Automotive system development

This section aims to provide an overview of the automotive electronic system
development process. The modelling languages and tools which are used in the

development are also discussed in this section.

2.4.1 Overview

Modern cars are now equipped with more and more functionality dependent on
embedded electronics, ranging from powertrain and chassis control to body
comfort and infotainment. The size and complexity of software for these embedded
electronic systems are increasing rapidly with their cost raising from 10% of the
overall cost in 1970 to 40% in 2010. 90% of innovations in the automotive industry
are driven by electronics and 80% among them are software [69]. Quality is a big
challenge in automotive software development. The software failure of automotive
systems is severe. Software errors led directly to car recalls. According to the
report [70], one-third of the recalls in recent years caused by software errors. More

efforts are needed on software verification and testing. Another challenge concerns

-23 -

Chapter 2

the reduction of the development time [71]. The automotive market is shared by
manufactures, suppliers and tool vendors, and all need shorted processes which
favour the exchangeability among them and reuse of software in different product
lines. They also need to follow requirements along the development, from the
specification to design and coding, to anticipate and communicate changes

throughout teams [72].

2.4.2 Model-based design

Model-based design is a widely used and accepted approach for automotive system
development which has been demonstrated in the literature [13, 72-75] and
references therein. Model-based design helps address the challenges of embedded
system development [16]. Using models at the core of the development process
provides engineers with insight into the dynamics and algorithmic aspects of the
system through simulation. In addition, the models are also commonly used [76]:

e as executable specifications;

e to communicate (sub-)system requirements and interface definitions;

e to provide virtual prototypes or models of the complete system;

e for automatic code generation of embedded software algorithm or logic.

Requirement System

System Design

Testing
& Simulation

Software Coding

Fig. 2-13. Automotive electronic system development process.

=24 -

Chapter 2

Fig. 2-13 shows the core process of the automotive electronic system
development, i.e. a V-diagram. The initial step is the requirement capture. The
importance of requirement engineering has been well acknowledged in [77-83]. All
projects are driven by requirements. That is, if the requirements are not clearly
understood, the system cannot be validated correctly. The modelling language is
used to produce the model of the system. Code generated from the model is
followed by the system design and simulation. Auto coding is one of the benefits
from the model building as it significantly reduces the development cycle. When
the code generation is completed, the software and system development and
integration can carry on. The development process will then move to the test. In the
test stage, the development cycle has to move back to the beginning to check the
requirement if there is any error found. This process will be very costly.
Consequently, requirement capture, system design and simulation are essential in
the whole development process [74]. However, the complexity of automotive
systems is increasing. In systems terms, automotive, embedded electronic systems
can now be classed as a SoS. The design, implementation and management of such
complex distributed systems, and their integration into one cohesive and reliable
SoS are presenting new challenges for the automotive industry.

To meet these challenges, it is necessary to investigate and refine the
model-based design for capturing the requirements for the SoS, at the outset of the
product development process, and conveying the requirements through the stages
in the product development process.

As a potential methodology to address the challenges in automotive systems
and software development, model-based design has been playing an important role

to identify complexity, aid understanding and improve communication [18]. In

-25 -

Chapter 2

order to build the model effectively, it is essential to have a common language to
carry out the modelling.

MATLAB/Simulink is a well known modelling and simulation environment.
MATLAB is used in a wide range of applications, including signal and image
processing, communications, control design, test and measurement. Simulink
which is integrated with MATLAB provides an environment for modelling,
simulating and analyzing multidomain dynamic systems. In particular, they can be
used for model-based design for control systems. Stateflow, the other product
developed by the MathWorks extends Simulink with a design environment for
developing event-driven systems that contain control and supervisory logic.
MATLAB/Simulink/Stateflow support the development and definition of system
and software components, their connections and interfaces by graphical models
using editable, hierarchical block diagrams and Stateflow diagrams and provide the
necessary means of description, computation techniques and interpreters/compilers
[84]. Such models can be simulated, i.e. executed. Coupled with Real-Time
Workshop (RTW), source code is automatically generated for real-time

implementation of embedded systems.

2.4.3 Auto coding and code verification

Traditional automotive software development involves paper designs and hand
coding followed by verification activities such as code inspections, structural code
coverage analysis, and unit/integration tests. Many of these activities lack tool
automation and involve manual interaction. Thus they are error prone and time
consuming [85]. Auto coding is a powerful tool for software and system developers.
It facilitates the quick and easily source code generation [86, 87]. According to user

reports there are increases in efficiency of 20-50% due to model-based

- 26 -

Chapter 2

development with automatic code generation in comparison to traditional software
development [74].

Furthermore, code checking and analysis tools have recently emerged. They
allow software engineers to easily verify the generated code using static analysis
techniques. The term static analysis means automatic methods to reason about
runtime properties of source code without executing it [88]. It is commonly used
during implementation and review to detect software implementation errors.
Similar in behaviour to a spell checker or grammar checker in a word processor,
static analysis tools detect faults within source code modules. Static analysis has
been demonstrated to reduce software defects by a factor of six [89] and detect
60% of post-release failures [90]. Static analysis can detect errors such as buffer
overflows and security vulnerabilities [91, 92], memory leaks [93], timing
anomalies [94], as well as other common programming mistakes, 40% of which
will eventually lead to a field failure. It has been reported that static analysis can
remove upwards of 91% of errors within the source code. This analysis can be
performed very early in the software design process for finding software reliability
breaches before functional tests are performed, or applied later for a sanity check
[95, 96].

The first industrial tool for detecting runtime errors using static verification of
dynamic properties was PolySpace Verifier [97]. This tool has been commercially
available since 1999. It addresses two essential needs of embedded software
development:

e Static verification: it statically predicts specific classes of runtime errors and

sources of non-determinism.

-27-

Chapter 2

Semantic browsing: it statically computes data and control flow to improve
program understanding, ease verification and demonstrate the compliance of
the program within industry standards (SIL, DO178-B, MISRA, etc).

Run-time errors detected by PolySpace Verifier include:

Pointer dereferencing issues (null pointers, out-of-bounds pointers).
Out-of-bounds array accesses.

Read access to non-initialized data.

Access conflicts on shared data.

Invalid arithmetic operations: division by zero, square root of a negative
number and so on.

Overflow and underflow on integers and floating-point numbers.

Unreachable code.

Static verification checks each code section and provides a detailed diagnostic

for each operation that falls into one of four categories:

Reliable: the operation under consideration will never fail because of a runtime
error.

Incorrect: the operation under consideration will fail.

Questionable: the operation under consideration may fail under certain
circumstances.

Unreachable: the operation under consideration cannot be activated.

The literature studied indicates that PolySpace demonstrated a superior

detection rate [98-101]. PolySpace also has a graphical interface. The tools set

PolySpace Viewer can generate and analyse the report, and navigate in the source

code. With a static analysis tool like PolySpace integrated into the model-based

- 28 -

Chapter 2

design process, the engineer is much more capable of developing flawless software

for the automotive electronic system.

2.4.4 Discussion

This subsection discusses how to promptly respond to the rapid growth of
in-vehicle, embedded electronic systems in terms of electronic system
development.

Model-based design with auto coding has been very successful at playing the
role of designing, developing, and deploying new equipment or systems to satisfy
specific needs or requirements in system level development. From a study of the
literature, model-based design is also considered as a necessary and sufficient set of
processes for SOSE. Focusing on automotive electronic system development, the
automotive electronic systems can now be classified as a SoS due to a near
exponential growth of in-vehicle, embedded electronic systems. Such an electronic
system has complex architecture. The development of such a system requires the
integration of electronic components and software, the collaboration between the
system engineer and the software engineer. Moreover, during the development
process, different developers require different pieces of information, depending on
what their roles are in the system [18]. Also, for the purpose of analysing a system,
it is important to observe a system from many different aspects or viewpoints.
Model-based design by using MATLAB Simulink/Stateflow is more capable of
handling functional modelling, physical component modelling at a detailed level
but it lacks the structural modelling capability. To develop such complex
distributed systems, and their integration into one cohesive and reliable SoS
requires new modelling languages, tools and methods to refine model-based design

technology to suit the development of an automotive electronic system. Against

-29-

Chapter 2

this background, SysML which is adapted from UML is proposed in this Thesis for
requirement capturing and performing structural and functional modelling for

automotive electronic system development.

2.5 Systems Modelling Language

The UML is a modelling language with many graphical design notations and it is
mainly used for software development. Object orientation is the key feature of
UML. It is used to model not only different types of software system structure and
behaviour, but also business processes and data structure [22]. The UML
specification is defined and maintained by the non-profit computer industry
consortium called OMG. The UML offers a standard way to write a system's
blueprints, including conceptual things such as business processes and system
functions as well as concrete things such as programming language statements,
database schemas, and reusable software components [102].
However, there are some problems and challenges with UML some of which
are listed below [103]:
e Use cases are not well integrated with other languages.
e Syntactic and semantic overlap within UML, significantly between the classes
and components with internal structures.
e Immature constructs require additional effort to eliminate possible bugs.
e Inadequate support for modelling real-time systems.
e Inadequate support for modelling systems and a SoS.
These problems are being addressed by the ongoing evolution of UML. The
current standard of UML is 2.0. However, as UML mainly focuses on software

development, it is not well-equipped to model entire systems. The SysML focuses

-30 -

Chapter 2

on SE [18]. It is defined by the OMG as “a general-purpose graphical modelling
language for specifying, analyzing, designing and verifying complex systems that
may include hardware, software, information, personal, procedures, and facilities”.
SysML allows engineers to model system requirements, system behaviour and
system structure. Hence, it can link the software and other elements of a system,
such as hardware, together. In order to address the challenges of increasing
software-based systems in automobiles, research is carried out on system modelling
with new modelling languages such as the SysML to determine if they are suitable

for particular applications.

SysML

Same as UML 2 | Modified from
| UML 2 and

| New diagram
/ type

UML not required
by SysML

Fig. 2-14. The overlap between the UML and SysML (adapted from [25]).

SysML is based on the UML with additional diagrams and modelling
constructs to capture system behaviour and high-level requirements. Fig. 2-14
illustrates the overlap between the UML and SysML. Fig. 2-15 shows the

taxonomy of SysML.

-31-

Chapter 2

SysML Diagram

— — -I

Behaviour Requirement Structure

Diagram Diagram Diagram
i

l l I

Activity Sequence State Machine Use Case Block Definition Internal Block Package
Diagram Diagram Diagram Diagram Diagram Diagram Diagram

_L

Parametric
Diagram

RN |
|:| Same as UML 2
: Modified from UML 2

I I New diagram type

Fig. 2-15. The Systems Modelling Language taxonomy (adapted from [25]).
In SysML, the reuses, extension and addition of UML diagram types are [25]:

e UML diagrams that are reused, but are not extended: use case diagram,
sequence diagram, and state machine diagram.

e UML diagrams that are reused and extended: activity diagram (extends UML
activity diagram), block definition diagram (extends UML class diagram),
internal block diagram (extends UML composite structure diagram), and
package diagram (extends UML package diagram).

e New diagram types: parametric constraint diagram and requirements diagram.

The following questions regarding SysML are answered through the research in
this thesis.
e Whether SysML, as a modelling language, is well-suited for vehicle
manufacturers, and their tier-one suppliers, to exchange information for
specifying and clarifying requirements.

e Whether SysML supports software development in a systems engineering

-32 -

Chapter 2

framework.
e Whether SysML adequately supports the development of real-time embedded
automotive software.

In summary, SysML is a new modelling language aimed at systems engineers
and can in particular be applied to design heterogeneous embedded systems and a
SoS. The capability of SysML to model the automotive electronic system and
deliver the software is investigated and discussed in the later chapters of this

Thesis.

-33-

Chapter 3

Chapter 3
Driver Information System for the 4x4

vehicle

In Chapter 2, a literature review of Systems and a SoS was presented. The purpose
of this chapter is to present the introduction of the vehicle Infotainment System and
to provide an overview of the Driver Information System chosen as the pilot study

for this Thesis.

3.1 Introduction

The appearance of the automotive Information and Entertainment System has
significantly evolved in the past decades. It is driven by the emergence of
electronic and networking technologies [5]. In the late 1990s, vehicle information
systems like navigation and entertainment systems such as CD players were
integrated into vehicles. Today’s high-end Information and Entertainment System,
one sample of which is shown in Fig. 3-1, can include a variety of features and
functions including an integrated 6 disc CD changer, address book, cellular

telephone, driver log book, DVD player, navigation system, television, voice

-34 -

Chapter 3

recognition system, or several other similar options [2]. Such systems for
information and entertainment are collectively referred to as an “Infotainment
System”. The development of such an advanced Infotainment System has benefited
from not only networks such as CAN and MOST but also in modern display
technology such as Liquid Crystal Displays (LCDs), advanced sensors and the

introduction of additional software to manage such a system.

Fig. 3-1. Modern information and entertainment system: 2002 Cadillac CTS.

In order to deliver the best features in new cars, the Infotainment System is now
a key focus in the automotive design process. To support the growing importance
of the Infotainment System, Land Rover introduced an advanced Driver
Information System in its Range Rover 2005 model in June 2004 [104].

As shown in Fig. 3-2, the Driver Information System is centred on a touch
screen display located in the mid-fascia area. It forms part of the in-vehicle
Infotainment System. A high level display front (HLDF) is the Human Machine
Interface (HMI) of this Driver Information System which consists of a 7-inch, 15:9

aspect ratio, 800 x 480 pixel colour display. It has a touch screen membrane over

-35 -

Chapter 3

its display surface. Fig. 3-2 presents a typical display for a vehicle. The detailed

description of the Driver Information System is to be provided in a later section.

Fig. 3-2. 4x4 Information System on the vehicle.

3.2 Driver Information System and 4x4 Information System

The following sub-section gives a brief introduction of the features of the Driver

Information System and the 4x4 Information System.

3.2.1 Driver Information System

4x4 information
hard key

Q Home Menu n

E! Settings Navigation d

s
On-Road info Phone .\

L= 4x4Info Audio Video m

4x4 information
soft key

Fig. 3-3. Driver Information System.

-36 -

Chapter 3

Fig. 3-3 presents an actual view of the Driver Information System. By pressing the

hard keys and soft keys, the driver can access settings, on-road information, 4x4

information, navigation, phone, audio, video and other features provided by the

Driver Information System. Table 3-1 lists the hard keys and their corresponding

features.
Table 3-1. Hard keys of the Driver Information System.
Hard Key Feature Notes

Home View home menu Can also access by soft key
Settings View settings Can also access by soft key
On-road View on-road information Can also access by soft key
4x4 information View 4x4 information Can also access by soft key
Navigation View navigation Can also access by soft key
Phone Access phone Can also access by soft key
Audio and video View audio and video information Can also access by soft key
Mode Change audio and video mode

As an example, Fig. 3-4 shows the screen displaying the settings when the

driver presses the settings hard key or soft key.

E’ﬂ System Settings

e) FEE n |
Audible '
Language Feedback [l F°* |

Fig. 3-4. Driver Information System settings.

-37-

Chapter 3

As a Driver Information System for a 4x4 vehicle, the key function of this
system is to provide the 4x4 information such as steering angles, vehicle heights
and Terrain Optimization (TO) settings to the driver to enable better off-road
driving. The work described in this Thesis concentrates on the 4x4 Information
System incorporates in the Driver Information System. The features of the 4x4

Information System are presented in the following section.

3.2.2 4x4 Information System

The features of the 4x4 Information System on the vehicle are summarized in the

table below.
Table 3-2. Features of the vehicle.
Number Feature Notes
Feature 1. Display Steering Angle Information | Display front road wheel angle
by 13 different images.
Feature 2. Display High/Low ratio selection | Display High or Low ratio
status selection status for transfer gear
Feature 3 Display Gear Position Display gear position such as
“PRND54321”
Feature 4a. Display Differential lock | Lock or Unlock
Information - Centre
Feature 4b. Display Differential lock | Lock or Unlock
Information - Rear
Feature 5. Display Terrain Optimization Mode | Display one of five different
Terrain Optimization settings
Feature 6. Display Hill Descent Control Status | Display Hill Descent Control
Status such as “Inactive, Set,
Pending”
Feature 7. Display Air Suspension Status Display Air Suspension Status
such as “Off-Road, Standard,
Access”
Feature 8. Display Wheel Height Status Display Wheel Height Status
by different images

- 38 -

Chapter 3

Feature 1 provides information on how steering angle changes with movements
of the steering wheel. Graphics represent the front road wheels’ angle in the plain
view.

Feature 2 is for displaying the transfer gear status, for example whether a High
or Low ratio has been selected. When a range selection is performed, the
appropriate graphic will be displayed in the chassis map.

Feature 3 is for displaying a letter or number on the graphics to indicate the
gear position. The letters and numbers and what they represent are listed below
respectively: “P” for Park, “R” for Reverse, “N” for neutral, “D” for Drive and a
number within the 1 to 5 range indicating the gear selection.

Feature 4 is for displaying the differential lock information for both centre and
rear differentials. The vehicle has to be fitted with a centre electronic differential
(e-diff) as standard and a rear one as an option. The vehicle will then be fully
capable of automatically determining through the Traction Control System where
to best distribute the torque. E-diff delivers superior on and off-road traction by the
cross wheel slip without the need for sudden intervention from the brakes. E-diff
can act sooner and more subtly than the traditional traction control methods that
rely on the ABS [105].

Feature 5 is for displaying the TO mode selected. The vehicle can provide five
different driving modes which are Standard, Grass / Snow / Ice, Mud / Ruts, Sand
and Rock Crawl. In one of the four special terrain mode settings listed above, the
rear differential locking is actively controlled by the Driveline Control ECU. When
one of the special programmes is selected, the pre-load locking torque of the

differential is modulated according to the TO setting.

-39 -

Chapter 3

The purpose of Feature 6 is to display the Hill Descent Control (HDC) status.
HDC is used to provide a smooth and controlled hill descent in rough terrain.

Feature 7 is for displaying the air suspension status. The air suspension has
three suspension heights, i.e., Off-road, Standard and Access.

Feature 8 is for displaying the wheel height status such as whether the vehicle
is in standard height. It can also indicate whether the vehicle height is currently
changing such as “Rising”.

The key functions of this system include the TO settings, HDC, wheel height
display, air suspension heights, steering angle, transfer gear, gear position and
differential lock. The detailed functionality of the 4x4 Information System can be

found in Appendix A.

=40 -

Chapter 3

3.3

Driver Information System architecture

Infotainment System
Information System Entertainment System
(Dri Inf tion Syst R
river Information system Radio
4x4 Information
System Interface
CD, DVD
Navigation
System
TV
Phone
- J
Instrument
Cluster F—_———__-
| | I
Powertrain Chassis Body
System System System

Fig. 3-5. Automotive System of Systems.

Fig. 3-5 presents the architecture of the Driver Information System. The Driver

Information System forms part of the in-vehicle Infotainment System and provides

the driver and/or front passenger with the ability to view information and status

relating to: the instrument cluster; the navigation system; the front and rear

entertainment systems; the in-vehicle phone; and the 4x4 Information System. This

is achieved by presenting information within the Infotainment System which is

broadcast via a MOST data bus, or information from the Powertrain System,

Chassis System and Body System which is transmitted on a CAN data bus. The

MOST and CAN buses are linked via a gateway located in the instrument cluster.

-4] -

Chapter 3

Video System

Audio System GPS

HLDF

(Driver Information System)

Sensors

Steering Wheel Control

Climate Control Body Control

MOST

Local connection
Medium Sped CAN

High Sped CAN

Power Steering
Sensor

Engine Control Stability Control Sensors

ECUs

Powertrain
System

Fig. 3-6. Driver Information System architecture.

Fig. 3-6 presents some key systems and elements of a typical Driver

Information System. From this diagram it can be seen that the Driver Information

System is hosted within the HLDF on the MOST network. All the information

displayed in the Driver Information System is obtained from several relevant

on-board vehicle electronic systems such as various sensors and ECUs in different

networks.
Table 3-3. Driver information on networks.
Network Driver Information Obtained
MOST BUS Audio and Video relating to navigation, radio, etc.
CAN BUS Vehicle Height, Gear Position, etc.

Table 3-3 lists an example of the driver information which is obtained from

different networks on the vehicle. From Fig. 3-6, it can be also seen that the

information from the Powertrain System is delivered on a high speed CAN. This

vehicle contains two separate CANs operating at different transmission rates. The

medium speed CAN running at less than 125 Kbps usually manages a vehicle’s

-42 -

Chapter 3

“comfort electronics,” like seat and window movement controls and other user
interfaces. Generally, control applications that are not real-time critical use this
medium-speed network segment. The high speed CAN runs more real-time critical
functions such as engine management, ABS, and cruise control [106]. Focusing on
this 4x4 Information System, gear position, differential lock information and other
information from the chassis and powertrain that are vehicle status related are
obtained from the high speed CAN. MOST facilitates the deployment of a digital

data infrastructure in the vehicle for these advanced audio/video systems.

3.4 Characteristics of the 4x4 Information System

Infotainment System

4x4 Information System Interface |~ —

]

| I
"l |
I I
| |
______ Powertrain Chassis Body
1 System System System
T T |
| | |
| | |
1 1 1
Poverran |_| Gpassis |____| Sovy | 4x4 Information System

Fig. 3-7. The 4x4 Information System.
Fig. 3-7 represents the 4x4 Information System within the automotive SoS. The
4x4 Information System, accessed through the colour touch-screen on the fascia,
provides real-time graphical indications of essential 4x4 information to the driver
to deliver the best possible off-road driving in difficult conditions. The HLDF
shows the direction of the front wheels, air suspension height settings, activation of
the HDC, the high/low gear ratio selection, wheel articulation, the compass view

and the TO mode. As shown in Fig. 3-6, this system has to obtain information from

-43-

Chapter 3

several other on-board vehicle electronic systems such as various sensors and
ECUs. The ECUs are linked by a communications network, consisting of several
data bus technologies with exponentially increasing transmission rates.

After studying the physical structure and functionality of the 4x4 Information
System, the following characteristics of SoS can be identified from this 4x4
Information System:

Autonomy

As shown in Fig. 3-7, the Powertrain System, Chassis System and Body System
have independent functions. For example, the Chassis System takes a driver’s TO
settings and changes the air suspension to the corresponding height. It has the
ability to maintain its function independently.

Belonging

The 4x4 Information System Interface includes the physical interface and
application software. It chooses the Powertrain System, Chassis System and Body
System to form this SoS. The data are captured from various sensors and ECUs in
these systems which are chosen to belong to this SoS. Thus, the 4x4 Information is
displayed to the driver.

Connectivity

As described in Chapter 2, some connections in the SoS can be added, removed
or changed. In the 4x4 Information System, enabling additional connections
between the 4x4 Information System Interface and the Powertrain System, Chassis
System and Body System allows more data and information to be delivered. For
example, enabling the connection between the steering angle sensor and the 4x4
Information System Interface allows the steering angle of the vehicle to be

displayed in the 4x4 Information System.

-44 -

Chapter 3

Diversity

The driver’s various requirements derive the diversity of the 4x4 Information
System. The 4x4 Information System does not only display the necessary 4x4
information such as gear selection, suspension height but also displays compass
information and vehicle settings. Data captured on different vehicle networks at
different speeds and amounts have to be managed and displayed to the driver
within the 4x4 Information System.

Emergence

4x4 Information System Interface |- —

_>
| |
Powertrain Chassis Body
System System System

4x4 Information System

Fig. 3-8. The 4x4 Information System.

From the description of physical structure and functionally of the 4x4
Information System, it can be taught to enable a single function in the 4x4
Information System that involves data capture from the sensors of the Powertrain
System, Chassis System or Body System and data transfer on several data buses.
As shown in Fig. 3-8, the arrowed line indicates the connection between the
steering angle sensor in the Chassis System and the 4x4 Information System
Interface. Displaying the steering angle in the 4x4 Information System contains the
data capture from the steering angle sensor and data transfer to local connection

and then data delivery on the gateway and MOST bus. Both physical structures of

=45 -

Chapter 3

the vehicle network and software function of the 4x4 Information System have to
be considered and developed in order to correctly display the large mount real-time
data and enable the advanced functions of the 4x4 Information System.

Therefore, having identified the above characteristics, the 4x4 Information
System is concluded as a SoS. The development of this SoS through a model-based

design approach is to be presented in the next chapter.

3.5 Discussion

This chapter has described the physical structure and functionally of the Driver
Information System and the 4x4 Information System. The characteristics of the
4x4 Information System are identified and discussed that show the 4x4 Information
System which is part of the in-vehicle Infotainment System is a typical SoS.
Similarly, the Chassis System and Powertrain System utilize the networked
electronic systems to form the automotive electronic SoS to achieve advanced
electronic control and others functions. Therefore, the experience gained from the
development of this SoS by utilizing new techniques can benefit the development
of other automotive SoSs. In addition, these techniques are generic and they are
applicable in SE and SoSE. In other words, they can be adopted for the
development of aerospace systems and the hybrid electric vehicle (HEV). However,
the 4x4 Information System is not a safety critical system for the vehicle. As a
consequence, further investigation is required for applying the experience gained
from this study to a safety critical system such as adaptive cruise control on the

vehicle.

-46 -

Chapter 4

Chapter 4
Modelling of the 4x4 Information
System using SysML and MATLAB

Simulink/Stateflow

In chapter 3, an overview of the Driver Information System and its 4x4
Information System was presented. The purpose of this chapter is to provide a
detailed model of the 4x4 Information System chosen as the pilot study for this

Thesis.

4.1 Introduction

After the functional description of the 4x4 Information System has been described
in relation to its software and hardware elements within the overall automotive
electronic system in Chapter 3, this chapter describes research into model-based
development of the 4x4 Information System. Two distinct model-based approaches
to automotive electronic system development are explored. The first approach

involves the use of the SysML based tool ARTISAN Studio for structural

-47 -

Chapter 4

modelling and functional modelling. The second approach involves the use of the
MATLAB based tools Simulink and Stateflow for functional modelling. Both
approaches for developing the model of the 4x4 Information System are critically
evaluated. The strengths and weaknesses of the different approaches are explored
and compared. Conclusions are drawn about how the model can benefit the

development of such an automotive electronic system.

4.2 Model built in SysML

This section will discuss how SysML is used to provide an architectural description
of the 4x4 Information System. Specifically, this section will explore: the use of
block definition and internal block diagrams, for structural modelling of the system;
and the use case, sequence, state machine and activity diagrams for modelling the
functional behaviour of the system. Finally, this section will summarize how to

make use of SysML for the development of an automotive electronic system.

4.2.1 The modelling process

The software field is developing rapidly. New areas of practice and research are
emerging with an ever increasing speed [107]. It is believed to be beneficial for a
project to introduce to the developers the concept of software architecture
[108-112]. [113] has concluded that the viewpoints and views are well-established
concepts in software architecture. For this reason, the IEEE Standard 1471-2000,
“Recommended practice for architectural description of software intensive system”
is introduced in this Thesis for guiding the construction of the SysML model. View
and viewpoint are central concepts in the IEEE 1471 Standard for architectural
description [114]. According to IEEE 1471, a view is a representation of a whole

system from the perspective of a related set of concerns. Concerns are those

-48 -

Chapter 4

interests, which pertain to the system’s development, its operation or any other
aspects that are critical or otherwise important to one or more stakeholders. A
viewpoint is a pattern or template from which to develop individual views. It
establishes the purpose and audience for a view and the techniques for its creation
and analysis. In order to satisfy the IEEE 1471 standard a viewpoint should specify
at least:
e A viewpoint name.
e The stakeholders the viewpoint is aimed at.
e The concerns the viewpoint addresses.
e The language, modelling techniques, or analytical methods to be used in
constructing a view based upon the viewpoint.
Two viewpoints are selected in this Thesis, namely, a structural viewpoint and

a behavioural viewpoint. They are specified in the Table 4-1 and Table 4-2.

Table 4-1. Viewpoint specification--Structural viewpoint.

Viewpoint name Structural viewpoint

Stakeholders System developer

What elements compose the system?
Concerns How do they interconnect?
What are the mechanisms for interconnection?

The modelling

SysML
language to be used y

View(s) to conform

. . Physical structure view
this viewpoint

=49 -

Chapter 4

Table 4-2. Viewpoint specification--Behavioural viewpoint.

Viewpoint name Behavioural viewpoint

Stakeholders System developer

What are the dynamic actions of and within a system?
What are the kinds of actions the system produces and
participates in?

Concerns How do those actions relate (ordering, synchronization,
etc.)?

What are the behaviours of system components?

How do they interact?

The modelling

SysML
language to be used 4

View(s) to conform

o . Function view
this viewpoint

As shown in Table 4-1 and Table 4-2, two viewpoints are selected based on the
consideration of the stakeholders to whom the architectural description is addressed
and their concerns. Specifically, the Thesis chooses the system developer as the
stakeholder. Two viewpoints are aimed at the system developer’s concerns, e.g.
“What elements compose the system?”, “How do they interconnect?” and “What
are the behaviours of system components?” SysML is chosen as the modelling
language to provide an architectural description of the 4x4 Information System
from a structural viewpoint and a behavioural viewpoint. Physical structure view
and function view are constructed to conform to the structural viewpoint and the
behavioural viewpoint respectively. Each view consists of one model which is

described in detail in the next section.

- B0 -

Chapter 4

4.2.2 Structure model
Structural modelling is performed to provide a physical structure view of the 4x4
Information System. Block definition diagrams and internal block diagrams are

created to depict the physical structure of the 4x4 Information System.

4221 Block definition diagram

Block definition diagrams define a class of objects with similar properties,
behaviour and interactions. During the practical model development process, it is
conventional to start thinking about objects required in the model at the beginning.
When a set of objects is found to have the same properties, behaviour and
interactions, a class should be defined for these objects.

In the 4x4 Information System, various signals and information have to be
delivered and transferred through several networks. These networks have different
architectural levels in the system. They also have different properties to support
data transfer in the system. The role they play in the 4x4 Information System has to

be clearly described by defining their attributes and operations in the system.

::Network
Speed
Bandwidth
Name
get_speed ()
1.4 1.%
::BUS ‘ ::Dedicated Connection
get_gateway_name ()
17| 1
‘ ~CAN ‘ ‘ ::MOST ‘
1‘ 1 1

‘ ::Private CAN ‘ ‘ ::High Speed CAN ‘ ‘ ::Medium Speed CAN ‘

Fig. 4-1. Network class.

-51 -

Chapter 4

In Fig. 4-1, the network class of the 4x4 Information System is defined. This
network includes three types of CAN bus which are the private CAN bus, the high
speed CAN bus and the medium speed CAN bus. CAN buses and the MOST bus
form the bus class. The attribute of this bus class includes “name”, “speed” and
“bandwidth”. Two operations are indicated which are *“get speed” and
“get_gateway name”. Different buses and the dedicated connection are integrated
to provide several transmission rates for data transfer in the 4x4 Information
System. The network class represents the highest level within the structure model.

The model also includes four further classes representing lower levels within the

network architecture.

:Key

Position

Size

Pressed ()
Time_pressed ()

1.* 1.*
::Hard Key ::Soft Key

Fig. 4-2. Key class.

For example, Fig. 4-2 shows a block definition diagram representing the key
class that models the operations of keys which are used to select functions within
the 4x4 Information System. Two different types of keys are included and they are
a “Hard Key” and “Soft Key” respectively. They are shown as subclasses of the
“Key” class. The “Key” class has the attributes of “position” and “size” which are
used to describe the appearance of the key. The operations of the key class use
“Pressed” and “Time_Pressed” to identify whether the key has been pressed and

how long it has been pressed.

-52 -

Chapter 4

4.2.2.2 Internal block diagram

Internal block diagrams are useful for modelling the decomposition of structured
classes through parts, and showing the connections between those parts. Compared
to the block definition diagram, the internal block diagram focuses on the detailed
level of the system structure. Two internal block diagrams have been developed to
present interactions at different levels of abstraction among the 4x4 Information

System and other systems of the vehicle.

Driver Information System of Systems Configuration

1.

Audio and Video System
: Entertainment System

1.7

Navigation ECU :
Information System

MOST Assembly : BUS

HLDF : Driver Information System

MOST_CAN_Gateway : Resistive Ladder : SleenngSAng\e Sensor :
Gateway Local Connection <« ensor
Steering Angle msg :

Medium Speed (MS) CAN BUS :
BUS

HS CAN_MS CAN_Gateway :
Gateway

High Speed CAN Bus : MessageT

17
1> ___:Sensor

High Speed (HS) CAN BUS :
BUS

1.4
Transmission ECU : _ _ _ tActuator
ECU

Suspension Height msg : MessageT

Air Suspension ECU :
ECU

- - MOST -- Media Orientated Systems B
This structure diagram shows the assembly of ﬁ Transport. A high speed fibre optic

‘lunc!ion‘modules which inlerac»l with the dri\.gr communications bus
information system. More details of power train LLDF - Low Level Display Front
system are showing as '_ _ _'instead. HLDF -- High Level Display Front

Fig. 4-3. Internal block diagram: Driver Information System overview.

The first internal block diagram, shown in Fig. 4-3, is utilized to provide a high
level description of the Driver Information System. It includes a description of the
MOST and CAN buses and the gateways that enable communication between the
buses. The location of the Driver Information System is clearly displayed. In this
diagram, each rectangle represents a part which can be either a function module or
a hardware module. The text to the right of “:”” in the rectangle is the type name of

the part. The part name is specified to the left of “:” in the rectangle. When a part

-B3 -

Chapter 4

has a multiplicity more than one, it is shown in the top right of the part. For
example, there are numerous sensors, ECUs and actuators on the high speed CAN
bus so their numbers are indicated as “*” in the rectangle respectively. Gateways
which are used to provide the communication between data buses are also
represented in this diagram. Lines connect different parts together to show the
interactions among them. Arrows are used to define the direction of the data
transfer.

The air suspension ECU sends the suspension height information to the high
speed CAN bus in the direction indicated by the arrow. Afterwards, it is delivered
to the medium speed CAN bus through the “HS CAN_MS CAN_Gateway”
together with the signals from other ECUs and various sensors and actuators on the
high speed CAN bus. For example, centre and rear differential lock data and gear
selection data are captured by the transmission ECU on the high speed CAN bus.
The data which show the level of cross-axle articulation, the status of the HDC and
the TO settings is also collected by the ECUs on the high speed CAN bus. The
information is transmitted to the MOST bus through the “MOST_CAN_Gateway”.
Additionally, the steering angle data are captured from the steering angle sensor
and directly delivered to the “MOST_CAN_Gateway” by the local connection, and
transmitted to the MOST bus. Other information such as data used in the compass
view is transmitted from the navigation ECU over the MOST bus that supports the
Infotainment System. The 4x4 Information System receives the data from the

MOST bus and displays it on the screen according to driver’s selection.

-54 -

Chapter 4

Fig. 4-4. MOST System of Systems overview.

The second internal block diagram shown in Fig. 4-4 is a detailed level
description of the vehicle network configuration. It represents the assembly of data
buses, gateways, systems and hardware modules which are connected or related to
the Driver Information System. In this diagram, each rectangle represents a part
which can be either a function module or a hardware module. Lines connect
different parts together to show the interactions between them.

For example, connections between different systems on the MOST bus and
other gateways to buses like the medium and high speed CAN are clearly
represented in this diagram. Specifically, the steering angle data are delivered to the
MOST_CAN gateway through the local connection. Then the MOST_CAN
gateway sends the data to the MOST bus and they will be taken and displayed to
the driver by the 4x4 Information System when associated keys are pressed.
Besides, radio, telephone, navigation and other components of the Information
System deliver data to the MOST bus. Meanwhile, the Entertainment System

transmits audio and video signals to the MOST bus such as a video signal from the

-55-

Chapter 4

DVD player. Lines between cameras and the Driver Information System show the
data from cameras is delivered to the Driver Information System directly. The type
and amount of the data transmitted on the network are presented in this diagram.
Moreover, according to the internal block diagram shown in Fig. 4-4, the
bandwidth, speed and other attributes of the communications network can be
considered and defined within classes of the block definition diagrams. The type of
the data transmitted, its bandwidth and other attributes are defined within those

block definition diagrams.

4.2.3 Function model
A function model is developed to represent the functional behaviour and provide a
function view of the 4x4 Information System. The use case, sequence, state

machine and activity diagrams are utilized in the function model.

4.23.1 Use case diagram

Use case diagrams are used to specify the functionality in terms of high-level
requirements. They depict a system's behaviour in terms of its responses to requests
that come from outside, for example, from the driver. There are three elements in a
use case diagram: use case, actor and relationship, respectively. Each requirement
is represented as one use case in the diagram and actors can be either people or a
system. A use case can be defined at several levels and there are three use case
diagrams in the model.

Fig. 4-5 shows the highest level use case for the 4x4 Information System. It
shows the interaction between the front occupant including the driver and front
passenger and the different components of the system. “Access 4x4 information” is
the top level use case in this diagram and it includes many lower level use cases.

Through the top level use case, the driver can have access to “View steering”,

- 56 -

Chapter 4

“View gear position”, “View Hi/Lo ratio”, “View suspension information”, “View
Diff Lock”, “View Compass”, “View Home”, “View Terrain Optimizations
Settings” and “View Hill Descent Control Status” use cases directly. Arrows with
an ‘include’ label indicate the functional structure of the 4x4 Information System.
In this way, the functionality can be broken down to different levels. In this use
case diagram, the driver can go to “View Differential Lock Rear” and “View
Differential Lock Centre” from the “View Diff Lock” use case. The driver can also
go to “View whether Standard/Sand/Rock Crawl/Mud” which is the lower level use

case of the “View Terrain Optimizations Settings” use case.

Access 4X4
«nclude» Information
Front IﬂCTUde»\ View Hill Descent
Occupant View Steering Control Status
Angle « ude
/ «nclude / /
Optimization

e

«nclude»
\ View Terrain
|nc|ude «include» Settings
View Gear |nclude
Position / |nc|ude
View Home
«include»
View Hi/Lo /
ratio View Suspension
Information
View Compass

Information
View Diff Lock
«include»

View whether
Standard/Sand/Rock
Crawl/Snow/Mud

«include»

View Differential View Differential
Lock Rear Lock Centre

Fig. 4-5. Use case diagram: 4x4 information use case.

In order to make the diagram clear, it is not recommended to put too many
details in one use case diagram. If one use case has many sub functions that need to
be broken down to a detailed level, another use case diagram can be developed.
Within this model, a separate use case diagram shown in Fig. 4-6 is developed to
specify the “View Suspension Information” use case in Fig. 4-5. In this diagram,

the “View Suspension Information” use case includes three lower level use cases

-57-

Chapter 4

which are “View vehicle height”, “View whether vehicle raising/lowering” and

“View chassis height”,

@uspension
>iformation
Front

Occupant T
/dnclude»

«include» \\include»

View vehicle View whether View Chassis
height _ vehicle Height
raising/lowering

Fig. 4-6. Suspension information use case.

Three use case diagrams in the model represents all the use cases in the 4x4
Information System graphically. The use cases presented in the diagrams capture
and interpret all the usage scenarios in the specification document of the 4x4
Information System. [13] highlights the importance of employing the textual use
case in capturing detailed behavioural requirements of the automotive electronic
system. The textual use case is made up of main flow that specifies how the
external actor can interact with the system to achieve the desired objectives of the
system. Moreover, the alternative flows are defined to represent the other means by
which the system may interact with the external actor to accomplish their objective
[115]. The conventional requirements capture process mainly concentrates on how
the system should behave under ideal conditions, i.e. main flow. Utilizing the use
case template introduced in [13] ensures that at each stage of the main flow, the
developers are forced to investigate not just what may go wrong with the system,
i.e., the error flows, but also how the system could meet the objectives of the

system alternatively, i.e., the alternative flows.

-58-

Chapter 4

Table 4-3. Use case text - Display air suspension status.

Title Display air suspension status.
Preconditions The display is showing the home menu screen.
Trigger Action The driver chooses to view air suspension status.

4x4 Information System displays the current air suspension
Objective status and updates the display when a new air suspension
height is selected.

1. The diver presses the 4x4 information hard key or soft
key.

2. The 4x4 Information System displays the current air
suspension height to the driver.

Main Flow

1. The diver presses the 4x4 information hard key or soft
key.

2. The diver selects access mode.

Alternative Flows 3. The 4x4 Information System validate that the vehicle
speed is less than 50mph.

4. The air suspension changes to access height and the 4x4
Information System displays the access mode to the driver.

Error Flows None.

The current air suspension status is displayed and updated

Success Guarantee
with new air suspension height selections.

Displays current air suspension status when a new air

Minimum Guarantee] .
suspension change request is not approved.

Table 4-3 shows an example of a textual use case which the use case of display
air suspension status is described in detail. This table lists preconditions, trigger
action and the objective of this use case. How the system should behave under the
different conditions is defined in the main flow and the alternative flow. The error
flow is not presented in this table because there is no information available in the
usage scenarios in the specification document of the 4x4 Information System
regarding what may go wrong with the system. The success guarantee in this table

states the assertion of the successful running use case. The minimum guarantee

-G89 -

Chapter 4

describes the fewest actions the system should perform, particularly when the

primary goal cannot be delivered.

Table 4-4. Use case text - Display compass information.

Title

Display compass information.

Preconditions

The display is showing the home menu screen.

Trigger Action

The driver chooses to view the compass information in the
4x4 Information System.

Obijective

The 4x4 Information System displays compass information
when compass view is selected in the 4x4 information
screen.

Main Flow

1. The diver presses the 4x4 information hard key or soft
key.

2. The driver presses the compass view soft key.

3. Compass information is displayed in the compass view
on the screen.

Alternative Flows

None.

Error Flows

1. The diver presses the 4x4 information hard key or soft
key.

2. The driver presses the compass view soft key.

3. A GPS signal is not available thus the compass
information cannot be displayed on the screen.

Success Guarantee

Compass information is displayed in the compass view on
the screen.

Minimum Guarantee

Compass view is displayed on the screen without compass
view information.

The usage scenarios in the specification document of the 4x4 Information

System lacks a description of how the system should behave when the condition

goes wrong. Table 4-4 demonstrates how the error flow is investigated during the

construction of textual use cases. This table represents the use case of the display

compass information. The 4x4 Information System should display compass

information following the main flow in this table under ideal conditions. However,

-60 -

Chapter 4

the investigation has to be carried out on how the 4x4 Information System should
behave when the GPS signal is not available as described in the error flow.
The attention of the following sections focuses on how the use cases are

described in detail within other diagrams of SysML in the function model.

4.2.3.2 Sequence diagram

The development of sequence diagrams is a particular path through a use case.
Sequence diagrams are used to represent the interactions which occur among
various objects involved in realizing the functionality as per use cases. As a result,

one use case may have several sequence diagrams associated with it. There are 13

sequence diagrams in this model at both high and detailed levels.

Start vehicle

Description m 4x4 Information Hard Key [l 4x4 Information Soft Key m ‘Driver Information System Application Software
m T
; | | |
|

|
tarthehicle
|

Display Home Menu screen : Update Display

alt

Press 4x4 Information Hard Key

|
4X4 Info Hard/k\ey Pressed
else alt !

Press 4x4 Information Soft Key

Update Display to the 4x4
Information screen with right area
showing the view of Chassis or
Compass. Steering angle data are

UTdate Display to 4x4 Information screen
|

| |
| |

| |

| | |

| |

: | |

! ! |

| I 4X4 Info Soft Key Pressed 1]

end alt | ! ! !
| | | |

| | | |

| | | |

| | |

: | | |

displayed on the left area. | | | |

See "Layout of the Display" in "Text Diagra:n\\

of the model to know what is the left, central andﬁ 1 2

A

right area of the display.

Fig. 4-7. Sequence diagram: view steering angle (high level).

Fig. 4-7 is a high level sequence diagram; it shows the sequence involved in
how the driver views the steering angle. In this diagram, objects are defined across
the top of the diagram and modelled as vertical lines (marked as “1”). Objects
could be actors, class instances, parts, interface devices, packages or subsystems.
The description of the sequence is listed on the left side of the diagram. The thick
grey vertical line (marked as “2”) separates external actors from elements within
the system. To the immediate right are interface devices until the vertical dashed

line (marked as “3”). The “Driver Information System Application Software” is at

-61 -

Chapter 4

the right hand side of the vertical dashed line. The vertical time axis is nonlinear
and can be regarded as event driven. Arrow lines are used to show how data flow
transfer occurs in the system in a time sequence. As shown in Fig. 4-7, the driver
starts the vehicle at the beginning. The Driver Information System application
software will update the display to the home menu screen. As soon as either the
4x4 information hard key or 4x4 information soft key is pressed, the Driver
Information System application software will update the display to the 4x4
information screen. The description on the left of the diagram indicates where the
steering angle is displayed.

In order to show how data flow is obtained and transferred between the ECUs,
gateways, buses and other physical components, a detailed sequence diagram was
developed as seen in Fig. 4-8. It shows how information is captured from the
different sensors and ECUs and how the Driver Information System obtains the

information from the MOST bus.

[

Description

[Driver System Application Software] [MOST] [MOST_CAN_Gateway] [Local Connection] [Sensor_Local Connection_Interface] [Steering Angle Sen:
T T T

=

T
Driver steers the wheel | | | |
|

Gateway Unit
Gateway sends data on the MOST

MOST sends data to the Driver
Information System

I

|

|

|

e |

|

|

|

|

Steering angle display updated I

Update left ared of screen

Fig. 4-8. Sequence diagram: view steering angle (detailed level).

Fig. 4-8 shows that when the driver steers the wheel, information is collected
from the steering angle sensor and transferred to the local connection through the
“Sensor_Local Connection_Interface”. The local connection delivers the data to the
“MOST_CAN_Gateway”. Then the MOST_CAN_Gateway sends the data to the
“MOST” and it will be received by the Driver Information System application

software. Afterwards, it is displayed in the left hand area of screen. The entire route

-62 -

Chapter 4

is shown clearly in the diagram. The action which each object takes is also marked

with arrow lines.

Description 4x4 Information Hard Key [4x4 Information Soft key | HDC Button m [Driver Information Syste‘m Application Software
| | |

alt
|

|
4X4 Info FiArd Key Pressed |
| I

Press 4x4 Information Hard Key
else alt

Press 4x4 Information Soft Key
end alt

| ‘

|

|

|

: ; 4X4 Info Soft Key Pres?.#d |
| | | Update Display to 4x4 Information screen
|

[

|

|

|

|

|

|

|

|

|
| | | [

| |

; HDC Button P;ressed /u
| | Update central area of scregn
| |

Update Display to the 4x4 Information screen
Driver activates the Hill Descent Control (HDC)
HDC icon is displayed

Prerequisites: Display shows
Home Menu screen before
the start of this scenario.

Fig. 4-9. Display of HDC from Home Menu screen.

More scenarios that the 4x4 Information System are required to exhibit are
described by other sequence diagrams in the model. Fig. 4-9 is a sequence diagram
showing how to display the HDC status from the home menu screen. As shown in
Fig. 4-9, as soon as either the 4x4 information hard key or 4x4 information soft key
is pressed, the Driver Information System application software will update the
display to the 4x4 information screen. The HDC status is displayed by different

icons in the central area according to the function selected.

4.2.3.3 State machine diagram
State machine diagrams are used to present different modes and the events that
cause the transitions between these modes. Therefore, they can model how the parts

of the 4x4 Information System deal with actions in detail.

-63 -

Chapter 4

Ignition On/

e Off

after(2)[Ignition==0]/

Initial Screen Showing Company Logca

after(2)[Ignition==1}/ Ignition Off/

Display

Home Soft Key Pressed/

Home

i

4X4 Info Soft Key Pressed/

(OffRoad Information ‘
(STD: OffRoad Information)

Settings Pressed/

Settings

OnRoad Info Pressed/

OnRoad Information

Nawvigation Pressed/

Navigation

Phone Pressed/

Phone

Entertainment Pressed/

T

Entertainment

Fig. 4-10. State machine diagram: Driver Information System.

Eight state machine diagrams are utilized to describe the function of the 4x4
Information System. As shown in Fig. 4-10, the first diagram describes the function
of the Driver Information System at the highest level and presents information
available to the driver in different display modes. The black node on the top left
represents the entry point of this state machine diagram. The initial state is “Screen
Power Off”. As soon as the ignition is turned on, the screen will display “Initial
Screen Showing Company Logo”. After two seconds while the ignition is on, all
display modes will be shown on the screen including “Home”, “Off Road
Information”, *“Settings”, “On Road Information”, “Navigation”, “Phone” and
“Entertainment”. The mode can be selected by the driver. The 4x4 information is
displayed within the “Off Road Information” mode. The note “STD: Off Road

Information” at the bottom of this state indicates entry to a further state machine

-64 -

Chapter 4

diagram at a lower level. They are described in a set of seven separate child state

machine diagrams.

7]

OffRoad Information

Left Display

e 7

Left Display

Central Display

View Steering Angle

.ﬁ Displaying Steering Angle InformatiorD

View Main Gear

.ﬁ(Displaying Gear Position W

|STD: Displaying Gear Position)

View Transfer Gear

.ﬁ(Displaying Transfer Gear Status w

|STD: Displaying Transfer Gear Status]

View Differential

.ﬁ(Displaying Centre and Rear Differential Lock Information w
@TD: Displaying Centre and Rear Differential Lock Informatiog)

o = (Central Display
4 Terrain Optimization Settings
.ﬁ(Displaying Terrain Optimization Settings W
(STD: Displaying Terrain Optimization Settings/
Hill Descent Control N
.%/(Displlaying.HiII pescent Control Status W
(STD: Displaying Hill Descent Control Status/
Right Display]
- ®
STD: Chassis View
Compass view Soft Key Pressed/ Chassis view Soft Key Pressed/

Compass View

Fig. 4-11. State machine diagram: displaying 4x4 information.

Fig. 4-11 presents how the 4x4 information is distributed in the display. The

“Left Display”, “Central Display” and “Right Display”, separated by the dashed

line are three concurrent states within the “Off Road Information” state which is

- 65 -

Chapter 4

currently displayed. They are shown to the driver at the same time. On the left
display, there are four concurrent states showing steering angle information, gear
position, transfer gear status, centre and rear differential lock information
respectively. The central display shows the TO settings and the HDC status
concurrently. The right display can be navigated to “Chassis View” or “Compass
View” dependent on the driver’s selection. The “H” within the circle stands for the
history state. It indicates that when the display switches back to the off-road
information mode from other modes, the right display will navigate back to the

previously selected view rather than a default mode.

) ~ Displaying Terrain Optimization Settings

Standard Mode/
Standard

Mud Ruts Mode/
Mud / Ruts

Sand Mode/
Sand

Grass Snow Ice Mode/
Grass / Snow / Ice

Rock Crawl Mode/

Rock Crawl

T

Fig. 4-12. State machine diagram: displaying terrain optimization settings.

The *“State machine diagram: Displaying Terrain Optimization Settings”,
shown in Fig. 4-12, is developed to detail further the *“Displaying Terrain
Optimization Settings” state shown in the middle of Fig. 4-11. In Fig. 4-12 the
black node at the top left represents the entry point of this state machine diagram.
One of five TO settings is displayed when the associated TO mode is selected

which is marked on the arrowed lines.

- 66 -

Chapter 4

[JE—— Displaying Centre and Rear Differential Lock Information
View Centre Differential Lock Information

(] [Locking Torque<Threshold Value]/

[Locking Torque>=Threshold Value Appropriate to Current TO Mode]/

View Rear Differential Lock Information

L [Locking Torque<Threshold Value]/

Unlocked

Locked

[Locking Torque>=Threshold Value Appropriate to Current TO Mode]/

Fig. 4-13. State machine diagram: displaying centre and rear differential lock

information.

Fig. 4-13 presents the mechanism of centre and rear differential lock of the 4x4
Information System. “View Centre Differential Lock Information” and “View Rear
Differential Lock Information”, separated by the dashed line are concurrent states.
They are displayed to the driver at the same time. The mechanism is indicated on
the arrowed lines. When the locking torque is less than a threshold value, both
centre and rear differential lock show “Unlocked”. They will be locked when the
locking torque is higher than the threshold value appropriate to the current TO

mode.

4.2.3.4 Activity diagram

The final behavioural diagram examined is the activity diagram. Five activity
diagrams are used to model actions and the effect of those actions on relevant
artefacts in the model. For example, an activity diagram may describe a use case,
event or operation. The top level activities can own an activity diagram, which can
describe the detail of that activity in terms of a sequence of actions that may

include the use of other, lower level activities. The activity diagram can also

-67 -

Chapter 4

indicate at what point specific inputs are required by actions and specific outputs

are produced by them.

Driver

Vehicle

Display

$

E’ress 4x4 Information Hard Key or Soft Key}

—

Rotate the TO Selector

\

=

@isplaying current TO Setting

Change the vehicle

i

status under new TO settin

New Terrain Optimization Mode

g

Displaying new TO Setting|

i

Fig. 4-14. Activity diagram: view TO settings and change the TO mode.

Fig. 4-14 shows an example activity diagram within the 4x4 Information

System. Three swim lanes are allocated separately to different objects in the 4x4

Information System. They are “Driver”, “Vehicle” and “Display”. Each object is

responsible for performing the activities in its allocated swim lane. As shown in

Fig. 4-14, the black node at the top left of this diagram represents the entry point of

this activity diagram. The driver performs the action of “Press 4x4 Information

Hard Key or Soft Key” to view the 4x4 information on the display and then

“Rotate the TO Selector” to change the TO setting. The display will become

“Displaying current TO Setting” in response to the driver’s action. The vehicle

changes to the selected TO mode while the display shows new TO settings. The

black node within the circle at the bottom of this diagram shows the end of this

activity diagram.

- 68 -

Chapter 4

Driver Driver Information System Application Software Steering Angle Sensor MOST Display

[]
Press 4x4 Information
Hard Key or Soft Key
Steer the Wheel

=
Collect and sent
steering angle data

Convert and sent
steering angle data

[

PR

Update the display of steering
angle on the left area

I

\>

Displaying Steering Angle|

®

Fig. 4-15. Activity diagram: view steering angle.

Fig. 4-15 is another activity diagram showing actions on relevant artefacts
when the driver chooses to view the steering angle. The black node at the top left of
this activity diagram represents the entry point. The driver performs the action of
“Press 4x4 Information Hard Key or Soft Key” to navigate to the 4x4 information
screen and then steer the wheel. The steering angle sensor will collect the steering
angle data and send them to the MOST bus. The MOST bus converts the data and
delivers them to the Driver Information System application software. The software
updates the steering angle data on the left area of the display and the display finally

shows the steering angle to the driver.

4.2.4 Other diagrams in the model

The text diagram is not a standard SysML diagram type shown in Fig. 2-15. It can
be added to the model as additional notes to illustrate the design requirement of the
model. In this model, two text diagrams as shown in Fig. 4-16 and Fig. 4-17 are
developed to describe the layout of the display and how the air suspension selector

works respectively.

-69 -

Chapter 4

Text Diagram 1.

Description of the Display layout

There are three areas in the driver information system display, left, central and right. The left area is a permanent
display area which display chassis and power train of the vehicle with the following infarmation list below:

Steering Angle Information,

High/Lows ratio selection status,

Differential lock Information for both centre and rear,
Gear Position.

The central area contains the Home soft key and a permanent display area which shows the following information:
Terrain Optimization Mode,
HDC information.

The right display area changes when different views are selected by press soft keys at the bottom including
Compass view and Chassis view.

Fig. 4-16. Text diagram: layout of the display.

Text Diagram 2.

Air suspension selector

Air suspension selector is next to the Hill Descent Control button. The air suspension status can be controlled
manually by pushing upwards or dowrmwards the air suspension selector.

Fig. 4-17. Text diagram: air suspension selector.

-70 -

Chapter 4

4.2.5 How diagrams fit together in the model

‘|]apow 8y Ul swreiBelp Buowre suonoeIaU|

‘8T-v ‘B4

[—

sne

OG0 SURTSAS [0 WaTSA UoRew o oG

NVO paads wnipa:: 7 7 NvO paads ybiH:: 7 7 NVO 31eAlid::

[[§

Aot prek wonrewLO pXp 3

uonvsuL0D patedIpeq::

G ovepdn '
iy [[
(@]

|

|

|

|

[l

T

|

|

1

|
(]

0 peads 156

swieN
wpimpuesg
poads

[opow uoioung

>J0MIBN::

[oapow 2.n)onas

-71-

Chapter 4

Fig. 4-18 shows an example of how to make use of those key diagram types to
enable automotive engineers to model both the structure and functionality of an
automotive electronic system. This example identifies some of the key relations
among the different diagrams in the model. In order to summarize how this model
could benefit the engineer during system development, an example requirement of
“Driver view steering angle in the 4x4 Information System” is taken. Firstly, block
definition diagrams as shown at the top left are used to depict the properties and
relations of various data buses which are used for the data transfer in the system.
Afterwards, the internal block diagrams are developed to define the internal
structure like the connections and data flow direction between those buses. This
process is marked as “1”. Then the functional modelling has been carried out via
use case diagrams, sequence diagrams, state machine diagrams and activity
diagrams. Use case diagrams define this “view steering angle” requirement as one
use case which is shown in the middle of this diagram. This use case is then
modelled in detail within corresponding sequence diagrams and activity diagrams
which are marked as “2” and “3” respectively. The sequence diagrams show the
interactions among various objects in the system such as how steering angle data
are captured and delivered and displayed in this Driver Information System. The
actors in the sequence diagram are defined in use case diagrams and are marked as
“4”. The interface devices and physical objects shown at the top of sequence
diagram are modelled in block definition diagrams and internal block diagrams
which are marked as “5” and “6”. Next, the arrowed line marked as “7” shows state
machine diagrams representing how the mode changes under actions in order to
display the steering angle information to the driver. The actions are modelled in

detail together with the behaviour of relevant objects within the system in activity

-72-

Chapter 4

diagrams that are marked as “8”. These objects are modelled with their interaction
in sequence diagrams that are marked as “9” and also in block definition diagrams

and internal block diagrams.

4.2.6 Summary of the diagrams

Table 4-5 lists all the diagrams which were developed for the 4x4 Information
System. The first column from the left lists all the diagram types in the model. As
shown in this table, eight types of diagram are utilized to build the model of the
4x4 Information System including the text diagram, a non-standard SysML
diagram type. The middle column indicates the purpose of the diagram type. Block
definition diagrams, internal block diagrams and text diagrams are developed for
structural modelling of the system. Use case diagrams, sequence diagrams, state
machine diagrams and activity diagrams are utilized for modelling the functional
behaviour of the system. The right hand column numbers every diagram in each
diagram type. There are 37 diagrams in total in the model which is built in

ARTISAN Studio. A full list of diagrams in this model can be found in Appendix

B.
Table 4-5. List of diagrams in SysML model.
Diagram type Purpose Name of diagrams
Block definition | Structure 1. Network class
diagram 2. Key class
3. Sensor class
4. Gateway_class
5. Sensor_local connection_interface class
Internal block | Structure 1. Driver Information System of Systems
diagram overview
2. MOST System of Systems overview
Text diagram Structure 1. Layout of the display
2. Air suspension selector
Use case diagram Behaviour | 1. Driver Information System use case
2. 4x4 information use case
3. Suspension information use case
Sequence diagram Behaviour | 1. Return to home menu screen from other screens
(HL - B)

-73-

Chapter 4

2. Change to 4x4 Information screen from other
screens (HL - B)

3. View steering angle (HL - B)

4. View steering angle (HL-W)

5. View steering angle (DL-B)

6. View steering angle (DL-W)

7. Choose different views in 4x4 information
screen from home menu screen (HL-B)

8. View main gear and transfer gear change from
home menu screen (HL-B)

9. View TO settings from home menu screen
(HL-B)

10. Display of HDC from home menu screen
(HL-B)

11. Display of suspension status from home menu
screen (HL-B)

12. Display of differential status from home menu
screen (HL-B)

13. An off-road driving example (HL-B)

State machine
diagram

Behaviour

1. Driver Information System

2. Off-road information

3. Displaying gear position

4. Displaying transfer gear status

5. Displaying centre and rear differential Lock
Information

6. Displaying TO settings

7. Displaying HDC status

8. Chassis view

Activity diagram

Behaviour

1. Getting to the 4x4 information screen

2. Selecting access height and viewing of new
height information

3. View TO Settings and change the TO mode

4. View steering

The listed diagrams in the model provide a clearly structured visualization of

the 4x4 Information System. Several types of diagram represent the function

requirements from different aspects of the system with relevant objects. Table 4-6

summarizes how the functions of the 4x4 Information System are modelled within

use case, sequence, state machine and activity diagrams. The number under each

diagram type column refers to the Table 4-5. For example, “Function 3. Switch

between different views” is modelled in use case diagram 2, sequence diagram 7

and state machine diagram 2 which are listed in Table 4-5.

-74 -

Chapter 4

Table 4-6. Functions covered by the diagrams in SysML model.

Use case Sequence State Activity
Function Function details diagram diagram machine | diagram
number number number diagram number
number
1. Return to home menu 1. 1.
screen
2. Change to 4x4 1. 2. 1. 1.
information screen
from other screens
3. Switch between 2. 7. 2.
different views
4, Display steering angle 2. 3.4.5.6. 2. 4.
information
5. Display transfer gear 2. 8. 2.4.
selection status
6. Display main gear 2. 8. 2.3.
position
7. Display differential 2. 12. 2.5.
lock information —
centre and rear
8. Display TO mode 2. 9. 2.6. 3.
9. Display HDC status 2. 10. 2.7.
10. Display air suspension 2.3. 11. 8. 2.
status
11. Display wheel height 3. 11. 8. 2.
status

In summary, block definition diagrams and internal block diagrams are used for
structural modelling of different aspects. The block definition diagrams depict the
properties and relations of various object classes in the system. The internal block
diagrams are used to define the internal structure of the system such as connections
and data flows between the parts in the system. The use case diagrams define the
interaction between actors and associated various use cases for the components
within the system. The sequence diagrams show the interactions among various
objects in the system when viewed as a sequence in time. State machine diagrams
are used to represent mode changes within the system under actions which can be

related to operations in the block definition diagrams. The activity diagrams are

-75-

Chapter 4

used to model the behaviour of relevant objects within the system under the
operations defined in the block definition diagrams. A more detailed discussion of
the model is provided in Section 4.4 after the functional model built in

Simulink/Stateflow is presented in the following section.

4.3 Part of the model developed using MATLAB
Simulink/Stateflow

Simulink/Stateflow does not include use case diagrams, sequence diagrams and
activity diagrams. It utilizes Stateflow diagrams only to capture the functional
behaviour of a system. Fig. 4-19 is the top level view of the functional model of the
4x4 Information System built in Simulink/Stateflow. Compared to Fig. 4-10, there
is no distinct difference between them. In this diagram, the “OffRoad_Information”
state is highlighted on a grey background. It indicates that this state contains lower

level states which are shown in Fig. 4-20.

=, Ignition_On " Initial_Sereen_Showing_Company Logo |
|/Screen_Power_0ﬁ } = = =
i 2
after(2.sec) L5 /'
[lgnition==0] 7)
after(2,sec) 3 o
[lgnition==1] Ignition_Of

Mo \
{ Display Y
-

-‘i-[m} . Home)

OffRoad_Information

(OffRoad_Information): 2

OnRoad_Information

[Oon Road_infunnatiorﬂ- +
. /

[Na\oigation “‘_- MNavigation

“PthB ‘ Fhone

'--Entertainment} Entertainment -

|
“ @ .
\,

S S

Fig. 4-19. Stateflow diagram: Driver Information System.

-76 -

Chapter 4

mmad_lnfnrmatiun_ScreEn \
i

;"’LEfTD\spIay \“. CentralDisplay | RightDisplay
et S B B P (W)
! H . 1 TerrainOptimizationSettings & H
Wit g, : : . ChassisView

: y : ;
: ViewCentreDifferential & | CompassView
P s ;
! ViewRearDifferential : H

Fig. 4-20. Stateflow diagram: display off-road information.

The 4x4 information displayed in the “OffRoad_Information” mode in Fig.
4-20 is a contrast to the function of the 4x4 Information System modelled and
represented in Fig. 4-11. In Fig. 4-20, each rectangle with rounded corners
represents a display state. The largest rectangle represents the highest level state in
this diagram. Smaller rectangles are lower level states. States in grey and light
brown colours contain more detailed level states. Rectangles with dashed lines are
utilized to indicate concurrent states. Furthermore, unlike the state machine
diagram in ARTiISAN Studio, the location of states in a Stateflow diagram is not
restricted. Lower level states can be moved freely within the rectangle of a higher
level state. Therefore, the position of each display state in the Simulink/Stateflow
model corresponds to the actual HMI. More detailed functionality of the 4x4
Information System is represented by seven separate lower level Stateflow

diagrams.

=77 -

Chapter 4

--- va

,-"‘TerrainOptimizationSettings "-..
: Standard L, -
Mud_ Ruts
=t 2
Sand
= G

Rock_Crawl ack o 4
H—

Fig. 4-21. Stateflow diagram: TO settings.

Fig. 4-21 is a lower level state which is shown as a rectangle that is marked
with “TerrainOptimizationSettings” in the centre of Fig. 4-20. It is a contrast to the
function of the 4x4 Information System modelled and represented in Fig. 4-12.
Similar to Fig. 4-12, this diagram represents one of five TO settings is displayed

when the associated TO mode is selected, which is marked on the arrowed lines.

__.-" ViewCentreDifferential

E[LockingTorque<Threshold_VaIue] [LockingTorque==Threshold_Value_Appropriate_to_Current_TO_Mode]

i
Unlocked

''''''

Fig. 4-22. Stateflow diagram: view centre differential.
In contrast to Fig. 4-13, Fig. 4-22 represents the mechanism of the centre

differential lock of the 4x4 Information System. When the locking torque is less

-78 -

Chapter 4

than a threshold value, both centre and rear differential locks show “Unlocked”.
They will be locked when the locking torque is higher than the threshold value
appropriate to the current TO mode.

Fig. 4-23 shows an overview of the Simulink model. All Stateflow diagrams in
the model are included in a state chart which is shown as a rectangle at the top right
of this figure. Four constant blocks on the left of the state chart are used to model
the input value such as “Locking Torque” in the model. Other constant blocks
produce control signals to trigger the events which control the transition of states.
A vertical bar and three flat bars are “Mux” in the Simulink model which integrate

all the control signals and input them through a port at the top of state chart.

-79-

Chapter 4

"Wa)SAS UOIBWIOU] i 8U) JO [3pOW MOJa1eISSUINWIS “£2-1 "Bl

oo

]

wa o e g

ConTaLT NN AT amis st e o

—e

-80 -

Chapter 4

Table 4-7. List of diagrams in Simulink/Stateflow model.

Diagram Type Purpose Name of Diagrams

Stateflow diagram Behaviour | 1. Driver Information System

3. View main gear

4. View transfer gear

. View TO settings

6
7
8. View HDC status
9

. Chassis view

2. Display off-road information

5. View centre differential lock

. View rear differential lock

Table 4-8. Functions covered by Stateflow diagrams in Simulink/Stateflow model.

Function Function Details Stateflow Diagram
Number Number
1. Return to home menu screen 1.

2. Change to 4x4 information screen from other 1.
screens
3. Switch between different views 2.
4, Display steering angle information 2.
5. Display transfer gear selection status 2.4,
6. Display main gear position 2.3.
7. Display differential lock information — centre 2.5.6.
and rear
8. Display TO mode 2.7.
9. Display HDC status 2.8.
10. Display air suspension status 2.9.
11. Display wheel height status 2.9.

Table 4-7 lists all the Stateflow diagrams which were developed for the 4x4

Information System. As shown in this table, the Simulink/Stateflow model utilizes

Stateflow diagrams only for modelling the functional behaviour of the system.

-81-

Chapter 4

Every diagram is numbered in the right hand column. There are nine Stateflow
diagrams in total in this model. A full list of Stateflow diagrams in the model can
be found in Appendix C. Table 4-8 summarizes how the functions of the 4x4
Information System are modelled within these Stateflow diagrams. The Stateflow
diagram number refers to Table 4-7. For instance, “Function 5. Display Transfer
Gear selection status” is modelled in Stateflow diagrams 2 and 4 which are listed in

Table 4-7.

4.4 Discussion

In this chapter, diagrams have been selected from the full set of the SysML
diagram types as being representative of a typical system development. This
chapter has discussed how to make use of those key diagram types to enable
automotive engineers to model both the structure and function of an automotive
electronic system.

Block definition diagrams and internal block diagrams are used for structural
modelling of different aspects. The block definition diagrams depict the properties
and relations of various object classes in the system. The internal block diagrams
are used to define the internal structure of the system such as connections and data
flows between the parts in the system.

The functional modelling has been carried out via use case diagrams,
sequence diagrams, state machine diagrams and activity diagrams. The use case
diagrams define the interaction between actors and associated various use cases for
the components within the system. The sequence diagrams show the interactions
among various objects in the system when viewed as a sequence in time. State

machine diagrams are used to represent mode changes within the system under

-82-

Chapter 4

actions which can be related to operations in the block definition diagrams. The
activity diagrams are used to model the behaviour of relevant objects within the
system under the operations defined in the block definition diagrams.

As described in Section 4.2.5, the diagrams fit together as one model, there is
no obvious integration or data synchronization issue that needs to be considered
explicitly when additional diagrams are introduced into the model. Facilitated by
ARTISAN Studio, the entire model is synchronized by keeping attributes of the
same component in the model consistently updated among all diagrams. For
example, if an actor’s name needs to be changed due to the alteration of the
requirement document, revising the name in any diagram that includes this actor
results in the name alteration in all diagrams that contain this actor. Thus, all
diagrams of the model are internally synchronized with external requirements.

Getting the requirements right is crucial for any project [80, 81]. These
diagrams facilitate the formulation of textual form specification documents by
successfully translating the design requirements into a clearly structured and
visualized model. This model represents the design requirement in both structural
and behavioural viewpoints. Moreover, experience shows that these diagrams can
be broken down and developed at different levels to represent the interactions and
detail at various levels. The integration is vital for the automotive electronic system.
Different people require different pieces of information, depending on what their
roles are in the system. This model facilitates collaboration of people with different
backgrounds such as systems engineers and software engineers to design,
implement and manage such complex distributed systems and integrate them into
one cohesive and reliable SoS. Specifically, the systems engineer can make use of

block definition diagrams and internal block diagrams to define the physical

-83 -

Chapter 4

structure and capture the interaction between the components. The software
engineer can pay more attention to the state machine diagrams, activity diagrams
and sequence diagrams for the functional modelling and then deliver the software.
The SysML can benefit the development of an automotive electronic SoS through
either way [116, 117].

The function model has also been developed in Simulink/Stateflow. In the
Simulink/Stateflow model, a Stateflow diagram has a very similar mechanism as a
state machine diagram in SysML to model the functionality of the 4x4 Information
System. Diagrams can be broken down and developed at different levels to show
the interaction and detail at various levels such as Fig. 4-19 and Fig. 4-20. How
mode changes under actions in order to display the 4x4 information to the driver
are represented in a similar mechanism as state machine diagram in SysML. The
developer can gain an understanding of the system from several levels. However,
for the purpose of analysing a system, it is important to be able to observe a system
from many different viewpoints [27]. In comparison with the SysML model, the
Simulink/Stateflow model only utilizes nine Stateflow diagrams to provide the
description of the function view of the 4x4 Information System from the
behavioural viewpoint. The model built in SysML benefits from the collaboration
of six diagram types, namely, block definition diagram, internal block diagram, use
case diagram, sequence diagram, state machine diagram and activity diagram to
enable the engineer to obtain a profound understanding of the SoS from both
structural viewpoint and behavioural viewpoint.

It is clear that SysML provides a more complete description of the functional

behaviour of the SoS than Simulink/Stateflow. The added detail in SysML provides

-84 -

Chapter 4

a more comprehensive coverage of the functional behaviour of the SoS in relation
to the design requirements.

An important consideration for model construction is the capability of coding
implementation. The code generated automatically through model building in
ARTISAN Studio and the model developed in Simulink/Stateflow are going to be

described in the following chapter.

-85 -

Chapter 5

Chapter 5

Code generation and verification

Chapter 4 presented the development of the structure and function model in SysML
by using ARTISAN Studio and the building of the function model in
Simulink/Stateflow. This chapter compares the functional equivalence of the
function models and discusses the automatic code generation from both models.
The PolySpace tool is utilized to perform automatic code verification for the C
code generated. The attention focuses on the comparison of quality and efficiency

of the code.

5.1 Function model simulation and comparison

Utilizing simulation to verify the model is a sophisticated task for model-based
design. For example, the control engineer needs to transform design requirements
into the block diagrams in a Simulink model. After completing the model, offline
simulation can be performed for the system analysis. In this chapter, eleven test
cases are developed as shown in Table 5-1 to verify the functional equivalence of
the state machine diagrams in the function model built in ARTiISAN Studio and

Stateflow diagrams in Simulink/Stateflow.

- 86 -

Chapter 5

Table 5-1. Test cases for verifying the functional equivalence of the model.

Number Test case name Precondition Objective
) Display home menu screen
Return to home Display shows 4x4
1.]) as soon as home menu hard
menu screen information screen .
key or soft key is pressed.
Display 4x4 information
Change to 4x4 .
. _ Display shows screen as soon as the 4x4
2. information screen . .
home menu screen | information hard key or
from other screens .
soft key is pressed.
3 Display compass Display shows Display compass view on
' information home menu screen | 4x4 information screen.
. . i Display steering angle
Display steering Display shows] by] gang
4. . : information on 4x4
angle information home menu screen. | . .
information screen.
i) Displaying the transfer gear
Display transfer Display shows Paying . J
5. . status when a High or Low
gear selection status | home menu screen .
ratio has been selected.
. . : Displaying the main gear
Display main gear | Display shows p ying . ;
6. o\ position when main gear
position home menu screen .
position has been selected.
. . . Displaying the differential
Display differential _ p_ ying .
)) Display shows lock information for both
7. lock information — . i
home menu screen | centre and rear differentials
centre and rear .)
on 4x4 information screen.
. Displaying five different
. Display shows . p ying .
8. Display TO mode driving modes according to
home menu screen o :
the driver’s selection.
. Displaying the HDC status
) Display shows Praying -
9. Display HDC status based on the driver’s
home menu screen .
selection.
Displaying the air
10 Display air Display shows suspension status when
' suspension status home menu screen | chassis view is selected in
the 4x4 information screen.
Displaying the wheel
1 Display wheel Display shows height status when chassis

height status

home menu screen

view is selected in the 4x4
information screen.

-87-

Chapter 5

The simulation is performed in both tools for these test cases. During the
simulation, the status of states changes according to the input actions. Thus, the
control and supervisory logic which are defined in the function models can be
tested by using the above test cases. For example, test case 3 is used to verify the
function of displaying the compass view in the 4x4 Information System. During the
simulation, both tools simulate state changes in the function model based on the
same set of actions which is described as the main flow in the Table 4-4. When the
test begins, both models show the home menu screen during the simulation, after
the actions are taken, the screenshots of the simulations in both models are shown

below.

ﬁ OffRoad Information

Left Display
.%/ Left Display
View Steering Angle

.%isplaying Steering Angle Information)

View Main Gear

[] Displaying Gear Position

STD: Displaying Gear Paositiol

View Transfer Gear

Y Displaying Transfer Gear Status
STD: Displaying Transfer Gear Statu:

View Differential

.ﬁ@isplaying Centre and Rear Differential Lock InformatiorD

Central Display

[= Central Display
/" [Terrain Optimization Settings

.ﬁ(Displaying Terrain Optimizati Seltingsw

{STD: Displaying Terrain Optimization Settings/

Hill Descent Control

.%/(Displaying Hill Descent Control Status w

|STD: Displaying Hill Descent Control Status/
Right Display
H
. . ®
STD: Chassis View)
Compass view Soft Key Pressed/ Chassis view Soft Key Pressed/

\/
Compass View

Fig. 5-1. Simulation in ARTISAN Studio - OffRoad Information.

- 88 -

Chapter 5

Fig. 5-1 shows the simulation performed in ARTiSAN Studio. It simulates the
4x4 Information System currently displaying “OffRoad Information” mode. The
active states are represented in red during the simulation. Fig. 5-1 shows the left
area of the screen displays the steering angle, main gear, transfer gear, and centre
and rear differential lock. The central display shows the TO settings and HDC. The

right area of the screen is in compass view.

@adnfarmatuﬂ&reem \

." RightDisplay 1.‘-.

[ChassisView]

.................

..................

..................

..................

Fig. 5-2. Simulation in Simulink/Stateflow - OffRoad Information.

Within the model built in Simulink/Stateflow for the 4x4 Information System,
the simulation is performed as shown in Fig. 5-2. This diagram shows the
simulation of the 4x4 Information System which is in comparison with Fig. 5-1.
The active states are represented in blue during the simulation. Fig. 5-2 shows that
the screen is in “OffRoad Information” mode. The left area of the screen, the
central display and the right area of the screen shows the same information as

simulated in the state machine diagram in ARTiSAN Studio.

-89 -

Chapter 5

() = Displaying Terrain Optimization Settings

Fig. 5-3. Simulation in ARTISAN Studio - Display TO mode.

Standard Mode/

Standard

Mud Ruts Mode/
Mud / Ruts

Sand Mode/

0l

Sand =

Grass Snow Ice Mode/
Grass/ Snow / Ice

Rock Crawl Mode/

Rock Crawl

[

Test case 8, ‘Display TO mode’ is employed as another example in this section.

Fig. 5-3 and Fig. 5-4 present how the function model behaves after the same

actions were taken. Fig. 5-3 shows that the sand mode is displayed on the screen

which is highlighted in red in the model built by ARTiSAN Studio. Similarly, Fig.

5-4 shows that the screen is showing sand mode which is represented in blue in the

model developed in Simulink/Stateflow.

]
L]
-

*, -
asEETEsEEEEEEEEEEEESEEEEEEEEEEREEEsnmEmEnw?

Fig. 5-4. Simulation in Simulink/Stateflow - Display TO mode.

Standard

Mud_Ruts

Sand

Rock_Crawl

. .QIIJIIIIIIIII;IIIIIllllllIlllllllllllllllllllll-'

-90 -

Chapter 5

From the comparison of the simulation exercise, it is concluded that the
function models built in ARTiSAN Studio and in Simulink/Stateflow perform the
same behaviour under the same input action, i.e., they are functionally equivalent.

The code generation from the functional models is explored in the next section.

5.2 Code generation

VxWorks Code 1
Production o
Win32 Production C
> ode 2
EXE
C++ Synchronizer |——
Generic Production > Code 3
Win32 Test
Harness Simulation > Code 4
DLL

SysML model —

Generic Production |——m Code 5

C Synchronizer

Win32 Test
Harness Simulation
DLL

> Code 6

Fig. 5-5. Code generation in ARTiISAN Studio for the model of 4x4 Information
System.
The code generation of the function model built in SysML is facilitated by the C
Synchronizer and C++ Synchronizer in ARTISAN Studio version 6.1. The C
Synchronizer is a well integrated tool in ARTISAN Studio. It uses a set of
generation templates to produce the code for different purposes which is shown in
Fig. 5-5. For example, C code can be generated through Win32 Production EXE
scheme for a Windows operating system. C++ code can be produced through the

VxWorks Production scheme for a VxWorks operating system. Additionally,

-91 -

Chapter 5

ARTISAN Studio provides the engineer with a certain level of flexibility for code
generation. For instance, the code can be generated from state machine diagrams in
the function model or it can be produced for the entire model including both
structure and function models. In this Thesis, C code is produced from eight state
machine diagrams in the function model through a Generic Production scheme for
operating systems that are not Windows or VxWorks. It is indicated as “Code 5” in

Fig. 5-5. This C code contains 4,311 lines (or 3,142 lines without comments).

—> ert.tic —p» Code 1

—P> grt.tic ——p» Code 2

Simulink/Stateflow Real-Time Workshop
Model Embedded Coder

—P» rtwsfen.tlc ——p Code 3

— | |
I I

—>| (Target file) |——> Code

Fig. 5-6. Code generation in Real-Time Workshop Embedded Coder for the model
of 4x4 Information System.

The Real-Time Workshop Embedded Coder (RTW EC) is one of many in the
Simulink product family which has been developed by The MathWorks. The
version evaluated in this Thesis is R2007a. It enables the C code and C++ code
generation for the Simulink and Stateflow models. The different target files can be
selected for generating C or C++ code, which are shown in Fig. 5-6. In this Thesis,
C code is generated from nine Stateflow diagrams in the Simulink/Stateflow model
through the “Real-Time Workshop Embedded Coder with no auto configuration”
scheme by selecting the “ert.tlc” target file. This C code is PC-based C source code

which has a difference lap to the final stage microcontroller-based code. To

-92 -

Chapter 5

automatically generate C source code and run the code directly on the target, some
modifications are required to the target files which are provided by RTW EC. The
other options are set as the default when the C code is generated. It is indicated as
“Code 1” in Fig. 5-6. This C code has 1,818 lines (or 1,336 lines without

comments). Fig. 5-7 shows the default parameter configuration of RTW EC.

* Configuration Parameters: FunctionalMedel0524/Configuration (Ac. .. E|

Select: Target zelection

- Golver !
| et o
- Data | mpart/E xport System target file: | | Browse
~]

- [ptimization Language: e
[=)- Diagnostics Description: Fieal-Time ‘Workzhop Embedded Coder [no auto configuration)

- Sample Time =
.. Diata Walidity [ocumentation
- Type Canversion [] Generate HTML report
- Connectivity :
- Compatibilty Launch report automatically
- Model Referencing Include hyperinks o model

- Hardweare Implementation Buid

- Model Referencing Uild process

- Real-Time ‘Workshop TLC options:|

- Comments Makefile configuration
- Spmbols
.. Custom Code Generate makefile
- Diebug Make command: make_rtw
-~ Interface Template makefile: ert_default_tmf
- Code Style
- Templates
. Data Placement Custom storage class .
~Data Type Replace.. | [7] Ignore custom storage classes

- Memory Sections
=-HDL Coder [] Generate code onl -

. L

i~ Global Settings m

- Test Bench b

I ok H LCancel ” Help] Apply 7

Fig. 5-7. Parameter configuration of Real-Time Workshop Embedded Coder.

Fig. 5-8 and Fig. 5-9 show the default parameter configuration of the solver and

optimization respectively.

-03 -

Chapter 5

Configuration Parameters: FunctionalModel0524/Configuration (Ac... E|

ata Import/E xport

- O ptimization

[Diagnostics

- Sample Time

- [ata Y alidity

- Type Conversion
- Connectivity

- Compatibility

- Model Referencing
ardware Implementation
odel Referencing
eal-Time Workshop
- Comments

- Sumbiolz

- Cugtom Code

- Debug

- Interface

- Code Style

- Templates

- [ata Placement

- Data Type Replace...
- Memary 5ections
[=1-HOL Coder

- Global Settings

i Test Bench

D=z

Simnuilation time

Stark time: |D.D | Stop time: |inf

Solwer options

Tupe: |FiHed-step v | Solver: |0de3 [Bogacki-Shampine]

Periodic sample time constraint: Unconstrained

Fixed-step size [fundamental sample time]; | auto

Tasking mode for periodic zample imes: |Auto

[] Higher priarity value indicates higher task priority

[Automatically handle data transfers between tasks

I ok H Lancel ” Help

| £

Apply

Fig. 5-8. Parameter configuration of solver.

* Configuration Parameters: FunctionalModel0524/Configuration (Ac... E|

Simulation and code generation e
Block reduction Conditional input branch execution
Implement logic signals as boolean data [vs. double]. Signal ztorage reuse
[Inline parameters Configure ...
- Sample Time o
- Data Validity Application lifespan [days]l‘l |
-~ Type Ci i ;
RS So e Code generation
- Connectivity
- Compatibility Parameter structure: N orHisrarchical |
- todel Referencing .
- Hardware Implementation Signals
- Madel Beferencmg Enable local block outputs Reuse block outputs
[=1-Real-Time Workshop . . . A .
. Comments [Ignare integer downcasts in folded expressions Inline invariant signals
- Symbols Eliminate superfluaus temporary variables [E xprezsion folding]
- Custom Code Loop unralling threshold: |5
- Diebug
- Interface D ata initialization
- Code Style o o
- Templates [] Remaove oot level 1/0 zero initialization [] Use memszet ta initialize floats and doubles to 0.0
- [ata Placement [] Remove internal state zero initialization Optimize initialization code for model reference
- Data Type Replace... - -
. Memary Sections Integer and fixed-point
E HDLGEIDSEIIS . [] Remave code fom floating-point ko integer conversions that wiaps out-ofrange values
- Global Settings . . § X X
‘Test Bench [] Remaove code that pratects against division arithmetic exceptions v
I Ok l [LCancel] [Help Apply

Fig. 5-9. Parameter configuration of optimization.
Further investigation focuses on the comparison of quality and efficiency of the
code. Selecting different options in the code generation could potentially affect the
result of the code generation in terms of quality and efficiency. Attention is given

and the results observed are discussed in a later section.

-94 -

Chapter 5

5.3 Automatic code verification and code comparison

Comparing the length of the code, the C code generated from ARTiISAN Studio for
state machine diagrams is twice as long as that produced by Simulink/Statelow. It
implies that this code takes a longer time to compile and is more difficult to check
and maintain. ldeally, developers would discover and fix errors in programs before
they are released [118]. However, it is an extremely difficult task. Among the many
approaches for finding and fixing errors, static analysis is one of the most attractive
[119-122]. Static analysis aims to automatically process source code and analyze
all code without the large amount of test cases used in testing [123]. PolySpace is
such a tool to use static analysis techniques, including symbolic analysis, abstract
interpretation, model checking, integer range analysis, and inter-procedural
analysis [97]. Hence, it is utilized in this Thesis to perform automatic code
verification for the C code generated from both models. The PolySpace analysis
process is composed of three main phases. Firstly, PolySpace checks the syntax
and semantics of the analyzed files. Then, PolySpace seeks the main procedure. If
one is not found, PolySpace will generate one automatically. By default, this
function will call all public functions of the file. Finally, PolySpace proceeds with
the code analysis phase, during which run time errors are detected and highlighted
in the code. Moreover, each operation checked is displayed by using a meaningful
colour scheme and related diagnostics [97]:

e Red: Errors which occur at every execution.

e Orange: Warning — an error may occur.

e Grey: Shows unreachable code.

e Green: Error condition that will never occur.

-95-

Chapter 5

As shown in Fig. 5-10, the PolySpace Viewer displays the analysis results of
the C code produced from the state machine diagrams of the model built in
ARTISAN Studio. The left hand area of this diagram is the procedural entities view.
It shows the list of packages that have been analyzed or used during the analysis.
On the right of this window is the source code view with coloured instructions
which are stated as above. These windows enable software engineers to easily
inspect the source code. For example, when the engineer clicks on “RtsDrive ()”
(marked as “1”), it expands and displays a list of coloured symbols showing the
diagnostic results. In the meantime, the source code is opened and displayed on the
right hand side in the source code view. After clicking on the orange item “NIV.5”
(marked as “2”) which stands for Uninitialized Variable, the source code view is

updated to show the location of this orange warning.

PolySpace Viewer, - E:\0915\PolySpace_Results\OZARTE_px_00_New_Project LAST_RESULTS.rte
File Edit Windows Help

= | Lol e W B E e 1 N-SHR i‘v '5.‘5 Tu_s { P Epen
 [Methodotagy for e ~ %272 [Jsudpgraychecis M € @ & W wrin

Procedural entties 11X ~ |Line Col % | Details . =
B2 Driver_Information_System.c
] RtsEnter_Pending () i | 085 | & |100 |Driver_Information_Systeme | %
] RtsEnter_Rock_Crawl (] 2| 173 | § |100 Driver_Information_System.c 2265
& FrsEnter_Sand () 2| 1133 | § |100 Driver_Information_System.c 2266)
¥ FusEmer_Ser () 2 |15 | 5 [100)D 2267 else
i 1 1782 | 12 | 100|0 2268 {
1 1807 | 12 {1000 2269 /% Event not handled */
45 | 208 | & |08 D zz70 3
16| 1322 | |88 Driver_infermati z271 RtsRunToCompletion{this);
12 741 5 |87 |Driver_Informati 2272 RrslUnlock(this->RtsBusy)
+ 1|1 | 8 |85 |Drver_Informati 2273
B ResDrive (1 <_ 1 i 7| ms | & |84 Drver information systeme |l 2274
o NP 1 2970 | 12 2275 woid RtsDrive (struct Driver Information Systew® this)
279 | 16 airter within bounds 2276 |
. 270 | 13 2277 int CompartmentTransTaken = 07
2278 Rtslock |this->RtsEusy) ;
~ NP3 1 9| 2278 if (this->ResCurrent Dr DL
~F IDP4 1| 2381 | 24 oirter within bounds —

2260 1

I -— 2 281 % 2281 if (thiz-> == 0ffRoad_Info

~ NIPE 1 | B 2282 {
 IORT 10|83 | 3 airter within bounds 2283 if (this—

. 8% | 2284 {

o ML 1 2983 | 95 2265 / if (this-»
W WIF.ID 83 | 121 zz286 {

1
3 IDP.11 1 393 | 126 cinter within bounds 2287 3 iE (Lhis—>
o NIz 1 2393 | 127 2288 s
K NP 1 2283 | 134 2289 if (this-»
K IORA4 1 2393 | 188 cinter vithin baunds 2250 i
K NS 1 383 | 190 2291 Comp:
I HIP.IE 1 2233 | 241 2292 RtsE:
3 I0PIT 1 2283 | 245 ointer within bounds 2203 RrsE
o HIE 1 3393 | 247 2234
7 HIR9 1| sz | s 2298 ¥

2296

7 DR 1 s | A cirter vithin bounds = B

< =

Fig. 5-10. Analysis result of the C code produced from ARTiISAN Studio.

- 906 -

Chapter 5

In addition, a warning message window is opened after clicking on the orange
section with the grey background (marked as “3”) of the code in Fig. 5-10. Fig.
5-11 presents this warning message window and it precisely indicates line 2281,

column 26 of the source code has a variable that may be non-initialized.

BX]

H Driver_ Information_System.RtsDrive.NIV.5 :

n "Driver_Information_System .o line 2281 column 26
Source code

| if (this-=RtsCurrent Display == 0ffRoad Information)

| s

Fig. 5-11. Warning message window of the C code produced from ARTiISAN

Studio.

n PolySpace Viewer - E:\0915\PolySpace_Results\01\RTE_p2_00_Quick.rte

File Edit Windows Help

o R o oW BE e 1 e F N e

{ [Methasalagy for ¢ v %273 [Dekipgraychecks 4 € @& % M uro
Frocedural entities 1%[?] |Line Col % | Details
|25 Hew_Project [NE] 13 a7 | arinalng
Bl en_main.c 3 3 1 100 ert_main.c B F unctionalModel0209.c
= main () 3 3 57| 6 [100en_maino a1
® Hiro 1 oz 4z || 1456
 HIR ol e a3 f| 1457 /% block I/0 *+/
K IDP2 1 71| 3 ainter within bounds 44 f§ 1438 {
0P 1 2| oirter within bounds 45 f§ 1459 int T i;
) MR l | n | a6 || 1460 woid *p¥oidBlockI0Region;
& NIFS 1 72| A 47 f§ 1461 p¥oidElockI0Region = (void *) (sFmctionalModel0z0d_B
_init_glabals () 1 0 gn_main.c 48 | 1462 for (1 =0: 1< 2l; 144) |
t_Onestep () 3% | 5 |0 etmane 4s | 1463 (lreal Trjpioidiiocilifeqiony[1] = 0.0
[l Functionalviodel0209 ¢ 17 10 1 46 Functionalhideli2d o :T]]::2: 3 '
B Functionalsdeloz08_nitiaize) " 10| 1460 | 5 |86 Functionalibdelozod.e ol 1aes
»/ NIRO N 53 | 1467 /7 states jdwork] %/
W 1DRA 1| 1B | 2 poimer uithin bounds ¢ [1455 (void) memser((char_T *) sFunctionalliodel0209_DWork,o,
o N2 1| ez e B sizeot (D_Uork_FunctionalModel0209));
~ NIVL3 1 1462 | 24 ¥ \
F OWFLA 1 1482 | 25] enverflow range: {214749364
& UNFLS 1| ez | 28 1] undertlon range; 21474836
> [-— 2 a0z | 7 ainter within bounds ||
~ NPT 1 1463 | 16
~ HLE 1 1483 | ¥
~ OVFLO 1 1463 | 36 [owerflow range; {2147483647
~# UNFLAD 1 1483 | 36] undrfiow range: {-21474336:
LI 1 195 | 8
MK HILIZ 1 1476 | 51
K HILIE 1 1478 | 51
 OvFLI4 1 1475 | 54 F] overflow range: 214743847
oK UNFLIS 1 1475 | 54 F] underflow range: £21474336¢
WK OWFLIG 1 1478 | 56 [sonwersion from flostB4 to int3
 UKFLTF 1 1475 | 56 oonwersion from floatée 1a int3
ror f it v
< >

Fig. 5-12. Analysis result of the C code produced from RTW.
Fig. 5-12 represents the PolySpace Viewer showing the analysis results of the C

code produced from the Stateflow diagrams in the Simulink/Stateflow model by

-97 -

Chapter 5

RTW EC. On the left of this window is the procedural entities view. It displays the
list of packages that have been analyzed or used during the analysis. The right hand
area of this window is the source code view with coloured instructions. Software
engineers can manually inspect the source code from this window. For instance,
when the engineer clicks on “FunctionalModel0209 initialize ()” (marked as “1”),
it expands and displays the diagnostic results in coloured symbols. At the same
time, the source code is opened and exhibited on the right side in the source code
view. After clicking on the orange item “IDP.6” (marked as “2”) which stands for
Illegal Dereference of Pointer, the source code view is updated to indicate the
location of this orange warning. Moreover, after clicking on the orange section with
the grey background of the code that is marked as “3” in Fig. 5-12, a warning
message window is opened as shown in Fig. 5-13. This warning message window
points out that the pointer in the source code line 1463, column 7 may be outside its

bounds.

HFunctinnalﬁndelﬂiﬂi.Functinnalﬂn... @@

in "Functionaltodel209 " ine 1463 column 7
Source code

Fig. 5-13. Warning message window of the C code produced from RTW.
Furthermore, after the analysis is performed from PolySpace, textual files are
produced which can be found in Appendix D and Appendix E for the analysis
results of the C code produced from ARTISAN Studio and RTW EC respectively.
They can be used to create Excel reports. The report contains several spreadsheets

related to the application analyzed.

- 08 -

Chapter 5

IDP lllegal Dereference of
Pointer
30%

D IDP lllegal Dereference of Pointer
B NIV Uninitialized Variable

NIV Uninitialized Vari
70%

Fig. 5-14. Distribution of orange checks by categories of the C code produced from
state machine diagram.

Fig. 5-14 shows the “Orange Check Distribution” spreadsheet which is used to
present the distribution of orange checks by categories of the C code produced
from eight state machine diagrams of the model built in ARTISAN Studio. The
orange warnings consist of two types of software defects, i.e. “Uninitialized
Variable” and “lllegal Dereference of Pointer”. The uninitialized variable takes up
70% of the orange warnings and illegal dereference of pointer forms the remaining

30%.

@ IDP lllegal Dereference of Pointer

IDP lllegal Dereference of
Pointer
100%

Fig. 5-15. Distribution of orange checks by categories of the C code produced from

Stateflow diagram.

-99-

Chapter 5

By contrast with Fig. 5-14, Fig. 5-15 shows the “Orange Check Distribution”
spreadsheet that is used to explain the distribution of orange checks by categories
of the C code produced from nine Stateflow diagrams in the Simulink/Stateflow
model. The orange warnings are made up by “lllegal Dereference of Pointer” only.

Fig. 5-16 presents the “Distribution of checks by file” spreadsheet of the C
code produced from eight state machine diagrams of the model built in ARTiSAN
Studio. In this diagram, the X-axis indicates the number of checks. The Y-axis lists
the files which have been analyzed or used during the analysis. The C file
“ polyspace_main.c” is the main procedure which is automatically generated by
PolySpace to carry out static analysis. Thus, this C code is error free in about 720
operations which is shown as a flat green bar. The “Driver_Information_System.c”
is produced by the ARTISAN Studio C Synchronizer. According to the scale on the
X-axis, this code has nearly 400 orange warnings and almost 300 unreachable

operations in the code.

Distribution of checks by file 1

]

__polyspace_main.c

Driver_Information_System.c

100 200 300 400 500 600 700 800 900

o 4

Fig. 5-16. Distribution of checks by file of the C code produced from state machine

diagrams of the model built in ARTiSAN Studio.

- 100 -

Chapter 5

Distribution of checks by file 1

ert_main.c

FunctionalModel0209.c

Fig. 5-17. Distribution of checks by file of the C code produced from Stateflow
diagrams in Simulink/Stateflow model.

Fig. 5-17 displays the “Distribution of checks by file” spreadsheet of the C
code produced from nine Stateflow diagrams in the Simulink/Stateflow model.
Similar to Fig. 5-16, the X-axis indicates the number of checks. The Y-axis
illustrates the “ert_main.c” and the “FunctionalModel0209.c”. Both C codes are
generated by RTW EC and have been analyzed by PolySpace. “ert_main.c”
contains three safe operations and three unreachable operations which are shown in
the green and grey bars in Fig. 5-17 respectively. In “FunctionalModel0209.c”,
there are 10 safe operations, 17 unreachable operations and only one orange
warning in the code. In comparison with Fig. 5-16, it is clear that PolySpace
performed significantly fewer checks in total for these C files. This is because the
RTW EC produced a short C code in terms of length.

The above spreadsheets facilitate an overview of the automatically generated C

code for the software engineer. It enables engineers to seek improvement in code

- 101 -

Chapter 5

generation such as developing an auto coding platform for consistent, robust and

reliable code delivery.

1 RTE Statistics

2 | Check category Check detail R 0O | Gy % proved
3 |DOBA Out of Bounds Array Index @R |0 [100.00%
4 |MML Uninitialized Local Yariable oia |0 100.00%
i) [legal Dereference of Pointer 0 54 137 gl 00%
B |MIP Uninitialized Pointer o a3 100.00%
7MY Uninitialized Yariable B {193 [131 o4 45%
g IR Initialized %alue Returned g@ [0 100.00%
8 |COR Cther Correctness Conditions [0 0 |0 100.00%
10 |ASRT User Assertion Failure ai|m |0 [AA,
11 | PORY Fower Must Be Fositive oo |0 MEA,
12 | Z0% Division by fero g |0 100.00%
13 [SHF Shift Amount Within Bounds 0 0 0 MAA,
14 [OWFL Cryeflow g |0 100.00%
15 [LIMFL Underowe g0 |0 100.00%
16 |LICNFL Underflow or Cwerflow aio o [EA,
17 |EXCP Arithmetic Exceptions aio |0 A4,
18 |MTC Maon Termination of Call oo |0 A,
19 |k-MTC Krnown Mon Termination of Call ‘0 0 |0 [EA,
20 [NTL Man Termination of Loop g 0 AR,
21 [UMR Unreachable Code gia |0 PEA,
22 [UMP Uncalled Procedure a;o |0 P4,
23 [IPT Inspection Point aio |0 A4,
24 [OTH other checks oo |0 [EA,
25 |EXC Exception handling g jo MAA
26 |0O0F Chject Oriented Programming 0 0 |0 MAA
27 |CPP C++ g (0 M,
28 [NMR Mon Mull Receiver g@a o [EA,
29 [FRY Function Returns a Yalue gia |0 [EA,
a0 [IMF Infarmative check om0 [MEA,
31 |Tatal 0 (277 (393 11 a7 . 22%

Fig. 5-18. RTE view of the C code produced from state machine diagrams of the

model built in ARTiSAN Studio.

As shown in Fig. 5-18, the Run Time Error (RTE) view is presented in the

“Check Synthesis” spreadsheet. It contains all statistics about checks and colours in

a summary table. Fig. 5-18 represents the RTE view of the C code produced from

eight state machine diagrams in SysML model. In this table, it can be seen that ten

-102 -

Chapter 5

types of errors have been checked. They are pointed out in lines 3, 4, 5, 6, 7, 8, 9,

12, 14 and 15 respectively. Based on Fig. 5-18, there are no certain errors which

occur on each execution. There are 1,498 safe operations, 393 unreachable

operations and 277 orange warnings in the code. This code is 87.22% proven

overall.

1 RTE Statistics

2 | Check category Check detail R O Gy % proved
3 |OBA| Cut of Bounds Array Index 001 | 100.00%
4 ML Uninitialized Local Yariable U0 (7 100,00 %
5 |IDP egal Dereference of Pointer 0 1 |1 75.00%
B [MIP LIninitialized Pointer 1 |0 12 100.00%
7 M Lininitialized “ariable 0|0 |0 PAA
a |IRY Initialized “alue Feturned 0|0 |0 A,
9 |COR Other Correctness Conditions [0 0 [0 [EFLS
10 |ASRT Lser Assertion Failure 0|0 |0 MEA
11 |POWY Power Must Be Positive 3 10 MAA
12 |20 Diwigion by fero Lh[E 100, 00%
13 [SHF shift Armount YWithin Bounds 0|0 {0 PPN
14 |OWFL Chverfl oo 0|0 |4 100.00%
15 |LINFL LInderflow 010 4 100.00%
18 |LOWFL Linderflow or Overflow 0|0 |0 MAA
17 |EXCF Arithmetic Exceptions 000 A,
18 [MTC Mon Termination of Call 0|0 |0 [FFLS
19 | k-MTC Known Mon Termination of Call [0 0 [0 MAA
20 |MTL Mon Termination of Loop 000 IAA
21 |LINR LInreachable Code 0|0 |0 PAA,
22 |LINP LIncalled Procedure 0|0 |0 PAA,
23 |IPT Inspection Foint 0 (0|0 MAA,
24 |0OTH other checks 0|0 |0 MAA
25 |[EXC Exception handling 00 |0 IA
2B QO Object Oriented Programming [0 0 [0 [iA,
27 |CPP C++ 0|0 (D MEA,
28 [NME Maon Mull Heceiver oo (o [EFLS
29 |FRW Function Returns a Yalue 0|0 10 MAA
30 |IMF Infarmative check 0|0 |0 MAA
31 |Tatal : 01 {20 97 0R%

Fig. 5-19. RTE view of the C code produced from Stateflow diagrams in

Simulink/Stateflow model.

-103 -

Chapter 5

By contrast with Fig. 5-18, Fig. 5-19 shows the RTE view of the C code
generated from nine Stateflow diagrams of the Simulink/Stateflow model. The
result is summarised at the bottom of the table. No definite run-time errors are
found in this code. There are 13 safe operations, 20 unreachable operations and
there is only one orange report which is a possible error. This code is 97.06%
verified overall.

From the comparison above, there are three more error types that could be
applied to the code produced by ARTISAN Studio from state machine diagrams
which are listed in lines 7, 8 and 9 respectively. “Uninitialized Variable” in line 7
which is an error type possibly applies to this C code produced the most orange

warnings that cause this code to have a lower proven rate.

5.4 Code inspection and analysis

Section 5.3 shows a significant difference between the number of operations of the
C code produced by ARTISAN Studio and RTW EC. This section carries out
further investigation based on the results observed from the static analysis of the
software code.

The C code generation for SysML model is performed in ARTISAN Studio
version 6.1. There is no option available in the C synchronizer to optimize the code
generation process. As described in Section 5.2, the default options are selected
when RTW EC produced the C code for the Simulink/Stateflow model. The fist
experiment is to explore how the length of the C code changes when different

target files are selected.

-104 -

Chapter 5

Table 5-2. C code length under different target files.

Target file Description Length of the
9 P C code (lines)
Real-Time Workshop Embedded Coder with no
ert.tlc . . 1,818
auto configuration.
Real-Time Workshop Embedded Coder with
ert_shrlib.tlc . P 1,247
host-based shared library target.
grt.tic Generic real-time target 1,474
rtwin.tlc Real-time Windows target 1,457
rtwsfen.tlc | S-function target 1,887

As shown in the Table 5-2, five target files are selected for the C code
generation. The C code can be produced for different purposes by selecting the
target file which is described in the middle column. The right column specifies the
length of the C code generated. Comparing with the 4,311 lines C code produced
from the functionally equivalent model in ARTISAN Studio, the significant
difference in length still exists. Additional static analysis is carried out for the code

produced by selecting “ert_shrlib.tlc” target file.

- 105 -

Chapter 5

1 RTE Statistics

2 | Check category Check detail R 0| Gy % proved
3 |0OBAI Ciut of Bounds Array Index 010 |0 100, 00%
4 (MWL Uninitialized Local Variable oo |2 100,00 %
5 |IDP lllegal Dereference of Painter |0 [0 0 100.00%
B (MNP Uninitialized Pointer a0 {0 100.00%
A Uninitialized “ariable 000 ML,
g [IRY Initialized “alue Returned o|o|0 ML,
8 |COR Other Correctness Conditions 0 0 |0 P4,
10 |ASET User Assertion Failure 0|0 o M,
11 |POWY Fower Must Be Positive 010 |0 ML,
12 | ZDY Division by Zero 010\ 100, 00%
13 |SHF Shift Armount YYithin Bounds oioio ML,
14 |OWFL Crverflow oo |2 100.00%
15 |LINFL Underflow 8 [100.00%
16 |LIOWFL Underflow ar Cherflow 0 (0 (0 ML,
17 |EXCP Arithmetic Exceptions 00 (D MAA
18 |MTC Mon Termination of Call 0o jo PfA,
19 |k-NTC krnowen Mon Termination of Call (0 [0 [0 M,
20 |MTL Mon Termination of Loap 00 |0 A,
21 |LINR Unreachable Code a oo PfA,
22 |LIMP Uncalled Procedure 000 ML,
23 |IPT Inspection Point g0 |0 M
24 |OTH other checks dja (o PEA,
25 |EXC Exception handling 0|0 |0 MR,
26 |0O0P Object Oriented Programming [0 0 0 A,
27 |[CPP C++ a oo MAA,
28 |MME Maon Mull Receiver 0io|0 ML,
29 |FRY Function Returns a Value 000 ML,
30 | INF Informative check g0 {o PAA,
31 |Total : g1 |7 100.00%

Fig. 5-20. RTE view of the C code produced by selecting “ert_shrlib.tlc” target file
from Stateflow diagrams in Simulink/Stateflow model.

Fig. 5-20 shows the RTE view of the C code generated by selecting the
“ert_shrlib.tlc” target file from Stateflow diagrams of the Simulink/Stateflow
model. The result is summarised at the bottom of the table. No definite run-time
errors are found in this code. There are 15 safe operations, 7 unreachable
operations and there is no orange warning in the code. This code is 100.00%

proven overall.

- 106 -

Chapter 5

The next experiment focuses on finding out the impact of selecting different
solvers. The experiment is based on “Code 1” in Fig. 5-6 where the default settings
are employed as explained in Section 5.2. The default setting for the solver is
“ode3” which is shown in Fig. 5-8. As explained in section 5.3, this C code has
1,818 lines and there are 13 safe operations, 20 unreachable operations and there is
one orange warning. This code is 97.06% verified overall. Three different solvers
are selected for the code generation, namely, “odel”, “ode5” and “odel4x”. The
static analysis shows the C code produced with different solvers have same length
and operations as shown in RTE view of the Fig. 5-19. There is no distinct
difference highlighted among these C codes.

To investigate the reason for the huge difference between the numbers of
operations of the C code produced in ARTIiSAN Studio and in Simulink/Stateflow,
the “Code 5” in Fig. 5-5 and the “Code 1” in Fig. 5-6 are manually inspected and
compared. They are detailed as follows.

There are two types of files in the C program produced. The header file, with an
extension name of ".h', defines all the variables and functions using the program;
meanwhile, the source file, with an extension name of ".c', includes all the operation
that the C code performs.

Generally speaking, the readability of “Code 1” is much higher than “Code 5”.
In particular, there are three major variables and three functions in “Code 1”. They

are defined in FunctionalModel0209.h line 379 to line 391.

/* Block parameters (auto storage) */

extern Parameters_FunctionalModel0209 FunctionalModel0209_P;

/* Block signals (auto storage) */

- 107 -

Chapter 5

extern BlocklO_FunctionalModel0209 FunctionalModel0209_B;

/* Block states (auto storage) */
extern D_Work_FunctionalModel0209 FunctionalModel0209 DWork;

/* Model entry point functions */
extern void FunctionalModel0209 _initialize(void);
extern void FunctionalModel0209_step(void);

extern void FunctionalModel0209_terminate(void);

Most of the functions in the “Code 1” are realized by above three variables and
three functions.

Variable “D_Work_FunctionalModel0209” records the states of all the state
blocks in the “Code 1”.

Variable “BlocklO_FunctionalModel0209” records all the signals that modify
the state blocks.

Variable “Parameters_FunctionalModel0209” records all the parameters in the
state blocks.

Function “FunctionalModel0209 _initialize” initializes the state blocks and the
entire state chart.

Function “FunctionalModel0209 step” modifies the state blocks in the state
chart.

Function “FunctionalModel0209 terminate” eliminates all the blocks in the
memory.

All the operations in the “Code 1” can be summarized as follows. The program
firstly uses function “FunctionalModel0209 initialize” to initialize the blocks and

save the information in the blocks in “D_Work FunctionalModel0209”, then uses

- 108 -

Chapter 5

function “FunctionalModel0209_step” to generate the signal , i.e. dataflow, saves it
in “BlocklO_FunctionalModel0209” and uses the signal to modify the parameters
for the blocks, which are recorded in the variable
“Parameters_FunctionalModel0209”. Finally, when the user needs to exit the
program, all the wvariables and blocks are eliminated by the function
“FunctionalModel0209 terminate”.

From the above explanation, it can be concluded that all of the components,
such as the “System_States”, “Screen_States”, etc, in the C code are encapsulated
in the three variables, while in the processing, they cannot be seen by the inspector,
e.g. the PolySpace static analysis tool. Meanwhile, all the operations, such as
“power off the screen”, “turn on the engine”, i.e. “Screen_off”, “Ignition_On” in
the “Code 1” are encapsulated in the three functions, and are also not seen by the
inspector.

By contrast with “Code 1”, “Code 5” defines every component functions and
variables separately. For example, “RtsDriver_Information_System_States” defines

the states of the system separately in lines 15 to 24 of

“Driver_Information_System.h” as shown below.

/*

\ART_SMG :: Created for state : Driver_Information_System
*/

enum RtsDriver_Information_System_States

{

Screen_Power_Off,
Initial_Screen_Showing_Company_Logo,
Display,

NotIn_Driver_Information_System

- 109 -

Chapter 5

“RtsDriver_Information_SystemDisplay_States” defines the states of the
display separately in lines 26 to 39 of “Driver_Information_System.h” as shown

below.

[*
\ART_SMG :: Created for state : Display
*/
enum RtsDriver_Information_SystemDisplay_States
{

Entertainment,

Home,

Navigation,

OffRoad_Information,

OnRoad_Information,

Phone,

Settings,

NotIln_Display

In contrast, these wvariables are included in the variable
“D_Work_FunctionalModel0209” in “Code 1”.

In addition, in lines 394 to 402 of the “Driver_Information_System.h”, two
operations are defined which are “Ignition_On” and

“4X4 _Info_Soft_Key Pressed” as below,

/*
\ART_SMG :: Created for state : Screen_Power_ Off
*/

void Rtslgnition_On(struct Driver_Information_System™ this);

- 110 -

Chapter 5

/*
\ART_SMG :: Created for state : Display
*/
void Rts4X4 _Info_Soft_Key Pressed(struct Driver_Information_System* this);

In contrast, in “Code 17, it is part of the function “FunctionalModel0209_step”
which is not defined separately.

To summarize, it is obvious that there are more definitions in the header file of
“Code 1”. The header file in “Code 1” has 756 lines and is 34kb in size whereas the
header file of “Code 5” has 576 lines and is 14kb in size. Generally speaking, the
well-defined header file, which represents a well-designed data structure, will
increase the efficiency of the program and thus results in shorter C code.
Consequently, “Code 1” has 78Kb 1,818 lines whereas “Code 5” has 4,311 lines
and is 113kb in size. Moreover, from the human-inspector's point of view, “Code
1” is more compact, more advanced and has a higher readability. Analyzed by the
PolySpace, “Code 1” encapsulates most component variables and functions into the
aforementioned three variables and functions and consequently uses fewer
variables and fewer functions in the code. Therefore, PolySpace only produces 34
tests as detailed in Fig. 5-19. In contrast, PolySpace has to test all the variables and
functions in “Code 5” which is 2,168 in total as shown in Fig. 5-18. The potential
reason is that the Simulink is a component program of MATLAB. It is well-known
that MATLAB is designed based on JAVA, which is more advanced than C.
Therefore, the C code produced by Simulink is more advanced with encapsulation
than the C code generated by ARTISAN Studio which has to use a larger number
of pointers to handle the huge amount of functions and variables indexed at lines 5,

6 and 7 in Fig. 5-18.

-111 -

Chapter 5

5.5 Discussion

Traditional automotive embedded software development involves paper designs
and hand coding, followed by verification activities such as code inspections.
These activities include manual interaction and lack of tool automation, and as a
consequence they are error prone and time consuming. Modelling tools such as
ARTISAN Studio and MATLAB/Simulink not only provide insight into the
dynamic behaviour of the system by enabling the simulation of the function model
as described in Section 5.1, but also enable automatic code generation for
embedded software delivery as presented in Section 5.2.

The development of ECUs with embedded software plays an important role to
address the challenges of increasing complexity while developing and maintaining
electronic applications within the automotive system. There are several advantages
of utilizing the software tools such as C Synchronizer and RTW EC within the
model-based design, e.g., software designed in the model can be executed and
verified in simulation, auto coding from the model reduces the possibility of the
error being introduced at this phase of development. It is especially crucial for
achieving advanced functions in the automotive SoS, that the correctness of the
model and software code directly affect the quality of the embedded software in the
ECU and, therefore, the overall SoS. The automatic code generation and static
analysis are highly important benefits that make the development of an automotive
electronic SoS efficient and effective.

The static analysis tool PolySpace can analyze C code and relate potential
defects found therein back to the design model from which the code was generated.
Hence, defects can be avoided and the quality of the software code can be ensured.

This chapter considers the auto coding capabilities of the C Synchronizer in

-112 -

Chapter 5

ARTISAN Studio and RTW EC in MATLAB/Simulink. The C code generated
from ARTISAN Studio for state machine diagrams is twice as long as that
produced by Simulink/Statelow. Within an embedded software environment,
longer code could lead to complexity of software. Complex software is difficult to
understand and maintain. In addition, longer code requires larger memory on the
ECU to execute, which means additional costs to the manufacturers.

The results show that the Simulink/Stateflow is more capable of producing
efficient and error free C code for the software delivery. But ARTiISAN Studio
enables the engineer to produce the code from a certain component of the model
such as state machine diagrams to an entire model including both a structure model
and a function model. Hence, the code generated from the SysML model in
ARTISAN Studio can provide a more comprehensive coverage of the whole system
[117].

In summary, to develop an automotive electronic SoS, building the structure
and function model in SysML by using ARTISAN Studio is an essential and
effective way to gain a comprehensive understanding of the entire SoS. In dealing
with software delivery, developing the function model in Simulink/Stateflow and
automatically generating the code from such a model is the preferred and more

efficient approach which is the conclusion of this chapter.

-113 -

Chapter 6

Chapter 6
Real-time simulation and animation of

the 4x4 Information System interface

This chapter proposes a novel approach to verify advanced functions of automotive
electronic systems. It utilises the function model built in Simulink/Stateflow and
the C code produced from this model through RTW for the real-time platform
target, i.e. the dSPACE Simulator for implementing the real-time simulation and
animation of the 4x4 Information System interface. The feasibility is proved and

the research approach taken will be demonstrated in this chapter.

6.1 Introduction

Application of the offline simulation of state machine diagrams in the function
model built in ARTISAN Studio and Stateflow diagrams in Simulink/Stateflow
model is demonstrated in Chapter 5. In addition, ARTiISAN Studio facilitates the
animation of the sequence diagrams in the model through the object animator. Fig.
6-1 shows the animation of “Sequence diagram 3: view steering angle (high

level).” that is presented and explained in Fig. 4-7 of Chapter 4. The actor is

-114 -

Chapter 6

represented at the top of this diagram. Three grey circles stand for the interface
devices. The “Driver Information System Application Software” is displayed in the
square at the bottom of the diagram. When the animation starts, black lines link
objects together in a time sequence following the direction of data transfer between
objects that are defined in the sequence diagram. The animation can be paused and

restarted to test all possible conditions.

& Animating - SD. 3. View steering Angle (HL - B)
File Edit Wiew Run Help

=] ElElE| #lo] ala[Fle ol [H (e 2

[3] 424 Info Hard ey Pressed

dud
Information
Hard
Keylinterface
DDDDDDD

Displapnterface
|gnition(lnterface Diekice]

Device]

2] Update Display
4] Update Display to 4u4 Information screes

ISUbsystem

Driver Information
System Application
Software[Subsystem)

Fig. 6-1. Animation of sequence diagram in ARTiSAN Studio.

However, the simulation of the Stateflow diagrams in Simulink/Stateflow, the
simulation of state machine diagrams and animation of the sequence diagrams in
ARTISAN Studio are all offline simulations. Real-time simulation and testing are
required for robust system design to deliver flawless software for the automotive

electronic system.

6.2 Experimental set-up

dSPACE ControlDesk is an advanced tool to manage real-time experiments in the

process of function development. The developer can build virtual instrument panels

-115-

Chapter 6

and have complete control over Simulink and real-time simulations. Typical
application in the development of the automotive electronic system is used to
simulate driving cycles and data acquisition [124]. This section demonstrates how
the dSPACE ControlDesk is used to carry out real-time simulation of the
Simulnk/Stateflow model. It will also explore the design, development and testing

of the function of the 4x4 Information System from a novel approach.

6.2.1 Hardware platform

Fig. 6-2. Hardware platform for the real-time simulation.

The experiment in this chapter is based on the dSSPACE Mid-Size Simulator [125].
As shown in Fig. 6-2, this simulator can be applied for functional integration tests,
release tests and ECU diagnostics tests. In particular, it is capable of real-time
simulations. The DS1006 processor board is used in this simulator as the processor
board for very complex, large, and processing-intensive models. The board is built
around the AMD Opteron™, a 64-hit server processor with 1IMB L2 cache based
on AMDG64. The DS1006 also has 256 MB local memory for executing real-time

models, 128 MB global memory for exchanging data with the host PC.

- 116 -

Chapter 6

l ControlDesk l

Optical

==

User
Interface

Host PC

dSPACE
T

Simulator

Fig. 6-3. Real-time simulation set-up.

Fig. 6-3 illustrates the set-up of this real-time simulation. The dSPACE

ControlDesk is installed on the host PC. The model built in ControlDesk provides

the user interface that allows the developer to control the simulation. The

executable C code which is produced from the Simulink/Stateflow model by RTW

is loaded and run in the dSPACE Simulator. The connection between the host PC

and the Simulator is enabled by the laser optical cable that is capable of transferring

large amounts of data during the real-time simulation.

6.2.2 Further development of the Simulink/Stateflow model

C1State 0ffRoad Information Screen @

Name: Diffioad Information Screen
Breakpoints: [] State During [] State Entrp

[Test point Output State Achivity
Lahet

[ulii] .Dad_ln.lorma.llun_.S creen

Diescription:

Documert Link|

[] State Esit

[DK] [LCancel l [

Help]

Apply

Fig. 6-4. Output state activities from states in the Simulink/Stateflow model.

-117 -

Chapter 6

The ControlDesk is used to build instrumentation panels for controlling and
monitoring the variables of simulation. Therefore, the initial step of implementing
real-time test of this model is to output each state as a variable as shown in Fig. 6-4.
In order to do this, the properties of each state in the Stateflow model need to be
opened and the box of “Output State Activity” has to be ticked. Each output state
creates a port on the right hand side of the state chart in the Simulink model as
shown in Fig. 6-6. In Fig. 6-5, three states have been exported. They are
“OffRoad_Information_Screen”, “CompassView” and “ChassisView”. The display

is connected to these outputs to observe the output signals.

E::»—f ﬂ B

Ignition Set Point

OffRoad_Information_Screen

200

¥

Lo king Torque

LockingTorque

Compass‘dew

1480

Thresheld_lue

¥

Threshold_Walue

Chassis'dew

a0 P Threshold_‘walue _fpproprigte_to_Curment_TO_hdode

Threshold_Value_Appropriate_to_Current_TO_Mode \ /

Criver Information Systemn

Fig. 6-5. Output state activities in Simulink.
As shown in Fig. 6-6, simulation is performed in order to verify output signals
in the model. The display of “OffRoad_Information_Screen” and “ChassisView”
showing “1” stands for active states. The number “0” in the display of

“CompassView” indicates that it is an inactive state. All the states in the

-118 -

Chapter 6

Simulink/Stateflow model have been exported as variables in this experiment. The
output signals in the Simulink/Stateflow model are verified by checking the
consistency between active states that are indicated by numbers in displays and

active states that are represented in blue during simulation.

” N

OttRaad_nformation_Sersen

200 LockingTorque

Compass'den

150 Threshold_value

Threshold_Value

Chassis'ew

ﬂ Threshold_value_Appropriate_to_Cument_TO_hisde

Threshold_Walue_Appropriate_to_Curent_TO_Made \ /

Driver Information System

Fig. 6-6. Simulation of output state activities in Simulink.
Then customized C code is automatically generated by RTW from this
Simulink/Stateflow model. In this experiment, the target file “rtil006.tlc” is

selected to generate C code for the dSPACE DS1006 hardware platform.

-119 -

Chapter 6

6.3 Real-time simulation of the 4x4 Information System

interface

% DriverinforSys_2009 05 01 - Controlesk Developer Yersion - [plollersignal 7] [C &)
gl'& Cdt Wew Tools Cpermént [netrumentsbon Flatform Parameter Cdtor CAN ‘Window Heb -8 x

Migh ' W@l ol B W %% il wmiki "R RRE P e | #E Kijn e

mr | il
. Siudink “irtual Ingtrument: i
B Local system -
vl 1006
-
&E Er. | e wp |!r O | | b rectgrel [R1_an 2o Rl lovel dov. B revimod B8 ploitresigral B eyl | Duaston Ineliunsis
j‘ = jiﬁ"nﬁh;":mmmn - ;,;u, | Descriptaon_| -
= Sereen_Power CFF 11 L]
d B iriiel_Soreen Showeang_Compsny... 1x1 -
d Telles LS & Home_Sereen 1l
B ndGea (s & Offfiand_infoemation_Soreen m
E i:::—?; B Setlings_Screen 121
1 o B Onifosd_rf mation_Sereen 1=l
Aeesss 05 B avigation_Seresn 11
Drive, 5 B phore_Soreen =1
i b ComtSigngl 3 Ervertairment_Screen 1=l
[Grees_Srmme_Jue_bode G5 bbid Al
o Home_ConuatSignal B RightDicplay 1=t
A tgrdin St Fori_Dala E» Centralisplary 1=l
0 lgniisn OF CoratSignel | B atenepisy 2
o Irsctes L5 B Chasasview Y
1 LockingTongue Dists B Compassiiew 1
o Lowerg 5 B TerranOptisiationdattings 1l
0 Mud Ruts_Mode C3 Bl Perscrnd_Contral 1t
0 Neangsin CotlSina B VierSleeringends 1=t
d Hetaal 08 B s ranar =
d UNFosd L5 B vewlranaferaesr [
0 Oiffiosd Infomation ControfSignal B vemCartreOffersrtil el
a gﬁu;:_lliwulm-_wiubu-al et i
& th;A_L:S B 0 _Lncked]
N Mo EorEry B CD_Uikokasd 1=l
0 Resg 05 Bh ixt
0 Rewesen 08 B Low {2
[Fock_Coamed_Mode_C5 By]
0 Sand Mode_C5 [E1]
0 secs Eu 1l
[l Sesings_CortmotSignal Bo 1=t
0 Standad 03 B Fith 1=t
[Standard_Mode_CS B rourth 53
[Tiemchnid Vabon fosecpnisie to_Curerd_T0_Mote, | B thad e
[Thunshaid Vokse_Data [R— i
i Tianeteathangs C5 | - i
1l ot | # |2 0okt 151 -
Tl o tog vieser } bavspevsre J Fie Sk b e-anetelah_modelOO08.00 2elab_madel 20 2109 08 0 sdf |
Fur Help, prezs F1. ECIT MM B/15/2008 2150

Fig. 6-7. Variables in ControlDesk model.
The generated C code contains all variables in the Simulink/Stateflow model and it
can now be loaded into the dSPACE ControlDesk experiment. After the C code is
loaded into the DS1006 board on the dSPACE simulator, the variables are listed at
the bottom of the window as shown in Fig. 6-7. The ControlDesk contains a wide
range of instruments that can be selected such as buttons, sliders, data acquisition
instruments, etc., as shown in the right of Fig. 6-8. The variables will then be
linked with selected instruments. To assign variables, they are dragged from the
variable browser onto the instrument and these steps are repeated for all variables
in this experiment. Selected instruments can now be put in operation by switching

to animation mode. Fig. 6-9 shows part of the layout which contains control signals.

-120 -

Chapter 6

Four knobs at the top of this diagram are used to control the input value which is
modelled on the left of the state chart in the Simulink/Stateflow model as illustrated
in Fig. 6-5 and Fig. 6-6. Grey rectangles in this diagram are “OnOffButton”s. They
are utilized to represent the constant blocks in the Simulink model to generate
control signals. The “RadioButton”s on the right of this diagram are used to switch
between “ChassisView” and “CompassView”, “Low” transfer gear and “High”
transfer gear respectively. All the output states are linked with “MultiStateLED”.
Fig. 6-10 shows one of the output displays in comparison with Fig. 5-2 after the

simulation is enabled.

7 DriverinforSys 2009 05 01 - Contraibesk Developer Version - [plattersignal *| [=)
b Fle E@ Mer Toos Experiverk Detrmestaion Platfom Parameter Edlor CAN Windorr el BEE
MraEld B2 B0 DByl | (mwi s ||FEE|S 250|422 K |0 e=/4
My | 4N
=] =]
ik
Local System
= el 1006
[
S| HOLOCKSYISVARIABLES) | | (sBLOCKSRSVARIABLER) |
< soce CreEution 2
T e |BEr [an mp, I!r (=] | B rputiigal |ﬂ|_mu_h |g:|_m¢_n-u |82 revipons B8 phisnionl g lyeutt 1 |
HE LB elaby_mocsl_2006h_2008_D4_30 = | veriable [z | Type | rign | Deserpbon | A
= Modsl oot 2 Sereen_Power OFF Il Fostieee... Al i

0 Cha T | B ki Sereen Showng Company... Il Fisatleee...

O 1eea s & Home_Sereen 1l Finatleee...

o andGea C5 15 Offfiaad_information_Screen 131 Foatleen...

q ariim 15 Snttings_Screen 1 Fioatlens

d "au’hﬁ“-k [cmfinad_frfomation_Scraen 191 Fatiens.

1 ;‘m:‘”b B twigation_Sereen 1 Fatieen

j D'M“c' B Perm_Seram = Fostiews

B Eceisimo, Cotiraa B Exkentaimerd,_Screen Il Foallee,..

o Gra_Snow_lce_Mods C5 = gM_ v 1l Fuslless

DR N i > o i e .
SLATE TR Lo e it A Fie Sebrie) o Setelah_mode] CNELE- Bhelab el AT ATH 08 3wl |

Fux Heky, preis F1, =R L R8I0 151

Fig. 6-8. Instruments in ControlDesk experiment.

-121 -

Chapter 6

2009 05 01 - Controlesk Developer Version - [inputsignal]

b Fde Ef Vew Tooks Evperiert Dstrumenkson Platfomn Persneler Bdlor CAN Windorr Hel -8 %
Wil B B¢ | DByl mhilr o & ||FER | |F s 0| (487K |ne=4
MHa | AN
Sinmalink, : a
[rmr— Ignition Set Point_Dalavalue | LockmgTorque_Dalafvalue [Throshald_valis_Datadisis
M ehinn
- e .
- |Views_Change_CS/Valus
@ ChassisView
 Compass\View
TransferGearCiange
Fark_CEMalur Metual_CEMalue Cllow
@
Gonrsiick Gonrsiick ‘ Gonrtik I
AthGear_CSMalue IrdGear_CSMalus 2ndGear_C5Malue 1e1Gear_CSMalue
Siarabared_Morke_CEAbon (| Mol R Wit C3nska || Sand_Mode_Canalue || o tes s tow czvse || Rock Coml_boab_C 50 |
9 T Selecter T Setector ‘ T Selecter ‘ T Setector ‘ T Sebecter =
T | B iosnal BT 2o | RZ3 el e |BE novinyout |BE ploneesgnnl [B2 lopmatB1 |
.l"l Sisene seas o mn | s [rensb [sze | Type [cngn | Deserpton | :l i
-1}
[IALATE TR Log viswar A ierpoter P Sebcter Aswmmlmunu_mdm_mnmuf
For e, press 11, L0 L SIS 21

Fig. 6-9. Layout of input signals in ControlDesk.

" DriverinforSys_2009 05 01 - ControDesk Developer Version - [1_and 2 level driver_info_sys

S Pl Edl Ve Tock Expemet [eebumertstion Plsfom Pocsste Bl CAN Wkow Hely EIE]
B B o B RS 3 (ahir e | @ |B8A| (G D |48 XK |0 e
HAE |+ %% %
zlm
B ocd Syem ChaitScreen_Pawer_ 011 Chart Wnithal_5creen_showing_Company_Logs
= Pl dan B = P
1 B
Chan Display Char'Home_Screen Cmsmhgl Secreen Cmua\dgallon Screan
] Setesn | C _Scredn Chart| I"hune_Suem lemElltrlnlllllunl'suuun >
Chart LefiDisplay Chart'c Chant
‘ Chart Ch
ChartViswMalnGear ChanHill_Dascem_Contral Chan'CompassVisw
Chan'ViewTransferGear : : - 2 5 L5
Chan'ViewCenieDifferenial
" . ChorViewRearDiferential s S BT e S AR B sl
TE = W] | W i Mt R | ool [e B o]

BT TR g Vi rerter e S v purilab_modell2008 4 Selab_model 70060 2009 14 3 vdt [
For b, press F1. EoaT L SIS2009 2154

Fig. 6-10. Simulation of 4x4 information screen in ControlDesk.

-122 -

Chapter 6

As shown in Fig. 6-10, blocks turn into a green colour to represent active states
when corresponding buttons in Fig. 6-9 are clicked. For instance, the screen
currently shows 4x4 information. The information on the left and central area of
the display is available to the driver. The right area is currently in chassis view. The
functions of the 4x4 Information System are thereby simulated and tested on a
real-time basis. However, there is a difference between the ControlDesk model and
the actual 4x4 Information System displayed in terms of user interface. Therefore,

animation of the real-time simulation is enabled to obtain a better visualization.

6.4 Animation of the real-time simulation

DriverinforSys_200%_05_01 - Controlesk Devaloper Varsion - [layout0511]

BE Fle Cdt View Took Experment Instrumentstion Flatfom Parsmeter Edtor CAN Window Help

gy~ BV DR i e - % oA & A0 ® ®
—ln
i onds_200%_05_01 -~
Orrver InforSys_2009_05 0
OriverinforSys_2009_0% 0 G
=]
roksond ey
2 level_siver_ifo,
3 Jevel_dever_info_svs by
,.,mrsfu‘.ﬁ, m Settings Mavigation ﬂ'
edots_mockel_20068_200%_{ —————
Bl st kel _20065_200
elab_smordel_20060_20) F settnas Navigation 181 .
R . LI On-Road Info Phone -\
——e]
0
% o-rosdinto Phonniihl -
= 4 = —& 4x4 Info Audio Video m
A iinte o Video! [95]
L v 8
@ EHE:_H B rotsgnal |1 end e [R5 devel i [Rd rmvinun [RE phonmsind b ot |

Fig. 6-11. Display shows “Home” screen during real-time animation.
The animation of the user interface of the 4x4 Information System is realized by
customizing appointed instruments that benefits from comprehensive configuration
options for instrument properties such as size, position, fonts and colours. For
instance, the background picture of “MultiStateLED” which shows the status of the
states is changed according to its role in the system. As shown in Fig. 6-11, the

home screen of the Driver Information System is displayed on the right side of this

-123 -

Chapter 6

layout. The buttons for generating control signals are located on the left side of this
layout. During the real-time animation, the developer clicks on the button, the
display on the right side of the layout switching to corresponding pictures
represents the mode changes. For example, when the developer clicks on the
“Audio Video” button, the right area shows the “Radio” screen as displayed in Fig.
6-12. The “4x4 Info” screen appears when the “4x4 Info” button is clicked. The
“4x4 Info” screen as shown in Fig. 6-13 represents the 4x4 Information System

that is modelled in detail.

= DriverinforSys_2009_05 01 - Controlesk Developer Version - [layoutd511] EX
A x

Fle EdE Vew Took Expermet Umtusedstion Platfom Baaneis Edbor CAN Wedkw Hep

N 3 ot BR (DR il mikT = & TaE & £ 0 ® .

=zl
TrdrSrs, 2000_08_01 - .

CriverinforSys_2009_0%_0 :' =

CrsverinforSys 2009 _05 0! N

o | | B Rodte (=)
Inetsonal ey [

0 '_;n'n_. reve_ei
I;::»;:Emmm n lFM 1 SV — L J
L) e
By elab model_2006b_2 z 3

B claby_model_2006b_20(F"_"l Sattings Navigathon H.

oo | ned || (R O (5N

|5

e | et | | EEEE D

o8 WSl | | i rousonsl [pf1 end 2l [RE % tevel g [BE revimou [BE slotiecional B ottt [

Fle Edt Vew Tooh Expeemend lmtnsentation Flaferm Porameter Edter CAN wirdiw Help

Ly a B W R a2 edwr = % T&E & 40 X *

=l
InforSiys_200%_05_01
[CriverinferSis_2009._05 01
[Creverinforsys_206_%_o

< 2| [] S e e e et ke s ol P d ol el s P o A et I i I S ek SRR v
- HE:! T | "B _reusgns 81 ena 2 e [3 tevel am [reviapour [B plttersgnal i tagounstt |

L LTrerree— teariad

Fig. 6-13. Display shows “4x4 Info” during real-time animation.

- 124 -

Chapter 6

£ DriverinforSys_2009 05 01 - ControlDesk Developer Version - [layout0511]
BE Ple £k vaw Tock Dot Instrumentstion Flatform Parametsr Cdtor CAN Window Heb

M 2 & B W %% ek = TaAE 2 £ x L]

—al
rinfoesys_H06_05 01
Crbverlid urSys_2009_05,_01
CretoneIrforSys_000_06 0l
halter signal.lary
nputsignal vy

—_ Standard |

° =0 =

[P RIee 20] [Comesa

BERENEN—

& »

@ g;w |g| .mdzle|g|m| JRE reworon [p ponersionsl b enttin |

*A[T[A7 T, Lop Viewer _baeperaer Fin Geleckor J,_otpuslebi_modeT U 53 Aebb_model 7111k 2000 04 30 =8]
For Hely, press FL RN MM 9152009 (2158

Fig. 6-14. The real-time animation of 4x4 Information System interface.

Fig. 6-14 illustrates the real-time animation of the 4x4 Information System. The
top half of the window represents the 4x4 Information System display. It translates
the design requirements into the visualized layout. Each block exhibits a type of
information that can be viewed by the driver. The control blocks are integrated at
the bottom of this layout. The sliders can be dragged to simulate different input
values. The vehicle settings can be changed and driving modes can be switched by
clicking buttons. This simulates the possible behaviour reactions of a driver when
they face different driving situations. The buttons on the display can be clicked to
simulate different situations without any interruption to the experiment. Most
importantly, the change of pictures represents various modes or settings of the
vehicle on the real-time basis. Thus, the robustness and the reliability of designed

and developed functions are ensured.

-125 -

Chapter 6

6.5 Discussion

Given the complexity of the automotive SoS such as the 4x4 Information System
presented in Chapter 3, the software function of this SoS has to be developed in
consideration of the physical structure of the vehicle network, i.e., the large amount
of real-time data is captured with a large number of interactions among the
electronic systems on the vehicle and they have to be delivered and displayed
correctly in order to enable the advanced functions of the 4x4 Information System.
Thus, the real-time behaviour of the software is vital to the success of flawless
software delivery for the automotive electronic SoS development. This chapter
proposes a novel approach to verify the advanced function of automotive electronic
SoS through real-time simulation and animation.

In this chapter, RTW produces the C code from the Simulink/Stateflow model
for the real-time platform target to implement the real-time animation of the 4x4
Information System interface. Experience shows that dSPACE ControlDesk
provides the features for the verification of advanced functions. Developing the
function model in Simulink/Stateflow and then generating the code and transferring
the model into dSPACE ControlDesk to perform real-time animation is a feasible
and effective approach to the development of an automotive electronic SoS. This
technique improves confidence in the function model built and generated code.
Moreover, the real-time animation helps developers to become aware of the
complexity of the SoS and allows engineers to realize the function interface and
execute their concepts in the very early stages of the development. They are
significant benefits that ensure the successful development of an automotive

electronic SoS.

- 126 -

Chapter 7

Chapter 7

Conclusion and future work

A near exponential growth of in-vehicle, embedded electronic systems has been
witnessed during the past 30 years. It has been driven by the premium automobile
sector where, presently, electronics and software account for around 40% of the
value of some vehicles. Current in-vehicle electronic systems have evolved from
single standalone computer systems to distributed systems including several
networks, large numbers of sensors, actuators and up to 50, or more, ECUs which
are distributed throughout a vehicle. In systems terms, automotive embedded
electronic systems can now be classified as a SoS. The design, implementation and
management of such complex distributed systems, and their integration into one
cohesive and reliable SoS brings new challenges for the automotive industry.

Against this background, it is necessary to develop new methodologies for
capturing the requirements for the SoS at the outset of the product development
process and conveying the requirements through the stages in the product
development process.

Firstly, this Thesis presents a brief discussion of SE and SoSE. SE encourages

the use of tools and methods to better comprehend and manage the complexity in

-127 -

Chapter 7

systems. Models play important and diverse roles to address “three evils” in
systems engineering, namely, complexity, a lack of understanding and
communication issues. Building the model can allow engineers to identify
complexity, aid understanding and improve communication. In addition,
model-based design which is known as the V-model integrates modelling into a
design, development and validation process that can be applied to a number of
different tools and methodologies. It has been proved very successfully in
performing the role of designing, developing, and deploying new equipment or
systems to satisfy specific requirements. SOSE has to be carried out under some
level of uncertainty as it involves factors in multiple levels and domains. In other
words, SOSE seeks to optimize a network of various systems brought together to
meet specific needs. Consequently, model-based design with new techniques such
as new modelling languages and tools has been investigated as a potential

methodology to address the challenges in automotive electronic SoS development.

sy5 P dSPACE
SYSTEMS MODELING LANGUAGE I’
MATLAB
SIMULINK
PolySpace

RTW EC

C Synchronizer

Fig. 7-1. The model-based design of the 4x4 Information System.

-128 -

Chapter 7

Fig. 7-1 shows the techniques which are investigated within the model-based
design in this Thesis. The interaction and integration of the systems in the
automotive electronic SoS has to evolve to accommodate the increasing complexity.
The modelling languages and tools play an important role in the development of
reliable and robust automotive electronic SoS in terms of requirements capture,
modelling, auto coding, code checking and the verification of the software
functions. This Thesis described two distinct model-based approaches to the
development of automotive electronic SoS. The first approach has involved the use
of the SysML modelling language that has emerged as a language based on UML
but better suited to provide support for the engineering of systems and SoS. The
SysML based tool ARTiISAN Studio is utilized for structural modelling, functional
modelling and code generation. Specifically, this Thesis has explored: the use of
block definition and internal block diagrams for structural modelling of the SoS;
and use case, sequence, state machine and activity diagrams, for modelling the
functional behaviour of the SoS. The listed diagrams in the model provide a clearly
structured visualization of the 4x4 Information System. Several types of diagrams
represent the design requirements in both structural and behavioural viewpoints of
the SoS with relevant concerns. This model facilitates the formulation of the textual
form specification documents and avoids interpretation leeway. Moreover,
experience shows that these diagrams can be broken down and developed to
different levels to represent the interactions and detail at various levels. Benefiting
from the modelling tool ARTISAN Studio, the model successfully translates the
textual form specification documents to C code and it also has the flexibility in
automatic code generation. The code can be produced from the entire model or

generated from a certain component of the model, such as state machine diagrams

-129 -

Chapter 7

for software delivery. The model facilitates collaboration of people with different
backgrounds such as systems engineers and software engineers to design,
implement and manage such complex distributed systems and integrate these
systems into one robust and reliable SoS.

The second approach involves the use of the MATLAB based tools Simulink
and Stateflow for functional modelling and auto coding. Experience has shown that
a Stateflow diagram has a very similar mechanism to the state machine diagram in
SysML to model the functionality of a 4x4 Information System. Diagrams can be
broken down and developed at different levels to show the interaction and details
among these levels. Furthermore, unlike the state machine diagram in ARTiSAN
Studio, the location of states in a Stateflow diagram is not restricted. Lower level
states can be moved freely within the rectangle of higher level states. Therefore, the
position of each display state in the Simulink/Stateflow model corresponds to the
actual HMI. The coding implementation of the Simulink/Stateflow model has
shown that the C or C++ code can be generated automatically for different targets
by selecting corresponding system target files.

The application of ECUs on the vehicle is constantly increasing to address the
challenges of increasing complexity while developing and maintaining electronic
applications within the automotive SoS. The reliability of the SoS is directly
affected by the quality of the embedded software in the ECUs which is developed
from the software code. As a consequence, automatic code generation and static
analysis are highly important benefits that make the development of an automotive
electronic SoS efficient and effective. Therefore, further investigation of functional

modelling has focused on the comparison of quality and efficiency of the code.

- 130 -

Chapter 7

The static analysis tool PolySpace has been utilized to analyze C code and
relate potential defects found therein back to the design model from which the code
was generated. Specifically, the PolySpace tool has been applied to verify and
analyze the C code generated from state machine diagrams of the SysML model
built in ARTiISAN Studio and Stateflow diagrams in the Simulink/Stateflow model.
The result shows that ARTISAN Studio has a more comprehensive coverage of the
code generation. It is capable of producing the code from a component of the
model to the whole model. In consideration of the quality and efficiency, the
Simulink/Stateflow model has demonstrated that it performs better in producing
high quality and efficient C code. As a result, to develop an automotive electronic
system, building the structure and function model in SysML by using ARTiSAN
Studio is an essential and effective way to gain a comprehensive understanding of
the entire system. In dealing with software delivery, developing the function model
in Simulink/Stateflow and automatically generating the code from such a model is
the preferred and efficient approach that has been demonstrated in this Thesis.

The real-time behaviour of the embedded software is vital to the success of the
flawless software delivery for the automotive electronic SoS development. Within
an automotive electronic SoS such as the 4x4 Information System, a large amount
of real-time data is captured among the networked electronic systems on the
vehicle and they have to be delivered and displayed correctly in order to enable the
advanced functions. Hence, the software functions are required to be tested on a
real-time basis. In dealing with this demand, this Thesis provides a useful
complement to the offline simulation of the Simulink/Stateflow model through the
real-time simulation and animation. Specifically, this Thesis has examined the

ability to easily construct a real-time simulation and animation of the 4x4

-131-

Chapter 7

Information System by using dSPACE ControlDesk from the automatically
generated C code in Simulink/Stateflow model to verify advanced function of
automotive electronic SoS on a real-time basis. The experiment has demonstrated
that dSPACE ControlDesk provides the features for real-time simulation, testing
and animation within the advanced function development. Developing the function
model in Simulink/Stateflow and then generating the code and transferring the
model into the dSPACE ControlDesk to enable real-time animation is a feasible
and effective approach to the development of an automotive electronic SoS.

The outcome of this research is about the model-based design of a particular
SoS within an automotive electronic SoS, i.e. a 4x4 Information System. The major
contribution of this Thesis to the automotive industry is that the proposed
techniques in model-based design will potentially fulfil the requirement of
capturing, designing and developing needs for the development of an automotive
electronic SoS.

The collaboration and integration of currently adopted techniques are gaining
increased attention such as coupling UML and Matlab/Simulink models through
co-simulation and integration based on a common underlying executable language
[126]. The direction for future research could focus on the investigation of the
capabilities of emerging tools and techniques in the industry. For instance, the
ARTISAN Studio released by ARTISAN Software Tools Inc. [127] in 2008 has
stated that “ARTiISAN Studio includes a comprehensive synchronization tool for
Simulink that provides an integration enabling users to easily move between and
synchronize information that is captured in both tools”, “The synchronizer also
allows the interface to the software generated from Simulink to be customized in

Studio and synchronized back into Simulink”. The outcome of research will be

-132 -

Chapter 7

beneficial in order to refine the model-based development of the automotive

electronic SoS.

-133 -

References

References

[1] Robert Bosch GmbH, Automotive Electrics Automotive Electronics. Suffolk:
Professional Engineering Publishing Limited, 2004.

[2] R. C. Lind, H. W. Yen and D. Welk, “Evolution of the car radio: from
vacuum tubes to satellite and beyond,” SAE paper: 2004-21-0001, SAE
World Congress, Oct. 2004.

[3] R. K. Jurgen, Automotive electronics handbook. McGraw-Hill, New York,
1999.

[4] N. Navet, Y. Q. Song, F. Simonot-Lion and C. Wilwert, “Trend in
automotive communication systems,” Proc. IEEE Special Issue Ind.
Commun. Syst., vol. 93, Issue: 6, pp.1024-1223, Jun. 2005.

[5] G. Leen and D. Heffernan, “Expanding automotive electronic systems,”
IEEE Comput., vol. 35, no. 1, pp. 88-93, Jan. 2002.

[6] Robert Bosch GmbH, Gasoline-Engine Management. Bury St. Edmunds:
Robert Bosch GmbH, 2004.

[7] A. Shrinath and A. Emadi, “Electronic control units for automotive electrical

power systems: Communication and networks,” Proc. IMechE Part D:

J. Automobile Engineering, vol. 218, pp. 1217-1230, Jun. 2004.

-134 -

References

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

MOST, Media Oriented Systems Transport Specification V2.5. [Online].
Available: http://www.mostnet.de

G. Leen, D. Heffernan and A. Dunne, “Digital networks in automotive
vehicle,” J. Comput. Control Eng., pp. 257-266, Dec. 1999.

E. Ortega, T. Heurung and R. Swanson, “System design from wires to
warranty,” Automotive Electronics Magazine, pp. 14-18, Feb. 2006.

R. McMurran, F. McKinney, N. J. Tudor and W. Milam, “Dependable
Systems of Systems,” SAE paper: 2006-01-0597, SAE World Congress,
Michigan, Apr. 2006.

J. Boardman and B. Sauser, “System of Systems — the meaning of ‘of’,”
Proc. IEEE International Conference on System of Systems Engineering, Los
Angeles, CA, USA, pp. 118-123, Apr. 2006.

J. Marco and E. Cacciatori, “The use of model based design techniques in
the design of hybrid electric vehicles,” The 3" International IET Conference
on Automotive Electronics, University of Warwick, UK, Jun. 2007.

J.-L. Boulanger and Van Quang Dao, “Experiences from a model-based
methodology for embedded electronic software in automobile,” Proc. 3™
International Conference on Information and Communication Technologies,
pp. 1-6, Apr. 2008.

J.-L. Boulanger and Van Quang Dao, “Requirements engineering in a
model-based methodology for embedded automotive software Research,”
Proc. IEEE International Conference on Innovation and Vision for the

Future, pp. 263-268, Jul. 2008.

-135-

References

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

B. Murphy, A. Wakefield and J. Friedman , “Best practices for verification,
validation, and test in model-based design,” SAE paper: 2008-01-1469, SAE
World Congress, 2004.

K. Grimm, “Software technology within an automotive company - major
challenges,” Proc. IEEE 25" International Conference on Software
Engineering, Portland, Oregon, USA, 2003.

J. Holt and S. Perry, SysML for Systems Engineering. IET Books, London,
2008.

G. Grassl and G. Winkler, “Model-based development with automatic code
generation — challenges and benefits in a DCT high-volume project,” SAE
paper: 2008-01-0745, SAE World Congress, Apr. 2008.

M. Conrad, H. Dorr, "Model-based development of in-vehicle software."
Proc. Conference on Design, Automation and Test in Europe, pp. 89-90, Mar.
2006.

Object Management Group, Unified Modelling Language. [Online].
Available: http://www.uml.org

J. Holt, UML for systems engineering: watching the wheels. IEE publishing,
London, 2004

M. Hause, “The SysML modelling language,” Proc. 5" European Systems
Engineering Conference, Sep. 2006

H. Giese, S. Henkler, “A survey of approaches for the visual model-driven
development of next generation software-intensive systems,” J. Visual
Languages and Computing, vol. 17, pp. 528-550, 2006.

Object Management Group, Systems Modeling Language final adopted

specification. [Online]. Available: http://www.omgsysml.org

- 136 -

References

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Object Management Group. [Online]. Available: http://www.omg.org

T. Weilkiens, Systems engineering with SysML/UML: modelling, analysis,
design. Morgan Kaufmann Publishers and the Object Management Group,
USA, 2007.

MATLAB, Simulink, Stateflow, The MathWorks Inc. [Online]. Avaiable:
http://www.mathworks.com/products

Artisan Software. [Online]. Avaiable: http://www.artisansw.com

PolySpace Technologies . [Online]. Avaiable: http://www.polyspace.com
dSPACE GmbH. [Online]. Available: http://www.dspace.de

J. A. Hoffer, J. F. George and J. Valacich, Modern Systems Analysis and
Design, Pearson Education International, New Jersey, 2005.

N. Fenton and G. Hill, Systems Construction and Analysis, McGraw-Hill
Book Company, London, 1993.

J. L. Shearer, A. T. Murphy and H. H. Richardson, Introduction to System
Dynamics, Addison-Wesley Publishing Company, London, 1991.

O. Katsuhiko, System dynamics, Pearson/Prentice Hall, NJ, 2004.

S. J. Luskasik, “Systems, systems of systems, and the education of
engineers,” J. Artificial Intelligence for Engineering Design, Analysis, and
Manufacturing, Vol. 12 (1), pp. 55-60, 1998.

International Council of Systems Engineering (INCOSE), Systems
Engineering Handbook, Version 3.1, August 2007. [Online]. Available:
http://www.incose.org

P. Sage, “Systems engineering education,” IEEE Trans. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, vol. 30 (2), pp. 164-174,

May. 2002.

- 137 -

References

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

H. H. Goode and R. E. Machol, System Engineering, McGraw-Hill, New
York, 1957.

R. C. Booton and S. Ramo, “The development of systems engineering,”
IEEE Trans. Aerospace and Electronic Systems, vol. AES-20, no. 4, pp.
306-309, 1984.

“What is systems engineering?” IEEE Aerospace and Electronic Systems
Magazine, Vol. 15, Issue 10, pp. 9-10, Oct. 2000.

S. Burnham, “Systems engineering: a practical approach for junior
engineers,” IEEE Aerospace and Electronic Systems Magazine, Vol. 21,

Issue 6, Part1, pp.3-8, Jun. 2006.
A. W. Wymore, Model-based Systems Engineering, CRC Press, 1993.

E. Aslaksen and R. Belcher, Systems Engineering, Prentice-Hall, 1992.

Core Courses, “Systems analysis - architecture, behavior and optimization™.
Cornell University. [Online]. Available:
http://systemseng.cornell.edu/CourseL.ist.html

M. Kayton, “A practitioner's view of system engineering,” IEEE Trans.
Aerospace and Electronic Systems, Vol. 33 (2) Part 2, pp. 579 — 586, Apr.
1997.

A. Asbjornsen and R. J. Hamann, “Toward a unified systems engineering
education,” IEEE Trans. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, Vol.30 (2), pp. 175-182, May. 2000.

Shenhar, “Systems engineering management: a framework for the
development of a multidisciplinary discipline,” IEEE Trans. Systems, Man

and Cybernetics, Vol. 24 (2), pp. 327-332, Feb. 1994.

- 138 -

References

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

NASA, “System analysis and modeling issues,” NASA Systems Engineering
Handbook, pp.85-98, Jun. 1995.

J. A. Lane, “Process Evolution to support system of systems engineering,”
Proc. ULSSIS, Germany, 2008.

J. Ring and A. Madni, “Key challenges and opportunities in 'system of
systems' Engineering,” Proc. IEEE International Conference on Systems,
Man and Cybernetics, pp. 973-978, Oct. 2005.

K. Cureton and F. Stan Settlers, “System-of-systems architecting:
educational findings and implications,” Proc. IEEE International
Conference on Systems, Man and Cybernetics, pp. 2726-2731, Oct. 2005.

C. Keating, “Research foundations for system of systems engineering,” Proc.
IEEE International Conference on Systems, Man and Cybernetics, pp.
2720-2725, Oct. 2005.

A. Sousa-Poza, S. Kovacic and C. Keating, “System of systems engineering:
an emerging multidiscipline,” Int. J. System of Systems Engineering, vol. 1,
No. 1-2, pp. 1-17, 2008.

P. Chen and J. Clothier, “Advancing systems engineering for system of
systems challenges, ” J. Systems Engineering, vol. 6, No. 3, pp. 170-183,
2003.

C. Keating, R. Rogers, R. Unal and D. Dryer, “System of systems
engineering,” J. Engineering Management, Vol. 15 (3), pp. 36-45, Sep.
2003.

C. Keating, A. Sousa-Poza, and J. Mun, “Toward a methodology for system
of systems engineering,” Proc. American Society of Engineering

Management, pp. 1-8, 2003.

-139 -

References

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

J. O. Clark, “System of systems engineering and family of systems
engineering from a standards perspective,” Proc. IEEE International
Conference on System of Systems Engineering, pp. 1-6. Jun. 2008.

J. O. Clark, “System of systems engineering and family of systems
engineering from a standards, VV-model, and dual-V model perspective,”
Proc. 3" Annual IEEE International Systems Conference, pp. 381-387.
Vancouver, Mar. 2009.

IEEE 1220. 1994. IEEE Trial-Use Standard for Application and
Management of the Systems Engineering Process. Copyright IEEE. [Online].
Available: http://shop.ieee.org/ieeestore

IEEE 1220. 1998 and 2005. IEEE Standard for Application and
Management of the Systems Engineering Process. Copyright IEEE. [Online].
Available: http://shop.ieee.org/ieeestore

EIA/IS-632. 1994. Systems Engineering. Copyright © 1994, Government
Electronics and Information Technology Association a Sector of the
Electronic Industries Alliance. [Online]. Available: http://geia.org

EIA-632. 1998. Processes for Engineering a System. Copyright © 1999,
Government Electronics and Information Technology Association a Sector
of the Electronic Industries Alliance. [Online]. Available: http://geia.org
ISO/IEC 15288. 2002. Systems engineering — System life cycle processes.
Copyright International Organization for Standardization (ISO), American
National Standards Institute, 25 West 43rd Street, New York, NY 10036.
(212) 642-4900. [Online]. Available: http://webstore.ansi.org.

ISO/IEC 15288. 2008. Systems and software engineering — System life cycle

processes. Copyright International Organization for Standardization (1SO),

- 140 -

References

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

American National Standards Institute, 25 West 43rd Street, ew York, NY
10036. (212) 642-4900. [Online]. Available: http://webstore.ansi.org.
ISO/IEC TR 19760. 2003. Systems engineering — A guide for the application
of ISO/IEC 15288 (System life cycle processes). Copyright International
Organization for Standardization (ISO), American National Standards
Institute, 25 West 43rd Street, New York, NY 10036. (212) 642-4900.
[Online]. Available: http://webstore.ansi.org

D. DelLaurentis, D. Fry, O. Sindiy and S. Ayyalasomayajula, “Modeling
framework and lexicon for system-of-systems problems,” IEEE Trans.
Systems, Man, and Cybernetics-Part A: Systems and Humans, 2006.

D. DeLaurentis, “Understanding transportation as a system of systems
design Pproblem,” Proc. 43™ AIAA Aerospace Sciences Meeting,
AlAA-2005-0123, Reno, Nevada, Jan. 2005.

J. Bortolazzi, “Challenges in automotive software engineering,”
International ICSE workshop on Software Engineering for Automotive
Systems, keynote presentation, 2004.

S. Gumbrich, “Embedded systems overhaul: it’s time to tune up for the
future of the automotive industry.” IBM Business Consulting Services, Dec.
2004.

E. Ortega, T. Heurung and R. Swanson, “System design from wires to
warranty,” Automotive Electronics Magazine, pp. 14-18, Feb. 2006

A. W. Wymore, Model-based Systems Engineering, CRC Press, 1993.

M. Mutz, M. Huhn, U. Goltz and C. Kroemke, “Model based system
development in automotive”, SAE paper: 2003-01-1017 SAE World

Congress, Mar. 2003.

- 141 -

References

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

J. Schauffele and T. Zurawka, Automotive Software Engineering: Principles,
Processes, Methods, and Tools, SAE International, USA, 2005.

G. Hodge, J. Ye and W. Stuart, “Multi-target modeling for embedded
software development for automotive applications,” SAE paper:
2004-01-0269, SAE World Congress, 2004.

G. Sandmann and R. Thompson, “Development of AUTOSAR software
components within model-based design,” SAE paper: 2008-01-0383, SAE
World Congress, 2008.

M. Weber, “Requirements engineering in automotive development -
experiences and challenges,” Proc. IEEE Joint International Conference on
Requirements Engineering, Essen, Germany, 2002.

S. Robertson and J. Robertson, Mastering the Requirements Process,
Addison Wesley, London, 1999.

K. Wiegers, Software Requirements, Microsoft Press, Redmond, 1999.

I. Sommerville and P. Sawyer, Requirements Engineering: A Good Practice
Guide, Wiley, Chichester, 1997.

G. Kotonvy and I. Sommerville, Requirements Engineering, Wiley,
Chichester, 1998.

B. L. Kovitz, Practical Software Requirements, Manning, Grenwich, 1999.
D. Gause and G. Weinberg, Exploring Requirements: Quality Before Design,
Dorset House, New York, 1989.

A. J. Kornecki, K. Hall, D. Hearn, H. Lau and J. Zalewski, “Evaluation of
software development tools for high assurance safety critical systems,” Proc.
8™ IEEE International Symposium on High Assurance Systems Engineering,

pp. 273 — 274, 2004,

- 142 -

References

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, Petrucci, L. P.
Schnoebelen, Systems and Software Verification: Model-Checking
Techniques and Tools, Springer, New York, 2001.

L. Vitkin and T. K. Jestin, “Incorporating autocode technology into software
development process”, Proc. ICSE, pp.51-57, 2004.

P. Schubert, L. Vitkin, F. Winters, “Executable Specs: what makes one, and
how are they used?” SAE paper: 2006-01-1357, SAE World Congress, 2006.
W. Everett, S. Keene and A. Nikora, “Applying software reliability
engineering in the 1990s,” IEEE Transactions on Reliability, vol. 47 (3), pp.
372-378, Sep. 1998.

S. Xiao and C. H. Pham, “Performing high efficiency source code static
analysis with intelligent extensions,” Proc. APSEC, pp. 346-355, 2004.

Q. Systems, “Overview large java project code quality analysis,” QA
Systems, Tech. Rep., 2002.

J. Viega, J. T. Bloch, Y. Kohno and G. McGraw, “Its4: A static vulnerability
scanner for ¢ and c++ code,” Proc. IEEE 16" Annual Computer Security
Applications Conference, pp. 257-266, Washington, DC, USA, 2000.

V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in java
applications with static analysis,” Proc. 14th USENIX Security Symposium,
2005.

A. Rai, “On the role of static analysis in operating system checking and
runtime verification,” technical Report FSL-05-01, Stony Brook University,
Tech. Rep., May. 2005.

C. Artho, “Finding faults in multi-threaded programs,” Master’s thesis,

Federal Institute of Technology, 2001. [Online]. Available:

- 143 -

References

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

http://citeseer.ist.psu.edu/artho01finding.html

R. L. Glass, “The realities of software technology payoffs,” Commun. ACM,
vol. 42 (2), pp. 74-79, 1999.

R. L. Glass, “Inspections - some surprise findings,” Commun. ACM, vol. 42
(4), pp. 17-19, 1999.

PolySpace Technologies, PolySpace for C Documentation, 2004.

K. Kratkiewicz and R. Lippmann, “Using a diagnostic corpus of C programs
to evaluate buffer overflow detection by static analysis tools,” 2005
Workshop on the Evaluation of Software Defect Detection Tools, Chicago,
IL 2005.

M. Zitser, Securing Software: An Evaluation of Static Source Code
Analyzers, Master’s Thesis, Massachusetts Institute of Technology,
Cambridge, MA, 2003.

M. Zitser, R. Lippmann and T. Leek, “Testing static analysis tools using
exploitable buffer overflows from open-source code,” Proc. 12" ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
Newport Beach, CA, pp. 97-106, 2004.

P. Emanuelsson and U. Nilsson, “A comparative study of industrial static
analysis tools (Eextended version),” Technical reports in Computer and
Information Science Report number 2008:3, Jan. 2008.

J. Rumbaugh, I. Jacobson and G. Booch, The Unified Modeling Language
reference manual. 2" edn. Boston, MA, Addison-Wesley, 2005.

M. Hause, F. Thom and A. Moore, “Inside SysML,” J. Computing &

Control Engineering VVol.16 (4), pp. 10-15, Sep. 2005.

- 144 -

References

[104] Land Rover, “Driver Information System Handbook™, Publication Part
No.LRL 10 95 55 502, 2004.

[105] R. Rajamani, Vehicle Dynamics and Control, Springer, New York, United
States, 2006.

[106] W. Lawrenz, CAN System Engineering: From Theory to Practical
Applications. New York: Springer-Verlag, 1997.

[107] R. Land, “Applying the IEEE 1471-2000 Recommended Practice to a
Software Integration Project,” Proc. International Conference on Software
Engineering Research and Practice, CSREA Press, 2003.

[108] L. Bass, P. Clements and R. Kazman, Software Architecture in Practice,
Addison-Wesley, 1998.

[109] J. Bosch, Design & Use of Software Architectures, Addison- Wesley, 2000.

[110] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord
and J. Stafford, Documenting Software Architectures: Views and Beyond,
Addison- Wesley, 2002.

[111] P. Clements, R. Kazman and M. Klein, Evaluating Software Architectures:
Methods and Case Studies, Addison-Wesley, 2002.

[112] C. Hofmeister, R. Nord and D. Soni, Applied Software Architecture,
Addison-Wesley, 2000.

[113] M\W.A. Steen, D.H. Akehurst, H.W.L. ter Doest, M.M. Lankhorst,
“Supporting viewpoint-oriented enterprise architecture,” Proc. IEEE 8"
International Conference on Enterprise Distributed Object Computing, pp.

201-211, 2004.

- 145 -

References

[114] IEEE Architecture Working Group, IEEE Std 1471-2000, Recommended

[115]

[116]

[117]

[118]

[119]

[120]

[121]

Practice for Architectural Description of Software-Intensive Systems. IEEE,
USA, 2000.

A. Cockburn, Writing Effective Use Cases, Addison Wesley, 2001.

Y. Guo, A. Chakrapani Rao and R. P. Jones, “Architectural and functional
modelling of an automotive Driver Information System using SysML,” Proc.
2008 IEEE/ASME International Conference on Mechatronic and Embedded
Systems and Applications, pp. 552-557, Beijing, China, Oct. 2008.

Y. Guo and R. P. Jones, “A study of approaches for model based
development of an automotive Driver Information System.” Proc. 2009
IEEE International Systems Conference, pp. 267-272, Vancouver, British
Columbia, Canada, Mar. 2009.

A. F. Ackerman, L. S. Buchwalk and F. H. Lewski, “Software inspections:
an effective verification process,” IEEE Software, vol. 6 (3), pp. 31-36, May.
1989.

V. D'Silva, D. Kroening, G. Weissenbacher, “A survey of automated
techniques for formal software verification,” IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, Vol. 27 (7), pp.1165 — 1178, Jul.
2008.

T. Erkkinen, M. Conrad, “Safety-critical software development using
automatic production code generation,” The MathWorks, Inc. 2007.

T. Erkkinen, C. Hote, “Automatic flight code generation with integrated
static run-time error checking and code analysis,” AIAA Modeling and

Simulation Technologies Conference and Exhibit, Keystone Colorado, 2006.

- 146 -

References

[122] 1. Stirmer, D. Weinberg, M. Conrad, “Overview of existing safeguarding
techniques for automatically generated code,” Proc. 2" Intl. ICSE Workshop
on Software Engineering for Automotive Systems, pp. 1-6, St. Louis,
Missouri, USA, May. 2005.

[123] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl and M. A.
Vouk, “On the value of static analysis for fault detection in software,” IEEE
Trans. Software Engineering, Vol. 32 (4), pp. 240 — 253, Apr. 2006.

[124] H. Hu, G. Xu, Y. Zhu, “Hardware-in-the-loop simulation of electric vehicle
powertrain system,” Proc. Power and Energy Engineering Conference,
APPEEC 20009, pp.1-5, Mar. 2009.

[125] dSPACE GmbH, dSPACE Catalog 2009, pp.508-511, 2009.

[126] Y. Vanderperren, W. Dehaene, “From UML/SysML to Matlab/Simulink:
current state and future perspectives,” Proc. Conference on Design,
Automation and Test in Europe, pp. 1-1, Mar. 2006.

[127] Artisan Software, Simulink Integration. [Online]. Available:

http://wwwe.artisansoftwaretools.com/products/tool-set/simulink-integration

- 147 -

Appendix A

Appendix A
Functionality of the 4x4 Information

System

The functionalities of 4x4 Information System which is a part of the Driver
Information System as shown in Fig. 3-3 of Chapter 3 are described in detail in this

section.

Screen layout

I I

Left area Middle area Right area

Fig. A-1. The 4x4 Information System display.

- 148 -

Appendix A

Fig. A-1 is the 4x4 Information System display of the vehicle. As shown in Fig.
A-1, there are three areas in the 4x4 Information System display, i.e., left, middle
and right. The left area is a permanent display area which displays the information
on the chassis and powertrain of the vehicle, including steering angle information,
high/low ratio selection status, gear position and differential lock information for
both the centre and rear. The middle area is also a permanent display area showing
the TO mode and HDC information. The right display area changes when different
views are selected including the compass view and chassis view. To access the
compass view and chassis view, the driver needs to correspondingly press the
“Compass view” or “Chassis view” soft key on the touch screen which is
highlighted in a red circle. The air suspension status and wheel height status are

also displayed in this area within different views.

Primary functions
The primary functions are related to the vehicle status. On the screen, graphics
created for the 4x4 Information System will be displayed and changed to reflect
data which describe the state of the 4x4 Information System. As mentioned in
Section 3.4.1 of Chapter 3, the chassis and powertrain information is shown in the
left hand area. The functions on the left display area are

e Steering angle status

e Gearbox status

e Gear position

e Differential lock information

Fig. A-2 shows how steering angle data are displayed on the screen.

- 149 -

Appendix A

Fig. A-2. Steering angle data changes.

The maximum orientation of the wheel graphics is 30 degrees from the straight
ahead position indicating full lock. The steered wheel images represent the steering
angle data by displaying one of 13 graphical images of the steered wheels. Each
image displays for a specific range of steering wheel angle data which is 5 degrees
from -30 to +30 degrees. When the steering wheel data exceed the appropriate
range for the current graphic, the appropriate steered wheel graphic should be
updated for both of the steered wheel images concurrently.

The high and low range of transfer gear can be selected and represented

graphically in the chassis map.

. e —
i’%“éﬁ - 0) Q% A ' 1 e
Fig. A-3. Transfer gearbox data.

When a range is selected, the appropriate graphic will be displayed in the
chassis map. As shown on the left of Fig. A-3, when the transfer gearbox is
successful in the low range, the "low range™ icon is displayed in the chassis plan
view. The display also shows the currently selected gear. When the parking gear is

selected as shown in the Fig. A-3, the symbol “P” is displayed on the gearbox

- 150 -

Appendix A

graphic. For the other gear selections, the display will show “PRND 5432 1”
respectively. The differential lock information for both the centre and rear is
displayed under the gear selections by two icons showing “Locked” or “Unlocked”.
The air suspension status is displayed at the top right of screen. The air
suspension has three suspension heights:
e Off-road
e Standard

e Access

@ W Lowering
" Access

Fig. A-4. Air suspension status.

Fig. A-5. Control panel and buttons.

When the vehicle is in any of these states, the suspension status window in the
top right of the display indicates the current suspension setting. As shown in Fig.
A-4, the air suspension is rising to “Off-Road”. The air suspension status can be

controlled manually by pushing the selector upwards or downwards which is next

- 151 -

Appendix A

to the HDC button as shown in Fig. A-5. The air suspension status can also be
changed automatically according to the TO settings. In Fig. A-4, as soon as this
height change is required, the display shows the text message “Raising” and
replaces the previous height graphic. In addition, an arrow is displayed indicating
the direction of vehicle travel. During a height change, the arrow head will flash.
The wheel height graphical display will progressively change, showing the
changing relationship between the individual wheels and the vehicle body. When
the “Off-Road” height is reached the arrow icon disappears and the current vehicle
height is displayed as “Off-Road”.

The air suspension setting is also displayed graphically in the wheel
displacement window in the chassis view. To access the chassis view, the driver
needs to press the “Chassis” soft key in the bottom right display area highlighted in
the red rectangle. From the chassis view, the suspension status and wheel
displacement status can be viewed.

The chassis view display window contains a representation of the four road
wheels, along with several discrete graphical elements. These graphical elements
move in direct response to actual wheel height changes. The vertical position of
each road wheel graphic is determined by data from height sensors. As shown in
Fig. A-4 the white dotted line shows the nominal vehicle height. When the vehicle
is at either the off-road ride height or the access ride height, the white dotted line,
which is the wheel height display, must configure to maintain the nominal height of
the wheels relative to the ground plane. A solid green line between the wheels
represents the practical height of the vehicle. When a wheel is at its standard height,
the solid green line will line up with the white dotted line in the vertical axis. This

is represented on the left of Fig. A-4. When vehicle is set to off-road ride height,

- 152 -

Appendix A

the air springs are extended to push the wheels further away from the chassis,
which lifts the vehicle body by a controlled distance. If a vehicle has a specific
off-road ride height that is 50mm above the standard ride height, then this would
increase the data value of each wheel by 50mm. The green line moves up the
screen in appropriate distance and in this case, it is 10 pixels for 50 mm of body
movement.

Framing each of the wheel graphics are eight white lines that act as markers to
indicate the extremes of each wheel travel. When a road wheel is at the extreme of
its travel, the edge of the wheel graphic will line up with the appropriate travel limit
marker. Four orange nodes on the road wheels indicate the position of the wheels
associated with the vehicle height. Although the front and rear wheels appear to be
different heights, they are only presented in this way to give a sense of perspective
view. The graphical response of each wheel to change in wheel height data is
exactly the same. When a wheel is at its standard height, the centre of the wheel
will line up with the datum line in the vertical axis. Vehicles with air suspension
will maintain a set ride height under all loading conditions up to the design loading
limit. The suspension system will compensate for the increased load by increasing
the air pressure in the system.

The above functions are related to vehicle powertrain and chassis. Besides, the
vehicle can also provide five different TO settings and HDC to the driver. Their
status will be displayed on the HLDF by the 4x4 Information System. TO settings

and HDC are displayed in the middle area of the screen.

- 153 -

Appendix A

Fig. A-6. TO settings button.

As shown in Fig. A-6, driver can select 5 different TO modes by rotating the

button on the vehicle:
e Standard
e Grass/Snow / Ice
e Mud/Ruts
e Sand

e Rock crawl

Grass §

Grawel
Terranbode = Standard ! | Mud J Ruts | | Sand | |Rnﬂc crawl |

E b :] :
i i i i i
8 & Q o) G
a5 o

Fig. A-7. TO settings display.

As shown in Fig. A-7, the appropriate vehicle icon for the currently active TO
mode should be shown in the central TO display window. When the driver shifts
from different TO mode, the engine, transmission, suspension and traction settings
are all reconfigured to deliver the best possible off-road driving to the driver.

HDC is used to provide a smooth and controlled hill descent in rough terrain

without the driver needing to touch the brake pedal. After the driver pushes the

- 154 -

Appendix A

HDC button, which is in yellow as shown in Fig. A-6, the vehicle will descend
using the ABS to control the speed for each wheel. If the vehicle accelerates
without pushing the accelerator pedal, the system will automatically apply the
brakes to slow down the vehicle. Applying pressure to the accelerator or brake

pedal will override the HDC system as the driver requires.

Fig. A-8. HDC.

The HDC status is highlighted in yellow as shown in Fig. A-8. The HDC

system reports three states relating to its function:

e Inactive
e Set
e Pending

When the HDC is inactive, there is no display for the HDC function icon on the
4x4 display which is shown at the bottom as in Fig. A-8. When the HDC system is
selected and activated, the red and yellow HDC function icon will be displayed
continuously as shown at the middle bottom. When the HDC is selected, but there
is a condition that inhibits the activation of the HDC such as wrong gear selected,

the HDC icon on the display will flash.

- 155 -

Appendix A

Secondary functions
Besides the above primary functions, the 4x4 Information System can also provide
a compass view for the driver. To access the compass view, the “Compass” soft
key needs to be selected on the touch screen which is highlighted in an orange
rectangle. The compass view window replaces the display of the wheel height
information that is only displayed in the chassis view.

AT n |
=
42%

<

0
|

BRG 'R45 w1 oo v

14 milas Lows ner

-

Compass view
soft key

<

Fig. A-9. Compass view.

From Fig. A-9, the compass screen displays a graphic indicating the heading of
the vehicle against the compass points. If the ‘“North-up’ display mode is active in
the navigation system, the compass points are fixed and the vehicle pointer will
rotate to indicate the vehicle heading. If the “Heading up” display mode is active in
the navigation system, then the vehicle pointer will be fixed vertically on the

display and the compass points will rotate to indicate the vehicle heading.

An example of an off-road driving scenario
Fig. A-10 shows a scenario of off-road driving. The actual view can also be

presented to the driver in the vehicle.

- 156 -

Appendix A

Fig. A-10. A scenario of off-road driving.

From this figure, the information provided to the driver can be viewed. The
main gearbox is in 3" gear, the transfer gearbox is in the low range, the steering
wheel is at full left lock, the differential is locked, the TO setting is in rock crawl
mode, the HDC is active and vehicle is in the off-road ride height. As we can see
from the chassis view, the left rear wheel travels over a rock or similar obstacle. It
is pushed up into the vehicle body. The data from the wheel height sensor are
represented by moving the vertical position of the left rear wheel graphic up in the

screen.

- 157 -

Appendix B

Appendix B
Diagrams in the model built in

ArtiSAN Studio

This appendix provides a full list of diagrams in the model which is built in

ARTISAN Studio.

::Network

Speed
Bandwidth
Name
get_speed ()

1. 1._*‘
::BUS ::Dedicated Connection

get_gateway_name ()

1“*
::CAN ::MOST

1 1 1
::Private CAN ::High Speed CAN ::Medium Speed CAN

Fig. B-1. Block definition diagram 1: network class.

- 158 -

Appendix B

::Key

Size

Position

Pressed ()
Time_pressed ()

1.*

1.*

::Hard Key

::Soft Key

Fig. B-2. Block definition diagram 2: key class.

::Sensor

Sensor type
Information type

get_data ()

Fig. B-3. Block definition diagram 3: sensor class.

;:Gateway

Name
Speed
Bandwidth

1.*

::MOST_CAN_Gateway

Convert_CAN_to_MOST ()
Convert_data_to_MOST ()

1.*
::HS CAN_MS CAN_Gateway

Fig. B-4. Block definition diagram 4: gateway_class.

::Sensor_Local Connection_Interface_Class

Name
Speed

get_data_from _sensor ()
put_data_on_Local Connection ()

Fig. B-5. Block definition diagram 5: sensor_local connection_interface_class.

- 159 -

Appendix B

Driver Information System of Systems Configuration

1.

Audio and Video System
: Entertainment System

1.7

Navigation ECU : .
Information System MOsT mbly : BUS

HLDF : Driver Information System

MOST_CAN_Gateway : Resistive Ladder : Steering Angle Sensor :
“Gateway Local Connection «— Sensor
Steering Angle msg :
Medium Speed (MS) CAN BUS :
BUS
HS CAN_MS CAN_Gateway :
Gateway
High Speed CAN Bus : MessageT
.-
- _ __tSensor
High Speed (HS) CAN BUS :
BUS
1.4
Transmission ECU : _ : Actuator
Suspension Height msg : MessageT
Air Suspension ECU :
- - MOST -- Media Orientated Systems N
This structure diagram shows the assembly of Transport. A high speed fibre optic

communications bus
LLDF -- Low Level Display Front
HLDF -- High Level Display Front

function modules which interact with the driver
information system. More details of power train
system are showing as '_ _ _'instead.

Fig. B-6. Internal block diagram 1: Driver Information System of Systems

overview.

MOST Assembly

A2: Antenna S1: Screen S2: Screen

Rear Seat Entertainment
TV TV Tuner Entertainment System DVD : DVD Player

e
MM : Multimedia Private CAN BUS : BUS HLDF : Driver Information System

AL: Antenna

SDARS : Satelite Digial

TMC : Traffic Message
‘Audio Radio Service Channel

PHM : Telephone Mouu%

AA - Audio Ampliier MOST_CAN_Gateway : Gateway ‘

HL: Headphone S1: Speaker Medium Speed CAN BUS
BUS
HS CAN_MS CAN_Gateway
Gateway

DAB: DA Broadcasting

GPS Receiver
Receiver

FM Radio

Radio Campanion Camera : Camera

Reverse Camera : Camera

Resistive Ladder
Local Connection

Steering Angle Sensor
Sensor

High Speed CAN BUS : BUS

Fig. B-7. Internal block diagram 2: MOST System of Systems overview.

- 160 -

Appendix B

) View Navigation
Driver Information Access Rear
Entertainment
Rear
View Settings Passenger
\
Front
Occupant Access_ Front
Entertainment
Access On Road
Information
Front
Passenger Access 4X4
Information

Fig. B-8. Use case diagram 1: Driver Information System use case.

Access 4X4
Information

«include»

/

«include»—

View Hill Descent

Fron
ont Control Status

Occupant

View Steering
Angle

View Terrain
Optimization
Settings

\ \«msmde»
/«include» \
«dee»
«include» .
«include»
) «include»
«include»

/ \ «include»

e

View Gear
Position

View Hi/Lo

\

ratio View Suspension View whether
Information Standard/Sand/Rock
Crawl/Snow/Mud

View Compass
. . Information
View Diff Lock

«include»

View Differential
Lock Rear

View Differential
Lock Centre

Fig. B-9. Use case diagram 2: 4x4 information use case.

- 161 -

Appendix B

mt;ension

Front
Occupant

View vehicle
height

4include»

>Lformation

\include»

«include»

v

View whether View Chassis
vehicle Height
raising/lowering

Fig. B-10. Use case diagram 3: suspension information use case.

Text Diagram 1.

Description of the Display layout

There are three areas in the driver information system display, left, central and right. The left area is a permanent
display area which display chassis and power train of the vehicle with the following infarmation list below:

Steering Angle Information,

High/Lows ratio selection status,

Differential lock Information for both centre and rear,
Gear Position.

The central area contains the Home soft key and a permanent display area which shows the following information:

Terrain Optimization Mode,
HDC information.

The right display area changes when different wiews
Compass view and Chassis view.

are selected by press soft keys at the bottom including

Fig. B-11. Text diagram 1: layout of the display.

Text Diagram 2.

Air suspension selector

Air suspension selector is next to the Hill Descent Control button. The air suspension status can be controlled
manually by pushing upwards or downmwards the air suspension selector.

Fig. B-12. Text diagram 2: air suspension selector.

- 162 -

Appendix B

Home Soft Key |l Home Hard Key m ‘Driver Information System Application Software

m T

| ‘
|

alt
L
Press Home Soft Key Home 9dft Key Pressed
else alt : ‘
Press Home Hard Key
end alt

Return to Home Menu screen

Home Hard Key@‘#essed ! !	
	1
	h@turn t[o Home Menu screen

Fig. B-13. Sequence diagram 1: return to home menu screen from other screens
(HL - B).

Home Hard Key l Home Soft Key | 4x4 Information Soft Key [4x4 Information Hard Key m ‘Driver Information System Application Software
m T
|
|

Return to Home Menu screen

alt
alt
Press Home Hard Key
else alt
Press Home Soft Key
end alt
Return to Home Menu screen
Press 4x4 Information Soft Key
else alt
Press 4x4 Information Hard Key
end alt

|

|

| |
Hcme?dhrd Key Pressed | |
| | |

|

|
|
|
|
|
: Home Soft Key/bT}essed :
|

| |
4X4 Info Soft Key Pressed 11
| |

|
|
|
|
|
|
|
|
|
|
|
I
! Updlate Display to 4x4 Information screen
|

|
|
|
|
|
|
|
| |
| |
| |
| |
; 4X4 Info Hard;Key Pressed /IH
| |
i i

|

Display updated to 4x4 Information screen

Fig. B-14. Sequence diagram 2: change to 4x4 information screen from other

screens (HL - B).

m 4x4 Information Hard Key [l 4x4 Information Soft Key m ‘Driver Information System Application Software
- T

|
tart Mehicle ‘
|

|
|
o -
1 Update Display
|
|
|
|
|
|
|

Start vehicle

|
|
Display Home Menu screen !
|
alt

Press 4x4 Information Hard Key

|
4X4 Info Hmﬂby Pressed
else alt !

|
|
i
|
|
|
|
|
Press 4x4 Information Soft Key |
end alt :
UTdale Display to 4x4 InfonTnation screen

Update Display to the 4x4
Information screen with right area
showing the view of Chassis or
Compass. Steering angle data are

|

|

|

|

|

|

|

| |
4X4 Info Soft Key Pressed T
| |

|

|

|

|

|

displayed on the left area. |

See "Layout of the Display" in "Text Diagrams"
of the model to know what is the left, central and
right area of the display.

Fig. B-15. Sequence diagram 3: view steering angle (HL - B).

- 163 -

Appendix B

Start vehicle i Tkhicle
Display Home Menu screen |

alt

m 4x4 Information Hard Key J] 4x4 Information Soft Key| m Steering Wheel|
| |

[Driver Information System Application Software] [Steering Angle Sensor]
T

Press 4x4 Information Hard Key
else alt

4X4 Info Hard Ky Pressed
|

Press 4x4 Information Soft Key
end alt
Update Display to the 4x4 Information
screen with right area showing the view of

is displayed on the left area.

0]
|
|
|
|
|

|

Ubdate Dispi !
play

|

|

|

|

Driver steers the wheel

par
Steering Angle Sensor sends data to
the Driver Information System through
the Local Connection

also par
Steering angle updated on the screen

|
|
|
|
|
|
|
|
Chassis or Compass. Steering angle data |
|
r
|
|
|
|
|
|

end par

Steer

Update Display to 4x4 Irformation screen
|
|
| |
Isend steering angle data to the Drivér Information System Application Software

|

|

|

|

|

4%4 Info Soft Key Pressed '
| |
|

|

|

t

|

|

|

|

|

|

I

|
T
|
|
|
|
|
I
|
|
b
|
|
|
|
|

|
Update left area of scregn
I

Fig. B-16. Sequence diagram 4: view steering angle (HL - W).

Driver steers the wheel Steer
Send steering angle data on the
dedicated Local Connection
Local Connection sends data to
the MOST

MOST sends data to the Driver
Information System

Steering angle display updated

]

Local Conneclion‘ ‘SKeeving Angle Sensor‘

pdate left area of screeh

Send data

Steering Wheel m ‘ Driver Information System Application Software|
T T T

Send steeying angle data on the Local Connection

Send data

Fig. B-17. Sequence diagram 5: view steering angle (DL - B).

Driver steers the wheel
Get Steering Angle from Sensor

Send steering angle data on the
dedicated Local Connection

Local Connection sends data to the
Gateway Unit

Gateway sends data on the MOST
MOST sends data to the Driver
Information System

Steering angle display updated

Send data

Update left ared of screen

[Driver Information System Appiication Software] [MOST| [MOST_CAN_Gateway] Local Connection| [Sensor_Local Connection_Interface] [Steering Angle Sensor|

Get data from ensor

|
|
! Put data on Lbcal Connection
|

Send data

Send dgta |
| |
|

Fig. B-18. Sequence diagram 6: view steering angle (DL - W).

- 164 -

Appendix B

alt |
Press 4x4 Information Hard Key
else alt

4x4 Information Hard Key lf 4x4 Information Soft Key
|
[T axanfo iqlard Key Pressed

Press 4x4 Information Soft Key
end alt
Update Display to the 4x4 Information screen
alt

|
|
|
|
4X4 Info Soft Key Pres$gd
|
|
|

Compass view displayed
else alt

|
|
|
|
|
|
|
|
T
|

Compass view Soft Key

iew Soft Key m ‘Dnver Information System Application Software|
T
|

Press Chassis view Soft Key
Chassis view displayed

|
|
|
|
|
|
Press Compass view Soft Key I
|
|
|
|
end alt |

Prerequisites: Display shows Home Menu
screen before the start of this scenario.

]

Compass \;uew Soft Key Pressed
|
|
|
|
|

!
Chassis view Soft Key Pressed
|
|

|
|
|
|
|
|
|
|
|
:
/L‘J
|
|

|
Upate Display to 4x4 Information screen

Fig. B-19. Sequence diagram 7: choose different views in 4x4 information screen

alt

from home menu screen (HL - B).

4x4 Information Hard Key [4x4 Information Soft Key
|

Press 4x4 Information Hard Key
else alt

,
x4 Infrﬂl#ard Key Pressed

Press 4x4 Information Soft Key
end alt

4X4 Info Boft Key Pressed

@ @)
o Joem sic] s e TS

System Application Software| [MOST_CAN_Gateway|
T T
|
|
|
|
|

|
|
|

i
|
|

o — — — — —

Driver selects 1st gear

Main gear selected

Driver puts transfer gear in low
Gateway sends the data of gear selection

Display 1st gear and low range icon on the

|
T
|
|
|
|
Update Display to the 4x4 Information screen |
i
T
|
|
left area of screen |

Prerequisites: Display shows
Home Menu screen before the
start of this scenario.

Thansfer gear selected

Update Display to

|
|
|
|
|
|
4x4 Informétion screen |
|
|

Send data |

|
|
|
|
|
|
T

0
|
Il
|

=

|
|
|
|
|
|
I
|
T
I
|

Updfle left area of screen | |

Fig. B-20. Sequence diagram 8: view main gear and transfer gear change from

alt

Press 4x4 Information Hard Key
else alt

Press 4x4 Information Soft Key
end alt
Update Display to the 4x4 Information screen
Driver selects Sand mode
Display Sand mode in the central area as small icon
Driver selects Rock crawl mode
Display Rock crawl mode in the central area as small icon
Driver choose to display large icon of TO settings.
Large icon of TO settings is displayed

Prerequisites: Display shows Home Menu
screen and Temrain Optimization (TO) setting

is Standard before the start of this scenario,

home menu screen (HL - B).

4x4 Information Hard Key | 4x4 Information Soft Key Terrain Optimization Selector | Terrain Optimization settings Soft ey m Driver Information System Application Software]

oy

fo Hard Key Pressed

2X4 Info Soft Key Predsed

Rotate the TO Selector |

Rotate the TO Selector ’ITI

Press TO settings Sbit Key on the touch screen

|
|
|
|
|
|
|
|
|
il
|

|
|
|
|
jpdate Display to 4x4 Infofation screen with central area display TO settings

Update central area of screen

Update centrallarea of screen

Update centrallarea of screen

Fig. B-21. Sequence diagram 9: view terrain optimization (TO) settings from home

menu screen (HL - B).

- 165 -

Appendix B

alt

Press 4x4 Information Hard Key
else alt

Press 4x4 Information Soft Key
end alt
Update Display to the 4x4 Information screen
Driver activates the Hill Descent Control (HDC)
HDC icon is displayed

Prerequisites: Display shows
Home Menu screen before
the start of this scenario.

(I

4x4 Information Hard Key] 4x4 Information Soft Key | HDC Button m [Driver Information System Application Software
T
|

|
| |
4X4 Info thard Key Pressed |
| |

| 4X4 Info Soft Key Presddd
| |
| |

|
Update Display to 4x4 Information screen

HDC Button P‘Fessed

Update central area of scregn
[|

gl

Fig. B-22. Sequence diagram 10: display of hill descent control (HDC) from home

alt
Press 4x4 Information Hard Key
else alt
Press 4x4 Information Soft Key
end alt
Update Display to the 4x4 Information screen
Press Chassis view Soft Key
Chassis view displayed
Driver pushes the air suspension selector upwards
loop
alt
Send air suspension status
Display "Raising"
else alt
Send air suspension status: Reached the maximum position
Display "Oft-Road"
break

end alt
end loop

[Prerequisites: Display shows Home Menu
|screen before the start of this scenario.

See "Air suspension selector” in "Text
Diagrams" of the model to know what s Air
suspension selector.

menu screen (HL - B).

|
4X4 InfG Hard Key Pressed |
| |

4X4 Info Soft Key Presskd
|
| |

e e e] B [oriver information System Application Software] [MOST_CAN_Gateway|
m T
| |

Update Display to 4x4 Information screen

| Chassis view Soft Key Rressed

[
|
|
|
|
| Push the Air Suspension selector uplfards
| | |

|

|

|

|

|

|

|

|

| |
1} Update right afea of screen to Chassis View
|

Send data |
Update right afea of soreen |

Send data |
Update right afea of screen

|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
| |

e e

Fig. B-23. Sequence diagram 11: display of suspension status from home menu

alt

Press 4x4 Information Hard Key
else alt

4%4 Inf6 Hard Key Pressed
|

screen (HL - B).

4x4 Information Hard Key [4xa information Soft ey | Terrain Optimization Selector| m [Driver Information System Appliication Software] [Differential] [Driveline Control ECU]
T T
I I I

Press 4x4 Information Soft Key
end alt

Update Display to the 4x Information screen

4X4 Info Soft Key Preg%d

Driver changes the Terrain Optimization (TO) f
setting to Grass / Snow / Ice |
Display Differential unlocked in the left area |
The differential increases the amount of torque |
transfer and the locking torque equals or exceeds |
the threshold value appropriate to the currently |
active TO mode |
Display Differential locked in the left area |
Locking torque reduces below the threshold value |

|

Display Differential unlocked in the left area

Prerequisites: Display shows Home Menu
screen before the start of this scenario. Terrain
Optimization (TO) Setting is Standard.

I
Rotate the TO Selector to Grass / Sl / Ice

Update Display to 4x4 Information screen

Update eftarea of screen
|
|
|

Update left areia of screen

| Differential unlocked
o | Update left aréla of screen | |

leferenﬁlal locked
|
|
|

Fig. B-24. Sequence diagram 12: display of differential status from home menu

screen (HL - B).

- 166 -

Appendix B

Start vehicle
Display Home Menu
alt
Press 4x4 Information Hard Key
else alt
Press 4xd Information Sot Key
endait
Update Display to the 4x4 Information screen
Press Chassis view Soft Key
Chassis view displayed
Driver changes the Terrain Optimization settings to Rock crawd
Driver activates the HillDescent Control
Steers left to fulllock
par
Display Rock crawl mode icon
also par
Display HDC icon
also par
Display Steering angle
also par
Display Diferential status
also par
Display Suspension status
end par

Prerequisites: Terrain Optimization (TO) Seting is
|Standard before the start of this scenario.

Driver Information System Application Software]

|

Update| Display | ‘
| |
| |
|

Updatel Display 10 4x4 Information screen
|

x @ @ @ @ @ @ @ @
4x4 Information Hard Key] 4x4 information Soft Key | Display | Chassis view Sot key } Terrain Opiimization Sefectorl HOC Button] steering wheel
E: | | | | |
| | q |
| | | |
4X4 Info Hartldey Pressed | | |
4‘)« Info Soft Key Pmsss(lTl : :
| 0 T
Chassis view Soft Key Pressdd T
|
|

|
| Rotale the TO pelector

Update|right area of scfeen ‘

Il |
Updale‘ left area of sercen |

= o

I
I
I
I
I
I
l
|
i | |
I
|
T
I
|
Il
I
I

L HDG Button Presseq T \

| | Steerleftio ulllock | ’LH |
: \Tl Updale“ central area of ‘Bcreen

| o Updatelcentral area of kcreen
| | | | |
| T Updateleft area of screen ‘
|

|

|

|

'Update right area of screen
| |

Fig. B-25. Sequence diagram 13: an off-road driving example (HL - B).

Ignition On/

Screen Power Off

after(2)[Ignition==0]/

Fig. B-26. State machine diagram 1: Driver Information System.

Initial Screen Showing Company Loch

after(2)[Ignition==1]/ Ignition Off/

Display

Home Soft Key Pressed/

Home

4X4 Info Soft Key Pressed/

(OffRoad Information ‘
\STD: OffRoad Information/

T Settings Pressed/
Settings

OnRoad Info Pressed/

OnRoad Information

Navigation Pressed/

Navigation

Phone Pressed/

Phone

Entertainment Pressed/

Entertainment

T

Appendix B

OffRoad Information

Left Display
o—=

Left Display

Central Display

° = Central Display

View Steering Angle

o /kDispIaying Steering Angle Informatiora

View Main Gear

.ﬁ{ Displaying Gear Position
STD: Displaying Gear Positiory

View Transfer Gear

.ﬁ(Displaying Transfer Gear Status w

(STD: Displaying Transfer Gear Status/

View Differential

.ﬁ(Displaying Centre and Rear Differential Lock Information w
LSTD: Displaying Centre and Rear Differential Lock Informatiod

Terrain Optimization Settings

.ﬁ(Displaying Terrain Optimization Settings w

|STD: Displaying Terrain Optimization Settings/

Hill Descent Control

O%/(Displaying Hill Descent Control Status W

|STD: Displaying Hill Descent Control Status/

Right Display
- ®
STD: Chassis View)
Compass View Soft Key Pressed/ Chassis view Soft Key Pressed/

Compass View

Fig. B-27. State machine diagram 2: off-road information.

- 168 -

Appendix B

Displaying Gear Position

A[: Park/

() Rewerse/
: Netural/
[: Drive/
Fifth Gear/

Fourth Gear/

Third Gear/

Second Gear/

X First Gear/

Fig. B-28. State machine diagram 3: displaying gear position.

.ﬁ Displaying Transfer Gear Status

o

Transfer gear selected/ Transfer gear selected/

Low

Fig. B-29. State machine diagram 4: displaying transfer gear status.

- 169 -

Appendix B

[J—— Displaying Centre and Rear Differential Lock Information
View Centre Differential Lock Information

[] [Locking Torque<Threshold Value]/

[Locking Torque>=Threshold Value Appropriate to Current TO Mode]/

View Rear Differential Lock Information

L [Locking Torque<Threshold Value]/

Unlocked

[Locking Torque>=Threshold Value Appropriate to Current TO Mode]/

Fig. B-30. State machine diagram 5: displaying centre and rear differential lock

information.

.ﬁ Displaying Terrain Optimization Settings

Standard Mode/
Standard

Mud Ruts Mode/
Mud / Ruts

Sand Mode/
Sand

Grass Snow Ice Mode/
Grass / Snow / Ice

Rock Crawl Mode/

T

Rock Crawl

Fig. B-31. State machine diagram 6: displaying TO settings.

-170 -

Appendix B

.%/ Displaying Hill Descent Control Status
o Inactive/
/ Inactive
Pending/
Pending 9
Set/
Set

Fig. B-32. State machine diagram 7: displaying HDC status.

I — Chassis View

Air Suspension Status

) Off Road/
Off Road
7/ Raising/
Raising
Standard/
Standard
. Lowering/
Lowering
Access/
Access

Wheel Height and Axle Angle

Oﬁ[wmeel Height and Axle Ang@

Fig. B-33. State machine diagram 8: chassis view.

-171-

Appendix B

Swim Lane

Turn on Ignition

E’ress Home Hard Key or Soft Keg

or Soft Key

$

®

E’ress 4x4 Information Hard Keyw

Fig. B-34. Activity diagram 1: getting to the 4x4 information screen.

Driver None MOST Based System On The Vehicle 1HU Driver System Application Software Display

Driving in normal height]
Select Acces Mode)

(Check Vehicle Speed|

- ‘Selects Chassis view
(Continue driving | 5y he display

felse]

[if More than 50 mph]

- Vehicle changes to (Communicate height information
Remain Standard Mode Access height from Air suspension system to the

(Gateway ECU

%ﬁheighl information through MOST
® Get height information
and update display

Displaying Access height

(riving the vehicle with the Access)
height and display showing
laccess

Fig. B-35. Activity diagram 2: select access height and viewing of new height
information.

-172 -

Appendix

Driver

Vehicle

Display

$

E’ress 4x4 Information Hard Key or Soft Key]

Rotate the TO Selector|

—

\

=

@isplaying current TO Setting

Change the vehicle

V

‘ New Terrain Optimization Mode

status under new TO setting

Displaying new TO Setting

i

Fig. B-36. Activity diagram 3: view TO settings and change the TO mode.

Driver

Driver Information System Application Software

Steering Angle Sensor

MOST

Display

[}
Press 4x4 Information
Hard Key or Soft Key
Steer the Wheel|

—

-

Update the display of steering
angle on the left area

e

=
Collect and sent
steering angle data

-

\>

steering angle data

Displaying Steering Angle)

Fig. B-37. Activity diagram 4: view steering.

-173 -

Appendix C

Appendix C

Diagrams in the model built in

Simulink/Stateflow

This appendix provides a full list of Stateflow diagrams in the model that is

developed in Simulink/Stateflow.

——— lgnition_On Initial_Screen_Showing_Company Logo |
I g 3 3 (|
| Screen_Power_Off }\ =

2

JI after(2.zec) b /
) [Ignition==0] 1 i
after(2 sec) e
[lgnition==1] Ignition_Off
s
{ Display
L]

_\
.\i-: [Home }. Hnome >

OffRoad_Infarmation
(OffRoad_Information):

[Setﬁ—ngs‘..- Settings 5

OnRoad_Information

[

[OnRoad_Inform atior?- :
L5

[Na\.igation “‘_." MNawvigation

|'Phorn3 | Ea6g 5
"Entertainment]r. Entertainment o
! . !
_ o

Fig. C-1. Stateflow diagram 1: Driver Information System.

- 174 -

Appendix C

mmad_lnfnrmatiun_ScreEn \
~ “I S T T .

RightDisplay

ChassisView

CompassView

Fig. C-2. Stateflow diagram 2: display off-road information.

Fig. C-3. Stateflow diagram 3: view main gear.

-175-

Appendix C

..

Fig. C-4. Stateflow diagram 4: view transfer gear.

Fig. C-5. Stateflow diagram 5: view centre differential lock.

Fig. C-6. Stateflow diagram 6: view rear differential lock.

-176 -

Appendix C

,-" TerrainOptimizationSettings "-.l
: Standard s 4t
Mud_Ruts :

(=t 2_:

Sand :

== 3_:

Rock_Cramw ack Cf ,

5

--

Fig. C-7. Stateflow diagram 7: view TO settings.

_-" Hill_Descent_Control 3

Y R . :
Pendin :
: Set :
: 3

Fig. C-8. Stateflow diagram 8: view HDC status.

-177 -

Appendix C

ﬁassis‘\f’iew \

Fig. C-9. Stateflow diagram 9: chassis view.

-178 -

Appendix D

Appendix D
Analysis result of the C code produced

from ARTISAN Studio

<polyspace-c C_R2008a>

Type C:\PolySpace_Results\kill-rte-kernel.bat on host ATA209 to halt Verifier process

Options used with Verifier:
-polyspace-version=C_R2008a
-date=09/02/2009
-main-generator-calls=unused

-lang=C

-results-dir=C:\PolySpace_Results
-author=admin-ata209
-main-generator-writes-variables=public
-target=sparc

-voa=true

-continue-with-red-error=true
-verif-version=1.0

-prog=New_Project
-D1=POLYSPACE_NO_STANDARD_STUBS
-D2=POLYSPACE_STRICT_ANSI_STANDARD_STUBS
-quick=true

-11=E:\SysML Model C code for PolySpace
-12=C:\Program Files\ARTiSAN Software ToolsS\ARTiSAN Real-time Studio\System\C_Sync
-desktop=true

-dos=true

-OS-target=no-predefined-OS

Verifying host configuration ...
Memory > 256MB : OK
(1015 MB)

-179 -

Appendix D

Swap > 1GB :
(2.38 GB)
Swap >= 2*RAM :

OK

OK

Tmp space available in CADOCUME~1I\ADMIN-~I\LOCALS~1\Temp >= 10MB : OK

(824 MB)

*** Configuration of the host: OK

Checking license ...
License is OK

PolySpace Technologies C static program verifier

Copyright 1999-2008, The MathWorks, Inc
All rights reserved.

Starting at: Feb 9, 2009 14:43:13
Host: MINGW32_XP-5.1 unknown 9 i686

User: admin-ata209
KAAAIAAAKAAAAAAAAAAAXAAAAAAAAAAAAAAAAAAAhkArhhhhhkhiihhhhkhiiikik

*** Verifying C sources
k%k

kkhkhkhkhkhkhhhkhkhkhkkhkhkhkhkhkhkhkhhhhirrkhkhkhhhhhhhhhhhhhhhhhiirrkikirhiiiiixkx

Copying sources to C-ALL ...

Number of files 01

Number of lines 14311
Number of lines without comments : 3142
OS-target no-predefined-OS implies: -D__STDC__

Verifying sources ...
Verifying Driver_Information_System.c

Verifying cross-files ANSI C compliance

Stubbing standard library functions ...
Stubbing unknown functions ...

Generating the Main ...

Generating call to function:
Generating call to function:
Generating call to function:
Generating call to function:
Generating call to function:
Generating call to function:
Generating call to function:
Generating call to function:
Generating call to function:
Generating call to function:
Generating call to function:
Generating call to function:
Generating call to function:
Generating call to function:
Generating call to function:

Rtslgnition_On

Rts4X4 _Info_Soft_Key Pressed
RtsEntertainment_Pressed
RtsHome_Soft_Key Pressed
Rtslgnition_Off
RtsNavigation_Pressed
RtsOnRoad_Info_Pressed
RtsPhone_Pressed
RtsSettings_Pressed
Rtslnactive

RtsPending

RtsSet
RtsGrass_Snow_Ice_Mode
RtsMud_Ruts_Mode
RtsRock Crawl_Mode

- 180 -

Appendix D

Generating call to function: RtsSand_Mode

Generating call to function: RtsStandard_Mode

Generating call to function: RtsDrive

Generating call to function: RtsFifth_Gear

Generating call to function: RtsFirst_Gear

Generating call to function: RtsFourth_Gear

Generating call to function: RtsNetural

Generating call to function: RtsPark

Generating call to function: RtsReverse

Generating call to function: RtsSecond_Gear

Generating call to function: RtsThird_Gear

Generating call to function: RtsTransfer_gear_selected
Generating call to function: RtsCompass_view_Soft_Key Pressed
Generating call to function: RtsAccess

Generating call to function: RtsLowering

Generating call to function: RtsOff Road

Generating call to function: RtsRaising

Generating call to function: RtsStandard

Generating call to function: RtsChassis_view_Soft_Key Pressed
Generating call to function: Driver_Information_System
Generating call to function: _Driver_Information_System
Generating call to function: Rtslnitial_Screen_Showing_Company_Logo_Timerl_CallBack
Generating call to function: RtslInitial_Screen_Showing_Company_Logo_Timer2_CallBack
Doing code transformations ...

KEAEAEEAAAAIAAXAAAEAIAAAAXAAAAAXAITAAAAIAAAXAAAAAAkAkIAAAhddhdhdrhhkhkhidiidkk
**k*k

*** C sources verification done

**k*

kkhkkkkhkkhhkhkhkkhkkkkkkkkhkkhkkhkkhkhkhkhhhhhhkhkhkkkkkhkkhkkhkhkhkhkhkhkikhhhihhhkikikkikkkk

Ending at: Feb 9, 2009 14:44:17
User time for suif: 64.2real, 64.2u + 0s
Starting at: Feb 9, 2009 14:44:17

*kkhkhkhkkhkhhkhkhhhkhkhhhkhkhrhkhkhhhkhhdhkhhhhkhhhhkhrdhhrhhkhrhhkhihhkiiiikkx

*** Beginning C to intermediate language translation
k%k

*kk*k *k*k *kk*x *kk*k **k*k *k*k*x *kk*x *k*k

**** C to intermediate language translation 1 (P_SP)

**** C to intermediate language translation 1 (P_SP) took 2.9real, 2.9u + 0s

**** C to intermediate language translation 2 (P_RB)

**** C to intermediate language translation 2 (P_RB) took Oreal, Ou + 0s

**** C to intermediate language translation 3 (P_SIA)

**** C to intermediate language translation 3 (P_SIA) took 2real, 2u + 0s

**** C to intermediate language translation 4 (P_CGA)

**** C to intermediate language translation 4 (P_CGA) took 2.1real, 2.1u + 0s

**** C to intermediate language translation 5 (P_SFNPV)

x C to intermediate language translation 5.1 (P_PA)

*x**x* C to intermediate language translation 5.1.1 (P_ATA)

x% C to intermediate language translation 5.1.1 (P_ATA) took 2real, 2u + 0s
**x&*% C to intermediate language translation 5.1.2 (P_AP)

**kxx% C to intermediate language translation 5.1.2 (P_AP) took 2.8real, 2.8u + 0s
*x**x* C to intermediate language translation 5.1.3 (P_ITFP)

x% C to intermediate language translation 5.1.3 (P_ITFP) took 0.3real, 0.3u + 0s
**kkxk C to intermediate language translation 5.1.4 (P_CA)

xxxxA C to intermediate language translation 5.1.4.1 (P_STS)

*xx&*** C to intermediate language translation 5.1.4.1 (P_STS) took 0.4real, 0.4u + 0s

-181 -

Appendix D

*hx&*x* C to intermediate language translation 5.1.4.2 (P_RR)
*FRx&Xx% C to intermediate language translation 5.1.4.2 (P_RR) took Oreal, Ou + 0s
Some stats on aliases computation:
Number of aliases sets: 43
Number of couples of aliases: 77613
Number of elements in the biggest alias sets: 1st=279, 2nd=279, 3rd=4, 4th=4, 5th=2
x& C to intermediate language translation 5.1.4 (P_CA) took 0.5real, 0.5u + 0s
***** C to intermediate language translation 5.1 (P_PA) took 5.6real, 5.6u + 0s
**x%* C to intermediate language translation 5.2 (P_SSet)
***** C to intermediate language translation 5.2 (P_SSet) took 7.8real, 7.8u + 0s
***** C to intermediate language translation 5.3 (P_GA)
x% C to intermediate language translation 5.3.1 (P_FPGA)
x% C to intermediate language translation 5.3.1 (P_FPGA) took 2.1real, 2.1u + 0s
x* C to intermediate language translation 5.3.2 (P_GCPTS)
*Rx&AxE C to intermediate language translation 5.3.2.1 (P_GAA3)
Rxkxxk C to intermediate language translation 5.3.2.1.1 (Loading)
*xFkxA** C to intermediate language translation 5.3.2.1.1 (Loading) took Oreal, Ou + 0s
[1121 -> 2655]
x% C to intermediate language translation 5.3.2 (P_GCPTS) took 1.4real, 1.4u + 0s
*x*xx* C to intermediate language translation 5.3.3 (P_ MNPV)
**x%*% C to intermediate language translation 5.3.3 (P_MNPV) took 2.6real, 2.6u + 0s
Rx&XXE C to intermediate language translation 5.3.2.1.2 (P_GAA_SC)
*RxkAxA** C to intermediate language translation 5.3.2.1.2.1 (P_GAA_VI)
*FRxEI*AX* C to intermediate language translation 5.3.2.1.2.1 (P_GAA_VI) took Oreal, Ou + 0s
RxEAXAX C to intermediate language translation 5.3.2.1.2.2 (P_GAA_SDC)
hkkxkkx C to intermediate language translation 5.3.2.1.2.2 (P_GAA_SDC) took Oreal, Ou +
0s
*RxAXxA** C to intermediate language translation 5.3.2.1.2.3 (P_GAA_RS)
Fhkkxdkx* C to intermediate language translation 5.3.2.1.2.3 (P_GAA_RS) took Oreal, Ou + 0s
FxFxxAx* C to intermediate language translation 5.3.2.1.2 (P_GAA_SC) took Oreal, Ou + 0s
* inlining RtsRunToCompletion could decrease the number of aliases of parameter #1 from 94
to 6
* inlining RtsEnter_Screen_Power_Off could decrease the number of aliases of parameter #1
from94to5
* inlining RtsExit_Compass_View could decrease the number of aliases of parameter #1 from
37t07
* inlining RtsExit_Chassis_View_1 could decrease the number of aliases of parameter #1 from
47106
* inlining RtsExit_Chassis_View could decrease the number of aliases of parameter #1 from 37
to 6
* inlining RtsExit_Low could decrease the number of aliases of parameter #1 from 37 to 7
* inlining RtsExit_High could decrease the number of aliases of parameter #1 from 37 to 7
* inlining RtsExit_Displaying_Gear_Position_1 could decrease the number of aliases of
parameter #1 from 53 to 5
* inlining RtsExit_Displaying_Terrain_Optimization_Settings_1 could decrease the number of
aliases of parameter #1 from 45 to 6
* inlining RtsExit_Displaying_Hill_Descent_Control_Status_1 could decrease the number of
aliases of parameter #1 from 41 to 5
*xx*x** C to intermediate language translation 5.3.2.1 (P_GAA3) took 15.4real, 15.4u + 0s
x C to intermediate language translation 5.3 (P_GA) took 18.6real, 18.6u + 0s
x C to intermediate language translation 5.4 (P_AA)
**kkx* C to intermediate language translation 5.4.1 (P_AC)
Some stats on points to analysis:
Number of optimized point_to edges: 854
x* C to intermediate language translation 5.4.1 (P_AC) took Oreal, Ou + Os
***** C to intermediate language translation 5.4 (P_AA) took Oreal, Ou + 0s
x C to intermediate language translation 5.5 (P_PFF)

-182 -

Appendix D

Found 1 polymorphic functions
***** C to intermediate language translation 5.5 (P_PFF) took 0.3real, 0.3u + 0s
x C to intermediate language translation 5.6 (P_LGR)
***%* C to intermediate language translation 5.6 (P_LGR) took Oreal, Ou + 0s
**** C to intermediate language translation 5 (P_SFNPV) took 32.5real, 32.5u + 0s
**** C to intermediate language translation 6 (P_SP)
**** C to intermediate language translation 6 (P_SP) took 3.3real, 3.3u + 0s
**** C to intermediate language translation 7 (P_RB)
**** C to intermediate language translation 7 (P_RB) took Oreal, Ou + Os
**** C to intermediate language translation 8 (P_PA)
***** C to intermediate language translation 8.1 (P_ATA)
x C to intermediate language translation 8.1 (P_ATA) took 2.2real, 2.2u + 0s
**x%* C to intermediate language translation 8.2 (P_AP)
***** C to intermediate language translation 8.2 (P_AP) took 3real, 3u + 0s
**x*% C to intermediate language translation 8.3 (P_ITFP)
x C to intermediate language translation 8.3 (P_ITFP) took 0.2real, 0.2u + Os
***** C to intermediate language translation 8.4 (P_CA)
x* C to intermediate language translation 8.4.1 (P_STS)
x* C to intermediate language translation 8.4.1 (P_STS) took 0.9real, 0.9u + Os
*x*x** C to intermediate language translation 8.4.2 (P_RR)
x% C to intermediate language translation 8.4.2 (P_RR) took 0.2real, 0.2u + Os
Some stats on aliases computation:
Number of aliases sets: 87
Number of couples of aliases: 942013
Number of elements in the biggest alias sets: 1st=316, 2nd=279, 3rd=279, 4th=279, 5th=279
***x* C to intermediate language translation 8.4 (P_CA) took 1.3real, 1.3u + 0s
**** C to intermediate language translation 8 (P_PA) took 6.8real, 6.8u + 0s
**** C to intermediate language translation 9 (P_SSet)
**** C to intermediate language translation 9 (P_SSet) took 9.6real, 9.6u + 0s
**** C to intermediate language translation 10 (P_O)
**** C to intermediate language translation 10 (P_O) took 12.2real, 12.2u + 0s
**** C to intermediate language translation 11 (P_G)
**** C to intermediate language translation 11 (P_G) took 5.2real, 5.2u + 0s
**** C to intermediate language translation 12 (P_TT)
**** C to intermediate language translation 12 (P_TT) took 0.1real, 0.1u + 0s
**** C to intermediate language translation 13 (P_VT)
**** C to intermediate language translation 13 (P_VT) took Oreal, Ou + Os
**** C to intermediate language translation 14 (P_PT)
***x* C to intermediate language translation 14.1 (P_SPP)
*x**x* C to intermediate language translation 14.1.1 (P_CSSIP)
xx% C to intermediate language translation 14.1.1 (P_CSSIP) took Oreal, Ou + 0s
***x* C to intermediate language translation 14.1 (P_SPP) took Oreal, Ou + 0s
***** C to intermediate language translation 14.2 (P_TP)
- translating procedure assert (1 / 235)
- translating procedure RtsEXit_Screen_Power_ Off (2 / 235)
- translating procedure RtsEnter_Initial_Screen_Showing_Company_Logo (3 / 235)
- translating procedure RtsEnter_Screen_Power_Off (4 / 235)
- translating procedure RtsRunToCompletion (5 / 235)
- translating procedure Rtslgnition_On (6 / 235)
- translating procedure RtsExit_Entertainment (7 / 235)
- translating procedure RtsExit_Home (8 / 235)
- translating procedure RtsExit_Navigation (9 / 235)
- translating procedure RtsExit_Inactive (10 / 235)
- translating procedure RtsExit_Pending (11 / 235)
- translating procedure RtsExit Set (12 / 235)
- translating procedure RtsExit_Displaying_Hill_Descent_Control_Status_1 (13 / 235)
- translating procedure RtsExit_Displaying_Hill_Descent_Control_Status (14 / 235)

- 183 -

Appendix D

- translating procedure RtsExit Grass___Snow___Ice (15/235)

- translating procedure RtsExit_ Mud___Ruts (16 / 235)

- translating procedure RtsExit Rock Crawl (17 / 235)

- translating procedure RtsExit_Sand (18 / 235)

- translating procedure RtsExit_Standard (19 / 235)

- translating procedure RtsEXxit_Displaying_Terrain_Optimization_Settings_1 (20 / 235)

- translating procedure RtsExit_Displaying_Terrain_Optimization_Settings (21 / 235)

- translating procedure RtsExit_Central_Display_1 (22 / 235)

- translating procedure RtsExit_Displaying_Centre_and_Rear_Differential_Lock_Information
(23/235)

- translating procedure RtsExit_D (24 / 235)

- translating procedure RtsExit_Fifth (25 / 235)

- translating procedure RtsExit_First (26 / 235)

- translating procedure RtsEXxit_Fourth (27 / 235)

- translating procedure RtsExit_N (28 / 235)

- translating procedure RtsExit_P (29 / 235)

- translating procedure RtsExit_R (30 / 235)

- translating procedure RtsExit_Second (31 / 235)

- translating procedure RtsExit_Third (32 / 235)

- translating procedure RtsExit_Displaying_Gear_Position_1 (33 / 235)

- translating procedure RtsExit_Displaying_Gear_Position (34 / 235)

- translating procedure RtsExit_Displaying_Steering_Angle_Information (35 / 235)

- translating procedure RtsExit_High (36 / 235)

- translating procedure RtsExit_Low (37 / 235)

- translating procedure RtsExit_Displaying_Transfer_Gear_Status_1 (38 / 235)

- translating procedure RtsExit_Displaying_Transfer_Gear_Status (39 / 235)

- translating procedure RtsExit_Left _Display 1 (40 /235)

- translating procedure RtsEXit_Access (41 / 235)

- translating procedure RtsExit_Lowering (42 / 235)

- translating procedure RtsExit_Off Road (43 / 235)

- translating procedure RtsExit_Raising (44 / 235)

- translating procedure RtsExit_Standard_1 (45 / 235)

- translating procedure RtsExit_Wheel Height _and_Axle_Angle 1 (46 /235)

- translating procedure RtsExit_Chassis_View_1 (47 / 235)

- translating procedure RtsExit_Chassis_View (48 / 235)

- translating procedure RtsExit_ Compass_View (49 / 235)

- translating procedure RtsExit_OffRoad_Information_1 (50 / 235)

- translating procedure RtsExit_ OffRoad_Information (51 / 235)

- translating procedure RtsExit_OnRoad_Information (52 / 235)

- translating procedure RtsExit_Phone (53 / 235)

- translating procedure RtsEXit_Settings (54 / 235)

- translating procedure RtsExit_Display (55 / 235)

- translating procedure RtsEnter OffRoad_Information (56 / 235)

- translating procedure RtsEnter_OffRoad_Information_1 (57 / 235)

- translating procedure RtsEnter_Central_Display 1 (58 / 235)

- translating procedure RtsEnter_Displaying_Hill_Descent_Control_Status (59 / 235)

- translating procedure RtsEnter_Displaying_Hill_Descent_Control_Status_1 (60 / 235)

- translating procedure RtsEnter_Inactive (61 / 235)

- translating procedure RtsDefault_Displaying_Hill_Descent_Control_Status_1 (62 / 235)

- translating procedure RtsDefault_Displaying_Hill_Descent_Control_Status (63 / 235)

- translating procedure RtsDefault_Hill_Descent_Control (64 / 235)

- translating procedure RtsEnter_Displaying_Terrain_Optimization_Settings (65 / 235)

- translating procedure RtsEnter_Displaying_Terrain_Optimization_Settings 1 (66 / 235)

- translating procedure RtsEnter_Standard (67 / 235)

- translating procedure RtsDefault_Displaying_Terrain_Optimization_Settings_1 (68 / 235)

- translating procedure RtsDefault_Displaying_Terrain_Optimization_Settings (69 / 235)

- translating procedure RtsDefault_Terrain_Optimization_Settings (70 / 235)

-184 -

Appendix D

- translating procedure RtsDefault_Central_Display 1 (71 /235)

- translating procedure RtsDefault_Central_Display (72 / 235)

- translating procedure RtsEnter_Left Display 1 (73 /235)

- translating procedure
RtsEnter_Displaying_Centre_and_Rear_Differential_Lock_Information (74 / 235)

- translating procedure RtsDefault_View_Differential (75 / 235)

- translating procedure RtsEnter_Displaying_Gear_Position (76 / 235)

- translating procedure RtsEnter_Displaying_Gear_Position_1 (77 / 235)

- translating procedure RtsEnter_P (78 / 235)

- translating procedure RtsDefault_Displaying_Gear_Position_1 (79 / 235)

- translating procedure RtsDefault_Displaying_Gear_Position (80 / 235)

- translating procedure RtsDefault_View_Main_Gear (81 / 235)

- translating procedure RtsEnter_Displaying_Steering_Angle_Information (82 / 235)

- translating procedure RtsDefault_View_Steering_Angle (83 / 235)

- translating procedure RtsEnter_Displaying_Transfer_Gear_Status (84 / 235)

- translating procedure RtsEnter_Displaying_Transfer_Gear_Status_1 (85 / 235)

- translating procedure RtsEnter_High (86 / 235)

- translating procedure RtsDefault_Displaying_Transfer_Gear_Status_1 (87 / 235)

- translating procedure RtsDefault_Displaying_Transfer_Gear_Status (88 / 235)

- translating procedure RtsDefault View_Transfer_Gear (89 / 235)

- translating procedure RtsDefault_Left_Display_1 (90 / 235)

- translating procedure RtsDefault_Left Display (91 / 235)

- translating procedure RtsEnter_Chassis_View (92 / 235)

- translating procedure RtsEnter_Chassis_View_1 (93 /235)

- translating procedure RtsEnter_Standard_1 (94 / 235)

- translating procedure RtsDefault_Air_Suspension_Status (95 / 235)

- translating procedure RtsEnter_ Wheel Height_and_Axle_Angle 1 (96 / 235)

- translating procedure RtsDefault_ Wheel _Height_and_Axle_Angle (97 / 235)

- translating procedure RtsDefault_Chassis_View_1 (98 / 235)

- translating procedure RtsDefault_Chassis_View (99 / 235)

- translating procedure RtsDefault_Right_Display (100 / 235)

- translating procedure RtsDefault_OffRoad_Information_1 (101 / 235)

- translating procedure RtsDefault OffRoad_Information (102 / 235)

- translating procedure Rts4X4_Info_Soft_Key Pressed (103 / 235)

- translating procedure RtsEnter_Entertainment (104 / 235)

- translating procedure RtsEntertainment_Pressed (105 / 235)

- translating procedure RtsEnter_Home (106 / 235)

- translating procedure RtsHome_Soft_Key Pressed (107 / 235)

- translating procedure Rtslgnition_Off (108 / 235)

- translating procedure RtsEnter_Navigation (109 / 235)

- translating procedure RtsNavigation_Pressed (110 / 235)

- translating procedure RtsEnter_OnRoad_Information (111 / 235)

- translating procedure RtsOnRoad_Info_Pressed (112 / 235)

- translating procedure RtsEnter_Phone (113 / 235)

- translating procedure RtsPhone_Pressed (114 / 235)

- translating procedure RtsEnter_Settings (115 / 235)

- translating procedure RtsSettings_Pressed (116 / 235)

- translating procedure RtsInactive (117 / 235)

- translating procedure RtsEnter_Pending (118 / 235)

- translating procedure RtsPending (119 / 235)

- translating procedure RtsEnter_Set (120 / 235)

- translating procedure RtsSet (121 / 235)

- translating procedure RtsEnter_Grass___Snow___Ice (122 / 235)

- translating procedure RtsGrass_Snow_Ice_Mode (123 / 235)

- translating procedure RtsEnter_ Mud__ Ruts (124 / 235)

- translating procedure RtsMud_Ruts_Mode (125 / 235)

- translating procedure RtsEnter_Rock_Crawl (126 / 235)

- 185 -

Appendix D

- translating procedure RtsRock_Crawl_Mode (127 / 235)

- translating procedure RtsEnter_Sand (128 / 235)

- translating procedure RtsSand_Mode (129 / 235)

- translating procedure RtsStandard_Mode (130 / 235)

- translating procedure RtsEnter_D (131 / 235)

- translating procedure RtsDrive (132 / 235)

- translating procedure RtsEnter_Fifth (133 / 235)

- translating procedure RtsFifth_Gear (134 / 235)

- translating procedure RtsEnter_First (135 / 235)

- translating procedure RtsFirst_Gear (136 / 235)

- translating procedure RtsEnter_Fourth (137 / 235)

- translating procedure RtsFourth_Gear (138 / 235)

- translating procedure RtsEnter_N (139 / 235)

- translating procedure RtsNetural (140 / 235)

- translating procedure RtsPark (141 / 235)

- translating procedure RtsEnter_R (142 / 235)

- translating procedure RtsReverse (143 / 235)

- translating procedure RtsEnter_Second (144 / 235)

- translating procedure RtsSecond_Gear (145 / 235)

- translating procedure RtsEnter_Third (146 / 235)

- translating procedure RtsThird_Gear (147 / 235)

- translating procedure RtsEnter_Low (148 / 235)

- translating procedure RtsTransfer_gear_selected (149 / 235)

- translating procedure RtsEnter_Compass_View (150 / 235)

- translating procedure RtsCompass_view_Soft_Key Pressed (151 / 235)

- translating procedure RtsEnter_Access (152 / 235)

- translating procedure RtsAccess (153 / 235)

- translating procedure RtsEnter_Lowering (154 / 235)

- translating procedure RtsLowering (155 / 235)

- translating procedure RtsEnter Off Road (156 / 235)

- translating procedure RtsOff_Road (157 / 235)

- translating procedure RtsEnter_Raising (158 / 235)

- translating procedure RtsRaising (159 / 235)

- translating procedure RtsStandard (160 / 235)

- translating procedure RtsChassis_view_Soft_Key Pressed (161 / 235)

- translating procedure Driver_Information_System (162 / 235)

- translating procedure _Driver_Information_System (163 / 235)

- translating procedure RtsEXit_Initial_Screen_Showing_Company_Logo (164 / 235)

- translating procedure RtsEnter_Display (165 / 235)

- translating procedure RtsDefault_Display (166 / 235)

- translating procedure Rtslnitial_Screen_Showing_Company_Logo_Timerl (167 / 235)

- translating procedure Rtslnitial_Screen_Showing_Company_Logo_Timerl CallBack (168 /
235)

- translating procedure Rtslnitial_Screen_Showing_Company_Logo_Timer2 (169 / 235)

- translating procedure Rtslnitial_Screen_Showing_Company_Logo_Timer2_CallBack (170 /
235)

- translating procedure _main_gen_init_g18 (171 / 235)

- translating procedure _main_gen_init_g19 (172 / 235)

- translating procedure _main_gen_init_g20 (173 / 235)

- translating procedure _main_gen_init_g21 (174 / 235)

- translating procedure _main_gen_init_g22 (175 / 235)

- translating procedure _main_gen_init_g23 (176 / 235)

- translating procedure _main_gen_init_g24 (177 / 235)

- translating procedure _main_gen_init_g25 (178 / 235)

- translating procedure _main_gen_init_g26 (179 / 235)

- translating procedure _main_gen_init_g27 (180 / 235)

- translating procedure _main_gen_init_g28 (181 / 235)

- 186 -

Appendix D

- translating procedure _main_gen_init_g29 (182 / 235)

- translating procedure _main_gen_init_g30 (183 / 235)

- translating procedure _main_gen_init_g31 (184 / 235)

- translating procedure _main_gen_init_g32 (185 / 235)

- translating procedure _main_gen_init_g33 (186 / 235)

- translating procedure _main_gen_init_g34 (187 / 235)

- translating procedure _main_gen_init_g35 (188 / 235)

- translating procedure _main_gen_init_g36 (189 / 235)

- translating procedure _main_gen_init_g37 (190 / 235)

- translating procedure _main_gen_init_g38 (191 / 235)

- translating procedure _main_gen_init_g39 (192 / 235)

- translating procedure _main_gen_init_g40 (193 / 235)

- translating procedure _main_gen_init_g17 (194 / 235)

- translating procedure _main_gen_call_Rtslgnition_On (195 / 235)

- translating procedure _main_gen_call_Rts4X4 Info_Soft_Key Pressed (196 / 235)
- translating procedure _main_gen_call_RtsEntertainment_Pressed (197 / 235)

- translating procedure _main_gen_call_RtsHome_Soft_Key Pressed (198 / 235)
- translating procedure _main_gen_call_Rtslgnition_Off (199 / 235)

- translating procedure _main_gen_call_RtsNavigation_Pressed (200 / 235)

- translating procedure _main_gen_call_RtsOnRoad_Info_Pressed (201 / 235)

- translating procedure _main_gen_call_RtsPhone_Pressed (202 / 235)

- translating procedure _main_gen_call_RtsSettings_Pressed (203 / 235)

- translating procedure _main_gen_call_RtsInactive (204 / 235)

- translating procedure _main_gen_call_RtsPending (205 / 235)

- translating procedure _main_gen_call_RtsSet (206 / 235)

- translating procedure _main_gen_call_RtsGrass_Snow_lce_Mode (207 / 235)

- translating procedure _main_gen_call_RtsMud_Ruts_Maode (208 / 235)

- translating procedure _main_gen_call_RtsRock_Crawl_Mode (209 / 235)

- translating procedure _main_gen_call_RtsSand_Mode (210 / 235)

- translating procedure _main_gen_call_RtsStandard_Mode (211 / 235)

- translating procedure _main_gen_call_RtsDrive (212 / 235)

- translating procedure _main_gen_call_RtsFifth_Gear (213 / 235)

- translating procedure _main_gen_call_RtsFirst_Gear (214 / 235)

- translating procedure _main_gen_call_RtsFourth_Gear (215 / 235)

- translating procedure _main_gen_call_RtsNetural (216 / 235)

- translating procedure _main_gen_call_RtsPark (217 / 235)

- translating procedure _main_gen_call_RtsReverse (218 / 235)

- translating procedure _main_gen_call_RtsSecond_Gear (219 / 235)

- translating procedure _main_gen_call_RtsThird_Gear (220 / 235)

- translating procedure _main_gen_call_RtsTransfer_gear selected (221 / 235)

- translating procedure _main_gen_call_RtsCompass_view_Soft_Key Pressed (222 / 235)
- translating procedure _main_gen_call_RtsAccess (223 / 235)

- translating procedure _main_gen_call_RtsLowering (224 / 235)

- translating procedure _main_gen_call_RtsOff_Road (225 / 235)

- translating procedure _main_gen_call_RtsRaising (226 / 235)

- translating procedure _main_gen_call_RtsStandard (227 / 235)

- translating procedure _main_gen_call_RtsChassis_view_Soft_Key Pressed (228 / 235)
- translating procedure _main_gen_call_Driver_Information_System (229 / 235)
- translating procedure _main_gen_call__Driver_Information_System (230 / 235)

- translating procedure
_main_gen_call_RtsInitial_Screen_Showing_Company_Logo_Timerl_CallBack (231 / 235)
- translating procedure

_main_gen_call_RtsInitial_Screen_Showing_Company_Logo_Timer2_CallBack (232 / 235)
- translating procedure main (233 / 235)
- translating procedure __ PST__MAIN__ENTRY__POINT__ (234 /235)
Some stats on aliases use:
Number of alias writes: 2823

- 187 -

Appendix D

Number of must-alias writes: 364

Number of pma writes: 364
Number of alias reads: 0
Number of invisibles: 376

Stats about alias writes:
biggest sets of alias writes: RtsEnter_Screen_Power_Off:this 77,
RtsExit_Displaying_Gear_Position_1:this (39),
RtsExit_Chassis_View_1:this (32)
procedures that write the biggest sets of aliases: RtsExit_Left Display 1 (88),
RtsEnter_Screen_Power_Off (77),
RtsExit_Chassis_View 1
(64)
x C to intermediate language translation 14.2 (P_TP) took 39.1real, 39.1u + Os
**** C to intermediate language translation 14 (P_PT) took 39.2real, 39.2u + Os
**** C to intermediate language translation 15 (P_IL)
***** C to intermediate language translation 15.1 (P_DRP)
***** C to intermediate language translation 15.1 (P_DRP) took Oreal, Ou + Os
**x%* C to intermediate language translation 15.2 (P_DR)
***** C to intermediate language translation 15.2 (P_DR) took Oreal, Ou + Os
***** C to intermediate language translation 15.3 (P_IGA)
***** C to intermediate language translation 15.3 (P_IGA) took 7.1real, 7.1u + 0s
***** C to intermediate language translation 15.4 (P_AG)
0 constructions broken due to gotos
***** C to intermediate language translation 15.4 (P_AG) took 6.2real, 6.2u + 0s
**x%* C to intermediate language translation 15.5 (P_CG)
***x* C to intermediate language translation 15.5 (P_CG) took 4.1real, 4.1u + 0s
***** C to intermediate language translation 15.6 (P_R)
x C to intermediate language translation 15.6 (P_R) took 4.6real, 4.6u + 0s
***** C to intermediate language translation 15.7 (P_PP)
* 362 pp, 420 ppp.
**x%* C to intermediate language translation 15.7 (P_PP) took 4.7real, 4.7u + 0s
***x* C to intermediate language translation 15.8 (P_ICSP)
* 4167 cd, 11752 cf, O rc, O ff, 0 ed, O cd.
***** C to intermediate language translation 15.8 (P_ICSP) took 25.8real, 25.8u + 0s
****% C to intermediate language translation 15.9 (P_ILA)
***** C to intermediate language translation 15.9 (P_ILA) took 6.3real, 6.3u + 0s
x C to intermediate language translation 15.10 (P_PGC)
* 4461 tdl.
***x* C to intermediate language translation 15.10 (P_PGC) took 15.8real, 15.8u + 0s
***** C to intermediate language translation 15.11 (P_ILA)
x C to intermediate language translation 15.11 (P_ILA) took 5.6real, 5.6u + 0s
***x* C to intermediate language translation 15.12 (P_PGC)
* 2797 tdl.
***** C to intermediate language translation 15.12 (P_PGC) took 13.5real, 13.5u + 0s
***x* C to intermediate language translation 15.13 (P_SULV)
***** C to intermediate language translation 15.13 (P_SULYV) took 3.8real, 3.8u + 0s
***** C to intermediate language translation 15.14 (P_ICPP)
***** C to intermediate language translation 15.14 (P_ICPP) took 18real, 18u + Os
***** C to intermediate language translation 15.15 (P_PP)
* 0 pp, 0 ppp.
***** C to intermediate language translation 15.15 (P_PP) took 5.9real, 5.9u + 0s
***** C to intermediate language translation 15.16 (P_SRC)
*105 rcd, O tpd.
x C to intermediate language translation 15.16 (P_SRC) took 11.2real, 11.2u + 0s
***** C to intermediate language translation 15.17 (P_SULV)
***** C to intermediate language translation 15.17 (P_SULYV) took 4.1real, 4.1u + 0s
x C to intermediate language translation 15.18 (P_SENUP)

- 188 -

Appendix D

3 empty procedure(s) removed

x C to intermediate language translation 15.18 (P_SENUP) took 0.1real, 0.1u + 0s
x C to intermediate language translation 15.19 (P_R)

***x* C to intermediate language translation 15.19 (P_R) took 3.1real, 3.1u + 0s
**** C to intermediate language translation 15 (P_IL) took 216.7real, 216.7u + 0s
0 empty package(s) removed

**** C to intermediate language translation 16 (P_IPF)

94% init procedures removed

**** C to intermediate language translation 16 (P_IPF) took 3real, 3u + 0s

74% types removed

* assigns: 52% reduction

* asserts: 48% reduction

*total : 55% reduction

*hkhkkhkkhkhkhkkhkkhkkhkhkhkhkhkkhkkhikhkhkihkkhkhhkihkhkihkhihkkhkhkhkihkhihkhkhkhihkhihkkiikhiikikk
***k

*** C to intermediate language translation done

**%k

*hkkhkhkhkkhkhhkhkhhhkhkhhhkhkhhhkhkhhhkhhrhkhhhhkhhhhkhrdhhrhhkhrhhhiihkiiiikkx

Ending at: Feb 9, 2009 14:50:34
User time for iabc-c2if: 376.5real, 376.5u + 0s
Starting at: Feb 9, 2009 14:50:34

F*hhhhkAhhhkrhkhhhkkhhhkrhhrhkhhhkrhhrhkhhhkrhhrhhihrhhihxhihiihkihhiixikx
**k%k

*** Beginning Quick Software Safety Integration Analysis

***%

kkhkkhkkhkkhkhhhhkhkhkkkhkhkkhkkhkhkhkhkhkiirhhhhhhhhkhkhkhhhkhkhikhkikiiriiihihikhiikhkikikk

**x* Quick Software Safety Integration Analysis 1 (MF)

**** Quick Software Safety Integration Analysis 1 (MF) took 3.4real, 3.4u + 0s

***x Quick Software Safety Integration Analysis 2 (interprocedural propagation)

**** Quick Software Safety Integration Analysis 2 (interprocedural propagation) took 16.3real,
16.3u + 0s

Generating GUI files
Checks statistics: (including internal files)

- IRV => Green : 23, Orange : 0, Red : 0, Gray : 0 (100%)
-OVFL =>Green: 38, Orange : 0, Red : 0, Gray : 0 (100%)
- NIP =>Green: 537, Orange: 0, Red : 0,Gray: 131 (100%)
-NIVL =>Green: 215, Orange: 0, Red : 0, Gray : 0 (100%)
- NIV =>Green: 100,Orange: 193, Red: 0,Gray: 131 (54%)
-UNFL =>Green: 38, Orange : 0,Red: 0, Gray : 0 (100%)
-COR =>Green: 152, Orange : 0, Red : 0, Gray : 0 (100%)
-OBAlI =>Green: 38, Orange : 0, Red : 0, Gray : 0 (100%)
-ZDV =>Green: 152, Orange : 0, Red: 0, Gray : 0 (100%)
- IDP =>Green: 205, Orange: 84, Red : 0,Gray: 131 (80%)
TOTAL: =>Green: 1498, Orange: 277,Red: 0,Gray: 393 (87%)

Number of NTL : 0
Number of NTC : 0
Number of UNR : 0

GUI files generation complete.

kkhkkkkhkkhhhkhkkkkkhkhkhkkkkhkkhkkhkhkihhhhhhhhhkhkkhhhkhkhkhkhkhkhkirihhhhhkikhkkkkk

**k*%k

*** Quick Software Safety Integration Analysis done

- 189 -

Appendix D

**k%k
F*hhhhkAhhhkrhkhhhkkhhhkrhhrhkhhhkrhhihkhhhkihhrhhihirhhihxhihhihkihxhiixikx
Ending at: Feb 9, 2009 14:51:14

User time for quick: 40.1real, 40.1u + Os

User time for polyspace-c: 482.4real, 482.4u + 0s

**k*

*** End of PolySpace Verifier analysis

**k*

-190 -

Appendix E

Appendix E

Analysis result of the C code produced

from Real-Time Workshop

<polyspace-c C_R2008a>

Type C:\PolySpace_Results\kill-rte-kernel.bat on host ATA209 to halt Verifier process

Options used with Verifier:
-polyspace-version=C_R2008a
-date=09/02/2009
-main-generator-calls=unused

-lang=C
-results-dir=C:\PolySpace_Results
-author=admin-ata209
-main-generator-writes-variables=public
-target=sparc

-voa=true
-continue-with-red-error=true
-verif-version=1.0

-prog=New_Project
-D1=POLYSPACE_NO_STANDARD_STUBS
-quick=true
-11=E:\FunctionalModel0209_ert_rtw
-12=C:\\MATLAB704\sys\Icc\include
-13=C:\MATLAB704\simulink\include
-14=C:\MATLAB704\rtw\c\libsrc
-15=C:\MATLAB704\extern\include
-desktop=true

-dos=true
-OS-target=no-predefined-OS

Verifying host configuration ...

-191 -

Appendix E

Memory > 256MB :
(1015 MB)

Swap > 1GB :
(2.38GB)

Swap >= 2*RAM :

OK

OK

OK

Tmp space available in CADOCUME~I\ADMIN-~I\LOCALS~1\Temp >= 10MB : OK

(823 MB)

*** Configuration of the host: OK

Checking license ...
License is OK

PolySpace Technologies C static program verifier
Copyright 1999-2008, The MathWorks, Inc
All rights reserved.

Starting at: Feb 9, 2009 14:56:23
Host: MINGW32_XP-5.1 unknown 9 i686
User: admin-ata209

kkhkkkkhkkhhhhkhkhkhkkkhkkhkhkhkhkhkhkiirhhhhhhhhkhkhkhhhkhkhikhkikikiriiiihiikiikikkikk

**kk

*** Verifying C sources

*k*k

kkhkkhkkkhkkhhkhkhkkhkkkkkkkkhkkkhkkhkhkkikhhhhhhkhkhkhkhkkkhkhkkhkhkhkhkhkhkikhhhhhhkhkikkikkkk

Copying sources to C-ALL ...

Number of files 03
Number of lines : 1818
Number of lines without comments : 1336

OS-target no-predefined-OS implies: -D__STDC__

Verifying sources ...

Verifying FunctionalModel0209.c
Verifying FunctionalModel0209_data.c
Verifying ert_main.c

Verifying cross-files ANSI C compliance
Stubbing standard library functions ...

Stubbing unknown functions ...
* Function fflush may write to its arguments and may return random.

Does not model pointer effects. Returns an initialized value.

* Function memset may write to its arguments and may return random.

Does not model pointer effects. Returns an initialized value.

Const parameters (nb params=3): (#2, #3).
* Function rt_ZCFcn may write to its arguments and may return random.

Does not model pointer effects. Returns an initialized value.

Const parameters (nb params=3): (#1, #3).
* Function printf may write to its arguments and may return random.
Does not model pointer effects.

It may write in the variable arguments. Returns an initialized value.

Const parameters (nb params=3): #1.
* Function floor is pure. Returns an initialized value.

-192 -

Appendix E

Const parameters (nb params=1): #1.
Generating the Main ...

Warning: a main procedure already exists.
No main will be generated: the existing one will be used...
Doing code transformations ...

*hkhkhhkkhkkhkhkhkhkhhhkhkhhkhkhkhhhhhhhhhkkhkhhhhdhhhhhhkhhhhhidhhihihihkhkhhhdiiikk
**k*

*** C sources verification done

**k*x

kkhkkkkhkhhhhkhkhkkkhkhkhkhkhkhkhkhkhkiirhhhhhhhhkhkhkhhhkhkhkhkhkikiiriiihihikhikikikikikk

Ending at: Feb 9, 2009 14:57:32
User time for suif: 69.3real, 69.3u + 0s
Starting at: Feb 9, 2009 14:57:32

*hkhkkhkkhkhkhkkhkhkhkkhkhkhkhkhkikkhikhkhkihkkhkhhkihkhkihkhkihkkhkhkhkihkhihkhkhkhihkhihkkiihiikikk
*k%k

*** Beginning C to intermediate language translation

**%k

*hkkhkhkhkkhkhhkhkhhhkhkhhhkhkhrhkhkhhhkhhrhkhhhhkhhhhkhrdhhrhhkhrhhkhiihkhiiixkx

**** C to intermediate language translation 1 (P_SP)
**** C to intermediate language translation 1 (P_SP) took 0.9real, 0.9u + Os
**** C to intermediate language translation 2 (P_RB)
**** C to intermediate language translation 2 (P_RB) took Oreal, Ou + Os
rt_OneStep is dead code
FunctionalModel0209_step is dead code
Functio_DriverInformationSystem is dead code
chartstep_c1_FunctionalModel020 is dead code
FunctionalModel0209_Display is dead code
Fun_enter_internal_RightDisplay is dead code
Functiona_exit_internal_Display is dead code
rt_ZCFcn is dead code
**** C to intermediate language translation 3 (P_SIA)
**** C to intermediate language translation 3 (P_SIA) took 0.3real, 0.3u + 0s
**** C to intermediate language translation 4 (P_CGA)
**** C to intermediate language translation 4 (P_CGA) took 0.1real, 0.1u + 0s
**** C to intermediate language translation 5 (P_SFNPV)
***x* C to intermediate language translation 5.1 (P_PA)
*x*x** C to intermediate language translation 5.1.1 (P_ATA)
x% C to intermediate language translation 5.1.1 (P_ATA) took 0.2real, 0.2u + 0s
**kkxk C to intermediate language translation 5.1.2 (P_AP)
*x**x* C to intermediate language translation 5.1.2 (P_AP) took 0.1real, 0.1u + 0s
x% C to intermediate language translation 5.1.3 (P_ITFP)
**kxx% C to intermediate language translation 5.1.3 (P_ITFP) took Oreal, Ou + 0s
****%* C to intermediate language translation 5.1.4 (P_CA)
*xx&X** C to intermediate language translation 5.1.4.1 (P_STS)
*xx&Xxk C to intermediate language translation 5.1.4.1 (P_STS) took 0.1real, 0.1u + Os
*xx*xA* C to intermediate language translation 5.1.4.2 (P_RR)
*xxx**% C to intermediate language translation 5.1.4.2 (P_RR) took Oreal, Ou + 0s
Some stats on aliases computation:

Number of aliases sets: 11

Number of couples of aliases: 45

Number of elements in the biggest alias sets: 1st=8, 2nd=3, 3rd=3, 4th=3, 5th=3
**kxx* C to intermediate language translation 5.1.4 (P_CA) took 0.1real, 0.1u + 0s
***** C to intermediate language translation 5.1 (P_PA) took 0.5real, 0.5u + Os
x C to intermediate language translation 5.2 (P_SSet)

-193 -

Appendix E

***** C to intermediate language translation 5.2 (P_SSet) took 0.8real, 0.8u + 0s
***** C to intermediate language translation 5.3 (P_GA)
x* C to intermediate language translation 5.3.1 (P_FPGA)
x* C to intermediate language translation 5.3.1 (P_FPGA) took 0.2real, 0.2u + Os
**x*%* C to intermediate language translation 5.3.2 (P_GCPTS)
*Rx&XxE C to intermediate language translation 5.3.2.1 (P_GAA3)
*Hhxk*xk* C to intermediate language translation 5.3.2.1.1 (Loading)
*xxEX*E* C to intermediate language translation 5.3.2.1.1 (Loading) took Oreal, Ou + 0s
[50 -> 89]
x% C to intermediate language translation 5.3.2 (P_GCPTS) took 1.1real, 1.1u + 0s
x% C to intermediate language translation 5.3.3 (P_MNPV)
**x&*% C to intermediate language translation 5.3.3 (P_MNPV) took 0.7real, 0.7u + 0s
Rx&AxE C to intermediate language translation 5.3.2.1.2 (P_GAA_SC)
Fakkxkkxx C to intermediate language translation 5.3.2.1.2.1 (P_GAA_VI)
*RxAAXA** C to intermediate language translation 5.3.2.1.2.1 (P_GAA_VI) took Oreal, Ou + 0s
*RxkAxA** C to intermediate language translation 5.3.2.1.2.2 (P_GAA_SDC)
Fxkkxkxx* C to intermediate language translation 5.3.2.1.2.2 (P_GAA_SDC) took Oreal, Ou +
0s
*RxkAxE** C to intermediate language translation 5.3.2.1.2.3 (P_GAA_RS)
FxFkxAxF* C to intermediate language translation 5.3.2.1.2.3 (P_GAA_RS) took Oreal, Ou + 0s
*xxE**E* C to intermediate language translation 5.3.2.1.2 (P_GAA_SC) took Oreal, Ou + Os
*Rx&xxk C to intermediate language translation 5.3.2.1 (P_GAAS3) took 2.5real, 2.5u + 0s
x C to intermediate language translation 5.3 (P_GA) took 3.7real, 3.7u + 0s
***** C to intermediate language translation 5.4 (P_AA)
x% C to intermediate language translation 5.4.1 (P_AC)
Some stats on points to analysis:
Number of optimized point_to edges: 15
x% C to intermediate language translation 5.4.1 (P_AC) took Oreal, Ou + 0s
***** C to intermediate language translation 5.4 (P_AA) took Oreal, Ou + Os
***** C to intermediate language translation 5.5 (P_PFF)
Found 12 polymorphic functions
***** C to intermediate language translation 5.5 (P_PFF) took Oreal, Ou + 0s
***** C to intermediate language translation 5.6 (P_LGR)
**x%* C to intermediate language translation 5.6 (P_LGR) took Oreal, Ou + 0s
**** C to intermediate language translation 5 (P_SFNPV) took 5real, 5u + 0s
**** C to intermediate language translation 6 (P_SP)
**** C to intermediate language translation 6 (P_SP) took 0.8real, 0.8u + 0s
**** C to intermediate language translation 7 (P_RB)
**** C to intermediate language translation 7 (P_RB) took Oreal, Ou + 0s
**** C to intermediate language translation 8 (P_PA)
x C to intermediate language translation 8.1 (P_ATA)
***** C to intermediate language translation 8.1 (P_ATA) took 0.1real, 0.1u + 0s
***** C to intermediate language translation 8.2 (P_AP)
***** C to intermediate language translation 8.2 (P_AP) took Oreal, Ou + 0s
***x* C to intermediate language translation 8.3 (P_ITFP)
***** C to intermediate language translation 8.3 (P_ITFP) took Oreal, Ou + Os
x C to intermediate language translation 8.4 (P_CA)
x% C to intermediate language translation 8.4.1 (P_STS)
***xx* C to intermediate language translation 8.4.1 (P_STS) took 0.1real, 0.1u + 0s
x% C to intermediate language translation 8.4.2 (P_RR)
x% C to intermediate language translation 8.4.2 (P_RR) took Oreal, Ou + Os
Some stats on aliases computation:
Number of aliases sets: 39
Number of couples of aliases: 267
Number of elements in the biggest alias sets: 1st=8, 2nd=7, 3rd=7, 4th=7, 5th=6
***** C to intermediate language translation 8.4 (P_CA) took 0.1real, 0.1u + Os
**** C to intermediate language translation 8 (P_PA) took 0.3real, 0.3u + 0s

-194 -

Appendix E

**** C to intermediate language translation 9 (P_SSet)
**** C to intermediate language translation 9 (P_SSet) took 0.6real, 0.6u + 0s
**** C to intermediate language translation 10 (P_O)
**** C to intermediate language translation 10 (P_O) took 0.5real, 0.5u + Os
**** C to intermediate language translation 11 (P_G)
**** C to intermediate language translation 11 (P_G) took 0.3real, 0.3u + 0s
**** C to intermediate language translation 12 (P_TT)
**** C to intermediate language translation 12 (P_TT) took 0.1real, 0.1u + 0s
**** C to intermediate language translation 13 (P_VT)
**** C to intermediate language translation 13 (P_VT) took Oreal, Ou + Os
**** C to intermediate language translation 14 (P_PT)
x C to intermediate language translation 14.1 (P_SPP)
x% C to intermediate language translation 14.1.1 (P_CSSIP)
x* C to intermediate language translation 14.1.1 (P_CSSIP) took Oreal, Ou + Os
x C to intermediate language translation 14.1 (P_SPP) took Oreal, Ou + Os
***** C to intermediate language translation 14.2 (P_TP)

- translating procedure assert (1 / 22)

- translating procedure memset (2 / 22)

- translating procedure floor (3 / 22)

- translating procedure Fu_DriverInformationSystem_Init (4 / 22)

- translating procedure FunctionalModel0209 _initialize (5 / 22)

- translating procedure FunctionalModel0209_terminate (6 / 22)

- translating procedure printf (7 / 22)

- translating procedure fflush (8 / 22)

- translating procedure _init_globals_0 (9/22)

- translating procedure _init_globals_0_1 (10/ 22)

- translating procedure _init_globals_0_2 (11/22)

- translating procedure main (12 / 22)
* warning, file: "ert_main.c", 72:37 :

precision loss in read of FunctionalModel0209_M->errorStatus because
FunctionalModel0209_M may point to volatile data
* warning, file: "ert_main.c", 72:37 :
precision loss in read of FunctionalModel0209_M->errorStatus because

FunctionalModel0209_M may point to volatile data

- translating procedure _ PST__MAIN__ENTRY__POINT__ (13/22)
Some stats on aliases use:

Number of alias writes: 28
Number of must-alias writes: 26
Number of pma writes: 26
Number of alias reads: 0
Number of invisibles: 0

Stats about alias writes:
biggest sets of alias writes: FunctionalModel0209 _initialize:pVoidBlocklORegion (21),
memset:p_1 (5), FunctionalModel0209_M (1)
procedures that write the biggest sets of aliases: FunctionalModel0209 initialize (22),
memset (5), fflush (1)
***** C to intermediate language translation 14.2 (P_TP) took 2.6real, 2.6u + 0s
**** C to intermediate language translation 14 (P_PT) took 2.7real, 2.7u + 0s
**** C to intermediate language translation 15 (P_IL)
***** C to intermediate language translation 15.1 (P_DRP)
**x*% C to intermediate language translation 15.1 (P_DRP) took Oreal, Ou + Os
***x* C to intermediate language translation 15.2 (P_DR)
***** C to intermediate language translation 15.2 (P_DR) took Oreal, Ou + Os
x C to intermediate language translation 15.3 (P_IGA)
***** C to intermediate language translation 15.3 (P_IGA) took 0.3real, 0.3u + 0s
***** C to intermediate language translation 15.4 (P_AG)
0 constructions broken due to gotos

-195 -

Appendix E

***** C to intermediate language translation 15.4 (P_AG) took 0.2real, 0.2u + 0s
**x*% C to intermediate language translation 15.5 (P_CG)

x C to intermediate language translation 15.5 (P_CG) took 0.2real, 0.2u + 0s
***%* C to intermediate language translation 15.6 (P_R)

***** C to intermediate language translation 15.6 (P_R) took 0.2real, 0.2u + 0s
**x%* C to intermediate language translation 15.7 (P_PP)

*0pp, 7 ppp.

***** C to intermediate language translation 15.7 (P_PP) took 0.2real, 0.2u + 0s
x C to intermediate language translation 15.8 (P_ICSP)

* 220 cd, 4048 cf, 0 rc, O ff, 0 ed, O cd.

x C to intermediate language translation 15.8 (P_ICSP) took 1.6real, 1.6u + 0s
***** C to intermediate language translation 15.9 (P_ILA)

x C to intermediate language translation 15.9 (P_ILA) took 0.2real, 0.2u + 0s
***** C to intermediate language translation 15.10 (P_PGC)

* 1665 tdl.

x C to intermediate language translation 15.10 (P_PGC) took 0.6real, 0.6u + 0s
***** C to intermediate language translation 15.11 (P_ILA)

x C to intermediate language translation 15.11 (P_ILA) took 0.1real, 0.1u + Os
***** C to intermediate language translation 15.12 (P_PGC)

* 864 tdl.

x C to intermediate language translation 15.12 (P_PGC) took 0.4real, 0.4u + 0s
**x%% C to intermediate language translation 15.13 (P_SULV)

***** C to intermediate language translation 15.13 (P_SULV) took 0.1real, 0.1u + 0s
***** C to intermediate language translation 15.14 (P_ICPP)

x C to intermediate language translation 15.14 (P_ICPP) took 0.5real, 0.5u + 0s
x C to intermediate language translation 15.15 (P_PP)

*0pp, 0 ppp.

x C to intermediate language translation 15.15 (P_PP) took 0.1real, 0.1u + 0s
***x* C to intermediate language translation 15.16 (P_SRC)

*9rcd, O tpd.

***** C to intermediate language translation 15.16 (P_SRC) took 0.4real, 0.4u + Os
***x* C to intermediate language translation 15.17 (P_SULV)

***** C to intermediate language translation 15.17 (P_SULV) took 0.1real, 0.1u + Os
x C to intermediate language translation 15.18 (P_SENUP)

12 empty procedure(s) removed

***** C to intermediate language translation 15.18 (P_SENUP) took Oreal, Ou + 0s
x C to intermediate language translation 15.19 (P_R)

x C to intermediate language translation 15.19 (P_R) took 0.1real, 0.1u + Os
**** C to intermediate language translation 15 (P_IL) took 8.5real, 8.5u + Os

1 empty package(s) removed

**** C to intermediate language translation 16 (P_IPF)

92% init procedures removed

**** C to intermediate language translation 16 (P_IPF) took 0.1real, 0.1u + 0s

66% types removed

* assigns: 79% reduction

* asserts: 51% reduction

* total : 87% reduction

*kk*x **k*k *kk*x *kk*x *k*k *kk*k *kk*k **k*k

**k%k
*** C to intermediate language translation done
***k

kkhkkhkkkkhhhkhkkkkhkhkhkhkkkhkkhkkhkhiirhhhhhhhkhkhkkhkhhkhkhkhkhkikhkirhhihhikhkikikkkkk

Ending at: Feb 9, 2009 14:58:8
User time for iabc-c2if: 35.8real, 35.8u + 0s
Starting at: Feb 9, 2009 14:58:8

kkhkkkkhkkhhkhkhkhkhkhkkkhkkhkkkhkkkhkkhkkhkikhhhhhhkhkhkhkhkkhkhkkkhkhkkhkkhkhkhkhkhhhhhhkhkhkhkikkkk

**k*k

-196 -

Appendix E

*** Beginning Quick Software Safety Integration Analysis

**k*

kkhkkkhkhhhhkhkhkkkhkhkhkhkhkhkhkhkhkirrhhhhhhhhkhkhkhkhhkhkhkhkhikirrrhirihikhiikdkikikk

**** Quick Software Safety Integration Analysis 1 (MF)

**** Quick Software Safety Integration Analysis 1 (MF) took Oreal, Ou + 0s

**** Quick Software Safety Integration Analysis 2 (interprocedural propagation)

***x Quick Software Safety Integration Analysis 2 (interprocedural propagation) took 0.2real,
0.2u + Os

Generating GUI files
Checks statistics: (including internal files)

-OVFL =>Green: 2, Orange : 0, Red : 0, Gray : 4 (100%)
- NIP => Green : 4, Orange : 0, Red : 0, Gray : 2 (100%)
-NIVL =>Green: 3, Orange : 0, Red : 0, Gray : 7 (100%)
-UNFL =>Green: 2, Orange : 0, Red : 0, Gray : 4 (100%)
-OBAIl =>Green: 0, Orange : 0, Red : 0, Gray : 1 (100%)
-ZDV => Green : 0, Orange : 0,Red: 0, Gray : 1 (100%)
- IDP => Green : 2, Orange : 1,Red: 0, Gray : 1 (75%)
TOTAL: => Green : 13, Orange : 1,Red: 0, Gray : 20 (97%)

Number of NTL : 0
Number of NTC : 0
Number of UNR : 0

GUI files generation complete.

AEAEAARAAAAAXAAAAAAAAXAAAAAAAkEAXAAAAkAAAkErArkkhhkkhihkhihkkhihiikhihkkiihkiixikk
* k%

*** Quick Software Safety Integration Analysis done

**%k

kkhkkkkhkkhhkhkhkhkkkkkkhkkkhkkkhkkhkkhkhkhhhhhhkhkhkhkkkkhkkkhkhkhkhkhkhkikhhhihhhikikhkikkkk

Ending at: Feb 9, 2009 14:58:13
User time for quick: 5.4real, 5.4u + 0s
User time for polyspace-c: 112.6real, 112.6u + 0s

**k*k

*** End of PolySpace Verifier analysis

-197 -

