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Abstract 

Over the past decades, the adoption of electronic systems for the manufacturing of 

automotive vehicles has been exponentially popularized. This growth has been 

driven by the premium automobile sector where, presently, diverse electronic 

systems are used. These electronic systems include systems that control the engine, 

transmission, suspension and handling of a vehicle; air bag and other advanced 

restraint systems; comfort systems; security systems; entertainment and 

information (infotainment) systems. In systems terms, automotive embedded 

electronic systems can now be classified as a System of Systems (SoS). 

Automotive systems engineering requires a sustainable integration of new methods, 

development processes, and tools that are specifically adapted to the automotive 

domain. Model-based design is one potential methodology to carry out design, 

implement and manage such complex distributed systems, and their integration into 

one cohesive and reliable SoS to meet the challenges for the automotive industry. 

This research was conducted to investigate the model-based design of a 4×4 

Information System, within an automotive electronic SoS. Two distinct 

model-based approaches to the development of an automotive electronic system are 

discussed in this study. The first approach involves the use of the Systems 

Modelling Language (SysML) based tool ARTiSAN Studio for structural 

modelling, functional modelling and code generation. The second approach 
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involves the use of the MATLAB based tools Simulink and Stateflow for 

functional modelling, and code generation. The results show that building the 

model in SysML by using ARTiSAN Studio provides a clearly structured 

visualization of the 4×4 Information System from both structural and behavioural 

viewpoints of the system with relevant objects. SysML model facilitates a more 

comprehensive understanding of the system than the model built in 

Simulink/Stateflow. The Simulink/Stateflow model demonstrates its superior 

performance in producing high quality and better efficiency of C code for the 

automotive software delivery compared with the model built in ARTiSAN Studio. 

Furthermore, this Thesis also gets insight into an advanced function development 

approach based on the real-time simulation and animation for the 4×4 Information 

System. Finally, the Thesis draws conclusions about how to make use of 

model-based design for the development of an automotive electronic SoS. 

 



Abbreviations 

                                                                     
xix 

 

 

Abbreviations 

ABS  Antilock Braking System 

CAN  Controller Area Network 

ECU  Electronic Control Unit 

HDC  Hill Descent Control 

HEV  Hybrid Electric Vehicle 

HLDF  High Level Display Front 

HMI  Human Machine Interface 

LCD  Liquid Crystal Display 

MOST  Media Oriented System Transport 

OMG  Object Management Group 

RTE  Run Time Error 

RTW  Real-Time Workshop 

RTW EC Real-Time Workshop Embedded Coder 

SE   System Engineering 

SoS   System of Systems 

SoSE  System of Systems Engineering 

SysML  Systems Modelling Language 

TO   Terrain Optimization 

UML  Unified Modelling Language 



Chapter 1 

                                                                     
- 1 -

 

 

Chapter 1                   

Introduction 

 

In the late 1880s, the first automobile was built in Mannheim, Germany, by Karl 

Benz. In 1908, the Ford Model T which is generally regarded as the first affordable 

automobile was built. In these early stages of the automotive industry, the use of 

electrical systems on the vehicle was very limited, supporting ignition and lighting 

only [1]. Those vehicles provided minimal driver information through an analogue 

display. For example, the Ford Model T only included basic instruments such as 

mechanical speedometer, engine temperature and fuel level indicator as the 

information system. There was no entertainment system at that time. 

The first practical car radio was believed to be invented in the early 1920s by 

William Lear. It was the first and only entertainment system on the vehicle during 

that period. In the 1960s, the tape player was installed and the CD player was first 

introduced in 1984 [2]. 

The electrical system evolved slowly until the microprocessor was introduced 

in 1971. One of the first microprocessor applications in cars was an advanced 

ignition system built by Delco-Remy for the 1977 Oldsmobile Toronado [3]. As 

part of electronic control unit (ECU), the microprocessor can process more 
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information and display it to the driver. The ECU was used for engine management 

for the first time at that period. Other applications of ECUs in vehicles included 

transmission-shift control, Antilock Braking System (ABS) and instrument cluster 

as shown in Fig. 1-1. However, in the early days of automotive electronics, each 

new function was implemented as a stand-alone ECU which is a subsystem 

composed of a microprocessor, memory, input and output [4]. 

 

Fig. 1-1. Conventional data transfer. 

As shown in Fig. 1-1, data exchanges through point-to-point links between 

ECUs. This requires a large number of wires and therefore soon reached its 

practical limits. Besides, the amount of associated connectors is very difficult to 

manage [5, 6]. 

In response to these practical limits, the industry moved from point-to-point 

data communication to data bus technology. In the mid-1980s, Bosch developed 

the Controller Area Network (CAN), one of the first and most enduring automotive 

control networks [7]. CAN is a communication technique that consists of a twisted 

pair of copper wires in which data is transmitted on a special network as shown 

schematically in Fig. 1-2 [1]. Far fewer connections are needed by using this CAN 

network on the vehicle. The room saved can be used to accommodate more sensors, 

actuators and ECUs. As a result, more vehicle information can be processed and 

delivered to the driver. 
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Fig. 1-2. CAN bus topology. 

Later in the 1990s, a new network protocol called MOST was introduced in the 

automotive vehicles [8]. MOST is the acronym of Media Oriented Systems 

Transport. It is a fiber-optic network protocol with capacity for high-volume 

streaming. It is designed for multimedia applications in the automotive 

environment. MOST gives the advantages of ease of use, cost effectiveness and 

flexibility. It supports real-time and high volume data transmission such as data 

from a navigation system and from the DVD player which made its first 

appearance in vehicles in the late 1990s. 

As a result of the emergence of electronic control and networking technologies, 

the past 30 years have witnessed a near exponential growth of in-vehicle, 

embedded electronic systems as shown in Fig. 1-3 [9]. This growth has been driven 

by the premium automobile sector where, presently, electronics and software 

account for around 40% of the value of some vehicles [10]. Current in-vehicle 

electronic systems are diverse and include: systems that control the engine, 

transmission, suspension and handling of a vehicle; air bag and other advanced 

restraint systems; comfort systems; security systems; entertainment and 

information (infotainment) systems [4]. Such wide ranging functionality is enabled 

by networks of up to 50, or more, ECUs that are distributed throughout a vehicle. 

Individual ECUs host software that is required to interact with devices such as 
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sensors and actuators, and other ECUs, within time constraints. The ECUs are 

linked by a communication network, consisting of several data bus technologies 

that provide transmission rates which have also been subject to near exponential 

growth. In systems terms, automotive, embedded electronic systems can now be 

classified as a System of Systems (SoS) [11]. SoS means large-scale concurrent 

and distributed systems the components of which are systems themselves [12]. A 

detailed description of definition and characteristics of SoS will be given in 

Chapter 2. 

 

Fig. 1-3. Evolution of vehicle electrical/electronic features (adapted from [11]). 

The design, implementation and management of such complex distributed 

systems, and their integration into one cohesive and reliable SoS are presenting 

new challenges for the automotive industry. To meet these challenges, it is 

necessary to develop new methodologies for capturing the requirements for the SoS, 

at the outset of the product development process, and conveying the requirements 
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through the stages in the product development process. Model-based design is one 

such potential methodology [13-16]. 

At present, model-based design is increasingly replacing system specification 

in plain text form. Such a model precisely formulates the specification documents 

and avoids interpretation leeway. Most importantly, the reliability and functionality 

of automobiles are largely dependent on software and electronic applications in 

recent years [17]. Such a model is unambiguous because it clearly defines the 

structure and functionality of the system or SoS by using advanced modelling 

techniques such as various modelling languages and tools [18]. It helps the 

engineer to gain the understanding of the system through a graphical visualization 

before the development. Thus, the entire automotive electronic system can be built 

up optimally. Moreover, auto coding is the trend of automotive software 

development. The development cycle has been reduced by more than half over the 

past two decades which has benefited from this technique [19, 20]. Various types 

of code can be generated from the model through the proper tools. Therefore, such 

a model can also shorten the development cycle from the code generation aspect. 

The Unified Modelling Language (UML) [21] is a modelling language which 

has been playing an important role in software engineering. It has the potential to 

support innovative SoS modelling which ties the architecture, design and 

verification aspects in a unified perspective [22]. However, there are some 

problems and challenges with UML, such as syntactic and semantic overlap, and 

immature constructs [23, 24]. In order to overcome these challenges and enable it 

to handle the system engineering, the Systems Modelling Language (SysML) [25] 

is adapted from UML. The final SysML specification was released in April 2007 

by the Object Management Group (OMG) – the US-based industry standards body 
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that manages and configures the SysML. SysML is defined on the website of the 

OMG as “a general purpose graphical modelling language for specifying, analyzing, 

designing and verifying complex systems that may include hardware, software, 

information, personnel, procedures and facilities” [26]. SysML is intended to unify 

the various modelling languages currently used by systems engineers in a similar 

manner to how UML unifies the modelling language used in the software industry. 

SysML extends the application of UML to systems which are not purely software 

based, and can in particular be applied to design heterogeneous embedded systems 

and SoS [18, 27]. 

At present, system engineers use a wide range of modelling languages, tools 

and techniques such as MATLAB/Simulink [28] which is a well known modelling 

and simulation environment. MATLAB is used in a wide range of applications, 

including signal and image processing, communications, control design, test and 

measurement. Simulink which is integrated with MATLAB provides an 

environment for modelling, simulating and analyzing multi-domain dynamic 

systems. In particular, they can be used for model-based design for control systems. 

Coupled with the Real-Time Workshop, Simulink facilitates the automatic code 

generation for real-time implementation of embedded systems. Stateflow, the other 

product developed by the MathWorks extends Simulink with a design environment 

for developing event-driven systems that contain control and supervisory logic. 

This Thesis is going to explore model-based design. SysML based tool 

ARTiSAN Studio [29] will be investigated for structural modelling. Both 

ARTiSAN Studio and MathWorks Simulink/Stateflow will be explored and 

compared for functional modelling. Their capacity for the code generation will also 

be examined. The static analysis tool, PolySpace [30] is utilized to perform 
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automatic code verification for the C code generated from both ARTiSAN Studio 

and Simulink/Stateflow. 

The research reported in this Thesis will be conducted via a case study 

involving the model-based design of a “4×4 Information System”, which is 

incorporated into the infotainment system installed in high-end premium Land 

Rover vehicles. 

Having investigated the model-based design of the 4×4 Information System, the 

ability to easily construct a real-time animation of the system from the 

automatically generated C code is examined by using dSPACE ControlDesk [31]. 

The Thesis presents the outcome of this research and draws conclusions about how 

to make use of model-based design for the development of an automotive 

electronic SoS. 

This Thesis is structured as follows: 

Chapter 2 provides background literature on the System and SoS, System 

Engineering (SE) and System of Systems Engineering (SoSE), automotive system 

development process, and the modelling languages used in this research. 

Chapter 3 presents an overview of the Driver Information System and a 

detailed description of its 4×4 Information System chosen as the pilot study for this 

Thesis. 

Chapter 4 discusses two distinct model-based approaches to automotive 

electronic system development. The first approach involves the use of the SysML 

based tool ARTiSAN Studio for structural modelling, functional modelling and 

code generation. The second approach involves the use of the MATLAB based 

tools Simulink/Stateflow for functional modelling, and code generation. In this 

chapter, the advantages and disadvantages of two approaches for the development 
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of an automotive electronic SoS are explored and compared. Conclusions are 

drawn on how to make use of the model-based design to meet the challenges in the 

automotive industry. 

Chapter 5 demonstrates the coding implementation through both approaches 

in order to further investigate functional modelling. The attention focuses on the 

comparison of quality and efficiency of the code. 

Chapter 6 explores the real-time simulation and animation of the 4×4 

Information System interface by using dSPACE ControlDesk and the C code which 

is generated from the Simulink/Stateflow model. 

Chapter 7 provides the conclusion of the Thesis and discusses the future 

work. 
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Chapter 2                   

Literature review 

 

In this chapter, the literature of System, SoS, SE and SoSE are reviewed. The 

automotive electronic system development process is discussed with current and 

foreseeable challenges. New technologies to address these challenges are also 

discussed. 

 

2.1 System 

2.1.1 Concept of System 

In this section, a detailed account of various definitions of System is given from 

published literature in various domains. How Systems have been clarified in 

various domains is detailed. 

Various definitions have been used for systems. In [32], a system has been 

defined as a set of interrelated elements working together for some purpose. 

Examples of systems can be seen in various domains, such as a biological system, a 

management system and an automotive powertrain system. 
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In biology, a system could be a group of organs that work together to perform 

some function, such as the digestive system. All these systems have inputs, outputs, 

and maintain a basic level of equilibrium. 

In business, a business component system is a set of cooperating business 

components to deliver a solution to a business problem, for example, an invoice 

management system or a payroll system. 

In science, a system is a group of interacting, interrelated or interdependent 

elements forming a complex whole. An ecosystem is an example of a system in 

science. 

The element is the basic component of a system. A system element can be 

either physical or conceptual [33]. It is irreducible, i.e., it can not be made by the 

other elements. An element which has no relationship with any other element of the 

system is not recognised as a part of that system. The components of a system are 

as shown below in Fig. 2-1. 

System

Subsystem 1 Subsystem 2 Subsystem 3

Subsystem 4 Subsystem 5 Subsystem 6

Element 1

Element 2 Element 3

Element 4 Element 5

Level 1

Level 2

Level 3

 

Fig. 2-1. A representative for the system structure. 

 
A system could consist of one or more subsystems. Subsystems could be made 

up by the lower level subsystem or elements which is the basic component of a 

system [34]. The System can be viewed at different levels as shown in Fig. 2-1. 
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Fig. 2-2. Vehicle system. 

Fig. 2-2 is an example vehicle system. This system consists of four subsystems 

which are the Powertrain System, the Chassis System, the Body System and the 

Information System. Suspension and brake are subsystems of the chassis system. A 

brake system has two elements which are disc and caliper. 

 

Fig. 2-3. Engine system. 

A cooling system is one of the subsystems in the engine system as shown in Fig. 

2-2. It can be viewed at a more detailed level as shown in Fig. 2-3. In this diagram, 

the cooling system is a subsystem of the engine system and it has the fan system 

and radiator as its component. Therefore, it can be seen that system is a relative 

concept. It can be a small system consisting of just one component or a large 

system with several subsystems. 
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Systems can be classified in many different ways. From the viewpoint of their 

basic properties, systems can be divided into static or dynamic, linear or nonlinear, 

continuous or discrete and so on. 

2.1.2 Characteristics of a System 

 

Fig. 2-4. A general depiction of a system. 

A general depiction of a system is as shown in Fig. 2-4. The characteristics of a 

system are shown in this diagram. The subsystem is a set of elements, which is a 

system itself, and a part of the whole system. Each subsystem has its own function. 

Therefore, interaction within each subsystem should be stronger than with other 

subsystems. A system exists within an environment. It has a boundary separating 

itself from the external disturbance within its environment [33]. 

Every system interacts with its environment through two groups of interactions. 

The first one originates outside the system and does not depend on what happens in 

the system directly. This group of interactions is called the inputs to the system. 

The other group of interactions is generated by the system. This group of 

interactions is called outputs of the system. Output is the way by which systems 

affect the environment. A system returns output to its environment as a result of its 
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functioning [35]. Each system has a certain input and output. Systems receive 

inputs and generate outputs [33]. 

 

Fig. 2-5. Powertrain System elements. 

Fig. 2-5 is an example showing the characteristics of the Powertrain System. 

Accelerate demand, brake demand and gear settings are the inputs. Engine and 

transmission are the subsystems and they interact through the torque change. 

Vehicle speed is the output of this system. 

2.1.3 Discussion 

Visualising a set of elements and their interrelationships as a system allows 

engineers look into the essential characteristics of a specific situation. Engineers 

study general properties of systems by emphasizing the system’s inputs and outputs 

to exclude of external disturbance and all other details [33]. Nowadays, a system is 

becoming more and more complex. An example of Driver Information System is 

shown in Fig. 2-6. 

Vehicle System

Powertrain system Chassis system Body system

Transmission Engine Suspension

Starter motor

Information system

Brake Navigation system Driver information 
system

Disk Caliper
Fuel system Cooling system Ignition system

 

Fig. 2-6. Automotive Driver Information System. 
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The Driver Information System on the modern vehicle provides the driver with 

the ability to view information and status relating to the Powertrain System, the 

Chassis System and the Body System. For example, as shown in Fig. 2-6, the 

Driver Information System can display the gear selection and suspension height to 

the driver. A large amount of interaction and data exchange are needed to facilitate 

such advanced functions. The data delivery requires additional connection among 

these subsystems on the vehicle. Consequently, the automotive electronic system 

quickly expands to the very large or super system. The conventional approach to 

realize the automotive system as a system to carry out analysis and design activities 

is no longer suitable for very large modern automotive electronic systems. 

Therefore, in order to look into the causality and interrelationship of a large system 

or super system, developers investigating it as a SoS is discussed in the next 

section. 

 

2.2 System of Systems 

This section provides a detailed description of definition and characteristics of SoS. 

2.2.1 Concept of System of Systems 

 

Fig. 2-7. Automotive System of Systems. 

As shown in Fig. 2-7, an automotive system is presented as a typical SoS. It 

contains four main systems which are Powertrain System, Chassis System, 



Chapter 2 

                                                                     
- 15 -

Information System and Body System. Each system can work independently and 

has its own functions. They also connect together as a vehicle in order to realize 

some higher level functions which each system can not achieve alone. Some 

connections between the systems are weak whilst the connection is strong between 

the subsystems and elements inside the system. These connections can be changed, 

added or removed without affecting the function of the whole SoS. For example, 

with the development of the automotive industry, an airbag is a standard piece of 

equipment in the vehicle and it is a component of the Body System. It requires the 

signal from the Chassis System for deploying the airbag. Therefore, the Chassis 

System and the Body System have to collaborate in order to enable the correct 

function of the airbag. It is an example that shows systems are required to be 

integrated as an automotive SoS to deliver some advanced functions. 

2.2.2 Characteristics of System of Systems 

Five different characteristics have been proposed in [12] to distinguish a SoS from 

a System. They are autonomy, belonging, connectivity, diversity and emergence. 

2.2.2.1  Autonomy 

The systems in a SoS are integrated and collaborate to achieve the goal of the SoS. 

Systems within a SoS have individual functions and a level of autonomy. As shown 

in Fig. 2-7, a typical automotive SoS consists of four systems which are the 

Powertrain System, Chassis System, Information System and Body System. Each 

system has independent functions. For example, the Powertrain System has certain 

inputs such as accelerate demand, brake demand and gear settings and outputs such 

as the vehicle speed and so on. It has the ability to work and maintain its own 

functions independently. 
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In contrast, within a system, there is little or no autonomy for subsystems or 

elements of the system. Therefore, autonomy is one of the characteristics of SoS. 

2.2.2.2  Belonging 

 

Fig. 2-8. Belonging of automotive System of Systems. 

As shown in Fig. 2-8, belonging is another characteristic of SoS. Developers 

choose what systems to belong to a SoS. Specifically, new systems can be added 

into a SoS whilst one or more systems can be removed from a SoS without 

affecting the function of the whole SoS. Some of the latest systems in the vehicle 

such as the Information System and its various subsystems like navigation have 

been gradually integrated into a vehicle. This means that they could either be 

present in a vehicle or not. 

2.2.2.3  Connectivity 

 

Fig. 2-9. Connectivity of automotive System of Systems. 
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Some connections between systems in the SoS are weak. They can be added, 

removed or changed. In Fig. 2-9, dashed lines show some connections between 

systems in the automotive SoS. These connections can be enabled or disabled at 

any time depending on the different requirements. To enable these connections, 

more information can be delivered and used between different systems. 

For example, after enabling the connection between the Powertrain System and 

the Information System, the engine speed and gear setting can be viewed from the 

Information System. The suspension information like vehicle height can be 

displayed through the connection between the Chassis System and the Information 

System. The central locking information can be displayed as well if connection is 

enabled between the Body System and the Information System. Furthermore, in 

order to enable certain functions several systems need to be connected together. For 

example, if people do not wear the seat belt when they start the engine and drive, 

some models of vehicle give a warning flash or sound. It means this function needs 

at least the Powertrain System, the Body System and the Information System to 

collaborate together in order to enable this function. Besides, these connections can 

be removed if people choose not to view this information in the Information 

System and it will not affect the function of automotive system as a SoS. 

2.2.2.4  Diversity 

 

Fig. 2-10. Diversity of automotive System of Systems. 
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The function of a system is usually very limited but the SoS can satisfy several 

different requirements at the same time and present various functions. The 

automotive Infotainment System shown in Fig. 2-10 is such an example. This SoS 

not only displays some necessary information like engine speed, temperature and 

fuel level but also provides navigation information, radio, CD and DVD which 

make the Information System merge with the Entertainment System. Within an 

automotive SoS, information can be delivered and used between different systems 

to enable many advanced functions which satisfy various requirements from safety, 

performance, comfort, etc. 

2.2.2.5  Emergence 

≠  

Fig. 2-11. Emergence of automotive System of Systems. 

The input and output of a system is predictable. This is because the connection 

within a system is fixed and very strong so that the causality is determined. But in 

the SoS, due to the belonging and connectivity characteristics, the structure and 

interaction inside the SoS are changeable. Therefore, the behaviour of the SoS can 

not always be predicated by aggregating the inputs and outputs of all individual 

systems. For example, consider a SoS consisting of four systems which is shown 

on the left of Fig. 2-11. The inputs and outputs of each system are represented as 

the arrowed lines. When these systems are grouped together, their output as a 
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whole SoS does not equal the aggregation of the individual outputs. It is critical to 

identify and study the interaction and connection of the systems therein in order to 

predict the behaviour of this SoS. It is especially crucial when testing and proving 

the behaviour of the SoS. In the case of an automobile, the introduction of a large 

number of electronic components leads to the emergence of new properties of the 

automotive electronic SoS which influence the behaviour of such an SoS. The 

interaction and integration of the automotive electronic SoS have to evolve to 

accommodate the increasing complexity and other emergent properties. 

2.2.3 Summary 

Five different characteristics of SoS have been discussed. They are autonomy, 

belonging, connectivity, diversity and emergence. A large system can be viewed as 

a SoS when one or more characteristics are satisfied. Such a SoS may include new, 

modified, or unmodified systems; and some systems may be evolving and their 

future is unpredictable. These complexities of a SoS cause difficulties in 

communicating requirements and integration [36]. To handle the development and 

modification of a SoS consideration needs to be given to the SE and SoSE which 

are discussed in the next section. 

 

2.3 System Engineering and System of Systems Engineering 

SE is an interdisciplinary approach and means to enable the realization of 

successful systems [37]. The discipline of SE has been recognized for 50 years as 

essential to the development of complex systems [38]. Since its recognition in 

1950s [39], SE has been applied to products as varied as ships, computers and 

software, aircrafts, environmental control, urban infrastructure and automobiles 

[40-42]. The need for SE emerged with the increase in complexity of systems and 
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projects. A system can become more complex due to an increase in size as well as 

with an increase in the amount of data, variables, or the number of fields that are 

involved in the design [43, 44]. The development of the automobile is such an 

example of SE. 

SE encourages the use of tools and methods to better comprehend and manage 

complexity in systems. Some examples of these tools are listed below [45-48]:  

 Modelling and Simulation, 

 Optimization, System dynamics, 

 Systems analysis, 

 Statistical analysis, 

 Reliability analysis, 

 Decision making. 

[18] indicates “three evils” of SE: complexity, a lack of understanding and 

communication issues. Models play important and diverse roles in SE to address 

“three evils”. A model can be defined in several ways, including [49]: 

 An abstraction of reality designed to answer specific questions about the real 

world. 

 An imitation, analogue, or representation of a real world process or structure. 

 A conceptual, mathematical, or physical tool to assist a decision maker. 

Building the model in the above ways can allow engineers to identify 

complexity, aid understanding and improve communication. In addition, 

model-based design integrates modelling into a design, development and validation 

process as shown in Fig. 2-12.  It can be applied to a number of different tools and 

methodologies [13]. The V-model has been a very popular process in SE and it has 
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been very successful at playing the role of designing, developing, and deploying 

new equipment or systems to satisfy specific needs or requirements. 

 

Fig. 2-12. V-model in System Engineering. 

At present, systems engineers are facing challenges with the scope, scale, and 

shape of systems problems in large scale, complex, networked environments. 

Engineers are increasingly required to expand the capabilities of the system 

through the integration of systems into SoS to meet various requirements. Because 

SoS engineers are starting with existing systems with independent owners, 

objectives and development processes, they are faced with a new set of conditions 

for their engineering processes [50]. 

 Increased chance of latent error, bugs, or mismatches. 

 Increased number of ways the SoS can fail. 

 Decreased user ability to discern failures. 

 Increased need for complex systems. 

In addition, there are issues beyond complexity that need to be addressed. 

These include: ambiguity; human social dynamics; sustainability; and methodology 

[51]. Although SoSE is a term that has been used to represent a set of developing 

processes and methods for designing and implementing solutions to SoS problems 
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[52], it has not received universally accepted definition, underlying perspectives 

related to philosophy, methodology, or standards [53]. [54] has concluded that the 

current state of SoSE development appears to be bifurcated into two separate paths. 

The first path engages SoSE from a technically dominated perspective, e.g. 

interoperability, information technology, net-centricity and technical integration 

[55]. Producing an “integrated product” is the fundamental purpose. This path 

utilizes “hard systems” thinking and development and emphasis is placed on 

objectivity in results and their interpretation. In contrast, the second path is more 

closely related to “soft systems” thinking, dominated by concerns with human, 

social, contextual and higher level inquiry to produce purposeful responses to 

complex system problems [56, 57]. Attention is focused on the interpretative nature 

of understanding complexities in complex problem domains. 

Although there is not a broadly accepted approach, it appears that the 

convergence can be found in the following points which are representing the 

primary focus in SoSE [54]. 

 SoSE involves the integration of multiple, potentially previously independent, 

systems into a higher level system. 

 SoSE enables the collaboration of systems in a SoS and generates capabilities 

beyond what any of the constituent systems is independently capable of 

producing. 

 SoSE brings systems together in order to perform a higher level 

mission/purpose for which each member system plays an integral role, but 

none of the contributing systems can accomplish independently. 

It is discussed and indicated in [58, 59] that the SE processes as documented in 

the SE standards: IEEE 1220, EIA/IS-632, EIA-632, ISO 15288 [60-65], and the 
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guide: ISO TR 19760 [66], are a necessary and sufficient set of processes to 

address above objectives in SoSE. However, it has to be recognized that SoSE is 

carried out under some level of uncertainty and it involves factors in multiple levels 

and domains. Compared with traditional SE that seeks to optimize an individual 

system, SoSE seeks to optimize a network of various systems brought together to 

meet specific requirements [67, 68]. Focusing on the automotive industry, attention 

has to be given to the new techniques in model-based design in order to allow it to 

evolve and be capable of managing automotive electronic SoS development which 

is investigated in this Thesis. 

 

2.4 Automotive system development 

This section aims to provide an overview of the automotive electronic system 

development process. The modelling languages and tools which are used in the 

development are also discussed in this section. 

2.4.1 Overview 

Modern cars are now equipped with more and more functionality dependent on 

embedded electronics, ranging from powertrain and chassis control to body 

comfort and infotainment. The size and complexity of software for these embedded 

electronic systems are increasing rapidly with their cost raising from 10% of the 

overall cost in 1970 to 40% in 2010. 90% of innovations in the automotive industry 

are driven by electronics and 80% among them are software [69]. Quality is a big 

challenge in automotive software development. The software failure of automotive 

systems is severe. Software errors led directly to car recalls. According to the 

report [70], one-third of the recalls in recent years caused by software errors. More 

efforts are needed on software verification and testing. Another challenge concerns 
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the reduction of the development time [71]. The automotive market is shared by 

manufactures, suppliers and tool vendors, and all need shorted processes which 

favour the exchangeability among them and reuse of software in different product 

lines. They also need to follow requirements along the development, from the 

specification to design and coding, to anticipate and communicate changes 

throughout teams [72]. 

2.4.2 Model-based design 

Model-based design is a widely used and accepted approach for automotive system 

development which has been demonstrated in the literature [13, 72-75] and 

references therein. Model-based design helps address the challenges of embedded 

system development [16]. Using models at the core of the development process 

provides engineers with insight into the dynamics and algorithmic aspects of the 

system through simulation. In addition, the models are also commonly used [76]: 

 as executable specifications; 

 to communicate (sub-)system requirements and interface definitions; 

 to provide virtual prototypes or models of the complete system; 

 for automatic code generation of embedded software algorithm or logic. 

 

Fig. 2-13. Automotive electronic system development process. 
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Fig. 2-13 shows the core process of the automotive electronic system 

development, i.e. a V-diagram. The initial step is the requirement capture. The 

importance of requirement engineering has been well acknowledged in [77-83]. All 

projects are driven by requirements. That is, if the requirements are not clearly 

understood, the system cannot be validated correctly. The modelling language is 

used to produce the model of the system. Code generated from the model is 

followed by the system design and simulation. Auto coding is one of the benefits 

from the model building as it significantly reduces the development cycle. When 

the code generation is completed, the software and system development and 

integration can carry on. The development process will then move to the test. In the 

test stage, the development cycle has to move back to the beginning to check the 

requirement if there is any error found. This process will be very costly. 

Consequently, requirement capture, system design and simulation are essential in 

the whole development process [74]. However, the complexity of automotive 

systems is increasing. In systems terms, automotive, embedded electronic systems 

can now be classed as a SoS. The design, implementation and management of such 

complex distributed systems, and their integration into one cohesive and reliable 

SoS are presenting new challenges for the automotive industry. 

To meet these challenges, it is necessary to investigate and refine the 

model-based design for capturing the requirements for the SoS, at the outset of the 

product development process, and conveying the requirements through the stages 

in the product development process. 

As a potential methodology to address the challenges in automotive systems 

and software development, model-based design has been playing an important role 

to identify complexity, aid understanding and improve communication [18]. In 
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order to build the model effectively, it is essential to have a common language to 

carry out the modelling. 

MATLAB/Simulink is a well known modelling and simulation environment. 

MATLAB is used in a wide range of applications, including signal and image 

processing, communications, control design, test and measurement. Simulink 

which is integrated with MATLAB provides an environment for modelling, 

simulating and analyzing multidomain dynamic systems. In particular, they can be 

used for model-based design for control systems. Stateflow, the other product 

developed by the MathWorks extends Simulink with a design environment for 

developing event-driven systems that contain control and supervisory logic. 

MATLAB/Simulink/Stateflow support the development and definition of system 

and software components, their connections and interfaces by graphical models 

using editable, hierarchical block diagrams and Stateflow diagrams and provide the 

necessary means of description, computation techniques and interpreters/compilers 

[84]. Such models can be simulated, i.e. executed. Coupled with Real-Time 

Workshop (RTW), source code is automatically generated for real-time 

implementation of embedded systems. 

2.4.3 Auto coding and code verification 

Traditional automotive software development involves paper designs and hand 

coding followed by verification activities such as code inspections, structural code 

coverage analysis, and unit/integration tests. Many of these activities lack tool 

automation and involve manual interaction. Thus they are error prone and time 

consuming [85]. Auto coding is a powerful tool for software and system developers. 

It facilitates the quick and easily source code generation [86, 87]. According to user 

reports there are increases in efficiency of 20-50% due to model-based 
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development with automatic code generation in comparison to traditional software 

development [74]. 

Furthermore, code checking and analysis tools have recently emerged. They 

allow software engineers to easily verify the generated code using static analysis 

techniques. The term static analysis means automatic methods to reason about 

runtime properties of source code without executing it [88]. It is commonly used 

during implementation and review to detect software implementation errors. 

Similar in behaviour to a spell checker or grammar checker in a word processor, 

static analysis tools detect faults within source code modules. Static analysis has 

been demonstrated to reduce software defects by a factor of six [89] and detect 

60% of post-release failures [90]. Static analysis can detect errors such as buffer 

overflows and security vulnerabilities [91, 92], memory leaks [93], timing 

anomalies [94], as well as other common programming mistakes, 40% of which 

will eventually lead to a field failure. It has been reported that static analysis can 

remove upwards of 91% of errors within the source code. This analysis can be 

performed very early in the software design process for finding software reliability 

breaches before functional tests are performed, or applied later for a sanity check  

[95, 96]. 

The first industrial tool for detecting runtime errors using static verification of 

dynamic properties was PolySpace Verifier [97]. This tool has been commercially 

available since 1999. It addresses two essential needs of embedded software 

development: 

 Static verification: it statically predicts specific classes of runtime errors and 

sources of non-determinism. 
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 Semantic browsing: it statically computes data and control flow to improve 

program understanding, ease verification and demonstrate the compliance of 

the program within industry standards (SIL, DO178-B, MISRA, etc). 

Run-time errors detected by PolySpace Verifier include: 

 Pointer dereferencing issues (null pointers, out-of-bounds pointers). 

 Out-of-bounds array accesses. 

 Read access to non-initialized data. 

 Access conflicts on shared data. 

 Invalid arithmetic operations: division by zero, square root of a negative 

number and so on. 

 Overflow and underflow on integers and floating-point numbers. 

 Unreachable code. 

 

Static verification checks each code section and provides a detailed diagnostic 

for each operation that falls into one of four categories: 

 Reliable: the operation under consideration will never fail because of a runtime 

error. 

 Incorrect: the operation under consideration will fail. 

 Questionable: the operation under consideration may fail under certain 

circumstances. 

 Unreachable: the operation under consideration cannot be activated. 

The literature studied indicates that PolySpace demonstrated a superior 

detection rate [98-101]. PolySpace also has a graphical interface. The tools set 

PolySpace Viewer can generate and analyse the report, and navigate in the source 

code. With a static analysis tool like PolySpace integrated into the model-based 
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design process, the engineer is much more capable of developing flawless software 

for the automotive electronic system. 

2.4.4 Discussion 

This subsection discusses how to promptly respond to the rapid growth of 

in-vehicle, embedded electronic systems in terms of electronic system 

development. 

Model-based design with auto coding has been very successful at playing the 

role of designing, developing, and deploying new equipment or systems to satisfy 

specific needs or requirements in system level development. From a study of the 

literature, model-based design is also considered as a necessary and sufficient set of 

processes for SoSE. Focusing on automotive electronic system development, the 

automotive electronic systems can now be classified as a SoS due to a near 

exponential growth of in-vehicle, embedded electronic systems. Such an electronic 

system has complex architecture. The development of such a system requires the 

integration of electronic components and software, the collaboration between the 

system engineer and the software engineer. Moreover, during the development 

process, different developers require different pieces of information, depending on 

what their roles are in the system [18]. Also, for the purpose of analysing a system, 

it is important to observe a system from many different aspects or viewpoints. 

Model-based design by using MATLAB Simulink/Stateflow is more capable of 

handling functional modelling, physical component modelling at a detailed level 

but it lacks the structural modelling capability. To develop such complex 

distributed systems, and their integration into one cohesive and reliable SoS 

requires new modelling languages, tools and methods to refine model-based design 

technology to suit the development of an automotive electronic system. Against 
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this background, SysML which is adapted from UML is proposed in this Thesis for 

requirement capturing and performing structural and functional modelling for 

automotive electronic system development. 

 

2.5 Systems Modelling Language 

The UML is a modelling language with many graphical design notations and it is 

mainly used for software development. Object orientation is the key feature of 

UML. It is used to model not only different types of software system structure and 

behaviour, but also business processes and data structure [22]. The UML 

specification is defined and maintained by the non-profit computer industry 

consortium called OMG. The UML offers a standard way to write a system's 

blueprints, including conceptual things such as business processes and system 

functions as well as concrete things such as programming language statements, 

database schemas, and reusable software components [102]. 

However, there are some problems and challenges with UML some of which 

are listed below [103]: 

 Use cases are not well integrated with other languages. 

 Syntactic and semantic overlap within UML, significantly between the classes 

and components with internal structures. 

 Immature constructs require additional effort to eliminate possible bugs. 

 Inadequate support for modelling real-time systems. 

 Inadequate support for modelling systems and a SoS. 

These problems are being addressed by the ongoing evolution of UML. The 

current standard of UML is 2.0. However, as UML mainly focuses on software 

development, it is not well-equipped to model entire systems. The SysML focuses 
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on SE [18]. It is defined by the OMG as “a general-purpose graphical modelling 

language for specifying, analyzing, designing and verifying complex systems that 

may include hardware, software, information, personal, procedures, and facilities”. 

SysML allows engineers to model system requirements, system behaviour and 

system structure. Hence, it can link the software and other elements of a system, 

such as hardware, together. In order to address the challenges of increasing 

software-based systems in automobiles, research is carried out on system modelling 

with new modelling languages such as the SysML to determine if they are suitable 

for particular applications. 

 

Fig. 2-14. The overlap between the UML and SysML (adapted from [25]). 

 
SysML is based on the UML with additional diagrams and modelling 

constructs to capture system behaviour and high-level requirements. Fig. 2-14 

illustrates the overlap between the UML and SysML. Fig. 2-15 shows the 

taxonomy of SysML. 
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Fig. 2-15. The Systems Modelling Language taxonomy (adapted from [25]). 

In SysML, the reuses, extension and addition of UML diagram types are [25]: 

 UML diagrams that are reused, but are not extended: use case diagram, 

sequence diagram, and state machine diagram. 

 UML diagrams that are reused and extended: activity diagram (extends UML 

activity diagram), block definition diagram (extends UML class diagram), 

internal block diagram (extends UML composite structure diagram), and 

package diagram (extends UML package diagram). 

 New diagram types: parametric constraint diagram and requirements diagram. 

 

The following questions regarding SysML are answered through the research in 

this thesis. 

 Whether SysML, as a modelling language, is well-suited for vehicle 

manufacturers, and their tier-one suppliers, to exchange information for 

specifying and clarifying requirements. 

 Whether SysML supports software development in a systems engineering 
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framework. 

 Whether SysML adequately supports the development of real-time embedded 

automotive software. 

In summary, SysML is a new modelling language aimed at systems engineers 

and can in particular be applied to design heterogeneous embedded systems and a 

SoS. The capability of SysML to model the automotive electronic system and 

deliver the software is investigated and discussed in the later chapters of this 

Thesis. 
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Chapter 3                      

Driver Information System for the 4×4 

vehicle 

 

In Chapter 2, a literature review of Systems and a SoS was presented. The purpose 

of this chapter is to present the introduction of the vehicle Infotainment System and 

to provide an overview of the Driver Information System chosen as the pilot study 

for this Thesis. 

 

3.1 Introduction 

The appearance of the automotive Information and Entertainment System has 

significantly evolved in the past decades. It is driven by the emergence of 

electronic and networking technologies [5]. In the late 1990s, vehicle information 

systems like navigation and entertainment systems such as CD players were 

integrated into vehicles. Today’s high-end Information and Entertainment System, 

one sample of which is shown in Fig. 3-1, can include a variety of features and 

functions including an integrated 6 disc CD changer, address book, cellular 

telephone, driver log book, DVD player, navigation system, television, voice 



Chapter 3 

                                                                     
- 35 -

recognition system, or several other similar options [2]. Such systems for 

information and entertainment are collectively referred to as an “Infotainment 

System”. The development of such an advanced Infotainment System has benefited 

from not only networks such as CAN and MOST but also in modern display 

technology such as Liquid Crystal Displays (LCDs), advanced sensors and the 

introduction of additional software to manage such a system. 

 

Fig. 3-1. Modern information and entertainment system: 2002 Cadillac CTS. 

In order to deliver the best features in new cars, the Infotainment System is now 

a key focus in the automotive design process. To support the growing importance 

of the Infotainment System, Land Rover introduced an advanced Driver 

Information System in its Range Rover 2005 model in June 2004 [104]. 

As shown in Fig. 3-2, the Driver Information System is centred on a touch 

screen display located in the mid-fascia area. It forms part of the in-vehicle 

Infotainment System. A high level display front (HLDF) is the Human Machine 

Interface (HMI) of this Driver Information System which consists of a 7-inch, 15:9 

aspect ratio, 800 × 480 pixel colour display. It has a touch screen membrane over 
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its display surface. Fig. 3-2 presents a typical display for a vehicle. The detailed 

description of the Driver Information System is to be provided in a later section. 

 

Fig. 3-2. 4×4 Information System on the vehicle. 

 

3.2 Driver Information System and 4×4 Information System 

The following sub-section gives a brief introduction of the features of the Driver 

Information System and the 4×4 Information System. 

3.2.1 Driver Information System 

 

 

 

Fig. 3-3. Driver Information System. 

4x4 information 
hard key 

4x4 information 
soft key 
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Fig. 3-3 presents an actual view of the Driver Information System. By pressing the 

hard keys and soft keys, the driver can access settings, on-road information, 4×4 

information, navigation, phone, audio, video and other features provided by the 

Driver Information System. Table 3-1 lists the hard keys and their corresponding 

features. 

Table 3-1. Hard keys of the Driver Information System. 

Hard Key Feature Notes 

Home View home menu Can also access by soft key 

Settings View settings Can also access by soft key 

On-road View on-road information Can also access by soft key 

4×4 information View 4×4 information Can also access by soft key 

Navigation View navigation Can also access by soft key 

Phone Access phone Can also access by soft key 

Audio and video View audio and video information Can also access by soft key 

Mode Change audio and video mode  

 

As an example, Fig. 3-4 shows the screen displaying the settings when the 

driver presses the settings hard key or soft key. 

 

Fig. 3-4. Driver Information System settings. 
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As a Driver Information System for a 4×4 vehicle, the key function of this 

system is to provide the 4×4 information such as steering angles, vehicle heights 

and Terrain Optimization (TO) settings to the driver to enable better off-road 

driving. The work described in this Thesis concentrates on the 4×4 Information 

System incorporates in the Driver Information System. The features of the 4×4 

Information System are presented in the following section. 

3.2.2 4×4 Information System 

The features of the 4×4 Information System on the vehicle are summarized in the 

table below. 

Table 3-2. Features of the vehicle. 

Number Feature  Notes 

Feature 1. Display Steering Angle Information Display front road wheel angle 

by 13 different images. 

Feature 2. Display High/Low ratio selection 

status 

Display High or Low ratio 

selection status for transfer gear

Feature 3 Display Gear Position Display gear position such as 

“P R N D 5 4 3 2 1” 

Feature 4a. Display Differential lock 

Information - Centre 

Lock or Unlock 

Feature 4b. Display Differential lock 

Information - Rear 

Lock or Unlock 

Feature 5. Display Terrain Optimization Mode Display one of five different 

Terrain Optimization settings 

Feature 6. Display Hill Descent Control Status Display Hill Descent Control 

Status such as “Inactive, Set, 

Pending” 

Feature 7. Display Air Suspension Status Display Air Suspension Status 

such as “Off-Road, Standard, 

Access” 

Feature 8. Display Wheel Height Status Display Wheel Height Status 

by different images 
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Feature 1 provides information on how steering angle changes with movements 

of the steering wheel. Graphics represent the front road wheels’ angle in the plain 

view. 

Feature 2 is for displaying the transfer gear status, for example whether a High 

or Low ratio has been selected. When a range selection is performed, the 

appropriate graphic will be displayed in the chassis map. 

Feature 3 is for displaying a letter or number on the graphics to indicate the 

gear position. The letters and numbers and what they represent are listed below 

respectively: “P” for Park, “R” for Reverse, “N” for neutral, “D” for Drive and a 

number within the 1 to 5 range indicating the gear selection. 

Feature 4 is for displaying the differential lock information for both centre and 

rear differentials. The vehicle has to be fitted with a centre electronic differential 

(e-diff) as standard and a rear one as an option. The vehicle will then be fully 

capable of automatically determining through the Traction Control System where 

to best distribute the torque. E-diff delivers superior on and off-road traction by the 

cross wheel slip without the need for sudden intervention from the brakes. E-diff 

can act sooner and more subtly than the traditional traction control methods that 

rely on the ABS [105]. 

Feature 5 is for displaying the TO mode selected. The vehicle can provide five 

different driving modes which are Standard, Grass / Snow / Ice, Mud / Ruts, Sand 

and Rock Crawl. In one of the four special terrain mode settings listed above, the 

rear differential locking is actively controlled by the Driveline Control ECU. When 

one of the special programmes is selected, the pre-load locking torque of the 

differential is modulated according to the TO setting. 
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The purpose of Feature 6 is to display the Hill Descent Control (HDC) status. 

HDC is used to provide a smooth and controlled hill descent in rough terrain. 

Feature 7 is for displaying the air suspension status. The air suspension has 

three suspension heights, i.e., Off-road, Standard and Access. 

Feature 8 is for displaying the wheel height status such as whether the vehicle 

is in standard height. It can also indicate whether the vehicle height is currently 

changing such as “Rising”. 

The key functions of this system include the TO settings, HDC, wheel height 

display, air suspension heights, steering angle, transfer gear, gear position and 

differential lock. The detailed functionality of the 4×4 Information System can be 

found in Appendix A. 
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3.3 Driver Information System architecture 

 

Fig. 3-5. Automotive System of Systems. 

Fig. 3-5 presents the architecture of the Driver Information System. The Driver 

Information System forms part of the in-vehicle Infotainment System and provides 

the driver and/or front passenger with the ability to view information and status 

relating to: the instrument cluster; the navigation system; the front and rear 

entertainment systems; the in-vehicle phone; and the 4×4 Information System. This 

is achieved by presenting information within the Infotainment System which is 

broadcast via a MOST data bus, or information from the Powertrain System, 

Chassis System and Body System which is transmitted on a CAN data bus. The 

MOST and CAN buses are linked via a gateway located in the instrument cluster. 
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Fig. 3-6. Driver Information System architecture. 

Fig. 3-6 presents some key systems and elements of a typical Driver 

Information System. From this diagram it can be seen that the Driver Information 

System is hosted within the HLDF on the MOST network. All the information 

displayed in the Driver Information System is obtained from several relevant 

on-board vehicle electronic systems such as various sensors and ECUs in different 

networks. 

Table 3-3. Driver information on networks. 

Network Driver Information Obtained 

MOST BUS Audio and Video relating to navigation, radio, etc. 

CAN BUS Vehicle Height, Gear Position, etc. 

 

Table 3-3 lists an example of the driver information which is obtained from 

different networks on the vehicle. From Fig. 3-6, it can be also seen that the 

information from the Powertrain System is delivered on a high speed CAN. This 

vehicle contains two separate CANs operating at different transmission rates. The 

medium speed CAN running at less than 125 Kbps usually manages a vehicle’s 
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“comfort electronics,” like seat and window movement controls and other user 

interfaces. Generally, control applications that are not real-time critical use this 

medium-speed network segment. The high speed CAN runs more real-time critical 

functions such as engine management, ABS, and cruise control [106]. Focusing on 

this 4×4 Information System, gear position, differential lock information and other 

information from the chassis and powertrain that are vehicle status related are 

obtained from the high speed CAN. MOST facilitates the deployment of a digital 

data infrastructure in the vehicle for these advanced audio/video systems. 

 

3.4 Characteristics of the 4×4 Information System 

Phone

4x4 Information 
System Interface

Navigation 
System

Instrument 
Cluster

Radio

CD, DVD

TV

Powertrain 
System

Chassis 
System

Body 
System

Driver Information System

Entertainment SystemInformation System

 Infotainment System

 

Fig. 3-7. The 4×4 Information System. 

Fig. 3-7 represents the 4×4 Information System within the automotive SoS. The 

4×4 Information System, accessed through the colour touch-screen on the fascia, 

provides real-time graphical indications of essential 4×4 information to the driver 

to deliver the best possible off-road driving in difficult conditions. The HLDF 

shows the direction of the front wheels, air suspension height settings, activation of 

the HDC, the high/low gear ratio selection, wheel articulation, the compass view 

and the TO mode. As shown in Fig. 3-6, this system has to obtain information from 
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several other on-board vehicle electronic systems such as various sensors and 

ECUs. The ECUs are linked by a communications network, consisting of several 

data bus technologies with exponentially increasing transmission rates. 

After studying the physical structure and functionality of the 4×4 Information 

System, the following characteristics of SoS can be identified from this 4×4 

Information System: 

Autonomy 

As shown in Fig. 3-7, the Powertrain System, Chassis System and Body System 

have independent functions. For example, the Chassis System takes a driver’s TO 

settings and changes the air suspension to the corresponding height. It has the 

ability to maintain its function independently. 

Belonging 

The 4×4 Information System Interface includes the physical interface and 

application software. It chooses the Powertrain System, Chassis System and Body 

System to form this SoS. The data are captured from various sensors and ECUs in 

these systems which are chosen to belong to this SoS. Thus, the 4×4 Information is 

displayed to the driver. 

Connectivity 

As described in Chapter 2, some connections in the SoS can be added, removed 

or changed. In the 4×4 Information System, enabling additional connections 

between the 4×4 Information System Interface and the Powertrain System, Chassis 

System and Body System allows more data and information to be delivered. For 

example, enabling the connection between the steering angle sensor and the 4×4 

Information System Interface allows the steering angle of the vehicle to be 

displayed in the 4×4 Information System. 
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Diversity 

The driver’s various requirements derive the diversity of the 4×4 Information 

System. The 4×4 Information System does not only display the necessary 4×4 

information such as gear selection, suspension height but also displays compass 

information and vehicle settings. Data captured on different vehicle networks at 

different speeds and amounts have to be managed and displayed to the driver 

within the 4×4 Information System. 

Emergence 

 

Fig. 3-8. The 4×4 Information System. 

From the description of physical structure and functionally of the 4×4 

Information System, it can be taught to enable a single function in the 4×4 

Information System that involves data capture from the sensors of the Powertrain 

System, Chassis System or Body System and data transfer on several data buses. 

As shown in Fig. 3-8, the arrowed line indicates the connection between the 

steering angle sensor in the Chassis System and the 4×4 Information System 

Interface. Displaying the steering angle in the 4×4 Information System contains the 

data capture from the steering angle sensor and data transfer to local connection 

and then data delivery on the gateway and MOST bus. Both physical structures of 
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the vehicle network and software function of the 4×4 Information System have to 

be considered and developed in order to correctly display the large mount real-time 

data and enable the advanced functions of the 4×4 Information System. 

Therefore, having identified the above characteristics, the 4×4 Information 

System is concluded as a SoS. The development of this SoS through a model-based 

design approach is to be presented in the next chapter. 

 

3.5 Discussion 

This chapter has described the physical structure and functionally of the Driver 

Information System and the 4×4 Information System. The characteristics of the 

4×4 Information System are identified and discussed that show the 4×4 Information 

System which is part of the in-vehicle Infotainment System is a typical SoS. 

Similarly, the Chassis System and Powertrain System utilize the networked 

electronic systems to form the automotive electronic SoS to achieve advanced 

electronic control and others functions. Therefore, the experience gained from the 

development of this SoS by utilizing new techniques can benefit the development 

of other automotive SoSs. In addition, these techniques are generic and they are 

applicable in SE and SoSE. In other words, they can be adopted for the 

development of aerospace systems and the hybrid electric vehicle (HEV). However, 

the 4×4 Information System is not a safety critical system for the vehicle. As a 

consequence, further investigation is required for applying the experience gained 

from this study to a safety critical system such as adaptive cruise control on the 

vehicle. 
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Chapter 4                   

Modelling of the 4×4 Information 

System using SysML and MATLAB 

Simulink/Stateflow 

 

In chapter 3, an overview of the Driver Information System and its 4×4 

Information System was presented. The purpose of this chapter is to provide a 

detailed model of the 4×4 Information System chosen as the pilot study for this 

Thesis. 

 

4.1 Introduction 

After the functional description of the 4×4 Information System has been described 

in relation to its software and hardware elements within the overall automotive 

electronic system in Chapter 3, this chapter describes research into model-based 

development of the 4×4 Information System. Two distinct model-based approaches 

to automotive electronic system development are explored. The first approach 

involves the use of the SysML based tool ARTiSAN Studio for structural 
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modelling and functional modelling. The second approach involves the use of the 

MATLAB based tools Simulink and Stateflow for functional modelling. Both 

approaches for developing the model of the 4×4 Information System are critically 

evaluated. The strengths and weaknesses of the different approaches are explored 

and compared. Conclusions are drawn about how the model can benefit the 

development of such an automotive electronic system. 

 

4.2 Model built in SysML 

This section will discuss how SysML is used to provide an architectural description 

of the 4×4 Information System. Specifically, this section will explore: the use of 

block definition and internal block diagrams, for structural modelling of the system; 

and the use case, sequence, state machine and activity diagrams for modelling the 

functional behaviour of the system. Finally, this section will summarize how to 

make use of SysML for the development of an automotive electronic system. 

4.2.1 The modelling process 

The software field is developing rapidly. New areas of practice and research are 

emerging with an ever increasing speed [107]. It is believed to be beneficial for a 

project to introduce to the developers the concept of software architecture 

[108-112]. [113] has concluded that the viewpoints and views are well-established 

concepts in software architecture. For this reason, the IEEE Standard 1471-2000, 

“Recommended practice for architectural description of software intensive system” 

is introduced in this Thesis for guiding the construction of the SysML model. View 

and viewpoint are central concepts in the IEEE 1471 Standard for architectural 

description [114]. According to IEEE 1471, a view is a representation of a whole 

system from the perspective of a related set of concerns. Concerns are those 
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interests, which pertain to the system’s development, its operation or any other 

aspects that are critical or otherwise important to one or more stakeholders. A 

viewpoint is a pattern or template from which to develop individual views. It 

establishes the purpose and audience for a view and the techniques for its creation 

and analysis. In order to satisfy the IEEE 1471 standard a viewpoint should specify 

at least: 

 A viewpoint name. 

 The stakeholders the viewpoint is aimed at. 

 The concerns the viewpoint addresses. 

 The language, modelling techniques, or analytical methods to be used in 

constructing a view based upon the viewpoint. 

Two viewpoints are selected in this Thesis, namely, a structural viewpoint and 

a behavioural viewpoint. They are specified in the Table 4-1 and Table 4-2. 

 

Table 4-1. Viewpoint specification--Structural viewpoint. 

Viewpoint name Structural viewpoint 

Stakeholders System developer 

Concerns 
What elements compose the system? 
How do they interconnect? 
What are the mechanisms for interconnection? 

The modelling 
language to be used 

SysML 

View(s) to conform 
this viewpoint 

Physical structure view 
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Table 4-2. Viewpoint specification--Behavioural viewpoint. 

Viewpoint name Behavioural viewpoint 

Stakeholders System developer 

Concerns 

What are the dynamic actions of and within a system? 
What are the kinds of actions the system produces and 
participates in? 
How do those actions relate (ordering, synchronization, 
etc.)? 
What are the behaviours of system components? 
How do they interact? 

The modelling 
language to be used 

SysML 

View(s) to conform 
this viewpoint 

Function view 

 

As shown in Table 4-1 and Table 4-2, two viewpoints are selected based on the 

consideration of the stakeholders to whom the architectural description is addressed 

and their concerns. Specifically, the Thesis chooses the system developer as the 

stakeholder. Two viewpoints are aimed at the system developer’s concerns, e.g. 

“What elements compose the system?”, “How do they interconnect?” and “What 

are the behaviours of system components?” SysML is chosen as the modelling 

language to provide an architectural description of the 4×4 Information System 

from a structural viewpoint and a behavioural viewpoint. Physical structure view 

and function view are constructed to conform to the structural viewpoint and the 

behavioural viewpoint respectively. Each view consists of one model which is 

described in detail in the next section. 
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4.2.2 Structure model 

Structural modelling is performed to provide a physical structure view of the 4×4 

Information System. Block definition diagrams and internal block diagrams are 

created to depict the physical structure of the 4×4 Information System. 

4.2.2.1 Block definition diagram 

Block definition diagrams define a class of objects with similar properties, 

behaviour and interactions. During the practical model development process, it is 

conventional to start thinking about objects required in the model at the beginning. 

When a set of objects is found to have the same properties, behaviour and 

interactions, a class should be defined for these objects. 

In the 4×4 Information System, various signals and information have to be 

delivered and transferred through several networks. These networks have different 

architectural levels in the system. They also have different properties to support 

data transfer in the system. The role they play in the 4×4 Information System has to 

be clearly described by defining their attributes and operations in the system. 

::Network

Speed
Bandwidth
Name
get_speed ()

::BUS

get_gateway_name ()

::Dedicated Connection

::CAN ::MOST

::Private CAN ::High Speed CAN ::Medium Speed CAN

1..*1..*

11..*

1 1 1

 

Fig. 4-1. Network class. 
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In Fig. 4-1, the network class of the 4×4 Information System is defined. This 

network includes three types of CAN bus which are the private CAN bus, the high 

speed CAN bus and the medium speed CAN bus. CAN buses and the MOST bus 

form the bus class. The attribute of this bus class includes “name”, “speed” and 

“bandwidth”. Two operations are indicated which are “get_speed” and 

“get_gateway_name”. Different buses and the dedicated connection are integrated 

to provide several transmission rates for data transfer in the 4×4 Information 

System. The network class represents the highest level within the structure model. 

The model also includes four further classes representing lower levels within the 

network architecture. 

::Key

Position
Size
Pressed ()
Time_pressed ()

::Hard Key ::Soft Key
1..* 1..*

 

Fig. 4-2. Key class. 

For example, Fig. 4-2 shows a block definition diagram representing the key 

class that models the operations of keys which are used to select functions within 

the 4×4 Information System. Two different types of keys are included and they are 

a “Hard Key” and “Soft Key” respectively. They are shown as subclasses of the 

“Key” class. The “Key” class has the attributes of “position” and “size” which are 

used to describe the appearance of the key. The operations of the key class use 

“Pressed” and “Time_Pressed” to identify whether the key has been pressed and 

how long it has been pressed. 
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4.2.2.2 Internal block diagram 

Internal block diagrams are useful for modelling the decomposition of structured 

classes through parts, and showing the connections between those parts. Compared 

to the block definition diagram, the internal block diagram focuses on the detailed 

level of the system structure. Two internal block diagrams have been developed to 

present interactions at different levels of abstraction among the 4×4 Information 

System and other systems of the vehicle. 

Driver Information System of Systems Configuration

MOST Assembly : BUS

1..*
Navigation ECU :

Information System

1..*
Audio and Video System
: Entertainment System

HLDF : Driver Information System

MOST_CAN_Gateway :
Gateway

Medium Speed (MS) CAN BUS :
BUS

HS CAN_MS CAN_Gateway :
Gateway

Resistive Ladder :
Local Connection

Steering Angle Sensor :
Sensor

High Speed (HS) CAN BUS :
BUS

1..*
_ _ _ : Sensor

1..*
_ _ _ : Actuator

1..*
_ _ _ : ECU

Air Suspension ECU :
ECU

Transmission ECU :
ECU

MOST Assembly : BUS

1..*
Navigation ECU :

Information System

1..*
Audio and Video System
: Entertainment System

HLDF : Driver Information System

MOST_CAN_Gateway :
Gateway

Medium Speed (MS) CAN BUS :
BUS

HS CAN_MS CAN_Gateway :
Gateway

Resistive Ladder :
Local Connection

Steering Angle Sensor :
Sensor

High Speed (HS) CAN BUS :
BUS

1..*
_ _ _ : Sensor

1..*
_ _ _ : Actuator

1..*
_ _ _ : ECU

Air Suspension ECU :
ECU

Transmission ECU :
ECU

Steering Angle msg : MessageSteering Angle msg : Message

High Speed CAN Bus : MessageHigh Speed CAN Bus : Message

Suspension Height msg : MessageSuspension Height msg : Message

This structure diagram shows the assembly of 
function modules which interact with the driver 
information system. More details of power train 
system are showing as '_ _ _' instead.

MOST -- Media Orientated Systems 
Transport. A high speed fibre optic 
communications bus
LLDF -- Low Level Display Front
HLDF -- High Level Display Front

 

Fig. 4-3. Internal block diagram: Driver Information System overview. 

The first internal block diagram, shown in Fig. 4-3, is utilized to provide a high 

level description of the Driver Information System. It includes a description of the 

MOST and CAN buses and the gateways that enable communication between the 

buses. The location of the Driver Information System is clearly displayed. In this 

diagram, each rectangle represents a part which can be either a function module or 

a hardware module. The text to the right of “:” in the rectangle is the type name of 

the part. The part name is specified to the left of “:” in the rectangle. When a part 
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has a multiplicity more than one, it is shown in the top right of the part. For 

example, there are numerous sensors, ECUs and actuators on the high speed CAN 

bus so their numbers are indicated as “*” in the rectangle respectively. Gateways 

which are used to provide the communication between data buses are also 

represented in this diagram. Lines connect different parts together to show the 

interactions among them. Arrows are used to define the direction of the data 

transfer. 

The air suspension ECU sends the suspension height information to the high 

speed CAN bus in the direction indicated by the arrow. Afterwards, it is delivered 

to the medium speed CAN bus through the “HS CAN_MS CAN_Gateway” 

together with the signals from other ECUs and various sensors and actuators on the 

high speed CAN bus. For example, centre and rear differential lock data and gear 

selection data are captured by the transmission ECU on the high speed CAN bus. 

The data which show the level of cross-axle articulation, the status of the HDC and 

the TO settings is also collected by the ECUs on the high speed CAN bus. The 

information is transmitted to the MOST bus through the “MOST_CAN_Gateway”. 

Additionally, the steering angle data are captured from the steering angle sensor 

and directly delivered to the “MOST_CAN_Gateway” by the local connection, and 

transmitted to the MOST bus. Other information such as data used in the compass 

view is transmitted from the navigation ECU over the MOST bus that supports the 

Infotainment System. The 4×4 Information System receives the data from the 

MOST bus and displays it on the screen according to driver’s selection. 
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MOST Assembly

MOST BUS : BUS

PHM : Telephone Module SDARS : Satellite Digital
Audio Radio Service TV : TV Tuner

TMC : Traffic Message
Channel

A1 : Antenna A2 : Antenna

Rear Seat Entertainment
: Entertainment System

S1 : Screen S2 : Screen

DVD : DVD Player

CDC : CD Changer

DAB :  DA Broadcasting AA : Audio Amplifier

H1 : Headphone S1 : Speaker

MOST_CAN_Gateway : Gateway

Medium Speed CAN BUS :
BUS
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Local Connection

Steering Angle Sensor :
Sensor

HS CAN_MS CAN_Gateway :
Gateway
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Private CAN BUS : BUS HLDF : Driver Information System

Reverse Camera : Camera Campanion Camera : Camera
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TMC : Traffic Message
Channel

A1 : Antenna A2 : Antenna

Rear Seat Entertainment
: Entertainment System

S1 : Screen S2 : Screen

DVD : DVD Player

CDC : CD Changer

DAB :  DA Broadcasting AA : Audio Amplifier

H1 : Headphone S1 : Speaker

MOST_CAN_Gateway : Gateway

Medium Speed CAN BUS :
BUS

Resistive Ladder :
Local Connection

Steering Angle Sensor :
Sensor

HS CAN_MS CAN_Gateway :
Gateway

High Speed CAN BUS : BUS

MM : Multimedia Module

FM Radio :
Radio

GPS Receiver :
Receiver

Private CAN BUS : BUS HLDF : Driver Information System

Reverse Camera : Camera Campanion Camera : Camera

 

Fig. 4-4. MOST System of Systems overview. 

The second internal block diagram shown in Fig. 4-4 is a detailed level 

description of the vehicle network configuration. It represents the assembly of data 

buses, gateways, systems and hardware modules which are connected or related to 

the Driver Information System. In this diagram, each rectangle represents a part 

which can be either a function module or a hardware module. Lines connect 

different parts together to show the interactions between them. 

For example, connections between different systems on the MOST bus and 

other gateways to buses like the medium and high speed CAN are clearly 

represented in this diagram. Specifically, the steering angle data are delivered to the 

MOST_CAN gateway through the local connection. Then the MOST_CAN 

gateway sends the data to the MOST bus and they will be taken and displayed to 

the driver by the 4×4 Information System when associated keys are pressed. 

Besides, radio, telephone, navigation and other components of the Information 

System deliver data to the MOST bus. Meanwhile, the Entertainment System 

transmits audio and video signals to the MOST bus such as a video signal from the 
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DVD player. Lines between cameras and the Driver Information System show the 

data from cameras is delivered to the Driver Information System directly. The type 

and amount of the data transmitted on the network are presented in this diagram. 

Moreover, according to the internal block diagram shown in Fig. 4-4, the 

bandwidth, speed and other attributes of the communications network can be 

considered and defined within classes of the block definition diagrams. The type of 

the data transmitted, its bandwidth and other attributes are defined within those 

block definition diagrams. 

4.2.3 Function model 

A function model is developed to represent the functional behaviour and provide a 

function view of the 4×4 Information System. The use case, sequence, state 

machine and activity diagrams are utilized in the function model. 

4.2.3.1 Use case diagram 

Use case diagrams are used to specify the functionality in terms of high-level 

requirements. They depict a system's behaviour in terms of its responses to requests 

that come from outside, for example, from the driver. There are three elements in a 

use case diagram: use case, actor and relationship, respectively. Each requirement 

is represented as one use case in the diagram and actors can be either people or a 

system. A use case can be defined at several levels and there are three use case 

diagrams in the model. 

Fig. 4-5 shows the highest level use case for the 4×4 Information System. It 

shows the interaction between the front occupant including the driver and front 

passenger and the different components of the system. “Access 4×4 information” is 

the top level use case in this diagram and it includes many lower level use cases. 

Through the top level use case, the driver can have access to “View steering”, 
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“View gear position”, “View Hi/Lo ratio”, “View suspension information”, “View 

Diff Lock”, “View Compass”, “View Home”, “View Terrain Optimizations 

Settings” and “View Hill Descent Control Status” use cases directly. Arrows with 

an ‘include’ label indicate the functional structure of the 4×4 Information System. 

In this way, the functionality can be broken down to different levels. In this use 

case diagram, the driver can go to “View Differential Lock Rear” and “View 

Differential Lock Centre” from the “View Diff Lock” use case. The driver can also 

go to “View whether Standard/Sand/Rock Crawl/Mud” which is the lower level use 

case of the “View Terrain Optimizations Settings” use case. 

Front
Occupant

Access 4X4
Information

View Steering
Angle

View Gear
Position

View Hi/Lo
ratio

View Diff Lock

View Differential
Lock Rear

View Differential
Lock Centre

View Suspension
Information

View Compass
Information

View Home

View Hill Descent
Control Status

View Terrain
Optimization

Settings

View whether
Standard/Sand/Rock

Crawl/Snow/Mud

«include»

«include»

«include»

«include»

«include»
«include»

«include»

«include»

«include»

«include»

«include» «include»

 

Fig. 4-5. Use case diagram: 4×4 information use case. 

In order to make the diagram clear, it is not recommended to put too many 

details in one use case diagram. If one use case has many sub functions that need to 

be broken down to a detailed level, another use case diagram can be developed. 

Within this model, a separate use case diagram shown in Fig. 4-6 is developed to 

specify the “View Suspension Information” use case in Fig. 4-5. In this diagram, 

the “View Suspension Information” use case includes three lower level use cases 
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which are “View vehicle height”, “View whether vehicle raising/lowering” and 

“View chassis height”. 

Front
Occupant

View Suspension
Information

View vehicle
height

View whether
vehicle

raising/lowering

View Chassis
Height

«include» «include» «include»

 

Fig. 4-6. Suspension information use case. 

Three use case diagrams in the model represents all the use cases in the 4×4 

Information System graphically. The use cases presented in the diagrams capture 

and interpret all the usage scenarios in the specification document of the 4×4 

Information System. [13] highlights the importance of employing the textual use 

case in capturing detailed behavioural requirements of the automotive electronic 

system. The textual use case is made up of main flow that specifies how the 

external actor can interact with the system to achieve the desired objectives of the 

system. Moreover, the alternative flows are defined to represent the other means by 

which the system may interact with the external actor to accomplish their objective 

[115]. The conventional requirements capture process mainly concentrates on how 

the system should behave under ideal conditions, i.e. main flow. Utilizing the use 

case template introduced in [13] ensures that at each stage of the main flow, the 

developers are forced to investigate not just what may go wrong with the system, 

i.e., the error flows, but also how the system could meet the objectives of the 

system alternatively, i.e., the alternative flows. 
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Table 4-3. Use case text - Display air suspension status. 

Title Display air suspension status. 

Preconditions The display is showing the home menu screen. 

Trigger Action The driver chooses to view air suspension status. 

Objective 
4×4 Information System displays the current air suspension 
status and updates the display when a new air suspension 
height is selected. 

Main Flow 

1. The diver presses the 4×4 information hard key or soft 
key. 
2. The 4×4 Information System displays the current air 
suspension height to the driver. 

Alternative Flows 

1. The diver presses the 4×4 information hard key or soft 
key. 
2. The diver selects access mode. 
3. The 4×4 Information System validate that the vehicle 
speed is less than 50mph. 
4. The air suspension changes to access height and the 4×4 
Information System displays the access mode to the driver. 

Error Flows None. 

Success Guarantee 
The current air suspension status is displayed and updated 
with new air suspension height selections. 

Minimum Guarantee 
Displays current air suspension status when a new air 
suspension change request is not approved. 

 

Table 4-3 shows an example of a textual use case which the use case of display 

air suspension status is described in detail. This table lists preconditions, trigger 

action and the objective of this use case. How the system should behave under the 

different conditions is defined in the main flow and the alternative flow. The error 

flow is not presented in this table because there is no information available in the 

usage scenarios in the specification document of the 4×4 Information System 

regarding what may go wrong with the system. The success guarantee in this table 

states the assertion of the successful running use case. The minimum guarantee 
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describes the fewest actions the system should perform, particularly when the 

primary goal cannot be delivered. 

Table 4-4. Use case text - Display compass information. 

Title Display compass information. 

Preconditions The display is showing the home menu screen. 

Trigger Action 
The driver chooses to view the compass information in the 
4×4 Information System. 

Objective 
The 4×4 Information System displays compass information 
when compass view is selected in the 4×4 information 
screen. 

Main Flow 

1. The diver presses the 4×4 information hard key or soft 
key. 
2. The driver presses the compass view soft key. 
3. Compass information is displayed in the compass view 
on the screen. 

Alternative Flows None. 

Error Flows 

1. The diver presses the 4×4 information hard key or soft 
key. 
2. The driver presses the compass view soft key. 
3. A GPS signal is not available thus the compass 
information cannot be displayed on the screen. 

Success Guarantee 
Compass information is displayed in the compass view on 
the screen. 

Minimum Guarantee 
Compass view is displayed on the screen without compass 
view information. 

 

The usage scenarios in the specification document of the 4×4 Information 

System lacks a description of how the system should behave when the condition 

goes wrong. Table 4-4 demonstrates how the error flow is investigated during the 

construction of textual use cases. This table represents the use case of the display 

compass information. The 4×4 Information System should display compass 

information following the main flow in this table under ideal conditions. However, 
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the investigation has to be carried out on how the 4×4 Information System should 

behave when the GPS signal is not available as described in the error flow. 

The attention of the following sections focuses on how the use cases are 

described in detail within other diagrams of SysML in the function model. 

4.2.3.2 Sequence diagram 

The development of sequence diagrams is a particular path through a use case. 

Sequence diagrams are used to represent the interactions which occur among 

various objects involved in realizing the functionality as per use cases. As a result, 

one use case may have several sequence diagrams associated with it. There are 13 

sequence diagrams in this model at both high and detailed levels. 

1 2 3

Description Driver Ignition 4x4 Information Soft Key4x4 Information Hard Key Display Driver Information System Application Software

Start vehicle Start vehicle
Display Home Menu screen Update Display
alt

Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed
else alt

Press 4x4 Information Soft Key 4X4 Info Soft Key Pressed
end alt

Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed
else alt

Press 4x4 Information Soft Key 4X4 Info Soft Key PressedPress 4x4 Information Soft Key 4X4 Info Soft Key Pressed

Update Display to the 4x4 
Information screen with right area 
showing the view of Chassis or 
Compass. Steering angle data are 
displayed on the left area.

Update Display to 4x4 Information screen

See "Layout of the Display" in "Text Diagrams" 
of the model to know what is the left, central and
right area of the display.

 

Fig. 4-7. Sequence diagram: view steering angle (high level). 

Fig. 4-7 is a high level sequence diagram; it shows the sequence involved in 

how the driver views the steering angle. In this diagram, objects are defined across 

the top of the diagram and modelled as vertical lines (marked as “1”). Objects 

could be actors, class instances, parts, interface devices, packages or subsystems. 

The description of the sequence is listed on the left side of the diagram. The thick 

grey vertical line (marked as “2”) separates external actors from elements within 

the system. To the immediate right are interface devices until the vertical dashed 

line (marked as “3”). The “Driver Information System Application Software” is at 
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the right hand side of the vertical dashed line. The vertical time axis is nonlinear 

and can be regarded as event driven. Arrow lines are used to show how data flow 

transfer occurs in the system in a time sequence. As shown in Fig. 4-7, the driver 

starts the vehicle at the beginning. The Driver Information System application 

software will update the display to the home menu screen. As soon as either the 

4×4 information hard key or 4×4 information soft key is pressed, the Driver 

Information System application software will update the display to the 4×4 

information screen. The description on the left of the diagram indicates where the 

steering angle is displayed. 

In order to show how data flow is obtained and transferred between the ECUs, 

gateways, buses and other physical components, a detailed sequence diagram was 

developed as seen in Fig. 4-8. It shows how information is captured from the 

different sensors and ECUs and how the Driver Information System obtains the 

information from the MOST bus. 

Driver Steering Wheel Display Driver Information System Application Software MOST MOST_CAN_Gateway Local Connection Sensor_Local Connection_Interface Steering Angle Sensor

Driver steers the wheel Steer
Get Steering Angle from Sensor Get data from Sensor
Send steering angle data on the 
dedicated Local Connection

Put data on Local Connection

Local Connection sends data to the 
Gateway Unit

Send data

Gateway sends data on the MOST Send data
MOST sends data to the Driver 
Information System

Send data

Steering angle display updated Update left area of screen

 

Fig. 4-8. Sequence diagram: view steering angle (detailed level). 

Fig. 4-8 shows that when the driver steers the wheel, information is collected 

from the steering angle sensor and transferred to the local connection through the 

“Sensor_Local Connection_Interface”. The local connection delivers the data to the 

“MOST_CAN_Gateway”. Then the MOST_CAN_Gateway sends the data to the 

“MOST” and it will be received by the Driver Information System application 

software. Afterwards, it is displayed in the left hand area of screen. The entire route 
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is shown clearly in the diagram. The action which each object takes is also marked 

with arrow lines. 

Driver 4x4 Information Hard Key 4x4 Information Soft Key HDC Button Display Driver Information System Application Software

alt
Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed

else alt
Press 4x4 Information Soft Key 4X4 Info Soft Key Pressed

end alt

Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed
else alt

Press 4x4 Information Soft Key 4X4 Info Soft Key PressedPress 4x4 Information Soft Key 4X4 Info Soft Key Pressed

Update Display to the 4x4 Information screen
Update Display to 4x4 Information screen

Driver activates the Hill Descent Control (HDC) HDC Button Pressed
HDC icon is displayed Update central area of screen

Prerequisites: Display shows 
Home Menu screen before 
the start of this scenario.

 

Fig. 4-9. Display of HDC from Home Menu screen. 

More scenarios that the 4×4 Information System are required to exhibit are 

described by other sequence diagrams in the model. Fig. 4-9 is a sequence diagram 

showing how to display the HDC status from the home menu screen. As shown in 

Fig. 4-9, as soon as either the 4×4 information hard key or 4×4 information soft key 

is pressed, the Driver Information System application software will update the 

display to the 4×4 information screen. The HDC status is displayed by different 

icons in the central area according to the function selected. 

4.2.3.3 State machine diagram 

State machine diagrams are used to present different modes and the events that 

cause the transitions between these modes. Therefore, they can model how the parts 

of the 4×4 Information System deal with actions in detail. 
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Screen Power Off Initial Screen Showing Company Logo

Home

OffRoad Information
STD: OffRoad Information

Settings

OnRoad Information

Navigation

Phone

Entertainment

Display

Home

OffRoad Information
STD: OffRoad Information

Settings

OnRoad Information

Navigation

Phone

Entertainment

/

/

Ignition On/

after( 2 )[Ignition==1]/ Ignition Off/

Home Soft Key Pressed/

4X4 Info Soft Key Pressed/

Settings Pressed/

OnRoad Info Pressed/

Navigation Pressed/

Phone Pressed/

Entertainment Pressed/

after( 2 )[Ignition==0]/

 

Fig. 4-10. State machine diagram: Driver Information System. 

Eight state machine diagrams are utilized to describe the function of the 4×4 

Information System. As shown in Fig. 4-10, the first diagram describes the function 

of the Driver Information System at the highest level and presents information 

available to the driver in different display modes. The black node on the top left 

represents the entry point of this state machine diagram. The initial state is “Screen 

Power Off”. As soon as the ignition is turned on, the screen will display “Initial 

Screen Showing Company Logo”. After two seconds while the ignition is on, all 

display modes will be shown on the screen including “Home”, “Off Road 

Information”, “Settings”, “On Road Information”, “Navigation”, “Phone” and 

“Entertainment”. The mode can be selected by the driver. The 4×4 information is 

displayed within the “Off Road Information” mode. The note “STD: Off Road 

Information” at the bottom of this state indicates entry to a further state machine 
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diagram at a lower level. They are described in a set of seven separate child state 

machine diagrams. 

OffRoad Information
Left Display

Left Display
View Steering Angle

Displaying Steering Angle Information

View Main Gear

Displaying Gear Position
STD: Displaying Gear Position

View Transfer Gear

Displaying Transfer Gear Status
STD: Displaying Transfer Gear Status

View Differential

Displaying Centre and Rear Differential Lock Information
STD: Displaying Centre and Rear Differential Lock Information

Central Display

Central Display
Terrain Optimization Settings

Displaying Terrain Optimization Settings
STD: Displaying Terrain Optimization Settings

Hill Descent Control

Displaying Hill Descent Control Status
STD: Displaying Hill Descent Control Status

Right Display

Chassis View
STD: Chassis View

Compass View

H

Left Display
Left Display

View Steering Angle

Displaying Steering Angle Information

View Main Gear

Displaying Gear Position
STD: Displaying Gear Position

View Transfer Gear

Displaying Transfer Gear Status
STD: Displaying Transfer Gear Status

View Differential

Displaying Centre and Rear Differential Lock Information
STD: Displaying Centre and Rear Differential Lock Information

Left Display
View Steering Angle

Displaying Steering Angle Information

View Main Gear

Displaying Gear Position
STD: Displaying Gear Position

View Transfer Gear

Displaying Transfer Gear Status
STD: Displaying Transfer Gear Status

View Differential

Displaying Centre and Rear Differential Lock Information
STD: Displaying Centre and Rear Differential Lock Information

View Steering Angle

Displaying Steering Angle InformationDisplaying Steering Angle Information

View Main Gear

Displaying Gear Position
STD: Displaying Gear Position

Displaying Gear Position
STD: Displaying Gear Position

View Transfer Gear

Displaying Transfer Gear Status
STD: Displaying Transfer Gear Status

Displaying Transfer Gear Status
STD: Displaying Transfer Gear Status

View Differential

Displaying Centre and Rear Differential Lock Information
STD: Displaying Centre and Rear Differential Lock Information

Displaying Centre and Rear Differential Lock Information
STD: Displaying Centre and Rear Differential Lock Information

Central Display

Central Display
Terrain Optimization Settings

Displaying Terrain Optimization Settings
STD: Displaying Terrain Optimization Settings

Hill Descent Control

Displaying Hill Descent Control Status
STD: Displaying Hill Descent Control Status

Central Display
Terrain Optimization Settings

Displaying Terrain Optimization Settings
STD: Displaying Terrain Optimization Settings

Hill Descent Control

Displaying Hill Descent Control Status
STD: Displaying Hill Descent Control Status

Terrain Optimization Settings

Displaying Terrain Optimization Settings
STD: Displaying Terrain Optimization Settings

Displaying Terrain Optimization Settings
STD: Displaying Terrain Optimization Settings

Hill Descent Control

Displaying Hill Descent Control Status
STD: Displaying Hill Descent Control Status

Displaying Hill Descent Control Status
STD: Displaying Hill Descent Control Status

Right Display

Chassis View
STD: Chassis View

Compass View

HChassis View
STD: Chassis View

Compass View

H

/

/

/

/

/

/

/

Compass view Soft Key Pressed/ Chassis view Soft Key Pressed/

/

/

/

 

Fig. 4-11. State machine diagram: displaying 4×4 information. 

Fig. 4-11 presents how the 4×4 information is distributed in the display. The 

“Left Display”, “Central Display” and “Right Display”, separated by the dashed 

line are three concurrent states within the “Off Road Information” state which is 
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currently displayed. They are shown to the driver at the same time. On the left 

display, there are four concurrent states showing steering angle information, gear 

position, transfer gear status, centre and rear differential lock information 

respectively. The central display shows the TO settings and the HDC status 

concurrently. The right display can be navigated to “Chassis View” or “Compass 

View” dependent on the driver’s selection. The “H” within the circle stands for the 

history state. It indicates that when the display switches back to the off-road 

information mode from other modes, the right display will navigate back to the 

previously selected view rather than a default mode. 

Standard

Mud / Ruts

Sand

Grass / Snow / Ice

Rock Crawl

Displaying Terrain Optimization Settings

Standard

Mud / Ruts

Sand

Grass / Snow / Ice

Rock Crawl

/

/ Standard Mode/

Mud Ruts Mode/

Sand Mode/

Grass Snow Ice Mode/

Rock Crawl Mode/

 

Fig. 4-12. State machine diagram: displaying terrain optimization settings. 

The “State machine diagram: Displaying Terrain Optimization Settings”, 

shown in Fig. 4-12, is developed to detail further the “Displaying Terrain 

Optimization Settings” state shown in the middle of Fig. 4-11. In Fig. 4-12 the 

black node at the top left represents the entry point of this state machine diagram. 

One of five TO settings is displayed when the associated TO mode is selected 

which is marked on the arrowed lines. 
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Displaying Centre and Rear Differential Lock Information
View Centre Differential Lock Information

Locked Unlocked

View Rear Differential Lock Information

Locked Unlocked

View Centre Differential Lock Information

Locked UnlockedLocked Unlocked

View Rear Differential Lock Information

Locked UnlockedLocked Unlocked

/

/

[Locking Torque<Threshold Value]/

[Locking Torque>=Threshold Value Appropriate to Current TO Mode]/

/
[Locking Torque<Threshold Value]/

[Locking Torque>=Threshold Value Appropriate to Current TO Mode]/

 

Fig. 4-13. State machine diagram: displaying centre and rear differential lock 

information. 

Fig. 4-13 presents the mechanism of centre and rear differential lock of the 4×4 

Information System. “View Centre Differential Lock Information” and “View Rear 

Differential Lock Information”, separated by the dashed line are concurrent states. 

They are displayed to the driver at the same time. The mechanism is indicated on 

the arrowed lines. When the locking torque is less than a threshold value, both 

centre and rear differential lock show “Unlocked”. They will be locked when the 

locking torque is higher than the threshold value appropriate to the current TO 

mode. 

4.2.3.4 Activity diagram 

The final behavioural diagram examined is the activity diagram. Five activity 

diagrams are used to model actions and the effect of those actions on relevant 

artefacts in the model. For example, an activity diagram may describe a use case, 

event or operation. The top level activities can own an activity diagram, which can 

describe the detail of that activity in terms of a sequence of actions that may 

include the use of other, lower level activities. The activity diagram can also 
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indicate at what point specific inputs are required by actions and specific outputs 

are produced by them. 

Driver

Press 4x4 Information Hard Key or Soft Key

Rotate the TO Selector

Press 4x4 Information Hard Key or Soft Key

Rotate the TO Selector

Vehicle

New Terrain Optimization ModeNew Terrain Optimization Mode

Display

Displaying current TO Setting

Displaying new TO Setting

Displaying current TO Setting

Displaying new TO Setting

Change the vehicle status under new TO setting

 

Fig. 4-14. Activity diagram: view TO settings and change the TO mode. 

Fig. 4-14 shows an example activity diagram within the 4×4 Information 

System. Three swim lanes are allocated separately to different objects in the 4×4 

Information System. They are “Driver”, “Vehicle” and “Display”. Each object is 

responsible for performing the activities in its allocated swim lane. As shown in 

Fig. 4-14, the black node at the top left of this diagram represents the entry point of 

this activity diagram. The driver performs the action of “Press 4×4 Information 

Hard Key or Soft Key” to view the 4×4 information on the display and then 

“Rotate the TO Selector” to change the TO setting. The display will become 

“Displaying current TO Setting” in response to the driver’s action. The vehicle 

changes to the selected TO mode while the display shows new TO settings. The 

black node within the circle at the bottom of this diagram shows the end of this 

activity diagram. 
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Driver

Press 4x4 Information 
Hard Key or Soft Key

Steer the Wheel

Press 4x4 Information 
Hard Key or Soft Key

Steer the Wheel

Driver Information System Application Software

Update the display of steering 
angle on the left area
Update the display of steering 
angle on the left area

Steering Angle Sensor

Collect and sent 
steering angle data
Collect and sent 
steering angle data

MOST

Convert and sent 
steering angle data
Convert and sent 
steering angle data

Display

Displaying Steering AngleDisplaying Steering Angle

 
Fig. 4-15. Activity diagram: view steering angle. 

 
Fig. 4-15 is another activity diagram showing actions on relevant artefacts 

when the driver chooses to view the steering angle. The black node at the top left of 

this activity diagram represents the entry point. The driver performs the action of 

“Press 4×4 Information Hard Key or Soft Key” to navigate to the 4×4 information 

screen and then steer the wheel. The steering angle sensor will collect the steering 

angle data and send them to the MOST bus. The MOST bus converts the data and 

delivers them to the Driver Information System application software. The software 

updates the steering angle data on the left area of the display and the display finally 

shows the steering angle to the driver. 

4.2.4 Other diagrams in the model 

The text diagram is not a standard SysML diagram type shown in Fig. 2-15. It can 

be added to the model as additional notes to illustrate the design requirement of the 

model. In this model, two text diagrams as shown in Fig. 4-16 and Fig. 4-17 are 

developed to describe the layout of the display and how the air suspension selector 

works respectively. 
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Fig. 4-16. Text diagram: layout of the display. 

 

Fig. 4-17. Text diagram: air suspension selector. 
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4.2.5 How diagrams fit together in the model 
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Fig. 4-18 shows an example of how to make use of those key diagram types to 

enable automotive engineers to model both the structure and functionality of an 

automotive electronic system. This example identifies some of the key relations 

among the different diagrams in the model. In order to summarize how this model 

could benefit the engineer during system development, an example requirement of 

“Driver view steering angle in the 4×4 Information System” is taken. Firstly, block 

definition diagrams as shown at the top left are used to depict the properties and 

relations of various data buses which are used for the data transfer in the system. 

Afterwards, the internal block diagrams are developed to define the internal 

structure like the connections and data flow direction between those buses. This 

process is marked as “1”. Then the functional modelling has been carried out via 

use case diagrams, sequence diagrams, state machine diagrams and activity 

diagrams. Use case diagrams define this “view steering angle” requirement as one 

use case which is shown in the middle of this diagram. This use case is then 

modelled in detail within corresponding sequence diagrams and activity diagrams 

which are marked as “2” and “3” respectively. The sequence diagrams show the 

interactions among various objects in the system such as how steering angle data 

are captured and delivered and displayed in this Driver Information System. The 

actors in the sequence diagram are defined in use case diagrams and are marked as 

“4”. The interface devices and physical objects shown at the top of sequence 

diagram are modelled in block definition diagrams and internal block diagrams 

which are marked as “5” and “6”. Next, the arrowed line marked as “7” shows state 

machine diagrams representing how the mode changes under actions in order to 

display the steering angle information to the driver. The actions are modelled in 

detail together with the behaviour of relevant objects within the system in activity 
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diagrams that are marked as “8”. These objects are modelled with their interaction 

in sequence diagrams that are marked as “9” and also in block definition diagrams 

and internal block diagrams. 

4.2.6 Summary of the diagrams 

Table 4-5 lists all the diagrams which were developed for the 4×4 Information 

System. The first column from the left lists all the diagram types in the model. As 

shown in this table, eight types of diagram are utilized to build the model of the 

4×4 Information System including the text diagram, a non-standard SysML 

diagram type. The middle column indicates the purpose of the diagram type. Block 

definition diagrams, internal block diagrams and text diagrams are developed for 

structural modelling of the system. Use case diagrams, sequence diagrams, state 

machine diagrams and activity diagrams are utilized for modelling the functional 

behaviour of the system. The right hand column numbers every diagram in each 

diagram type. There are 37 diagrams in total in the model which is built in 

ARTiSAN Studio. A full list of diagrams in this model can be found in Appendix 

B. 

Table 4-5. List of diagrams in SysML model. 

Diagram type Purpose Name of diagrams 
Block definition 
diagram 

Structure 1. Network class 
2. Key class 
3. Sensor class 
4. Gateway_class 
5. Sensor_local connection_interface_class 

Internal block 
diagram 

Structure 1. Driver Information System of Systems 
overview 
2. MOST System of Systems overview 

Text diagram Structure 1. Layout of the display 
2. Air suspension selector 

Use case diagram Behaviour 1. Driver Information System use case 
2. 4×4 information use case 
3. Suspension information use case 

Sequence diagram  Behaviour 1. Return to home menu screen from other screens 
(HL - B) 
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2. Change to 4×4 Information screen from other 
screens (HL - B) 
3. View steering angle (HL - B) 
4. View steering angle (HL-W) 
5. View steering angle (DL-B) 
6. View steering angle (DL-W) 
7. Choose different views in 4×4 information 
screen from home menu screen (HL-B) 
8. View main gear and transfer gear change from 
home menu screen (HL-B) 
9. View TO settings from home menu screen 
(HL-B) 
10. Display of HDC from home menu screen 
(HL-B) 
11. Display of suspension status from home menu 
screen (HL-B) 
12. Display of differential status from home menu 
screen (HL-B) 
13. An off-road driving example (HL-B) 

State machine 
diagram 

Behaviour 1. Driver Information System 
2. Off-road information 
3. Displaying gear position 
4. Displaying transfer gear status 
5. Displaying centre and rear differential Lock 
Information 
6. Displaying TO settings 
7. Displaying HDC status 
8. Chassis view 

Activity diagram Behaviour 1. Getting to the 4×4 information screen 
2. Selecting access height and viewing of new 
height information 
3. View TO Settings and change the TO mode 
4. View steering 

 

The listed diagrams in the model provide a clearly structured visualization of 

the 4×4 Information System. Several types of diagram represent the function 

requirements from different aspects of the system with relevant objects. Table 4-6 

summarizes how the functions of the 4×4 Information System are modelled within 

use case, sequence, state machine and activity diagrams. The number under each 

diagram type column refers to the Table 4-5. For example, “Function 3. Switch 

between different views” is modelled in use case diagram 2, sequence diagram 7 

and state machine diagram 2 which are listed in Table 4-5. 
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Table 4-6. Functions covered by the diagrams in SysML model. 

 
Function 
number 

 
Function details 

Use case 
diagram 
number 

Sequence 
diagram 
number 

State 
machine 
diagram 
number 

Activity 
diagram 
number 

1. Return to home menu 
screen 

 1. 1.  

2. Change to 4×4 
information screen 
from other screens 

1. 2. 1. 1. 

3. Switch between 
different views 

2. 7. 2.  

4. Display steering angle 
information 

2. 3. 4. 5. 6. 2. 4. 

5. Display transfer gear 
selection status 

2. 8. 2.4.  

6. Display main gear 
position 

2. 8. 2.3.  

7. Display differential 
lock information – 
centre and rear 

2. 12. 2.5.  

8. Display TO mode 2. 9. 2.6. 3. 
9. Display HDC status 2. 10. 2.7.  

10. Display air suspension 
status 

2. 3.  11. 8. 2. 

11. Display wheel height 
status 

3. 11. 8. 2. 

 

In summary, block definition diagrams and internal block diagrams are used for 

structural modelling of different aspects. The block definition diagrams depict the 

properties and relations of various object classes in the system. The internal block 

diagrams are used to define the internal structure of the system such as connections 

and data flows between the parts in the system. The use case diagrams define the 

interaction between actors and associated various use cases for the components 

within the system. The sequence diagrams show the interactions among various 

objects in the system when viewed as a sequence in time. State machine diagrams 

are used to represent mode changes within the system under actions which can be 

related to operations in the block definition diagrams. The activity diagrams are 
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used to model the behaviour of relevant objects within the system under the 

operations defined in the block definition diagrams. A more detailed discussion of 

the model is provided in Section 4.4 after the functional model built in 

Simulink/Stateflow is presented in the following section. 

 

4.3 Part of the model developed using MATLAB 

Simulink/Stateflow 

Simulink/Stateflow does not include use case diagrams, sequence diagrams and 

activity diagrams. It utilizes Stateflow diagrams only to capture the functional 

behaviour of a system. Fig. 4-19 is the top level view of the functional model of the 

4×4 Information System built in Simulink/Stateflow. Compared to Fig. 4-10, there 

is no distinct difference between them. In this diagram, the “OffRoad_Information” 

state is highlighted on a grey background. It indicates that this state contains lower 

level states which are shown in Fig. 4-20. 

 

Fig. 4-19. Stateflow diagram: Driver Information System. 
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Fig. 4-20. Stateflow diagram: display off-road information. 

The 4×4 information displayed in the “OffRoad_Information” mode in Fig. 

4-20 is a contrast to the function of the 4×4 Information System modelled and 

represented in Fig. 4-11. In Fig. 4-20, each rectangle with rounded corners 

represents a display state. The largest rectangle represents the highest level state in 

this diagram. Smaller rectangles are lower level states. States in grey and light 

brown colours contain more detailed level states. Rectangles with dashed lines are 

utilized to indicate concurrent states. Furthermore, unlike the state machine 

diagram in ARTiSAN Studio, the location of states in a Stateflow diagram is not 

restricted. Lower level states can be moved freely within the rectangle of a higher 

level state. Therefore, the position of each display state in the Simulink/Stateflow 

model corresponds to the actual HMI. More detailed functionality of the 4×4 

Information System is represented by seven separate lower level Stateflow 

diagrams. 
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Fig. 4-21. Stateflow diagram: TO settings. 

Fig. 4-21 is a lower level state which is shown as a rectangle that is marked 

with “TerrainOptimizationSettings” in the centre of Fig. 4-20. It is a contrast to the 

function of the 4×4 Information System modelled and represented in Fig. 4-12. 

Similar to Fig. 4-12, this diagram represents one of five TO settings is displayed 

when the associated TO mode is selected, which is marked on the arrowed lines. 

 

Fig. 4-22. Stateflow diagram: view centre differential. 

In contrast to Fig. 4-13, Fig. 4-22 represents the mechanism of the centre 

differential lock of the 4×4 Information System. When the locking torque is less 
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than a threshold value, both centre and rear differential locks show “Unlocked”. 

They will be locked when the locking torque is higher than the threshold value 

appropriate to the current TO mode. 

Fig. 4-23 shows an overview of the Simulink model. All Stateflow diagrams in 

the model are included in a state chart which is shown as a rectangle at the top right 

of this figure. Four constant blocks on the left of the state chart are used to model 

the input value such as “Locking Torque” in the model. Other constant blocks 

produce control signals to trigger the events which control the transition of states. 

A vertical bar and three flat bars are “Mux” in the Simulink model which integrate 

all the control signals and input them through a port at the top of state chart. 
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Table 4-7. List of diagrams in Simulink/Stateflow model. 

Diagram Type Purpose Name of Diagrams 

Stateflow diagram Behaviour 1. Driver Information System 

2. Display off-road information 

3. View main gear 

4. View transfer gear 

5. View centre differential lock 

6. View rear differential lock 

7. View TO settings 

8. View HDC status 

9. Chassis view 

 

Table 4-8. Functions covered by Stateflow diagrams in Simulink/Stateflow model. 

Function 

Number 

Function Details Stateflow Diagram 

Number 

1. Return to home menu screen 1. 

2. Change to 4×4 information screen from other 

screens 

1. 

3. Switch between different views 2. 

4. Display steering angle information 2. 

5. Display transfer gear selection status 2.4. 

6. Display main gear position 2.3. 

7. Display differential lock information – centre 

and rear 

2.5.6. 

8. Display TO mode 2.7. 

9. Display HDC status 2.8. 

10. Display air suspension status 2.9. 

11. Display wheel height status 2.9. 

 

Table 4-7 lists all the Stateflow diagrams which were developed for the 4×4 

Information System. As shown in this table, the Simulink/Stateflow model utilizes 

Stateflow diagrams only for modelling the functional behaviour of the system. 
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Every diagram is numbered in the right hand column. There are nine Stateflow 

diagrams in total in this model. A full list of Stateflow diagrams in the model can 

be found in Appendix C. Table 4-8 summarizes how the functions of the 4×4 

Information System are modelled within these Stateflow diagrams. The Stateflow 

diagram number refers to Table 4-7. For instance, “Function 5. Display Transfer 

Gear selection status” is modelled in Stateflow diagrams 2 and 4 which are listed in 

Table 4-7. 

 

4.4 Discussion 

In this chapter, diagrams have been selected from the full set of the SysML 

diagram types as being representative of a typical system development. This 

chapter has discussed how to make use of those key diagram types to enable 

automotive engineers to model both the structure and function of an automotive 

electronic system. 

Block definition diagrams and internal block diagrams are used for structural 

modelling of different aspects. The block definition diagrams depict the properties 

and relations of various object classes in the system. The internal block diagrams 

are used to define the internal structure of the system such as connections and data 

flows between the parts in the system. 

The functional modelling has been carried out via use case diagrams,   

sequence diagrams, state machine diagrams and activity diagrams. The use case 

diagrams define the interaction between actors and associated various use cases for 

the components within the system. The sequence diagrams show the interactions 

among various objects in the system when viewed as a sequence in time. State 

machine diagrams are used to represent mode changes within the system under 
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actions which can be related to operations in the block definition diagrams. The 

activity diagrams are used to model the behaviour of relevant objects within the 

system under the operations defined in the block definition diagrams. 

As described in Section 4.2.5, the diagrams fit together as one model, there is 

no obvious integration or data synchronization issue that needs to be considered 

explicitly when additional diagrams are introduced into the model. Facilitated by 

ARTiSAN Studio, the entire model is synchronized by keeping attributes of the 

same component in the model consistently updated among all diagrams. For 

example, if an actor’s name needs to be changed due to the alteration of the 

requirement document, revising the name in any diagram that includes this actor 

results in the name alteration in all diagrams that contain this actor. Thus, all 

diagrams of the model are internally synchronized with external requirements. 

Getting the requirements right is crucial for any project [80, 81]. These 

diagrams facilitate the formulation of textual form specification documents by 

successfully translating the design requirements into a clearly structured and 

visualized model. This model represents the design requirement in both structural 

and behavioural viewpoints. Moreover, experience shows that these diagrams can 

be broken down and developed at different levels to represent the interactions and 

detail at various levels. The integration is vital for the automotive electronic system. 

Different people require different pieces of information, depending on what their 

roles are in the system. This model facilitates collaboration of people with different 

backgrounds such as systems engineers and software engineers to design, 

implement and manage such complex distributed systems and integrate them into 

one cohesive and reliable SoS. Specifically, the systems engineer can make use of 

block definition diagrams and internal block diagrams to define the physical 
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structure and capture the interaction between the components. The software 

engineer can pay more attention to the state machine diagrams, activity diagrams 

and sequence diagrams for the functional modelling and then deliver the software. 

The SysML can benefit the development of an automotive electronic SoS through 

either way [116, 117]. 

The function model has also been developed in Simulink/Stateflow. In the 

Simulink/Stateflow model, a Stateflow diagram has a very similar mechanism as a 

state machine diagram in SysML to model the functionality of the 4×4 Information 

System. Diagrams can be broken down and developed at different levels to show 

the interaction and detail at various levels such as Fig. 4-19 and Fig. 4-20. How 

mode changes under actions in order to display the 4×4 information to the driver 

are represented in a similar mechanism as state machine diagram in SysML. The 

developer can gain an understanding of the system from several levels. However, 

for the purpose of analysing a system, it is important to be able to observe a system 

from many different viewpoints [27]. In comparison with the SysML model, the 

Simulink/Stateflow model only utilizes nine Stateflow diagrams to provide the 

description of the function view of the 4×4 Information System from the 

behavioural viewpoint. The model built in SysML benefits from the collaboration 

of six diagram types, namely, block definition diagram, internal block diagram, use 

case diagram, sequence diagram, state machine diagram and activity diagram to 

enable the engineer to obtain a profound understanding of the SoS from both 

structural viewpoint and behavioural viewpoint. 

It is clear that SysML provides a more complete description of the functional 

behaviour of the SoS than Simulink/Stateflow. The added detail in SysML provides 
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a more comprehensive coverage of the functional behaviour of the SoS in relation 

to the design requirements. 

An important consideration for model construction is the capability of coding 

implementation. The code generated automatically through model building in 

ARTiSAN Studio and the model developed in Simulink/Stateflow are going to be 

described in the following chapter. 
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Chapter 5                       

Code generation and verification 

 

Chapter 4 presented the development of the structure and function model in SysML 

by using ARTiSAN Studio and the building of the function model in 

Simulink/Stateflow. This chapter compares the functional equivalence of the 

function models and discusses the automatic code generation from both models. 

The PolySpace tool is utilized to perform automatic code verification for the C 

code generated. The attention focuses on the comparison of quality and efficiency 

of the code. 

 

5.1 Function model simulation and comparison 

Utilizing simulation to verify the model is a sophisticated task for model-based 

design. For example, the control engineer needs to transform design requirements 

into the block diagrams in a Simulink model. After completing the model, offline 

simulation can be performed for the system analysis. In this chapter, eleven test 

cases are developed as shown in Table 5-1 to verify the functional equivalence of 

the state machine diagrams in the function model built in ARTiSAN Studio and 

Stateflow diagrams in Simulink/Stateflow. 
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Table 5-1. Test cases for verifying the functional equivalence of the model. 

Number Test case name Precondition Objective 

1. 
Return to home 
menu screen 

Display shows 4×4 
information screen 

Display home menu screen 
as soon as home menu hard 
key or soft key is pressed. 

2. 
Change to 4×4 
information screen 
from other screens 

Display shows 
home menu screen 

Display 4×4 information 
screen as soon as the 4×4 
information hard key or 
soft key is pressed. 

3. 
Display compass 
information 

Display shows 
home menu screen 

Display compass view on 
4×4 information screen. 

4. 
Display steering 
angle information 

Display shows 
home menu screen. 

Display steering angle 
information on 4×4 
information screen. 

5. 
Display transfer 
gear selection status

Display shows 
home menu screen 

Displaying the transfer gear 
status when a High or Low 
ratio has been selected. 

6. 
Display main gear 
position 

Display shows 
home menu screen 

Displaying the main gear 
position when main gear 
position has been selected. 

7. 
Display differential 
lock information – 
centre and rear 

Display shows 
home menu screen 

Displaying the differential 
lock information for both 
centre and rear differentials 
on 4×4 information screen.

8. Display TO mode 
Display shows 
home menu screen 

Displaying five different 
driving modes according to 
the driver’s selection. 

9. Display HDC status
Display shows 
home menu screen 

Displaying the HDC status 
based on the driver’s 
selection. 

10. 
Display air 
suspension status 

Display shows 
home menu screen 

Displaying the air 
suspension status when 
chassis view is selected in 
the 4×4 information screen.

11. 
Display wheel 
height status 

Display shows 
home menu screen 

Displaying the wheel 
height status when chassis 
view is selected in the 4×4 
information screen. 
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The simulation is performed in both tools for these test cases. During the 

simulation, the status of states changes according to the input actions. Thus, the 

control and supervisory logic which are defined in the function models can be 

tested by using the above test cases. For example, test case 3 is used to verify the 

function of displaying the compass view in the 4×4 Information System. During the 

simulation, both tools simulate state changes in the function model based on the 

same set of actions which is described as the main flow in the Table 4-4. When the 

test begins, both models show the home menu screen during the simulation, after 

the actions are taken, the screenshots of the simulations in both models are shown 

below. 
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Fig. 5-1. Simulation in ARTiSAN Studio - OffRoad Information. 
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Fig. 5-1 shows the simulation performed in ARTiSAN Studio. It simulates the 

4×4 Information System currently displaying “OffRoad Information” mode. The 

active states are represented in red during the simulation. Fig. 5-1 shows the left 

area of the screen displays the steering angle, main gear, transfer gear, and centre 

and rear differential lock. The central display shows the TO settings and HDC. The 

right area of the screen is in compass view. 

 

Fig. 5-2. Simulation in Simulink/Stateflow - OffRoad Information. 

 

Within the model built in Simulink/Stateflow for the 4×4 Information System, 

the simulation is performed as shown in Fig. 5-2. This diagram shows the 

simulation of the 4×4 Information System which is in comparison with Fig. 5-1. 

The active states are represented in blue during the simulation. Fig. 5-2 shows that 

the screen is in “OffRoad Information” mode. The left area of the screen, the 

central display and the right area of the screen shows the same information as 

simulated in the state machine diagram in ARTiSAN Studio. 
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Fig. 5-3. Simulation in ARTiSAN Studio - Display TO mode. 

 

Test case 8, ‘Display TO mode’ is employed as another example in this section. 

Fig. 5-3 and Fig. 5-4 present how the function model behaves after the same 

actions were taken. Fig. 5-3 shows that the sand mode is displayed on the screen 

which is highlighted in red in the model built by ARTiSAN Studio. Similarly, Fig. 

5-4 shows that the screen is showing sand mode which is represented in blue in the 

model developed in Simulink/Stateflow. 

 

 

Fig. 5-4. Simulation in Simulink/Stateflow - Display TO mode. 



Chapter 5 

                                                                     
- 91 -

From the comparison of the simulation exercise, it is concluded that the 

function models built in ARTiSAN Studio and in Simulink/Stateflow perform the 

same behaviour under the same input action, i.e., they are functionally equivalent. 

The code generation from the functional models is explored in the next section. 

 

5.2 Code generation 

C++ Synchronizer

SysML model

VxWorks 
Production

Win32 Production 
EXE

Generic Production

Win32 Test 
Harness Simulation 

DLL

Code 1

Code 2

Code 3

Code 4

C Synchronizer

Generic Production

Win32 Test 
Harness Simulation 

DLL

Code 5

Code 6

 

Fig. 5-5. Code generation in ARTiSAN Studio for the model of 4×4 Information 

System. 

The code generation of the function model built in SysML is facilitated by the C 

Synchronizer and C++ Synchronizer in ARTiSAN Studio version 6.1. The C 

Synchronizer is a well integrated tool in ARTiSAN Studio. It uses a set of 

generation templates to produce the code for different purposes which is shown in 

Fig. 5-5. For example, C code can be generated through Win32 Production EXE 

scheme for a Windows operating system. C++ code can be produced through the 

VxWorks Production scheme for a VxWorks operating system. Additionally, 
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ARTiSAN Studio provides the engineer with a certain level of flexibility for code 

generation. For instance, the code can be generated from state machine diagrams in 

the function model or it can be produced for the entire model including both 

structure and function models. In this Thesis, C code is produced from eight state 

machine diagrams in the function model through a Generic Production scheme for 

operating systems that are not Windows or VxWorks. It is indicated as “Code 5” in 

Fig. 5-5. This C code contains 4,311 lines (or 3,142 lines without comments). 

 

Fig. 5-6. Code generation in Real-Time Workshop Embedded Coder for the model 

of 4×4 Information System. 

The Real-Time Workshop Embedded Coder (RTW EC) is one of many in the 

Simulink product family which has been developed by The MathWorks. The 

version evaluated in this Thesis is R2007a. It enables the C code and C++ code 

generation for the Simulink and Stateflow models. The different target files can be 

selected for generating C or C++ code, which are shown in Fig. 5-6. In this Thesis, 

C code is generated from nine Stateflow diagrams in the Simulink/Stateflow model 

through the “Real-Time Workshop Embedded Coder with no auto configuration” 

scheme by selecting the “ert.tlc” target file. This C code is PC-based C source code 

which has a difference lap to the final stage microcontroller-based code. To 
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automatically generate C source code and run the code directly on the target, some 

modifications are required to the target files which are provided by RTW EC. The 

other options are set as the default when the C code is generated. It is indicated as 

“Code 1” in Fig. 5-6. This C code has 1,818 lines (or 1,336 lines without 

comments). Fig. 5-7 shows the default parameter configuration of RTW EC. 

 

 

Fig. 5-7. Parameter configuration of Real-Time Workshop Embedded Coder. 

 

Fig. 5-8 and Fig. 5-9 show the default parameter configuration of the solver and 

optimization respectively. 
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Fig. 5-8. Parameter configuration of solver. 

 

Fig. 5-9. Parameter configuration of optimization. 

Further investigation focuses on the comparison of quality and efficiency of the 

code. Selecting different options in the code generation could potentially affect the 

result of the code generation in terms of quality and efficiency. Attention is given 

and the results observed are discussed in a later section. 
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5.3 Automatic code verification and code comparison 

Comparing the length of the code, the C code generated from ARTiSAN Studio for 

state machine diagrams is twice as long as that produced by Simulink/Statelow. It 

implies that this code takes a longer time to compile and is more difficult to check 

and maintain. Ideally, developers would discover and fix errors in programs before 

they are released [118]. However, it is an extremely difficult task. Among the many 

approaches for finding and fixing errors, static analysis is one of the most attractive 

[119-122]. Static analysis aims to automatically process source code and analyze 

all code without the large amount of test cases used in testing [123]. PolySpace is 

such a tool to use static analysis techniques, including symbolic analysis, abstract 

interpretation, model checking, integer range analysis, and inter-procedural 

analysis [97]. Hence, it is utilized in this Thesis to perform automatic code 

verification for the C code generated from both models. The PolySpace analysis 

process is composed of three main phases. Firstly, PolySpace checks the syntax 

and semantics of the analyzed files. Then, PolySpace seeks the main procedure. If 

one is not found, PolySpace will generate one automatically. By default, this 

function will call all public functions of the file. Finally, PolySpace proceeds with 

the code analysis phase, during which run time errors are detected and highlighted 

in the code. Moreover, each operation checked is displayed by using a meaningful 

colour scheme and related diagnostics [97]: 

• Red: Errors which occur at every execution. 

• Orange: Warning – an error may occur. 

• Grey: Shows unreachable code. 

• Green: Error condition that will never occur. 
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As shown in Fig. 5-10, the PolySpace Viewer displays the analysis results of 

the C code produced from the state machine diagrams of the model built in 

ARTiSAN Studio. The left hand area of this diagram is the procedural entities view. 

It shows the list of packages that have been analyzed or used during the analysis. 

On the right of this window is the source code view with coloured instructions 

which are stated as above. These windows enable software engineers to easily 

inspect the source code. For example, when the engineer clicks on “RtsDrive ( )” 

(marked as “1”), it expands and displays a list of coloured symbols showing the 

diagnostic results. In the meantime, the source code is opened and displayed on the 

right hand side in the source code view. After clicking on the orange item “NIV.5” 

(marked as “2”) which stands for Uninitialized Variable, the source code view is 

updated to show the location of this orange warning. 

2

1

3

 

Fig. 5-10. Analysis result of the C code produced from ARTiSAN Studio. 
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In addition, a warning message window is opened after clicking on the orange 

section with the grey background (marked as “3”) of the code in Fig. 5-10. Fig. 

5-11 presents this warning message window and it precisely indicates line 2281, 

column 26 of the source code has a variable that may be non-initialized. 

 

 

Fig. 5-11. Warning message window of the C code produced from ARTiSAN 

Studio. 

2

1

3

 

Fig. 5-12. Analysis result of the C code produced from RTW. 

Fig. 5-12 represents the PolySpace Viewer showing the analysis results of the C 

code produced from the Stateflow diagrams in the Simulink/Stateflow model by 
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RTW EC. On the left of this window is the procedural entities view. It displays the 

list of packages that have been analyzed or used during the analysis. The right hand 

area of this window is the source code view with coloured instructions. Software 

engineers can manually inspect the source code from this window. For instance, 

when the engineer clicks on “FunctionalModel0209_initialize ( )” (marked as “1”), 

it expands and displays the diagnostic results in coloured symbols. At the same 

time, the source code is opened and exhibited on the right side in the source code 

view. After clicking on the orange item “IDP.6” (marked as “2”) which stands for 

Illegal Dereference of Pointer, the source code view is updated to indicate the 

location of this orange warning. Moreover, after clicking on the orange section with 

the grey background of the code that is marked as “3” in Fig. 5-12, a warning 

message window is opened as shown in Fig. 5-13. This warning message window 

points out that the pointer in the source code line 1463, column 7 may be outside its 

bounds. 

 

Fig. 5-13. Warning message window of the C code produced from RTW. 

Furthermore, after the analysis is performed from PolySpace, textual files are 

produced which can be found in Appendix D and Appendix E for the analysis 

results of the C code produced from ARTiSAN Studio and RTW EC respectively. 

They can be used to create Excel reports. The report contains several spreadsheets 

related to the application analyzed. 
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Fig. 5-14. Distribution of orange checks by categories of the C code produced from 

state machine diagram. 

Fig. 5-14 shows the “Orange Check Distribution” spreadsheet which is used to 

present the distribution of orange checks by categories of the C code produced 

from eight state machine diagrams of the model built in ARTiSAN Studio. The 

orange warnings consist of two types of software defects, i.e. “Uninitialized 

Variable” and “Illegal Dereference of Pointer”. The uninitialized variable takes up 

70% of the orange warnings and illegal dereference of pointer forms the remaining 

30%. 

IDP Illegal Dereference of
Pointer
100%

IDP Illegal Dereference of Pointer

 

Fig. 5-15. Distribution of orange checks by categories of the C code produced from 

Stateflow diagram. 



Chapter 5 

                                                                     
- 100 -

By contrast with Fig. 5-14, Fig. 5-15 shows the “Orange Check Distribution” 

spreadsheet that is used to explain the distribution of orange checks by categories 

of the C code produced from nine Stateflow diagrams in the Simulink/Stateflow 

model. The orange warnings are made up by “Illegal Dereference of Pointer” only. 

Fig. 5-16 presents the “Distribution of checks by file” spreadsheet of the C 

code produced from eight state machine diagrams of the model built in ARTiSAN 

Studio. In this diagram, the X-axis indicates the number of checks. The Y-axis lists 

the files which have been analyzed or used during the analysis. The C file 

“_polyspace_main.c” is the main procedure which is automatically generated by 

PolySpace to carry out static analysis. Thus, this C code is error free in about 720 

operations which is shown as a flat green bar. The “Driver_Information_System.c” 

is produced by the ARTiSAN Studio C Synchronizer. According to the scale on the 

X-axis, this code has nearly 400 orange warnings and almost 300 unreachable 

operations in the code. 

Distribution of checks by file 1

0 100 200 300 400 500 600 700 800 900

Driver_Information_System.c

__polyspace_main.c

 

Fig. 5-16. Distribution of checks by file of the C code produced from state machine 

diagrams of the model built in ARTiSAN Studio. 
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Fig. 5-17. Distribution of checks by file of the C code produced from Stateflow 

diagrams in Simulink/Stateflow model. 

Fig. 5-17 displays the “Distribution of checks by file” spreadsheet of the C 

code produced from nine Stateflow diagrams in the Simulink/Stateflow model. 

Similar to Fig. 5-16, the X-axis indicates the number of checks. The Y-axis 

illustrates the “ert_main.c” and the “FunctionalModel0209.c”. Both C codes are 

generated by RTW EC and have been analyzed by PolySpace. “ert_main.c” 

contains three safe operations and three unreachable operations which are shown in 

the green and grey bars in Fig. 5-17 respectively. In “FunctionalModel0209.c”, 

there are 10 safe operations, 17 unreachable operations and only one orange 

warning in the code. In comparison with Fig. 5-16, it is clear that PolySpace 

performed significantly fewer checks in total for these C files. This is because the 

RTW EC produced a short C code in terms of length. 

The above spreadsheets facilitate an overview of the automatically generated C 

code for the software engineer. It enables engineers to seek improvement in code 
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generation such as developing an auto coding platform for consistent, robust and 

reliable code delivery. 

 

Fig. 5-18. RTE view of the C code produced from state machine diagrams of the 

model built in ARTiSAN Studio. 

As shown in Fig. 5-18, the Run Time Error (RTE) view is presented in the 

“Check Synthesis” spreadsheet. It contains all statistics about checks and colours in 

a summary table. Fig. 5-18 represents the RTE view of the C code produced from 

eight state machine diagrams in SysML model. In this table, it can be seen that ten 
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types of errors have been checked. They are pointed out in lines 3, 4, 5, 6, 7, 8, 9, 

12, 14 and 15 respectively. Based on Fig. 5-18, there are no certain errors which 

occur on each execution. There are 1,498 safe operations, 393 unreachable 

operations and 277 orange warnings in the code. This code is 87.22% proven 

overall. 

 

Fig. 5-19. RTE view of the C code produced from Stateflow diagrams in 

Simulink/Stateflow model. 
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By contrast with Fig. 5-18, Fig. 5-19 shows the RTE view of the C code 

generated from nine Stateflow diagrams of the Simulink/Stateflow model. The 

result is summarised at the bottom of the table. No definite run-time errors are 

found in this code. There are 13 safe operations, 20 unreachable operations and 

there is only one orange report which is a possible error. This code is 97.06% 

verified overall. 

From the comparison above, there are three more error types that could be 

applied to the code produced by ARTiSAN Studio from state machine diagrams 

which are listed in lines 7, 8 and 9 respectively. “Uninitialized Variable” in line 7 

which is an error type possibly applies to this C code produced the most orange 

warnings that cause this code to have a lower proven rate. 

 

5.4 Code inspection and analysis 

Section 5.3 shows a significant difference between the number of operations of the 

C code produced by ARTiSAN Studio and RTW EC. This section carries out 

further investigation based on the results observed from the static analysis of the 

software code. 

The C code generation for SysML model is performed in ARTiSAN Studio 

version 6.1. There is no option available in the C synchronizer to optimize the code 

generation process. As described in Section 5.2, the default options are selected 

when RTW EC produced the C code for the Simulink/Stateflow model. The fist 

experiment is to explore how the length of the C code changes when different 

target files are selected. 
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Table 5-2. C code length under different target files. 

Target file Description 
Length of the 
C code (lines)

ert.tlc 
Real-Time Workshop Embedded Coder with no 
auto configuration. 

1,818 

ert_shrlib.tlc
Real-Time Workshop Embedded Coder with 
host-based shared library target. 

1,247 

grt.tlc Generic real-time target 1,474 

rtwin.tlc Real-time Windows target 1,457 

rtwsfcn.tlc S-function target 1,887 

 

As shown in the Table 5-2, five target files are selected for the C code 

generation. The C code can be produced for different purposes by selecting the 

target file which is described in the middle column. The right column specifies the 

length of the C code generated. Comparing with the 4,311 lines C code produced 

from the functionally equivalent model in ARTiSAN Studio, the significant 

difference in length still exists. Additional static analysis is carried out for the code 

produced by selecting “ert_shrlib.tlc” target file. 
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Fig. 5-20. RTE view of the C code produced by selecting “ert_shrlib.tlc” target file 

from Stateflow diagrams in Simulink/Stateflow model. 

Fig. 5-20 shows the RTE view of the C code generated by selecting the 

“ert_shrlib.tlc” target file from Stateflow diagrams of the Simulink/Stateflow 

model. The result is summarised at the bottom of the table. No definite run-time 

errors are found in this code. There are 15 safe operations, 7 unreachable 

operations and there is no orange warning in the code. This code is 100.00% 

proven overall. 
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The next experiment focuses on finding out the impact of selecting different 

solvers. The experiment is based on “Code 1” in Fig. 5-6 where the default settings 

are employed as explained in Section 5.2. The default setting for the solver is 

“ode3” which is shown in Fig. 5-8. As explained in section 5.3, this C code has 

1,818 lines and there are 13 safe operations, 20 unreachable operations and there is 

one orange warning. This code is 97.06% verified overall. Three different solvers 

are selected for the code generation, namely, “ode1”, “ode5” and “ode14x”. The 

static analysis shows the C code produced with different solvers have same length 

and operations as shown in RTE view of the Fig. 5-19. There is no distinct 

difference highlighted among these C codes. 

To investigate the reason for the huge difference between the numbers of 

operations of the C code produced in ARTiSAN Studio and in Simulink/Stateflow, 

the “Code 5” in Fig. 5-5 and the “Code 1” in Fig. 5-6 are manually inspected and 

compared. They are detailed as follows. 

There are two types of files in the C program produced. The header file, with an 

extension name of '.h', defines all the variables and functions using the program; 

meanwhile, the source file, with an extension name of '.c', includes all the operation 

that the C code performs. 

Generally speaking, the readability of “Code 1” is much higher than “Code 5”. 

In particular, there are three major variables and three functions in “Code 1”. They 

are defined in FunctionalModel0209.h line 379 to line 391. 

 

/* Block parameters (auto storage) */ 

extern Parameters_FunctionalModel0209 FunctionalModel0209_P; 

  

/* Block signals (auto storage) */ 
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extern BlockIO_FunctionalModel0209 FunctionalModel0209_B; 

  

/* Block states (auto storage) */ 

extern D_Work_FunctionalModel0209 FunctionalModel0209_DWork; 

  

/* Model entry point functions */ 

extern void FunctionalModel0209_initialize(void); 

extern void FunctionalModel0209_step(void); 

extern void FunctionalModel0209_terminate(void); 

 

Most of the functions in the “Code 1” are realized by above three variables and 

three functions. 

Variable “D_Work_FunctionalModel0209” records the states of all the state 

blocks in the “Code 1”.  

Variable “BlockIO_FunctionalModel0209” records all the signals that modify 

the state blocks.  

Variable “Parameters_FunctionalModel0209” records all the parameters in the 

state blocks.  

Function “FunctionalModel0209_initialize” initializes the state blocks and the 

entire state chart.  

Function “FunctionalModel0209_step” modifies the state blocks in the state 

chart. 

Function “FunctionalModel0209_terminate” eliminates all the blocks in the 

memory. 

All the operations in the “Code 1” can be summarized as follows. The program 

firstly uses function “FunctionalModel0209_initialize” to initialize the blocks and 

save the information in the blocks in “D_Work_FunctionalModel0209”, then uses 
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function “FunctionalModel0209_step” to generate the signal , i.e. dataflow, saves it 

in “BlockIO_FunctionalModel0209” and uses the signal to modify the parameters 

for the blocks, which are recorded in the variable 

“Parameters_FunctionalModel0209”. Finally, when the user needs to exit the 

program, all the variables and blocks are eliminated by the function 

“FunctionalModel0209_terminate”. 

From the above explanation, it can be concluded that all of the components, 

such as the “System_States”, “Screen_States”, etc, in the C code are encapsulated 

in the three variables, while in the processing, they cannot be seen by the inspector, 

e.g. the PolySpace static analysis tool. Meanwhile, all the operations, such as 

“power off the screen”, “turn on the engine”, i.e. “Screen_off”, “Ignition_On” in 

the “Code 1” are encapsulated in the three functions, and are also not seen by the 

inspector. 

By contrast with “Code 1”, “Code 5” defines every component functions and 

variables separately. For example, “RtsDriver_Information_System_States” defines 

the states of the system separately in lines 15 to 24 of 

“Driver_Information_System.h” as shown below. 

 

/* 

\ART_SMG :: Created for state : Driver_Information_System 

*/ 

enum RtsDriver_Information_System_States 

{ 

    Screen_Power_Off, 

    Initial_Screen_Showing_Company_Logo, 

    Display, 

    NotIn_Driver_Information_System 
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}; 

 

“RtsDriver_Information_SystemDisplay_States” defines the states of the 

display separately in lines 26 to 39 of “Driver_Information_System.h” as shown 

below. 

 

/* 

\ART_SMG :: Created for state : Display 

*/ 

enum RtsDriver_Information_SystemDisplay_States 

{ 

   Entertainment, 

   Home, 

   Navigation, 

   OffRoad_Information, 

   OnRoad_Information, 

   Phone, 

   Settings, 

   NotIn_Display 

}; 

In contrast, these variables are included in the variable 

“D_Work_FunctionalModel0209” in “Code 1”. 

In addition, in lines 394 to 402 of the “Driver_Information_System.h”, two 

operations are defined which are “Ignition_On” and 

“4X4_Info_Soft_Key_Pressed” as below, 

 

/* 

\ART_SMG :: Created for state : Screen_Power_Off 

*/ 

void RtsIgnition_On(struct Driver_Information_System* this); 
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 /* 

\ART_SMG :: Created for state : Display 

*/ 

void Rts4X4_Info_Soft_Key_Pressed(struct Driver_Information_System* this); 

 

In contrast, in “Code 1”, it is part of the function “FunctionalModel0209_step” 

which is not defined separately. 

To summarize, it is obvious that there are more definitions in the header file of 

“Code 1”. The header file in “Code 1” has 756 lines and is 34kb in size whereas the 

header file of “Code 5” has 576 lines and is 14kb in size. Generally speaking, the 

well-defined header file, which represents a well-designed data structure, will 

increase the efficiency of the program and thus results in shorter C code. 

Consequently, “Code 1” has 78Kb 1,818 lines whereas “Code 5” has 4,311 lines 

and is 113kb in size. Moreover, from the human-inspector's point of view, “Code 

1” is more compact, more advanced and has a higher readability. Analyzed by the 

PolySpace, “Code 1” encapsulates most component variables and functions into the 

aforementioned three variables and functions and consequently uses fewer 

variables and fewer functions in the code. Therefore, PolySpace only produces 34 

tests as detailed in Fig. 5-19. In contrast, PolySpace has to test all the variables and 

functions in “Code 5” which is 2,168 in total as shown in Fig. 5-18. The potential 

reason is that the Simulink is a component program of MATLAB. It is well-known 

that MATLAB is designed based on JAVA, which is more advanced than C. 

Therefore, the C code produced by Simulink is more advanced with encapsulation 

than the C code generated by ARTiSAN Studio which has to use a larger number 

of pointers to handle the huge amount of functions and variables indexed at lines 5, 

6 and 7 in Fig. 5-18. 
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5.5 Discussion 

Traditional automotive embedded software development involves paper designs 

and hand coding, followed by verification activities such as code inspections. 

These activities include manual interaction and lack of tool automation, and as a 

consequence they are error prone and time consuming. Modelling tools such as 

ARTiSAN Studio and MATLAB/Simulink not only provide insight into the 

dynamic behaviour of the system by enabling the simulation of the function model 

as described in Section 5.1, but also enable automatic code generation for 

embedded software delivery as presented in Section 5.2. 

The development of ECUs with embedded software plays an important role to 

address the challenges of increasing complexity while developing and maintaining 

electronic applications within the automotive system. There are several advantages 

of utilizing the software tools such as C Synchronizer and RTW EC within the 

model-based design, e.g., software designed in the model can be executed and 

verified in simulation, auto coding from the model reduces the possibility of the 

error being introduced at this phase of development. It is especially crucial for 

achieving advanced functions in the automotive SoS, that the correctness of the 

model and software code directly affect the quality of the embedded software in the 

ECU and, therefore, the overall SoS. The automatic code generation and static 

analysis are highly important benefits that make the development of an automotive 

electronic SoS efficient and effective. 

The static analysis tool PolySpace can analyze C code and relate potential 

defects found therein back to the design model from which the code was generated. 

Hence, defects can be avoided and the quality of the software code can be ensured. 

This chapter considers the auto coding capabilities of the C Synchronizer in 
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ARTiSAN Studio and RTW EC in MATLAB/Simulink. The C code generated 

from ARTiSAN Studio for state machine diagrams is twice as long as that 

produced by Simulink/Statelow. Within an embedded software environment, 

longer code could lead to complexity of software. Complex software is difficult to 

understand and maintain. In addition, longer code requires larger memory on the 

ECU to execute, which means additional costs to the manufacturers. 

The results show that the Simulink/Stateflow is more capable of producing 

efficient and error free C code for the software delivery. But ARTiSAN Studio 

enables the engineer to produce the code from a certain component of the model 

such as state machine diagrams to an entire model including both a structure model 

and a function model. Hence, the code generated from the SysML model in 

ARTiSAN Studio can provide a more comprehensive coverage of the whole system 

[117]. 

In summary, to develop an automotive electronic SoS, building the structure 

and function model in SysML by using ARTiSAN Studio is an essential and 

effective way to gain a comprehensive understanding of the entire SoS. In dealing 

with software delivery, developing the function model in Simulink/Stateflow and 

automatically generating the code from such a model is the preferred and more 

efficient approach which is the conclusion of this chapter. 
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Chapter 6                       

Real-time simulation and animation of 

the 4×4 Information System interface 

 

This chapter proposes a novel approach to verify advanced functions of automotive 

electronic systems. It utilises the function model built in Simulink/Stateflow and 

the C code produced from this model through RTW for the real-time platform 

target, i.e. the dSPACE Simulator for implementing the real-time simulation and 

animation of the 4×4 Information System interface. The feasibility is proved and 

the research approach taken will be demonstrated in this chapter. 

 

6.1 Introduction 

Application of the offline simulation of state machine diagrams in the function 

model built in ARTiSAN Studio and Stateflow diagrams in Simulink/Stateflow 

model is demonstrated in Chapter 5. In addition, ARTiSAN Studio facilitates the 

animation of the sequence diagrams in the model through the object animator. Fig. 

6-1 shows the animation of “Sequence diagram 3: view steering angle (high 

level).” that is presented and explained in Fig. 4-7 of Chapter 4. The actor is 
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represented at the top of this diagram. Three grey circles stand for the interface 

devices. The “Driver Information System Application Software” is displayed in the 

square at the bottom of the diagram. When the animation starts, black lines link 

objects together in a time sequence following the direction of data transfer between 

objects that are defined in the sequence diagram. The animation can be paused and 

restarted to test all possible conditions. 

 

Fig. 6-1. Animation of sequence diagram in ARTiSAN Studio. 

However, the simulation of the Stateflow diagrams in Simulink/Stateflow, the 

simulation of state machine diagrams and animation of the sequence diagrams in 

ARTiSAN Studio are all offline simulations. Real-time simulation and testing are 

required for robust system design to deliver flawless software for the automotive 

electronic system. 

 

6.2 Experimental set-up 

dSPACE ControlDesk is an advanced tool to manage real-time experiments in the 

process of function development. The developer can build virtual instrument panels 
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and have complete control over Simulink and real-time simulations. Typical 

application in the development of the automotive electronic system is used to 

simulate driving cycles and data acquisition [124]. This section demonstrates how 

the dSPACE ControlDesk is used to carry out real-time simulation of the 

Simulnk/Stateflow model. It will also explore the design, development and testing 

of the function of the 4×4 Information System from a novel approach. 

6.2.1 Hardware platform 

 

Fig. 6-2. Hardware platform for the real-time simulation. 

The experiment in this chapter is based on the dSPACE Mid-Size Simulator [125]. 

As shown in Fig. 6-2, this simulator can be applied for functional integration tests, 

release tests and ECU diagnostics tests. In particular, it is capable of real-time 

simulations. The DS1006 processor board is used in this simulator as the processor 

board for very complex, large, and processing-intensive models. The board is built 

around the AMD OpteronTM, a 64-bit server processor with 1MB L2 cache based 

on AMD64. The DS1006 also has 256 MB local memory for executing real-time 

models, 128 MB global memory for exchanging data with the host PC. 
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Fig. 6-3. Real-time simulation set-up. 

Fig. 6-3 illustrates the set-up of this real-time simulation. The dSPACE 

ControlDesk is installed on the host PC. The model built in ControlDesk provides 

the user interface that allows the developer to control the simulation. The 

executable C code which is produced from the Simulink/Stateflow model by RTW 

is loaded and run in the dSPACE Simulator. The connection between the host PC 

and the Simulator is enabled by the laser optical cable that is capable of transferring 

large amounts of data during the real-time simulation. 

6.2.2 Further development of the Simulink/Stateflow model 

 

Fig. 6-4. Output state activities from states in the Simulink/Stateflow model. 
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The ControlDesk is used to build instrumentation panels for controlling and 

monitoring the variables of simulation. Therefore, the initial step of implementing 

real-time test of this model is to output each state as a variable as shown in Fig. 6-4. 

In order to do this, the properties of each state in the Stateflow model need to be 

opened and the box of “Output State Activity” has to be ticked. Each output state 

creates a port on the right hand side of the state chart in the Simulink model as 

shown in Fig. 6-6. In Fig. 6-5, three states have been exported. They are 

“OffRoad_Information_Screen”, “CompassView” and “ChassisView”. The display 

is connected to these outputs to observe the output signals. 

 

Fig. 6-5. Output state activities in Simulink. 

As shown in Fig. 6-6, simulation is performed in order to verify output signals 

in the model. The display of “OffRoad_Information_Screen” and “ChassisView” 

showing “1” stands for active states. The number “0” in the display of 

“CompassView” indicates that it is an inactive state. All the states in the 
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Simulink/Stateflow model have been exported as variables in this experiment. The 

output signals in the Simulink/Stateflow model are verified by checking the 

consistency between active states that are indicated by numbers in displays and 

active states that are represented in blue during simulation. 

 

Fig. 6-6. Simulation of output state activities in Simulink. 

Then customized C code is automatically generated by RTW from this 

Simulink/Stateflow model. In this experiment, the target file “rti1006.tlc” is 

selected to generate C code for the dSPACE DS1006 hardware platform. 
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6.3 Real-time simulation of the 4×4 Information System 

interface 

 

Fig. 6-7. Variables in ControlDesk model. 

The generated C code contains all variables in the Simulink/Stateflow model and it 

can now be loaded into the dSPACE ControlDesk experiment. After the C code is 

loaded into the DS1006 board on the dSPACE simulator, the variables are listed at 

the bottom of the window as shown in Fig. 6-7. The ControlDesk contains a wide 

range of instruments that can be selected such as buttons, sliders, data acquisition 

instruments, etc., as shown in the right of Fig. 6-8. The variables will then be 

linked with selected instruments. To assign variables, they are dragged from the 

variable browser onto the instrument and these steps are repeated for all variables 

in this experiment. Selected instruments can now be put in operation by switching 

to animation mode. Fig. 6-9 shows part of the layout which contains control signals. 
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Four knobs at the top of this diagram are used to control the input value which is 

modelled on the left of the state chart in the Simulink/Stateflow model as illustrated 

in Fig. 6-5 and Fig. 6-6. Grey rectangles in this diagram are “OnOffButton”s. They 

are utilized to represent the constant blocks in the Simulink model to generate 

control signals. The “RadioButton”s on the right of this diagram are used to switch 

between “ChassisView” and “CompassView”, “Low” transfer gear and “High” 

transfer gear respectively. All the output states are linked with “MultiStateLED”. 

Fig. 6-10 shows one of the output displays in comparison with Fig. 5-2 after the 

simulation is enabled. 

 

Fig. 6-8. Instruments in ControlDesk experiment. 
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Fig. 6-9. Layout of input signals in ControlDesk. 

 

Fig. 6-10. Simulation of 4×4 information screen in ControlDesk. 
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As shown in Fig. 6-10, blocks turn into a green colour to represent active states 

when corresponding buttons in Fig. 6-9 are clicked. For instance, the screen 

currently shows 4×4 information. The information on the left and central area of 

the display is available to the driver. The right area is currently in chassis view. The 

functions of the 4×4 Information System are thereby simulated and tested on a 

real-time basis. However, there is a difference between the ControlDesk model and 

the actual 4×4 Information System displayed in terms of user interface. Therefore, 

animation of the real-time simulation is enabled to obtain a better visualization. 

 

6.4 Animation of the real-time simulation 

 

Fig. 6-11. Display shows “Home” screen during real-time animation. 

The animation of the user interface of the 4×4 Information System is realized by 

customizing appointed instruments that benefits from comprehensive configuration 

options for instrument properties such as size, position, fonts and colours. For 

instance, the background picture of “MultiStateLED” which shows the status of the 

states is changed according to its role in the system. As shown in Fig. 6-11, the 

home screen of the Driver Information System is displayed on the right side of this 
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layout. The buttons for generating control signals are located on the left side of this 

layout. During the real-time animation, the developer clicks on the button, the 

display on the right side of the layout switching to corresponding pictures 

represents the mode changes. For example, when the developer clicks on the 

“Audio Video” button, the right area shows the “Radio” screen as displayed in Fig. 

6-12. The “4×4 Info” screen appears when the “4×4 Info” button is clicked. The 

“4×4 Info” screen as shown in Fig. 6-13 represents the 4×4 Information System 

that is modelled in detail. 

 

Fig. 6-12. Display shows “Audio Video” during real-time animation. 

 

Fig. 6-13. Display shows “4×4 Info” during real-time animation. 
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Fig. 6-14. The real-time animation of 4×4 Information System interface. 

Fig. 6-14 illustrates the real-time animation of the 4×4 Information System. The 

top half of the window represents the 4×4 Information System display. It translates 

the design requirements into the visualized layout. Each block exhibits a type of 

information that can be viewed by the driver. The control blocks are integrated at 

the bottom of this layout. The sliders can be dragged to simulate different input 

values. The vehicle settings can be changed and driving modes can be switched by 

clicking buttons. This simulates the possible behaviour reactions of a driver when 

they face different driving situations. The buttons on the display can be clicked to 

simulate different situations without any interruption to the experiment. Most 

importantly, the change of pictures represents various modes or settings of the 

vehicle on the real-time basis. Thus, the robustness and the reliability of designed 

and developed functions are ensured. 
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6.5 Discussion 

Given the complexity of the automotive SoS such as the 4×4 Information System 

presented in Chapter 3, the software function of this SoS has to be developed in 

consideration of the physical structure of the vehicle network, i.e., the large amount 

of real-time data is captured with a large number of interactions among the 

electronic systems on the vehicle and they have to be delivered and displayed 

correctly in order to enable the advanced functions of the 4×4 Information System. 

Thus, the real-time behaviour of the software is vital to the success of flawless 

software delivery for the automotive electronic SoS development. This chapter 

proposes a novel approach to verify the advanced function of automotive electronic 

SoS through real-time simulation and animation. 

In this chapter, RTW produces the C code from the Simulink/Stateflow model 

for the real-time platform target to implement the real-time animation of the 4×4 

Information System interface. Experience shows that dSPACE ControlDesk 

provides the features for the verification of advanced functions. Developing the 

function model in Simulink/Stateflow and then generating the code and transferring 

the model into dSPACE ControlDesk to perform real-time animation is a feasible 

and effective approach to the development of an automotive electronic SoS. This 

technique improves confidence in the function model built and generated code. 

Moreover, the real-time animation helps developers to become aware of the 

complexity of the SoS and allows engineers to realize the function interface and 

execute their concepts in the very early stages of the development. They are 

significant benefits that ensure the successful development of an automotive 

electronic SoS. 
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Chapter 7                   

Conclusion and future work 

 

A near exponential growth of in-vehicle, embedded electronic systems has been 

witnessed during the past 30 years. It has been driven by the premium automobile 

sector where, presently, electronics and software account for around 40% of the 

value of some vehicles. Current in-vehicle electronic systems have evolved from 

single standalone computer systems to distributed systems including several 

networks, large numbers of sensors, actuators and up to 50, or more, ECUs which 

are distributed throughout a vehicle. In systems terms, automotive embedded 

electronic systems can now be classified as a SoS. The design, implementation and 

management of such complex distributed systems, and their integration into one 

cohesive and reliable SoS brings new challenges for the automotive industry. 

Against this background, it is necessary to develop new methodologies for 

capturing the requirements for the SoS at the outset of the product development 

process and conveying the requirements through the stages in the product 

development process. 

Firstly, this Thesis presents a brief discussion of SE and SoSE. SE encourages 

the use of tools and methods to better comprehend and manage the complexity in 
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systems. Models play important and diverse roles to address “three evils” in 

systems engineering, namely, complexity, a lack of understanding and 

communication issues. Building the model can allow engineers to identify 

complexity, aid understanding and improve communication. In addition, 

model-based design which is known as the V-model integrates modelling into a 

design, development and validation process that can be applied to a number of 

different tools and methodologies. It has been proved very successfully in 

performing the role of designing, developing, and deploying new equipment or 

systems to satisfy specific requirements. SoSE has to be carried out under some 

level of uncertainty as it involves factors in multiple levels and domains. In other 

words, SoSE seeks to optimize a network of various systems brought together to 

meet specific needs. Consequently, model-based design with new techniques such 

as new modelling languages and tools has been investigated as a potential 

methodology to address the challenges in automotive electronic SoS development. 

PolySpace

 

Fig. 7-1. The model-based design of the 4×4 Information System. 
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Fig. 7-1 shows the techniques which are investigated within the model-based 

design in this Thesis. The interaction and integration of the systems in the 

automotive electronic SoS has to evolve to accommodate the increasing complexity. 

The modelling languages and tools play an important role in the development of 

reliable and robust automotive electronic SoS in terms of requirements capture, 

modelling, auto coding, code checking and the verification of the software 

functions. This Thesis described two distinct model-based approaches to the 

development of automotive electronic SoS. The first approach has involved the use 

of the SysML modelling language that has emerged as a language based on UML 

but better suited to provide support for the engineering of systems and SoS. The 

SysML based tool ARTiSAN Studio is utilized for structural modelling, functional 

modelling and code generation. Specifically, this Thesis has explored: the use of 

block definition and internal block diagrams for structural modelling of the SoS; 

and use case, sequence, state machine and activity diagrams, for modelling the 

functional behaviour of the SoS. The listed diagrams in the model provide a clearly 

structured visualization of the 4×4 Information System. Several types of diagrams 

represent the design requirements in both structural and behavioural viewpoints of 

the SoS with relevant concerns. This model facilitates the formulation of the textual 

form specification documents and avoids interpretation leeway. Moreover, 

experience shows that these diagrams can be broken down and developed to 

different levels to represent the interactions and detail at various levels. Benefiting 

from the modelling tool ARTiSAN Studio, the model successfully translates the 

textual form specification documents to C code and it also has the flexibility in 

automatic code generation. The code can be produced from the entire model or 

generated from a certain component of the model, such as state machine diagrams 
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for software delivery. The model facilitates collaboration of people with different 

backgrounds such as systems engineers and software engineers to design, 

implement and manage such complex distributed systems and integrate these 

systems into one robust and reliable SoS. 

The second approach involves the use of the MATLAB based tools Simulink 

and Stateflow for functional modelling and auto coding. Experience has shown that 

a Stateflow diagram has a very similar mechanism to the state machine diagram in 

SysML to model the functionality of a 4×4 Information System. Diagrams can be 

broken down and developed at different levels to show the interaction and details 

among these levels. Furthermore, unlike the state machine diagram in ARTiSAN 

Studio, the location of states in a Stateflow diagram is not restricted. Lower level 

states can be moved freely within the rectangle of higher level states. Therefore, the 

position of each display state in the Simulink/Stateflow model corresponds to the 

actual HMI. The coding implementation of the Simulink/Stateflow model has 

shown that the C or C++ code can be generated automatically for different targets 

by selecting corresponding system target files. 

The application of ECUs on the vehicle is constantly increasing to address the 

challenges of increasing complexity while developing and maintaining electronic 

applications within the automotive SoS. The reliability of the SoS is directly 

affected by the quality of the embedded software in the ECUs which is developed 

from the software code. As a consequence, automatic code generation and static 

analysis are highly important benefits that make the development of an automotive 

electronic SoS efficient and effective. Therefore, further investigation of functional 

modelling has focused on the comparison of quality and efficiency of the code. 
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The static analysis tool PolySpace has been utilized to analyze C code and 

relate potential defects found therein back to the design model from which the code 

was generated. Specifically, the PolySpace tool has been applied to verify and 

analyze the C code generated from state machine diagrams of the SysML model 

built in ARTiSAN Studio and Stateflow diagrams in the Simulink/Stateflow model. 

The result shows that ARTiSAN Studio has a more comprehensive coverage of the 

code generation. It is capable of producing the code from a component of the 

model to the whole model. In consideration of the quality and efficiency, the 

Simulink/Stateflow model has demonstrated that it performs better in producing 

high quality and efficient C code. As a result, to develop an automotive electronic 

system, building the structure and function model in SysML by using ARTiSAN 

Studio is an essential and effective way to gain a comprehensive understanding of 

the entire system. In dealing with software delivery, developing the function model 

in Simulink/Stateflow and automatically generating the code from such a model is 

the preferred and efficient approach that has been demonstrated in this Thesis. 

The real-time behaviour of the embedded software is vital to the success of the 

flawless software delivery for the automotive electronic SoS development. Within 

an automotive electronic SoS such as the 4×4 Information System, a large amount 

of real-time data is captured among the networked electronic systems on the 

vehicle and they have to be delivered and displayed correctly in order to enable the 

advanced functions. Hence, the software functions are required to be tested on a 

real-time basis. In dealing with this demand, this Thesis provides a useful 

complement to the offline simulation of the Simulink/Stateflow model through the 

real-time simulation and animation. Specifically, this Thesis has examined the 

ability to easily construct a real-time simulation and animation of the 4×4 
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Information System by using dSPACE ControlDesk from the automatically 

generated C code in Simulink/Stateflow model to verify advanced function of 

automotive electronic SoS on a real-time basis. The experiment has demonstrated 

that dSPACE ControlDesk provides the features for real-time simulation, testing 

and animation within the advanced function development. Developing the function 

model in Simulink/Stateflow and then generating the code and transferring the 

model into the dSPACE ControlDesk to enable real-time animation is a feasible 

and effective approach to the development of an automotive electronic SoS. 

The outcome of this research is about the model-based design of a particular 

SoS within an automotive electronic SoS, i.e. a 4×4 Information System. The major 

contribution of this Thesis to the automotive industry is that the proposed 

techniques in model-based design will potentially fulfil the requirement of 

capturing, designing and developing needs for the development of an automotive 

electronic SoS. 

The collaboration and integration of currently adopted techniques are gaining 

increased attention such as coupling UML and Matlab/Simulink models through 

co-simulation and integration based on a common underlying executable language 

[126]. The direction for future research could focus on the investigation of the 

capabilities of emerging tools and techniques in the industry. For instance, the 

ARTiSAN Studio released by ARTiSAN Software Tools Inc. [127] in 2008 has 

stated that “ARTiSAN Studio includes a comprehensive synchronization tool for 

Simulink that provides an integration enabling users to easily move between and 

synchronize information that is captured in both tools”, “The synchronizer also 

allows the interface to the software generated from Simulink to be customized in 

Studio and synchronized back into Simulink”. The outcome of research will be 
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beneficial in order to refine the model-based development of the automotive 

electronic SoS. 
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Appendix A                 

Functionality of the 4×4 Information 

System 

 

The functionalities of 4×4 Information System which is a part of the Driver 

Information System as shown in Fig. 3-3 of Chapter 3 are described in detail in this 

section. 

 

Screen layout 

 

  

 

Fig. A-1. The 4×4 Information System display. 

Middle area Right area Left area 
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Fig. A-1 is the 4×4 Information System display of the vehicle. As shown in Fig. 

A-1, there are three areas in the 4×4 Information System display, i.e., left, middle 

and right. The left area is a permanent display area which displays the information 

on the chassis and powertrain of the vehicle, including steering angle information, 

high/low ratio selection status, gear position and differential lock information for 

both the centre and rear. The middle area is also a permanent display area showing 

the TO mode and HDC information. The right display area changes when different 

views are selected including the compass view and chassis view. To access the 

compass view and chassis view, the driver needs to correspondingly press the 

“Compass view” or “Chassis view” soft key on the touch screen which is 

highlighted in a red circle. The air suspension status and wheel height status are 

also displayed in this area within different views.  

 

Primary functions 

The primary functions are related to the vehicle status. On the screen, graphics 

created for the 4×4 Information System will be displayed and changed to reflect 

data which describe the state of the 4×4 Information System. As mentioned in 

Section 3.4.1 of Chapter 3, the chassis and powertrain information is shown in the 

left hand area. The functions on the left display area are 

 Steering angle status 

 Gearbox status 

 Gear position 

 Differential lock information 

Fig. A-2 shows how steering angle data are displayed on the screen. 
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Fig. A-2. Steering angle data changes. 

The maximum orientation of the wheel graphics is 30 degrees from the straight 

ahead position indicating full lock. The steered wheel images represent the steering 

angle data by displaying one of 13 graphical images of the steered wheels. Each 

image displays for a specific range of steering wheel angle data which is 5 degrees 

from -30 to +30 degrees. When the steering wheel data exceed the appropriate 

range for the current graphic, the appropriate steered wheel graphic should be 

updated for both of the steered wheel images concurrently. 

The high and low range of transfer gear can be selected and represented 

graphically in the chassis map. 

 

Fig. A-3. Transfer gearbox data. 

When a range is selected, the appropriate graphic will be displayed in the 

chassis map. As shown on the left of Fig. A-3, when the transfer gearbox is 

successful in the low range, the "low range" icon is displayed in the chassis plan 

view. The display also shows the currently selected gear. When the parking gear is 

selected as shown in the Fig. A-3, the symbol “P” is displayed on the gearbox 
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graphic. For the other gear selections, the display will show “P R N D 5 4 3 2 1” 

respectively. The differential lock information for both the centre and rear is 

displayed under the gear selections by two icons showing “Locked” or “Unlocked”. 

The air suspension status is displayed at the top right of screen. The air 

suspension has three suspension heights: 

• Off-road 

• Standard 

• Access 

 

Fig. A-4. Air suspension status. 

 

Fig. A-5. Control panel and buttons. 

When the vehicle is in any of these states, the suspension status window in the 

top right of the display indicates the current suspension setting. As shown in Fig. 

A-4, the air suspension is rising to “Off-Road”. The air suspension status can be 

controlled manually by pushing the selector upwards or downwards which is next 
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to the HDC button as shown in Fig. A-5. The air suspension status can also be 

changed automatically according to the TO settings. In Fig. A-4, as soon as this 

height change is required, the display shows the text message “Raising” and 

replaces the previous height graphic. In addition, an arrow is displayed indicating 

the direction of vehicle travel. During a height change, the arrow head will flash. 

The wheel height graphical display will progressively change, showing the 

changing relationship between the individual wheels and the vehicle body. When 

the “Off-Road” height is reached the arrow icon disappears and the current vehicle 

height is displayed as “Off-Road”. 

The air suspension setting is also displayed graphically in the wheel 

displacement window in the chassis view. To access the chassis view, the driver 

needs to press the “Chassis” soft key in the bottom right display area highlighted in 

the red rectangle. From the chassis view, the suspension status and wheel 

displacement status can be viewed. 

The chassis view display window contains a representation of the four road 

wheels, along with several discrete graphical elements. These graphical elements 

move in direct response to actual wheel height changes. The vertical position of 

each road wheel graphic is determined by data from height sensors. As shown in 

Fig. A-4 the white dotted line shows the nominal vehicle height. When the vehicle 

is at either the off-road ride height or the access ride height, the white dotted line, 

which is the wheel height display, must configure to maintain the nominal height of 

the wheels relative to the ground plane. A solid green line between the wheels 

represents the practical height of the vehicle. When a wheel is at its standard height, 

the solid green line will line up with the white dotted line in the vertical axis. This 

is represented on the left of Fig. A-4. When vehicle is set to off-road ride height, 



Appendix A 

                                                                     
- 153 -

the air springs are extended to push the wheels further away from the chassis, 

which lifts the vehicle body by a controlled distance. If a vehicle has a specific 

off-road ride height that is 50mm above the standard ride height, then this would 

increase the data value of each wheel by 50mm. The green line moves up the 

screen in appropriate distance and in this case, it is 10 pixels for 50 mm of body 

movement.  

Framing each of the wheel graphics are eight white lines that act as markers to 

indicate the extremes of each wheel travel. When a road wheel is at the extreme of 

its travel, the edge of the wheel graphic will line up with the appropriate travel limit 

marker. Four orange nodes on the road wheels indicate the position of the wheels 

associated with the vehicle height. Although the front and rear wheels appear to be 

different heights, they are only presented in this way to give a sense of perspective 

view. The graphical response of each wheel to change in wheel height data is 

exactly the same. When a wheel is at its standard height, the centre of the wheel 

will line up with the datum line in the vertical axis. Vehicles with air suspension 

will maintain a set ride height under all loading conditions up to the design loading 

limit. The suspension system will compensate for the increased load by increasing 

the air pressure in the system. 

The above functions are related to vehicle powertrain and chassis. Besides, the 

vehicle can also provide five different TO settings and HDC to the driver. Their 

status will be displayed on the HLDF by the 4×4 Information System. TO settings 

and HDC are displayed in the middle area of the screen. 
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Fig. A-6. TO settings button. 

As shown in Fig. A-6, driver can select 5 different TO modes by rotating the 

button on the vehicle: 

• Standard 

• Grass / Snow / Ice 

• Mud / Ruts 

• Sand 

• Rock crawl 

 

Fig. A-7. TO settings display. 

As shown in Fig. A-7, the appropriate vehicle icon for the currently active TO 

mode should be shown in the central TO display window. When the driver shifts 

from different TO mode, the engine, transmission, suspension and traction settings 

are all reconfigured to deliver the best possible off-road driving to the driver. 

HDC is used to provide a smooth and controlled hill descent in rough terrain 

without the driver needing to touch the brake pedal. After the driver pushes the 
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HDC button, which is in yellow as shown in Fig. A-6, the vehicle will descend 

using the ABS to control the speed for each wheel. If the vehicle accelerates 

without pushing the accelerator pedal, the system will automatically apply the 

brakes to slow down the vehicle. Applying pressure to the accelerator or brake 

pedal will override the HDC system as the driver requires. 

 

Fig. A-8. HDC. 

The HDC status is highlighted in yellow as shown in Fig. A-8. The HDC 

system reports three states relating to its function:  

• Inactive 

• Set 

• Pending 

When the HDC is inactive, there is no display for the HDC function icon on the 

4×4 display which is shown at the bottom as in Fig. A-8. When the HDC system is 

selected and activated, the red and yellow HDC function icon will be displayed 

continuously as shown at the middle bottom. When the HDC is selected, but there 

is a condition that inhibits the activation of the HDC such as wrong gear selected, 

the HDC icon on the display will flash. 
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Secondary functions 

Besides the above primary functions, the 4×4 Information System can also provide 

a compass view for the driver. To access the compass view, the “Compass” soft 

key needs to be selected on the touch screen which is highlighted in an orange 

rectangle. The compass view window replaces the display of the wheel height 

information that is only displayed in the chassis view. 

 

 

Fig. A-9. Compass view. 

From Fig. A-9, the compass screen displays a graphic indicating the heading of 

the vehicle against the compass points. If the ‘North-up’ display mode is active in 

the navigation system, the compass points are fixed and the vehicle pointer will 

rotate to indicate the vehicle heading. If the “Heading up” display mode is active in 

the navigation system, then the vehicle pointer will be fixed vertically on the 

display and the compass points will rotate to indicate the vehicle heading. 

 

An example of an off-road driving scenario 

Fig. A-10 shows a scenario of off-road driving. The actual view can also be 

presented to the driver in the vehicle. 

Compass view 
soft key 
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Fig. A-10. A scenario of off-road driving. 

From this figure, the information provided to the driver can be viewed. The 

main gearbox is in 3rd gear, the transfer gearbox is in the low range, the steering 

wheel is at full left lock, the differential is locked, the TO setting is in rock crawl 

mode, the HDC is active and vehicle is in the off-road ride height. As we can see 

from the chassis view, the left rear wheel travels over a rock or similar obstacle. It 

is pushed up into the vehicle body. The data from the wheel height sensor are 

represented by moving the vertical position of the left rear wheel graphic up in the 

screen. 
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Appendix B                 

Diagrams in the model built in 

ArtiSAN Studio 

 

This appendix provides a full list of diagrams in the model which is built in 

ARTiSAN Studio. 

::Network

Speed
Bandwidth
Name
get_speed ()

::BUS

get_gateway_name ()

::Dedicated Connection

::CAN ::MOST

::Private CAN ::High Speed CAN ::Medium Speed CAN

1..*1..*

11..*

1 1 1

 

Fig. B-1. Block definition diagram 1: network class. 
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::Key

Position
Size
Pressed ()
Time_pressed ()

::Hard Key ::Soft Key
1..* 1..*

 

Fig. B-2. Block definition diagram 2: key class. 

::Sensor

Sensor type
Information type
get_data ()  

Fig. B-3. Block definition diagram 3: sensor class. 

 

::Gateway

Name
Speed
Bandwidth

::HS CAN_MS CAN_Gateway::MOST_CAN_Gateway

Convert_CAN_to_MOST ()
Convert_data_to_MOST ()

1..* 1..*

 

Fig. B-4. Block definition diagram 4: gateway_class. 

 

::Sensor_Local Connection_Interface_Class

Name
Speed
get_data_from _sensor ()
put_data_on_Local Connection ()  

Fig. B-5. Block definition diagram 5: sensor_local connection_interface_class. 
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Driver Information System of Systems Configuration

MOST Assembly : BUS

1..*
Navigation ECU :

Information System

1..*
Audio and Video System
: Entertainment System

HLDF : Driver Information System

MOST_CAN_Gateway :
Gateway

Medium Speed (MS) CAN BUS :
BUS

HS CAN_MS CAN_Gateway :
Gateway

Resistive Ladder :
Local Connection

Steering Angle Sensor :
Sensor

High Speed (HS) CAN BUS :
BUS

1..*
_ _ _ : Sensor

1..*
_ _ _ : Actuator

1..*
_ _ _ : ECU

Air Suspension ECU :
ECU

Transmission ECU :
ECU

MOST Assembly : BUS

1..*
Navigation ECU :

Information System

1..*
Audio and Video System
: Entertainment System

HLDF : Driver Information System

MOST_CAN_Gateway :
Gateway

Medium Speed (MS) CAN BUS :
BUS

HS CAN_MS CAN_Gateway :
Gateway

Resistive Ladder :
Local Connection

Steering Angle Sensor :
Sensor

High Speed (HS) CAN BUS :
BUS

1..*
_ _ _ : Sensor

1..*
_ _ _ : Actuator

1..*
_ _ _ : ECU

Air Suspension ECU :
ECU

Transmission ECU :
ECU

Steering Angle msg : MessageSteering Angle msg : Message

High Speed CAN Bus : MessageHigh Speed CAN Bus : Message

Suspension Height msg : MessageSuspension Height msg : Message

This structure diagram shows the assembly of 
function modules which interact with the driver 
information system. More details of power train 
system are showing as '_ _ _' instead.

MOST -- Media Orientated Systems 
Transport. A high speed fibre optic 
communications bus
LLDF -- Low Level Display Front
HLDF -- High Level Display Front

 

Fig. B-6. Internal block diagram 1: Driver Information System of Systems 

overview. 

 
MOST Assembly

MOST BUS : BUS

PHM : Telephone Module SDARS : Satellite Digital
Audio Radio Service TV : TV Tuner

TMC : Traffic Message
Channel

A1 : Antenna A2 : Antenna

Rear Seat Entertainment
: Entertainment System

S1 : Screen S2 : Screen

DVD : DVD Player

CDC : CD Changer

DAB :  DA Broadcasting AA : Audio Amplifier

H1 : Headphone S1 : Speaker

MOST_CAN_Gateway : Gateway

Medium Speed CAN BUS :
BUS

Resistive Ladder :
Local Connection

Steering Angle Sensor :
Sensor

HS CAN_MS CAN_Gateway :
Gateway

High Speed CAN BUS : BUS

MM : Multimedia Module

FM Radio :
Radio

GPS Receiver :
Receiver

Private CAN BUS : BUS HLDF : Driver Information System

Reverse Camera : Camera Campanion Camera : Camera

MOST BUS : BUS

PHM : Telephone Module SDARS : Satellite Digital
Audio Radio Service TV : TV Tuner

TMC : Traffic Message
Channel

A1 : Antenna A2 : Antenna

Rear Seat Entertainment
: Entertainment System

S1 : Screen S2 : Screen

DVD : DVD Player

CDC : CD Changer

DAB :  DA Broadcasting AA : Audio Amplifier

H1 : Headphone S1 : Speaker

MOST_CAN_Gateway : Gateway

Medium Speed CAN BUS :
BUS

Resistive Ladder :
Local Connection

Steering Angle Sensor :
Sensor

HS CAN_MS CAN_Gateway :
Gateway

High Speed CAN BUS : BUS

MM : Multimedia Module

FM Radio :
Radio

GPS Receiver :
Receiver

Private CAN BUS : BUS HLDF : Driver Information System

Reverse Camera : Camera Campanion Camera : Camera

 

Fig. B-7. Internal block diagram 2: MOST System of Systems overview. 
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Front
Occupant

Driver

Front
Passenger

Rear
Passenger

View Navigation
Information

View Settings

Access On Road
Information

Phone

Access 4X4
Information

Access Front
Entertainment

Access Rear
Entertainment

 

Fig. B-8. Use case diagram 1: Driver Information System use case. 

 

Front
Occupant

Access 4X4
Information

View Steering
Angle

View Gear
Position

View Hi/Lo
ratio

View Diff Lock

View Differential
Lock Rear

View Differential
Lock Centre

View Suspension
Information

View Compass
Information

View Home

View Hill Descent
Control Status

View Terrain
Optimization

Settings

View whether
Standard/Sand/Rock

Crawl/Snow/Mud

«include»

«include»

«include»

«include»

«include»
«include»

«include»

«include»

«include»

«include»

«include» «include»

 

Fig. B-9. Use case diagram 2: 4×4 information use case. 
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Front
Occupant

View Suspension
Information

View vehicle
height

View whether
vehicle

raising/lowering

View Chassis
Height

«include» «include» «include»

 

Fig. B-10. Use case diagram 3: suspension information use case. 

 

 

Fig. B-11. Text diagram 1: layout of the display. 

 

 

Fig. B-12. Text diagram 2: air suspension selector. 
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Driver Home Soft Key Home Hard Key Display Driver Information System Application Software

alt
Press Home Soft Key Home Soft Key Pressed

else alt
Press Home Hard Key Home Hard Key Pressed

end alt

Press Home Soft Key Home Soft Key Pressed
else alt

Press Home Hard Key Home Hard Key PressedPress Home Hard Key Home Hard Key Pressed

Return to Home Menu screen Return to Home Menu screen

 

Fig. B-13. Sequence diagram 1: return to home menu screen from other screens 

(HL - B). 

 

Driver Home Soft KeyHome Hard Key Display4x4 Information Soft Key 4x4 Information Hard Key Driver Information System Application Software

alt
alt

Press Home Hard Key Home Hard Key Pressed
else alt

Press Home Soft Key Home Soft Key Pressed
end alt
Return to Home Menu screen

Return to Home Menu screen

Press 4x4 Information Soft Key 4X4 Info Soft Key Pressed
else alt

Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed
end alt

alt
Press Home Hard Key Home Hard Key Pressed

else alt
Press Home Soft Key Home Soft Key Pressed

end alt

Press Home Hard Key Home Hard Key Pressed
else alt

Press Home Soft Key Home Soft Key PressedPress Home Soft Key Home Soft Key Pressed

Return to Home Menu screen
Return to Home Menu screen

Press 4x4 Information Soft Key 4X4 Info Soft Key Pressed
else alt

Press 4x4 Information Hard Key 4X4 Info Hard Key PressedPress 4x4 Information Hard Key 4X4 Info Hard Key Pressed

Display updated to 4x4 Information screen
Update Display to 4x4 Information screen

 

Fig. B-14. Sequence diagram 2: change to 4×4 information screen from other 

screens (HL - B). 

 

Driver Ignition 4x4 Information Soft Key4x4 Information Hard Key Display Driver Information System Application Software

Start vehicle Start vehicle
Display Home Menu screen Update Display
alt

Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed
else alt

Press 4x4 Information Soft Key 4X4 Info Soft Key Pressed
end alt

Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed
else alt

Press 4x4 Information Soft Key 4X4 Info Soft Key PressedPress 4x4 Information Soft Key 4X4 Info Soft Key Pressed

Update Display to the 4x4 
Information screen with right area 
showing the view of Chassis or 
Compass. Steering angle data are 
displayed on the left area.

Update Display to 4x4 Information screen

See "Layout of the Display" in "Text Diagrams" 
of the model to know what is the left, central and
right area of the display.

 

Fig. B-15. Sequence diagram 3: view steering angle (HL - B). 

 



Appendix B 

                                                                     
- 164 -

Driver Ignition 4x4 Information Soft Key4x4 Information Hard Key Display Steering Wheel Steering Angle SensorDriver Information System Application Software

Start vehicle Start vehicle
Display Home Menu screen Update Display
alt

Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed
else alt

Press 4x4 Information Soft Key 4X4 Info Soft Key Pressed
end alt

Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed
else alt

Press 4x4 Information Soft Key 4X4 Info Soft Key PressedPress 4x4 Information Soft Key 4X4 Info Soft Key Pressed

Update Display to the 4x4 Information 
screen with right area showing the view of 
Chassis or Compass. Steering angle data 
is displayed on the left area.

Update Display to 4x4 Information screen

Driver steers the wheel Steer
par

Steering Angle Sensor sends data to 
the Driver Information System through 
the Local Connection

Send steering angle data to the Driver Information System Application Software

also par
Steering angle updated on the screen Update left area of screen

end par

Steering Angle Sensor sends data to 
the Driver Information System through 
the Local Connection

Send steering angle data to the Driver Information System Application Software

also par
Steering angle updated on the screen Update left area of screenSteering angle updated on the screen Update left area of screen

 

Fig. B-16. Sequence diagram 4: view steering angle (HL - W). 

 

Driver Steering Wheel Display Driver Information System Application Software MOST Local Connection Steering Angle Sensor

Driver steers the wheel Steer
Send steering angle data on the 
dedicated Local Connection

Send steering angle data on the Local Connection

Local Connection sends data to 
the MOST

Send data

MOST sends data to the Driver 
Information System

Send data

Steering angle display updated Update left area of screen

 

Fig. B-17. Sequence diagram 5: view steering angle (DL - B). 

 

Driver Steering Wheel Display Driver Information System Application Software MOST MOST_CAN_Gateway Local Connection Sensor_Local Connection_Interface Steering Angle Sensor

Driver steers the wheel Steer
Get Steering Angle from Sensor Get data from Sensor
Send steering angle data on the 
dedicated Local Connection

Put data on Local Connection

Local Connection sends data to the 
Gateway Unit

Send data

Gateway sends data on the MOST Send data
MOST sends data to the Driver 
Information System

Send data

Steering angle display updated Update left area of screen  

Fig. B-18. Sequence diagram 6: view steering angle (DL - W). 
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Driver 4x4 Information Hard Key 4x4 Information Soft Key Compass view Soft Key Chassis view Soft Key Display Driver Information System Application Software

alt
Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed

else alt
Press 4x4 Information Soft Key 4X4 Info Soft Key Pressed

end alt

Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed
else alt

Press 4x4 Information Soft Key 4X4 Info Soft Key PressedPress 4x4 Information Soft Key 4X4 Info Soft Key Pressed

Update Display to the 4x4 Information screen
Update Display to 4x4 Information screen

alt
Press Compass view Soft Key Compass view Soft Key Pressed
Compass view displayed Update right area of screen to Compass View

else alt
Press Chassis view Soft Key Chassis view Soft Key Pressed
Chassis view displayed Update right area of screen to Chassis View

end alt

Press Compass view Soft Key Compass view Soft Key Pressed
Compass view displayed Update right area of screen to Compass View

else alt
Press Chassis view Soft Key Chassis view Soft Key Pressed
Chassis view displayed Update right area of screen to Chassis View

Press Chassis view Soft Key Chassis view Soft Key Pressed
Chassis view displayed Update right area of screen to Chassis View

Prerequisites: Display shows Home Menu 
screen before the start of this scenario.

 

Fig. B-19. Sequence diagram 7: choose different views in 4×4 information screen 

from home menu screen (HL - B). 

 

Driver 4x4 Information Hard Key 4x4 Information Soft Key Display Gear Stick Transfer Gear Driver Information System Application Software MOST_CAN_Gateway

alt
Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed

else alt
Press 4x4 Information Soft Key 4X4 Info Soft Key Pressed

end alt

Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed
else alt

Press 4x4 Information Soft Key 4X4 Info Soft Key PressedPress 4x4 Information Soft Key 4X4 Info Soft Key Pressed

Update Display to the 4x4 Information screen Update Display to 4x4 Information screen
Driver selects 1st gear Main gear selected
Driver puts transfer gear in low Transfer gear selected
Gateway sends the data of gear selection Send data
Display 1st gear and low range icon on the 
left area of screen

Update left area of screen

Prerequisites: Display shows 
Home Menu screen before the 
start of this scenario.

 

Fig. B-20. Sequence diagram 8: view main gear and transfer gear change from 

home menu screen (HL - B). 

Driver 4x4 Information Hard Key 4x4 Information Soft Key Terrain Optimization Selector Terrain Optimization settings Soft Key Display Driver Information System Application Software

alt
Press 4x4 Information Hard Key

4X4 Info Hard Key Pressed

else alt
Press 4x4 Information Soft Key 4X4 Info Soft Key Pressed

end alt

Press 4x4 Information Hard Key
4X4 Info Hard Key Pressed

else alt
Press 4x4 Information Soft Key 4X4 Info Soft Key PressedPress 4x4 Information Soft Key 4X4 Info Soft Key Pressed

Update Display to the 4x4 Information screen
Update Display to 4x4 Information screen with central area display TO settings

Driver selects Sand mode Rotate the TO Selector
Display Sand mode in the central area as small icon Update central area of screen
Driver selects Rock crawl mode Rotate the TO Selector
Display Rock crawl mode in the central area as small icon Update central area of screen
Driver choose to display large icon of TO settings Press TO settings Soft Key on the touch screen
Large icon of TO settings is displayed... Update central area of screen

Prerequisites: Display shows Home Menu 
screen and Terrain Optimization (TO) setting 
is Standard before the start of this scenario.

 

Fig. B-21. Sequence diagram 9: view terrain optimization (TO) settings from home 

menu screen (HL - B). 
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Driver 4x4 Information Hard Key 4x4 Information Soft Key HDC Button Display Driver Information System Application Software

alt
Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed

else alt
Press 4x4 Information Soft Key 4X4 Info Soft Key Pressed

end alt

Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed
else alt

Press 4x4 Information Soft Key 4X4 Info Soft Key PressedPress 4x4 Information Soft Key 4X4 Info Soft Key Pressed

Update Display to the 4x4 Information screen
Update Display to 4x4 Information screen

Driver activates the Hill Descent Control (HDC) HDC Button Pressed
HDC icon is displayed Update central area of screen

Prerequisites: Display shows 
Home Menu screen before 
the start of this scenario.  

Fig. B-22. Sequence diagram 10: display of hill descent control (HDC) from home 

menu screen (HL - B). 

 

Driver 4x4 Information Hard Key 4x4 Information Soft Key Air Suspension Selector Chassis view Soft Key Display Driver Information System Application Software MOST_CAN_Gateway

alt
Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed

else alt
Press 4x4 Information Soft Key 4X4 Info Soft Key Pressed

end alt

Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed
else alt

Press 4x4 Information Soft Key 4X4 Info Soft Key PressedPress 4x4 Information Soft Key 4X4 Info Soft Key Pressed

Update Display to the 4x4 Information screen Update Display to 4x4 Information screen
Press Chassis view Soft Key Chassis view Soft Key Pressed
Chassis view displayed Update right area of screen to Chassis View
Driver pushes the air suspension selector upwards Push the Air Suspension selector upwards
loop

alt
Send air suspension status Send data
Display "Raising" Update right area of screen

else alt
Send air suspension status: Reached the maximum position Send data
Display "Off-Road" Update right area of screen
break

end alt
end loop

alt
Send air suspension status Send data
Display "Raising" Update right area of screen

else alt
Send air suspension status: Reached the maximum position Send data
Display "Off-Road" Update right area of screen
break

end alt

Send air suspension status Send data
Display "Raising" Update right area of screen

else alt
Send air suspension status: Reached the maximum position Send data
Display "Off-Road" Update right area of screen
break

Send air suspension status: Reached the maximum position Send data
Display "Off-Road" Update right area of screen
break

Prerequisites: Display shows Home Menu 
screen before the start of this scenario.

See "Air suspension selector" in "Text 
Diagrams" of the model to know what is Air 
suspension selector.

 
Fig. B-23. Sequence diagram 11: display of suspension status from home menu 

screen (HL - B). 

Driver 4x4 Information Hard Key 4x4 Information Soft Key Terrain Optimization Selector Display Driver Information System Application Software Differential Driveline Control ECU

alt
Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed

else alt
Press 4x4 Information Soft Key 4X4 Info Soft Key Pressed

end alt

Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed
else alt

Press 4x4 Information Soft Key 4X4 Info Soft Key PressedPress 4x4 Information Soft Key 4X4 Info Soft Key Pressed

Update Display to the 4x4 Information screen Update Display to 4x4 Information screen
Driver changes the Terrain Optimization (TO) 
setting to Grass / Snow / Ice

Rotate the TO Selector to Grass / Snow / Ice

Display Differential unlocked in the left area Update left area of screen
The differential increases the amount of torque 
transfer and the locking torque equals or exceeds 
the threshold value appropriate to the currently 
active TO mode

Differential locked

Display Differential locked in the left area Update left area of screen
Locking torque reduces below the threshold value Differential unlocked
Display Differential unlocked in the left area Update left area of screen

Prerequisites: Display shows Home Menu 
screen before the start of this scenario. Terrain 
Optimization (TO) Setting is Standard.

 
Fig. B-24. Sequence diagram 12: display of differential status from home menu 

screen (HL - B). 
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Driver Ignition 4x4 Information Hard Key 4x4 Information Soft Key Display Chassis view Soft Key Terrain Optimization Selector HDC Button Steering Wheel Driver Information System Application Software

Start vehicle Start vehicle
Display Home Menu Update Display
alt

Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed
else alt

Press 4x4 Information Soft Key 4X4 Info Soft Key Pressed
end alt

Press 4x4 Information Hard Key 4X4 Info Hard Key Pressed
else alt

Press 4x4 Information Soft Key 4X4 Info Soft Key PressedPress 4x4 Information Soft Key 4X4 Info Soft Key Pressed

Update Display to the 4x4 Information screen Update Display to 4x4 Information screen
Press Chassis view Soft Key Chassis view Soft Key Pressed
Chassis view displayed Update right area of screen
Driver changes the Terrain Optimization settings to Rock crawl Rotate the TO Selector
Driver activates the Hill Descent Control HDC Button Pressed
Steers left to full lock Steer left to full lock
par

Display Rock crawl mode icon Update central area of screen
also par

Display HDC icon Update central area of screen
also par

Display Steering angle... Update left area of screen
also par

Display Differential status Update left area of screen
also par

Display Suspension status Update right area of screen
end par

Display Rock crawl mode icon Update central area of screen
also par

Display HDC icon Update central area of screenDisplay HDC icon Update central area of screen
also par

Display Steering angle... Update left area of screenDisplay Steering angle... Update left area of screen
also par

Display Differential status Update left area of screenDisplay Differential status Update left area of screen
also par

Display Suspension status Update right area of screenDisplay Suspension status Update right area of screen

Prerequisites: Terrain Optimization (TO) Setting is 
Standard before the start of this scenario.  

Fig. B-25. Sequence diagram 13: an off-road driving example (HL - B). 

 

Screen Power Off Initial Screen Showing Company Logo

Home

OffRoad Information
STD: OffRoad Information

Settings

OnRoad Information

Navigation

Phone

Entertainment

Display

Home

OffRoad Information
STD: OffRoad Information

Settings

OnRoad Information

Navigation

Phone

Entertainment

/

/

Ignition On/

after( 2 )[Ignition==1]/ Ignition Off/

Home Soft Key Pressed/

4X4 Info Soft Key Pressed/

Settings Pressed/

OnRoad Info Pressed/

Navigation Pressed/

Phone Pressed/

Entertainment Pressed/

after( 2 )[Ignition==0]/

 

Fig. B-26. State machine diagram 1: Driver Information System. 
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OffRoad Information
Left Display

Left Display
View Steering Angle

Displaying Steering Angle Information

View Main Gear

Displaying Gear Position
STD: Displaying Gear Position

View Transfer Gear

Displaying Transfer Gear Status
STD: Displaying Transfer Gear Status

View Differential

Displaying Centre and Rear Differential Lock Information
STD: Displaying Centre and Rear Differential Lock Information

Central Display

Central Display
Terrain Optimization Settings

Displaying Terrain Optimization Settings
STD: Displaying Terrain Optimization Settings

Hill Descent Control

Displaying Hill Descent Control Status
STD: Displaying Hill Descent Control Status

Right Display

Chassis View
STD: Chassis View

Compass View

H

Left Display
Left Display

View Steering Angle

Displaying Steering Angle Information

View Main Gear

Displaying Gear Position
STD: Displaying Gear Position

View Transfer Gear

Displaying Transfer Gear Status
STD: Displaying Transfer Gear Status

View Differential

Displaying Centre and Rear Differential Lock Information
STD: Displaying Centre and Rear Differential Lock Information

Left Display
View Steering Angle

Displaying Steering Angle Information

View Main Gear

Displaying Gear Position
STD: Displaying Gear Position

View Transfer Gear

Displaying Transfer Gear Status
STD: Displaying Transfer Gear Status

View Differential

Displaying Centre and Rear Differential Lock Information
STD: Displaying Centre and Rear Differential Lock Information

View Steering Angle

Displaying Steering Angle InformationDisplaying Steering Angle Information

View Main Gear

Displaying Gear Position
STD: Displaying Gear Position

Displaying Gear Position
STD: Displaying Gear Position

View Transfer Gear

Displaying Transfer Gear Status
STD: Displaying Transfer Gear Status

Displaying Transfer Gear Status
STD: Displaying Transfer Gear Status

View Differential

Displaying Centre and Rear Differential Lock Information
STD: Displaying Centre and Rear Differential Lock Information

Displaying Centre and Rear Differential Lock Information
STD: Displaying Centre and Rear Differential Lock Information

Central Display

Central Display
Terrain Optimization Settings

Displaying Terrain Optimization Settings
STD: Displaying Terrain Optimization Settings

Hill Descent Control

Displaying Hill Descent Control Status
STD: Displaying Hill Descent Control Status

Central Display
Terrain Optimization Settings

Displaying Terrain Optimization Settings
STD: Displaying Terrain Optimization Settings

Hill Descent Control

Displaying Hill Descent Control Status
STD: Displaying Hill Descent Control Status

Terrain Optimization Settings

Displaying Terrain Optimization Settings
STD: Displaying Terrain Optimization Settings

Displaying Terrain Optimization Settings
STD: Displaying Terrain Optimization Settings

Hill Descent Control

Displaying Hill Descent Control Status
STD: Displaying Hill Descent Control Status

Displaying Hill Descent Control Status
STD: Displaying Hill Descent Control Status

Right Display

Chassis View
STD: Chassis View

Compass View

HChassis View
STD: Chassis View

Compass View

H

/

/

/

/

/

/

/

Compass view Soft Key Pressed/ Chassis view Soft Key Pressed/

/

/

/

 

Fig. B-27. State machine diagram 2: off-road information. 
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P

R

N

D

Fifth

Fourth

Third

Second

First

Displaying Gear Position

P

R

N

D

Fifth

Fourth

Third

Second

First

/ Park/

Reverse/

Netural/

Drive/

Fifth Gear/

Fourth Gear/

Third Gear/

Second Gear/

First Gear/

/

 

Fig. B-28. State machine diagram 3: displaying gear position. 

 

High

Low

Displaying Transfer Gear Status

High

Low

/

Transfer gear selected/ Transfer gear selected/

/

 

Fig. B-29. State machine diagram 4: displaying transfer gear status. 
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Displaying Centre and Rear Differential Lock Information
View Centre Differential Lock Information

Locked Unlocked

View Rear Differential Lock Information

Locked Unlocked

View Centre Differential Lock Information

Locked UnlockedLocked Unlocked

View Rear Differential Lock Information

Locked UnlockedLocked Unlocked

/

/

[Locking Torque<Threshold Value]/

[Locking Torque>=Threshold Value Appropriate to Current TO Mode]/

/
[Locking Torque<Threshold Value]/

[Locking Torque>=Threshold Value Appropriate to Current TO Mode]/

 

Fig. B-30. State machine diagram 5: displaying centre and rear differential lock 

information. 

 

Standard

Mud / Ruts

Sand

Grass / Snow / Ice

Rock Crawl

Displaying Terrain Optimization Settings

Standard

Mud / Ruts

Sand

Grass / Snow / Ice

Rock Crawl

/

/ Standard Mode/

Mud Ruts Mode/

Sand Mode/

Grass Snow Ice Mode/

Rock Crawl Mode/

 

Fig. B-31. State machine diagram 6: displaying TO settings. 
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Inactive

Pending

Set

Displaying Hill Descent Control Status

Inactive

Pending

Set

/

/
Inactive/

Pending/

Set/

 

Fig. B-32. State machine diagram 7: displaying HDC status. 

 

Chassis View
Air Suspension Status

Off Road

Raising

Standard

Lowering

Access

Wheel Height and Axle Angle

Wheel Height and Axle Angle

Air Suspension Status

Off Road

Raising

Standard

Lowering

Access

Off Road

Raising

Standard

Lowering

Access

Wheel Height and Axle Angle

Wheel Height and Axle AngleWheel Height and Axle Angle

/

/

/

Off Road/

Raising/

Standard/

Lowering/

Access/

 

Fig. B-33. State machine diagram 8: chassis view. 
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Swim Lane

Turn on Ignition

Press Home Hard Key or Soft Key

Press 4x4 Information Hard Key 
or Soft Key

Turn on Ignition

Press Home Hard Key or Soft Key

Press 4x4 Information Hard Key 
or Soft Key

 

Fig. B-34. Activity diagram 1: getting to the 4×4 information screen. 

 
Driver

Driving in normal height

Select Acces Mode

Continue driving
Selects Chassis view  
on the display

Driving the vehicle with the Access 
height and display showing 
access

Driving in normal height

Select Acces Mode

Continue driving
Selects Chassis view  
on the display

Driving the vehicle with the Access 
height and display showing 
access

None MOST Based System On The Vehicle

Vehicle changes to 
Access heightRemain Standard Mode

Check Vehicle Speed

Vehicle changes to 
Access heightRemain Standard Mode

Check Vehicle Speed

Driver Information System Application Software

Get height information 
and update display
Get height information 
and update display

Display

Displaying Access heightDisplaying Access height

IHU

Communicate height information 
from Air suspension system to the 
Gateway ECU

Communicate height information 
from Air suspension system to the 
Gateway ECU

[If More than 50 mph]

[else]

Send height information through MOST

 
Fig. B-35. Activity diagram 2: select access height and viewing of new height 

information. 
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Driver

Press 4x4 Information Hard Key or Soft Key

Rotate the TO Selector

Press 4x4 Information Hard Key or Soft Key

Rotate the TO Selector

Vehicle

New Terrain Optimization ModeNew Terrain Optimization Mode

Display

Displaying current TO Setting

Displaying new TO Setting

Displaying current TO Setting

Displaying new TO Setting

Change the vehicle status under new TO setting

 

Fig. B-36. Activity diagram 3: view TO settings and change the TO mode. 

 

Driver

Press 4x4 Information 
Hard Key or Soft Key

Steer the Wheel

Press 4x4 Information 
Hard Key or Soft Key

Steer the Wheel

Driver Information System Application Software

Update the display of steering 
angle on the left area
Update the display of steering 
angle on the left area

Steering Angle Sensor

Collect and sent 
steering angle data
Collect and sent 
steering angle data

MOST

Convert and sent 
steering angle data
Convert and sent 
steering angle data

Display

Displaying Steering AngleDisplaying Steering Angle

 

Fig. B-37. Activity diagram 4: view steering. 
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Appendix C                

Diagrams in the model built in 

Simulink/Stateflow 

 

This appendix provides a full list of Stateflow diagrams in the model that is 

developed in Simulink/Stateflow. 

 

Fig. C-1. Stateflow diagram 1: Driver Information System. 
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Fig. C-2. Stateflow diagram 2: display off-road information. 

 

 

Fig. C-3. Stateflow diagram 3: view main gear. 
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Fig. C-4. Stateflow diagram 4: view transfer gear. 

 

 

Fig. C-5. Stateflow diagram 5: view centre differential lock. 

 

 

Fig. C-6. Stateflow diagram 6: view rear differential lock. 
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Fig. C-7. Stateflow diagram 7: view TO settings. 

 

 

Fig. C-8. Stateflow diagram 8: view HDC status. 
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Fig. C-9. Stateflow diagram 9: chassis view. 
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Appendix D                  

Analysis result of the C code produced 

from ARTiSAN Studio 

 

<polyspace-c C_R2008a>              
 
Type C:\PolySpace_Results\kill-rte-kernel.bat on host ATA209 to halt Verifier process 
 
 
Options used with Verifier: 
-polyspace-version=C_R2008a 
-date=09/02/2009 
-main-generator-calls=unused 
-lang=C 
-results-dir=C:\PolySpace_Results 
-author=admin-ata209 
-main-generator-writes-variables=public 
-target=sparc 
-voa=true 
-continue-with-red-error=true 
-verif-version=1.0 
-prog=New_Project 
-D1=POLYSPACE_NO_STANDARD_STUBS 
-D2=POLYSPACE_STRICT_ANSI_STANDARD_STUBS 
-quick=true 
-I1=E:\SysML Model C code for PolySpace 
-I2=C:\Program Files\ARTiSAN Software Tools\ARTiSAN Real-time Studio\System\C_Sync 
-desktop=true 
-dos=true 
-OS-target=no-predefined-OS 
 
 
Verifying host configuration ... 
Memory > 256MB :                                                       OK
 (1015 MB) 
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Swap > 1GB :                                                           OK
 (2.38 GB) 
Swap >= 2*RAM :                                                        OK  
Tmp space available in C:\DOCUME~1\ADMIN-~1\LOCALS~1\Temp >= 10MB :    OK
 (824 MB) 
 
*** Configuration of the host : OK 
 
 
Checking license ... 
License is OK 
 
 
PolySpace Technologies C static program verifier 
Copyright 1999-2008, The MathWorks, Inc 
All rights reserved. 
 
Starting at: Feb 9, 2009 14:43:13 
Host: MINGW32_XP-5.1 unknown 9 i686 
User: admin-ata209 
********************************************************** 
*** 
*** Verifying C sources 
*** 
********************************************************** 
Copying sources to C-ALL ... 
 
Number of files                  : 1 
Number of lines                  : 4311 
Number of lines without comments : 3142 
 
OS-target no-predefined-OS implies: -D__STDC__  
 
Verifying sources ... 
Verifying Driver_Information_System.c 
 
Verifying cross-files ANSI C compliance 
 
Stubbing standard library functions ... 
Stubbing unknown functions ... 
 
Generating the Main ... 
Generating call to function: RtsIgnition_On 
Generating call to function: Rts4X4_Info_Soft_Key_Pressed 
Generating call to function: RtsEntertainment_Pressed 
Generating call to function: RtsHome_Soft_Key_Pressed 
Generating call to function: RtsIgnition_Off 
Generating call to function: RtsNavigation_Pressed 
Generating call to function: RtsOnRoad_Info_Pressed 
Generating call to function: RtsPhone_Pressed 
Generating call to function: RtsSettings_Pressed 
Generating call to function: RtsInactive 
Generating call to function: RtsPending 
Generating call to function: RtsSet 
Generating call to function: RtsGrass_Snow_Ice_Mode 
Generating call to function: RtsMud_Ruts_Mode 
Generating call to function: RtsRock_Crawl_Mode 



Appendix D 

                                                                     
- 181 -

Generating call to function: RtsSand_Mode 
Generating call to function: RtsStandard_Mode 
Generating call to function: RtsDrive 
Generating call to function: RtsFifth_Gear 
Generating call to function: RtsFirst_Gear 
Generating call to function: RtsFourth_Gear 
Generating call to function: RtsNetural 
Generating call to function: RtsPark 
Generating call to function: RtsReverse 
Generating call to function: RtsSecond_Gear 
Generating call to function: RtsThird_Gear 
Generating call to function: RtsTransfer_gear_selected 
Generating call to function: RtsCompass_view_Soft_Key_Pressed 
Generating call to function: RtsAccess 
Generating call to function: RtsLowering 
Generating call to function: RtsOff_Road 
Generating call to function: RtsRaising 
Generating call to function: RtsStandard 
Generating call to function: RtsChassis_view_Soft_Key_Pressed 
Generating call to function: Driver_Information_System 
Generating call to function: _Driver_Information_System 
Generating call to function: RtsInitial_Screen_Showing_Company_Logo_Timer1_CallBack 
Generating call to function: RtsInitial_Screen_Showing_Company_Logo_Timer2_CallBack 
Doing code transformations ... 
 
********************************************************** 
*** 
*** C sources verification done 
*** 
********************************************************** 
Ending at: Feb 9, 2009 14:44:17 
User time for suif: 64.2real, 64.2u + 0s 
Starting at: Feb 9, 2009 14:44:17 
********************************************************** 
*** 
*** Beginning C to intermediate language translation 
*** 
********************************************************** 
**** C to intermediate language translation 1 (P_SP) 
**** C to intermediate language translation 1 (P_SP) took 2.9real, 2.9u + 0s 
**** C to intermediate language translation 2 (P_RB) 
**** C to intermediate language translation 2 (P_RB) took 0real, 0u + 0s 
**** C to intermediate language translation 3 (P_SIA) 
**** C to intermediate language translation 3 (P_SIA) took 2real, 2u + 0s 
**** C to intermediate language translation 4 (P_CGA) 
**** C to intermediate language translation 4 (P_CGA) took 2.1real, 2.1u + 0s 
**** C to intermediate language translation 5 (P_SFNPV) 
***** C to intermediate language translation 5.1 (P_PA) 
****** C to intermediate language translation 5.1.1 (P_ATA) 
****** C to intermediate language translation 5.1.1 (P_ATA) took 2real, 2u + 0s 
****** C to intermediate language translation 5.1.2 (P_AP) 
****** C to intermediate language translation 5.1.2 (P_AP) took 2.8real, 2.8u + 0s 
****** C to intermediate language translation 5.1.3 (P_ITFP) 
****** C to intermediate language translation 5.1.3 (P_ITFP) took 0.3real, 0.3u + 0s 
****** C to intermediate language translation 5.1.4 (P_CA) 
******* C to intermediate language translation 5.1.4.1 (P_STS) 
******* C to intermediate language translation 5.1.4.1 (P_STS) took 0.4real, 0.4u + 0s 
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******* C to intermediate language translation 5.1.4.2 (P_RR) 
******* C to intermediate language translation 5.1.4.2 (P_RR) took 0real, 0u + 0s 
Some stats on aliases computation: 
  Number of aliases sets:       43 
  Number of couples of aliases: 77613 
  Number of elements in the biggest alias sets: 1st=279, 2nd=279, 3rd=4, 4th=4, 5th=2 
****** C to intermediate language translation 5.1.4 (P_CA) took 0.5real, 0.5u + 0s 
***** C to intermediate language translation 5.1 (P_PA) took 5.6real, 5.6u + 0s 
***** C to intermediate language translation 5.2 (P_SSet) 
***** C to intermediate language translation 5.2 (P_SSet) took 7.8real, 7.8u + 0s 
***** C to intermediate language translation 5.3 (P_GA) 
****** C to intermediate language translation 5.3.1 (P_FPGA) 
****** C to intermediate language translation 5.3.1 (P_FPGA) took 2.1real, 2.1u + 0s 
****** C to intermediate language translation 5.3.2 (P_GCPTS) 
******* C to intermediate language translation 5.3.2.1 (P_GAA3) 
******** C to intermediate language translation 5.3.2.1.1 (Loading) 
******** C to intermediate language translation 5.3.2.1.1 (Loading) took 0real, 0u + 0s 
[1121 -> 2655] 
****** C to intermediate language translation 5.3.2 (P_GCPTS) took 1.4real, 1.4u + 0s 
****** C to intermediate language translation 5.3.3 (P_MNPV) 
****** C to intermediate language translation 5.3.3 (P_MNPV) took 2.6real, 2.6u + 0s 
******** C to intermediate language translation 5.3.2.1.2 (P_GAA_SC) 
********* C to intermediate language translation 5.3.2.1.2.1 (P_GAA_VI) 
********* C to intermediate language translation 5.3.2.1.2.1 (P_GAA_VI) took 0real, 0u + 0s 
********* C to intermediate language translation 5.3.2.1.2.2 (P_GAA_SDC) 
********* C to intermediate language translation 5.3.2.1.2.2 (P_GAA_SDC) took 0real, 0u + 
0s 
********* C to intermediate language translation 5.3.2.1.2.3 (P_GAA_RS) 
********* C to intermediate language translation 5.3.2.1.2.3 (P_GAA_RS) took 0real, 0u + 0s 
******** C to intermediate language translation 5.3.2.1.2 (P_GAA_SC) took 0real, 0u + 0s 
* inlining RtsRunToCompletion could decrease the number of aliases of parameter #1 from 94 
to 6 
* inlining RtsEnter_Screen_Power_Off could decrease the number of aliases of parameter #1 
from 94 to 5 
* inlining RtsExit_Compass_View could decrease the number of aliases of parameter #1 from 
37 to 7 
* inlining RtsExit_Chassis_View_1 could decrease the number of aliases of parameter #1 from 
47 to 6 
* inlining RtsExit_Chassis_View could decrease the number of aliases of parameter #1 from 37 
to 6 
* inlining RtsExit_Low could decrease the number of aliases of parameter #1 from 37 to 7 
* inlining RtsExit_High could decrease the number of aliases of parameter #1 from 37 to 7 
* inlining RtsExit_Displaying_Gear_Position_1 could decrease the number of aliases of 
parameter #1 from 53 to 5 
* inlining RtsExit_Displaying_Terrain_Optimization_Settings_1 could decrease the number of 
aliases of parameter #1 from 45 to 6 
* inlining RtsExit_Displaying_Hill_Descent_Control_Status_1 could decrease the number of 
aliases of parameter #1 from 41 to 5 
******* C to intermediate language translation 5.3.2.1 (P_GAA3) took 15.4real, 15.4u + 0s 
***** C to intermediate language translation 5.3 (P_GA) took 18.6real, 18.6u + 0s 
***** C to intermediate language translation 5.4 (P_AA) 
****** C to intermediate language translation 5.4.1 (P_AC) 
Some stats on points to analysis: 
  Number of optimized point_to edges: 854 
****** C to intermediate language translation 5.4.1 (P_AC) took 0real, 0u + 0s 
***** C to intermediate language translation 5.4 (P_AA) took 0real, 0u + 0s 
***** C to intermediate language translation 5.5 (P_PFF) 
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Found 1 polymorphic functions 
***** C to intermediate language translation 5.5 (P_PFF) took 0.3real, 0.3u + 0s 
***** C to intermediate language translation 5.6 (P_LGR) 
***** C to intermediate language translation 5.6 (P_LGR) took 0real, 0u + 0s 
**** C to intermediate language translation 5 (P_SFNPV) took 32.5real, 32.5u + 0s 
**** C to intermediate language translation 6 (P_SP) 
**** C to intermediate language translation 6 (P_SP) took 3.3real, 3.3u + 0s 
**** C to intermediate language translation 7 (P_RB) 
**** C to intermediate language translation 7 (P_RB) took 0real, 0u + 0s 
**** C to intermediate language translation 8 (P_PA) 
***** C to intermediate language translation 8.1 (P_ATA) 
***** C to intermediate language translation 8.1 (P_ATA) took 2.2real, 2.2u + 0s 
***** C to intermediate language translation 8.2 (P_AP) 
***** C to intermediate language translation 8.2 (P_AP) took 3real, 3u + 0s 
***** C to intermediate language translation 8.3 (P_ITFP) 
***** C to intermediate language translation 8.3 (P_ITFP) took 0.2real, 0.2u + 0s 
***** C to intermediate language translation 8.4 (P_CA) 
****** C to intermediate language translation 8.4.1 (P_STS) 
****** C to intermediate language translation 8.4.1 (P_STS) took 0.9real, 0.9u + 0s 
****** C to intermediate language translation 8.4.2 (P_RR) 
****** C to intermediate language translation 8.4.2 (P_RR) took 0.2real, 0.2u + 0s 
Some stats on aliases computation: 
  Number of aliases sets:       87 
  Number of couples of aliases: 942013 
  Number of elements in the biggest alias sets: 1st=316, 2nd=279, 3rd=279, 4th=279, 5th=279 
***** C to intermediate language translation 8.4 (P_CA) took 1.3real, 1.3u + 0s 
**** C to intermediate language translation 8 (P_PA) took 6.8real, 6.8u + 0s 
**** C to intermediate language translation 9 (P_SSet) 
**** C to intermediate language translation 9 (P_SSet) took 9.6real, 9.6u + 0s 
**** C to intermediate language translation 10 (P_O) 
**** C to intermediate language translation 10 (P_O) took 12.2real, 12.2u + 0s 
**** C to intermediate language translation 11 (P_G) 
**** C to intermediate language translation 11 (P_G) took 5.2real, 5.2u + 0s 
**** C to intermediate language translation 12 (P_TT) 
**** C to intermediate language translation 12 (P_TT) took 0.1real, 0.1u + 0s 
**** C to intermediate language translation 13 (P_VT) 
**** C to intermediate language translation 13 (P_VT) took 0real, 0u + 0s 
**** C to intermediate language translation 14 (P_PT) 
***** C to intermediate language translation 14.1 (P_SPP) 
****** C to intermediate language translation 14.1.1 (P_CSSIP) 
****** C to intermediate language translation 14.1.1 (P_CSSIP) took 0real, 0u + 0s 
***** C to intermediate language translation 14.1 (P_SPP) took 0real, 0u + 0s 
***** C to intermediate language translation 14.2 (P_TP) 
 - translating procedure assert (1 / 235) 
 - translating procedure RtsExit_Screen_Power_Off (2 / 235) 
 - translating procedure RtsEnter_Initial_Screen_Showing_Company_Logo (3 / 235) 
 - translating procedure RtsEnter_Screen_Power_Off (4 / 235) 
 - translating procedure RtsRunToCompletion (5 / 235) 
 - translating procedure RtsIgnition_On (6 / 235) 
 - translating procedure RtsExit_Entertainment (7 / 235) 
 - translating procedure RtsExit_Home (8 / 235) 
 - translating procedure RtsExit_Navigation (9 / 235) 
 - translating procedure RtsExit_Inactive (10 / 235) 
 - translating procedure RtsExit_Pending (11 / 235) 
 - translating procedure RtsExit_Set (12 / 235) 
 - translating procedure RtsExit_Displaying_Hill_Descent_Control_Status_1 (13 / 235) 
 - translating procedure RtsExit_Displaying_Hill_Descent_Control_Status (14 / 235) 
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 - translating procedure RtsExit_Grass___Snow___Ice (15 / 235) 
 - translating procedure RtsExit_Mud___Ruts (16 / 235) 
 - translating procedure RtsExit_Rock_Crawl (17 / 235) 
 - translating procedure RtsExit_Sand (18 / 235) 
 - translating procedure RtsExit_Standard (19 / 235) 
 - translating procedure RtsExit_Displaying_Terrain_Optimization_Settings_1 (20 / 235) 
 - translating procedure RtsExit_Displaying_Terrain_Optimization_Settings (21 / 235) 
 - translating procedure RtsExit_Central_Display_1 (22 / 235) 
 - translating procedure RtsExit_Displaying_Centre_and_Rear_Differential_Lock_Information 
(23 / 235) 
 - translating procedure RtsExit_D (24 / 235) 
 - translating procedure RtsExit_Fifth (25 / 235) 
 - translating procedure RtsExit_First (26 / 235) 
 - translating procedure RtsExit_Fourth (27 / 235) 
 - translating procedure RtsExit_N (28 / 235) 
 - translating procedure RtsExit_P (29 / 235) 
 - translating procedure RtsExit_R (30 / 235) 
 - translating procedure RtsExit_Second (31 / 235) 
 - translating procedure RtsExit_Third (32 / 235) 
 - translating procedure RtsExit_Displaying_Gear_Position_1 (33 / 235) 
 - translating procedure RtsExit_Displaying_Gear_Position (34 / 235) 
 - translating procedure RtsExit_Displaying_Steering_Angle_Information (35 / 235) 
 - translating procedure RtsExit_High (36 / 235) 
 - translating procedure RtsExit_Low (37 / 235) 
 - translating procedure RtsExit_Displaying_Transfer_Gear_Status_1 (38 / 235) 
 - translating procedure RtsExit_Displaying_Transfer_Gear_Status (39 / 235) 
 - translating procedure RtsExit_Left_Display_1 (40 / 235) 
 - translating procedure RtsExit_Access (41 / 235) 
 - translating procedure RtsExit_Lowering (42 / 235) 
 - translating procedure RtsExit_Off_Road (43 / 235) 
 - translating procedure RtsExit_Raising (44 / 235) 
 - translating procedure RtsExit_Standard_1 (45 / 235) 
 - translating procedure RtsExit_Wheel_Height_and_Axle_Angle_1 (46 / 235) 
 - translating procedure RtsExit_Chassis_View_1 (47 / 235) 
 - translating procedure RtsExit_Chassis_View (48 / 235) 
 - translating procedure RtsExit_Compass_View (49 / 235) 
 - translating procedure RtsExit_OffRoad_Information_1 (50 / 235) 
 - translating procedure RtsExit_OffRoad_Information (51 / 235) 
 - translating procedure RtsExit_OnRoad_Information (52 / 235) 
 - translating procedure RtsExit_Phone (53 / 235) 
 - translating procedure RtsExit_Settings (54 / 235) 
 - translating procedure RtsExit_Display (55 / 235) 
 - translating procedure RtsEnter_OffRoad_Information (56 / 235) 
 - translating procedure RtsEnter_OffRoad_Information_1 (57 / 235) 
 - translating procedure RtsEnter_Central_Display_1 (58 / 235) 
 - translating procedure RtsEnter_Displaying_Hill_Descent_Control_Status (59 / 235) 
 - translating procedure RtsEnter_Displaying_Hill_Descent_Control_Status_1 (60 / 235) 
 - translating procedure RtsEnter_Inactive (61 / 235) 
 - translating procedure RtsDefault_Displaying_Hill_Descent_Control_Status_1 (62 / 235) 
 - translating procedure RtsDefault_Displaying_Hill_Descent_Control_Status (63 / 235) 
 - translating procedure RtsDefault_Hill_Descent_Control (64 / 235) 
 - translating procedure RtsEnter_Displaying_Terrain_Optimization_Settings (65 / 235) 
 - translating procedure RtsEnter_Displaying_Terrain_Optimization_Settings_1 (66 / 235) 
 - translating procedure RtsEnter_Standard (67 / 235) 
 - translating procedure RtsDefault_Displaying_Terrain_Optimization_Settings_1 (68 / 235) 
 - translating procedure RtsDefault_Displaying_Terrain_Optimization_Settings (69 / 235) 
 - translating procedure RtsDefault_Terrain_Optimization_Settings (70 / 235) 
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 - translating procedure RtsDefault_Central_Display_1 (71 / 235) 
 - translating procedure RtsDefault_Central_Display (72 / 235) 
 - translating procedure RtsEnter_Left_Display_1 (73 / 235) 
 - translating procedure 
RtsEnter_Displaying_Centre_and_Rear_Differential_Lock_Information (74 / 235) 
 - translating procedure RtsDefault_View_Differential (75 / 235) 
 - translating procedure RtsEnter_Displaying_Gear_Position (76 / 235) 
 - translating procedure RtsEnter_Displaying_Gear_Position_1 (77 / 235) 
 - translating procedure RtsEnter_P (78 / 235) 
 - translating procedure RtsDefault_Displaying_Gear_Position_1 (79 / 235) 
 - translating procedure RtsDefault_Displaying_Gear_Position (80 / 235) 
 - translating procedure RtsDefault_View_Main_Gear (81 / 235) 
 - translating procedure RtsEnter_Displaying_Steering_Angle_Information (82 / 235) 
 - translating procedure RtsDefault_View_Steering_Angle (83 / 235) 
 - translating procedure RtsEnter_Displaying_Transfer_Gear_Status (84 / 235) 
 - translating procedure RtsEnter_Displaying_Transfer_Gear_Status_1 (85 / 235) 
 - translating procedure RtsEnter_High (86 / 235) 
 - translating procedure RtsDefault_Displaying_Transfer_Gear_Status_1 (87 / 235) 
 - translating procedure RtsDefault_Displaying_Transfer_Gear_Status (88 / 235) 
 - translating procedure RtsDefault_View_Transfer_Gear (89 / 235) 
 - translating procedure RtsDefault_Left_Display_1 (90 / 235) 
 - translating procedure RtsDefault_Left_Display (91 / 235) 
 - translating procedure RtsEnter_Chassis_View (92 / 235) 
 - translating procedure RtsEnter_Chassis_View_1 (93 / 235) 
 - translating procedure RtsEnter_Standard_1 (94 / 235) 
 - translating procedure RtsDefault_Air_Suspension_Status (95 / 235) 
 - translating procedure RtsEnter_Wheel_Height_and_Axle_Angle_1 (96 / 235) 
 - translating procedure RtsDefault_Wheel_Height_and_Axle_Angle (97 / 235) 
 - translating procedure RtsDefault_Chassis_View_1 (98 / 235) 
 - translating procedure RtsDefault_Chassis_View (99 / 235) 
 - translating procedure RtsDefault_Right_Display (100 / 235) 
 - translating procedure RtsDefault_OffRoad_Information_1 (101 / 235) 
 - translating procedure RtsDefault_OffRoad_Information (102 / 235) 
 - translating procedure Rts4X4_Info_Soft_Key_Pressed (103 / 235) 
 - translating procedure RtsEnter_Entertainment (104 / 235) 
 - translating procedure RtsEntertainment_Pressed (105 / 235) 
 - translating procedure RtsEnter_Home (106 / 235) 
 - translating procedure RtsHome_Soft_Key_Pressed (107 / 235) 
 - translating procedure RtsIgnition_Off (108 / 235) 
 - translating procedure RtsEnter_Navigation (109 / 235) 
 - translating procedure RtsNavigation_Pressed (110 / 235) 
 - translating procedure RtsEnter_OnRoad_Information (111 / 235) 
 - translating procedure RtsOnRoad_Info_Pressed (112 / 235) 
 - translating procedure RtsEnter_Phone (113 / 235) 
 - translating procedure RtsPhone_Pressed (114 / 235) 
 - translating procedure RtsEnter_Settings (115 / 235) 
 - translating procedure RtsSettings_Pressed (116 / 235) 
 - translating procedure RtsInactive (117 / 235) 
 - translating procedure RtsEnter_Pending (118 / 235) 
 - translating procedure RtsPending (119 / 235) 
 - translating procedure RtsEnter_Set (120 / 235) 
 - translating procedure RtsSet (121 / 235) 
 - translating procedure RtsEnter_Grass___Snow___Ice (122 / 235) 
 - translating procedure RtsGrass_Snow_Ice_Mode (123 / 235) 
 - translating procedure RtsEnter_Mud___Ruts (124 / 235) 
 - translating procedure RtsMud_Ruts_Mode (125 / 235) 
 - translating procedure RtsEnter_Rock_Crawl (126 / 235) 
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 - translating procedure RtsRock_Crawl_Mode (127 / 235) 
 - translating procedure RtsEnter_Sand (128 / 235) 
 - translating procedure RtsSand_Mode (129 / 235) 
 - translating procedure RtsStandard_Mode (130 / 235) 
 - translating procedure RtsEnter_D (131 / 235) 
 - translating procedure RtsDrive (132 / 235) 
 - translating procedure RtsEnter_Fifth (133 / 235) 
 - translating procedure RtsFifth_Gear (134 / 235) 
 - translating procedure RtsEnter_First (135 / 235) 
 - translating procedure RtsFirst_Gear (136 / 235) 
 - translating procedure RtsEnter_Fourth (137 / 235) 
 - translating procedure RtsFourth_Gear (138 / 235) 
 - translating procedure RtsEnter_N (139 / 235) 
 - translating procedure RtsNetural (140 / 235) 
 - translating procedure RtsPark (141 / 235) 
 - translating procedure RtsEnter_R (142 / 235) 
 - translating procedure RtsReverse (143 / 235) 
 - translating procedure RtsEnter_Second (144 / 235) 
 - translating procedure RtsSecond_Gear (145 / 235) 
 - translating procedure RtsEnter_Third (146 / 235) 
 - translating procedure RtsThird_Gear (147 / 235) 
 - translating procedure RtsEnter_Low (148 / 235) 
 - translating procedure RtsTransfer_gear_selected (149 / 235) 
 - translating procedure RtsEnter_Compass_View (150 / 235) 
 - translating procedure RtsCompass_view_Soft_Key_Pressed (151 / 235) 
 - translating procedure RtsEnter_Access (152 / 235) 
 - translating procedure RtsAccess (153 / 235) 
 - translating procedure RtsEnter_Lowering (154 / 235) 
 - translating procedure RtsLowering (155 / 235) 
 - translating procedure RtsEnter_Off_Road (156 / 235) 
 - translating procedure RtsOff_Road (157 / 235) 
 - translating procedure RtsEnter_Raising (158 / 235) 
 - translating procedure RtsRaising (159 / 235) 
 - translating procedure RtsStandard (160 / 235) 
 - translating procedure RtsChassis_view_Soft_Key_Pressed (161 / 235) 
 - translating procedure Driver_Information_System (162 / 235) 
 - translating procedure _Driver_Information_System (163 / 235) 
 - translating procedure RtsExit_Initial_Screen_Showing_Company_Logo (164 / 235) 
 - translating procedure RtsEnter_Display (165 / 235) 
 - translating procedure RtsDefault_Display (166 / 235) 
 - translating procedure RtsInitial_Screen_Showing_Company_Logo_Timer1 (167 / 235) 
 - translating procedure RtsInitial_Screen_Showing_Company_Logo_Timer1_CallBack (168 / 
235) 
 - translating procedure RtsInitial_Screen_Showing_Company_Logo_Timer2 (169 / 235) 
 - translating procedure RtsInitial_Screen_Showing_Company_Logo_Timer2_CallBack (170 / 
235) 
 - translating procedure _main_gen_init_g18 (171 / 235) 
 - translating procedure _main_gen_init_g19 (172 / 235) 
 - translating procedure _main_gen_init_g20 (173 / 235) 
 - translating procedure _main_gen_init_g21 (174 / 235) 
 - translating procedure _main_gen_init_g22 (175 / 235) 
 - translating procedure _main_gen_init_g23 (176 / 235) 
 - translating procedure _main_gen_init_g24 (177 / 235) 
 - translating procedure _main_gen_init_g25 (178 / 235) 
 - translating procedure _main_gen_init_g26 (179 / 235) 
 - translating procedure _main_gen_init_g27 (180 / 235) 
 - translating procedure _main_gen_init_g28 (181 / 235) 
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 - translating procedure _main_gen_init_g29 (182 / 235) 
 - translating procedure _main_gen_init_g30 (183 / 235) 
 - translating procedure _main_gen_init_g31 (184 / 235) 
 - translating procedure _main_gen_init_g32 (185 / 235) 
 - translating procedure _main_gen_init_g33 (186 / 235) 
 - translating procedure _main_gen_init_g34 (187 / 235) 
 - translating procedure _main_gen_init_g35 (188 / 235) 
 - translating procedure _main_gen_init_g36 (189 / 235) 
 - translating procedure _main_gen_init_g37 (190 / 235) 
 - translating procedure _main_gen_init_g38 (191 / 235) 
 - translating procedure _main_gen_init_g39 (192 / 235) 
 - translating procedure _main_gen_init_g40 (193 / 235) 
 - translating procedure _main_gen_init_g17 (194 / 235) 
 - translating procedure _main_gen_call_RtsIgnition_On (195 / 235) 
 - translating procedure _main_gen_call_Rts4X4_Info_Soft_Key_Pressed (196 / 235) 
 - translating procedure _main_gen_call_RtsEntertainment_Pressed (197 / 235) 
 - translating procedure _main_gen_call_RtsHome_Soft_Key_Pressed (198 / 235) 
 - translating procedure _main_gen_call_RtsIgnition_Off (199 / 235) 
 - translating procedure _main_gen_call_RtsNavigation_Pressed (200 / 235) 
 - translating procedure _main_gen_call_RtsOnRoad_Info_Pressed (201 / 235) 
 - translating procedure _main_gen_call_RtsPhone_Pressed (202 / 235) 
 - translating procedure _main_gen_call_RtsSettings_Pressed (203 / 235) 
 - translating procedure _main_gen_call_RtsInactive (204 / 235) 
 - translating procedure _main_gen_call_RtsPending (205 / 235) 
 - translating procedure _main_gen_call_RtsSet (206 / 235) 
 - translating procedure _main_gen_call_RtsGrass_Snow_Ice_Mode (207 / 235) 
 - translating procedure _main_gen_call_RtsMud_Ruts_Mode (208 / 235) 
 - translating procedure _main_gen_call_RtsRock_Crawl_Mode (209 / 235) 
 - translating procedure _main_gen_call_RtsSand_Mode (210 / 235) 
 - translating procedure _main_gen_call_RtsStandard_Mode (211 / 235) 
 - translating procedure _main_gen_call_RtsDrive (212 / 235) 
 - translating procedure _main_gen_call_RtsFifth_Gear (213 / 235) 
 - translating procedure _main_gen_call_RtsFirst_Gear (214 / 235) 
 - translating procedure _main_gen_call_RtsFourth_Gear (215 / 235) 
 - translating procedure _main_gen_call_RtsNetural (216 / 235) 
 - translating procedure _main_gen_call_RtsPark (217 / 235) 
 - translating procedure _main_gen_call_RtsReverse (218 / 235) 
 - translating procedure _main_gen_call_RtsSecond_Gear (219 / 235) 
 - translating procedure _main_gen_call_RtsThird_Gear (220 / 235) 
 - translating procedure _main_gen_call_RtsTransfer_gear_selected (221 / 235) 
 - translating procedure _main_gen_call_RtsCompass_view_Soft_Key_Pressed (222 / 235) 
 - translating procedure _main_gen_call_RtsAccess (223 / 235) 
 - translating procedure _main_gen_call_RtsLowering (224 / 235) 
 - translating procedure _main_gen_call_RtsOff_Road (225 / 235) 
 - translating procedure _main_gen_call_RtsRaising (226 / 235) 
 - translating procedure _main_gen_call_RtsStandard (227 / 235) 
 - translating procedure _main_gen_call_RtsChassis_view_Soft_Key_Pressed (228 / 235) 
 - translating procedure _main_gen_call_Driver_Information_System (229 / 235) 
 - translating procedure _main_gen_call__Driver_Information_System (230 / 235) 
 - translating procedure 
_main_gen_call_RtsInitial_Screen_Showing_Company_Logo_Timer1_CallBack (231 / 235) 
 - translating procedure 
_main_gen_call_RtsInitial_Screen_Showing_Company_Logo_Timer2_CallBack (232 / 235) 
 - translating procedure main (233 / 235) 
 - translating procedure __PST__MAIN__ENTRY__POINT__ (234 / 235) 
Some stats on aliases use: 
  Number of alias writes:      2823 



Appendix D 

                                                                     
- 188 -

  Number of must-alias writes: 364 
  Number of pma writes:        364 
  Number of alias reads:       0 
  Number of invisibles:        376 
Stats about alias writes: 
  biggest sets of alias writes: RtsEnter_Screen_Power_Off:this (77), 
RtsExit_Displaying_Gear_Position_1:this (39),  
                                RtsExit_Chassis_View_1:this (32) 
  procedures that write the biggest sets of aliases: RtsExit_Left_Display_1 (88), 
RtsEnter_Screen_Power_Off (77),  
                                                     RtsExit_Chassis_View_1 
(64) 
***** C to intermediate language translation 14.2 (P_TP) took 39.1real, 39.1u + 0s 
**** C to intermediate language translation 14 (P_PT) took 39.2real, 39.2u + 0s 
**** C to intermediate language translation 15 (P_IL) 
***** C to intermediate language translation 15.1 (P_DRP) 
***** C to intermediate language translation 15.1 (P_DRP) took 0real, 0u + 0s 
***** C to intermediate language translation 15.2 (P_DR) 
***** C to intermediate language translation 15.2 (P_DR) took 0real, 0u + 0s 
***** C to intermediate language translation 15.3 (P_IGA) 
***** C to intermediate language translation 15.3 (P_IGA) took 7.1real, 7.1u + 0s 
***** C to intermediate language translation 15.4 (P_AG) 
0 constructions broken due to gotos 
***** C to intermediate language translation 15.4 (P_AG) took 6.2real, 6.2u + 0s 
***** C to intermediate language translation 15.5 (P_CG) 
***** C to intermediate language translation 15.5 (P_CG) took 4.1real, 4.1u + 0s 
***** C to intermediate language translation 15.6 (P_R) 
***** C to intermediate language translation 15.6 (P_R) took 4.6real, 4.6u + 0s 
***** C to intermediate language translation 15.7 (P_PP) 
* 362 pp, 420 ppp. 
***** C to intermediate language translation 15.7 (P_PP) took 4.7real, 4.7u + 0s 
***** C to intermediate language translation 15.8 (P_ICSP) 
* 4167 cd, 11752 cf, 0 rc, 0 ff, 0 ed, 0 cd.  
***** C to intermediate language translation 15.8 (P_ICSP) took 25.8real, 25.8u + 0s 
***** C to intermediate language translation 15.9 (P_ILA) 
***** C to intermediate language translation 15.9 (P_ILA) took 6.3real, 6.3u + 0s 
***** C to intermediate language translation 15.10 (P_PGC) 
* 4461 tdl. 
***** C to intermediate language translation 15.10 (P_PGC) took 15.8real, 15.8u + 0s 
***** C to intermediate language translation 15.11 (P_ILA) 
***** C to intermediate language translation 15.11 (P_ILA) took 5.6real, 5.6u + 0s 
***** C to intermediate language translation 15.12 (P_PGC) 
* 2797 tdl. 
***** C to intermediate language translation 15.12 (P_PGC) took 13.5real, 13.5u + 0s 
***** C to intermediate language translation 15.13 (P_SULV) 
***** C to intermediate language translation 15.13 (P_SULV) took 3.8real, 3.8u + 0s 
***** C to intermediate language translation 15.14 (P_ICPP) 
***** C to intermediate language translation 15.14 (P_ICPP) took 18real, 18u + 0s 
***** C to intermediate language translation 15.15 (P_PP) 
* 0 pp, 0 ppp. 
***** C to intermediate language translation 15.15 (P_PP) took 5.9real, 5.9u + 0s 
***** C to intermediate language translation 15.16 (P_SRC) 
* 105 rcd, 0 tpd. 
***** C to intermediate language translation 15.16 (P_SRC) took 11.2real, 11.2u + 0s 
***** C to intermediate language translation 15.17 (P_SULV) 
***** C to intermediate language translation 15.17 (P_SULV) took 4.1real, 4.1u + 0s 
***** C to intermediate language translation 15.18 (P_SENUP) 
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3 empty procedure(s) removed 
***** C to intermediate language translation 15.18 (P_SENUP) took 0.1real, 0.1u + 0s 
***** C to intermediate language translation 15.19 (P_R) 
***** C to intermediate language translation 15.19 (P_R) took 3.1real, 3.1u + 0s 
**** C to intermediate language translation 15 (P_IL) took 216.7real, 216.7u + 0s 
0 empty package(s) removed 
**** C to intermediate language translation 16 (P_IPF) 
94% init procedures removed 
**** C to intermediate language translation 16 (P_IPF) took 3real, 3u + 0s 
74% types removed 
* assigns: 52% reduction 
* asserts: 48% reduction 
* total  : 55% reduction 
********************************************************** 
*** 
*** C to intermediate language translation done 
*** 
********************************************************** 
Ending at: Feb 9, 2009 14:50:34 
User time for iabc-c2if: 376.5real, 376.5u + 0s 
Starting at: Feb 9, 2009 14:50:34 
********************************************************** 
*** 
*** Beginning Quick Software Safety Integration Analysis 
*** 
********************************************************** 
**** Quick Software Safety Integration Analysis 1 (MF) 
**** Quick Software Safety Integration Analysis 1 (MF) took 3.4real, 3.4u + 0s 
**** Quick Software Safety Integration Analysis 2 (interprocedural propagation) 
**** Quick Software Safety Integration Analysis 2 (interprocedural propagation) took 16.3real, 
16.3u + 0s 
 
Generating GUI files 
Checks statistics: (including internal files) 
 - IRV    => Green :    23, Orange :     0, Red :     0, Gray :     0   (100%) 
 - OVFL   => Green :    38, Orange :     0, Red :     0, Gray :     0   (100%) 
 - NIP    => Green :   537, Orange :     0, Red :     0, Gray :   131   (100%) 
 - NIVL   => Green :   215, Orange :     0, Red :     0, Gray :     0   (100%) 
 - NIV    => Green :   100, Orange :   193, Red :     0, Gray :   131   (54%) 
 - UNFL   => Green :    38, Orange :     0, Red :     0, Gray :     0   (100%) 
 - COR    => Green :   152, Orange :     0, Red :     0, Gray :     0   (100%) 
 - OBAI   => Green :    38, Orange :     0, Red :     0, Gray :     0   (100%) 
 - ZDV    => Green :   152, Orange :     0, Red :     0, Gray :     0   (100%) 
 - IDP    => Green :   205, Orange :    84, Red :     0, Gray :   131   (80%) 
 
TOTAL:    => Green :  1498, Orange :   277, Red :     0, Gray :   393   (87%) 
 
Number of NTL : 0 
Number of NTC : 0 
Number of UNR : 0 
 
 
GUI files generation complete. 
 
********************************************************** 
*** 
*** Quick Software Safety Integration Analysis done 
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*** 
********************************************************** 
Ending at: Feb 9, 2009 14:51:14 
User time for quick: 40.1real, 40.1u + 0s 
User time for polyspace-c: 482.4real, 482.4u + 0s 
 
 
*** 
*** End of PolySpace Verifier analysis 
*** 
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Appendix E                 

Analysis result of the C code produced 

from Real-Time Workshop 

 

<polyspace-c C_R2008a>               
 
Type C:\PolySpace_Results\kill-rte-kernel.bat on host ATA209 to halt Verifier process 
 
 
Options used with Verifier: 
-polyspace-version=C_R2008a 
-date=09/02/2009 
-main-generator-calls=unused 
-lang=C 
-results-dir=C:\PolySpace_Results 
-author=admin-ata209 
-main-generator-writes-variables=public 
-target=sparc 
-voa=true 
-continue-with-red-error=true 
-verif-version=1.0 
-prog=New_Project 
-D1=POLYSPACE_NO_STANDARD_STUBS 
-quick=true 
-I1=E:\FunctionalModel0209_ert_rtw 
-I2=C:\MATLAB704\sys\lcc\include 
-I3=C:\MATLAB704\simulink\include 
-I4=C:\MATLAB704\rtw\c\libsrc 
-I5=C:\MATLAB704\extern\include 
-desktop=true 
-dos=true 
-OS-target=no-predefined-OS 
 
 
Verifying host configuration ... 
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Memory > 256MB :                                                       OK
 (1015 MB) 
Swap > 1GB :                                                           OK
 (2.38 GB) 
Swap >= 2*RAM :                                                        OK  
Tmp space available in C:\DOCUME~1\ADMIN-~1\LOCALS~1\Temp >= 10MB :    OK
 (823 MB) 
 
*** Configuration of the host : OK 
 
 
Checking license ... 
License is OK 
 
 
PolySpace Technologies C static program verifier 
Copyright 1999-2008, The MathWorks, Inc 
All rights reserved. 
 
Starting at: Feb 9, 2009 14:56:23 
Host: MINGW32_XP-5.1 unknown 9 i686 
User: admin-ata209 
********************************************************** 
*** 
*** Verifying C sources 
*** 
********************************************************** 
Copying sources to C-ALL ... 
 
Number of files                  : 3 
Number of lines                  : 1818 
Number of lines without comments : 1336 
 
OS-target no-predefined-OS implies: -D__STDC__  
 
Verifying sources ... 
Verifying FunctionalModel0209.c 
Verifying FunctionalModel0209_data.c 
Verifying ert_main.c 
 
Verifying cross-files ANSI C compliance 
 
Stubbing standard library functions ... 
Stubbing unknown functions ... 
* Function fflush may write to its arguments and may return random. 
           Does not model pointer effects. Returns an initialized value. 
* Function memset may write to its arguments and may return random. 
           Does not model pointer effects. Returns an initialized value. 
           Const parameters (nb params=3): (#2, #3). 
* Function rt_ZCFcn may write to its arguments and may return random. 
           Does not model pointer effects. Returns an initialized value. 
           Const parameters (nb params=3): (#1, #3). 
* Function printf may write to its arguments and may return random. 
           Does not model pointer effects. 
           It may write in the variable arguments. Returns an initialized value. 
           Const parameters (nb params=3): #1. 
* Function floor is pure. Returns an initialized value. 
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           Const parameters (nb params=1): #1. 
 
Generating the Main ... 
 
Warning: a main procedure already exists. 
         No main will be generated: the existing one will be used... 
Doing code transformations ... 
 
********************************************************** 
*** 
*** C sources verification done 
*** 
********************************************************** 
Ending at: Feb 9, 2009 14:57:32 
User time for suif: 69.3real, 69.3u + 0s 
Starting at: Feb 9, 2009 14:57:32 
********************************************************** 
*** 
*** Beginning C to intermediate language translation 
*** 
********************************************************** 
**** C to intermediate language translation 1 (P_SP) 
**** C to intermediate language translation 1 (P_SP) took 0.9real, 0.9u + 0s 
**** C to intermediate language translation 2 (P_RB) 
**** C to intermediate language translation 2 (P_RB) took 0real, 0u + 0s 
rt_OneStep is dead code 
FunctionalModel0209_step is dead code 
Functio_DriverInformationSystem is dead code 
chartstep_c1_FunctionalModel020 is dead code 
FunctionalModel0209_Display is dead code 
Fun_enter_internal_RightDisplay is dead code 
Functiona_exit_internal_Display is dead code 
rt_ZCFcn is dead code 
**** C to intermediate language translation 3 (P_SIA) 
**** C to intermediate language translation 3 (P_SIA) took 0.3real, 0.3u + 0s 
**** C to intermediate language translation 4 (P_CGA) 
**** C to intermediate language translation 4 (P_CGA) took 0.1real, 0.1u + 0s 
**** C to intermediate language translation 5 (P_SFNPV) 
***** C to intermediate language translation 5.1 (P_PA) 
****** C to intermediate language translation 5.1.1 (P_ATA) 
****** C to intermediate language translation 5.1.1 (P_ATA) took 0.2real, 0.2u + 0s 
****** C to intermediate language translation 5.1.2 (P_AP) 
****** C to intermediate language translation 5.1.2 (P_AP) took 0.1real, 0.1u + 0s 
****** C to intermediate language translation 5.1.3 (P_ITFP) 
****** C to intermediate language translation 5.1.3 (P_ITFP) took 0real, 0u + 0s 
****** C to intermediate language translation 5.1.4 (P_CA) 
******* C to intermediate language translation 5.1.4.1 (P_STS) 
******* C to intermediate language translation 5.1.4.1 (P_STS) took 0.1real, 0.1u + 0s 
******* C to intermediate language translation 5.1.4.2 (P_RR) 
******* C to intermediate language translation 5.1.4.2 (P_RR) took 0real, 0u + 0s 
Some stats on aliases computation: 
  Number of aliases sets:       11 
  Number of couples of aliases: 45 
  Number of elements in the biggest alias sets: 1st=8, 2nd=3, 3rd=3, 4th=3, 5th=3 
****** C to intermediate language translation 5.1.4 (P_CA) took 0.1real, 0.1u + 0s 
***** C to intermediate language translation 5.1 (P_PA) took 0.5real, 0.5u + 0s 
***** C to intermediate language translation 5.2 (P_SSet) 
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***** C to intermediate language translation 5.2 (P_SSet) took 0.8real, 0.8u + 0s 
***** C to intermediate language translation 5.3 (P_GA) 
****** C to intermediate language translation 5.3.1 (P_FPGA) 
****** C to intermediate language translation 5.3.1 (P_FPGA) took 0.2real, 0.2u + 0s 
****** C to intermediate language translation 5.3.2 (P_GCPTS) 
******* C to intermediate language translation 5.3.2.1 (P_GAA3) 
******** C to intermediate language translation 5.3.2.1.1 (Loading) 
******** C to intermediate language translation 5.3.2.1.1 (Loading) took 0real, 0u + 0s 
[50 -> 89] 
****** C to intermediate language translation 5.3.2 (P_GCPTS) took 1.1real, 1.1u + 0s 
****** C to intermediate language translation 5.3.3 (P_MNPV) 
****** C to intermediate language translation 5.3.3 (P_MNPV) took 0.7real, 0.7u + 0s 
******** C to intermediate language translation 5.3.2.1.2 (P_GAA_SC) 
********* C to intermediate language translation 5.3.2.1.2.1 (P_GAA_VI) 
********* C to intermediate language translation 5.3.2.1.2.1 (P_GAA_VI) took 0real, 0u + 0s 
********* C to intermediate language translation 5.3.2.1.2.2 (P_GAA_SDC) 
********* C to intermediate language translation 5.3.2.1.2.2 (P_GAA_SDC) took 0real, 0u + 
0s 
********* C to intermediate language translation 5.3.2.1.2.3 (P_GAA_RS) 
********* C to intermediate language translation 5.3.2.1.2.3 (P_GAA_RS) took 0real, 0u + 0s 
******** C to intermediate language translation 5.3.2.1.2 (P_GAA_SC) took 0real, 0u + 0s 
******* C to intermediate language translation 5.3.2.1 (P_GAA3) took 2.5real, 2.5u + 0s 
***** C to intermediate language translation 5.3 (P_GA) took 3.7real, 3.7u + 0s 
***** C to intermediate language translation 5.4 (P_AA) 
****** C to intermediate language translation 5.4.1 (P_AC) 
Some stats on points to analysis: 
  Number of optimized point_to edges: 15 
****** C to intermediate language translation 5.4.1 (P_AC) took 0real, 0u + 0s 
***** C to intermediate language translation 5.4 (P_AA) took 0real, 0u + 0s 
***** C to intermediate language translation 5.5 (P_PFF) 
Found 12 polymorphic functions 
***** C to intermediate language translation 5.5 (P_PFF) took 0real, 0u + 0s 
***** C to intermediate language translation 5.6 (P_LGR) 
***** C to intermediate language translation 5.6 (P_LGR) took 0real, 0u + 0s 
**** C to intermediate language translation 5 (P_SFNPV) took 5real, 5u + 0s 
**** C to intermediate language translation 6 (P_SP) 
**** C to intermediate language translation 6 (P_SP) took 0.8real, 0.8u + 0s 
**** C to intermediate language translation 7 (P_RB) 
**** C to intermediate language translation 7 (P_RB) took 0real, 0u + 0s 
**** C to intermediate language translation 8 (P_PA) 
***** C to intermediate language translation 8.1 (P_ATA) 
***** C to intermediate language translation 8.1 (P_ATA) took 0.1real, 0.1u + 0s 
***** C to intermediate language translation 8.2 (P_AP) 
***** C to intermediate language translation 8.2 (P_AP) took 0real, 0u + 0s 
***** C to intermediate language translation 8.3 (P_ITFP) 
***** C to intermediate language translation 8.3 (P_ITFP) took 0real, 0u + 0s 
***** C to intermediate language translation 8.4 (P_CA) 
****** C to intermediate language translation 8.4.1 (P_STS) 
****** C to intermediate language translation 8.4.1 (P_STS) took 0.1real, 0.1u + 0s 
****** C to intermediate language translation 8.4.2 (P_RR) 
****** C to intermediate language translation 8.4.2 (P_RR) took 0real, 0u + 0s 
Some stats on aliases computation: 
  Number of aliases sets:       39 
  Number of couples of aliases: 267 
  Number of elements in the biggest alias sets: 1st=8, 2nd=7, 3rd=7, 4th=7, 5th=6 
***** C to intermediate language translation 8.4 (P_CA) took 0.1real, 0.1u + 0s 
**** C to intermediate language translation 8 (P_PA) took 0.3real, 0.3u + 0s 
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**** C to intermediate language translation 9 (P_SSet) 
**** C to intermediate language translation 9 (P_SSet) took 0.6real, 0.6u + 0s 
**** C to intermediate language translation 10 (P_O) 
**** C to intermediate language translation 10 (P_O) took 0.5real, 0.5u + 0s 
**** C to intermediate language translation 11 (P_G) 
**** C to intermediate language translation 11 (P_G) took 0.3real, 0.3u + 0s 
**** C to intermediate language translation 12 (P_TT) 
**** C to intermediate language translation 12 (P_TT) took 0.1real, 0.1u + 0s 
**** C to intermediate language translation 13 (P_VT) 
**** C to intermediate language translation 13 (P_VT) took 0real, 0u + 0s 
**** C to intermediate language translation 14 (P_PT) 
***** C to intermediate language translation 14.1 (P_SPP) 
****** C to intermediate language translation 14.1.1 (P_CSSIP) 
****** C to intermediate language translation 14.1.1 (P_CSSIP) took 0real, 0u + 0s 
***** C to intermediate language translation 14.1 (P_SPP) took 0real, 0u + 0s 
***** C to intermediate language translation 14.2 (P_TP) 
 - translating procedure assert (1 / 22) 
 - translating procedure memset (2 / 22) 
 - translating procedure floor (3 / 22) 
 - translating procedure Fu_DriverInformationSystem_Init (4 / 22) 
 - translating procedure FunctionalModel0209_initialize (5 / 22) 
 - translating procedure FunctionalModel0209_terminate (6 / 22) 
 - translating procedure printf (7 / 22) 
 - translating procedure fflush (8 / 22) 
 - translating procedure _init_globals_0 (9 / 22) 
 - translating procedure _init_globals_0_1 (10 / 22) 
 - translating procedure _init_globals_0_2 (11 / 22) 
 - translating procedure main (12 / 22) 
* warning, file: "ert_main.c", 72:37 : 
  precision loss in read of FunctionalModel0209_M->errorStatus because 
FunctionalModel0209_M may point to volatile data 
* warning, file: "ert_main.c", 72:37 : 
  precision loss in read of FunctionalModel0209_M->errorStatus because 
FunctionalModel0209_M may point to volatile data 
 - translating procedure __PST__MAIN__ENTRY__POINT__ (13 / 22) 
Some stats on aliases use: 
  Number of alias writes:      28 
  Number of must-alias writes: 26 
  Number of pma writes:        26 
  Number of alias reads:       0 
  Number of invisibles:        0 
Stats about alias writes: 
  biggest sets of alias writes: FunctionalModel0209_initialize:pVoidBlockIORegion (21), 
memset:p_1 (5), FunctionalModel0209_M (1) 
  procedures that write the biggest sets of aliases: FunctionalModel0209_initialize (22), 
memset (5), fflush (1) 
***** C to intermediate language translation 14.2 (P_TP) took 2.6real, 2.6u + 0s 
**** C to intermediate language translation 14 (P_PT) took 2.7real, 2.7u + 0s 
**** C to intermediate language translation 15 (P_IL) 
***** C to intermediate language translation 15.1 (P_DRP) 
***** C to intermediate language translation 15.1 (P_DRP) took 0real, 0u + 0s 
***** C to intermediate language translation 15.2 (P_DR) 
***** C to intermediate language translation 15.2 (P_DR) took 0real, 0u + 0s 
***** C to intermediate language translation 15.3 (P_IGA) 
***** C to intermediate language translation 15.3 (P_IGA) took 0.3real, 0.3u + 0s 
***** C to intermediate language translation 15.4 (P_AG) 
0 constructions broken due to gotos 
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***** C to intermediate language translation 15.4 (P_AG) took 0.2real, 0.2u + 0s 
***** C to intermediate language translation 15.5 (P_CG) 
***** C to intermediate language translation 15.5 (P_CG) took 0.2real, 0.2u + 0s 
***** C to intermediate language translation 15.6 (P_R) 
***** C to intermediate language translation 15.6 (P_R) took 0.2real, 0.2u + 0s 
***** C to intermediate language translation 15.7 (P_PP) 
* 0 pp, 7 ppp. 
***** C to intermediate language translation 15.7 (P_PP) took 0.2real, 0.2u + 0s 
***** C to intermediate language translation 15.8 (P_ICSP) 
* 220 cd, 4048 cf, 0 rc, 0 ff, 0 ed, 0 cd.  
***** C to intermediate language translation 15.8 (P_ICSP) took 1.6real, 1.6u + 0s 
***** C to intermediate language translation 15.9 (P_ILA) 
***** C to intermediate language translation 15.9 (P_ILA) took 0.2real, 0.2u + 0s 
***** C to intermediate language translation 15.10 (P_PGC) 
* 1665 tdl. 
***** C to intermediate language translation 15.10 (P_PGC) took 0.6real, 0.6u + 0s 
***** C to intermediate language translation 15.11 (P_ILA) 
***** C to intermediate language translation 15.11 (P_ILA) took 0.1real, 0.1u + 0s 
***** C to intermediate language translation 15.12 (P_PGC) 
* 864 tdl. 
***** C to intermediate language translation 15.12 (P_PGC) took 0.4real, 0.4u + 0s 
***** C to intermediate language translation 15.13 (P_SULV) 
***** C to intermediate language translation 15.13 (P_SULV) took 0.1real, 0.1u + 0s 
***** C to intermediate language translation 15.14 (P_ICPP) 
***** C to intermediate language translation 15.14 (P_ICPP) took 0.5real, 0.5u + 0s 
***** C to intermediate language translation 15.15 (P_PP) 
* 0 pp, 0 ppp. 
***** C to intermediate language translation 15.15 (P_PP) took 0.1real, 0.1u + 0s 
***** C to intermediate language translation 15.16 (P_SRC) 
* 9 rcd, 0 tpd. 
***** C to intermediate language translation 15.16 (P_SRC) took 0.4real, 0.4u + 0s 
***** C to intermediate language translation 15.17 (P_SULV) 
***** C to intermediate language translation 15.17 (P_SULV) took 0.1real, 0.1u + 0s 
***** C to intermediate language translation 15.18 (P_SENUP) 
12 empty procedure(s) removed 
***** C to intermediate language translation 15.18 (P_SENUP) took 0real, 0u + 0s 
***** C to intermediate language translation 15.19 (P_R) 
***** C to intermediate language translation 15.19 (P_R) took 0.1real, 0.1u + 0s 
**** C to intermediate language translation 15 (P_IL) took 8.5real, 8.5u + 0s 
1 empty package(s) removed 
**** C to intermediate language translation 16 (P_IPF) 
92% init procedures removed 
**** C to intermediate language translation 16 (P_IPF) took 0.1real, 0.1u + 0s 
66% types removed 
* assigns: 79% reduction 
* asserts: 51% reduction 
* total  : 87% reduction 
********************************************************** 
*** 
*** C to intermediate language translation done 
*** 
********************************************************** 
Ending at: Feb 9, 2009 14:58:8 
User time for iabc-c2if: 35.8real, 35.8u + 0s 
Starting at: Feb 9, 2009 14:58:8 
********************************************************** 
*** 
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*** Beginning Quick Software Safety Integration Analysis 
*** 
********************************************************** 
**** Quick Software Safety Integration Analysis 1 (MF) 
**** Quick Software Safety Integration Analysis 1 (MF) took 0real, 0u + 0s 
**** Quick Software Safety Integration Analysis 2 (interprocedural propagation) 
**** Quick Software Safety Integration Analysis 2 (interprocedural propagation) took 0.2real, 
0.2u + 0s 
 
Generating GUI files 
Checks statistics: (including internal files) 
 - OVFL   => Green :     2, Orange :     0, Red :     0, Gray :     4   (100%) 
 - NIP    => Green :     4, Orange :     0, Red :     0, Gray :     2   (100%) 
 - NIVL   => Green :     3, Orange :     0, Red :     0, Gray :     7   (100%) 
 - UNFL   => Green :     2, Orange :     0, Red :     0, Gray :     4   (100%) 
 - OBAI   => Green :     0, Orange :     0, Red :     0, Gray :     1   (100%) 
 - ZDV    => Green :     0, Orange :     0, Red :     0, Gray :     1   (100%) 
 - IDP    => Green :     2, Orange :     1, Red :     0, Gray :     1   (75%) 
 
TOTAL:    => Green :    13, Orange :     1, Red :     0, Gray :    20   (97%) 
 
Number of NTL : 0 
Number of NTC : 0 
Number of UNR : 0 
 
 
GUI files generation complete. 
 
********************************************************** 
*** 
*** Quick Software Safety Integration Analysis done 
*** 
********************************************************** 
Ending at: Feb 9, 2009 14:58:13 
User time for quick: 5.4real, 5.4u + 0s 
User time for polyspace-c: 112.6real, 112.6u + 0s 
 
 
*** 
*** End of PolySpace Verifier analysis 
*** 


