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ABSTRACT

This paper addresses a tracking problem in which the unedder

process is characterised by a collection of random jumpstiarel
associated random parameters. We construct a scheme &miogt
particle approximations to the posterior distributionsirgérest in
the framework of sequential Monte Carlo (SMC) samplers i
describe efficient sampling schemes and demonstrate thabxist-
ing schemes can be interpreted as particular cases of thegeod
method. Results are provided which illustrate the perforcaam-
provements possible with our approach.

Index Terms— Monte Carlo methods, Nonlinear filters, Con-

tinuous time systems

1. INTRODUCTION

Within the Bayesian paradigm, the task of optimal filterirayre-
sponds to obtaining, recursively in time, the posteriotritigtion
of an unobserved stochastic process, given noisy obsengathade
over time. The filtering model has many applications in Sigme-

the signal process. Our aim is to obtain iteratively, at estuderva-
tion time, the conditional distribution of the signal presagiven the
collection of observations up to that time.

1.2. Model Specification

We begin with a formal specification of the model, before ptimg

an intuitive explanation; a simple example is provided ictios 1.3.
Consider first a pair Markov process;, 6; ) ;en, of times,r; €

R* and parameterg,; € = with transition density of the form:

p(75,0;|m5-1,05-1) = f(75175-1)q(0;10 -1, Tj—1,75)-

We next define a continuous time counting proc@ss:>o as fol-

lows:
oo
Vi = Z ]I[O,t] (T]‘).
j=1

The right-continuous signal proce$s; ) >0, which takes a value
in = at any timet and has known initial distributiofy ~ o (¢o), is

cessing, not least itracking where the hidden process models the defined by:

evolution of a manoeuvring object. The aim is then to estinthé

trajectory of some object, given observations made by sooigy/n

sensor.

Ct = F(tyTw”eut),

with the conventions thaty = 0, 60 = (o. The functionF is
deterministic and subject to the condition thétr;, 7;,0;) = 0;,

Tracking is commonly cast as a discrete time filtering proble Vj € N.

in which the hidden process is Markov and the observationsam-
ditionally independent, given the state of the system. Inyr@ses
of interest the state-space model is non-linear and nors<ta, and
exact inference is intractable. Approximation methodstirhere-
fore, be employed. SMC methods, [2], approximate the sexgueh
posterior distributions by a collection of weighted sarsplermed
particles.

It has been demonstrated that, in some situations, thetoaye
of a manoeuvring target may be more parsimoniously modéleal
possibly non-Markovian, continuous time process [3]. Elsmod-
els are to be employed in practice, accurate and compugitiaaffi-
cient inference schemes need be developed. The contritnftibis
paper is the development of such schemes. Specifically, dressl
the filtering of a broad class of semi-Markov processes, ey
sequential Monte Carlo techniques to approximate theilligions
of interest.

1.1. Problem Statement

We first define thesignal process ((:):>0, Where eaclt; takes a

value in a state space (e.g.,n-dimensional Euclidean space), and

a sequence of noisgbservations (Y;,)ncn, Where eachy, € R%

It is easy to interpret this dynamic model: a realisationhaf t
signal process evolves from the initial conditignaccording toF'
until the time of the first jumpr;, at which time it takes the new
valued;. The signal continues to evolve accordingRauntil 7, at
which time the signal acquires the new vatise and so on.

The nth observation of the signal proceds,, is made at time
point ¢,, via some functionH, in the presence of an independent
noise component;,:

Y, = H(Ctn, Va)-

The distribution ofV,,, together withH, induces a likelihood func-
tlon g(y"|<t71 )'

We will be especially interested in the number of jumps oecur
ring in each interval0, t,,] and therefore sét, £ v, . Our model
induces a joint prior distributionp,, (k», 71:%,, ), on the number of
jumps in[0, ¢,,] and their locations:

kn

pu(kn, Tk,) = St ) [T F(milm5-1),

Jj=1

with d,, € N, which are independent of one another and, conditionalvhereS(¢, 7) is the survivor function associated with the transition

upon the signal process at the observation time, of the retaaof

density f (7 |1j-1):



S(t,t)=1 —/ f(s|m)ds.

Given the functionF’, the path(¢:):c(o,¢,,] iS completely specified
by the initial condition¢o, the number of jumpsk,,, their locations
T1.k,, and associated parameter valdes,, . We define a sequence
(X )nen, Where, omitting explicit n-indexing of all components for
brevity, X,, = (kn, ¢o, 01:%,,, T1:%,, ) takes its values in the disjoint
union:

Ep = | J{k} x 27 x Yo,
k=0
Wltth D Tn’k = {T1;k << <1k < tn}.

In order to obtain the distribution dt:).co,:,,], given the ob-
servationsy:.,, it would suffice to findr, (x,), the posterior distri-

bution of X,,, because, by construction, the signal process is a deter-

ministic function of the jump times and parameters. Thistg@ber
distribution, up to a constant of proportionality, has tbe:

Tn (Tn) XPn(kn, Tk, ) X

kn
q0(¢0) [T 9(05165-1, 75, 75-1)

j=1

[Towlé,) @
p=1

The marginal distributiomr, (7, , 6x,, ) provides sufficient informa-
tion to obtain the filtering distributionp((z,, |y1:»). Although, in
the following, we consider only filtering distributions dida form
(¢t ly1:n), i€ for the signal at the times of the observations,
just as in the standard discrete time filtering scenarioptoposed
method can be straightforwardly modified to deal with othieerfi
ing and smoothing distributions. Exact inference for thisdel is
intractable and in section 2 we describe Monte Carlo schdores
obtaining sample-based approximations to posterioridigtons.

We note that obtaining these distributions amounts to swiut
of the optimal Bayesian filtering problem for the model désl
above. Obtaining particle approximations of these distitims pro-
vides us with a computationally tractable method for obtejrar-
bitrarily good approximations of these distributions. &etining
whether this is a good description of a particular physigatem is
a modelling problem which we do not consider here.

1.3. A Motivating Example

A vehicle manoeuvres according to standard, piece-wisstanhac-
celeration dynamics. Each parameter may be decomposet ami
y components, each containing a position, velocity and ecagbn
value, for brevity we write,

|: Fw(t,ﬂ,ﬁﬁw) ] )

0; = o Y
F (t7TVt79Vt)

b
0;
At time zero the vehicle has position, velocity and accéiena

x

} andF(t,7v,,0.,)

Co. Attime 71, the acceleration of the vehicle jumps to a new, ran-

dom value according t@(0;|6,-1,7;—1, ;) etc. HereZ = R® but
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Fig. 1. Benchmark 2D position trajectory (solid) and additive &au
sian observations (crosses).

2. METHODOLOGY

2.1. Previous Approaches

Inference schemes based on the ideas of sequential impersam-
pling and resampling, upon which the particle filter is huiiave
been devised for the process of interest. Whilst it is pdssiin
some circumstances to consider discrete time approxingmtmthe
process of interest the nature of this approximation is hotys
clear and the error which it introduces is not easy to cont@an-
sequently, we will consider only techniques in which no niliaig
approximations are employed.

The variable rate particle filter (VRPF) of [5, 3] is one such
scheme, which samples a random sequence of jump times on the
interval|0, ¢,] by drawing recursively fronf (;|7;-1), until a stop-
ping time criterion is met. One could equivalently samplstfirom
pn(kr) and then fromf,, (71.x|k» ). A similar method was presented
independently in [6]. Note that the proposed approach fereni
range of more effective proposal moves.

When the expected jump arrival rate is low relative to the et
which observations are made (as is the case in applicatidnseo-
est) these schemes can result in the propagation of muttiplies of
the same particle. More computationally efficient methoelalidg
with this issue were proposed in [3], but there remains adda:
tage in terms of the variance of state estimates.

2.2. SMC Samplers

The SMC samplers framework of [1] is a very general method for
obtaining a set of samples from a sequence of distributidmistw
exist on the same or different spaces. This can be viewed as-a g

the z andy components have identical parameters and evolutionsgralisation of the standard SMC method in which the targgtrieli

for brevity we describe only a single componefit: = [s7 u} a¥]”
and,

1 (t—7) %(t —7,)? s;t
Fz(t: Tvey 9Vt) = 0 1 (t - TVt) ul%t
0 0 1 ay,

The component of" in the y-direction is equivalent. This model is
considered suitable for the benchmark fighter aircrafettary from
[4], shown in figure 1.

bution exists on a space of strictly increasing dimensiohe Tise
of these techniques for trans-dimensional inference wabkedudis-
cussed in [7]; SMC samplers have recently been applied tdasim
trans-dimensional problems in the context of point proes$8].

Itis not possible to give a thorough exposition of the SMC sam
plers approach here, but we will try to include sufficientdldor our
purposes. Given a sequence of distributiéms),cn On a sequence
of spaceq F»)»en from which we wish to obtain sets of weighted
samples, we construct a sequence of distributions on a seg|o#



spaces of increasing dimension which admit the distrilmstiof in-
terest as marginals, by defining:

1

%n(fclzn):ﬂ'n(mn) H Ln(fcn+l7$n)7
p=n—1

where L,, is a Markov kernel from spac€&,1 to E,. Standard
SMC methods can now be applied on this space, by propagati
samples forward from one distribution to the next accordang se-
quence of Markov kernel$ /%, )»>2, and correcting for the discrep-
ancy between the proposal and the target distribution ngimental
importance weights of the form:

Wn(fcn)Lnfl (m'm mnfl)
ﬂ-nfl(l’nfl)Kn(xnfly l’n) '

Wn (Tn—1,Tn) X

It is important to ensure that a significant fraction of thetigée
set have non-negligible weights. The effective sample E&S),
introduced by [9], is an approximation of a quantity whiclscigbes
the effective number of iid samples to which the set corredpo

Denoting by{W“)} the normalized weights, the ESS is de-

L9271
fined asESS = [Zj\’:l w® ™| . Resampling should be carried
out after any iteration which causes the ESS to fall belonaaas-

where¢” = F(t,, 7", 0").

The proposed algonthm is described in algorithm 1. Given a
particular model, all that is necessary to implement suclalgo-
rithm is a proposal distribution and an associated auyilia@rnel.
The choice of these elements will be discussed in the nexibsec
and further detailed in the case of the examples provideairbel

ng

able threshold (typically around half of the total numbepaifticles),

Initialisation,n = 1:
for i =1to N do
X~
{whereq, is some importance distribution.
. (i)
Wl(z) o~ T (Xy)

q1(X§i))
end for
Iteration,n — n + 1:
Resample if necessary (when the effective sample sizelfell
low a pre-determined threshold, for example).
Sample rejuvenation can be conducted at this stage by apy
amy,-invariant Markov kernel to each patrticle.
for i =1to N do

[

Vi

i (7)
X~ Ka(X2 )
(4) (1) 5 ()
(i) (i) T™(Xp )Ly 1(Xy7, X7 )
Wy oc Wo2y @ o x®
Tn—1(X,, L D En (X, 1, X07)
end for

to prevent the sample becoming degenerate with a small nuofibe
samples having very large weights.

Algorithm 1: A Basic Jumping Process Particle Filter

It can be shown (again, see [1]) that the optimal form for the

Markov kernelsL,, —
importance weights if resampling occurs at every time stisfgiven
by:
ﬂ—n(l’n)KnJrl(xny xn+1)
2

f 7Tn 7L+1 T m'rL{»l)dfC
In practice it is important to choose a sequence of kernelstwdre
as close to the optimal case as possible to prevent the aradrihe
importance weights from becoming extremely large.

The proposal kerne,, can be chosen to be a mixture of differ-
ent move types:

opt
Ln (Ccn+17 mn

M
g OCmKnJrl m Ccn7ﬁcn+l

m=1

Zam—l

and in this case it follows from (2) that the optimal backwkednel
can also be expressed as a mixture.

KnJrl (Ccny In+1

2.3. Trans-Dimensional SMC Filtering
By applying the SMC samplers method to the sequence ofldistri

tions (7 (xn))nen, see (1), we obtain a recursive scheme which

propagates a particle approximation to each marginaliloiigion
70 (Thyy s Ok, ), @aNd thus t(Ce,, [y1in) -

The explicit treatment of the dimensionality of the problges
us control over the proposal of different numbers of jumpsther-

in the sense of minimising the variance of the 2.4, Choice of Forward Kernel

The design of the proposal kernel plays a significant rokbénper-
formance of the algorithm. In order to minimise the variantéhe
importance weights, it must be well matched to the obsamati A
mixture kernel is suitable for the trans-dimensional peabht hand,
for example consisting of the following moves:

Birth Move. The dimensionality is incrementekl, = k,—1+1,
a new jump,x,, is proposed uniformally 7., _,,¢»], and a new
parameter is then drawn from the full conditional(:|z» \ 6%, ),
wherex,, \ 6, denotes all components of, other thardy,,. It can
be shown that this is the conditionally optimal distributio terms
of minimising the variance of the importance weights. 7ilf, <
tn—1 this amounts to altering the trajecto(r@t)temn tn_,] @nd ex-
tending the trajectory ontt¥,,—1, t,]. In this case, and denoting by
¢; the new trajectory, the weight expression is:

S(tTH Tkn)f(Tkn |Tkn—1)(tn - Tknfl)
S(tnfly'rkn71)
GOk 1Ok 1 T s Ty 1)
T Ok, [Tr—1 \ Ok,,_,)

wn(mnfly l’n) -

I,

n—

9(yplCi,)
(yp|<tp)

where
r=inf{n:t, > %, }.

more, the SMC samplers framework accommodates a more efficie An alternative, suboptimal choice is to propose paramétens the

proposal mechanism than that of the VRPF by permitting ‘'stelju
ment’ moves described below. This allows more accurate stst
timation for the same computational cost. At th'8 iteration, the
algorithm yields a set aN particles {(kn 7%, 0k, )" , wi’I¥,
This approximates the filtering distribution for the sigpedcess via:

N
P(y € dClyrin) = ng)g& (d¢),
i=1 "

prior, q(-|60—1, 7j—1,75)-
Update Move. The dimensionality, jump locations and parame-
ter values are maintained. In this case,

S(tn; Tk )9 (YnlGrn)

S(tnfh Tkn) ’

Adjustment Move. The dimensionality is maintained and the
most recent parametefy,, , is re-drawn from the full conditional

wn(fcnfh mn) =



distribution, (-|zx \ 6k, ), yielding a new parameter valdg . If
Tk, < tn—1 this amounts to altering the trajecto(r@)te(fkn,tnfl]
and extending the trajectory onto,_1, t,]. The weight expression
is:

S (tn, Tkn)q(%nwkn,l, Ty s Thn—1)
S(tn—1, Tk, ) @Ok 1Ok —1, Thy s Thy —1)
Tn—1(0k, |Tn-1\ Ok,.) H::T g(yplCép)

w0 e V) TL g

W (Tn—1,Tn) =

where
r=inf{n:t, > 7%, }.

When the full conditional distributions are not availabtebytically,
sensible approximations should be employed. We note tlcht ao-
proximations do not affect thexactness of the algorithm; just the
estimator variance.

Other Moves. It is possible to construct a variety of other moves
which alter the recent history of each particle. For examafeer

resampling, ar,-invariant Metropolis-Hastings kernel can be used

to perturb the position of the most recent jump or add/renjowgs.
Such moves are important if fixed-lag smoothing is to be peréal.
Kernel Mixture Weights. A technical requirement of importance
sampling schemes is that support of the proposal distdbuiti-
cludes that of the posterior distribution. Therefore a fandvkernel
capable of proposing any positive number of births in theril

(tn—1,tn] must be employed. However, the mixture weight asso-

ciated with this component may be made small when the tiansit
densityf(-|7;—1) assigns very little mass to short inter-arrival times.

For any given combination of move types, the forward kernel

mixture weights play a significant role in the importance gins.
For a kernel consisting of moves which each propose a difféne
crement to the number of jumps, the kernel components hajarmdti
support. In this case the forward mixture weight correspugtb the
move executed should simply be multiplied into the denotoinaf
the importance weight.

and adjustment moves using the true conditional distidiousis the
proposal combined with the optimal backward kernels. Syat&
resampling was applied when the ESS dropped béluf.

A root mean square error (RMSE) criterion was used to assess
the performance of the proposed algorithm compared to theF/R
based on filtering estimates of the vehicle position at thresi of
each observation, ovédl = 200 observation realizations.

n M 1/2

1 1 b o 3
RMSE = E Z M Z (Stp’m - Stpvm)2 + (Stypvm - Stypvm)2

p=1 m=1

wheresi ., and sy ., are respectively the true and MMSE esti-
mated position in the direction at the time of theth observation
of themth run.

The resultsin table 1 indicate the proposed method outpesg
the VRPF, especially when the number of particles is smalie T
computational cost of the VRPF is similiar to that of the TDGM
algorithm for this model. This is due to the fact short inderival
times occur frequently under the prior so the VRPF generata®
random numbers, but the TDSMC algorithm requires more ressu
to calculate kernel parameters and importance weights.

VRPF TDSMC

N RMSE/km CPU/s | RMSE/km CPU/s
50 10.24 0.97 0.61 0.76
100 4.89 1.93 0.58 1.52
250 1.76 4.90 0.56 3.90
500 0.85 10.01 0.55 7.75
1000 0.74 20.12 0.54 15.62
2500 0.65 51.74 0.53 38.82
5000 0.63 104.91 0.53 78.21

Table 1. Example 1: RMSE and CPU time averaged over 200 ob-

servation realizations.

By employing a mixture of update moves and prior birth moves

on the interval(¢,—1, t.], in proportions specified by the prior on
the dimensionality parametéy,, we obtain algorithms as in [6] and

[5].

each iteration, the algorithm requires storage of only adfbemgth
history for each particle. Simple restrictions can be ingobi§ there
is a need to store only a fixed number of observations.

It should not be noted that the above moves are such that, at

3. RESULTS

We present results obtained by applying this algorithm aedstan-

VRPF TDSMC

N RMSE/km CPU/s | RMSE/km CPU/s
50 42.62 0.24 0.88 1.32
100 33.49 0.49 0.66 2.62
250 22.89 1.23 0.54 6.56
500 17.26 2.42 0.51 12.98
1000 12.68 5.00 0.50 26.07
2500 6.18 13.20 0.49 67.32
5000 3.52 28.79 0.48 142.84

Table 2. Example 2: RMSE and CPU time averaged over 200 ob-

dard VRPF (i.e. proposals from the prior) to a simple two dime servation realizations.

sional tracking model and a more complicated model whicliffis d
cult to deal with efficiently using conventional methods.

3.1. Example 1

We consider the model as described in section 1.3 in the tase t
f(-|m—1) is exponential with meaBA and acceleration parameters
are i.i.d. zero mean Gaussian with standard deviadioa m,/s>.
Along the position trajectory; = 37 additive, zero mean, isotropic
Gaussian noise observations were generated with timevahtar—=

5s and standard deviatien, = 500m. Examples are shown in figure
1. The forward kernel was chosen to have equal proportiobs tbf

3.2. Example 2

The same motion model was used as in Examplit with gamma-
distributed arrival times, with shape and scale parametets 10
andb = 5A/a respectively, corresponding to a mean inter-arrival
time of 5A. Along the position trajectory 37 independent Gaussian
range and bearing measurements were generated at intArvalss
with standard deviations,, = 500m ando, = 0.01 rads, respec-
tively. The sensor was located at the origin. The proposaidtevas



chosen as a mixture of adjustment and birth moves, in prigport ability to fit jump locations to observations. The advantaf¢he
2 : 1. Experiments showed that for filtering, the use of other ,move TDSMC algorithm in terms of RMSE against computational ¢est
did not lead to significant improvement in performance. Appr  summarized in figure 3.

mations to the optimal forward and backward kernel wereinbth

by local linearisation of the observation model. This appfois 4. CONCLUSION

commonly used to approximate the optimal proposal diticbun

standard particle filtering, see [10]. Resampling was appilh the  \we have presented a formulation of the filtering problem fooa-
same manner as in Example 1. tinuous time stochastic process observed at discretespwirttme

The results in table 2 show that for the same CPU time, anénd have developed an inference scheme based on the fraknewor
therefore fewer particles, the proposed algorithm sigaifity out-  of SMC samplers. The proposed approach treats the dimexsion
performs the VRPF for this more challenging model. In theeaafs ity of the problem explicitly and involves efficient partcproposal
this model the TDSMC algorithm has higher CPU cost per fartic mechanisms. It out-performs existing methods. Future wahtkn-

due tothe fact.that short inter-arrival times havg low ppmbablllty Vestigate schemes for adapting the mixture We|ghts in tbpqﬂa]
and computation of kernel parameters and weight expres#idiie  kernel, so that they are matched to the observations.

TDSMC algorithm is more complicated.
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Fig. 3. RMSE vs average CPU time. Top: Example 1. Bottom:
Example 2. VRPF (solid) and TDSMC (dashed).

Whilst estimates should not be made from the degeneratayist
of the particles, figure 2 gives an impression of the typicadrall
performance of the TDSMC algorithm usirs@0 particles and its



