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ABSTRACT

This paper addresses a tracking problem in which the unobserved
process is characterised by a collection of random jump times and
associated random parameters. We construct a scheme for obtaining
particle approximations to the posterior distributions ofinterest in
the framework of sequential Monte Carlo (SMC) samplers [1].We
describe efficient sampling schemes and demonstrate that two exist-
ing schemes can be interpreted as particular cases of the proposed
method. Results are provided which illustrate the performance im-
provements possible with our approach.

Index Terms— Monte Carlo methods, Nonlinear filters, Con-
tinuous time systems

1. INTRODUCTION

Within the Bayesian paradigm, the task of optimal filtering corre-
sponds to obtaining, recursively in time, the posterior distribution
of an unobserved stochastic process, given noisy observations made
over time. The filtering model has many applications in signal pro-
cessing, not least intracking where the hidden process models the
evolution of a manoeuvring object. The aim is then to estimate the
trajectory of some object, given observations made by some noisy
sensor.

Tracking is commonly cast as a discrete time filtering problem
in which the hidden process is Markov and the observations are con-
ditionally independent, given the state of the system. In many cases
of interest the state-space model is non-linear and non-Gaussian, and
exact inference is intractable. Approximation methods must, there-
fore, be employed. SMC methods, [2], approximate the sequence of
posterior distributions by a collection of weighted samples, termed
particles.

It has been demonstrated that, in some situations, the trajectory
of a manoeuvring target may be more parsimoniously modelledby a
possibly non-Markovian, continuous time process [3]. If such mod-
els are to be employed in practice, accurate and computationally effi-
cient inference schemes need be developed. The contribution of this
paper is the development of such schemes. Specifically, we address
the filtering of a broad class of semi-Markov processes, employing
sequential Monte Carlo techniques to approximate the distributions
of interest.

1.1. Problem Statement

We first define thesignal process (ζt)t≥0, where eachζt takes a
value in a state spaceΞ (e.g.,n-dimensional Euclidean space), and
a sequence of noisyobservations (Yn)n∈N, where eachyn ∈ R

dy

with dy ∈ N, which are independent of one another and, conditional
upon the signal process at the observation time, of the remainder of

the signal process. Our aim is to obtain iteratively, at eachobserva-
tion time, the conditional distribution of the signal process given the
collection of observations up to that time.

1.2. Model Specification

We begin with a formal specification of the model, before providing
an intuitive explanation; a simple example is provided in section 1.3.

Consider first a pair Markov process(τj , θj)j∈N, of times,τj ∈
R

+ and parameters,θj ∈ Ξ with transition density of the form:

p(τj , θj |τj−1, θj−1) = f(τj |τj−1)q(θj |θj−1, τj−1, τj).

We next define a continuous time counting process(νt)t≥0 as fol-
lows:

νt =

∞X

j=1

I[0,t](τj).

The right-continuous signal process,(ζt)t≥0, which takes a value
in Ξ at any timet and has known initial distribution,ζ0 ∼ q0(ζ0), is
defined by:

ζt = F (t, τνt , θνt),

with the conventions thatτ0 = 0, θ0 = ζ0. The functionF is
deterministic and subject to the condition thatF (τj , τj , θj) = θj ,
∀j ∈ N.

It is easy to interpret this dynamic model: a realisation of the
signal process evolves from the initial conditionζ0 according toF
until the time of the first jumpτ1, at which time it takes the new
valueθ1. The signal continues to evolve according toF until τ2, at
which time the signal acquires the new valueθ2, and so on.

Thenth observation of the signal process,Yn, is made at time
point tn via some functionH , in the presence of an independent
noise componentVn:

Yn = H(ζtn , Vn).

The distribution ofVn, together withH , induces a likelihood func-
tion g(yn|ζtn).

We will be especially interested in the number of jumps occur-
ring in each interval[0, tn] and therefore setkn , νtn . Our model
induces a joint prior distribution,pn(kn, τ1:kn), on the number of
jumps in[0, tn] and their locations:

pn(kn, τ1:kn) = S(tn, τkn)

knY

j=1

f(τj |τj−1),

whereS(t, τ ) is the survivor function associated with the transition
densityf(τj |τj−1):



S(t, τ ) = 1−

Z t

τ

f(s|τ )ds.

Given the functionF , the path(ζt)t∈[0,tn] is completely specified
by the initial conditionζ0, the number of jumps,kn, their locations
τ1:kn and associated parameter valuesθ1:kn . We define a sequence
(Xn)n∈N, where, omitting explicit n-indexing of all components for
brevity, Xn = (kn, ζ0, θ1:kn , τ1:kn) takes its values in the disjoint
union:

En =

∞[

k=0

{k} × Ξk+1 ×Υn,k,

with R
k ⊃ Υn,k = {τ1:k : 0 < τ1 < · · · < τk ≤ tn}.

In order to obtain the distribution of(ζt)t∈[0,tn], given the ob-
servationsy1:n, it would suffice to findπn(xn), the posterior distri-
bution ofXn, because, by construction, the signal process is a deter-
ministic function of the jump times and parameters. This posterior
distribution, up to a constant of proportionality, has the form:

πn(xn) ∝pn(kn, τ1:kn)×

q0(ζ0)

knY

j=1

q(θj |θj−1, τj , τj−1)

nY

p=1

g(yp|ζtp). (1)

The marginal distributionπn(τkn , θkn) provides sufficient informa-
tion to obtain the filtering distribution,p(ζtn |y1:n). Although, in
the following, we consider only filtering distributions of the form
p(ζtn |y1:n), i.e. for the signal at the times of the observations,
just as in the standard discrete time filtering scenario, theproposed
method can be straightforwardly modified to deal with other filter-
ing and smoothing distributions. Exact inference for this model is
intractable and in section 2 we describe Monte Carlo schemesfor
obtaining sample-based approximations to posterior distributions.

We note that obtaining these distributions amounts to solution
of the optimal Bayesian filtering problem for the model described
above. Obtaining particle approximations of these distributions pro-
vides us with a computationally tractable method for obtaining ar-
bitrarily good approximations of these distributions. Determining
whether this is a good description of a particular physical system is
a modelling problem which we do not consider here.

1.3. A Motivating Example

A vehicle manoeuvres according to standard, piece-wise constant ac-
celeration dynamics. Each parameter may be decomposed intox and
y components, each containing a position, velocity and acceleration
value, for brevity we write,

θj =

»
θx

j

θy
j

–
andF (t, τνt , θνt) =

»
F x(t, τνt , θνt)
F y(t, τνt , θνt)

–
.

At time zero the vehicle has position, velocity and acceleration
ζ0. At time τ1, the acceleration of the vehicle jumps to a new, ran-
dom value according toq(θj |θj−1, τj−1, τj) etc. HereΞ = R

6 but
the x andy components have identical parameters and evolutions;
for brevity we describe only a single component:θx

j = [sx
j ux

j ax
j ]T

and,

F x(t, τνt , θνt) =

2
4

1 (t− τνt)
1
2
(t− τνt)

2

0 1 (t− τνt)
0 0 1

3
5

2
4

sx
νt

ux
νt

ax
νt

3
5 .

The component ofF in they-direction is equivalent. This model is
considered suitable for the benchmark fighter aircraft trajectory from
[4], shown in figure 1.
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Fig. 1. Benchmark 2D position trajectory (solid) and additive Gaus-
sian observations (crosses).

2. METHODOLOGY

2.1. Previous Approaches

Inference schemes based on the ideas of sequential importance sam-
pling and resampling, upon which the particle filter is built, have
been devised for the process of interest. Whilst it is possible, in
some circumstances to consider discrete time approximations to the
process of interest the nature of this approximation is not always
clear and the error which it introduces is not easy to control. Con-
sequently, we will consider only techniques in which no modelling
approximations are employed.

The variable rate particle filter (VRPF) of [5, 3] is one such
scheme, which samples a random sequence of jump times on the
interval[0, tn] by drawing recursively fromf(τj |τj−1), until a stop-
ping time criterion is met. One could equivalently sample first from
pn(kn) and then fromfn(τ1:k|kn). A similar method was presented
independently in [6]. Note that the proposed approach permits a
range of more effective proposal moves.

When the expected jump arrival rate is low relative to the rate at
which observations are made (as is the case in applications of inter-
est) these schemes can result in the propagation of multiplecopies of
the same particle. More computationally efficient methods dealing
with this issue were proposed in [3], but there remains a disadvan-
tage in terms of the variance of state estimates.

2.2. SMC Samplers

The SMC samplers framework of [1] is a very general method for
obtaining a set of samples from a sequence of distributions which
exist on the same or different spaces. This can be viewed as a gen-
eralisation of the standard SMC method in which the target distri-
bution exists on a space of strictly increasing dimension. The use
of these techniques for trans-dimensional inference was further dis-
cussed in [7]; SMC samplers have recently been applied to similar
trans-dimensional problems in the context of point processes [8].

It is not possible to give a thorough exposition of the SMC sam-
plers approach here, but we will try to include sufficient detail for our
purposes. Given a sequence of distributions(πn)n∈N on a sequence
of spaces(En)n∈N from which we wish to obtain sets of weighted
samples, we construct a sequence of distributions on a sequence of



spaces of increasing dimension which admit the distributions of in-
terest as marginals, by defining:

eπn(x1:n) = πn(xn)
1Y

p=n−1

Ln(xn+1, xn),

whereLn is a Markov kernel from spaceEn+1 to En. Standard
SMC methods can now be applied on this space, by propagating
samples forward from one distribution to the next accordingto a se-
quence of Markov kernels,(Kn)n≥2, and correcting for the discrep-
ancy between the proposal and the target distribution by incremental
importance weights of the form:

wn(xn−1, xn) ∝
πn(xn)Ln−1(xn, xn−1)

πn−1(xn−1)Kn(xn−1, xn)
.

It is important to ensure that a significant fraction of the particle
set have non-negligible weights. The effective sample size(ESS),
introduced by [9], is an approximation of a quantity which describes
the effective number of iid samples to which the set corresponds.

Denoting by
n

W (i)
o

the normalized weights, the ESS is de-

fined asESS =
hPN

i=1 W (i)−2
i−1

. Resampling should be carried

out after any iteration which causes the ESS to fall below a reason-
able threshold (typically around half of the total number ofparticles),
to prevent the sample becoming degenerate with a small number of
samples having very large weights.

It can be shown (again, see [1]) that the optimal form for the
Markov kernelsLn – in the sense of minimising the variance of the
importance weights if resampling occurs at every time step –is given
by:

Lopt
n (xn+1, xn) =

πn(xn)Kn+1(xn, xn+1)R
πn(x)Kn+1(x, xn+1)dx

. (2)

In practice it is important to choose a sequence of kernels which are
as close to the optimal case as possible to prevent the variance of the
importance weights from becoming extremely large.

The proposal kernelKn can be chosen to be a mixture of differ-
ent move types:

Kn+1(xn, xn+1) =
MX

m=1

αmKn+1,m(xn, xn+1),
mX

m=1

αm = 1,

and in this case it follows from (2) that the optimal backwardkernel
can also be expressed as a mixture.

2.3. Trans-Dimensional SMC Filtering

By applying the SMC samplers method to the sequence of distribu-
tions (πn(xn))n∈N, see (1), we obtain a recursive scheme which
propagates a particle approximation to each marginal distribution
πn(τkn , θkn), and thus top(ζtn |y1:n) .

The explicit treatment of the dimensionality of the problemgives
us control over the proposal of different numbers of jumps. Further-
more, the SMC samplers framework accommodates a more efficient
proposal mechanism than that of the VRPF by permitting ‘adjust-
ment’ moves described below. This allows more accurate state es-
timation for the same computational cost. At thenth iteration, the
algorithm yields a set ofN particles,{(kn τkn θkn)(i) , w

(i)
n }

N
i=1.

This approximates the filtering distribution for the signalprocess via:

P (ζtn ∈ dζ|y1:n) =
NX

i=1

w(i)
n δ

ζ
(i)
tn

(dζ),

whereζ
(i)
tn

= F (tn, τ
(i)
kn

, θ
(i)
kn

).
The proposed algorithm is described in algorithm 1. Given a

particular model, all that is necessary to implement such analgo-
rithm is a proposal distribution and an associated auxiliary kernel.
The choice of these elements will be discussed in the next section
and further detailed in the case of the examples provided below.

Initialisation,n = 1:
for i = 1 to N do

X
(i)
1 ∼ q1

{whereq1 is some importance distribution.}

W
(i)
1 ∝

π1(X
(i)
1 )

q1(X
(i)
1 )

end for
Iteration,n← n + 1:
Resample if necessary (when the effective sample size fallsbe-
low a pre-determined threshold, for example).
Sample rejuvenation can be conducted at this stage by applying
aπn-invariant Markov kernel to each particle.
for i = 1 to N do

X
(i)
n ∼ Kn(X

(i)
n−1, ·)

W
(i)
n ∝W

(i)
n−1

πn(X
(i)
n )Ln−1(X

(i)
n ,X

(i)
n−1)

πn−1(X
(i)
n−1

)Kn(X
(i)
n−1

,X
(i)
n )

end for

Algorithm 1: A Basic Jumping Process Particle Filter

2.4. Choice of Forward Kernel

The design of the proposal kernel plays a significant rôle inthe per-
formance of the algorithm. In order to minimise the varianceof the
importance weights, it must be well matched to the observations. A
mixture kernel is suitable for the trans-dimensional problem at hand,
for example consisting of the following moves:

Birth Move. The dimensionality is incremented,kn = kn−1+1,
a new jump,τkn is proposed uniformally in(τkn−1 , tn], and a new
parameter is then drawn from the full conditionalπn(·|xn \ θkn),
wherexn \ θkn denotes all components ofxn other thanθkn . It can
be shown that this is the conditionally optimal distribution in terms
of minimising the variance of the importance weights. Ifτkn ≤
tn−1 this amounts to altering the trajectory(ζt)t∈[τkn

,tn−1] and ex-
tending the trajectory onto(tn−1, tn]. In this case, and denoting by
ζ′

t the new trajectory, the weight expression is:

wn(xn−1, xn) =
S(tn, τkn)f(τkn |τkn−1)(tn − τkn−1)

S(tn−1, τkn−1)

×
q(θkn |θkn−1 , τkn , τkn−1)

πn(θkn |xn−1 \ θkn−1)
×

Qn
p=r g(yp|ζ

′
tp

)
Qn−1

p=r g(yp|ζtp)
,

where
r = inf{n : tn ≥ τkn}.

An alternative, suboptimal choice is to propose parametersfrom the
prior, q(·|θj−1, τj−1, τj).

Update Move. The dimensionality, jump locations and parame-
ter values are maintained. In this case,

wn(xn−1, xn) =
S(tn, τkn)g(yn|ζtn)

S(tn−1, τkn)
.

Adjustment Move. The dimensionality is maintained and the
most recent parameter,θkn , is re-drawn from the full conditional



distributionπn(·|xn \ θkn), yielding a new parameter valueθ′
kn

. If
τkn ≤ tn−1 this amounts to altering the trajectory(ζt)t∈(τkn

,tn−1]

and extending the trajectory onto(tn−1, tn]. The weight expression
is:

wn(xn−1, xn) =
S(tn, τkn)q(θ′

kn
|θkn−1, τkn , τkn−1)

S(tn−1, τkn)q(θkn |θkn−1, τkn , τkn−1)

×
πn−1(θkn |xn−1 \ θkn)

πn(θ′
kn
|xn−1 \ θkn)

×

Qn
p=r g(yp|ζ

′
tp

)
Qn−1

p=r g(yp|ζtp)
,

where
r = inf{n : tn ≥ τkn}.

When the full conditional distributions are not available analytically,
sensible approximations should be employed. We note that such ap-
proximations do not affect theexactness of the algorithm; just the
estimator variance.

Other Moves. It is possible to construct a variety of other moves
which alter the recent history of each particle. For example, after
resampling, aπn-invariant Metropolis-Hastings kernel can be used
to perturb the position of the most recent jump or add/removejumps.
Such moves are important if fixed-lag smoothing is to be performed.

Kernel Mixture Weights. A technical requirement of importance
sampling schemes is that support of the proposal distribution in-
cludes that of the posterior distribution. Therefore a forward kernel
capable of proposing any positive number of births in the interval
(tn−1, tn] must be employed. However, the mixture weight asso-
ciated with this component may be made small when the transition
densityf(·|τj−1) assigns very little mass to short inter-arrival times.

For any given combination of move types, the forward kernel
mixture weights play a significant role in the importance weights.
For a kernel consisting of moves which each propose a different in-
crement to the number of jumps, the kernel components have disjoint
support. In this case the forward mixture weight corresponding to the
move executed should simply be multiplied into the denominator of
the importance weight.

By employing a mixture of update moves and prior birth moves
on the interval(tn−1, tn], in proportions specified by the prior on
the dimensionality parameterkn, we obtain algorithms as in [6] and
[5].

It should not be noted that the above moves are such that, at
each iteration, the algorithm requires storage of only a fixed-length
history for each particle. Simple restrictions can be imposed if there
is a need to store only a fixed number of observations.

3. RESULTS

We present results obtained by applying this algorithm and the stan-
dard VRPF (i.e. proposals from the prior) to a simple two dimen-
sional tracking model and a more complicated model which is diffi-
cult to deal with efficiently using conventional methods.

3.1. Example 1

We consider the model as described in section 1.3 in the case that
f(·|τj−1) is exponential with mean5∆ and acceleration parameters
are i.i.d. zero mean Gaussian with standard deviation0.05 m/s2.
Along the position trajectory,n = 37 additive, zero mean, isotropic
Gaussian noise observations were generated with time interval ∆ =
5s and standard deviationσy = 500m. Examples are shown in figure
1. The forward kernel was chosen to have equal proportions ofbirth

and adjustment moves using the true conditional distribution as the
proposal combined with the optimal backward kernels. Systematic
resampling was applied when the ESS dropped below50%.

A root mean square error (RMSE) criterion was used to assess
the performance of the proposed algorithm compared to the VRPF,
based on filtering estimates of the vehicle position at the times of
each observation, overM = 200 observation realizations.

RMSE =
1

n

nX

p=1

"
1

M

MX

m=1

(sx
tp,m − ŝx

tp,m)2 + (sy
tp,m − ŝy

tp,m)2
#1/2

wheresx
tp,m and ŝx

tp,m are respectively the true and MMSE esti-
mated position in thex direction at the time of thepth observation
of themth run.

The results in table 1 indicate the proposed method out-performs
the VRPF, especially when the number of particles is small. The
computational cost of the VRPF is similiar to that of the TDSMC
algorithm for this model. This is due to the fact short inter-arrival
times occur frequently under the prior so the VRPF generatesmore
random numbers, but the TDSMC algorithm requires more resources
to calculate kernel parameters and importance weights.

VRPF TDSMC
N RMSE / km CPU / s RMSE / km CPU / s
50 10.24 0.97 0.61 0.76
100 4.89 1.93 0.58 1.52
250 1.76 4.90 0.56 3.90
500 0.85 10.01 0.55 7.75
1000 0.74 20.12 0.54 15.62
2500 0.65 51.74 0.53 38.82
5000 0.63 104.91 0.53 78.21

Table 1. Example 1: RMSE and CPU time averaged over 200 ob-
servation realizations.

VRPF TDSMC
N RMSE / km CPU / s RMSE / km CPU / s
50 42.62 0.24 0.88 1.32
100 33.49 0.49 0.66 2.62
250 22.89 1.23 0.54 6.56
500 17.26 2.42 0.51 12.98
1000 12.68 5.00 0.50 26.07
2500 6.18 13.20 0.49 67.32
5000 3.52 28.79 0.48 142.84

Table 2. Example 2: RMSE and CPU time averaged over 200 ob-
servation realizations.

3.2. Example 2

The same motion model was used as in Example1, but with gamma-
distributed arrival times, with shape and scale parametersa = 10
andb = 5∆/a respectively, corresponding to a mean inter-arrival
time of 5∆. Along the position trajectory 37 independent Gaussian
range and bearing measurements were generated at intervals∆ = 5s
with standard deviationsσr = 500m andσb = 0.01 rads, respec-
tively. The sensor was located at the origin. The proposal kernel was



chosen as a mixture of adjustment and birth moves, in proportion
2 : 1. Experiments showed that for filtering, the use of other moves
did not lead to significant improvement in performance. Approxi-
mations to the optimal forward and backward kernel were obtained
by local linearisation of the observation model. This approach is
commonly used to approximate the optimal proposal distribution in
standard particle filtering, see [10]. Resampling was applied in the
same manner as in Example 1.

The results in table 2 show that for the same CPU time, and
therefore fewer particles, the proposed algorithm significantly out-
performs the VRPF for this more challenging model. In the case of
this model the TDSMC algorithm has higher CPU cost per particle
due to the fact that short inter-arrival times have low priorprobability
and computation of kernel parameters and weight expressions in the
TDSMC algorithm is more complicated.
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Fig. 2. Benchmark 2D position trajectory (dashed), observations
(crosses), TDSMC particle position trajectories (solid) and jump lo-
cations (circles) after resampling at the final iteration.
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Fig. 3. RMSE vs average CPU time. Top: Example 1. Bottom:
Example 2. VRPF (solid) and TDSMC (dashed).

Whilst estimates should not be made from the degenerate history
of the particles, figure 2 gives an impression of the typical overall
performance of the TDSMC algorithm using500 particles and its

ability to fit jump locations to observations. The advantageof the
TDSMC algorithm in terms of RMSE against computational costis
summarized in figure 3.

4. CONCLUSION

We have presented a formulation of the filtering problem for acon-
tinuous time stochastic process observed at discrete points in time
and have developed an inference scheme based on the framework
of SMC samplers. The proposed approach treats the dimensional-
ity of the problem explicitly and involves efficient particle proposal
mechanisms. It out-performs existing methods. Future workwill in-
vestigate schemes for adapting the mixture weights in the proposal
kernel, so that they are matched to the observations.
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