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CONSISTENT FAMILIES OF BROWNIAN MOTIONS AND
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University of Warwick

Consider the following mechanism for the random evolution of a distri-
bution of mass on the integer lattice Z. At unit rate, independently for each
site, the mass at the site is split into two parts by choosing a random propor-
tion distributed according to some specified probability measure on [0,1] and
dividing the mass in that proportion. One part then moves to each of the two
adjacent sites. This paper considers a continuous analogue of this evolution,
which may be described by means of a stochastic flow of kernels, the theory
of which was developed by Le Jan and Raimond. One of their results is that
such a flow is characterized by specifying its N point motions, which form
a consistent family of Brownian motions. This means for each dimension N

we have a diffusion in RN , whose N coordinates are all Brownian motions.
Any M coordinates taken from the N -dimensional process are distributed as
the M-dimensional process in the family. Moreover, in this setting, the only
interactions between coordinates are local: when coordinates differ in value
they evolve independently of each other. In this paper we explain how such
multidimensional diffusions may be constructed and characterized via mar-
tingale problems.

1. Introduction. We may say that a pair of Brownian motions (X1(t); t ≥ 0)

and (X2(t); t ≥ 0) defined on a common probability space are θ -coupled, where θ

is a positive real parameter if X1 and X2 are both Brownian motions relative to
some common filtration and

〈X1,X2〉(t) =
∫ t

0
1(X1(s)=X2(s)) ds, t ≥ 0,(1.1)

L0
t (X1 − X2) = 2θ

∫ t

0
1(X1(s)=X2(s)) ds, t ≥ 0.(1.2)

Here L0
t (X1 − X2) denotes the semimartingale local time accrued by X1 − X2

at zero by time t . A pair of θ -coupled Brownian motions evolve independently
of each other when apart, but when they meet there is some interaction, often
described as stickiness, which results in their momentarily moving together. The
difference of such a pair (X1(t)−X2(t); t ≥ 0) is a diffusion on R, known as sticky
Brownian motion, which is in natural scale and with a speed measure equal to the
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sum of Lebesgue measure and an atom of size 1/θ at zero. For some previous
work on sticky Brownian motion (see Amir [1], Harrison and Lemoine [5] and
Warren [17]).

The problem considered in this paper is of describing RN -valued diffusions
(X(t); t ≥ 0) with the property that each pair of coordinates (Xi(t),Xj (t); t ≥ 0)

is a θ -coupled pair of Brownian motions. In fact we are interested in obtaining fam-
ilies of such processes having a natural consistency property. A family consists of
a diffusion for each choice of the dimension N , and we require that any M coordi-
nates taken from the N -dimensional process are distributed as the M-dimensional
process in the family. We are motivated by work of Le Jan and Raimond [10], who
have obtained very general results associating with a consistent family of diffu-
sions a corresponding stochastic flow of kernels. In fact, Le Jan and Raimond [11]
as well as Le Jan and Lemaire [9] have already described a consistent family of
Brownian motions, of the type we have in mind, by means of Dirichlet forms. Here
we will use a martingale problem formulation which will allow us to exhibit many
more such families.

Consider the case of N = 3. Then, by projecting (X1(t),X2(t),X3(t); t ≥ 0)

onto the plane x1 +x2 +x3 = 0, we obtain a diffusion in R2 which behaves as stan-
dard Brownian motion away from the set of six rays {(r cos θ, r sin θ) ∈ R2 : θ =
0, π/3,2π/3, π,4π/3,5π/3}. The rays are sticky in a way which is easily de-
scribed. But the behavior of the process at the origin is more subtle. Ikeda and
Watanabe [7] made a careful study of diffusions of this type. The origin is a regu-
lar, recurrent point and the time spent there has positive Lebesgue measure. They
proved that each excursion made by the process from the origin may be classified
as starting along one of the rays and, as a consequence, the behavior of the process
at the origin may be characterized by means of a vector of six nonnegative para-
meters, each of which governs the rate of excursions starting along a particular
ray.

The martingale problems which we use to describe our diffusions contain para-
meters θ(k : l) where k and l each range through the set of positive integers. The
N -dimensional process X spends time having a positive Lebesgue measure in cer-
tain lower-dimensional subsets of RN , which we call cells, each corresponding
to some collection of equalities and inequalities holding between the coordinates
of X. The parameter θ(k : l) has a interpretation similar to that of the parameters in
Ikeda and Watanabe’s work. It governs the rate at which X makes excursions from
a cell corresponding to equality of some n = k+ l coordinates into a cell that corre-
sponds to two sets of equalities: one between k coordinates and the other between l

coordinates. If we think of X as specifying the location of N particles in R, then
in a certain excursion theoretic sense, θ(k : l) describes the rate at which a group n

particles moving together splits into two groups one consisting of k particles and
the other of l particles.
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A stochastic flow of kernels on a measurable space (E,E) is a doubly indexed
family (Ks,t ; s ≤ t) of random E×E transition kernels satisfying the flow property

Ks,u(x,A) =
∫
E

Ks,t (x, dy)Kt,u(y,A), x ∈ E, A ∈ E(1.3)

almost surely for each s ≤ t . We also postulate independent and stationary in-
novations in that Kt1,t2,Kt2,t3, . . . ,Ktn−1,tn are independent for all choices of

t1 < t2 < · · · < tn and Ks,t
dist= Ks+h,t+h for all s < t and h. The general theory of

such flows was developed by Le Jan and Raimond in [10]; see also Tsirelson [16].
Stochastic flows of kernels have arisen in the study of the Kraichnan model for
turbulent flows; see Falkovich, Gawȩdzki and Vergassola [3]. Indeed, flows whose
two point motions are sticky have been obtained in this context; see Gawȩdzki and
Horvai [4].

One possible interpretation for the flow K is as describing the random evolution
of a distribution of mass on E. In this case Ks,t (x,A) represents the proportion of
that mass which was located at x at time s which is within the set A at time t . An
alternative interpretation of K is as a random environment—in time and space—
governing the motion of a particle. Then Ks,t (x,A) is the conditional probability
given the environment that a particle which is located at x at time s is located
within the set A at time t .

Taking the space E to be Z, the integer lattice, we may construct a simple ex-
ample of a stochastic flow of kernels as follows. Fix a probability distribution μ

on [0,1]. Let � be a Poisson point process on R × Z with uniform intensity, and
attach to each point of (t, x) ∈ � an independent random variable R(t, x) having
the distribution μ. Now consider a particle moving on Z whose motion is governed
by the environment (R(t, x); (t, x) ∈ �) as follows. The trajectory of the particle
jumps at, and only at, space–time points (t, x) ∈ �, and the jump is from x to x +1
with probability R(t, x), and from x to x −1 with probability 1−R(t, x). Defining
Ks,t (x,A) to be the conditional probability given the environment that the particle,
when started located at x at time s, is located within the set A at time t , we obtain
a flow of kernels.

Suppose that we have a sequence of probability measures (μn;n ≥ 1), centered
in that

∫ 1
0 xμn(dx) = 1/2, and with the property that, as n tends to infinity,

√
nx(1 − x)μn(dx) converges weakly to ν(dx),(1.4)

where ν is some finite measure on [0,1]. By weak convergence of finite measures,
we mean weak-∗ convergence induced by the dual space of bounded continuous
functions on [0,1]. Let Kn be the flow of kernels on Z, associated with μn in the
manner described above. It is proved in Section 8, Theorem 8.1, that as n tends
to infinity the sequence of flows Kn, suitably scaled, converges in law to a flow
K on the real line whose N -point motions form a consistent family of Brownian



1240 C. HOWITT AND J. WARREN

motions. Moreover the parameters θ(k : l) which specify the corresponding mar-
tingale problems satisfy

θ(k : l) =
∫ 1

0
xk−1(1 − x)l−1ν(dx) for k, l ≥ 1.(1.5)

The main difficulties arising in this paper relate to the singular nature of the
generator Aθ

N for our N -dimensional diffusion associated with the family of para-
meters θ . The action of Aθ

N on C2 functions does not characterize the process; in
fact, this action does not involve any of the θ parameters. This means we are un-
able to appeal to the theory described by Stroock and Varadhan [14]. Instead, our
martingale problem is based on the action of generator on a certain vector space of
piecewise linear functions. Uniqueness for solutions of the martingale problem re-
duces, by induction on the dimension N and localization, to showing that the way
in which the process leaves the diagonal of RN has been specified uniquely. In par-
ticular, we study the exit distribution of the process from a ε-neighborhood of the
diagonal and determine how, asymptotically as ε tends to zero, it is described in
terms of the θ parameters. Existence is shown by considering the scaling limit of
some Markov chains on the integer lattice ZN . In fact, these are the N -point mo-
tions associated with the flows of kernels on Z described above. Once again the sin-
gularity of the generator is an issue. We will be considering functions f for which
Aθ

Nf is not continuous, only upper semi-continuous. Consequently weak conver-
gence will only give us supermartingales. Luckily, this turns out to be enough.

This paper is arranged as follows. In Section 2 we describe the martingale prob-
lems that we use to specify our multidimensional diffusions. Sections 3 through 5
are given over to proving uniqueness for these martingale problems, and Section 6
contains a proof of existence. Section 7 contains some auxiliary results that are
needed in the proof of uniqueness. Section 8 is concerned with the associated flows
of kernels.

Finally let us mention some recent, connected work. In [6] we show that the flow
of kernels corresponding to taking the measure ν equal to a multiple of δ0 + δ1 can
be constructed by a filtering procedure applied to a coupled pair of Brownian webs.
In [15], Sun and Swart construct a new object, the Brownian net, which we believe
is closely related to the flow of kernels in which ν is a multiple of δ1/2.

2. A martingale problem. Consider a pair of θ -coupled Brownian motions
(X1,X2) as defined in the Introduction. Using Tanaka’s formula we can re-
express (1.2) as

|X1(t) − X2(t)| − 2θ

∫ t

0
1(X1(s)=X2(s)) ds is a martingale.(2.1)

We wish to develop a multidimensional generalization of this statement.
We begin by partitioning RN into cells. A cell E ⊂ RN is determined by some

weak total ordering 
 of the {1,2, . . . ,N} via

E = {x ∈ RN :xi ≤ xj if and only if i 
 j}.(2.2)
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Thus {x ∈ R3 :x1 = x2 = x3}, {x ∈ R3 :x1 < x2 = x3} and {x ∈ R3 :x1 > x2 > x3}
are three of the thirteen distinct cells into which R3 is partitioned.

Suppose that I and J are disjoint subsets of {1,2, . . . ,N} with not both I and J

empty. With such a pair we associate a vector v = vIJ belonging to RN with com-
ponents given by

vi =
⎧⎨
⎩

0, if i /∈ I ∪ J ,
+1, if i ∈ I ,
−1, if i ∈ J .

(2.3)

We want to associate with each point x ∈ RN certain vectors of this form. To this
end, note that each point x ∈ RN determines a partition π(x) of {1,2, . . . ,N} such
that i and j belong to the same component of π(x) if and only if xi = xj . Then
to each point x ∈ RN we associate the set of vectors, denoted by V(x), which
consists of every vector of the form v = vIJ where I ∪ J forms one component of
the partition π(x). The geometric role of the vectors V(x) should be understood
in relation to cells. If vIJ ∈ V(x) is such that either I or J is empty then vIJ

points from x in a direction that remains in the cell E to which x belongs. We will
write V0(x) for the subset of V(x) containing such v. If on the other hand both I

and J are nonempty then vIJ points from x into another cell which we then call
a neighbor of the cell E which contains x. We will write V+(x) for the subset
of V(x) containing such v.

Let LN be the space of real-valued functions defined on RN which are continu-
ous, and whose restriction to each cell is given by a linear function. Given a set of
parameters (θ(k : l);k, l ≥ 0) we define the operator Aθ

N from LN to the space of
real valued functions on RN which are constant on each cell by

Aθ
Nf (x) = ∑

v∈V(x)

θ(v)∇vf (x).(2.4)

Here on the right-hand side θ(v) = θ(k : l) where k = |I | is the number of elements
in I and l = |J | is the number of elements in J for I and J determined by v = vIJ .
∇vf (x) denotes the (one-sided) gradient of f in the direction v at the point x, that
is,

∇vf (x) = lim
ε↓0

1

ε

(
f (x + εv) − f (x)

)
.(2.5)

Notice that θ(0 : 0) plays no part in the definition of Aθ
N . Let us also remark that

if θ and θ̃ are two parameter families, satisfying for some α ∈ R,

θ̃ (k : l) = θ(k : l) + α1(k=0) + α1(l=0),(2.6)

then by the linearity of f within cells, Aθ
N = Aθ̃

N .
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DEFINITION 2.1. We say a continuous, RN -valued stochastic process (X(t);
t ≥ 0) solves the Aθ

N -martingale problem if for each f ∈ LN ,

f (X(t)) −
∫ t

0
Aθ

Nf (X(s)) ds is a martingale,

relative to some common filtration, and the bracket between coordinates Xi and Xj

is given by

〈Xi,Xj 〉(t) =
∫ t

0
1
(
Xi(s) = Xj(s)

)
ds for t ≥ 0.

In particular 〈Xi〉(t) = t .

We will sometimes also refer to a probability measure P on the space of paths
C([0,∞),RN) as being a solution to the Aθ

N -martingale problem. This means
that X, being the coordinate process on this space, governed by P, is a solution to
Aθ

N -martingale problem in the sense of the preceeding definition.
The vector space LN is finite dimensional and the Aθ

N -martingale problem re-
quires only a finite number of processes to be martingales, but additionally speci-
fies the brackets 〈Xi,Xj 〉. In the case N = 1, LN is one-dimensional and contains
only constant multiples of the function f (x) = x. The Aθ

N -martingale problem re-
duces to the requirement that X(t) − βt is a martingale, for β = θ(1 : 0) − θ(0 : 1),
and that 〈X〉(t) = t . Thus, by Lévy’s characterization of Brownian motion, the
process (X(t); t ≥ 0) is a Brownian motion with drift β . If the consistency prop-
erty (2.7) holds, then by Proposition 2.1 below, for any dimenison N , each com-
ponent (Xi(t); t ≥ 0) of a solution to the Aθ

N -martingale problem will likewise be
a Brownian motion with drift β . In the case N = 2, the space LN is spanned by
{x1, x2, |x1 − x2|}. For f (x) = |x1 − x2| we find that Aθ

Nf (x) = 4θ(1 : 1)1(x1 =
x2), and consequently, assuming (2.7) holds, each pair of components (Xi,Xj ) of
a solution to the Aθ

N -martingale problem are θ -coupled Brownian motions (with
drift β) for θ = 2θ(1 : 1). For higher values of N , the space LN is not spanned by
the functions xi and |xi − xj |; additional functions are used to specify the interac-
tions between more than two particles.

PROPOSITION 2.1. Suppose that θ possesses the consistency property

θ(k : l) = θ(k + 1 : l) + θ(k : l + 1) for all k, l ≥ 0.(2.7)

Suppose that X is a solution to the Aθ
N -martingale problem, and let Y be the

process consisting of some M given coordinates of X. Then Y is a solution to the
Aθ

M -martingale problem.

PROOF. We begin by observing the simple fact that if σ is a permutation of
{1,2, . . . ,N}, then (Xσ (t); t ≥ 0) solves the Aθ

N -martingale problem if (X(t); t ≥
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0) does. Consequently it is enough to prove the proposition in the case that Y

consists of the first N − 1 coordinates of X.
Define ρ : RN → RN−1 to be the projection onto the first N − 1 coordinates.

Suppose that g ∈ LN−1, and let f = g◦ρ, which belongs to LN . X being a solution
to the Aθ

N -martingale problem implies that

f (X(t)) −
∫ t

0
Aθ

Nf (X(s)) ds is a martingale

and since f (X(t)) = g(Y (t)) we need to show that Aθ
Nf (X(s)) = Aθ

N−1g(Y (s)).
For this we verify that Aθ

Nf (x) = Aθ
N−1g(ρ(x)) for all x ∈ RN . Fix some x ∈ RN ,

and let y = ρ(x). We will show that∑
v∈V(x)

θ(v)∇vf (x) = ∑
u∈V(y)

θ(u)∇ug(y),(2.8)

by matching terms on the right-hand side to terms on the left-hand side.
With this in mind, let us first observe that whenever I and J are disjoint subsets

of {1,2, . . . ,N} with Ī = I ∩ {1,2, . . . ,N − 1} and J̄ = J ∩ {1,2, . . . ,N − 1} not
both empty, we have ρ(vIJ ) = uĪ J̄ , where u = uĪ J̄ is a vector in RN−1 defined in
an analogous manner to (2.3). This together with f = g ◦ ρ implies that

∇vIJ
f (x) = ∇uĪ J̄

g(y).

Recall that we associate with x a partition π(x) of {1,2, . . . ,N} into classes
C1,C2, . . . ,Cn say, without loss of generality, the class C1 containing N .
Then π(y) is the partition of {1,2, . . . ,N − 1} into classes C1 \ {N},C2, . . . ,Cn.
It may be that C1 is just the singleton {N} in which case we have only classes
C2, . . . ,Cn here. Each term on the left-hand side of (2.8) corresponds to splitting
some class Cr of π(x) into an ordered pair (I, J ) of parts, one of which may be
empty. There are two different cases to consider for this pair.

First, when I ∪ J = Cr for r �= 1 which consequently does not contain N . Then
by taking Ī = I and J̄ = J we obtain a corresponding term on the right-hand side.
Moreover we have

θ(vIJ )∇vIJ
f (x) = θ(uĪ J̄ )∇uĪ J̄

g(y)

and the contributions to the two sides of (2.8) are equal.
In the second case, we consider I ∪ J = C1. Without loss of generality suppose

that N ∈ I . Then we consider a second pair (I ′, J ′) of subsets of {1,2, . . . ,N}
with I ′ = I \ {N} and J ′ = J ∪ {N}. Set Ī = I ′ and J̄ = J . If we suppose that
there are k elements in Ī and l elements in J̄ , then, by the consistency property
for θ ,

θ(vIJ ) + θ(vI ′J ′) = θ(k + 1 : l) + θ(k : l + 1) = θ(k : l) = θ(uĪ J̄ ).

Thus, provided not both Ī and J̄ are empty the net contribution of vIJ and vI ′J ′
to the left-hand side of (2.8) matches the contribution of uĪ J̄ to the right-hand
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side. Actually, even in the case Ī and J̄ are both empty, this is still true. Then
there is no term on the right-hand side, but f does not depend on xN so we have
∇vIJ

f (x) = ∇vI ′J ′ f (x) = 0.
Taken together these two cases for (I, J ) exhaust all possibilities, and we

have also accounted for all terms on the right-hand side of (2.8). The equality
Aθ

Nf (x) = Aθ
N−1g(y) is thus proven.

The proof of the proposition is completeted by noting that the brackets 〈Yi, Yj 〉
are as required. �

The role of the parameters θ(k : l) with both k and l strictly positive was ex-
plained in the Introduction. They may be interpreted loosely as rates and as such
we impose the positivity condition

θ(k : l) ≥ 0 for all k, l ≥ 1.(2.9)

The parameters θ(k : 0) and θ(0 : l) are not necessarily positive. Their role is prob-
ably best described as contributing correction terms to the generator Aθ

N which
ensure the consistency as N varies. As noted above, if X solves the Aθ

N -martingale
problem for a family of parameters θ satisfying (2.7), then each coordinate
(Xi(t); t ≥ 0) is a Brownian motion with drift β = θ(1 : 0) − θ(0 : 1). Observe
that any consistent family (θ(k : l);k, l ≥ 0) is determined completely by the re-
stricted family (θ(k : l);k, l ≥ 1) of “splitting rates” together with the value of the
drift β = θ(1 : 0)− θ(0 : 1). The following proposition shows that we can eliminate
drift in the usual way.

PROPOSITION 2.2. Suppose that X solves the Aθ
N -martingale problem and

let X̃i(t) = Xi(t) − 2βt . Then X̃ solves the Aθ̃
N -martingale problem where

θ̃ (k : l) = θ(k : l) − β1(k=0) + β1(l=0).(2.10)

PROOF. Let 1 denote the vector (1,1, . . . ,1) ∈ RN . We have, for any f ∈ LN ,

f (X̃(t)) −
∫ t

0
Aθ̃

Nf (X̃(s)) ds = f (X(t)) − 2βtf (1) −
∫ t

0
Aθ̃

Nf (X(s)) ds,

using the facts that f is linear when restricted to each cell, and Aθ̃
Nf is constant

on each cell. Thus, it is enough to verify that 2βf (1)+Aθ̃
Nf (x) = Aθ

Nf (x) for all
x ∈ RN . Since θ̃ (k : l) = θ(k : l) whenever k, l ≥ 1, this comes down to checking
that

2βf (1) + ∑
v∈V0(x)

θ̃ (v)∇vf (x) = ∑
v∈V0(x)

θ(v)∇vf (x).

This holds by virtue of the linearity of f within the cell containing x. �

The main purpose of this paper is to prove the following theorem.
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THEOREM 2.1. Let θ be a family of parameters satisfying the consistency and
positivity properties given above in (2.7) and (2.9). For each N ≥ 1 and x ∈ RN

there exists a process solving the Aθ
N -martingale problem starting from x. More-

over the law of this process is unique.

3. Leaving the diagonal. Throughout this section we assume that we have
fixed some family θ of parameters satisfying the consistency and positivity con-
ditions given in (2.7) and (2.9). We suppose that X is some solution to the
Aθ

N -martingale problem. Let

Tε = inf
{
t ≥ 0 : |Xi(t) − Xj(t)| ≥ ε for some i, j ∈ {1,2, . . . ,N}}.

We intend show that if X starts on the diagonal D = {x ∈ RN :xi = xj for all i, j}
then the distribution of X(Tε) is, for small ε, concentrated on the set of cells
E ⊂ RN which are neighbors of D. Moreover the parameters θ(k : l) determine
the way the exit distribution is apportioned between these cells. To be more pre-
cise, let V+(D) denote the collection of vectors of the form vIJ where I ∪ J =
{1,2, . . . ,N} and neither I nor J is empty. Such a vector determines a cell

E(v) = {y ∈ RN :y = x + βv for x ∈ D and β ∈ R with β > 0}.(3.1)

These cells are the neighbors of D.
The main result of this section is as follows.

THEOREM 3.1. Let X start from the diagonal. Then the following limits exist
and are determined by the family of parameters θ :

lim
ε→0

1

ε
E[Tε] = 1

2
∑

v∈V+(D) θ(v)

and for each cell E(v), a neighbor of D,

lim
ε→0

P
(
X(Tε) ∈ E(v)

)= θ(v)∑
u∈V+(D) θ(u)

.

If the dimension N = 2, then the result is easily established, and in the sequel
we shall mostly assume N ≥ 3. We notice also that by virtue of Proposition 2.2 and
the remark made at (2.6) we can make the simplifying assumption that θ(0 : 1) =
θ(1 : 0) = 0, and so in particular every coordinate of X is a driftless Brownian
motion.

LEMMA 3.1. Let X start from the diagonal then

E
[∫ Tε

0
1
(
X(s) /∈ D

)
ds

]
≤ N(N − 1)

4
ε2.
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PROOF. Each pair of coordinates (Xi(t),Xj (t)) is, by Proposition 2.1, a pair
of θ -coupled Brownian motions with θ = 2θ(1 : 1). Consequently

(
Xi(t) − Xj(t)

)2 − 2
∫ t

0
1
(
Xi(s) �= Xj(s)

)
ds

is a martingale.
Applying the optional stopping theorem at time Tε ∧ t , and letting t → ∞, we

obtain,

E
[∫ Tε

0
1
(
Xi(s) �= Xj(s)

)
ds

]
= 1

2
E
[(

Xi(Tε) − Xj(Tε)
)2]≤ ε2/2.

The result follows by summing over all possible pairs i and j . �

In the following series of lemmas we will assume that the dimension N = 3.
Later we will apply our conclusions to each triple of coordinates of a process X

having arbitrary dimension. When N = 3 the diagonal {x1 = x2 = x3} has 6 neigh-
boring cells each of the form Ek

ij = {xi = xj < xk} or E
ij
k = {xk < xi = xj }.

Define the process (Y (t); t ≥ 0) by

Y(t) = inf
1≤i<j≤3

|Xi(t) − Xj(t)|.(3.2)

Y(t) measures the distance from X(t) to the union of D and the six cells neighbor-
ing D. We begin by showing Y(Tε) is typically small, and will subsequently show
that it is in fact zero with high probability. We denote 2θ(1 : 1) by θ for the rest of
this section.

LEMMA 3.2. Suppose that X starts from the diagonal of R3 then

E[Y(Tε)] ≤ 6θε2.

PROOF. Each pair of coordinates (Xi(t),Xj (t)) is a pair of θ -coupled Brown-
ian motions with θ = 2θ(1 : 1). Consequently

|Xi(t) − Xj(t)| =
∫ t

0
sgn

(
Xi(s) − Xj(s)

)
d
(
Xi(s) − Xj(s)

)

+ 2θ

∫ t

0
1(Xi(s)=Xj (s)) ds.

Using this, together with the brackets 〈Xi,Xj 〉(t) = ∫ t
0 1(Xi(s)=Xj (s)) ds, we cal-

culate that

Z(t) = ∏
i<j

|Xi(t) − Xj(t)|

= M(t) + 2θ

3∑
i=1

∫ t

0
|Xi(s) − Xj(s)||Xi(s) − Xk(s)|1(Xj (s)=Xk(s)�=Xi(s)) ds,
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where in the last expression {j, k} = {1,2,3} \ {i}, and where M(t) is given by
a stochastic integral with respect to X(t) and is hence a local martingale. Applying
the optional stopping theorem at Tε ∧ t , noting that M(s) is bounded on the interval
[0, Tε ∧ t], and then letting t tend to infinity, we obtain

E[Z(Tε)] = 2θE

[ 3∑
i=1

∫ Tε

0
|Xi(s) − Xj(s)||Xi(s) − Xk(s)|1(Xj (s)=Xk(s)�=Xi(s)) ds

]

≤ 2θε2E
[∫ Tε

0
1
(
X(s) /∈ D

)
ds

]
≤ 3θε4,

appealing to Lemma 3.1 for the last inequality. To conclude we note that

Z(Tε) = εY (Tε)
(
ε − Y(Tε)

)≥ ε2

2
Y(Tε). �

LEMMA 3.3. Suppose that X starts from a point x ∈ R3 satisfying supi≤j |xi −
xj | = ε. Let T0,2ε be the first exit time of X from the domain {x ∈ R3 : 0 <

supi≤j |xi − xj | < 2ε}. Then

P
(
Y(T0,2ε) �= 0

)≤ C(yε−1 + θε),

where y = infi<j |xi − xj |, and C is some universal constant.

PROOF. By permuting coordinates we may suppose that y = |x1 − x2| ≤
min(|x1 − x3|, |x2 − x3|). We will also assume that x1, x2 > x3, the other possi-
bility that x1, x2 < x3 can be dealt with by a analogous argument. Let

Uε = {x ∈ R3 :x1, x2 > x3} ∩
{
x ∈ R3 : 0 < sup

i≤j

|xi − xj | < 2ε

}
,

and T (Uε) denote the first time X exits this domain. Let V (t) = 1√
2
|X1(t)−X2(t)|

and W(t) = 1√
6
(X1(t)+X2(t)−2X3(t)). Then the following equality in law holds

between stopped processes:

(
W
(
t ∧ T (Uε)

)
,V

(
t ∧ T (Uε)

); t ≥ 0
) law= (

ξ(t ∧ τ), η(t ∧ τ); t ≥ 0
)
,

where (η, ξ) is a sticky Brownian motion in the half plane of the type described in
Section 7 with data (a0, θ0) = (4/3,

√
2θ) and τ is the first exit time of (ξ, η) from

the triangle

�(ε) = {
(x, y) ∈ R2 :y ≥ 0,

√
6x − √

2y > 0,
√

6x + √
2y < 4ε

}
.

The desired inequality holds by noting that the event {Y(T0,2ε) �= 0} is contained
in the event {V (T (Uε)) �= 0} and applying Proposition 7.2. �
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LEMMA 3.4. Suppose that X starts from the diagonal of R3. Then

P
(
Y(T2ε) �= 0

)≤ Cθε,

where C is some universal constant.

PROOF. Let R(t) = supi≤j |Xi(t) − Xj(t)|. Define a sequence of stopping
times by T0 = 0, and then in general,

T2n+1 = inf{t ≥ T2n :R(t) = ε},
T2n = inf{t ≥ T2n−1 :R(t) = 0}.

It is easy to see that these stopping times are almost surely finite. Denote the natural
filtration of X by (Ft ; t ≥ 0). Then R(t) is a Ft -submartingale and consequently,

2εP(T2n > T2ε > T2n−1|FT2n−1)

= E
[
R(T2ε ∧ T2n)1(T2ε>T2n−1)|FT2n−1

]
≥ R(T2n−1)1(T2ε>T2n−1) = ε1(T2ε>T2n−1).

From this it follows that

P(T2ε > T2n+1) ≤ 1
2P(T2ε > T2n−1)

and so P(T2ε > T2n) = P(T2ε > T2n+1) ≤ (1
2)n.

By well-known properties of martingale problems (see Stroock and Varad-
han [14]), the conditional law of the process (X(T2n−1 + t); t ≥ 0) given FT2n−1

is almost surely a solution to the Aθ
N -martingale problem starting from X(T2n−1).

Thus a conditional version of Lemma 3.3 holds

P
(
Y(T n

0,2ε) �= 0|FT2n+1

)≤ C
(
Y(T2n+1)ε

−1 + θε
)

a.s.,

where T n
0,2ε = inf{t ≥ T2n+1 :R(t) = 0 or 2ε}. Similarly the following conditional

version of Lemma 3.2 holds:

E[Y(T2n+1)|FT2n
] ≤ 6θε2 a.s.

Combining these two estimates gives

P
(
Y(T n

0,2ε) �= 0|FT2n

)≤ 7Cθε a.s.

Finally, turning to the quantity of interest

P
(
Y(T2ε) �= 0

)
=

∞∑
n=0

P
(
Y(T2ε) �= 0 and T2n+1 < T2ε < T2n+2

)

=
∞∑

n=0

P
(
Y(T n

0,2ε) �= 0 and T2n+1 < T2ε < T2n+2
)

≤
∞∑

n=0

P
(
Y(T n

0,2ε) �= 0 and T2n < T2ε

)≤ ∞∑
n=0

7Cθε

(
1

2

)n

= 14Cθε. �
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We now return to considering X having arbitrary dimension N ≥ 3.

PROPOSITION 3.1. Let X start from the diagonal of RN . Let � be the event
that there are three or more distinct values taken by the coordinates of X(Tε). Then

P(�) ≤ CN3θε,

where C is a universal constant.

PROOF. For each triple of distinct indices (i, j, k) define

Tijk = inf{t ≥ 0 : max(Xi(t),Xj (t),Xk(t)) − min(Xi(t),Xj (t),Xk(t)) = ε}.
The graph of Tε is contained in the union of the graphs of Tijk as (i, j, k) varies
and

� ⊆ ⋃
i,j,k

�ijk,

where �ijk is the event that Xi(Tijk),Xj (Tijk) and Xk(Tijk) are distinct. By
virtue of Proposition 2.1 the process (Xi(t),Xj (t),Xk(t); t ≥ 0) solves the
Aθ

3-martingale problem starting from the diagonal, and consequently we deduce
from Lemma 3.4, with 2ε replaced by ε in its statement, that P(�ijk) ≤ Cθε. The
result follows by summing over i, j and k. �

PROOF OF THEOREM 3.1. Take f ∈ LN to be given by

f (x) = max
1≤i≤N

{xi} − min
1≤i≤N

{xi}.
Then it is easily verified that ∇vf (x) = 2 for x ∈ D and v ∈ V+(D), while
∇vf (x) = 0 for x ∈ D and v ∈ V(x) \ V+(D). Also |∇vf (x)| ≤ 2 for any x ∈ RN

and v ∈ V(x). This latter fact implies that |Aθ
Nf (x)| is bounded by some constant

depending on N and θ for all x ∈ RN .
Applying the optional stopping theorem to the martingale f (X(t)) − ∫ t

0 Aθ
N ×

f (X(s)) ds at the time Tε ∧ t and letting t tend to infinity we obtain

ε = E[f (X(Tε))]
= E

[∫ Tε

0
Aθ

Nf (X(s)) ds

]

= E
[∫ Tε

0
Aθ

Nf (X(s))1
(
X(s) /∈ D

)
ds

]

+ ∑
v∈V+(D)

2θ(v)E
[∫ Tε

0
1
(
X(s) ∈ D

)
ds

]
.

The first assertion of the theorem now follows by dividing through by ε and passing
to the limit with an appeal to Lemma 3.1.
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For the second result consider some E(v), a cell which neighbors D. Then for
some partition of {1,2, . . . ,N} into nonempty disjoint classes I and J we have
v = vIJ and

E(v) = {x ∈ RN :xi > xj if i ∈ I, j ∈ J, and xi = xj if either i, j ∈ I or i, j ∈ J }.
We associate with E(v) a function fv ∈ LN , defined with the aid of the partition
as

fv(x) = min
i∈I,j∈J

(xi − xj )
+.

Once again it is easy to verify that for any x ∈ D, we have ∇vfv(x) = 2, while
∇ufv(x) = 0 for any u ∈ V(x) with u �= v. Also |∇ufv(x)| ≤ 2 for any x ∈ RN

and u ∈ V(x) and, as a consequence, |Aθ
Nfv(x)| is bounded by some constant

depending on N and θ for all x ∈ RN . Applying the optional stopping theorem to
the martingale fv(X(t)) − ∫ t

0 Aθ
Nfv(X(s)) ds at the time Tε ∧ t and letting t tend

to infinity we obtain

E[fv(X(Tε))] = E
[∫ Tε

0
Aθ

Nfv(X(s)) ds

]

= E
[∫ Tε

0
Aθ

Nfv(X(s))1
(
X(s) /∈ D

)
ds

]

+ 2θ(v)E
[∫ Tε

0
1
(
X(s) ∈ D

)
ds

]
.

We divide through by ε and pass to the limit. On the right-hand side, by
Lemma 3.1 and the first part of the current theorem, we obtain

θ(v)∑
u∈V+(D) θ(u)

.

While on the left-hand side, by virtue of Proposition 3.1, we have

lim
ε→0

1

ε
E[fv(X(Tε))] = lim

ε→0

1

ε
E[fv(X(Tε))1�c ] = lim

ε→0
P
(
X(Tε) ∈ E(v)

)
. �

Later it will be important to us to have noted that the proof just given shows
not just that the limits appearing in the statement of the theorem hold, but in fact
gives us rates of convergence. Indeed we have proved that, for some constant C

that depends only on N and θ we have∣∣∣∣E[Tε] − ε

2
∑

v∈V+(D) θ(v)

∣∣∣∣≤ Cε2 and(3.3)

∣∣∣∣P(X(Tε) ∈ E(v)
)− θ(v)∑

u∈V+(D) θ(u)

∣∣∣∣≤ Cε.(3.4)
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4. The process stopped at the time of hitting the diagonal. Consider a par-
tition π = (π1, π2) of {1,2, . . . ,N} into two parts. Let |πi | denote the number
of elements in the class πi . We will say that a RN -valued process (X(t); t ≥ 0)

solves the Aθ
π -martingale problem starting from x if, for each i = 1,2, the process

(Xk(t);k ∈ πi, t ≥ 0) solves the Aθ|πi |-martingale problem (relative to the nat-
ural filtration of X), and if every pair of Brownian motions (Xk(t); t ≥ 0) and
(Xl(t); t ≥ 0) for which k and l belong to distinct parts of π are orthogonal.

PROPOSITION 4.1. Suppose that for each class πi of the partition π , the
Aθ|πi |-martingale problem has a solution unique in law for and each possible start-

ing point x ∈ R|πi |. Then the Aθ
π -martingale problem has a solution unique in law

for every starting point x ∈ RN .

PROOF. For simplicity we assume θ(0 : 1) = θ(1 : 0) = 0, and consider the
case π1 = {1,2, . . . , n} and π2 = {n + 1, n + 2, . . . ,N}. Suppose X is a solu-
tion to the Aθ

π -martingale problem starting from some point x ∈ RN . Let Y

be the Rn-valued process consisting of the first n coordinates of X, and Z the
RN−n-valued process consisting of the last N −n coordinates of X. Then Y and Z

solve the Aθ|π1| and Aθ|π2|-martingale problems, respectively. The uniqueness-in-
law property for these martingale problems implies martingale representation,
which we may obtain by applying Theorem 40 of Chapter IV of [12] to the collec-
tion of distinct martingales of the form

YE
i (t) =

∫ t

0
1
(
Y(s) ∈ E

)
dYi(s),

where E is a cell in Rn and i = 1,2, . . . , n (and similarly for Z). As a consequence,
for arbitrary F ∈ L2(Y ) and G ∈ L2(Z), we may write

F = E[F ] +
∫ ∞

0
fs dYs and G = E[G] +

∫ ∞
0

gs dZs,

for suitable vector-valued predictable processes (fs; s ≥ 0) and (gs; s ≥ 0). But
since Y and Z are orthogonal martingales we obtain from this

E[FG] = E[F ]E[G]
and hence deduce that Y and Z are independent. This identifies the law of X =
(Y,Z) as being the product of uniquely determined laws, and we are done. �

For each nonempty subset S of {1,2, . . . ,N} having nonempty complement Sc,
consider the open set

US = {x ∈ RN :xi > xj for all i ∈ S, j ∈ Sc}.
For x ∈ RN write pS(x) for the vector (xi; i ∈ S) ∈ R|S|, and let pSc(x) be
defined similarly. Fix some S and a point x ∈ US . Suppose that X solves the
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Aθ
N -martingale problem starting from x, and let TS be the first exit time of X

from US . Put Y(t) = pS(X(t)) and Z(t) = pSc(X(t)). By Proposition 2.1 the
processes Y and Z solve the Aθ|S|- and Aθ|Sc|-martingale problems starting from
y = pS(x) and z = pSc(x), respectively. Moreover, any pair of coordinates,
(Yi(TS ∧ t); t ≥ 0) and (Zj (TS ∧ t); t ≥ 0), of the stopped processes are orthogo-
nal. Let π denote the partition with parts S and Sc. If T is any stopping time almost
surely less than or equal to TS , then by standard arguments for stopped martingale
problems,

if the solution to the Aθ
π -martingale problem starting from x is known

to be unique in law, then the law of
(
X(T ∧ t); t ≥ 0

)
, is also uniquely

determined.
(4.1)

Suppose that for every n ≤ N − 1 and x ∈ Rn the Aθ
n-martingale problem start-

ing from x has a solution whose law is uniquely determined. Then by virtue of
Proposition 4.1, the hypothesis at (4.1) is verified, and the conclusion that the
law of the stopped process is uniquely determined holds. Fix some ε > 0 and
observe as S varies the collection of all US forms a cover of Kε = {x ∈ RN : ε ≤
|xi − xj | for some i �= j} ∩ {x ∈ RN : |xi | ≤ 1/ε for all i}, having the property that
if x ∈ Kε then there exists some subset S(x) so that US(x) contains the ball
{y ∈ RN :‖y − x‖ < ε/(2N)}. Now fix x ∈ Kε , and suppose that X solves the
Aθ

N -martingale problem starting from x. Put T0 = 0, and for i ≥ 0,

Ti+1 = inf
{
t ≥ Ti :X(t) /∈ US(i) ∩ Kε},(4.2)

where S(i) = S(X(Ti)). Let Tε denote the first time the process X exits Kε; this is
almost surely finite, and consequently by continuity of the paths of X, Ti = Tε , for
sufficiently large i with probability one. Now consider the conditional distribution
of (X(Ti + t) ∧ Ti+1); t ≥ 0) given FTi

where (Ft ; t ≥ 0) is the natural filtra-
tion of X. This conditional law is almost surely a solution to the Aθ

N -martingale
problem starting from X(Ti) and stopped on first exiting US(i) ∩ Kε . As an appli-
cation of (4.1) we deduce that this conditional law is uniquely determined. Then
it follows, by a standard splicing argument of the type used in [14], that the law
of (X(t ∧ Tε); t ≥ 0) is also unique. Finally letting ε tend down to zero, we have
established the following, in which TD denotes the first time that X reaches the
diagonal D of RN .

PROPOSITION 4.2. Suppose that for every n ≤ N − 1 and x ∈ Rn the
Aθ

n-martingale problem starting from x has a solution whose law is uniquely de-
termined. Then if X is any solution to the Aθ

N -martingale problem starting from
a point x ∈ RN , the law of the stopped process (X(TD ∧ t); t ≥ 0) is uniquely
determined.
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5. The proof of uniqueness. Fix a family of parameters θ . Anticipating an
argument by induction on N , we will make the following hypothesis:

If X is any solution to the Aθ
N -martingale problem starting from a point

x ∈ RN , the law of the stopped process
(
X(TD ∧ t); t ≥ 0

)
is uniquely

determined.
(5.1)

Now suppose that X is governed by a family of probability measures (Px;x ∈
RN), and that under each Px it solves the Aθ

N -martingale problem and starts
from x. Define the function ψλ by

ψλ(x) = Ex[exp(−λTD)](5.2)

and similarly for any test function f we define R0
λf by

R0
λf (x) = Ex

[∫ TD

0
e−λsf (X(s)) ds

]
.(5.3)

Our aim is show that the expectation

Ex

[∫ ∞
0

e−λsf (X(s)) ds

]
,(5.4)

which a priori depends on possible choices of the family of measures (Px;x ∈ RN),
is uniquely determined. The hypothesis (5.1) ensures that R0

λf and ψλ do not de-
pend on any such choice. We will show that, whenever f is invariant under transla-
tions along the diagonal, and also zero in a neighborhood of it, the expectation (5.4)
is given by

R0
λf (x) + κψλ(x),(5.5)

for a certain constant κ whose value is also unaffected by any freedom in choos-
ing (Px;x ∈ RN). Notice that, assuming the uniqueness to the martingale prob-
lem that we are intending to prove, and the consequent Markov property, the
equality of (5.4) and (5.5) is the usual decomposition of the resolvent Rλf and
κ = Rλf (0). Moreover, formally applying the generator to this equality gives
λRλf (0) = Aθ

NR0
λf (0) + Rλf (0)Aθ

Nψλ(0) which gives Rλf (0) in terms of R0
λf

and ψλ. This motivates the calculations of Propositions 5.1 and 5.2 below, in
which κ is determined with the help of the description provided by Theorem 3.1
of the way X leaves the diagonal. We need the following lemmas.

LEMMA 5.1. There exists a constant C, depending on λ, θ and N alone, such
that

1 − ψλ(x) ≤ C
√

dist(x,D) whenever dist(x,D) < 1

and also, for any bounded f ,

R0
λf (x) ≤ C

√
dist(x,D)‖f ‖∞ whenever dist(x,D) < 1.
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PROOF. For i �= j the difference (Xi(t) − Xj(t); t ≥ 0) is distributed as a
sticky Brownian motion on R. Using standard results on this process, see, for ex-
ample, [2], it is easily deduced that

Px

(
Xi(t) �= Xj(t)

)≤ 1√
t
|xi − xj | + 4θ(1 : 1)t.

Now observe that

ψλ(x) = Ex[exp(−λTD)] ≥ e−λtPx

(
X(t) ∈ D

)
≥ e−λt

(
1 −∑

i<j

Px

(
Xi(t) �= Xj(t)

))
.

This holds for any t > 0. Taking t = dist(x,D), and applying the previous estimate
gives the first assertion of the lemma. For the second observe that

R0
λf (x) = Ex

[∫ TD

0
e−λsf (X(s)) ds

]
≤ ‖f ‖∞

λ

(
1 − ψλ(x)

)
. �

Recall that Tε = inf{t ≥ 0 : |Xi(t) − Xj(t)| ≥ ε for some i, j ∈ {1,2, . . . ,N}}.
LEMMA 5.2. There exists a constant C, depending on θ alone, such that if X

is any solution to the Aθ
N -martingale problem starting from the diagonal, then

E[T 2
ε ] ≤ Cε2 whenever 0 < ε < 1.

PROOF. Notice that Tε ≤ inf{t ≥ 0 : |X1(t) − X2(t)| ≥ ε}. Consequently it
is enough to prove the result for N = 2. Let Z(t) = |X1(t) − X2(t)| and define
f (z, t) = (z4 − 12tz2 + 12t2) + (2z3 − 12tz)/θ and g(z, t) = z2/2 − t + z/(2θ)

where θ = 2θ(1 : 1). On applying Itô’s formula we find that both f (Z(t), t) and
g(Z(t), t) are martingales. Then using the stopping theorem we obtain first that
E[Tε] = ε2/2 + ε/(2θ), and then that

E[T 2
ε ] = 5ε4/12 + 5ε3/(6θ) + ε2/(2θ2)

from which the result follows. �

LEMMA 5.3. Under the hypothesis (5.1), the mapping x �→ ψλ(x) is invariant
under translations parallel to the diagonal, meaning ψλ(x + y) = ψλ(x) for all
y ∈ D. If x �→ f (x) is invariant under such translations, so too is x �→ R0

λf (x).

PROOF. Suppose y ∈ D. It is straightforward to check that if X satisfies
the Aθ

N -martingale problem starting from x, then X̃(t) = X(t) + y solves the
Aθ

N -martingale problem starting from x + y. Combining this with the uniqueness
statement (5.1) we see that the stopped process (X̃(t ∧ TD); t ≥ 0) under Px has
the same distribution as the stopped process (X(t ∧ TD); t ≥ 0) under Px+y , and
the lemma follows from this. �
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PROPOSITION 5.1.

ψλ(x) = κ0Ex

[∫ ∞
0

e−λs1D(X(s)) ds

]
,

where κ0 is given by

κ0 = λ + lim
ε↓0

1

ε

∑
v∈V+(D)

θ(v)[1 − ψλ(εv)].

Thus under the hypothesis (5.1), for each x ∈ RN , the quantity Ex[∫∞
0 e−λs ×

1D(X(s)) ds] does not depend on any possible choice of Px .

PROOF. Introduce stopping times T ε
0 = 0, T ε

1 = inf{t ≥ 0 :Xt ∈ D},
T ε

2 = inf
{
t ≥ T ε

1 : |Xi(t) − Xj(t)| ≥ ε for some i, j ∈ {1,2, . . . ,N}}
and in general T ε

2k+1 = inf{t ≥ T ε
2k :Xt ∈ D}, and

T ε
2k = inf

{
t ≥ T ε

2k−1 : |Xi(t) − Xj(t)| ≥ ε for some i, j ∈ {1,2, . . . ,N}}.
We have

Ex

[∫ ∞
0

e−λs1D(X(s)) ds

]

= ∑
k odd

Ex

[∫ T ε
k+1

T ε
k

e−λs1D(X(s)) ds

]
(5.6)

= ∑
k odd

Ex

[
e−λT ε

k Ẽk

[∫ Tε

0
e−λs1D(X(s)) ds

]]
,

where Ẽk denotes expectation relative to the conditional distribution P̃k of
(X(T ε

k + u);u ≥ 0) given (X(u);u ≤ T ε
k ). Notice that this holds even though

it may be the case some T ε
k = ∞ with positive probability, so long as we appro-

priately interpret the right-hand side.
Next X governed by the conditional distribution P̃k is almost surely also a solu-

tion to the Aθ
N -martingale problem, starting from the diagonal for odd k. Thus the

estimate for E[Tε] given at (3.3) is applicable, and this together with Lemmas 3.1
and 5.2 gives, for sufficiently small ε,∣∣∣∣Ẽk

[∫ Tε

0
e−λs1D(X(s)) ds

]
− ε

2
∑

v∈V+(D) θ(v)

∣∣∣∣≤ Cε2 a.s.,

where the constant C depends on λ, N and θ only. Returning to (5.6), we deduce
that first, for all sufficiently small ε,

ε

4
∑

v∈V+(D) θ(v)

∑
k odd

Ex[e−λT ε
k ] ≤ Ex

[∫ ∞
0

e−λs1D(X(s)) ds

]
< ∞
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and then that

Ex

[∫ ∞
0

e−λs1D(X(s)) ds

]
= lim

ε↓0

ε

2
∑

v∈V+(D) θ(v)

∑
k odd

Ex[e−λT ε
k ].(5.7)

Next we use the same sequence of stopping times T ε
k to decompose ψλ(x):

ψλ(x) = lim
n→∞ Ex[ψλ(x) − e−λT ε

n ψλ(X(T ε
n ))]

= lim
n→∞ Ex

[
n∑

k=0

e−λT ε
k ψλ(X(T ε

k )) − e−λT ε
k+1ψλ(X(T ε

k+1))

]
(5.8)

= ∑
k odd

Ex

[
e−λT ε

k Ẽk[1 − e−λTεψλ(X(Tε))]].
Here the even terms of the sum are dropped because Ẽk[ψλ(X(0)) − exp(−λ ×
TD)] = 0 for each even k, by virtue of the uniqueness hypothesis (5.1) and the
definition of ψλ.

We claim that there exists a constant C depending on λ, N and θ so that∣∣∣∣Ẽk[1 − e−λTεψλ(X(Tε))] − λε/2 +∑
v∈V+(D)[1 − ψλ(εv/2)]θ(v)∑

u∈V+(D) θ(u)

∣∣∣∣
(5.9)

≤ Cε3/2 a.s.

Taken together with (5.7) and (5.8) this implies that the limit defining κ0 exists,
and that the equality in the statement of the proposition holds.

In verifying the claimed inequality we will write E instead of Ẽk , our arguments
holding for any solution to the Aθ

N -martingale problem starting from the diagonal.
In the following C1,C2, . . . denote constants that may depend on θ , N and λ only.
We begin with

E[1 − ψλ(X(Tε))] = ∑
v∈V+(D)

(
1 − ψλ(εv/2)

)
P
(
X(Tε) ∈ E(v)

)
(5.10)

+ E
[(

1 − ψλ(X(Tε))
)
1�(ε)

]
,

where �(ε) denotes the event that at least three of the coordinates of X(Tε) take
distinct values. Here we have used the fact that ψλ(X(Tε)) = ψλ(εv/2) on the
event X(Tε) ∈ E(v) which follows from Lemma 5.3. Now from Proposition 3.1
we know that P(�(ε)) ≤ C1ε, and from Lemma 5.1 that (1 − ψλ(X(Tε))) ≤
C2ε

1/2, and thus E[(1 − ψλ(X(Tε)))1�] ≤ C3ε
3/2. Applying the estimate (3.4)

for P(X(Tε) ∈ E(v)) with another appeal to Lemma 5.1, we deduce from (5.10)
that ∣∣∣∣∣E[1 − ψλ(X(Tε))] − ∑

v∈V+(D)

[1 − ψλ(εv/2)] θ(v)∑
u∈V+(D) θ(u)

∣∣∣∣∣≤ C5ε
3/2.(5.11)
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Next we have

|E[1 − e−λTεψλ(X(Tε))] − E[1 + λTε − ψλ(X(Tε))]|
(5.12)

≤ λE
[
Tε

(
1 − ψλ(X(Tε))

)]+ λ2E[T 2
ε ψλ(X(Tε))] ≤ C6ε

3/2

using Lemmas 5.1 and 5.2 together with the estimate for E[Tε] given at (3.3).
Finally the desired inequality (5.9) follows from putting together (5.11), (5.12)
and using (3.3) once again. �

PROPOSITION 5.2. Suppose that f is bounded, zero in a neighborhood of D,
and invariant under shifts along D: that is, f (x + y) = f (x) for all y ∈ D. Then

Ex

[∫ ∞
0

e−λsf (X(s)) ds

]
= R0

λf (x) + κf

κ0
ψλ(x),

where

κf = lim
ε↓0

1

ε

∑
v∈V+(D)

θ(v)R0
λf (εv).

Thus, under the hypothesis (5.1), for each x ∈ RN , the quantity Ex[∫∞
0 e−λs ×

f (X(s)) ds] does not depend on any possible choice of Px .

PROOF. Suppose that ε is small enough that f (x) = 0 for all x ∈ RN within
a distance Nε of D. Then using the same sequence of stopping times as in the
previous proof,

R0
λf (x) = lim

n→∞ Ex[R0
λf (x) − e−λT ε

n R0
λf (X(T ε

n ))]

= lim
n→∞ Ex

[
n∑

k=0

e−λT ε
k R0

λf (X(T ε
k )) − e−λT ε

k+1R0
λf (X(T ε

k+1))

]

= ∑
k even

Ex

[∫ T ε
k+1

T ε
k

e−λsf (X(s)) ds

]
− ∑

k odd

Ex[e−λT ε
k+1R0

λf (X(T ε
k+1))]

= Ex

[∫ ∞
0

e−λsf (X(s)) ds

]
− ∑

k odd

Ex

[
e−λT ε

k Ẽk[e−λTεR0
λf (X(Tε))]].

Here we have made use of the equality that for even k,

Ex

[∫ T ε
k+1

T ε
k

e−λsf (X(s)) ds

]
= Ex

[
e−λT ε

k Ẽk

[∫ TD

0
e−λsf (X(s)) ds

]]

= Ex[e−λT ε
k R0

λf (X(T ε
k ))],

which holds since X governed by the conditional distribution P̃k is also a solution
to the Aθ

N -martingale problem.
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We claim that there exists a constant C not depending on k so that∣∣∣∣∣Ẽk[e−λTεR0
λf (X(Tε))] − ∑

v∈V+(D)

R0
λf (εv/2)

θ(v)∑
u∈V+(D) θ(u)

∣∣∣∣∣≤ Cε3/2 a.s.

Taken together with the preceding decomposition of R0
λf (x) and (5.7), this im-

plies that the limit defining κf exists, and that the equality in the statement of the
proposition holds.

As in the previous proposition we write E instead of Ẽk , our arguments hold-
ing for any solution to the Aθ

N -martingale problem starting from the diagonal.
C1,C2, . . . denote constants that may depend on θ , N and λ only. We begin with

E[R0
λf (X(Tε))] = ∑

v∈V+(D)

R0
λf (εv/2)P

(
X(Tε) ∈ E(v)

)
(5.13)

+ E
[
R0

λf (X(Tε))1�(ε)

]
.

Here we have used the fact that R0
λf (X(Tε)) = R0

λf (εv/2) on the event X(Tε) ∈
E(v) which follows from Lemma 5.3.

Combining Proposition 3.1 and Lemma 5.1 we obtain E[R0
λf (X(T ε))1�] ≤

C1ε
3/2. Applying the estimate (3.4) for P(X(Tε) ∈ E(v)), with another appeal to

Lemma 5.1, we deduce from (5.13) that∣∣∣∣∣E[R0
λf (X(Tε))] − ∑

v∈V+(D)

R0
λf (εv/2)

θ(v)∑
u∈V+(D) θ(u)

∣∣∣∣∣≤ C2ε
3/2.(5.14)

To finish we have

|E[e−λTεR0
λf (X(Tε))] − E[R0

λf (X(Tε))]| ≤ C3ε
3/2,

by combining Lemma 5.1 with an upper bound for E[Tε] of order ε which follows
from (3.3). �

For a point x ∈ RN we denote by x̂ the point obtained by orthogonal projection
of x onto the hyperplane {x ∈ RN :

∑
xi = 0}.

PROPOSITION 5.3. Suppose the hypothesis (5.1) holds. Then if X is any solu-
tion to the Aθ

N -martingale problem starting from a given point x ∈ RN , the law of
the projected process (X̂(t); t ≥ 0) is uniquely determined.

PROOF. Suppose that P̃x and Px are two probability measures under each of
which X is a solution to the Aθ

N -martingale problem starting from x. Then by the
previous proposition if f is invariant under shifts along the diagonal D, and zero
in a neighborhood of D,

Ẽx

[∫ ∞
0

e−λsf (X(s)) ds

]
= Ex

[∫ ∞
0

e−λsf (X(s)) ds

]
.
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But both sides are positive measures (integrating f ) with the same total mass, so
by a monotone convergence argument, this equality holds without the assumption
of f being zero in a neighborhood of D.

Next by inverting the Laplace transform, and using continuity in t , we deduce
that

Ẽx[f (X(t))] = Ex[f (X(t))] for all t ≥ 0.

Notice that x �→ Ex[f (X(t))] is itself invariant under shifts along D. Using this,
and the fact that the conditional distribution of process (X(t + u);u ≥ 0) given
(X(s); s ≤ t) solves the martingale problem, we obtain in a standard way

Ẽx

[
n∏

i=1

fi(X(ti))

]
= Ex

[
n∏

i=1

fi(X(ti))

]

for any bounded functions f1, f2, . . . , fn, and times 0 < t1 < t2 < · · · < tn, with
each fk invariant under shifts. The claimed result follows from this. �

In order to extend the uniqueness result from X̂ to X we use a change of measure
technique. We now assume that θ(0 : 1) = θ(1 : 0) = 0 and consequently X is a
martingale. For x ∈ RN and i = 1,2, . . . ,N let mi(x) be the cardinality of the set
{k ∈ {1,2, . . . , n} :xk = xi}. Then we define a martingale (M(t); t ≥ 0) via

M(t) =
N∑

i=1

∫ t

0

1

mi(X(s))
dXi(s).(5.15)

It is easy to check that 〈M,Xi〉(t) = t for each i, and consequently M and
X̂ are orthogonal as martingales. A similar calculation also gives 〈M〉(t) =∫ t

0 |π(X(s))|ds, where |π(x)| is the number of components in the partition π(x)

associated with x.
Suppose (β(t); t ≥ 0) is a bounded measurable, nonrandom process, and de-

fine Z to be the exponential local martingale

Z(t) = exp
{∫ t

0
β(s) dM(s) − 1

2

∫ t

0
β(s)2d〈M〉(s)

}
.(5.16)

By Novikov’s criterion this is a true martingale. In the following 1 denotes the
vector (1,1, . . . ,1) ∈ RN .

LEMMA 5.4. Suppose (X(t); t ≥ 0), governed by a probability measure P,
solves the Aθ

N -martingale problem. Let P̃ be locally absolutely continuous with
respect to P with density

P̃ = Z(t) · P on Ft ,

where (Ft ; t ≥ 0) is the filtration generated by X. Then under P̃,

X(t) −
∫ t

0
β(s)1ds solves the Aθ

N -martingale problem.
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PROOF. Let X̃(t) = X(t)− ∫ t
0 β(s)1ds. Evidently X̃ has the correct quadratic

variation. We must show that for each f ∈ LN the process

M̃f (t) = f (X̃(t)) −
∫ t

0
Aθ

Nf (X̃(s)) ds

is a martingale under P̃ .
As in the proof of Proposition 2.2 we note that X̃(t) and X(t) always belong to

the same cell, and by the linearity of f , and the constancy of Aθ
Nf on each cell,

M̃f (t) = f (X(t)) −
∫ t

0
β(s)f (1) ds −

∫ t

0
Aθ

Nf (X(s)) ds.

Mf (t) can be written as a stochastic integral with respect to X, and using this and
the observation that 〈Xi,M〉(t) = t made previously we are able to calculate that
〈Mf ,M〉(t) = f (1)t . Consequently,

〈Mf ,Mβ〉(t) =
∫ t

0
β(s)f (1) ds,

where Mβ(t) denotes the martingale
∫ t

0 β(s) dM(s). By Girsanov’s theorem the
process

Mf (t) − 〈Mf ,Mβ〉(t),
is a martingale under P̃ , and so we are done. �

PROPOSITION 5.4. Suppose the hypothesis (5.1) holds. Then if X is any solu-
tion to the Aθ

N -martingale problem starting from a given point x ∈ RN , the law of
the process (X(t); t ≥ 0) is uniquely determined.

PROOF. Notice that the process X can be expressed as some measurable func-
tion of the pair of processes (X̂,M) since

1

N

N∑
i=1

Xi(t) =
∫ t

0

{∑
mj(X̂(s))−1

}−1
{
dM(s) −∑

i

dX̂i(s)

mi(X̂(s))

}
.

Thus, since we know the law of X̂ is uniquely determined, it is enough to show
that the conditional distribution of M given X̂ is unique also. For this we argue as
follows, using the notation introduced in the previous lemma. Let T > 0. For any
bounded function F : C([0, T ],RN) → R, we have by definition of P̃, Ẽ[F(X̂)] =
E[Z(T )F (X̂)]. By the previous lemma, the process X̃, under P̃, solves the Aθ

N -
martingale problem. So applying the uniqueness result Proposition 5.3 we deduce
that Ẽ[F(X̂)] = E[F(X̂)]. From the resulting equality, E[Z(T )F (X̂)] = E[F(X̂)],
F being arbitrary, it follows that

E
[
exp

{∫ T

0
β(s) dM(s)

}∣∣∣(X̂(t); t ∈ [0, T ])]= exp
{

1

2

∫ T

0
β(s)2|π(X̂(s))|ds

}
.
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The process β and time T being arbitrary, this shows that the distribution of M

given X̂ is uniquely specified. �

Finally the proof of the uniqueness statement of Theorem 2.1 is completed by
an argument by induction on the dimension N . We can assume that θ(0 : 1) =
θ(1 : 0) = 0. Uniqueness for N = 1 holds by Lévy’s characterization of Brownian
motion. Then assuming uniqueness holds for every dimension n ≤ N − 1, Propo-
sition 4.2 asserts that the hypothesis (5.1) is met, and thus by Proposition 5.4,
uniqueness also holds for dimension N .

6. An approximation scheme and the proof of existence. In this section
we construct a solution to the Aθ

N -martingale problem, as the scaling limit of a
sequence of Markov chains.

Let p = (p(k : l);k, l ≥ 0) be a family of nonnegative parameters satisfying the
consistency condition

p(k : l) = p(k + 1 : l) + p(k : l + 1) for all k, l ≥ 0.(6.1)

We will consider a continuous time Markov chain (Y (t); t ≥ 0) with state space
the integer lattice ZN which has generator given by

G
p
Nf (x) = ∑

v∈V(x)

p(v){f (x + v) − f (x)}.(6.2)

Here we write p(v) for p(|I |, |J |), where v = vIJ .
The following proposition is proved exactly as Proposition 2.1.

PROPOSITION 6.1. Suppose that Y is a Markov chain with generator G
p
N , and

let Z be the process consisting of some M coordinates of Y . Then Z is a Markov
chain with generator G

p
M .

From now on we assume that p satisfies p(0 : 0) = p(1 : 0)+p(0 : 1) = 1. Define
d = p(1 : 0)−p(0 : 1). Then with the help of the preceding proposition we see that
each coordinate Yi of Y is a simple random walk on Z with drift d , and in particular

Yi(t) − dt and
(
Yi(t) − dt

)2 − t are martingales(6.3)

relative to the natural filtration of Y . Similarly, we can consider any pair of coor-
dinates (Yi, Yj ) and we find that they evolve independently from each other when
apart but interact when they meet. In fact

(
Yi(t) − dt

)(
Yj (t) − dt

)− (
1 − 4p(1 : 1)

) ∫ t

0
1
(
Yi(s) = Yj (s)

)
ds and(6.4)

|Yi(t) − Yj (t)| − 4p(1 : 1)

∫ t

0
1
(
Yi(s) = Yj (s)

)
ds(6.5)
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are both martingales.
Fix the integer N ≥ 1. Let (pn;n ≥ 1) be a sequence of families of parameters,

all satisfying (6.1) and pn(0 : 0) = 1, and such that as n tends to infinity,

n1/2(pn(k : l) − 1
21(k = 0) − 1

21(l = 0)
)→ θ(k : l)(6.6)

for all 0 ≤ k, l ≤ N , where (θ(k : l);k, l ≥ 0) satisfies the consistency and posi-
tivity conditions (2.7) and (2.9). Let (xn;n ≥ 0) be a sequence of points in RN

converging to a point x, with xn ∈ n−1/2ZN for every n. For n ≥ 1, let Yn be the
scaled process given by Yn(t) = n−1/2Y(nt) for t ≥ 0, where Y is a Markov chain
with generator G

pn

N starting from n1/2xn.
In the following convergence in law means weak convergence of probability

measures on the Skorokhod space D([0,∞),RN).

PROPOSITION 6.2. Suppose that the sequence of processes (Y n(t); t ≥ 0)

converges in law to a process (X(t); t ≥ 0). Then for each i �= j the processes
(Xi(t) − 2βt; t ≥ 0) and (Xj (t) − 2βt; t ≥ 0) are a pair of θ -coupled Brownian
motions where θ = 2θ(1 : 1) and β = θ(1 : 0) = −θ(0 : 1) are determined by (6.6).

PROOF. Notice that the drift of Yn is given by dn = n1/2(pn(1 : 0)−pn(0 : 1))

which tends to 2β as n tends to infinity. Thus by the usual central limit theorem for
random walks each Xi(t) − 2βt is a Brownian motion starting from xi . Moreover
it is a martingale relative to the natural filtration of X, since the corresponding
statement holds for the coordinates of each Yn.

Our first task is to determine the quadratic covariation of Xi and Xj . Consider
two times 0 ≤ t1 ≤ t2. Let g : D([0,∞),RN) → R be nonnegative, bounded, con-
tinuous and measurable with respect to Dt1 , where (Dt ; t ≥ 0) is the filtration
generated by the coordinate process. The mapping α �→ ∫ t2

t1
1(αi(s) = αj (s)) ds is

upper semicontinuous relative to the Skorohod topology on D([0,∞),RN). Thus
by weak convergence,

E
[
g(X)

∫ t2

t1

1
(
Xi(s) = Xj(s)

)
ds

]
(6.7)

≥ lim sup
n→∞

E
[
g(Y n)

∫ t2

t1

1
(
Yn

i (s) = Yn
j (s)

)
ds

]
.

Let us put Ŷ n(t) = Yn(t) − dnt and X̂(t) = X(t) − 2βt . It is easily verified that
the family of random variables (Ŷ n

i (t2)Ŷ
n
j (t2) − Ŷ n

i (t1)Ŷ
n
j (t1);n ≥ 1) is uniformly

integrable, and weak convergence gives

E
[
g(X)

(
X̂i(t2)X̂j (t2) − X̂i(t1)X̂j (t1)

)]
(6.8)

= lim
n→∞ E

[
g(Y n)

(
Ŷ n

i (t2)Ŷ
n
j (t2) − Ŷ n

i (t1)Ŷ
n
j (t1)

)]
.
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Now from (6.4), account taken of the scaling and for n large enough that
pn(1 : 1) ≤ 1/4, we deduce that

0 ≤ E
[
g(Y n)

(
Ŷ n

i (t2)Ŷ
n
j (t2) − Ŷ n

i (t1)Ŷ
n
j (t1)

)]
≤ E

[
g(Y n)

∫ t2

t1

1
(
Yn

i (s) = Yn
j (s)

)
ds

]
.

Combining this with the above consequences of weak convergence we obtain

0 ≤ E
[
g(X)

(
X̂i(t2)X̂j (t2) − X̂i(t1)X̂j (t1)

)]≤ E
[
g(X)

∫ t2

t1

1
(
Xi(s) = Xj(s)

)
ds

]
.

This being true for arbitrary t1 ≤ t2 and g, it follows that the bracket 〈Xi,Xj 〉
must be an increasing process such that 〈Xi,Xj 〉(t) − ∫ t

0 1(Xi(s) = Xj(s)) ds

is a decreasing process, in particular the measure d〈Xi,Xj 〉(t) is carried by the
set {t :Xi(t) = Xj(t)}. But the occupation time formula for semimartingales,
see Chapter VI of [13], implies that d〈Xi − Xj 〉(t) does not charge the set
{t :Xi(t) − Xj(t) = 0} and using the fact that 〈Xi〉(t) + 〈Xj 〉(t) = 2t we are able
to conclude that 〈Xi,Xj 〉(t) = ∫ t

0 1(Xi(s) = Xj(s)) ds. Using this and (6.8) we
can strengthen (6.7) to

E
[
g(X)

∫ t2

t1

1
(
Xi(s) = Xj(s)

)
ds

]
(6.9)

= lim
n→∞ E

[
g(Y n)

∫ t2

t1

1
(
Yn

i (s) = Yn
j (s)

)
ds

]
.

To prove the proposition it remains to show that the process

|Xi(t) − Xj(t)| − 2θ

∫ t

0
1
(
Xi(s) = Xj(s)

)
ds

is a martingale. With t1 ≤ t2 and g as before, by weak convergence and uniform
integrability,

E
[
g(X)

(|Xi(t2) − Xj(t2)| − |Xi(t1) − Xj(t1)|)]
(6.10)

= lim
n→∞ E

[
g(Y n)

(|Yn
i (t2) − Yn

j (t2)| − |Yn
i (t1) − Yn

j (t1)|)].
From (6.5) we know that

E
[
g(Y n)

(|Yn
i (t2) − Yn

j (t2)| − |Yn
i (t1) − Yn

j (t1)|)]
= 4n1/2pn(1 : 1)E

[
g(Y n)

∫ t2

t1

1
(
Yn

i (s) = Yn
j (s)

)
ds

]
.

Combining this with (6.9), (6.10) and the fact 4n1/2pn(1 : 1) tends to 2θ as n tends
to infinity, we deduce

E
[
g(X)

(|Xi(t2) − Xj(t2)| − |Xi(t1) − Xj(t1)|)]
= 2θE

[
g(X)

∫ t2

t1

1
(
Xi(s) = Xj(s)

)
ds

]
,
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which completes the proof. �

PROPOSITION 6.3. Suppose that the sequence of processes (Y n(t); t ≥ 0)

converges in law to a process (X(t); t ≥ 0). Then the process X solves the Aθ
N -

martingale problem, where θ is determined by (6.6).

PROOF. Suppose that f ∈ LN and x �→ Aθ
Nf (x) is upper semicontinu-

ous on RN . We will show that, in this case, the process M
f
t = f (X(t)) −∫ t

0 Aθ
Nf (X(s)) ds is a supermartingale.

We begin by observing that we may re-write the generator G
pn

N in a form closer
to that of Aθ

N . In fact we have, for x ∈ ZN ,

G
pn

N f (x) = ∑
v∈V(x)

pn(v){f (x + v) − f (x)} = ∑
v∈V(x)

pn(v)∇vf (x).

This is because f is linear when restricted to any cone of the form Kρ = {x ∈
RN :xi ≤ xj if ρ(i) < ρ(j)} for ρ a permutation on {1,2, . . . ,N}, and for x ∈ ZN

the points x and x + v always belong to some common cone. Also, since f is
linear on each cell, and thus ∇vf (x) = −∇−vf (x) for any v ∈ V0(x), we see that,
for x ∈ ZN ,

G
pn

N f (x) = ∑
v∈V(x)

p̂n(v)∇vf (x),

where p̂(k : l) = p(k : l)− 1
21(k = 0)− 1

21(l = 0). From this, using the convergence

of pn given by (6.6), and noting that Aθ
Nf (x/

√
n) = Aθ

Nf (x), we obtain

sup
x∈ZN

∣∣n1/2G
pn

N f (x) − Aθ
Nf

(
x/

√
n
)∣∣→ 0(6.11)

as n tends to infinity.
Consider two times 0 ≤ t1 ≤ t2. Let g : D([0,∞),RN) → R be nonnegative,

bounded, continuous and measurable with respect to Dt1 . Now the mapping α �→∫ t2
t1

Aθ
Nf (α(s)) ds is upper semicontinuous relative to the Skorohod topology on

D([0,∞),RN), as a consequence of x �→ Aθ
Nf (x) being upper semicontinuous

on RN . It is also, for fixed t1 and t2, bounded. Thus by weak convergence, g being
bounded, continuous and nonnegative,

E
[
g(X)

∫ t2

t1

Aθ
Nf (X(s)) ds

]
≥ lim sup

n→∞
E
[
g(Y n)

∫ t2

t1

Aθ
Nf (Y n(s)) ds

]

= lim sup
n→∞

n1/2E
[
g(Y n)

∫ t2

t1

G
pn

N f
(√

nYn(s)
)
ds

]
,
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where the equality is due to the uniform convergence (6.11). The family of random
variables (f (Y n(t2)) − f (Y n(t1));n ≥ 1) is uniformly integrable because

E
[(

f (Y n(t2)) − f (Y n(t1))
)2] ≤ ‖f ‖2

Lip

N∑
i=1

E
[(

Yn
i (t2) − Yn

i (t1)
)2]

= N‖f ‖2
Lip
(
d2
n(t2 − t1)

2 + (t2 − t1)
)
,

where ‖f ‖Lip is the Lipshitz norm of f and dn = n1/2(pn(1 : 0)−pn(0 : 1)) → 2β

as n tends to infinity. Thus by weak convergence

E
[
g(X)

(
f (X(t2)) − f (X(t1))

)]= lim
n→∞ E

[
g(Y n)

(
f (Y n(t2)) − f (Y n(t1))

)]
.

Next, account taken of the scaling, we find that

M
f,n
t = f (Y n(t)) − n1/2

∫ t

0
G

pn

N f
(√

nYn(s)
)
ds is a martingale

relative to the filtration of Yn, and so,

E
[
g(Y n)

(
f (Y n(t2)) − f (Y n(t1))

)]= n1/2E
[
g(Y n)

∫ t2

t1

G
pn

N f
(√

nYn(s)
)
ds

]
.

Combining this with the consequences of weak convergence obtained above we
deduce that

E
[
g(X)

(
f (X(t2)) − f (X(t1))

)]≤ E
[
g(X)

∫ t2

t1

Aθ
Nf (X(s)) ds

]
.

This proves that M
f
t is a supermartingale as claimed.

Now consider a general f ∈ LN . Let g : RN → R be given by g(x) =∑
i �=j |xi − xj |. Then for sufficiently large R > 0, both Aθ

N(Rg + f ) and
Aθ

N(Rg−f ) are upper semicontinuous. Applying the above to Rg+f and Rg−f

in turn we deduce that

(Rg + f )(X(t)) −
∫ t

0
Aθ

N(Rg + f )(X(s)) ds and
(6.12)

(Rg − f )(X(t)) −
∫ t

0
Aθ

N(Rg − f )(X(s)) ds

are supermartingales. But

g(X(t)) −
∫ t

0
Aθ

Ng(X(s)) ds

=∑
i �=j

{
|Xi(t) − Xj(t)| − 4θ(1 : 1)

∫ t

0
1(Xi(s)=Xj (s)) ds

}

is a martingale by the preceding proposition. Subtracting R times this mar-
tingale from the two supermartingales at (6.12) we conclude that f (X(t)) −∫ t

0 Aθ
Nf (X(s)) ds is a martingale. �
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Of course in the above proposition we may replace the sequence of processes
(Y n;n ≥ 1) by any subsequence (Y nr ; r ≥ 1) and the conclusion still holds. Thus
to prove the existence to a solution of the Aθ

N -martingale problem, we must ob-
serve that (Y n;n ≥ 1) is tight, and consequently a subsequence converging in law
does exist. But this tightness follows from the fact that for each i, the sequence of
processes (Y n

i ;n ≥ 1) is converging in law to a process with continuous paths; see
VI.3.33 of [8].

Finally the proof of the existence statement of Theorem 2.1 is complete once
we have observed that every family of parameters θ can be obtained from some
suitable sequence of parameters (pn;n ≥ 1). This may be achieved, for a given θ ,
by setting

pn(k : l) = 1
21(k = 0) + 1

21(l = 0) + n−1/2θ(k : l),(6.13)

noting that for a fixed N and all sufficiently large n, this gives pn(k : l) ≥ 0, at least
for 0 ≤ k, l ≤ N , which is sufficient.

7. On a diffusion in the half plane. In this section we consider a diffusion
process (ξ(t), η(t); t ≥ 0) taking values in the half plane {(x, y) ∈ R2 :y ≥ 0}
which evolves as a planar Brownian motion away from the boundary and which
is slowly reflecting or sticky at y = 0. Such a process may be specified by data
(a0, θ0) where a0 > 0 and θ0 > 0 are positive real parameters. The process (ξ, η)

then satisfies:

ξ(t) and η(t) − θ0

∫ t

0
1(η(s)=0) ds(7.1)

are orthogonal martingales relative to the natural filtration of (ξ, η), with quadratic
variations given by

〈ξ〉(t) =
∫ t

0
1(η(s)>0) ds + a0

∫ t

0
1(η(s)=0) ds,(7.2)

〈η〉(t) =
∫ t

0
1(η(s)>0) ds.(7.3)

These properties characterize a strong Markov diffusion in the half-plane, a fact
that may be verified by bare hands or by appealing to the general theory of diffu-
sions with boundary conditions. We will write P(x,y) for the governing probability
measure when the process starts from (ξ(0), η(0)) = (x, y).

In the case a0 = 1, the processes (ξ(t); t ≥ 0) and (η(t); t ≥ 0) are independent,
the former being a Brownian motion on R and the latter a sticky Brownian motion
on the half line [0,∞) with parameter θ0. The case of a general value of a0 may
be transformed to this by a time-change. Specifically if (ξ, η) is specified by data
(a0, θ0), then the process (ξ̃ , η̃) given by

ξ̃ (A(t)) = ξ(t) and η̃(A(t)) = η(t),(7.4)
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where A(t) = 〈ξ〉(t), is of the same class, specified by data (ã0, θ̃0) = (1, θ0/a0).
In what follows we will be interested in the exit distribution of the diffusion (ξ, η)

from certain domains, and since exit distributions are not altered by time changes
it will be enough in the proofs to consider the case a0 = 1.

Let S(ε) denote the infinite strip of width ε > 0,

S(ε) = {(x, y) ∈ R2 : 0 < x < ε,y ≥ 0},(7.5)

and let τS(ε) be the first exit time of (ξ, η) from this strip. We are interested in the
probability that the process exits via the sticky boundary. It is convenient to adopt
coordinates (φ1, φ2) for the starting point (x, y) given by

tan(φ1) = y

x
and tan(φ2) = y

ε − x
.(7.6)

PROPOSITION 7.1. For starting points (x, y) ∈ S(ε) we have

2

π
max(φ1, φ2) ≤ P(x,y)

(
η
(
τS(ε)

) �= 0
)≤ 2

π
(φ1 + φ2) + 2√

π

θ0

a0
ε.

PROOF. Assume first that a0 = 1, so the processes η and ξ are independent.
Then for x ∈ (0, ε) we have

P(x,0)

(
η
(
τS(ε)

)= 0
)= E(x,0)

[
f
(
τS(ε)

)]
,

where f (t) = P(x,0)(ηt = 0). The transition probabilities of the sticky Brownian
motion η, given in [2], are such that

f (t) = exp(2tθ2
0 ) erfc

(√
2tθ0

)
,

where erfc(x) = 2√
π

∫∞
x e−z2

dz. Using standard estimates on erfc we verify that

f ′′(t) = 4θ4
0 f (t) − 2θ3

0

√
2

πt
+ θ0

√
1

2πt3 ≥ 0 for all t ≥ 0,

and so t �→ f (t) is convex. Consequently we may apply Jensen’s inequality to
obtain

P(x,0)

(
η
(
τS(ε)

)= 0
)≥ f

(
E(x,0)

[
τS(ε)

])= f
(
x(ε − x)

)≥ f (ε2/2) ≥ 1 − 2√
π

θ0ε.

In view of the time-change argument mentioned above, we have for a general
(a0, θ0),

P(x,0)

(
η
(
τS(ε)

) �= 0
)≤ 2√

π

θ0

a0
ε.

Now, in order to consider a general starting point (x, y), introduce the three stop-
ping times, τ0 = inf{t ≥ 0 :η(t) = 0}, τ1 = inf{t ≥ 0 : ξ(t) = 0} and τ2 = inf{t ≥
0 : ξ(t) = ε}. By a standard result on planar Brownian motion

P(x,y)(τ1 < τ0) = 2

π
φ1 and P(x,y)(τ2 < τ0) = 2

π
φ2.
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The lower bound the statement of the proposition follows from this and the
relationship between events

{τ1 < τ0} ∪ {τ2 < τ0} ⊆ {
η
(
τS(ε)

) �= 0
}
.

For the upper bound we observe that{
η
(
τS(ε)

) �= 0
}⊆ {τ1 < τ0} ∪ {τ2 < τ0} ∪ {

η
(
τS(ε)

) �= 0 and τ0 < min(τ1, τ2)
}

and use the strong Markov property at time τ0 together our previous upper bound
for P(x,0)(η(τS(ε)) �= 0) to estimate the probability of the third event on the right-
hand side. �

Fix two acute angles φ̄1 and φ̄2 and consider the triangle given by

�(ε) = {(x, y) ∈ R2 : 0 < x < ε,
(7.7)

0 ≤ y < x tan(φ̄1),0 ≤ y < (ε − x) tan(φ̄2)}.
Let τ�(ε) be the first exit time of (ξ, η) from this triangle.

PROPOSITION 7.2. For starting points (x, y) ∈ �(ε) we have

P(x,y)

(
η
(
τ�(ε)

) �= 0
)≤ C(φ̄1, φ̄2)

(
φ1 + φ2 + θ0

a0
ε

)
,

where C(φ̄1, φ̄2) depends on φ̄1 and φ̄2 alone.

PROOF. Define h(x, y) = P(x,y)(η(τS(ε)) �= 0) for (x, y) ∈ S(ε). Then, for
starting points (x, y) ∈ �(ε), applying the strong Markov property at time τ�(ε)

we obtain

h(x, y) = Ex,y

[
h
(
τ�(ε)

)
1(η(τ�(ε)) �=0)

]
.

Now we estimate h(x, y) using the upper bound from the previous proposition,
and h(τ�(ε)) using the lower bound, to obtain

2

π
(φ1 + φ2) + 2√

π

θ0

a0
ε ≥ 2

π
min(φ̄1, φ̄2)P(x,y)

(
η
(
τ�(ε)

) �= 0
)

from which the claimed result follows. �

8. Stochastic flows of kernels. Suppose that (Ks,t ; s ≤ t) is a stochastic flow
of kernels on a space (E,E) as described in the Introduction. A powerful approach
to describing K is by means of its family of N -point motions. For each integer
N ≥ 1, the N -point motion of the flow is a Markov process on EN . Formally it
may be described by means of its semigroup which is given by

P N
t (x,A) = E[K0,t (x1,A1)K0,t (x2,A2) · · ·K0,t (xN,AN)](8.1)
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for all x = (x1, x2, . . . , xN) ∈ EN and A = A1 × A2 × · · · × AN ∈ EN . Infor-
mally it should be thought of as describing the motion of N infinitesimal particles
sampled from the flow of mass, or if K is interpreted as a random environment
governing the evolution of a particle, then take N such particles and let them
evolve conditionally independently given K . Notice that the family of N -point
motions is consistent in that any M coordinates (regardless of order) taken from
the N -dimensional process are distributed as the M-dimensional process in the
family. The law of the flow K (in the sense of finite-dimensional distributions) is
uniquely determined by the associated family of N -point semigroups (P N

t ; t ≥ 0)

for N ≥ 1. In the opposite direction, in order for a flow of kernels (associated with
a given family of N -point motions) to exist, we need topological ingredients. Sup-
pose that E is a compact metric space. Then Le Jan and Raimond (Theorem 2.1
of [10]) have proved that whenever (P N

t ; t ≥ 0) is a consistent (called compatible
there) family of Feller semigroups, there exists an associated flow of kernels; see
also Sections 7g and 7h of [16]. This existence result also holds if E is a locally
compact separable metric space.

Let (θ(k : l);k, l ≥ 0) be a family of parameters satisfying the hypotheses of
Theorem 2.1. Existence and uniqueness of the solution the Aθ

N -martingale prob-
lem gives us a consistent family of semigroups (P

N,θ
t ; t ≥ 0) for N ≥ 1. In order to

assert the existence of an associated flow (Kθ
s,t ; s ≤ t) we need the Feller property.

This is proved by the same coupling technique as used in [11], Theorem 7.

PROPOSITION 8.1. For each N ≥ 1 the semigroup (P
N,θ
t ; t ≥ 0) associated

with Aθ
N -martingale problem has the Feller property.

Recall from the Introduction that to each probability measure μ on [0,1] we
associated a stochastic flow of kernels (K

μ
s,t ; s ≤ t) on Z.

PROPOSITION 8.2. The N -point motion of the flow Kμ is a Markov chain
on ZN with generator G

p
N given by (6.2) where

p(k : l) =
∫

xk(1 − x)lμ(dx).

PROOF. Fix a realization of the environment (�,R) and consider N inde-
pendent particles, each moving as described in the Introduction. Suppose that the
configuration of the particles is x ∈ ZN at time t , and that the point (t, y) ∈ �

where y ∈ Z is the position of at least one of the particles. Then the configuration
jumps to x + vIJ for some vIJ ∈ V(x) such that I ∪ J = {k :xk = y} with proba-
bility r |I |(1 − r)|J | where r = R(t, y). Integrating over possible environments, we
find the N -point motion jumps from x to x + vIJ for vIJ ∈ V(x) at rate p(|I |,
|J |). �
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Now suppose that (μn;n ≥ 1) is a sequence of probability measures on [0,1],
with which we associate flows Kμn on the integer lattice Z. Assume each μn is
centered, in that

∫ 1
0 xμn(dx) = 1/2. Let K̃μn be the flow of kernels on the scaled

lattice n−1/2Z satisfying

K̃
μn
s,t (x,A) = K

μn
ns,nt (n

1/2x,n1/2A).(8.2)

In view of the convergence results on N -point motions established in Section 6,
it is natural for us to look for convergence of these scaled flows. But before sta-
ting the result we must clarify what is meant by convergence in distribution for
stochastic flows of kernels. We will adopt the following definition, similar to that
proposed in [9]. Suppose Kn, for n ≥ 1, is a flow of kernels on the scaled lattice
n−1/2Z and K is a flow of kernels on R. We will say Kn converges in distribution
to K if the following to holds. Suppose that for each n ≥ 1 we have a probabil-
ity measure λn on the scaled lattice n−1/2ZN , such that λn converges weakly to
a probability measure λ on RN as n tends to infinity. Then the N -point motion
(Y n(t); t ≥ 0) associated with the flow Kn, and with the distribution of Yn(0) be-
ing given by λn, must converge in distribution to the N -point motion (Y (t); t ≥ 0)

associated with K , with the distribution of Y(0) being given by λ.

THEOREM 8.1. Suppose the sequence of centered probability measures
(μn;n ≥ 1) is such that, as n tends to infinity,

√
nx(1 − x)μn(dx) converges weakly to ν(dx),

where ν is some finite measure on [0,1]. Then as n tends to infinity the se-
quence of scaled flows K̃μn converges in distribution to a flow Kθ on R whose
N -point motions of Kθ solve the Aθ

N -martingale problem for the consistent family
(θ(k : l);k, l ≥ 0) determined by

θ(k : l) =
∫ 1

0
xk−1(1 − x)l−1ν(dx) for k, l ≥ 1,

and θ(1 : 0) = −θ(0 : 1) = 0.

PROOF. Defining pn(k : l) = ∫
xk(1 − x)lμn(dx), the stated weak conver-

gence to ν, together with the fact that the μn are centred, implies that (6.6) holds,
where θ is as specified in the statement of the theorem. Now fix some N , and for
n = 1,2, . . . let λn be a probability measure on the scaled lattice n−1/2ZN . Sup-
pose that as n tends to infinity λn converges weakly to a probability measure λ

on RN . As in Section 6, let Yn be the scaled process given by Yn(t) = n−1/2Y(nt)

for t ≥ 0, where Y is a Markov chain with generator G
pn

N , only this time let Yn(0)

have the distribution λn. The arguments of Section 6 still apply, and show that if
any subsequence of Yn converges in distribution to a process Y , then Y solves
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the Aθ
N -martingale problem starting from λ. Moreover the uniqueness of the so-

lution of Aθ
N -martingale problem starting from any point x ∈ RN implies unique-

ness starting from λ also. The processes Yn are tight, and thus it follows that they
converge in distribution to Y , the unique solution to the Aθ

N -martingale problem
starting from λ. �

We end the paper by making some comments on the relationship between the
flows just constructed, and those of Le Jan and Raimond [10]. The latter flows
have N -point motions which are symmetric and characterized by means of Dirich-
let forms. They are constructed on the circle rather than the real line, but it is
reasonable to suppose that there are corresponding flows on the real line with the
same local behavior. These flows will belong to the class that we have constructed,
and are thus determined by some choice of the measure ν. By straightforwardly
applying Itô’s formula it is possible to extend the generator Aθ

N to functions which
are finite linear combinations of products f1f2 with f1 ∈ LN and f2 ∈ C2(RN).
Then, in the case that ν is a constant multiple of Lebesgue measure on [0,1], by
integrating by parts we are able to verify that Aθ

N determines a quadratic form
having the same structure as those appearing in [10]. This leads us to believe that
it is this choice of ν that gives the Le Jan–Raimond sticky flows.
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