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Summary 
The field of stereolithography has developed rapidly over the last 20 years, and commercially 

available systems currently have sufficient resolution for use in microengineering applications. 

However, they have not as yet been fully exploited in this field. This thesis investigates the 

possible microengineering applications of microstereolithography systems, specifically in the 

areas of active microfluidic devices and microneedles. The fields of micropumps and microvalves, 

stereolithography and microneedles are reviewed, and a variety of test builds were fabricated 

using the EnvisionTEC Perfactory Mini Multi-Lens stereolithography system in order to define its 

capabilities. 

A number of microneedle geometries were considered. This number was narrowed down using 

finite element modelling, before another simulation was used to optimise these structures. 9 × 9 

arrays of 400 µm tall, 300 µm base diameter microneedles were subjected to mechanical testing. 

Per needle failure forces of 0.263 and 0.243 N were recorded for the selected geometries, 

stepped cone and inverted trumpet. The 90 µm needle tips were subjected to between 30 and 32 

MPa of pressure at their failure point - more than 10 times the required pressure to puncture 

average human skin. 

A range of monolithic micropumps were produced with integrated 4 mm diameter single-layer 70 

µm-thick membranes used as the basis for a reciprocating displacement operating principle. The 

membranes were tested using an oscillating pneumatic actuation, and were found reliable 

(>1,000,000 cycles) up to 2.0 PSIG. Pneumatic single-membrane nozzle/diffuser rectified devices 

produced flow rates of up to 1,000 µl/min with backpressures of up to 375 Pa. Another device 

rectified using active membrane valves was found to self-prime, and produced backpressures of 

up to 4.9 kPa. 

These devices and structures show great promise for inclusion in complex, fully integrated and 

active microfluidic systems fabricated using microstereolithography alone, with implications for 

both cost of manufacture and lead time. 

 

 

 



xxi 
 

List of Author’s Publications 
F.K. Che Harun, P.H. King, J.A. Covington and J.W. Gardner, "Novel gas chromatographic 
microsystem with very large sensor arrays for advanced odour discrimination", IEEE Sensors 2007 
Conference, Atlanta, 1361-1363, 2007. 

P.H. King and J.A. Covington, “A novel monolithic microactuator fabricated by 3D rapid direct 
manufacture”, Proc. Eurosensors XXIII Conference, Lausanne, Switzerland, 1163-1166, 2009. 

M.E. Snowden, P.H. King, J.A. Covington, J.V. Macpherson and P.R. Unwin, “Fabrication of 
versatile channel flow cells for quantitative electroanalysis using prototyping”, Analytical 
Chemistry, 82 (8), 3124-3131, 2010. 

P.H. King and J.A. Covington, “A multi-membrane self-priming micropump fabricated using a 
single process commercial microstereolithography system”, Submitted for peer review (Journal of 
Micromechanics and Microengineering), 2010 

P.H. King and J.A. Covington, “Novel monolithic micropumps fabricated using commercial 3D rapid 
direct  manufacture”, Submitted for peer review (Sensors and Actuators A: Physical), 2010. 

 

 

 

 

 

 

Conferences 
P.H. King and J.A. Covington, "A novel monolithic microactuator fabricated by 3D direct 
manufacture", Proceedings of the Eurosensors XXIII Conference, Lausanne, 1163-1166, 2009. 

  



xxii 
 

Abbreviations 
3DP      3D Printing 

4-HBA      4-hydroxylbutyl acrylate 

AC      Alternating Current 

ACEO      Alternating Current Electroosmotic 

ALM      Additive Layer Manufacture 

aPTT      Activated Partial Thromboblastin Time 

BT      Bleeding Time 

CAD      Computer Aided Design 

CAM      Computer Aided Machining 

CCD      Charged-Couple Device 

CNC      Computer Numerical Control 

COC      Cyclic Olefin Copolymer 

DC       Direct Current 

DLD      Direct Laser Deposition 

DLP      Digital Light Processing 

DRIE      Deep Reactive Ion Etching 

EBM      Electron Beam Melting 

EHD      Electrohydrodynamic 

EOS      Electro Optical Systems GmbH 

ERM      Enhanced Resolution Module 

FDM      Fused Deposition Modelling 

IBM      International Business Machines 



xxiii 
 

IDT      Interdigital Trasnducer 

INR      International Normalised Ratio 

ISI      International Standardised Index 

LIGA      X-ray Lithography 

LOM      Laminated Object Manufacture 

MEMS      Micro Electrical Mechanical Systems 

MSL      Microstereolithography 

μTAS      Micro Total Analysis System 

NI      National Instruments 

NIDAQ      National Instruments Data Aquisition 

NSL      Nanostereolithography 

PC       Polycarbonate 

PDMS      Poly(dimethylsiloxane) 

PEEK      Poly(ether ether ketone) 

PEG      Polyethylene Glycol 

PMMA      Poly(methyl methacrylate) 

POC      Point-Of-Care 

PR      Prothrombin Ratio 

PSU      Polysulphone 

PT      Prothrombin Time 

PTFE      Poly(tetrafluoroethylene) 

PVC      Polyvinylchloride 

PVDF      Polyvynilidine Fluoride 



xxiv 
 

RIE      Reactive Ion Etching 

RP      Rapid Prototyping 

RPM      Revolutions Per Minute 

SAW      Surface Acoustic Wave 

SEM      Scanning Electron Microscope 

SL      Stereolithography 

SLA      Stereolithography Apparatus 

SLS       Selective Laser Sintering 

SMA      Shape Memory Alloy 

STL      Stereolithography File Format 

TCT      Thrombin Clotting Time 

TF      Tissue Factor 

USB      Universal Serial Bus 

UV      Ultraviolet 

vWF      Von Willebrand Factor 



  Chapter 1 - Introduction 

1 
 

Chapter 1 

1 Introduction 

1.1 Stereolithography for Microstructures 

 The process of stereolithography was first developed by 3D Systems Corporation in 

1987 [1]. The system produced was the first example of an additive layer manufacture 

(ALM) machine, and lead to the development of a large range of other systems based upon 

the same principles in the decades since. ALM systems are defined by the production of 

components in an additive fashion, normally by slicing the component to be built into a 

series of horizontal layers, which are then fabricated sequentially to produce a final 

component. In the case of stereolithography, the additive material is a photo-sensitive 

resin, normally acrylate or epoxy, which, when exposed to light of the correct frequency, 

polymerises to form a solid material. 

 Stereolithography has now progressed to the point that micro- and even potentially 

nano-scale features are possible, and some systems can now be seen as an automated form 

of micromachining [2]. They are now common commercial tools, used for a wide range of 

prototyping and rapid machining requirements. 

 SLA systems have been used to create microfluidic devices in the past, usually in 

combination with other microengineering techniques. However, stereolithography has yet 

to emerge as a widely-used fabrication technique in microengineering. For example, only a 

few examples are reported in the literature of micropumps using ALM as part of their 

fabrication [3-5], and in these cases only the device body is produced – the active 

components were produced using other, more standard microengineering techniques.  
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The majority of SLA devices are laser-based, and although this allows a high 

resolution, it does increase the cost of the systems greatly. An alternative mechanism has 

been developed by EnvisionTEC with their Perfactory range of SLA systems [6]. These 

machines instead use a projector to create the masks for each layer, rather than using a 

rastering laser. This has the advantage of making the machines cheaper and faster, but also 

confers some unique capabilities in terms of the features it is able to fabricate. 

 In theory, the curing of each layer in a single exposure allows for the fabrication of 

thin membranes, crossing larger distances unsupported than with other SLA devices. This 

technique has been used previously in the production of membranes for ultrasonic sensors 

[7]. Researchers in the Sensors Research Laboratory of the University of Warwick have also 

previously used SLA systems to create low-headspace, customisable sensor covers, along 

with complex and compact gas chromatography columns [8].  

Another field in which SLA systems have not been used extensively is the nascent 

area of microneedles. This is perhaps because of the sometimes unfavourable material 

properties of cured light-sensitive materials. However, material development is perhaps the 

area where the majority of research into SLA systems is based currently, and it can be 

expected that suitable materials are on the horizon.  

There are a number of advantages that SLA brings to the field of microengineering, 

making research in this area promising. The first is process lead time and expense. SLA 

machines are often known as “rapid prototyping” systems, capable of building complex 

components at around 4-5 mm per hour. They also do not require expensive cleanroom 

facilities in order to function. Finally, their ease of use means that the designer can 

fabricate the device easily and quickly themselves, rather than potentially having to rely on 

technical staff. 
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1.2  Project Objectives 

In this thesis, the potential applications of SLA systems, specifically the EnvisionTEC 

Perfactory Mini Multi-Lens system, will be examined. Particular areas of interest are in 

microneedle and microfluidic device fabrication, towards the production of integrated 

medical devices. Reviews of both these fields will be presented, along with an overview of 

ALM technology, its advantages and limitations. 

In the area of microneedle fabrication, the viability of SLA as a fabrication 

technique will be examined by the development of a series of microneedle arrays. These 

structures will be developed using FEA (finite element analysis) modelling, followed by 

mechanical testing. 

The potential of SLA technology in the fabrication of microfluidic systems will also 

be examined via the development of micropumps fabricated entirely using the SLA system. 

These devices will include the integrated thin membranes mentioned previously. These 

devices will be fully characterised, requiring the development of an electronic test system. 

These devices will then be assessed for suitability for integration into more complex 

microfluidic systems. 

1.3 Thesis Outline 

 Chapter 2 reviews the materials and fabrication methods used in the literature to 

produce micropumps and microvalves, with a particular focus on polymer-based devices 

and the development of polymeric fabrication methods as an alternative to more 

traditional silicon micromachining techniques 

 Chapter 3 follows on from chapter 2 by outlining the state of the art in terms of 

polymer-based micropump and microvalve design, working principles and actuation. It 
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highlights the way that the use of polymeric materials in the production of active 

microfluidic devices affects both the design and performance of such devices. 

 Chapter 4 briefly outlines the field of ALM systems, before examining in more detail 

the working principles of the EnvisionTEC Perfactory Mini Multi-Lens system used in the 

development of the devices presented in this thesis. 

 Chapter 5 examines the capabilities of the EnvisionTEC Perfactory Mini Multi-Lens 

SLA system, and aims via a series of test builds, and components built in collaboration with 

other projects, to demonstrate the minimum feature sizes and variety of microstructures 

available for use in microfluidic device fabrication. 

 Chapter 6 aims to review the field of microneedles as vectors for drugs into the 

body and for the retrieval of blood samples from the body, focussing on the fabrication 

techniques and materials reported in the literature. 

 Chapter 7 charts the development of arrays of SLA-fabricated microneedles, 

including FEA modelling to select and refine the needle geometries, and mechanical testing 

to validate the models and characterise the fabricated structures. 

 Chapter 8 focuses on the development of a series of SLA-fabricated micropump 

devices, starting with the testing and characterisation of membranes produced using the 

EnvisionTEC Perfactory Mini Multi-Lens SLA system. The devices produced are characterised 

in detail using an electronic test system based on the LabView programming language. A 

simple FEA model is also produced in an attempt to optimise one of the micropump 

geometries. 

 Chapter 9 draws together the principle conclusions from the data collected in this 

thesis. Possible future work is also discussed. 
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Chapter 2 

2 Polymeric Micropumps – Materials and Fabrication 

2.1 Introduction 

As the drive of technological miniaturisation pushes devices ever smaller, the need 

for systems that can accurately handle small volumes of gas or liquids becomes greater. 

Review papers in the field of micropumps [1-5] reveal a large number of current and 

potential applications across a wide range of fields, such as biological analysis [6-8], drug 

delivery [6, 7] and in medical devices [8-10]. Many microfluidic systems rely on silicon, 

either in their construction, or as moulds for forming additional parts. Even though there 

have been many successes using these techniques, devices are limited by the material 

properties of silicon. Silicon processing requires extensive facilities, with multiple 

processing steps, which can result in a high unit cost. These developments have ridden 

predominantly on the back of the meteoric rise of the silicon chip. Clearly, alternative 

methods and materials for use in the fabrication of microfluidic devices are available with 

many routes to future commercialisation. 

The purpose of this chapter is to give an overview of the advantages and 

disadvantages of polymer materials in the fabrication and performance of microfluidic 

devices. The focus will be on micropumps and microvalves, or combinations thereof. It 

should be noted that microvalve designs are often overlooked in reviews of the field, and 

are discussed in detail in these chapters. 

In this chapter, a brief history of polymer micro-fluidics is given, followed by an 

overview of the requirements of pumps and valves. The materials available to researchers 
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in the field will be discussed, along with the major fabrication techniques used in the 

literature. Finally, the types of polymer micropumps and valves, with emphasis on how 

the material use affects the final design and working principles (including actuation 

techniques) are discussed.  

2.2 Micro Nomenclature 

The definition of whether or not a device can be considered a micropump or 

microvalve is one that varies depending on the context of the paper. In their review of the 

field in 1994, Shoji and Esashi [1] defined microflow devices as “very small devices 

controlling or sensing flow in the order of µl/min.” On the other hand, the 1993 review by 

Gravensen et al [2] concentrated on devices made using microfabrication techniques 

previously defined in the literature. Laser and Santiago [3] in 2004 preferred to “adhere 

to the convention for micro electrical mechanical systems, with the prefix micro 

considered to be appropriate for devices with prominent features having length scales of 

order 100 µm or less.” However, often the working definition of a micro device, such as a 

microsensor, is a device “that has at least one physical dimension at the sub millimetre 

level”, quoted from Gardner et al, 2001 [11]. For the purposes of this chapter, the latter 

definition will be used, as this allows the widest range of devices to be considered.  

2.3 The Rise of Polymeric Microfluidics 

One of the main driving forces behind the first developments in micropump 

research was an application familiar to the public – the inkjet printer. A patent granted to 

IBM in 1974 [12] describes an electrosmotic inkjet printer head, which could be defined 

as a simple valveless special effect micropump. Early discrete micropump designs relied 

on traditional machining of the pump chamber [13-15]. However, the nascent field of the 
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micromachining of silicon soon became the focus of research. Early examples include 

papers by Van Lintel et al [16] and Esashi et al [17], both reporting the use of 

piezoelectrically-actuated devices. In follow-up work from the former, Vandepol et al [18] 

detailed the thermopneumatic actuation method for microfluidic devices, subsequently 

leading to the production of a working micropump [19]. This was based in part on earlier 

work on thermopneumatic microvalves by Zdeblick et al [20], and work on peristaltic 3-

membrane piezoelectric micropumps by Smits et al [21]. 

Vandepol’s design utilised a silicon-micromachined actuation membrane. These 

stiff membranes work well with piezoelectric drivers, which have low deflection, high 

force and high frequency. However, they are less than ideal for thermopneumatic 

actuation, which has a lower frequency and stroke force capability, leading to low stroke 

volumes and thus low flow rates with the stiff glass and silicon membranes normally used 

in silicon-micromachined devices. It was obvious that new, more flexible polymeric 

materials would need to be utilised in order for thermopneumatic devices to be efficient. 

The first micropump to utilise a polymer material as an integral part of the 

actuation method was also the first to have the entire structure fabricated from polymer. 

In their conference paper of 1994, Büstgens et al [22] presented a micropump fabricated 

using a combination of thermoplastic moulding and membrane techniques. The 

thermoplastic moulded pump case and fluidics are made from polyvynlidine fluoride 

(PVDF) and polysulphone (PSU), patterned using a machined brass substrate. The final 

device had lateral dimensions of 7 by 10 mm and incorporated a 2.5 µm polyimide 

membrane.  
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However, an earlier paper by Sjölander et al in 1991 [23] details the first use of a 

polymer in a microvalve, with a silicone rubber membrane sandwiched between moulded 

high-density polystyrene plates. Another early example of polymer use was a paper by 

Shoji et al in 1992 [24], which is the first instance of a silicone rubber compound used in a 

microvalve. From this point on there has been an explosion of polymer micro-pumps and 

valves formed in a range of fabrication techniques and from a variety of materials, the full 

spectrum of which are investigated here. 

2.4 Polymeric Materials - Their Properties and Applications 

There are a large number of different polymer materials available to researchers 

developing microfluidics components. Table 2.1 shows a number of the materials 

commonly found in use in polymer-based micropumps and microvalves. 

Early polymer micropumps tended to use a mixture of poly(methyl methacrylate) 

(PMMA), polycarbonate, polyimide and generic silicone rubber compounds, often 

fabricated using moulding and machining techniques. However, as fabrication techniques 

evolved, pushing features size ever smaller, so the materials had to evolve. The 

development of soft lithography and therefore multi-layer soft lithography detailed in 

papers such as Xia and Whitesides [25] and Unger et al [26], respectively, shifted the 

balance significantly towards polydimethylsiloxane (PDMS), and the majority of devices 

post 2000 use PDMS and multilayer soft lithography in some part of their construction. 

2.4.1 Poly(methyl methacrylate) – PMMA 

As mentioned, PMMA was one of the original polymer materials used by 

researcher developing polymer microfluidics. It is a thermoplastic, optically transparent 

material, more commonly known as Plexiglas, Perspex or Lucite. It is commonly used as a 
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lighter, less brittle alternative to glass in a wide variety of macro engineering applications  

[27]. PMMA is also versatile microengineering material, and can be shaped using 

thermoplastic moulding [8, 9, 28-32], traditional machining [33-39] and masked powder 

blasting [37-42].  However, due to its relatively brittle nature in comparison with other 

polymeric microengineering materials, PMMA is used in the literature only for fluidic 

channels and fittings, as opposed to membranes or movable components. 

PMMA is also an X-ray-sensitive material, and therefore is often used as the 

working material for LIGA (lithographie, galvanoformung, abformung, or X-ray 

lithography) fabricated devices [7, 43]. Further information on this application can be 

found in the LIGA section later in this chapter. 

After components of a microfluidic system have been fabricated, they must be 

bonded together. A number of papers used conventional adhesive in this application [7-9, 

32, 35], or use mechanical pressure via bolts [30, 31, 44, 45]. Yamahata et al [37-40] 

produced a series of micropumps using PMMA for the body material, and used the 

polymerisation of the monomer triethylene glycol dimethacrylate, which is cured in a 

hotpress at 70˚C to bond the components. Shen et al [41, 42] also used this procedure. 

Chloroform is a solvent for PMMA, and has been used to bond components in Irawan et 

al [46]. Hsu et al [47] analysed different PMMA solvent bonding techniques, and found 

that although a combination of 24.5 kPa at 100˚C for 9 minutes with ethanol as the 

solvent produced the strongest bonding, a method using 24.5 kPa at 60˚C for 5 minutes 

with isopropanol as the solvent produced the least shrinkage. Alternatively, Wei et al [48] 

bonded 2 traditionally machined PMMA plates together by applying a pressure of 1.5 

MPa at 108˚C for 10 minutes with no solvent.  
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2.4.2 Polyimide 

 One of the more popular pre-PDMS materials was polyimide. There are a number 

of polyimides available, which are sold under a variety of trade names. Poly(amine imide) 

is known as Torlon®, and is often used in macroscale injection moulding. Poly(ether imide) 

is sold as Ultem® and is used in printed circuit boards. Poly(pyromellitimide-1,4-diphenyl 

ether) is thankfully also known as either Kapton® (a thin-film commercial product), 

Vespel® or Apical®. It is a high-performance polymeric material used in a wide variety of 

industrial applications, including wire and cable wrap and automotive polymer parts. 

Some polyimides are thermoplastic materials, meaning they can be heated until melting, 

before being cooled to set solid, while other formulations are photocurable [27]. 

 Polyimide has been used in a large number of polymer-based micropumps, in 

most cases as a membrane material [49-52]. The aforementioned Büstgens et al [22], who 

described the first all-polymer micropump, employing a photocurable polyimide material 

to form a pump and valve membrane just 2.5 µm thick. The sheet was fabricated with an 

integrated titanium microhotplate using a combination of membrane transfer and 

micromachining techniques, and was bonded onto the separately fabricated pump body 

components using adhesive. A later paper by the same group used similar techniques to 

create a thermopneumatic microvalve system [8]. Also by the same group, Goll et al [32] 

in 1996 documented an interesting microvalve design using a 25 µm thick polyimide 

membrane. The membrane had a central silicone rubber platelet integrated to aid valves 

sealing. The membrane is made bi-stable, only requiring energy input to switch between 

on/off states, by becoming buckled during assembly. The adhesive process used to fix the 

membrane between the moulded PMMA valve body components requires heating, which 

shrinks the PMMA, causing the polyimide to deform advantageously. Finally, Goll et al 
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[53] in 1997 produced an interesting electrostatic microvalve concept, using a membrane 

composed of a pair of 1 µm thick polyimide layers insulating a central gold layer, 

fabricated using micromachining techniques. 

 Fluorinated polyimide can be used as a substrate for reactive ion etching (RIE), as 

demonstrated by Furuya et al [54], who used the technique to create a microgrid of 100 

µm tall fingers. This grid was subsequently metalized to form the electrodes of a special 

effect ion drag micropump. The thermal insulation properties of the material were 

employed by Kawada et al [55], who used a micromachined polyimide comb structure to 

isolate a Ni/Si cantilever from the rest of the microvalve structure. Heating of the 

cantilever via an integrated microhotplate caused the cantilever to deform, opening and 

closing the microvalve. 

2.4.3 PDMS 

Polydimethylsiloxane, or PDMS, has influenced the way micropumps and 

microvalves are designed more than any other polymer material. Since Unger et al [26] 

and the advent of multilayer soft lithography, devices have often shifted away from 

designs with discrete valve and pump chambers and membranes, to simply employing 

channels with membranes incorporated into their ceilings. The flexibility of PDMS in thin 

films allows pneumatic actuators to inflate the membranes like a balloon, filling even 

square channels entirely. On the other hand, thicker structures are reasonably strong, 

allowing PDMS to be used as a bulk structural material for microfluidic devices. 

 PDMS is used in a range of macro-scale applications, such as in release agents, in 

sealants and gaskets and in adhesives. It is favoured for its thermal stability, minimal 

thermal expansion and high UV radiation tolerance. However, it is known as being 
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permeable to gas [27]. In the literature searches used for this review, over 70 published 

papers were found using PDMS as a functional part of a micropump or valve. The majority 

(50+) of these use multilayer soft lithography as the fabrication technique, and these will 

be discussed later in this chapter. However, other fabrication techniques have been 

applied, including micromoulding [56-61], micromachining [62-64] and macroscale 

machining [65].  

 The use of PDMS with micromachining techniques allows the integration of 

actuator components into thin, strong PDMS membranes. Khoo et al [62] produced a 

PDMS membrane with integral permalloy blocks, in a process discussed later in this 

chapter. Similarly, Yin et al [63] integrated a planar metal coil into their PDMS membrane 

as part of their electromagnetic micropump. Tracey et al [66] demonstrated a PDMS-

based piezoelectric pump with a glass membrane. Under normal conditions, PDMS does 

not bond to glass, but adhesion was achieved using a UV-ozone treatment of both 

surfaces, followed by a 2-hour bake at 90°C. 

Some of the industrial properties of PDMS described have been utilised on the 

micro scale. For example, Chung et al [67] used a PDMS gasket in their otherwise 

traditionally-machined piezoelectric microvalve. The gas permeability was exploited by 

Eddings et al [68] in their dynamic microfluidic devices, which used a thin membrane of 

PDMS to step down a macro-scale pressure to one useable at a micro level. This 

permeability is however in some applications not advantageous. Hansen et al [69] found 

PDMS to be inefficient as a body material for their electroosmotic special effect 

micropump. Electroosmotic micropumps require ions dissolved in the working fluid to 

function, and it was found these ions would leech out of solution and into the PDMS 



                                                     Chapter 2 – Plastic Micropumps – Materials and Fabrication 

15 
 

during operation. Wang et al [70] found their magnetohydrodynamic special effect pump 

suffered from the same problem, and solved it by coating the PDMS micropump channels 

with a thin layer of SU-8. 

Samel et al published a pair of papers [71, 72] in which they mixed PDMS with 

expandable microspheres, a mixture they called PDMS-XB. The two papers demonstrated 

a single-shot drug delivery system and a thermoexpansion-actuated micropump. In both 

cases, the cured PDMS-XB mixture was heated, expanding the microbeads and causing 

displacement in the working fluid. 

2.4.4 SU-8 and Epoxy Resins 

 SU-8 is a ubiquitous microengineering material, manufactured by MicroChem 

Corporation. It is an epoxy compound, mixed with a triarylium sulphonium salts as a 

photoinitiator. This forms an acid upon exposure to ultraviolet (UV) radiation, which 

polymerises the mixture with a high cross-linking rate. Using the lithographic techniques 

of micromachining, along with a post-exposure high-temperature baking step, SU-8 cures 

into a solid with excellent material properties, water insolubility and chemical inertness.  It 

is also capable of high aspect ratio microstructures, and as such forms the basis of surface 

micromachining techniques [73]. SU-8 itself is not used outside of microengineering 

applications, although epoxy compounds are used in a wide range of situations, such as in 

adhesives and protective coatings [27]. 

 The micromachining techniques used to fabricate device elements using SU-8 are 

discussed below. The use of SU-8 as a simple photoresist material in the micromachining 

of silicon and glass substrates is not discussed; although this is by far the most prevalent 

use of the material.  It has been used in the field of micropumps and valves in a variety of 
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applications, including as a structural, device body material [36, 74-78], in passive 

microvalve flap and plug structures [33, 35, 44, 79, 80] and in the impellors of dynamic 

centrifugal micropumps [30, 31]. All of these examples used standard micromachining 

techniques, except Li et al [74] who used an innovative focused laser approach, that 

allowed the fabrication of in-situ microstructures including cantilever beams that were 

used in the mechanism of a passive microvalve. 

 There have been examples of device being produced using other epoxy 

compounds. Bohm et al [81] used reactive injection moulding to form the body of their 

micropump, where the epoxy pre-polymer and initiator are injected separately into a 

mould. The pre-polymer and initiator mix and form the cured device component. Boden 

et al [49] used another UV-curable epoxy, to form the body of their micropump. The 

epoxy material was chosen over SU-8 as it didn’t require the high-temperature baking 

steps needed for curing SU-8 after the initial UV radiation exposure. 

2.4.5 Other Materials 

 A number of other polymer materials used in the fabrication of micropumps and 

valves have been reported in the literature. Poly(ether ether ketone) (PEEK) exhibits 

numerous useful material properties, including abrasion resistance, resistance to solvents 

and excellent thermal stability, making it a material of choice for high temperature 

applications [27]. Richter et al [82] used machined PEEK as the body material for their 

chemical-resistant piezoelectric micropump, along with a PDMS gasket. Truckenmuller et 

al [82] used micro ultrasonic welding to fuse both PEEK and PMMA components of their 

piezoelectric micropump. 
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 Cyclic olefin copolymer (COC) is a relatively new polymer material, with properties 

including optical clarity, low shrinkage and low moisture absorption [83]. Ahn et al [84] 

produced an innovative µTAS using COC, citing the material’s polar solvent resistance and 

wide spectrum UV transmission as advantages over other common injection-moulding 

materials such as PMMA and polycabonate. Another advantageous property specific to 

the injection moulding process employed was the ability of COC to be injected at nearly 

double the flow rate of both PMMA and polycarbonate. Das et al [85] also used COC in 

their microfluidic device, citing similar reasons to Ahn et al. 

 An early thermopneumatic micropump design presented in a pair of papers by 

Büstgens et al [22] and Schomburg et al [52] was fabricated from polysulphone (PSU) and 

poly(vinylidene fluoride) (PVDF). Despite being widely used in macroscale industry, 

neither material has since been used in the fabrication of either micropumps or valves.  

 Miles et al [86] used 50 µm thick polypropylene sheets to form the fluidics of their 

micropump device, shaped using micro vacuum forming techniques. The sheets were 

subsequently joined using laser welding. Munyan et al [29] used modified polypropylene 

laboratory plasticware surrounded by a PDMS matrix in their microfluidic device. 

 Inman et al [87] used a 25 µm thick polyurethane membrane in their peristaltic 

pneumatic micropump. Finally, the previously discussed Sjölander et al [23] used 

moulded polystyrene (presumably high density) plates to create their microvalves. The 

plates were subsequently joined by ultrasonic welding.  
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2.5 Fabrication Techniques 

There is a wide variety of potential fabrication techniques available when working 

with polymer materials, some of which are by their nature are not possible with 

conventional microengineering materials such as silicon. In this section, the fabrication 

techniques documented in this review will be discussed and defined. 

It should be noted that the fabrication techniques described only include those 

used to manipulate polymer materials found as a final component of the device. Other 

techniques may have been used in the fabrication of non-polymer parts of the device, but 

these techniques are not included here. Additionally, the use of temporary polymeric 

masks such as SU-8 is not discussed, as this is used in nearly all micromachined silicon 

devices. However, devices in which such materials are present in the final mechanism as 

functional components are commented upon in the micromachining section. 

2.5.1 Machining 

The use of conventional machining techniques, such as drill bits and lathes, is 

obviously limited by the scale of the devices being fabricated. However, as 

microfabrication technology has advanced, so have macro-scale tools. The development 

of high-resolution CAD/CAM systems utilising precision drill bits or lasers, driven to an 

extent by the clockwork wristwatch industry, allows far finer detail to be achieved. There 

are also a number of examples of devices in which traditional hand tools, normally drills, 

have been used with precision drill bits to create microfluidic features. 

The original micropump designs in the literature used machining techniques [13, 

15]; however, their use since in polymer devices has been limited. Some micro-scale 

devices have been reported, being generally simple in design, which have been entirely 
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fabricated in polymer using macro-scale techniques. Interestingly, PMMA or some other 

form of acrylic is used in nearly all the reported devices that use a machined polymer as 

part of their design.  

Yuen et al in 2000 [88] presented a simple, semi-disposable membrane 

microvalve, consisting of two CNC (computer numerical control) machined Plexiglas 

(PMMA) layers containing the fluidics. The fluidics were cut using a 250 µm end mill, 

resulting in channels 250 µm wide and 100 µm deep. The fluidic layers sandwiched a 

flexible polymer membrane, which was a commercially available 3M tape. The valve was 

normally open, with pressure in the working fluid pushing the membrane up over a weir. 

Positive pressure applied to the membrane, via an actuation method not expanded upon, 

closed the valve. Inman et al in 2007 [87] also presented a CNC-machined PMMA device, 

a pneumatically actuated single membrane displacement pump with a pair of active 

pneumatic membrane valves. The device also consisted of a pair of acrylic layers 

containing the fluidics, with a purchased 25 µm polyurethane membrane sandwiched 

between them.  The fluidics were cut with a 0.4 mm ball mill, giving channels 190 µm 

deep. 

An alternative method of machining uses a high-power laser instead of a physical 

tool. Irawan et al [46] used a CO2 laser cutting machine in the fabrication of their 

centrifugal micropump. The 40 W laser had a wavelength of 10.6 µm, and followed 2D 

patterns defined by a computer graphics package over an area of 610 × 305 mm. A 

microfan of diameter 2.5 mm and a channel 1000 × 500 µm in area were ablated in both 

PMMA and PVC substrates. 
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Machining techniques can have a number of advantages over purely micro-scale 

techniques. When working with larger device components such as pump bodies and 

connecting fluidics, fabrication can be far quicker and cheaper than micro-scale 

techniques. When prototyping a system, it may be favourable to produce a test device via 

machining before the final micro-scale device is fabricated. For example, Yin et al [89] 

produced a test device to explore the expansion of bubbles in a blinking-bubble device, 

using laser machining tools to produce the required 125 µm microchannel in PMMA.  The 

test device can be in an entirely different material to the final design. Yamahata et al [39] 

used laser cutting of metal to produce a prototype of the nozzle/diffuser valves used in 

their magnetically actuated micropump; the final device was produced from PMMA using 

masked powder blasting and machining techniques. 

However, the highest resolution and accuracy cannot be achieved without 

expensive CAD/CAM equipment or skilled technical staff, although the investment 

required for this is still considerably less than for silicon processing facilities. Therefore 

the best solution in terms of price, speed of manufacture and fabrication resolution is 

often a mix of both traditional and micro-scale fabrication processes. Tsuei et al [7] used a 

conventionally machined acrylic layer, with 250 µm diameter flow channels, as a base for 

their off-axis X-ray exposure fabricated microvalve. Nguyen and Truong [35, 44] used 

multiple machined PMMA layers with 0.6 mm fluidic holes as part of their microvalves, 

where the valve structures were micromachined in SU-8. Finally, Yamahata et al [38-40] 

used machined PMMA as part of their electromagnetically actuated pumps, along with a 

range of other techniques such as masked powder blasting and moulding. 
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2.5.2 Micromachining 

Micromachining commonly describes a number of techniques involving the two-

dimensional patterning and development of photoresist materials on top of a substrate to 

form temporary masks. As a technique it forms the basis of silicon chip technology, as 

well as MEMS (Micro Electrical Mechanical Systems) and microsensors work, including 

silicon micropump fabrication [11, 90, 91]. 

There are two main forms of micromachining, known as “bulk” and “surface”.  Bulk 

micromachining uses the photoresist pattern to define areas to be etched in the silicon, 

or built up using deposition techniques. The final device will be found within the bulk of 

the silicon substrate. Surface micromachining also uses the photoresist pattern to define 

an area on the substrate, but this is instead used to define the deposition of a secondary 

material. The final device is normally found above the surface of the substrate. Etching of 

the substrate, which does not have to be silicon, is often not employed. 

Micromachining as outlined above is predominantly used as a silicon/metal-based 

process. However, polymers can be implemented into the final design, most often using a 

surface micromachining approach. Devices using polymer materials are found with silicon 

(e.g. [59, 61, 62, 92-97]) and glass substrates [10, 98-107], along with devices using both 

materials (e.g. [108-112]). A large number are mainly silicon-based, but use PDMS as a 

membrane material. Devices using thermopneumatic [93, 104, 108-111], pneumatic [59, 

106], piezoelectric [92], magnetic [62, 94-98], electrowetting [78, 107] and hydrogel [61, 

112] actuation are reported using PDMS as the membrane material, although other 

materials including polyimide [50, 51, 113] and parylene [58] are used in a similar way. In 

the case of thermopneumatic devices, the use of micromachining allows direct 
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integration of the required microheaters. In some devices, the silicon or glass substrate is 

only used as a base of the microheater, and the rest of the device is fabricated using 

other techniques [100-103]. Glass micromachined substrates can also be utilised for their 

optical properties, allowing remote analysis of the working fluid [114, 115]. Polymer 

micro total analysis systems (µTAS) systems, also known as lab-on-a-chip devices, are also 

reported with integrated micromachined microsensors [116-119].  

 

Figure 2.1 – Structure presented by Khoo et al [62], with the fabrication process leading to micromachined 
permalloy microstructures being embedded in a flexible PDMS membrane for use in a magnetic micropump 
device. Further detail in main text. 
 

A good example of a surface micromachined device with polymer components is 

Khoo et al [62], with the fabrication steps shown in Figure 2.1. To fabricate the device, a 

silicon wafer is oxidised except for a 2 × 2 mm window on the back face. This window is 

then etched through so a 50 μm thick silicon membrane is left. The front side of the wafer 

is coated in a thin layer of chromium and copper, to aid a later electroplating step, before 
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a 10 μm layer of photoresist is patterned on top. A permalloy material (Ni80Fe20) is then 

electroplated on top of the chromium/copper, through the photoresist pattern. This 

forms the permanent magnet strips that will later actuate the pump membrane.  The 

permalloy is over-electroplated to create a “mushroom” shape partially over the 

photoresist, the rim of which helping the strips to mechanically hang onto the final 

membrane. The photoresist is removed, and the chromium/copper layer etched away, 

before PDMS is spin coated onto the top surface of the wafer to a thickness of 40 μm.  

This covers the permalloy strips, embedding them within the membrane. Finally, the 

silicon membrane, which was kept to hold the membrane structure together during 

fabrication, is etched away. In order to achieve this without etchant diffusing through the 

thin PDMS membrane, the entire structure is coated in a thicker layer of PDMS, except for 

the back window etched earlier in the wafer. A 1 mm thick piece of chromium-coated 

PDMS is placed on top of the membrane before this coating is applied to prevent strong 

PDMS-PDMS bonding occurring during the curing process. The silicon membrane is 

etched, freeing the PDMS/permalloy membrane, and the PDMS mould is removed. 

An interesting variation on the manipulation of glass using micromachining can be 

found in Yang et al from 2007 [80]. In this paper, a glass tube is coated with a photoresist, 

and then is exposed through a static mask with repeating diagonal lines  (see Figure 2.2a). 

The stage below the tube moves, rolling the tube between itself and the mask, leaving a 

spiral pattern in the developed photoresist. The exposed glass is then primed with a Ti/Au 

seeding layer, before being coated with a Ni layer that acts as the electrode. Finally, the 

tube is surrounded by an SU-8 photoresist layer, and the glass etched away to form a 
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photoresist tube with internal spiral electrode. This forms the basis of an 

electrohydrodynamic micropump, shown in Figure 2.2b. 

 

Figure 2.2 – (a) Fabrication technique used by Yang et al [80] to make their “spiral electrode” 
electrohydrodynamic pump, seen in situ in (b). 
 

Whereas most bulk micromachining usually uses a “wet” chemical etch to remove 

volumes of silicon, there are also dry etch techniques available. One of these techniques 

is reactive ion etching (RIE), in which the substrate to be etched is placed upon an RF-

powered electrode (cathode). Plasma is created above the substrate, and ions are 
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accelerated from this onto the substrate by the self-bias that emerges between the 

plasma and substrate. The resulting ion bombardment can lead to chemical changes, but 

also sputters molecules from the substrate surface, thus etching the substance away in a 

highly anisotropic process [11].  

RIE is normally used within the field of MEMS to etch silicon substrates. For 

example, Thruiller et al [59] used both traditional micromachining and DRIE (deep 

reactive ion etching) to create micromoulds that defined a 100 µm microvalve channel in 

PDMS. However, RIE has also been used to pattern polymeric materials, specifically 

fluorinated polyimide. Furuya et al [54] used magnetically controlled-RIE (MC-RIE) to 

create 100 µm tall, 15 µm wide fingers out of fluorinated polyimide, which were then 

metallised to create electrodes for use in a dynamic ion drag (electrostatic) micropump. 

Geng et al [92] used both RIE and chemical etching to produce separate versions of their 

piezoelectrically-actuated micropump. The chemical etch was used to create angled 

nozzle diffuser elements, whilst RIE was used to create parallel tubes in a different type of 

micropump. This anisotropic etching property, where the side walls of the etch are not 

parallel but are predictable, have been used in other devices to create nozzle/diffuser 

elements [120]. 

As noted above, the use of polymer photoresist material such as SU-8 during the 

fabrication stages does not allow a device to be defined as “polymeric” in this review, as 

the material is not present in the final device. However, some designs do use photoresist 

materials in functional parts. One of the first papers reporting the use of polymer 

materials in a microvalve was Shoji et al in 1992 [24]. The valve design consists of a 

micromoulded silicone rubber plug, suspended across a complimentary ansiotropically-
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etched hole in a silicon substrate by four SU-8 arms. Pan et al [79] presented a flap valve 

made of micromachined SU-8 that rectified flow through an opening. Yun et al [77] used 

SU-8 as a bulk layer material, whilst Li et al [74] used a pulsed laser to create bridge 

structures in SU-8 that were used as valve flaps. Lam et al [30] and Lei et al [31, 121, 122] 

reported the development of an all-polymer dynamic centrifugal micropump, with a 

PMMA body and a micromachined SU-8 impellor. Finally, a pair of papers by Nguyen et al 

explore the use of patterned SU-8 as the functional layer of a passive flap microvalve [33, 

44]. 

 

Figure 2.3 – (a) Fabrication process used by Lei et al [121] to create SU-8 microimpellors shown in (b). 

2.5.3 Moulding 

The vast majority of macroscale polymer items are formed by moulding 

techniques, rather than bulk machining. Many polymer materials are available in liquid 

pre-polymer form, and can be cured using either heat, light, or (normally) UV. Other 

materials can be altered in their solid form by the melting of the bulk material or smaller 

parts of it. In either case, the final shape of the material is defined by the mould or stamp 

used during the cooling or curing process. 

The definition of a “moulded” or “micromoulded” polymer part relies more on the 

fabrication techniques used to make the mould than the dimensions of the final 
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component. A number of papers have used moulds made with conventional machining 

techniques, shaping materials such as PDMS [39, 123, 124], epoxy [81] and polystyrene 

[23]. The moulds are made of a variety of materials, including aluminium [81, 123] and 

epoxy [124]. Metallic moulds are preferable for PDMS moulding, as the PDMS does not 

bond to metal surfaces post curing [125]. Alternatively, the casting can be performed 

around pre-prepared components as a matrix to hold them together [29]. Commercially 

produced tubing and other purchased components such as metal pins can be used in such 

processes to create channels and other features [56]. 

Micromoulded devices on the other hand have moulds fabricated using silicon 

micromachining, giving the advantages in resolution that micromachining confers. The 

processes used are similar to PDMS multilayer soft lithography, except the mould is 

permanently fabricated into the silicon rather than defined in SU-8 on top of the silicon 

substrate. The silicon moulds are normally fabricated using wet etching, although, as 

mentioned above, RIE has also been used [59]. Without exception, the micromoulded 

material used in the literature is PDMS [57-59, 93, 126, 127]. This ubiquity is due to the 

ability PDMS to take even micron-scale features fabricated in the silicon mould, along 

with its other favourable properties such as high elasticity and strength.  

Injection moulding is most commonly used in the production of macroscale mass-

produced polymer items, and there have been some developments in using the technique 

at micro scales in the field of microfluidic devices. Injection moulding involves the melting 

of thermoplastic polymeric materials into a liquid form, which is then forced into a multi-

part mould. The polymer sets within the mould, which in macroscale industry is often 

water cooled to speed up the setting of the polymer. The mould pieces are then pulled 
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apart, releasing the formed item. A small number of papers report microfluidic actuators 

produced using injection moulding, using materials such as COC [84] and polyimide [53]. 

Reactive injection moulding has also been used [128], where both parts of a two-part 

thermosetting polymer, typically polyurethane, are injected and mixed in the mould 

cavity. Injection moulding is sometimes listed as having the potential for commercially-

aimed microfluidic devices, due to its use in polymer mass-production [69, 129]. 

2.5.4 Soft Lithography and Multi-Layer Soft Lithography 

The process of soft lithography is one that has only been in general use in 

microengineering for around a decade. It exists in two main forms, single- and multi-layer. 

In their review paper of 1998, Xia and Whitesides [25] defined a number of single-layer 

soft lithography techniques all sharing a common two-stage fabrication. A mould is 

created on a silicon substrate using a photoresist material, which is in turn used to mould 

an elastomeric substrate, normally PDMS. This elastomer part is peeled off the substrate, 

and is then used as a mould or a stamp to pattern a thin layer of elastomer on a 

substrate. 

However, in their paper of 2000, Unger et al [26] produced a device using a multi-

layer approach, outlined in Figure 2.4. This technique uses a number of layers of PDMS, 

each created in a one-step process where the photoresist-moulded elastomer part was 

used directly in the device. This multi-layer approach is the basis for a large number of 

subsequent devices. Soft lithography has a number of advantages over micromoulding, 

primarily in that it does not require the training, expertise, facilities and time that the 

manufacture of micromachined micromoulds requires. Multiple soft lithography stamps 

for different layers of a device can be patterned on a single wafer or quickly on separate 
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substrates. This technique lowers the device fabrication costs, although, as a technique, it 

probably lacks the process simplicity required for use in mass production. 

 

Figure 2.4 – Multilayer soft lithography approach used by Unger et al [26] to fabricate pneumatically-
actuated active microfluidic components. The PDMS material (shown as the “hollow” boxes) is moulded 
using pre-fabricated SU-8 “soft” moulds, shown in the shaded areas. The assembled device is mounted on a 
flat substrate (dotted area). 
 

Due to the ubiquitous nature of the technique, there are a large number of papers 

that document the exact steps used in multilayer soft lithography, each with slight 

variations dependant on the exact application. However, the overall process can be 

briefly summarised. First, the photoresist (normally SU-8) is spin coated onto the silicon 

or glass substrate, patterned with UV through a mask, developed and baked (though only 

thick layers are possible when patterning onto glass). The PDMS mixture is degassed, 

before being poured onto the photoresist mould. The PDMS is cured at around 65°C for 

12 hours before being separated from the mould. Multiple layers can be fabricated in this 
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way using a variety of different moulds. To bond the layers together, the PDMS surfaces 

are treated using oxygen plasma, before being pressed together for around 15 minutes. 

This achieves a permanent bond, resulting in what is essentially a monolithic component. 

In order to assist the transfer process from the photoresist mould, the glass or 

silicon substrate is treated in such a way to make it non-adhesive. Treatments include 

coating substrate with a CHF3 plasma polymerised polymer [130] or gold [56]. Polished 

stainless steel has also been used as a substrate; as mentioned earlier, silicone rubber 

compounds do not stick to metallic surfaces once cured [124]. 

Most soft lithography-based micropumps use pneumatic actuation [131-138], 

taking advantage of the elastic nature of PDMS with large stroke volumes at lower 

actuation rates. A number of active valves with pneumatic actuation are also reported 

[139-142]. Other reported devices use thermopneumatic [143-147], special effect [148, 

149], hydrogel [6, 150, 151], piezoelectric [152-155], mechanical [156, 157] and biological 

[158] actuators. 

2.5.5 LIGA (X-ray Lithography) 

LIGA is the German acronym for LIthographie (lithography), Galvanoformung 

(electroforming) and Abformung (moulding), also known as X-ray lithography. It can be 

used to create microstructures, with parallel sides perpendicular to the substrate, that 

are much deeper than those created through bulk micromachining. First, a metal stamp is 

created. A several hundred micron thick resist is exposed through a mask to X-rays from a 

synchrotron, and this resist is developed and electroplated, filling the resist mould. The 

remaining resist is then removed, leaving a metallic structure attached to the substrate 

[91]. In non-polymer devices, this is where the process stops; however, the metallic 
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microstructure can also be used to pattern a polymeric material, using thermoplastic 

moulding [9] and injection moulding [28] techniques. 

PMMA is often used as both an X-ray resist material and as a part of the final 

device. Exposure of PMMA to X-rays causes chain scission of cross-links within the 

polymer, allowing etching of selectively exposed areas with solvents. PMMA is also a 

good material for thermoplastic moulding, having a low glass transition temperature [9]. 

Guber in 1995 [28] presented, along with a number of other devices, the first 

example of a LIGA-fabricated polymer microvalve. The structure was produced in PMMA 

using injection moulding against a LIGA-produced mould. The valve was actuated 

pneumatically, and was only 3 mm in diameter. Ruzzu et al [9] followed up on this work 

with a very similar device. Kar et al [43] presented a micropump in which the planar 

microfluidics, including a pair of nozzle/diffuser microvalves, were fabricated using direct 

X-ray lithography in PMMA. However, the X-rays used were “soft” (i.e. non-collimated), 

meaning a smaller radiation source could be used. The fluidics were found to be 50 µm 

deep, with the nozzle/diffuser sections 30 µm and 300 µm wide at the outlet and inlet 

respectively. Despite the soft nature of the radiation, the channel walls were found to be 

vertical, as the source had a high aspect ratio output. 

Another distinct X-ray lithography technique was reported by Tsuei et al [7]. A 

simple PMMA plug microvalve fabricated by off-axis X-ray exposure was presented. The 

plug and plug hole were defined by direct exposure and subsequent development of the 

PMMA (much as with Kar et al [43]), with the tapered plug edges defined by rotating the 

material relative to the X-ray plane. However, the technique has not been used 

subsequently in this field. 
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It is noticeable however in the literature the lack of papers in the last decade. This 

is due to the rise of other techniques such as soft lithography, which is cheaper than LIGA 

and can give similar high-resolution, high aspect-ratio structures. Access to the 

synchrotron X-ray facilities required to produce the collimated radiation required for 

most LIGA is limited, and the process itself is therefore prohibitively expensive [90, 91]. 

2.5.6 In-situ Photopolymerisation 

There are a number of situations where it is beneficial to be able to cure a 

polymer within an otherwise complete device. This is especially true of polymers that are 

damaged or destroyed by the high temperatures or the use of solvents required by the 

later fabrication steps used during the construction of the device, such as the baking of 

SU-8. The main field in which in-situ photopolymerisation has been developed is in the 

fabrication of devices actuated by hydrogels. 

The precise nature of hydrogels and their mechanisms of actuation are discussed 

in the next chapter. There are however a number of papers that focus directly on the 

processes of in-situ photopolymerisation. The first example in the literature employing 

the technique in the fabrication of a polymer-based micropump was Liu et al [150] in 

2002. This paper describes 4 separate devices, all hydrogel actuated, in this case by an 

acrylic acid material. All the hydrogel actuators are fabricated by in-situ 

photopolymerisation within pre-fabricated PDMS devices. All the devices are forms of 

valves, apart from one that is closer in mechanism to a throttle. The throttle device uses a 

novel laminar flow method to produce two layers of solidified hydrogel on either side of a 

microfluidic channel. A flowing layer of glycerine was used to separate two flows of 

hydrogel inserted from either side of the throttle channel. The hydrogel flows were cured 
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using a UV light source, creating the actuation layers. Further devices were created using 

simple masking techniques, creating precision-fabricated hydrogel features. Eddington et 

al [6] also describe a device actuated using in-situ photopolymerised hydrogel features, 

including a microvalve and a pump chamber. 

Kim et al [155] describes a complete system for producing features within PDMS 

microfluidics devices. This consists of an optical microscope with a CCD camera, 

connected to a computer to visualise the mask and prefabricated device.  The microscope 

and camera are mounted on a rotating frame along with a UV source, which can be 

rotated into position above the device once the mask has been aligned using an X/Y 

mobile stage. The mask is stationary while the device is manoeuvred into position with 

the stage. Both the device and the mask are held in place using negative pressure from a 

vacuum pump. The liquid pre-polymer, in this case 4-hydroxylbutyl acrylate (4-HBA), is 

inserted into the microfluidic channels using a syringe pump. The pre-polymer is cured 

using the UV source, before the unused material is flushed from the finished device by 

deionised water. Using these techniques, Kim et al fabricated passive check valves to 

rectify flow in a micropump device, and fabricated the actuation pillar for a bi-fluid active 

plug microvalve. 

A pair of later papers by the same group [159, 160] demonstrated a method of 

creating hydrogel spheres for use in microfluidic devices. Liquid prepolymer 4-HBA was 

slowly injected into a sheath flow of mineral oil using a sharp pipette. This formed 

droplets of the prepolymer within the sheath flow, which were carried with the flow 

downstream. The droplets then passed through a UV source, which cured the pre-

polymer. Polymer beads of diameters between 100 and 200 μm were produced by 
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varying the sheath fluid flow rate. The beads were then used to produce a pH-sensitive 

microfluidic valve. Much like Liu et al [150], a bead was placed behind a thin PDMS layer, 

held in position by a series of posts. A secondary fluid, separate from the working fluid, 

was passed across the microsphere to initiate expansion and contraction against the 

membrane, causing the valve to close and open respectively. 

2.5.7 Other 

A series of papers by Yamahata and Gijs et al [37-42] describe a number of microfluidic 

devices, in part made of PMMA shaped using masked powder blasting. This technique 

uses gas-flow accelerated micro-scale particles such as alumina to erode bulk material 

through a laser-cut metal mask. This process can be used to rapid prototype multiple 

sheets of PMMA, which can then be adhered together to make a multi-level device. 

However, the blasting powder also erodes the metal mask at a rate of around 0.2 μm/s, 

decreasing accuracy on masks used multiple times. The surface roughness of the final part 

is around 1.25 µm [40].  

Ultrasonic welding is a technique used commonly in the macro-scale world for the 

bonding of polymer components made out of materials such as PEEK that cannot be 

solvent bonded. It is however not commonly used in the fabrication of micropumps and 

valves. Truckenmüller et al [82] used a standard ultrasonic welding machine in the 

assembly of their piezoelectric micropump, using both PMMA and PEEK. Metal 

components such as the inlet and outlet tubing were also successfully integrated using 

the same technique.  
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2.5.8 Stereolithography 

Stereolithography is a form of rapid manufacturing technology that is additive in 

nature – layers of material are deposited in series to build a true 3D model. The materials 

used include metal powder, which is laser sintered into a solid form, or the repeated 

layering of cut paper sheets. However, the major form of the technology involves the 

automated curing of multiple layers of photosensitive resins. A 3D model is created using 

a computer-aided design (CAD) program. This model is then sliced into multiple layers 

using specialised software, which then creates a mask for each layer. These masks are 

then used to pattern sequential layers of the resin. The layer to be patterned is normally 

defined by the surface of the resin, as in most laser-based SLA (stereolithography 

apparatus), or as a layer between two glass plates, as seen in the projector-based 

systems. As such, polymer-based stereolithography it can be seen as a form of automated 

surface micromachining [11], and also has similarities with multi-layer soft lithography.  

The first use of this technology in the fabrication of a micropump was reported by 

Carozza et al in 1995 [161], who produced a piezoelectrically-driven ball-valve micropump 

with stereolithography fabricated pump body and fluidics, although the exact form of SLA 

technology employed was not reported. Since then, the field has gone quiet, with the 

next paper in the literature being Han et al in 2005 [115], followed by Hasegawa et al in 

2008 [162], both of whom created microvalves with an SLA fabricated body. Both papers 

create only fluidic components using the SLA systems; devices with functional 

components built using stereolithography are an exciting potential area of future 

research. 
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2.6  Conclusion 

The field of polymer-based micropumps and microvalves has developed quickly 

over the last 15 years. The original device designs utilising polymeric materials used 

standard engineering polymers such as PSU and PMMA. As a result, macro-scale 

fabrication techniques such as machining using drillbits and thermoplastic moulding were 

common.[74] 

However, as new materials were developed for using in microengineering 

applications, the fabrication techniques evolved as well. Micromachining techniques 

introduced materials such as PDMS and SU-8, the latter often used to form temporary 

moulds to shape the former. This technique, known as multi-layer soft lithography, has 

revolutionised the field of microfluidics, allowing complex 3D structures to be formed 

from multiple shaped layers of PDMS. 

It has been noted that SLA technology, to be reviewed in following chapters, has 

several features in common with soft lithography, potentially allowing similar device 

designs to be recreated automatically using 3D printing systems. 
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Chapter 3 

3 Polymeric Micropumps – Design and Actuation 

3.1 Introduction 

 In the previous chapter, the polymer materials used for microfabrication and their related 

fabrication techniques were reviewed. In this section, the working principles of micropumps and 

valves will be described, as recorded in the literature, with emphasis on those mechanisms that 

are best suited to polymeric materials. There is also a range of actuation techniques that have 

been used in the literature. Again, these techniques will be summarised, with a focus on those 

most suitable for use with polymeric fabrication materials. 

3.2 Valve Mechanisms 

A large number of different polymer-based microvalve designs can be found in the 

literature. They perform two main functions: rectification and flow control. An overview of the 

types of valve seen in the literature is presented in Figure 3.6. Rectification valves are normally 

found in pumps, as the majority of pump designs apply force to the working fluid non-

directionally. The flow created must therefore be rectified into a single direction to be useful. 

Rectification of flow is normally carried out by passive mechanisms that do not require extra 

energy, but instead utilise the energy present in the fluid flow. For this reason, micropumps using 

passive valves (often referred to as “check valves”) for rectification do not require the pump to be 

running in order to hold a back pressure. This is however not the case for nozzle/diffuser 

elements, which are passive but only hold a back pressure when the pump is active.   

Active rectification valves are normally only found integrated in discrete micropumps in 

multi-membrane peristaltic designs, where the outer pump membranes and chambers could be 

considered as active valves. However, active flow control valves are normally used digitally to 
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switch flow in a channel on or off, whilst more advanced devices can direct flow from one channel 

into another. Flow can also be controlled in an analogue fashion, using throttle valves. Finally, 

“special effect” valves, like the pumps of the same classification, rely on electrical effects to 

control fluid flow and use no moving parts. 

 
 
Figure 3.1 – Overview of classification of passive and active microvalves seen in the literature. 
 

3.3 Passive Microvalves 

3.3.1 Passive Membrane Hole Valves 

One of the more simple types of valve is the membrane hole check valve. These devices 

employ a membrane with a central hole, normally aligned with a small pillar. As shown in Figure 

3.2, pressure in the working fluid on the pillar side pushes the membrane away from the pillar, 

and allows flow through the membrane hole; conversely, pressure from the other side pushes the 

membrane against the pillar, blocking the hole and halting flow.  Membrane materials include 

polyimide [1, 2], silicone rubber [3, 4], polycarbonate [5], polyester [6, 7] and PMMA [8]. In some 
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designs, such as the aforementioned Büstgens et al [1], the valve membrane used is simply a 

different area of the same pump membrane material, cutting some steps out of fabrication [7]. 

Membrane hole valves tend to work better at frequencies lower than 50 Hz, and normally 

produce modest flow rates (<1 ml/min). However, pumping of air is possible if the device is 

optimised as such, allowing for self-priming devices, which can pump air strongly enough to pull 

fluid into themselves without having to be primed manually [5]. 

3.3.2 Passive Float Valves 

A float valve can be seen as reverse membrane hole valve, where the plug is mobile 

instead of the membrane. The float is normally suspended over the outlet by multiple arms, 

which are flexible enough to allow the float structure to be deflected by pressure within the 

working fluid.  The first example of a polymeric passive plug valve can be found in Shoji et al in 

1992 [9], one of the first polymer microvalves. The overall device was a piezoelectric single-

membrane micropump, but was based on silicon technology and is therefore not discussed here. 

However, the valves consisted of a moulded silicone rubber plug fabricated in a chamfered 

ansiotropically-etched hole in a silicon wafer. The plug arms were fabricated from SU-8 using 

micromachining techniques, which located the plug in the silicon outlet hole whilst still allowing 

movement away from the silicon hole if the pressure rose high enough. The plug was 600 by 600 

µm at the top and 70 by 70 µm at the bottom. At an applied pressure of 2 kPa, fluid flow through 

the valve was 170 times higher in the forward direction than when the pressure was applied in 

the reverse direction. 

3.3.3 Passive Flaps  

A flap valve is a structure connected to only one side of a channel or channel opening. It 

acts much like a door, opening when pressure is applied from one side, but being pressed shut 

when pressure is applied from the other. The structure is prevented from opening in the other 
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direction by stoppers within or on the edge of the channel, or by the fact the flap is bigger than 

the opening it is sealing. Figure 3.2 gives a simple example of a side-wall flap valve.  

 
 
Figure 3.2 - Operational mechanisms of passive microvalves, showing membrane hole, float, flap, ball and 
nozzle diffuser valves in open and closed states.  In the case of nozzle/diffuser valves, there isn’t a specific 
“closed” state; the working fluid is simply more likely to move in one direction than the other when pressure 
is applied. 
 

Adams et al [10] presented a simple flap valve based on PDMS soft lithography fabrication 

techniques. The flap structure was just 4 µm thick, 24 µm tall and 45 µm wide, obscuring a smaller 

11 µm channel when closed. Kim et al [11, 12] published a flap valve fabricated by in-situ 

photopolymerisation in 4-hydroxyl butyric acid (4-HBA). Unusually for a hydrogel-fabricated 

device, the hydrogel is used simply as a mechanical material, rather than as an actuation 

mechanism, although due to the nature of the hydrogel surface the material had to be lubricated 
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to prevent it from sticking to the channel walls. Klammer et al [13] produced a dual-flap 

microvalve similar to that found in the human circulatory system, fabricated in PDMS by soft 

lithography. A number of other passive flap valves fabricated using polymer materials are also 

found in the literature, all based on similar concepts [14-21]. 

3.3.4 Ball Valves 

Ball valves are common in macroscale applications, and use a free ball bearing enclosed 

within a channel. The ball normally blocks a narrowing in the channel with pressure from one 

side. Pressure from the other side pushes the ball against a post located across the centre of the 

channel, as shown in Figure 3.2. Ball valves were utilised by Carozza et al [22] in their 

stereolithography fabricated piezoelectrically actuated device. A very high flow rate of 2.7 ml/min 

was reported, along with a maximum back pressure of 24 kPa, showing that ball valves have 

promise in high flow rate and back pressure applications. Their major disadvantage however is 

they limit the device miniaturisation – the balls used in Carozza et al were 1.2 mm in diameter, 

and fabrication of devices incorporating smaller spheres is difficult. 

3.3.5 Nozzle/Diffuser Elements 

Flow rectification does not have to be an active process, and can be achieved by varying 

the shape of the device microfluidics. Figure 3.2 shows an example of the geometry employed.  

The earliest example of nozzle/diffuser implementation in a micropump can be found in Stemme 

and Stemme, 1993 [23], in which a piezoelectrically actuated silicon-based device is presented. 

The narrowing of the nozzle and widening of the diffuser, relative to the partially rectified flow, 

create pressure gradients within the working fluid, which present less flow resistance in one 

direction – from the nozzle to the diffuser. Using a 19 mm pump membrane, Stemme and 

Stemme reported flow rates of 16 ml/min and backpressures of around 19 kPa at 100 Hz. Su et al 

[24] presented a magnetically actuated micropump with nozzle/diffuser elements, also fabricated 

in silicon using anisotropic etching. The pump membrane was micromoulded in PDMS, with 
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integrated magnetic material, and is discussed further later in this paper. The dual pump 

membrane design achieved flow rates of around 360 µl/min. 

However, the majority of polymer based micropumps with nozzle/diffuser elements 

employ planar, 2-dimensional designs, also known as extruded 2D. The first example can be found 

in Kar et al [25], who used a nozzle/diffuser arrangement fabricated in PMMA using X-ray 

lithography to rectify flow from their piezoelectric piston micropump. A flow rate of 368 nl/min 

was achieved. Khoo et al [26], discussed later in this paper, also used planar nozzle/diffuser 

elements, fabricated from PDMS using micromachining techniques. The magnetic actuator 

employed gave a frequency of 2.9 Hz, leading to a flow rate of 1.2 µl/min. 

Kim et al described a piezoelectric dual-chamber design [27] along with a single-chamber 

thermopneumatic device [28]. The piezoelectric device gave a maximum flow rate of 33 µl/min 

with a backpressure of 173 Pa and a driving frequency of 300 Hz. In comparison, the 

thermopneumatic device delivered a flow rate of 78 nl/min at a frequency of 6 Hz and a duty ratio 

of 10%. 

A paper by Justis et al [29] demonstrates similar micropump to Kim et al [27] with dual 

chambers with piezoelectric actuation. The pump, fabricated from PDMS using soft lithography, 

was used to inflate a PDMS lens for use with in vivo imaging technology. A much higher pump 

frequency of 5 kHz was used to drive the piezoelectric disk, resulting in a flow rate of 2.4 µl/min. 

One disadvantage of nozzle/diffuser elements is that they do not produce a back pressure 

when the pump is not active. This can be solved by adding active valves to the pump design. Yoo 

et al [30] demonstrated a thermopneumatic pump design, similar to Kim’s design described above 

[28], but with a pair of integrated thermopneumatic membrane valves flanking the nozzle/diffuser 

elements. Due to a low actuator frequency of just 6 Hz, a maximum flow rate of just 80 nl/min 
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was achieved. A later follow-up paper described a similar system, but with three valves: one on 

the outlet, and two on the inlet to allow pumping and mixing of two separate working fluids [31]. 

It is fairly plain from the data published that nozzle diffuser mechanisms are not efficient 

at low frequencies. This limits their use with lower frequency actuation techniques, specifically 

thermopneumatic. However, at high frequencies both high back pressures and flow rates are 

achievable, making nozzle/diffuser mechanisms ideal for piezoelectric actuation. 

3.4 Active Valves 

3.4.1 Active Membrane Valves 

Perhaps the most numerous and simple active polymer microvalve in the literature is the 

membrane type. These valves utilise a thin membrane or diaphragm, deflected by a variety of 

actuators, to block a microfluidic channel. There are a number of ways the membrane can block 

the channel. The simplest devices simply employ a membrane above the channel, which the 

membrane deflects into to block [32-34]. These devices may include a raised weir in the channels 

so the membrane deflection required is minimised [35-37]. In other designs, the membrane 

moves down to block a hole at the bottom of a chamber under the membrane [38, 39], which 

may have a collar [40-47], again to minimise the deflection required. Membrane deflection can 

also be minimised by thickening the centre of the valve membrane [48-53]. 

The first active membrane microvalve utilising a polymer material is found in Sjolander et 

al 1991 [36]. The valve is part of a µTAS system, and is fabricated using multiple stacked moulded 

polystyrene plates. The 0.5 mm diameter valve membrane is made of silicone rubber, fabricated 

using a moulding process, and is sandwiched between two of the plates. Actuation is provided by 

a pneumatic port above the membrane, deflecting the membrane down onto a weir formation.  
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3.4.2 Active plug valves 

Kim et al [11] presented a hydrogel-actuated plug microvalve, fabricated using a 

combination of PDMS soft lithography for the valve body and in-situ photopolymerisation for the 

hydrogel actuation element. The hydrogel element sits around a fixed post and is in contact with 

the PDMS mobile plug. A secondary fluid, separate from the working fluid, is passed over the 

hydrogel actuator. pH variations in the secondary fluid cause the hydrogel to expand or contract, 

closing and opening the plug valve. 

3.4.3 Throttle Valves 

For the purpose of this review, a throttle valve is a fluidic device in which the cross-

sectional area of the fluidic channel is made larger or smaller to respectively encourage and slow 

the movement of fluid through the channel. To a certain extent, most active valves behave in this 

manner, in that whilst a certain actuation power is required to fully close the device, any power 

input below this threshold only partially closes the fluidic channel. Throttle valves may be used for 

rectification, but can also be used to control flow rates through microfluidic systems.  

There are a number of polymeric throttle valves reported in the literature. The first is 

found in Johnson et al [54]. The device is a reciprocating displacement micropump, which consists 

of a single pump membrane flanked by a pair of novel throttle valves. The pump itself is 

composed of a multi-layer soft lithography fabricated fluidics layer sandwiched between glass 

base layers. The actuation system is composed of three separate piezoelectric discs, which deflect 

and distort the pump membrane and the throttle structures in turn, much like a peristaltic 

micropump. The throttles are composed of a number of PDMS posts, separated by only 20 μm, as 

shown in Figure 3.8. As the piezoelectric elements are activated and deactivated, this gap is 

reduced and increased by the deflection of the piezoelectric disc. The activation of the two 

flanking throttle valves is timed with that of the pump membrane, allowing rectification and 
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therefore directional flow in either direction. With a driving frequency of 50 Hz a maximum flow 

rate of around 300 µl/min was measured with a backpressure of 5.5 kPa. 

A follow up paper by the same group [55] outlined a device of similar design, which 

instead had only a single offset piezoelectric actuator, rather than the original three separate 

discs. This offset created a wave in the device, contracting the inlet throttles whilst opening the 

outlet throttles, and vice versa. A flow rate of 132 µl/min with a back pressure of 6.0 kPa was 

achieved with a pump frequency of 800 Hz. However, due to the offset required, the device was 

only capable of flow in one direction. 

 

Figure 3.3 – PDMS microstructures employed as active throttle valves by Johnson et al [54]. The arrow points 
to one of the gaps in the structure, just 20 µm across. These gaps are closed by the action of a piezoelectric 
disc placed over the throttle structure. 

3.5 Pump Mechanisms 

A pump, regardless of the working fluid, can be defined as a device that exerts a force in 

order to move a fluid. To the end-user, how the pump achieves this movement is normally 

irrelevant. However, different applications may require mechanisms that are tolerant of specific 

conditions, such as bubble formation, or the presence of solid particles in the working fluid. Other 

requirements may include a specific flow rate, smooth flow or good backpressures even when the 

pump is not running. 
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Krutzch and Cooper [56] put forward a system of macroscale pump classification based on 

the mechanism employed by the device to exert force on the working fluid. This system has been 

previously adapted for use with micropumps by Laser and Santiago [57]. The system divides 

pumps broadly into two categories, displacement and dynamic, an overview of which can be seen 

in Figure 3.4. Displacement-type micropumps are by far the most prevalent, and use moving 

boundaries within the device to change the volume of a pump chamber. On the other hand, 

dynamic micropumps exert a continuous force via either mechanical momentum or electrical 

effects. Wherever possible in this chapter, flow rate and backpressure data will be provided. 

 
 
Figure 3.4 – Classification system for micropumps put forward by Laser and Santiago [57]. 
 

It should be noted that when it comes to flow rates, bigger is not always better. For many 

microscale fluidics applications such as micro total analysis systems (µTAS), slow flow rates are 

favourable due to the small volumes of sample and reagents being handled. In such systems, the 

volume precision and flow rate resolution of the pump device is often more important, along with 
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the reaction time of any valves present. Additionally, compromises must sometime be made in 

portable systems between outright performance and energy consumption. 

3.6 Reciprocating Displacement Micropumps 

3.6.1 Membrane Micropumps 

The vast majority of reciprocating displacement micropumps, and in fact of micropumps 

in general, are membrane-based. In these pumps, a force provided by an actuator deflects a thin 

membrane or diaphragm into and out of the working fluid. Even before the rise of all-polymer 

designs, polymeric materials were often used in the fabrication of the diaphragm, as they are 

more flexible than the alternative silicon, glass or metal membranes available using traditional 

micromachining processes. The use of polymer materials can lead to greater efficiency when 

combined with some actuation techniques, as less energy is required to deflect the membrane a 

given distance, and the potential deflection is greater. The deflection achieved is usually positive 

i.e. into the working fluid, although it may also be negative or bidirectional. The area underneath 

the membrane on the working fluid side can be referred to as the “pump chamber”. The 

movement of the membrane relative to this chamber varies the volume of the working fluid 

contained within it, and this force upon the fluid is turned into a rise or fall in pressure in the 

working fluid via friction between the working fluid and pump body. The pressure created is 

normally non-directional, although some membrane-based devices exist that do not require 

rectification, normally by offset of the membrane or actuator relative to some design feature such 

as a weir. However, flow rectification is normally achieved using some form of microvalve. 

A large number of polymer micropumps reported in the literature utilise a single pump 

membrane, with rectification carried out by separate microvalves. As the membrane movement 

in membrane-based reciprocating displacement devices is both into and out of the working fluid, 

it is necessary to have some mechanism whereby this dual-direction flow is converted into a 

single direction for the flow to be useful. This can be achieved in a large number of ways, and the 
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process is known as rectification. Figure 3.5 gives a generalised example of how such valved 

devices work. These designs are too numerous to list here, and many are similar in concept to the 

aforementioned Büstgens et al [1], the first all-polymer micropump. This design incorporated a 4 

mm diameter 100 µm deep pump chamber, fabricated using thermoplastic moulding from 

polysulphone. The pump membrane is thermopneumatically actuated, and is flanked by a pair of 

750 µm diameter passive membrane hole valves. A maximum flow rate of 44 µl/min was 

reported, along with a backpressure of 3.8 kPa. Many more examples of single-membrane 

reciprocating displacement micropumps are listed in this chapter, but most are more noteworthy 

due to their valve design, actuation mechanism or fabrication technique. These devices will 

therefore be discussed in more detail in latter sections of the chapter. 

 
 

Figure 3.5 – Basic operational principles employed by single-membrane reciprocating displacement 
micropump designs. 
 

As mentioned above, rectification can also be carried out by adaptations of the pump 

membrane or chamber, such as weirs in the pump chamber and/or an offset of the actuation 

force on the membrane, allowing a micropump that is composed of just a single membrane and 

chamber. For example, Tracey et al [58] presented a micropump with a single elongated pump 

chamber, made from PDMS using soft lithography, where the glass pump diaphragm had an offset 

piezoelectric actuator. Due to the offset, the actuator caused a wave to form in the diaphragm, 
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passing over a pair of weirs in the chamber that trapped the moving working fluid as the wave 

passed over them. The working principle is shown in Figure 3.6. The final device actually has two 

pump chambers, actuated by the same piezoelectric disc but pumping independent working 

fluids. Each pump could produce a flow rate of around 750 µl/min, rising to 1400 µl/min if the 

pump chambers were used in parallel on the same working fluid. 

Perhaps the simplest types of membrane micropumps are peristaltic in action. These 

devices blur the definition of pump and valve – each membrane used is identical, and operates in 

series along a microfluidic channel. These designs bear a resemblance to linear-type macroscale 

peristaltic pumps. The initially activated membrane creates a seal or flow resistance, which is 

usually imperfect but enough to influence the flow direction. The subsequent sequential 

activation of the remaining pump membranes creates a directional flow. An advantage of this 

design is the dual-role of the membranes as both valves and pumps, which is useful in µTAS 

systems where space is at a premium. Another useful characteristic of these devices is they are 

not restricted by the direction of the rectification valves of single membrane pumps, and can 

create flow in either direction. 

 
 
Figure 3.6 – Working principal employed by device published by Tracey et al [58]. 
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Multi-membrane peristaltic polymer pumps are normally found with 3 active membranes, 

with thermopneumatic [59, 60], pneumatic [61-71], electromagnetic [72] and Braille display [73] 

actuation methods all reported. The earliest polymer multi-membrane peristaltic micropump in 

the literature is Unger et al in 2000 [70], who presented the first soft-lithography based 

microfluidics device. Since this paper there have been a relatively large number of such designs 

reported, perhaps due to the explosion in devices built using PDMS and soft lithography.  

A good example of a polymer peristaltic membrane micropump can be found in Jeong et 

al [60], where a simple 3-membrane thermopneumatic device is reported. The device body and 

fluidics were fabricated by a mixture of PDMS multilayer soft lithography and machining 

techniques, whilst the microheaters required for the thermopneumatic operation were fabricated 

onto a glass base layer using micromachining. A diagram showing the operation of the pump can 

be seen in Figure 3.7. A maximum flow rate of 0.37 µl/min was found at a frequency of 2 Hz. 

Interestingly, the same authors have also produced a very similar design actuated by pneumatic 

mechanisms [61], which could pump both air and water. Only the flow rate for air is reported, at 

86 µl/min at 3 Hz. 

 
 

Figure 3.7 - The working principle of a thermopneumatic 3-membrane peristaltic micropump, taken from 
Jeong et al [60]. 
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3.6.2 Reciprocating Piston 

Although there are a large number of reciprocating piston macroscale pumps, there are 

very few micropumps utilising this design. This is because the ratio of the strength of a solid 

piston microstructure compared to the force required counteracting friction between the piston 

and the micropump body is not favourable at such small scales.  

However, a pair of papers by Yamahata et al [3, 74] overcame this problem by using a 

ferrofluidic plug that can be moved externally using a rare earth magnet. The working principle 

can be seen in Figure 3.8. 

 

Figure 3.8 – Working principle of a reciprocating displacement piston-based micropump, utilising a 
ferrofluidic plug.  A mobile rare earth magnet is used to move the ferrofluid.  Taken from Yamahata et al [3]. 

3.6.3 Rotary 

 Rotary devices utilise a pair of gear structures intermeshing across a microfluidic channel. 

They are similar at first glance to dynamic centrifugal micropumps, but utilise a completely 

different mechanism to impart energy to the working fluid. The rotation of the gears traps 

pockets of the working fluid between the gear teeth, pushing it along the channel. An example of 

this design can be found in Dewa et al [75]. This rotary device is reported as the first 

microfabricated micropump not to use a membrane as part of its mechanism with all components 

of the micropump are fabricated by a sacrificial LIGA process. The gears were 200 µm thick, with a 

pitch diameter of 1.392 mm, one with an embedded permalloy magnet used for actuation via an 
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external servo with its own magnetic bar. A flow rate of 350 µl/min with a back pressure of 

around 13.7 kPa was reported at 5000 RPM. The device was self-priming and could also hold a 

282 Pa vacuum on the inlet side. 

3.6.4 Air Detonators 

The interesting concept of “air detonators” was outline in Ahn et al [76] as part of their 

µTAS system. The detonators consist of a small pocket of trapped compressed air, separated from 

the device fluidics by a membrane, in this case fabricated from cyclic olefin copolymer (COC) using 

micromoulding techniques. A microhotplate is etched onto the membrane, and upon activation 

melts the membrane, releasing the compressed air and moving the working fluid. This by 

definition is a one-shot process. However, a series of detonators positioned correctly within the 

µTAS system can deliver a small sample from the insertion point to a reaction area with minimal 

power output – the energy required to melt the COC membranes was found to be only 100 mW 

for 350 ms. 

3.7 Dynamic Micropumps 

Some micropump designs do not rely on reciprocating movement, and instead apply 

pressure continuously to the working fluid. Dynamic micropumps do not require rectification or 

valves to produce directional flow, although rotary displacement pumps also share this 

characteristic.  

3.7.1  Centrifugal Micropumps 

In the field of macro-scale pumps, by far the most common dynamic pump is the 

centrifugal, or vortex pump, used in applications such as air conditioning vents and high-

throughput liquid pumps. However, their miniaturisation is limited by poor performance as the 

Reynolds number of the working fluid decreases, leading to bubble formation and loss of 

efficiency [57]. 

 



                                                                          Chapter 3 – Plastic Micropumps – Design and Actuation 
 

61 
 

3.7.2 Special Effect Devices 

There are a wide range of micropumps that have no moving parts, and instead use 

electrical effects to apply force to a working fluid. Krutzch and Cooper [56] grouped these pumps 

into a single category known as “special effect” pumps, as these mechanisms are less utilised in 

larger scale devices. The exact details of how these pumps operate will not be covered here, as 

they are not relevant to the theme of this review. However papers such as Laser and Santiago [57] 

explain in detail how these fluidic interactions are achieved and modelled. 

Electrohydrodynamic (EHD) pumps operate by creating interactions with ions isolated in a 

dielectric (non-conducting) working fluid using electrodes in contact with the working fluid. There 

are several variations of mechanism used by these devices. Conducting EHD micropumps create 

flow by applying a voltage between a pair of electrodes suspended in the working fluid [77]. 

Electroosmotic devices do not require an ionic solution, and instead operate by working 

on the charged bilayer that forms when a liquid encounters a solid surface. Movement created in 

the boundary layer drags the rest of the working fluid along, creating an unusual looking flow that 

is faster at the boundaries than in the centre of the tube – the reverse profile of normal flow in a 

capillary. These designs often require high voltages and produce lower flow rates than 

electrodynamic pumps, albeit without the requirement of an ionic working fluid [78].  

Magnetohydrodynamic devices operate by applying a magnetic field to a current-carrying 

working fluid, therefore creating movement by imparting a Lorentz force on the ions. Wang et al 

[79] fabricated a device from SU-8 and PDMS that used this principle. 

3.8  Actuation Techniques 

A wide range of actuation techniques are available to power micropumps and 

microvalves, ranging from the high-frequency, low deflection piezoelectric actuators to high 

deflection, low frequency techniques such as thermopneumatic devices. As the vast majority of 
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micropumps and microvalves are membrane-based, this section will concentrate on those 

actuation techniques used in this field. Although most all-polymer devices employ the low 

frequency, high deflection actuators, in some situations the high-frequency piezoelectric 

actuators are beneficial, and otherwise polymer devices can have the metal or silicon-based 

membrane integrated during fabrication. Other, more exotic actuation techniques such as 

cardiomyocyte-based devices are also discussed.  

3.8.1 Piezoelectric 

A piezoelectric material is a crystalline substance that has an asymmetrical crystal 

structure, and is polar i.e. it contains separated charges. Figure 3.9 compares crystalline structures 

that exhibit no piezoelectric effect with those that do. When the material is at rest, the charge 

within the crystal is spread evenly, and the free charge exists as a series of dipoles within the 

material. However, when a pressure is applied to the crystal structure, the charge is forced into a 

dipole. This charge can be collected by a pair of electrodes across the piezoelectric crystal, should 

the electrodes be in the direction of the dipole created. This effect can also be reversed – if a DC 

voltage is applied across the electrodes, the material will deflect in a direction dependant on the 

polarisation plane of the crystal lattice [80]. 

 
 

Figure 3.9 - Effect of stress on different molecules: A—Centrosymmetric, stress produces no polarisation; B—
Polarisation parallel to stress; C—Polarisation perpendicular to stress.  Taken from Pointon et al. 
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These principles have been used in the creation of microsensors and microelectrical 

mechanical systems (MEMS), either directly in strain gauges or as part of surface acoustic wave 

(SAW) devices [81]. Piezoelectric actuation was a common technique among early traditionally 

machined [82-84] and silicon-based micropump designs [85, 86]. There are two ways a 

piezoelectric disc can be used in micropump designs. Lateral drivers expand in a lateral direction 

compared to the membrane, causing the membrane to distort and deflect as it is stretched and 

contracted. Alternatively, the deflection can be set up perpendicular to the membrane, forcing it 

directly up and down. However, the rising use of elastomeric polymers for pump and valve 

membranes has relegated piezoelectric actuation to the sidelines in polymer micropump 

actuation, especially as designs increasingly become entirely polymeric in nature. As said above, 

thin polymer membranes are much more flexible than glass and silicon layers and require far less 

force applied to deflect a given distance, making them more suitable to lower-frequency drivers 

such as thermopneumatic and pneumatic actuators. However, when it comes to devices with 

glass or silicon membranes, piezoelectric actuation is the only driver than can produce enough 

force to deflect the material. 

There are a number of polymer-based micropumps and microvalves that utilise a glass or 

silicon membrane deflected by a piezoelectric driver. The mechanism of the throttle valves 

reported in Johnson et al 2004 [54, 55] are described earlier in this review, and both the pump 

and throttle membranes are piezoelectrically actuated. Another notable paper is the previously 

mentioned stereolithography-based Carozza et al [22], which has a 10 mm piezoelectric disk on 

top of an 18 mm diameter, 0.1 mm thick brass membrane.  
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3.8.2 Magnetic 

Magnetic actuation has been widely used to drive both micropumps and microvalves. 

Actuation normally involves some form of electromagnet interacting either with a rare earth 

magnet or a secondary electromagnet. However, devices have also been produced using movable 

magnets, or by using ferrofluids as the secondary magnetic material. 

Dario et al [47] described the first polymer-based magnetically actuated micropump and 

microvalve. Their membrane microvalve actuation design consisted of a rare earth magnet 

connected on one side to a mobile core and on the other side to the valve membrane. The mobile 

core was located inside a stationary wire coil. Current was applied to the coil, causing the magnet 

and membrane to be deflected downwards, closing the valve. The micropump design was similar, 

but had a magnet on both sides of the mobile core, allowing a reciprocating movement to be 

produced by driving the coil with a square wave.  

Bohm et al [6] produced a self-priming reciprocating displacement single membrane 

pump, with passive membrane hole valves. They actuated the pump membrane using both 

piezoelectric (discussed above) and electromagnetic methods. The magnetic actuation design 

consisted of an NdFeB magnet partially inserted into a wire coil, with spacers used to prevent the 

magnet moving too far into the coil. The pump was tested at a constant current of 100 mA, with 

the optimum pumping frequency for water being 50 Hz. Flow rates were similar to the 

piezoelectric version, at around 2 ml/min, but back pressures were lower at around 10 kPa with 

water. However, pump rates were found to be up to 40 ml/min with gas at a frequency of 400 Hz. 

This higher frequency and flow rate is possible due to the lower viscosity of gas compared to 

water, giving a system where the damping effect of the working fluid is far lower. Further work by 

the same lead author [87] gave a bi-stable magnetically actuated membrane microvalve. This 

employed an electromagnetic actuation system similar to that used in bi-stable relays and 

mechanical latches for hard drive read/write heads.  
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The magnetic material used for actuation can also be incorporated into the device 

membrane. As discussed earlier in the micromachining section, Khoo et al [26] produced a single-

membrane reciprocating displacement pump with passive nozzle/diffuser valves. The final device 

has strips of a permalloy material (Ni80Fe20) located within the pump membrane, which allows 

deflection of the membrane via an external magnetic field.  

Another design involves placing a small amount of magnetic material onto the actuated 

membrane. Santra et al [4] mixed Sm-Co powder with 10 wt.% Silastic T2 silicone, which was 

moulded into shape and glued onto the pump diaphragm. This resulted in a single membrane 

reciprocating displacement micropump with passive membrane hole valves, with a maximum flow 

rate with air of 257 µl/min when driven by a 190 mA square-wave current at 3.0-4.5 Hz. The 

maximum pump pressure generated was calculated at around 1 MPa. The pump system could 

draw water along a channel whilst pumping air, but could not drive water directly due to damping 

effects and poor bubble tolerance.  

3.8.3 Electrostatic 

 As magnetic actuation has become popular in polymer-based micropumps and 

microfluidic devices, it is perhaps surprising that there is only one electrostatically-actuated 

device in the literature.  It was presented by Goll et al [88], and has been previously discussed as 

an active float microvalve. Electrostatic actuation has the advantage of being relatively simple, 

relying on the attraction of two opposite-pole electrodes, and it is thus easy to integrate into 

microscale systems. Unfortunately the voltage required is normally relatively high (around 150 V 

in Goll et al), and the deflection fairly small in comparison to other actuation mechanisms such as 

thermopneumatic. It is possible the niche for small-deflection devices, where the requirements 

for such high voltages are not problematic, has already been filled in this field by piezoelectric 

devices. 
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3.8.4 Pneumatic 

Whereas most other actuators require only some form of electronics and a power source 

in addition to the device, pneumatic actuators rely on pneumatic pressure being provided from a 

separate source. This may be an air line, or in the case of portable devices a small macroscale air 

pump, along with high-speed pneumatic valves. This can make it difficult to directly compare 

pneumatically-actuated micropumps and valves with other devices that include integrated 

actuation. However, in situations where the pneumatic power is available, they can be effective 

devices, more so where the important characteristic of the device is small volume handling rather 

than portability. Perhaps unsurprisingly, nearly all pneumatic devices are membrane-based, and 

the membrane is normally a form of elastic polymer such as PDMS or other silicone rubber 

compounds. 

An early example of a pneumatic device can be found in the previously mentioned 

Sjolander et al [36]. The microvalve presented is a good example of a general pneumatic device. A 

chamber containing the working fluid is separated from a secondary chamber by a thin 

membrane. The secondary chamber is pressurised and released to atmosphere sequentially, 

inflating and deflating the membrane into and out of the working fluid. 

A wide variety of other pneumatic devices have been presented in the literature. Kim et al 

[89] presented a PDMS soft lithography fabricated µTAS system for cell culturing, featuring a 

pneumatic single membrane pump and a active membrane microvalves. The pump was rectified 

using hydrogel flap check valves. A number of other single-membrane pneumatic micropumps are 

also reported using polymer membranes, most utilising PDMS membranes [12, 90, 91], although 

polyimide [2], polypropylene [92] and acrylic [93] materials are also reported. 

A large number of multiple membrane peristaltic pneumatic micropumps can be found in 

the literature, all after Unger et al [70]. All have also been fabricated from PDMS using soft 

lithography [62-64, 67-69]. Uniquely to pneumatically actuated devices of this type, actuation can 
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be carried out by a single actuator element. A series of papers by Huang et al [94, 95] and Wang 

et al [96] utilise a “serpentine pneumatic” actuation approach, where each pneumatic chamber is 

connected by a winding microchannel. A micrograph of the device in action can be seen in Figure 

3.10. A pneumatic pulse is fed into the first chamber, which then passes to the second and third 

chamber in turn, deflecting each membrane in turn and creating a peristaltic action. The length of 

the serpentine channels between the chambers can be tuned to make the device more efficient. 

A maximum flow rate of 7.43 µl/min was achieved with a pump rate of 9 Hz and a pneumatic 

pressure of 20 PSI (137.9 kPa). 

 

 

Figure 3.10 – Multiple micrographs showing the sequential peristaltic action of the novel pneumatic 
micropump presented by Wang et al [96]. The serpentine-shape pneumatic microchannel is visible over the 
working fluid channel, separated by a thin PDMS membrane. A pulse of pneumatic pressure is fed into the 
device via the input port (upper) through to the outlet port (lower), deflecting each membrane created as 
the pneumatic channel passes over the working fluid channel. This causes a peristaltic movement in the 
working fluid, as shown in the movement of the red-coloured liquid in (a)-(f). 
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3.8.5 Thermopneumatic 

One of the most prevalent actuation methods for micropumps and microvalves utilises 

the pressure difference created by material expanding and contracting due to changes in its 

temperature. The majority are membrane-based, and use microhotplates to heat small volumes 

of air in a chamber separated from the working fluid by the pump membrane. An early example is 

Büstgens et al [1], a single-membrane micropump, the mechanism of which is discussed earlier in 

this chapter. The polyimide membrane is sandwiched between a pair of thermoplastically-

moulded layers, with a titanium microhotplate sputtered and patterned directly onto the 

membrane. An interesting effect is observed due to the shape of the heater and tensional stress 

deliberately induced in the titanium during fabrication, where the membrane takes on a 

corrugated shape. This allows the membrane to deflect further for a given pressure. 

Other devices integrate the microhotplate as part of the chamber rather than the 

membrane. Kim et al [28] present a single-membrane pump rectified by a pair of nozzle-diffuser 

elements, while Yoo et al [97] note a device similar in design but with a 3-membrane peristaltic 

mechanism. Both devices fabricated in PDMS using multilayer soft lithography on a glass 

substrate. 

Wego et al [7] fabricated a device using purchased 70 µm wire suspended across a 

chamber fabricated from a PCB board. The Kapton/Mylar membrane showed a deflection of 350 

µm for a peak input power of 10 W (mean power 1 W), giving a maximum reported flow rate and 

back pressure of 0.37 mL/min and 70 mbar respectively with passive membrane hole valves. 

A number of devices use the expansion caused by the thermally-linked phase change of a 

solid or liquid substrate. Sim et al [98] produced a single-membrane micropump micromachined 

in glass with a thin silicone rubber membrane and passive flap valves. The actuation method used 

water heated to boiling point in a chamber under the membrane. The water vapour created 

expands, before contracting and condensing as the hotplate is turned off. The microhotplate used 
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was coated in silicon nitride to prevent electrolysis occurring. A maximum flow rate of 6 µl/min 

and a backpressure of 10 PSI (68.9 kPa) were obtained.  

A large number of thermopneumatic valves are reported in the literature. The majority 

use air as the expanding medium, with a few exceptions using paraffin wax. All are membrane-

type valves. Papers by Henares et al [99] and Namasivayam et al [38] use peltier elements rather 

than microhotplates to provide the heat required by the system. Due to the high power 

requirements of peltier elements for heating/cooling compared to microhotplates, both devices 

employ non-air substrates to allow low-temperature valve control. Henares et al use a thermo-

responsive polymer coating on the valving capillary that shrinks during heating to around 40°C. 

Namasivayam et al on the other hand used a hydrocarbon known as Vertrel, which has a low 

boiling point of 55°C. 

 

Figure 3.11 – Microvalve device presented by Xu et al [100]. (a) A pair of air pockets are trapped in 
microfluidic structures either side of a fluidic channel, just before a narrowing in the channel. (b) Localised 
heating by an upstream (left) microhotplate causes the expansion of the air, until the bubbles block the 
channel. 
 

Another device using controlled bubble formation is found in Xu et al [100]. As shown in 

Figure 3.11, the microvalve detailed uses a pair of flanking air pockets, either side of, and just 

before the narrowing of a channel. A coil heater upstream of the valve was used to heat the air in 

both pockets, causing the air to expand and cross the channel, blocking flow. A relatively slow 
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reaction time of 25 s was recorded at a heater input of 0.31 W. Jun et al [101] presented a 

micropump based on a bubble caught within the working fluid. The principle of its actuation is 

shown in Figure 3.12. This interesting design uses surface tension effects to draw droplets of 

working fluid forward. Flow rates were very low, with a discharge/refill time of around 20 s and a 

stroke volume of around 110 nl. However, the maximum deviation in stroke volume was only 

around 3%, making it ideal for transdermal drug delivery where accuracy is paramount. 

 

Figure 3.12 – Working principle of thermopneumatic “trapped bubble” micropump presented by Jun et al 
[102]. The working fluid chamber is specifically shaped to take advantage of the surface tension effects 
present at small scales – the chamber, shown full of the blue working fluid in (a), is around 5 mm long, 
including the inlet and outlet nodes. In (b) the microheaters, seen on both sides of the working fluid 
chamber, are activated, expanding the air trapped within them. Ultimately this leads to the discharge stroke 
as the expanding bubbles meet across the chamber (c). Finally, the hotplates are deactivated, cooling the air 
which returns to its normal volume. Due to the shape of the chamber, the returning movement during the 
suction stroke (d) is mainly in the forward direction. 

3.8.6 Hydrogel 

The precise definition of a gel is an evolving one, but is generally agreed to be a substance 

composed of a network of molecules that are linked via both chemical crosslinks and physical 

interactions within a solvent [103]. A hydrogel is simply a gel whose solvent is water. Hydrogels 

have a range of useful properties, such as the slow-release of drug molecules, and can in some 

cases absorb large amounts of water and subsequently expand. This expansion can be caused by 

exposure to fluid of a certain pH, or simply by exposure to water. 
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Hydrogels are normally used as an actuation material, however designs are limited by the 

slow response times associated with the material. The only polymer-based device in the literature 

that could claim to be a pump is found in Eddington et al [104]. This device consisted of a 

hydrogel actuated active membrane valve and a large chamber topped with a membrane, itself 

also actuated by a hydrogel. The main chamber would contain some form of drug for delivery 

once conditions were reached for the activation of the hydrogel. The valve was integrated to build 

up pressure within the main chamber after the activation of the hydrogel, allowing more efficient 

emptying of the chamber once the valve was opened. The device was one-shot, and intended for 

implantation into patients requiring drug dosage dependant on specific conditions within the 

body. 

Most of the other designs found in the literature are active membrane type [49, 53, 105-

109], which are more suited to hydrogel actuation in applications where response time is not 

critical and where the functioning of the device is designed to be dependent on external factors. 

Kim et al [11] reported an active plug valve actuated by a hydrogel post isolated from the working 

fluid. Also reported in the same paper was a pneumatically-actuated micropump with hydrogel 

passive flap valves fabricated by in-situ photopolymerisation, an example of how hydrogels can 

also be used a structural materials. The technique of in-situ photopolymerisation, discussed in 

more detail in the previous chapter, allows hydrogels to be injected into previously fabricated 

structures and cured precisely into complex planar shapes. 

3.8.7 Cardiomyocytes 

A small number of papers have reported devices actuated using biological methods, 

specifically using cardiomyocytes – muscle cells found in the heart. These cells have a natural 

rhythmic contraction, which can be used to deflect membranes and other actuator components. 

In all reported cases, these cells have been taken from neonatal rats. Tanaka et al [15] presented 

a reciprocating displacement membrane micropump with passive polyimide flap valves. The pump 
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was fabricated using soft lithography in PDMS, with the 10 µm thick membrane made using 

membrane techniques. A layer of the cultured cells was placed over a push-bar, itself connected 

to the membrane, with the cell layer attached to the pump body. Contractions in the cell layer 

caused the membrane to deflect via force applied to the push bar. It was found that the pump 

frequency could be controlled by varying the temperature of the cell media, and a maximum flow 

rate of 2 nl/min was achieved.  

Although these techniques are interesting in a technical sense, the potential applications 

are limited. The cells do not require an external power source, but do require to be immersed in 

media contain both nutrition and antimicrobial agents, which must be changed frequently. 

Ironically, the change of media in theory could be carried out by a separate micropump, or 

possibly by the movement of a secondary working fluid by the same pump. Cell survival is 

reasonable, with still functioning cells reported after a week by Park et al [110]. The flow rates 

reported however are quite low, and fabrication of the pumps requires access to biological 

facilities and skilled staff. 

3.9 Conclusion 

In this chapter, the mechanisms and actuation methods utilised by polymer-based 

micropumps and microvalves where discussed. A number of key themes can be drawn from this 

discussion. In the initial research into microfluidic devices, the materials utilised in the machining 

and micromachining fabrication steps normally utilised were limited to stiff and brittle substances 

such as glass, silicon and bulk metals. In these designs, piezoelectric actuation was most 

prevalent, as stiff-membrane based devices required high frequency, low deflection actuation to 

compensate for the  brittle nature and lack of flexibility of the material. 

However, the advent of polymer-based materials in the field allowed for the rise of 

actuation techniques such as pneumatic, thermopneumatic, magnetic and hydrogel-based, which 

give larger membrane deflections at the expense of the deflection force. Membrane materials 
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such as polyimide and PDMS are both flexible and strong, and can take advantage of the larger 

stroke volumes provided by these actuation techniques. Researchers can often be seen publishing 

microfluidic devices as test devices for new materials or fabrication techniques, and it could be 

said that the innovation is primarily in the fabrication and materials area, rather than in the design 

of the devices themselves.  

It could be said that a large number of polymer-based micropump designs are not unique 

to polymer based devices, and could be achieved using conventional micromachining techniques 

and materials. This is most obvious in designs such as the special effect micropumps, and in 

design elements such as nozzle/diffusers, which are commonly used in both polymer and more 

conventionally micromachined devices. In these cases, the use of polymer materials is 

advantageous due to greater ease of fabrication offered by polymer techniques, as discussed in 

the previous chapter. However, there are some concepts such as gas permeation pumps and air 

detonators that hold promise in the field of lab-on-a-chip systems that are unique to polymer 

based designs. Polymer devices are ideal in applications such as medical devices, where the 

disposable nature of polymer materials means they can be incinerated after use, preventing 

infections by contaminated multi-use devices. 

Through these chapters, micropump mechanisms utilising fabrication techniques such as 

micromachining have been referred to as “conventional”. However, as the materials and 

fabrication processes involving polymers have continued to advance over the last 15 years, the 

use of polymeric materials in microfluidic devices has become nearly ubiquitous. As a result, 

polymer devices have moved out of the shadow of their micromachined forefathers and can now 

be considered the convention rather than the exception. 
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Chapter 4 

4 Additive Layer Manufacture 

4.1 Introduction 

Traditional engineering manufacturing methods are based on the removal of material 

from bulk to form a final component. In recent years however, another type of system has started 

to appear. These machines can be classified under a number of blanket terms, including “rapid 

prototyping” (RP), “rapid manufacturing” and “additive layer manufacture” (ALM) systems. The 

common characteristic these technologies share is they area additive in nature, and do not 

require human intervention during component fabrication [1].  

 Early machines using these technologies were generally regarded as rapid prototyping 

systems, and normally applications were not in the fabrication of end-user components. They 

were used purely in prototyping roles, for aesthetic demonstration of consumer devices under 

development and for “form-fit-and-function” testing, where novel components fabricated quickly 

purely to check they fit within an existing mechanism, before being fabricated “for real” using a 

traditional reductive technique. Another early application was in the production of sacrificial wax 

moulds for metal casting. Companies using rapid prototyping systems in such applications 

reported reductions in product production cycle time of between 30% and 90%. The car company 

Ford reported a 30% to 50% reduction in vendor quotes when using models produced using rapid 

prototyping; vendors felt more confident in their ability to produce a part when they have a solid 

representation of the component to assess [2].  

However, the initial systems had a number of drawbacks over conventional reductive 

techniques, principally in the mechanical properties of the additive materials and in resolution. 

The move from rapid prototyping to rapid machining required these hurdles to be overcome, and 
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subsequent development of more engineering-grade additive materials has started to make rapid 

machining a reality. 

 There are a wide range of different ALM technologies available, ranging from laminated 

object manufacture systems that use thin sheets of material to build up large models, to 

stereolithography machines that use selective curing of photosensitive polymer resins. There is a 

similarly wide range of companies developing and marketing such systems, each with a number of 

customised additive materials. In this chapter, the field of commercial ALM systems will be 

reviewed within the context of their operating principles. Each technology will be assessed with a 

view to applications in micro electrical mechanical systems (MEMS) and microfluidics.  

4.2 Classification of Additive Layer Manufacture 

 As mentioned above, all ALM systems share the same key characteristics: the final 

component is produced in an additive process, which is itself automatic, and requires no 

intervention during the fabrication steps. A large number of ALM systems have since been 

developed, all with their own strengths and weaknesses.  

 
 
Figure 4.1 – Classification of additive layer manufacture (ALM) systems, as found in Liou 2008 [2]. 
 

However, all these systems can be described according to the pre-process material they 

work with: liquid-based, solid-based and powder-based [2]. Liquid-based ALM systems, such as 

stereolithography (SLA) and inkjet technologies, utilise a liquid pre-polymer mix, that is cured 
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using light, normally ultra-violet (UV). On the other hand, solid-based systems manipulate thin 

polymer or metal films to form 3D objects. Finally, powder-based ALM involves the fusing of 

sequential layers of metal or polymer powder using a laser. This classification is shown in Figure 

4.1, and will be expanded upon in this section. 

4.3 ALM System Selection 

When choosing a rapid manufacturing system, there are a number of factors to take into 

consideration and a wide variety of manufacturers and machines available commercially. When 

looking towards microengineering, we are perhaps swimming against the tide, as the majority of 

systems are being tailored towards larger build envelopes, in order that larger or multiple 

components may be fabricated in a single build. Our applications however require a high 

resolution, which may be achieved by compromising the build volume. Material strength is key in 

some large-scale applications. However, most microengineering components are not subjected to 

a large amount of stress in use, and their scale means the material is proportionally stronger in 

any case. Of course, price is also a consideration. 

Powder-based systems such as SLS apparatus possess reasonably high resolutions, but are 

unsuitable due to the excess material being nearly impossible to remove from internal 

microfluidic channels. Similarly, solid-based technologies such as LOM systems are unsuited to 

applications with internal features. FDM apparatus are popular in macroscale industrial roles, in 

part due to their use of proven engineering polymers. However, their resolution is not sufficient 

for microengineering applications, and small overhangs require solid supports. 

This left the liquid-based SLA (stereolithography) and 3DP (3D printing) technologies. 3DP 

in theory has an excellent price/resolution point, but its mechanism requires supports for any 

given type of overhang, again precluding any use for internal structures. This leaves SLA 

technology. Although laser-based machines are capable of good resolutions and have large build 

volumes, their higher price makes them unattractive for use in research, as shown in Table 4.1. 
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Table 4.1 – Costs of ownership for EnvisionTEC Perfactory Mini Multi-Lens projector-based MSL system, and 
a range of competing laser-based systems produced by 3D Systems. 3D Systems Viper and iPro 8000 “Min 
Resin Fill” cost based on lowest cost resin available and the quoted fill; iPro 9000XL resin capacity is not 
quoted directly and is therefore estimated in comparison to the iPro 8000 build envelope. Perfactory “Min 
Resin Fill” cost based on a full resin tray of 500 ml, and a cost of £225 per 1.5 litres. All costs listed without 
value added tax (V.A.T.) and were correct as of Q1 2010. 
 

The author believes that a good compromise can be found in the EnvisionTEC Perfactory 

range of systems. These SLA systems, described above, give resolutions of around 20-25 µm. 

Although laser-based SLA systems are capable of similar resolutions, they are also several orders 

more expensive. This is due to the much larger build volume afforded by the technique, which is 

not as critical in microengineering applications. Another major cost consideration is the fact that 

laser-based systems build down into a large resin vat. This means that the volume of resin 

required for operation is far higher, up to £200,000 for the iPro 9000 XL (price correct as of Q1 

2010, excluding V.A.T.).  

The materials used for stereolithography are polymer-based, making them suitable for 

disposable medical and biological applications, and the acrylate resins are generally 

biocompatible. Another vital aspect of the EnvisionTEC range is the ability to produce complex 

internal geometries easily, without a filler material. The solid support materials used by 3D 

printing, and the excess powder used to create internal cavities in powder-based techniques 

precludes both these devices from selection. Liquid based SLA systems require the removal of 

liquid resin from internal cavities post fabrication, which is much more practical at small scales. A 

closer look at the EnvisionTEC range of SLA systems follows in the following sections. 
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4.4 Stereolithography 

The original ALM systems were based on the process of stereolithography, which uses 

ultraviolet (UV) light to selectively cure photosensitive liquid into solid models. There are a 

number of ways this can be achieved, but the most common way is by using a laser to cure the 

top region of a vat of resin, a method also known as single-photon stereolithography.  The basic 

principles of this system are shown in Figure 4.2. A Z-mobile build platform is immersed in a resin 

vat, and is positioned a short distance below the surface of the resin. The layer of resin between 

the top of the resin vat and the build platform is cured by rastering the laser across the area of 

resin to be cured, and this cured region sticks to the build platform. The Z-platform moves down a 

defined distance, and a sweeper bar moves across the layer. The process then repeats, with 

overlapping sections of each layer adhered together by chemical crosslinking. 

 

Figure 4.2 - Steps used in laser-based stereolithography. In (a), a laser cures a thin layer of resin between 
previously cured resin and the top of the resin vat. The build platform subsequently lowers by a layer 
thickness (b), and a sweeper blade then moves across the surface of the resin and freshly cured polymer (c). 
The process then repeats, as the laser cures the next layer of resin (d). 
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The first commercially available stereolithography system was produced by 3D Systems 

[3] in 1987; it was also the first commercial ALM system. As a result, 3D Systems hold the 

registered trademark for the acronym “SLA” (Stereolithography Apparatus). The company now 

offers a range of “solid imagine systems”, including SLA, fused deposition modelling and selective 

laser sintering devices. The SLA system range includes both the Viper™ and iPro™ devices, both of 

which use the method described above, sporting resolutions in the sub-200µm range. 

This process is known as single-photon SLA as the photons emitted by the laser are used 

directly in the curing process, and are of the specific wavelength required by the photoinitiator to 

start the curing sequence. This limits this mechanism to curing only exposed resin at the top of 

the vat of resin, and therefore requires the sweeper mechanism to form a fresh layer of resin 

between the sequential laser exposures.  

Another type of SLA, known as dual-photon, avoids this problem by exposing the resin 

selectively to photons of a secondary wavelength. The laser optical system is set up to allow 

focussing in 3D within the entire resin vat. Although the primary photon beam emitted by the 

laser is not of the correct wavelength to cure the resin, it is specifically set to excite a fluorescent 

component of the resin. When excited above a certain energy level, the fluorescent component 

releases a secondary photon which is specific to the resin photoinitiator. By carefully controlling 

the laser focus to only deliver sufficient primary photon (or energy) density in a small defined 

area, localised curing within the resin can be achieved. The process is outlined in Figure 4.3.  

This technique has not yet been used in a commercial system. However, it has most 

famously been used by Kawata et al [3] in their brief communication in Nature journal in 2001. 

The paper presented a series of microstructures fabricated in a urethane-acrylate resin, cured 

using a primary infrared laser. One of the microstructures is shown in Figure 4.4. 
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Figure 4.3 – Mechanism employed by dual-photon SLA systems. Main process details in text. Cut-out shows 
the secondary photon release (yellow) causing the initiation of curing within the resin. 
 

 
 
Figure 4.4 – “Micro-bull” presented by Kawata et al [3] in 2001. The structure is just 10 µm long and 7 µm 
tall (length scale bar = 1 µm), and was fabricated using a urethane-acrylate resin exposed to a primary infra-
red laser beam focussed in 3 dimensions. The resolution of the proprietary system was 150 nm, and the 
structure was fabricated over a period of 3 hours. 
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Figure 4.5 - Steps used in projector-based stereolithography. The Z-axis mobile build platform (a) moves 
down into the resin tray, creating a layer of resin which is subsequently cured by the masked output of a 
projector mounted below the tray (a). The build platform moves up one layer thickness, and the process is 
repeated (b). This sequence is repeated until the final build rises out of the resin tray (c). 
 

A different single-photon mechanism is used by EnvisionTEC’s series of Perfactory® SLA 

systems [4]. The Perfactory® range uses the output of Digital Light Processing (DLP) projectors, 

rather than lasers, to cure photosensitive resins. The technology behind the DLP projectors is 

discussed later in this chapter. At a basic level the mechanism can be seen as an inverse of the 

normal SLA process, and is shown in Figure 4.5. Instead of the resin layer for curing being formed 

between the top of a large vat of resin and a build platform, it is formed between the build 

platform and the bottom of a shallow transparent resin tray. The projector is fixed below the resin 

tray, and is focussed onto the gap between the build platform and the resin tray. The projector 

outputs sequential masked bitmaps for each fabricated layer, with the build platform moving up 

one layer thickness between each exposure, carrying the previously cured resin. This design has 

the dual cost advantages of not requiring expensive laser devices and optics, along with requiring 

far less resin in the build tray, reducing material costs. The EnvisionTEC range of SLA systems is 
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also summarised in Table 4.2. Although a number of other systems are advertised on the 

company’s website, these are derivative of those systems listed in the table, targeted at specific 

applications such as dentistry and sacrificial casting.  

One disadvantage of single-photon SLA systems is the handling of overhangs. Every 

fabricated layer must have some form of connection to the build platform; it will otherwise not 

travel with the rest of the fabricated component when the build platform moves. In order to allow 

the fabrication of overhangs, separate support structures can be generated by specialised CAD 

software such as Materialise Magics [5], which analyses the 3D model for unsuitable overhang 

features that require support, and creates the support structures.  

Support structures in SLA systems are designed to be mechanically weak, but are strong 

enough to allow the overhang fabrication. This weakness is useful in post processing, as the 

support structures are easy to remove from the build. However, support structures may also be 

required for internal overhangs in monolithic builds, but cannot be removed after fabrication. As 

a result, certain internal structures may have fabrication faults, and consideration may be needed 

towards the splitting of the part into multiple builds to avoid this problem. Further discussion of 

support structures used in other ALM systems can be found later in this section, with detailed 

discussion of those structures used in the EnvisionTEC range of machines in the relevant section 

towards the end of this chapter. 

 A subset of more recently developed SLA systems are known as microstereolithography 

(MSL) devices. These systems are defined by their higher pixel resolution, normally below 100 

micron. However, it could be said that this definition is no longer required, as nearly all 

commercially available SLA systems from 3D Systems and EnvisionTEC could be classed as MSL 

apparatus. The next major boundary is therefore nanostereolithography (NSL), with sub-micron 

resolutions.  
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Although these systems differ only in resolution to standard SLA machines, in practice 

their use and applications differ [6]. Often high resolutions come at the price of job throughput 

and build area; for example, several of the 3D Systems devices offer a “high definition” mode that 

sacrifices build area to achieve smaller feature sizes. In the projector-based EnvisionTEC systems, 

the output of the projector is simply focused onto a smaller area to achieve the same effect. It has 

also been noted that although support structures are still required for undercutting structures, it 

is needed less for MSL systems as small horizontal structures being produced are able to self-

support. The relative viscosity of the resin at such small scales also helps hold fabricated 

microstructures in place. 

 One major disadvantage of stereolithography is in the material properties of the cured 

resins. As materials have to be blended in such a way that they are photocurable, and the 

monomers used must be liquid when uncured. As a result, the material properties of the cured 

material are often not ideal. Material costs also tend to be quite high compared to other systems. 

Furthermore, freshly fabricated material removed from SLA machines is normally only around 

80% cured, and thus post-curing is required in a UV lightbox. Finally, machine calibration and 

initial setup can be time consuming. 

Despite these drawbacks, it is clear that no other ALM mechanism outside of liquid-based 

3D printing offers the potential resolution of SLA systems. The resolution is limited only by the 

focus ability of the optics utilised, and the material strength issues are less of a problem at the 

scales required in micro- and nanostereolithography applications. 
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4.5 EnvisionTEC 

4.5.1 Company Profile 

 EnvisionTEC [4] was formed in 2002 in Marl, Germany, and have since developed and 

marketed a range of unique Digital Light Processing™ (DLP) projector-based SLA systems. They 

have also developed a range of acrylate, wax and epoxy based rapid manufacture materials. 

EnvisionTEC has focused its research into 2 main markets: medical applications, such as hearing 

aid earpieces and dental crowns, and the rapid production of sacrificial wax-based components 

for the jewellery industry. According to its own literature, the company enjoys a 60% market 

share in the hearing aid earpiece market, along with a 50% share of the jewellery industry’s 

market for rapid manufactured wax moulds [7]. However, it also produces machines targeted at 

general industrial rapid prototyping and machining, toys, animation and tissue engineering. 

4.5.2 ALM System Range 

 The EnvisionTEC range of SLA systems can be divided into 3 categories. The first is the 

only EnvisionTEC developed system not to use a projector – the Perfactory® 3D-Bioplotter. This 

system instead uses fused deposition modelling (FDM) techniques, as used by a large number of 

EnvisionTEC’s competitors. The system has been developed for use with biocompatible materials, 

such as biodegradable polyesters, for use in tissue engineering applications. 

 The PerfactoryXtreme® and PrefactoryXede® systems are very similar in mechanism to 

laser-based SLA devices. Developed comparatively recently, they employ the large resin vat used 

in the SLA devices produced by 3D Systems. However, instead of using a laser to cure the resin, a 

projector is positioned above the resin, focused down onto a Z-mobile build platform. These 

systems have advantages in acquisition costs over laser-based systems, and are able to produce 

much larger parts than the other projector-based EnvisionTEC systems. However, this comes at a 

price premium over the other machines in EnvisionTEC’s range. 
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Projector 
resolution 

(Pixels, X/Y) 

Native resolution 
(µm, X/Y/Z) 

Build area  
(mm, X/Y/Z) 

ERM 

Perfactory® 
Standard Zoom 

1400 × 1050 86 × 86 × 25 120 × 90 × 230  

Perfactory® Mini 
Multi-Lens 

2800 × 2100 42 × 42 × 15 84 × 63 × 230  

Perfactory® Mini 
Multi-Lens (2007) 

1400 × 1050 20 × 20 × 25 28 × 21 × 230  

Perfactory® Desktop 1024 × 768 40 × 40 × 35 40 × 30 × 100  

PerfactoryXede® 2100 × 1400 128 × 128 × 25 457 × 304 × 508  

Ultra 1600 x 1200 158 × 158 × 20 254 × 190 × 203  

Perfactory® 
3D Bio-Plotter™ 

- 50 × 50 × 50 300 × 300 × 300  

 
Table 4.2 – Summary of the range of EnvisionTEC rapid manufacture SLA systems. In the case of systems 
with multiple resolution options, the highest resolution system specification is shown. Additional derived 
options listed on the company website are simply application-targeted versions of the machines above – see 
text for further information. The specification of the 2007 Perfactory® Mini Multi-Lens used in the Sensors 
Research Laboratory. ERM = Enhanced Resolution Module; DSP = Digital Shell Printer (hearing aid industry 
specification). 
 

The final group contains the Standard, Mini Multi-Lens, Desktop and Ultra systems, in 

where the projector sits below a transparent tray containing the photosensitive resin. The 

mechanism used by these systems has been described previously, and is outlined in Figure 4.5. 

A summary of the EnvisionTEC range of SLA systems is shown in Table 4.2. There is a 

variety of variations on each system, with derived machines either having different options in 

terms of build area and resolution, or are set option packs aimed at specific applications such as 

dental or the jewellery industry. Both the Desktop and Standard Zoom Perfactory® systems have 

“Digital Dental Printer” (DDP) and “Digital Shell Printer” (DSP) variations, target at the rapid 

manufacture of dental moulds and hearing aid components respectively. The EnvisionTEC Aureus 

is a Perfactory® Desktop unit with a higher resolution projector aimed at the jewellery industry, 

whilst the Perfactory® Standard UV option is fitted with optics capable of outputting higher 

frequency ultraviolet light, allowing the curing of the specific UV materials discussed in more 

detail later in this section. Finally, the PerfactoryXede® has a lower-resolution sibling known as 

the PerfactoryXtreme®. 



 Chapter 4 – Additive Layer Manufacture 
 

92 
 

4.5.3 Digital Light Processing Technology and the DMD Chip  

All EnvisionTEC SLA systems are based on high-resolution DLP black and white projectors. 

DLP technology was developed in 1987 by Texas Instruments, and employs a digital mirror device 

(DMD) [8]. This chip consists of up to 2 million individual microscopic mirrors in a grid, each of 

which is mounted on a microhinge. These microhinges allow the angle of the mirrors relative to 

an incident light source to be varied into either an “on” or “off” position via an electrostatic 

actuation system. Mirrors in the “on” position reflect the incident light towards the output optics, 

generating a white pixel; mirrors in the “off” position reflect the incident light away from the 

optics, resulting in a black pixel. The mirrors can however be switched between the two states at 

around 2 kHz, allowing a 1024-colour greyscale to be produced, with a mirror switching at 50% 

duty cycle outputting a grey in brightness half way between white and black. 

DLP chips are available in either 1- or 3-chip devices. In a single chip device, the input 

white light, produced by a high-performance bulb, is filtered through a filter wheel that uses a 

series of both primary and secondary colours in sequence. The filter wheel is synchronised with 

the DLP chip, and the activity of each mirror on each filter pass is dependent on the levels of each 

filter colour in the final output pixel. Due to the high speed switching, the output image appears 

as a moving colour image by the human eye. Devices using this DLP mechanism are generally 

found in consumer devices such as high definition projection televisions, business projectors and 

home theatre systems, and are capable of creating up to 16.7 million separate colours (“high 

colour”). An additional filter is used by all DLP projection devices to prevent any non-visible 

radiation in the input beam reaching and damaging the chip. The EnvisionTEC SLA systems use 

single-chip DLP projectors without the colour filters, as only a black and white image is required. 

This does not mean that the mirrors are used in only “off” and “on” states continuously, as the 

mirror modulation is used in the flux calibration of the focused light output. 
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Figure 4.6 – Comparison of (a) single chip and (b) 3-chip DLP projection systems. Taken from DLP.com [9]. 
 

 Higher-end DLP projection devices, such as cinema projectors, use a 3-chip approach. 

White light from the input source is split into the primary colours using a prism. Each of the 3 

primary colour beams is focused onto its own DLP chip. The output from the chips is then 

recombined to form the final full colour image. This mechanism produces a brighter, higher 

quality image, and produced an enhanced colour gamut of 35 trillion colours (“deep colour”). The 

differences between single- and 3-chip DLP systems are shown in Figure 4.6. 

4.5.4 Enhanced Resolution Module (ERM) 

All EnvisionTEC systems employing a projector system, with the exception of the Desktop 

series, have an optional component called an enhanced resolution module (ERM). This system 

allows two masks to be generated for each layer to be fabricated, the second with the pixel grid 

shifted half a pixel width across and down in the X- and Y-axes respectively.  

The ERM mode does not change the resolution of the projector; the smallest theoretically 

feature size achievable is still one pixel. However, the pixel placement accuracy is doubled, 

allowing smoother component edges where such edges are not parallel to the pixel matrix, and 

allowing non-exposed areas theoretically half the diameter of the original system. The advantages 

and limitations of this system are shown in Figure 4.7. 
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Figure 4.7 – Demonstration of the effect of the enhanced resolution module (ERM) fitted as an option on a 
number of EnvisionTEC Perfactory ALM systems. (a) shows the image mask generated for a layer in a build 
processed by the EnvisionTEC Perfactory RP software. (b) shows the complementary mask produced for the 
ERM mode, with the pixel mesh offset diagonally by half a pixel diagonal width. (c) shown the composite 
image of (a) and (b), giving a smoother edge. (d) shows the limitations of the system, with the minimum 
solid feature size still being one pixel (white squares, top left), whilst the theoretical hole size is ¼ the area 
(black squares, middle right), which can be extended to decrease the minimum trench width and minimum 
wall width (lower right). 
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4.6 Additive Layer Materials 

 EnvisionTEC have developed a range of photocurable materials, aimed at applications 

including general prototyping, dentistry and sacrificial casting. The materials tested by the Sensors 

Research Laboratory are outlined in Table 4.3. The system was purchased in order to produce 

high precision, low-head space customisable sensor covers, the vast majority of which are 

produced in R11, as it is a general purpose prototyping material. In reasonably large bulk, over 

around 1 mm2, it is a relatively stiff, non-brittle material. However, in smaller features it can 

become weak, although it retains enough strength to retain some elastic properties.  

Material Name Tensile Strength 
(MPa) 

Young’s 
Modulus (MPa) 

Hardness 
(Shore) 

Application 

R11 49.7 - 86 
General 
prototyping 

PIC100 16.8 - 69 Sacrificial casting 

eShell 200 57.8 2,400 83 Hearing aids 

RCP25 Nanocure 46 4,890 93.1 
General 
prototyping 

 
Table 4.3 – Summary of materials evaluated by the Sensors Research Laboratory using the EnvisionTEC 
Perfactory Mini Multi-Lens rapid manufacturing system. Data taken from EnvisionTEC data sheets [10]. 
 

eShell 200 and RCP25 Nanocure are both stronger bulk materials, but are too brittle to 

use in situations where flexibility is advantageous. Both are also significantly more viscous in their 

uncured form, with Nanocure in theory requiring a heated resin tray in order for the resin to keep 

a useable consistency. PIC100 was deemed as a too soft material for microengineering 

applications, which is not surprising as it is a wax-based material that it targeted at sacrificial 

casting applications. As a result of both the material properties and practical experience of 

producing parts with the materials, R11 was deemed the most promising resin for 

microengineering applications. 
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4.7 SLA System Operations 

 The Sensors Research Laboratory has owned a number of EnvisionTEC Perfactory Mini 

Multi-Lens systems, each with a higher specification and resolution than the previous. The 

microneedle research in later chapters was carried out using a machine with a 30 × 30 × 25 µm 

X/Y/Z resolution. However, in 2007, a new model was purchased, with a higher 20 × 20 × 25 µm 

specification. This machine is shown in Figure 4.8, and was used in the development of MSL 

micropumps, also discussed in later chapters.  

 

Figure 4.8 – Photograph of the EnvisionTEC Perfactory Mini Multi-Lens rapid manufacturing system 
purchased by the Sensors Research Laboratory in 2007. It has a 20 × 20 × 25 µm X/Y/Z resolution. 
 

In this section, the physical and software operations required to fabricate components 

using the SLA system are outlined, followed in the next chapter by a showcasing the capabilities of 

the machine via a series of functional components fabricated during the course of this project, 

along with specific test builds. 
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4.7.1 Machine Build Operations 

 Although the concepts behind fabricating components using the Mini Multi-Lens system 

are shown in Figure 4.5, this does not explain the workflow used in practice. Before fabrication 

can start, the machine must be turned on, and allowed to go through its start-up procedure. Once 

this is complete, the projector must be initialised, and allowed to warm up. It has been found a 

warm-up period of around 20-30 minutes is sufficient for the bulb to reach peak light output. The 

projector output is then briefly calibrated, a process that will be discussed in a later section. Once 

these steps are completed, the system is ready to receive data and begin fabrication. 

 

Figure 4.9 – Workflow for fabrication of components using the EnvisionTEC Perfactory Mini Multi-Lens 
system. Explanation in text. 
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 The workflow from this point onwards is shown in Figure 4.9. The part to be fabricated is 

produced using the SolidWorks CAD package, although any software with an STL (standard 

stereolithography CAD file type) export option can be used. Once the design is complete, the data 

is saved in STL format. Depending on the geometries required, this file can either be edited using 

Materialise Magics software, or loaded directly into the EnvisionTEC Perfactory RP package. 

Details of the software used can be found in later sections, but in simplest terms the RP software 

slices the CAD model into a series of 2D slices, each of which is represented by a PNG file. Each 

PNG is projected in series, with the build platform rising one layer thickness each time, to form 

the complete part. 

4.7.2 Post Processing Operations 

 Once the build has completed, the build platform rises above the resin, carrying the 

fabricated component to a position where both can be removed from the system. A simple screw-

thread locking system allows the platform to be locked or released from the machine. The 

component is removed from the build platform using a hobby-knife, which is used to break the 

surface tension between the platform and component.  

At this point, the component is still covered in liquid resin, the amount dependant on the 

amount of time the build has been able to “drip dry” into the resin tray after fabrication has 

finished. The excess resin is removed by washing in isopropanol, which emulsifies the resin. This 

process can be sped up using an ultrasonic bath, although it has been found that prolonged 

periods of cleaning can damage delicate parts. This is partially due to over-cleaning, as the 

isopropanol will start to attack the hardened resin once the liquid excess has been removed, but 

also due to the force of the ultrasound creating stress in the component. 

 Once cleaned, the part is allowed to air dry to remove any solvent. This may be 

accelerated by the use of syringes or compressed air in parts with internal fluidics or structures. 

Finally, the part is fully cured using the Otoflash (pictured in Figure 4.9) or Metalight QX1 
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lightboxes. In order to save build time, the Perfactory range of machines do not 100% cure the 

resin layer by layer, but instead cure to a level of around 60-70%. This allows the cured resin to 

become solid, but post-curing is required to fully solidify the structure.  

The Otoflash unit uses strobe lights to produce the required light wavelength, and dosing 

is controlled by setting the number of flashes, at a rate of 10 per second. The Metalight is 

theoretically less powerful, but produces a more consistent light level via always-on fluorescent 

tubes, with the dosing controlled in minutes of exposure. It has been found that the Otoflash is 

usable for builds with large bulk, but can heat up smaller components, causing surface cracking. 

However, this can be avoided using multiple short bursts of curing, rather than a single long one, 

with cooling periods in between. Unless otherwise stated, the post-curing process used for 

components listed in this thesis is either 3000 flashes (5 minutes) in the Ottoflash, in 1000-flash 

bursts, or 15 minutes in the Metalight QX1. 

4.7.3 Calibration 

 In order to maintain build quality, it is necessary for regular calibration to take place. 

These can be divided into 2 categories, initial setup procedures and regular procedures. During 

initial setup, the Z-axis platform must be calibrated so the system knows where the resin tray is in 

relation to its upper stop point, which is found accurately using an integrated pressure sensor. At 

the same time, the resin tray support mechanism must be made parallel to the build platform. 

Failure to complete this can result in damage to the machine, as the platform may crash into the 

tray, or failure of builds, as the platform will not get close enough to the tray for the cured resin 

to stick to the platform. 

 The Z-axis initial calibration uses a “calibration tray”, which has the same thickness (2 

mm) as a standard resin tray, but lacks the sidewalls that would interfere with the calibration 

process. The tray is shown in situ in Figure 4.10. The Z-axis platform, with build platform installed, 

is manually lowered until it is a short distance from the calibration tray, which has been covered 
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with a piece of clean A4 paper. The paper is used to protect the calibration plate, as a 100 µm 

thick steel feeler gauge is pushed underneath the 4 corners of the build platform. If one or more 

corners are felt to be “stiffer” in gauge insertion than the others, the calibration tray holding 

mechanism can be altered in its orientation using the spring-loaded screws on each corner. 

 
 
Figure 4.10 – EnvisionTEC Perfactory Mini Multi-Lens system with calibration plate inserted in place of the 
resin tray. Also pictured is the integrated light sensor. 
 

This process carries on, normally with multiple adjustments, until the operator is 

reasonably certain that each corner is as close to the calibration tray as possible, and that 

therefore the tray and build platform are parallel. The paper is then removed, and the Z-axis 

platform is moved down 300 µm – 100 µm for the paper, 100 µm for the feeler gauge, and 100 

µm to allow for operator error. The build platform is then flush against the calibration plate, and 
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this value is taken as the “zero” point for the Z-axis. A further menu allows for the system “pre-

pressure” to be set. At the start of the build, the platform lowers to the zero position, and then 

moves a set distance further, normally around 50 µm. This extra pressure, against the silicon-

coated tray, creates and extra-thin layer of resin to be cured, which enhances the adhesion of 

subsequent layers to the build platform. 

Once the position and orientation of the resin tray has been fixed, the projector must be 

focused. Due to the short distance between the projector lens and the resin tray (around 150 

mm) and the high resolutions involved, even small changes in the position of the resin tray can 

cause the projector not to be focussed exactly onto the top of the resin tray, where each layer is 

cured. The calibration process however is somewhat crude. One operator must reach into the 

machine, and take hold of the focussing ring of the projector lens. A second operator loads the 

calibration plate, and places smoked paper across it. In the focussing calibration mode, a fine 

detail mask is projected, which the second operator views through an eye piece through the 

smoked paper. The first operator then moves the focussing ring back and forth, until the second 

finds the point at which the image is in focus, and the procedure finishes. As mentioned above, 

this system is rather crude, and could do with automation. However, it is possible for a skilled 

operator to reach a good level of accuracy. 

Another initial setup calibration is the size of the build area. This can vary with the exact 

position of the resin tray and the projector focus post calibration. Again, this is measurement is 

taken in a slightly haphazard method, using the smoked paper and a pair of callipers. The 

projector emits across its whole projection area, which shows as a rectangle on the smoked 

paper. This can then be measured using the callipers in the X/Y axes. The measurements are 

entered into both the machine via its keypad, and into the Perfactory Configuration Center (see 

below), through which the further calibration option of the “cube job” is available. This job file 

builds cubes of a predetermined size in the corners of the build area, which can be measured in 
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turn to check that both the size of the parts is accurate and the build area is rectangular. Defects 

in the shape of the build area can be caused by the projector not being parallel to the resin tray, 

which can be set up using a spirit level on both the calibration plate and the projector itself. The 

projector frame can then be altered using integrated screw threads until it is parallel with the 

resin tray. 

There are two types of calibration that must take place every time the machine is 

switched on. Due to variations in the light output of the projector bulb over time, it is necessary 

to calibrate the projector brightness. This is carried out with the calibration plate inserted. The 

Perfactory Mini Multi-Lens system has a built-in light sensor, pictured in Figure 4.10, which is used 

to measure the light output of the projector. In the projector brightness calibration procedure, a 

round masked output is projected through the calibration plate, with the diameter of the light 

beam being slightly larger than that of the light sensor. The operator places the light sensor over 

the output beam, and the light level is read off the integrated liquid crystal display of the system. 

The light level can then be increased or decreased by the operator, in steps of around 5-10 

mW/dm2. For R11, the recommended light level is around 600 to 620 mW/dm2, but tests found 

that a lower level of 580 mW/dm2 produced less “over-cure”, where the curing process in 

overhanging areas was too high. This thickened the overhanging structure, resulting in geometry 

defects. 

Once the projector brightness has been set, the “grey mask” must be calibrated. As 

mentioned earlier, the DLP chips employed in the Perfactory Mini Multi-Lens projector have many 

micro-scale mirrors, which can be switched between “on” and “off” positions. This is a digital 

process, but the mirrors can be driven by pulse width modulation to produce shades of grey. It is 

found that different areas of the DLP chip can be more reflective than others, requiring a 

calibration step to ensure that the light level is consistent across the whole build area allowed by 

the projector.  
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Much as with the projector brightness calibration procedure, a round masked beam is 

projected up through the calibration plate, which the operator once again places the light sensor 

over. The light level is measured, and the operator confirms a stable reading has been reached by 

pressing the machine’s “Enter” button of the machine. The next beam is then projected onto the 

build area, working from top left to bottom right, moving in rows left to right across the build 

area. A total of 48 individual readings are taken, which overlap to allow better calculation of the 

average light level. Once the procedure has been completed, the lowest and highest light levels 

are displayed, along with the percentage difference between them, which can be used to 

diagnose problems with the DLP chip. On average, a non-calibrated system will have a max/min 

difference of around 10-15%. The projector then outputs across the whole of the build area, 

allowing the operator to check the grey mask settings with the light sensor. An observable 

difference of 10% across the range is acceptable, although in practice a value of less than 5% is 

easily achievable. 

4.8  Software 

4.8.1 SolidWorks 

 SolidWorks is a 3D CAD package designed for applications such as automotive design. At a 

basic level, it works on the principle of “solids”, where 2D geometric shapes are extruded to form 

simple structures. Multiple planes can be created for the creation of more complex compound 

shapes, along with extruded cuts. Extruded cuts and bosses can be defined either simply by a 1D 

direction, or in shapes that are more complex by using a path drawn on a perpendicular plane. 

Shapes can be mirrored, or patterned across a surface, with the patterns either being defined 

linearly or over curved paths, defined either by edges on the component already created or using 

lines in separate drawings. There are built-in text tools, which allow embossed labelling, along 

with other finishing tools such as chamfer options. Importantly, the program allows the export of 

high-resolution STL files for use in the rapid manufacturing systems. 
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 The package also includes a number of more advanced features, such as the ability to 

build large working assemblies from multiple CAD structures. Relations, or “mates”, can be added 

between each part to define their interactions, and complex systems such as car engines can be 

linked together as they would be in real life. This allows an extra layer of prototyping and testing 

for large-scale applications, but is less useful in microengineering applications where most of the 

parts built are monolithic. SolidWorks also has the option for direct output of CAD data in a 

technical drawing format. These drawings can also be exported as DXF and DWG files (AutoCAD 

etc). Finally, the built in mechanical testing software, COSMOSWorks can be used in a number of 

configurations, including calculation of mechanical stress, fluid dynamics calculations and in areas 

such as heat transfer through a structure. 

4.8.2 EnvisionTEC Perfactory Start Centre 

 Every rapid manufacturing system on the market has its own dedicated software package, 

and the Perfactory Mini Multi-Lens is no exception. EnvisionTEC bundle the Perfactory Start 

Centre with the system, which acts as a gateway to 5 main programs. The Perfactory Buildstyle 

Editor is used to create configuration files for custom materials on the Perfactory Desktop series, 

and is not used with the Mini Multi-Lens (this function is instead carried out by the Perfactory RP 

software). The Perfactory Configuration Center assists in machine setup, with administrative and 

calibration options, such as the ability to compensate for component shrinkage during post-

processing (not found to be a problem with the small-scale builds used during this project). 

The Perfactory RP software has two main areas, the first of which is shown in Figure 4.11. The 

front-end of the program is a simple 3D viewer, which allows the user to load CAD data in STL 

format, and then rotate and translate the components either individually or as a group. Once 

rotated into the correct plane, the software can also automatically place the multiple parts, in 

some cases rotating them in order that more complex geometries may fit in the build area. 

Support structures created using Materialise Magics (see below) can be imported along with their 



 Chapter 4 – Additive Layer Manufacture 
 

105 
 

part. Usefully, the supports are locked in position with their component, allowing easy 

manipulation of their parent part without having to worry about the positioning of the supports 

as well. 

 The second part of the Perfactory RP software allows the setting of the build parameters 

and JOB file creation. The first window, “Parameter for data processing”, allows the layer 

thickness, support structure parameters and diagnostic and repair functions to be changed. The 

layer thickness is normally set during part import procedures, and the program loads the default 

parameters for the resin selection and thickness, with greater thicknesses requiring longer layer 

exposure times. The thickness selection option in this section of the program allows fine tuning of 

the thickness, in steps smaller than the normal 25 µm. 

 
 
Figure 4.11 – Screenshot of the front end of the Perfactory RP software, provided by EnvisionTEC for use with 
the Perfactory Mini Multi-Lens system. Part shown is Mk9 self-priming micropump. The brown area 
represents the build are of the system. 
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Figure 4.12 – Support settings available via the Perfactory RP program, with defaults shown for R11. 
 

 As shown in Figure 4.12, the support structure settings are also customisable. The process 

for creating supports using Materialise Magics is discussed below. The output from Magics is 

processed by the Perfactory RP software, allowing the support thickness, base thickness and base 

height to be altered dependant on the size of the build, with larger parts in theory requiring 

stronger, thicker supports. It has been found however that the defaults for R11 are sufficient for 

most small-scale components. 

 The second window is the “Placement” screen, which groups all the parts placed onto the 

build area into a single bounding box. This box and then be moved around the build area, with the 

default being a central position. The bounding box can also be repeated multiple times if space 

allows, permitting multiple parts to be fabricated without having to import multiple copies. 

 The third and most important window is the “Building Parameter” screen. This allows the 

customisation of nearly all the fabrication parameters. These parameters are shown in Table 4.4. 

As shown in the table, parameters can be set for both “standard” and “burn-in” layers. Layers of 

the component fabricated early during the build process are treated differently to those later 

layers, due to complications in the build sequence. The layers are fully cured using longer 

exposure times, enhancing layer adhesion to the glass build platform. Using default factory 

values, the burn-in layers receive nearly 3 times the exposure of the standard layers. The 

reduction in exposure in standard layers also allows quicker builds, and prevents excessive over-

cure, where unsupported structures such as membranes end up much thicker than designed due 

to the depth of curing increasing with exposure time.  
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Burn-in Standard Min Max 

Exposure time (s) 9.5 3.5 0.5 20.0 

Separation distance (mm) 7.0 4.5 2.0 7.5 

Levelling velocity (mm/s) 0.8 1.05 0.8 1.05 

Peeling velocity (mm/s) 0.8 1.05 0.3 1.2 

Waiting time (Peeling) (s) 30.0 1.0 60.0 0.5* 

Waiting time (Levelling) (s) 2.0 0.5 60.0 0 

 
Table 4.4 – Parameters configurable using the Perfactory RP software. Explanation in text. 

*
 Minimum value 

for burn-in layers is 20 s. 
 

Another set of parameters altered during the burn-in process are those associated with 

the peeling and levelling mechanisms used to separate the freshly fabricated layers from the resin 

tray, whilst still attached to the build platform. Figure 4.13 shows the process of peeling and 

levelling used during the layer fabrication. There are 4 main stages in the fabrication of a single 

layer: curing, peeling, build platform positioning, and levelling. The separation distance defines 

the distance the resin tray moves at the two back corners during peeling, defining the angle at 

which the tray stops moving. The peeling and levelling speeds tell the mechanism how quickly 

they should move the tray to this maximum angle. Finally, the waiting times define a short period 

after both peeling and levelling where the mechanism halts to allow resin to flow in the tray to fill 

the voids left behind by the cured resin that has in effect been removed from the resin tray. 

In burn in layers, the waiting times are increased 30 times compared to the standard 

layer, especially after peeling. This is because the build platform is fully submerged into the resin 

tray, and it takes longer for fresh resin to flow back into the void left behind after peeling. In the 

later standard layers, the majority of the void becomes the part under fabrication, as the build 

platform moves out of the resin. The part is much smaller, and therefore the resin takes less time 

to flow back. The separation distance is also increased during burn-in layers for the same reason, 

increasing the angle of the resin tray and increasing the rate of resin back-flow into the large void 

left by the build platform. The peeling speed is also reduced during burn-in layers, again to allow 

the resin more time to back-flow, but also to reduce the chance of early build failure due to stress 
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during the peeling process. The slower initial peel speed also reduces the stress on the overall 

build mechanism, caused by overcoming the large suction forces exerted by the resin on the build 

platform as it is pulled from the resin. 

 
 
Figure 4.13 – Processes used during peeling and levelling steps of the fabrication mechanism employed by 
the EnvsionTEC Perfactory Mini Multi-Lens system. (a) shows the first layer being cured by a masked output 
from the projector, resulting in a cured layer of resin trapped between the resin tray and build platform (b), 
along with unexposed liquid resin. (c) shows the peeling process, where the resin tray tilts (shown from the 
side for clarity; is from the back of the tray in reality), peeling the fabricated layer from the resin tray. (d) the 
build platform moves up one layer thickness. (e) the resin tray levels to its original position, and the 
mechanism is ready for the projector to cure the next layer. 
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The number of layers fabricated using the burn-in parameters is defined on one of the 

Perfactory RP menus; it is normally set at 400 µm, or 16 times 25 µm fabrication layers. It should 

be noted that in laterally-thin parts, a large burn-in zone compared to the overall thickness of the 

part (30-50%) can cause warping during post-curing. Acrylate resins naturally shrink during curing, 

and as the burn-in layers are already fully cured, the standard layers shrink and bow the structure. 

Often in large builds, especially those using supports (see below) or in parts with multiple, 

small contact points with the build platform, it is advisable to set up a “base plate”. This is a flat 

structure, defined by the bounding box of the part under fabrication, which is built before the 

layers of the component. It is normally set at 400 micron thick, and therefore normally contains 

the entire burn-in zone. The component, including any supports, is then built on top of this 

structure as if it were the bottom of the build platform. 

The majority of the components presented in this thesis were designed not to require a 

base plate, and could be built directly off the build platform. However, it has been found that a 

base plate is advisable in any builds where the total area of any given layer in the component 

exceeds around 150% of that of the first layer fabricated. The vast majority of builds in this 

category performed without a base plate will fall off whilst the larger area layers are being 

fabricated, as the suction force of the new layer against the resin tray overcomes the adhesion of 

the component to the build platform. However, any components with open features that 

terminate in the first layers of a build should not be used with a base plate, as the plate will 

naturally block these features. 

The fourth and final window in the Perfactory RP software allows the user to customise 

how the JOB file is created. A JOB file contains the masks for each layer of the build, in PNG image 

format, along with a pair of configuration files that contain the build settings decided on by the 

operator. This file can either be simply saved to disk, or transferred to the Perfactory Mini Multi-

Lens system directly, either with or without saving to disk. Once all the options have been 
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selected, the Perfactory RP software can be instructed to process the component(s) into a JOB 

file.  

Once the data has been transferred to the Perfactory Mini system, control is handed over 

to the Perfactory Direct program. This is a simple window that shows the status of the machine, 

including what JOB file it is currently building, along with the time passed and remaining in that 

fabrication process. It also allows the uploading of pre-prepared JOB files to the machine, which 

can be queued and ordered, as well as cancelled remotely. However, it is not possible to begin the 

build process from the software; this must be done directly by an operator. 

The final piece of software offered by the Perfactory Start Centre is the Perfactory Job 

Modifier. This package allows the viewing of pre-prepared JOB files, showing the parameters they 

were processed for (e.g. peeling speed etc.), and allows these parameters to be changed and 

saved without having to re-process the file from scratch. It also allows the individual mask files to 

be viewed, either in a multi-mask grid view or in a closer-zoom individual view. This can be useful, 

as it has been known on occasion for mistakes to occur during the STL file processing steps, which 

can lead to aberrations in the masks created by the Perfactory RP software. One such bug can 

occur if the SolidWorks CAD software is set to export STL files with an angle accuracy of less than 

2 degrees, as this can cause swept cut shapes to be missed out of the STL, blocking complex 

internal fluidics.  

A separate bug in the Perfactory RP software can sometimes occur when the “Close holes 

automatically” option is checked, under the diagnostic options of the first window of the 

Perfactory RP JOB file processing options. This mode closes what are assumed aberrations in the 

STL file, which can occur in larger CAD files. However, small-scale internal structures such as those 

found in microengineering components can be mistaken for aberrations and closed up, again 

blocking internal fluidic channels. As a result, in the majority of the builds shown in this thesis, this 

mode has been turned off.  
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4.8.3 Materialise Magics 

 As mentioned above, a number of build geometries may require support structures in 

order that they may be fabricated properly. Magics, unlike SolidWorks, can be used to directly 

edit STL files, in theory allowing components to be created directly in Magics. However, the 

design tools are less sophisticated than those found in SolidWorks, and often design in Magics 

requires the direct manipulation of the model triangles, which is somewhat cumbersome after 

long-term use of the simple interface of the SolidWorks software. 

However, the major use for the Magics package in practice is in the production of support 

structures. As shown in Figure 4.14, it is not possible for the Perfactory Mini Multi-Lens system to 

fabricate overhangs that double-back on the main component structure. In order for these 

geometries to be copied from the CAD data, support structures can be created. The Materialise 

Magics software package has a number of advanced functions for the identification of impossible 

overhang geometries and for the design of suitable supports. 

 Support structures are needed due to the requirement for every feature of the 

component being fabricated to have some kind of contact directly down to the build platform. 

Features without this required contact do not resolve properly during fabrication, and are left 

behind on the resin tray. Support structures are created to bridge the gaps between the build 

platform and the overhang, and consist of a number of flat vertical walls, topped by a number of 

teeth structures that connect the walls to the build geometry. The teeth are thin enough on 

contact with the component structure that they can be easily snapped off by hand during 

postprocessing, normally after the isopropanol wash step, but before postcuring in the lightbox. It 

is often necessary to subject the component itself to a second isopropanol wash after support 

removal, to remove any excess resin that may have been trapped between the often-complex 

support structures and the component. 
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Figure 4.14 – Geometry conditions where support structures are required. (a) shows a CAD geometry that is 
impossible if built from the bottom up, with the resultant build (b) missing the double-back overhanging 
structure. (c) shows the CAD geometry with the required supports (purple structure), resulting in a complete 
structure shown in (d). The support structures can be snapped off once the build has been removed from the 
glass build platform. 
 

 The support structures themselves are designed by the Magics software, with in theory 

no user input beyond part import and initial setup required. The software analyses the part for 

horizontal surfaces, and then decides if they require support structures. It then selects from a 

range of support styles, dependant on the shape of the horizontal area required. The styles range 

from single-point supports, which are a single tooth on top of a pair of crossed walls, to more 

complex patterns with wall cross-hatching, boundary features and many tens of support teeth. 
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 However, more often than not with smaller structures, user intervention is required. This 

is especially important with parts with internal structures, as the program often determines that 

horizontal ceilings of internal chambers and fluidic channels are in need of supports. A horizontal 

surface is deemed to require a support if any part of it is over 3 mm away from a supporting wall. 

In theory, overhangs and ceilings further away from walls are at risk of sagging during fabrication, 

but in practice, it is often possible to create internal structures without supports, possibly due to 

the supporting pressure of the trapped excess resin left in the fluidics. However, the software 

does not make the distinction between vulnerable external horizontal areas and internal ceilings. 

The building of support structures to internal planes is disastrous in any case, as the supports will 

normally completely block the internal void, causing loss of function for these features. The user 

must therefore cycle through the software-chosen areas in need of support, and remove internal 

features from the list. There is also a vast array of options available for customisation of support 

structures, including tooth length, width and spacing and wall crosshatch spacing. Each style of 

support is individually customisable, although it has been found that the factory defaults are 

reasonably reliable.  

 Once the structure of the supports has been finalised, they are exported as an STL file. 

The file name is the same as the component name, with an “s_” prefix. The Perfactory RP 

software recognises this on import, and as described previously matches the support to the 

component in relative space, treating the two STL files as a single component. The support STL file 

does not define the exact dimensions of the supports to be fabricated, only their position and the 

position of the teeth.  The wall width and base width/height are customisable in the Perfactory RP 

software, as shown previously in Figure 4.12.  Another customisation option available in the 

Perfactory software suite from version 2.3 onwards is the ability to double-expose support 

structures, allowing them to be fully cured and thus stronger, without over-curing the component 

layers. This option creates a second mask only containing the support structures, which is exposed 

over the original masks that contain both the component and support structures. 
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 W working with small-scale components, it is often not advantageous to use support 

structures. Although often successful when used with macroscale components, the burr left 

behind by the supports often overwhelms the component structures in parts made for 

microengineering applications. It is therefore often easier to design parts in such a way that 

supports are not required, building them directly from a flat surface on the component. This can 

sometimes be made more difficult by the inclusion of structures such as membranes that can only 

be built in the horizontal plane. However, it has been found that the majority of microengineering 

components investigated in this thesis can be built without the use of supports with minimal 

design compromises. 

4.9 Conclusion 

The field of rapid manufacturing is nascent but expanding quickly. In some respects it is a 

solution without a problem, and has yet to find a “killer app” to drive sales of systems or bring 

machines into the home market. However, a number of niches have been found in industry, 

including in the production of sacrificial moulds for metal casting, or in the production of 

prototype components for wind tunnel testing in motorsport. 

 However, as the technologies develop and evolve, rapid manufacturing systems are 

beginning to blur the definition between design and manufacture. An engineer can design a 

component, and be holding a physical version within the same day, depending on its complexity 

and size. Although the applications of form, fit and function are prototype-based, advances in the 

materials, especially those engineering plastics used in fused deposition modelling systems, are 

allowing functional components to be produced much more quickly than those fabricated using 

more traditional machining techniques. 

 Rapid manufacturing technologies have the potential to revolutionise the field of 

intellectual property. If the operator possesses the CAD data for a component, he or she can 

theoretically reproduce it anytime, anywhere, and on any given machine. This is assisted by the 
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ubiquity of the STL CAD file format, along with support industries such as 3D scanners for reverse 

engineering of competitor’s components. 

 The range of commercially available ALM systems has been reviewed for suitability for 

use in microengineering applications. The only systems available that could successfully build 

internal structures were those employing a liquid-based SLA approach.  The EnvisionTEC range of 

DLC-projector SLA systems represents the best resolution/price point of the available systems. 

The EnvisionTEC Perfactory Mini Multi-Lens system was chosen, as it was at the time the flagship 

EnvisionTEC product, with an X/Y/Z resolution of 20 × 20 × 25 μm. In the next chapter, the 

fabrication abilities of the system will be showcased through a variety of components built during 

this project. 
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Chapter 5 

5 SLA Capabilities 

5.1 Introduction 

 In the following chapter, example components fabricated with the EnvisionTEC Perfactory 

Mini Multi-Lens system will be presented, to show the capabilities and limitations of the system, 

the purpose of which is to inform future designs of components produced through this thesis. 

Some of the components were built specifically to push the capabilities of the system; others 

were related to this project. A number of other builds were fabricated for other members of the 

Sensors Research Laboratory, or beyond for academic applications in the Departments of 

Biological Sciences and Chemistry at the University of Warwick. Finally, some components were 

fabricated for collaborators at other academic institutions, in order to take advantage of the high-

performance SLA system we have at our disposal. 

5.2 Macroscale Components 

 As discussed in the previous chapter, the vast majority of ALM systems are aimed at 

macroscale industrial applications. These machines can often have build volumes measured in 

cubic meters, and are capable of fabricating large scale prototypes of components normally 

produced using traditional ablative techniques. However, the EnvisionTEC Perfactory Mini Multi-

Lens system used by the Sensors Research Laboratory is set up with a build volume of 28 × 21 × 

250 mm. Parts that can be termed “macro” in scale are therefore somewhat different to those 

produced by other systems. However, when using the terminology for MEMS devices, the prefix 

“micro” is used for those structures with a functional parameter of less than 100 µm. There are 

therefore components that have been built that do not conform to this definition, but are still 

interesting from a technical viewpoint. 
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 It can be assumed that for all the components built with delicate or microscale features, 

the build parameters used were as per the standards, except with the peel speed set at 500 

µm/sec (around 50% normal speed), to reduce the force on the build by the peeling mechanism. It 

can also be assumed that all the parts presented were fabricated from R11 resin. Average build 

times are around 4 mm in the Z-axis per hour.  

5.2.1 Demonstration Parts 

In order to show potential collaborators or the public what SLA systems are capable of, it 

is often beneficial to produce less technical components that the person might recognise. For this 

reason a series of demonstration parts were created, and are shown in Figures 5.1 and 5.2. Figure 

5.1 shows a relatively simple structure, that of the football World Cup, built at both 100 mm and 

1,500 μm tall. 

 
 
Figure 5.1 – (a) Photograph of a 100 mm tall “World Cup” structure; (b) SEM electron micrograph of the 
same model built just 1.5 mm tall. Both structures were produced using the Perfactory Mini Multi-Lens 
microstereolithography system. 
 

The characters in Figures 5.2a and b should be recognisable to anyone in the Western 

World. The Homer Simpson model has a hollow can and donut, although the overhanging shirt 

collar structure was too small to support and therefore has not resolved. The rook model shown 

in Figures 5.2c and d is a popular test part in the ALM industry, as it displays complex internal 
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geometries that are nearly impossible to replicate using ablative techniques. However, in the 

majority of cases the model produced is somewhat larger than displayed here. 

 

 
 
 
Figure 5.2 – Demonstration parts fabricated using the Perfactory Mini Multi-Lens SLA system. (a) 1,200 μm 
tall Homer Simpson figure, with hollow donut and drinks can. (b) Head of Scooby Doo character, fabricated 
in 50 μm layer thickness, with layers clearly visible. (c) Rook chess piece build, with UK 20 p piece for scale. 
(d) Top-down view of rook, showing internal spiral staircase. 
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5.2.2 Microchannel Arrays 

 In collaboration with Mr. Fauzan Che Harun of the Sensors Research Laboratory, a series 

of microchannel arrays were designed and fabricated by the author, an example of which can be 

seen in Figure 5.3. The arrays were to be used as gas chromatography channels for use in an 

electronic nose, and needed to be both compact and long in order to achieve odour separation. 

The array length reached up to around 3 metres, spanning back and forth across a 27 × 20 × 40 

mm structure. The component shown in Figure 5.3 also has integrated pipe connectors, and later 

components were designed with built-in, low headspace sensor covers [1]. 

 
 
Figure 5.3 – Microchannel array fabricated using the Perfactory Mini Multi-Lens SLA system. The structure 
measures 27 mm across and 20 mm deep/tall, and features a pair of integrated pipe fittings. The total 
channel length was in the order of 3 metres, with the channel width being 500 μm. 
 

 As has been discussed previously, one problem with ALM systems is the removal of excess 

material from inside internal cavities. Due to the length of the channels being created, it was not 

possible to fabricate the channel in a single long bore. Each loop of the channel is therefore open 

to the outside of the structure, to allow the excess resin to escape during post-processing. The 
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channels were sealed by spin coating UV-sensitive adhesive onto a glass slide, which was then 

pressed against the open ends of the channel structure. The resultant channel was found to be 

leak-free.  

Smaller channels, down to just 100 μm in width were attempted during the prototyping 

stages, but were found to not release the excess resin easily, presumably due to surface tension 

effects. Decreasing the structure depth, and therefore the individual channel depth, helped but 

reduced the yield in terms of overall channel length – channels below 200 µm in width do not 

resolve well over distances of more than around 10 mm. It was therefore decided that 500 μm 

was a reasonable compromise. This structure is a good example of a component that would be 

extremely time consuming to fabricate using normal ablative technologies. In comparison, using 

standard build parameters, this structure would take no more than 3 hours to build unattended, 

followed by around 30 minutes of post-processing time. 

5.2.3 Overhanging structures 

 One of the problems to be overcome when fabricating components using an SLA system is 

in the avoidance of overhangs. Although support structures can be built, sometimes they can 

cause further problems. Figure 5.4 shows a pair of test membrane components, used in the long-

term testing of the membranes fabricated in the system (see following chapters). The 

components had integrated pneumatic fittings, which were easiest to integrate horizontally. 

However, these overhangs are too big to fabricate successfully without supports, as shown by the 

right hand component in Figure 5.4. The left hand component had supports built for it, but the 

support structures left behind a burr that was difficult to remove, although in practice it didn’t 

affect the functionality of the part. 

 A test build was set up to determine if angling the overhangs would allow support-less 

overhangs to be built. The test build can be seen, along with screenshots from the original 

SolidWorks CAD file, in Figure 5.5. 



  Chapter 5 – SLA Capabilities 

121 
 

 
 
Figure 5.4 – A pair of test membranes fabricated using the Perfactory Mini Multi-Lens system. Both 
components were built from the bottom of the figure upwards, thus requiring supports for the overhanging 
pneumatic ports. The left-hand component had supports constructed, and a layer of burr can be seen 
beneath the cylindrical overhang. The right-hand component had no supports, and therefore the lower edge 
of the cylinder has been pulled up by the repeated peeling forces. Both parts were functional. 
 

 
 
Figure 5.5 – Angled overhang tests. Features 500 µm in width were projected 2 mm out from a series of 
angled bases, from 0° (horizontal) to 45°, in 5° steps. (a) and (c) are the 3D CAD designs used, whilst (b) and 
(d) are the corresponding micrographs of the completed part, taken from each side due to the low focal 
length of the microscope making taking images of the whole structure impossible. 
 
 

 The micrographs in Figure 5.5 show that angles from around 25° and above are suitable 

for building reasonably small-scale overhangs without supports. As a result of this test, future 

devices were built with angled pipe fittings, as can be seen in Figure 5.6. 
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Figure 5.6 – Angled pipe fittings integrated into a micropump design (see following chapter). The fittings are 
angled in order to avoid the use of supports, and are angled at 45° from horizontal. 
 
 
 

5.3 Microscale Components and Features 

 Although the parts produced at macroscale are impressive, the Perfactory Mini Multi-Lens 

system does not have the build volume to produce parts of a useful size. It has been specifically 

set up in order to maximise resolution at the cost of build area, and in this section a number of 

microscale components will be discussed. 

5.3.1 Meshes 

 An early test component fabricated using the Perfactory Mini Multi-Lens SLA system was 

a fine horizontal mesh, supported by a circular frame. The part was fabricated using the standard 

build parameters, and shown in Figure 5.7. As can be seen, the fine detail afforded by the SLA 

system can be used to create structures that are both complex and robust. The meshes required a 

series of prototype builds, of differing hole and mesh sizes, until the composite 50 and 100 μm 

mesh shown was found to give good fabrication yields. The mesh was flexible, and could be bent 

with the end of a finger before returning to its original shape. 
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Figure 5.7 – Photographs of a circular mesh test piece fabricated using the Perfactory Mini Multi-Lens SLA 
system. (a) Mesh with UK 20p piece for scale. (b) Close-up of the mesh, which is 100 μm thick, built in 25 μm 
layers, with 100 μm wide holes in a 50 μm wide mesh. It was found that a 100 μm wide “superstructure” 
mesh increased the mesh yields to close to 100%, resisting the fabrication forces. 

 

 

 
 
Figure 5.8 – SEM electron micrographs of a 100 μm mesh with 100 μm holes. Although the structure itself 
was reasonably regular, the mesh can be seen to have delaminated. 
 



  Chapter 5 – SLA Capabilities 

124 
 

Further structural details can be seen in Figure 5.8. This mesh was a 100 μm wide 

structure surrounding 100 μm square holes. As can be seen, the holes are not square at high 

magnification, and take the appearance of a micro-sized plastic fencing. Although the front layer 

is uniform, the back layers have delaminated. This was found to be a particular problem with 

uniform meshes, whilst those with an overarching superstructure, as shown in Figure 5.7 did not 

suffer from this problem. The holes size did not seem to have a bearing, although if the hole size 

to mesh size ratio got too high then often the mesh would be weak due to the resultant lack of 

material in the mesh itself. 

 The mesh structures were seen to have potential as scaffolds for tissue engineering 

applications. In collaboration with Dr. Judith Hoyland of Manchester University, the structure seen 

in Figure 5.9a was designed using SolidWorks. The structure was created as a scaffold for 

replacement back disks, and was separated into two concentric structures: a central mesh, 

surrounded by a number of linked concentric rings. The inner mesh structure was actually 

composed of 3 parallel mesh elements, identical to those seen in Figure 5.7, joined by a series of 

interconnected struts, as shown in the cut-away view in Figure 5.9b. The struts were designed to 

aid the migration of cells between the meshes, and were 200 μm wide square structures. 

 The part was fabricated horizontally on the build platform, using standard fabrication 

parameters. The resulting component can be seen in Figure 5.10. The structure was surprisingly 

strong and flexible, with pressure applied laterally to the concentric rings causing elastic 

deformation of the structure, but no breakages or cracks in the surface. Opening up the structure 

(not shown) allowed confirmation that the internal cross-beam structure had indeed fabricated, 

although a few struts were not fully in contact with the upper meshes. 
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Figure 5.9 – Structure designed in SolidWorks as a potential scaffold for tissue engineering, in collaboration 
with Dr. Judith Hoyland of the School of Medicine at Manchester University. 
 
 
 
 

 
 
Figure 5.10 – Resultant structure fabricated using the Perfactory Mini Multi-Lens SLA system, from the CAD 
data shown in Figure 5.10. The structure is 30 mm across its widest point. 
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The structures shown are a good example of geometries that would simply have been 

impossible using traditional machining techniques. This is taken further by the mesh sphere show 

in Figure 5.11. This delicate looking, yet surprisingly robust component measures 600 μm across, 

and is composed of a hexagonal lattice of 70 μm thick struts. The ball is not entirely perfect, as 

there is a small break in the structure that corresponds to where it was built off the platform, it 

maintains its shape, and can even be bounced off hard surfaces without damage. 

 
 
Figure 5.11 – Mesh sphere fabricated using the Perfactory Mini Multi-Lens SLA system. It is composed of a 
hexagonal lattice of 70 μm-thick struts. 
 
 

 Although Figure 5.8 shows that complex vertical structures are possible, it was found that 

thin vertical features such as meshes and membranes did not build well. This can be seen in 

Figure 5.12. Although these meshes shown did resolve, these were two of only a few of these 100 

µm thick structures that did build to completion. Many others ripped during fabrication, 

seemingly independently of the hole size. Therefore builds containing thin features such as 

meshes or membranes are generally constrained in their positioning on the build platform, to 

avoid such aberrations. 
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Figure 5.12 – 100 µm thin mesh structures built on a vertical plane, with (a) 200 µm and (b) 100 µm 
diameter holes. It is noticeable that the horizontal struts of the mesh are wider than the vertical features. 
The struts in the CAD file were of the same size. 
 

5.3.2 Microscale Test Build 

 In order to push the envelope of the SLA system, a test build was designed to probe the 

minimum feature sizes and the ability of the system to produce complex micro-scale structures. 

The fabricated components can be seen in Figure 5.13. The microstructure shown in Figure 5.13a 

was reproduced well from the CAD drawing, with only a slight enlargement of the base of the 

structure legs visible. The bridge structure in Figure 5.13b also fabricated well, although damage is 

visible on the upper edge where some material has peeled away during fabrication. Perhaps the 

most impressive feature is the wall structure in Figure 5.13c, which at 20 µm wide is constructed 

from the exposure from only a single pixel in the projector. However, less successful was the tree-

like structure shown in Figure 5.13d. This was designed with 3 offset branches, 100 µm wide with 

20 µm sidewalls. As can be seen, these have nearly entirely failed to build. It is assumed that 

although extremely thin features, such as those seen in Figure 5.13c are possible when built from 

a large bulk of cured material, the relatively small amount of material present in the “trunk” of 

the structure in Figure 5.10d means that the whole structure will move around during fabrication. 

This may cause misalignments of the pixel grid, with each layer not being directly on top of the 

last, causing structural weakness and the resultant build failure.  



  Chapter 5 – SLA Capabilities 

128 
 

 
 
Figure 5.13 – SEM electron micrographs of test build designed to probe the minimum feature sizes of the 
Perfactory Mini Multi-Lens system. (a) A microstructure, with 100 µm wide beams meshed together. The 
structure stands 645 µm tall, and is 700 µm wide. (b) A bridge structure, once again with 100 µm wide 
struts. The structure is 300 µm tall and 900 µm long. (c) 20 µm wide, 200 µm tall wall structure, a single pixel 
width wide. (d) Failed tree-like structure, standing around 700 µm tall (was designed as 900 µm). The central 
post was designed to have 3 offset “branches”, which were hollow with 20 µm wide outer walls. 

5.3.3 Single Pixel Structures 

 It was decided to try and produce a microstructure using the Perfactory Mini Multi-Lens 

consisting of just the exposure of the resin by a single pixel. Pillars 20 µm wide were attempted as 

part of the build shown in Figure 5.13, but no features were found on the component. Later 

experiments relating to MSL-produced microneedles (see following chapters) did however 

produce a result. A pyramidal microstructure was designed as part of a larger array of 

microneedle shapes. The structure in question was just 125 µm tall, and 100 µm wide, and is 

shown in Figure 5.14. At the tip of the structure, which can be seen to be composed of just 5 
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times 25 µm thick layers, was a single 20 × 20 µm blob of cured resin, representing the light 

output from a single pixel.  

It is assumed that the previous columns had failed as they were built at 20 µm width 

directly from a flat bulk base. This may have caused extra stress during the peeling process, as the 

breaking surface tension between the resin tray and the bulk part may have ripped off the 

microstructures. However, the pyramid being built in steps increases the distance from the single 

pixel to the bulk material, and may have reduced this stress, allowing the fabrication to complete 

successfully. 

 
 
Figure 5.14 – Pyramidal microstructure fabricated using the Perfactory Mini Multi-Lens system. The 
structure is 100 µm wide and 125 µm tall, and has a point of 20 × 20 µm area that is the output curing of a 
single projector pixel. 

5.4 Surface Patterning 

 As can be seen in Figure 5.14, the surface of the bulk cured resin is often rough on a 

micron scale. It is assumed this roughness is caused by the curing processes of the resin. What is 

interesting however is that the roughness when viewed from above via an electron microscope 

(the surface appears smooth under light microscopy) takes on a visible grid-like pattern, as shown 

in Figure 5.15. This grid is formed of 20 × 20 µm squares, again corresponding to a single projector 



  Chapter 5 – SLA Capabilities 

130 
 

pixel output. It is currently unknown why this occurs, although presumably it is due to the gaps 

between the mirrors in the DLP chip. Although DLP chip projectors are meant to be superior to 

similiar LCD devices due to having no “dead space” between pixels, it is apparent that on a very 

small scale, this dead space is still visible. 

 
 
Figure 5.15 – SEM electron micrograph of bulk cured resin surface, as fabricated by the Perfactory Mini 
Multi-Lens system. A 20 × 20 µm grid-like pattern in the surface roughness is clearly visible. 

5.5  Fabrication Time 

 As outlined in section 4.8.2 of the previous chapter, there are a number of machine 

fabrication parameters that can be altered pre-build. These include the exposure time for each 

layer, the peeling speed and the waiting time between process steps. For example, in the majority 

of components presented in this thesis with fine detail (i.e. sub 500 µm features) were fabricated 

with the peeling speed turned down from 1 mm/s to 0.5 mm/s in order to reduce the force 

imparted onto the freshly fabricated features during the peeling process. This however reduces 

the speed of fabrication. For less complex, “bulk-material” builds, this setting can be left in its 

default state, as the system defaults have been factory calibrated for use on bigger components 

for rapid prototyping and form-and-fit applications. Figure 5.16 compares the fabrication time of 

a simple cube shape to that of a more complex, membrane-containing design. 
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Figure 5.16 – Build time comparison for a simple 10 mm “bulk material” cube fabricated using standard 
factory settings for peel speed vs. a more complex part, of the same size, containing a thin membrane that 
requires a half peel speed setting for maximum fabrication yield. 
 

 
 
Figure 5.16 – Stem cells growing on a tissue scaffold fabricated from R11 using the Perfactory Mini Multi-
Lens System. Clumps of cells are marked. Courtesy of Dr. J. Hoyland of Manchester University School of 
Medicine. 
 

5.6 Biocompatibility Testing 

 As mentioned previously, collaborative work was carried out using the Perfactory Mini 

Multi-Lens with Dr. Judith Hoyland of the School of Medicine at Manchester University on 

potential scaffolds for tissue engineering, specifically for replacement back disks. Samples of the 

structures were sent to the University of Manchester, where they were treated with stem cells. 

After 48 hours, it was found that the cells had adhered to the disks, and had started to grow. The 
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cells adhered to the structure can be seen in Figure 5.16. Although this is a significant step 

towards the production of cell scaffolds by SLA techniques, further research will be needed into 

the bioabsorbable photocurable materials required for such a process. 

5.7 Projector Output 

 The EnvisionTEC Perfactory Mini Multi-Lens SLA system is projector-based, outputting a 

wide range of light wavelengths across the visible spectrum. In order to investigate the curing 

mechanism used by the system, an output spectrum was taken using an Ocean Optics HR2000+ 

High-Resolution spectrometer [2]. The data collected can be seen in Figure 5.17. The data shows 

that the output varies by around 50%, from minima at between 800 and 900 nm (low-end infra 

red), and peaks at around 720 nm (red) and between 400 and 550 nm (blue/cyan/green).  

 
 
Figure 5.17 – Spectra obtained from EnvisionTEC Perfactory Mini Multi-Lens system. 
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This plot can be compared to the absorption data of the photoinitiator in the EnvisionTEC 

R11 resin, Ciba® Irgacure® 369. Figure 5.18 shows the absorption plot, along with the chemical 

structure of this compound. As can be seen, the majority of the energy absorbed by the initiator is 

in the UV to high-blue range, with a peak at around 320 nm. Although it is clear therefore that the 

output of the Perfactory system is not tuned to the input of the initiator used in R11, that the bulb 

used produces enough light intensity to allow curing. Although this is inefficient, it does allow the 

system to use a wide variety of initiators to cure an equally wide range of photosensitive resins, 

unlike laser-based systems where the range of materials is limited by the wavelength of the laser 

employed.  

 
Figure 5.18 – Chemical structure (a) and absorption profile (b) of Ciba® Irgacure® 369 photoinitiator found in 
EnvisionTEC R11 photosensitive resin. Taken from chemical datasheet [3]. 

5.8 Conclusion 

 The EnvisionTEC range of SLA systems is unique in the field of SLA systems in its use of 

projectors rather than lasers. The mechanism used by the EnvisionTEC systems, specifically the 

Perfactory Mini Multi-Lens, has been discussed in detail. The software used during the system 

workflow allows great customisation of the fabrication processes, with certain key parameters 

such as the peeling time having a great effect on the quality of the components produced, and the 

features achievable. The calibration process also has a bearing on the quality of the components, 
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although several stages of the procedures such as the projector focussing are somewhat low-tech 

in their implementation. 

 A series of test geometries were fabricated using standard build parameters, except with 

a 500 μm/sec peeling speed (about 50% of the default). It was found that the major problem of 

overhangs in component geometries could be solved either via altering the angle of the overhang, 

by keeping the overhang sufficiently small or by supporting it at both ends with a wall. Part 

orientation is the major factor when trying to avoid the use of extra support structures, although 

this can lead to compromises in the design, especially during the fabrication of membrane 

structures, which must be built horizontally. Other horizontal thin structures such as meshes are 

another capability. Although vertical thin structures are possible, their use is limited in the Z-axis 

due to the peeling forces created by the build mechanism. 

 It has also been shown that complex microfludic structures are possible using this SLA 

system. The EnvisionTEC Perfactory machine has an advantage over systems using similar 

techniques, in that it uses an “upside down” approach, where the new cured resin is added to the 

bottom of the structure being built. This allows the ceiling of microfluidic channels to be 

fabricated without the use of supports, provided the channels are small enough; it has been 

found that square cross-section fluidics in the range of 500-1000 µm in diameter are possible. 

However, uncured resin is trapped within the internal structures created during the process, 

which must be removed during cleaning, limiting the length of the internal channels. This 

limitation can be overcome by exposing the channels to the outside of the structure at regular 

intervals, or by including “cleaning holes” that can be blocked using other materials after the build 

is complete. 

 Tests were carried out into the biocompatibility of the cured R11 resin. Although stem 

cells were found to adhere and grow on R11 scaffolds, it is not thought that it is a suitable 

material for implantation, as it does not biodegrade. Further research in this area is required, as 
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currently there are no commercially-available materials that are suited for this role. The 

development of new materials for the EnvisionTEC Perfactory range is helped by the use of a 

wide-spectrum projector, which can potentially activate a wide range of photoinitiators. 

Overall, it has been shown in this and the previous chapter that the EnvisionTEC 

Perfactory Mini Multi-Lens system is able to produce structures for microengineering applications 

both accurately and quickly. For future reference when building microstructures, the design 

parameters shown in Table 5.1 were collated from the test builds outlined in this chapter. 

 
 
Table 5.1 – Design parameters taken from test builds fabricated using the EnvisionTEC Perfactory Mini 
Multi-Lens SLA system. All values in micron unless otherwise indicated. The “theoretical” values represent 
the highest resolution obtainable by the machine. “Expert User” values are those that can be in practice 
achieved under ideal conditions by an experienced system operator, whereas “Novice User” values are those 
that will nearly always resolve if included in a device design without advanced optimisation or changing of 
build parameters.  
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Chapter 6  

6 Microneedles 

6.1 Introduction 

Drugs are a major tool in the treatment of disease.  There are a variety of different 

compounds available for use in medical areas including pain relief, the treatment of microbial 

infection, vaccines and various anaesthetics.  Drugs are also available as lifestyle aids, such as 

contraceptives and vitamins [1].  In order to be effective, a drug must be absorbed into the 

bloodstream and be carried until it reaches the area where treatment is required, which may be 

localised or systemic in nature.   

There are 3 main routes for pharmacological agents into the body: oral, topical and 

intravenous.  A given drug can often be administered via multiple routes, to be chosen by the 

medical professional overseeing the patient’s care.  The routes available for a drug molecule can 

be affected by the size of the drug molecule, the position of the malaise to be treated within the 

body, the chemical properties of the drug e.g. hydrophobicity, the status of the patient and the 

urgency of the treatment required [2].  Care must also be taken to allow for pharmacokinetic 

effects, such as the compartmentalisation of drug molecules within certain areas of the body, the 

agent’s half-life within the blood system and the rate of excretion.  All of these factors can vary by 

patient, and are generally dependent on dosing and the period between multiple doses [3]. 

6.1.1 The Oral Route 

The oral route allows the patient to swallow solid pills, or a liquid suspension containing 

the medication.  Although this is probably the most common route taken by over-the-counter 

medications such as painkillers, it can also be fraught with difficulties.  The pill or suspension must 

survive through the acid environment of the stomach and into the small intestine, where it can be 
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absorbed into the bloodstream.  Once in the blood, the drug must then survive the passage 

through the liver [1]. 

6.1.2 The Topical Route 

Topical treatments are applied to the skin in cream form, and are absorbed through the 

epidermis and into the blood capillaries in the superficial arteriovenous plexus.  The topical use of 

drugs is limited to those compounds that are able to cross the stratum corneum, the outer layer 

of dead cells that provides the main barrier to external damage to the body.  The usable 

compounds are therefore restricted to low molecular-weight lipophilic drugs, and topical 

treatments are normally restricted to application directly onto a diseased area, such as in the 

treatment of eczema using hydrocortisone cream.  However, some exceptions exist, such as in 

nicotine and  contraceptive patches [1]. 

6.1.3 The Intravenous Route 

 For those drugs where neither oral nor topical administration is possible, for example for 

large molecular weight proteins, intravenous delivery via a hypodermic needle is often the only 

option.  Although in the Western World oral administration is more prevalent, this is sometimes 

seen as more of a matter of culture than medical importance, and the delivery of more simple 

drugs via injection is more common in other parts of the world [2]. 

The first use of a hollow needle in medicine can be found in the writings of the Iraqi 

ophthalmologist Ammar bin Ali in around 1000 AD.  He used the device to suck cataracts from the 

lenses of effected eyes with some success [4].  It wasn’t until the 19th Century that the use of 

hollow needles designed to break the skin was developed independently by both Dr. Alexander 

Wood of the Royal College of Physicians of Edinburgh [5], and Charles Gabriel Pravaz of Lyon [6].  

Wood’s needle was developed for the direct injection of opiates for the combat of pain, whereas 

Pravaz’s device was designed to administer precise volumes of ferric chloride for the treatment of 

aneurysms.   
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 The intravenous route avoids the problems associated with absorption through the 

gastrointestinal tract and skin, and is often used where the speed of treatment is key.  However, 

the use of hypodermic needles is limited due to a number of factors.  Many patients have needle 

phobias (trypanophobia), and scar tissue can form in areas repeatedly used for injection, limiting 

intravenous use in patients requiring long-term treatment.  There can also be side effects realised 

due to the high localised concentration of the drug at the insertion point, which can be avoided by 

using other routes [1].  Intravenous drug delivery does not avoid the problems associated with 

liver metabolism, kidney excretion and drug compartmentalisation.  It does however avoid the 

initial pass through the liver after absorption via the gastrointestinal tract.   

Finally, there are considerable problems with cross-infection of needle users during the 

sharing of needles, although this is primarily a problem localised to unregulated recreational drug 

use.  However, it is also a problem in developing countries, where the facilities may not exist to 

properly process used needles, and the finances may not be available to allow the use of 

disposable equipment.  A more serious problem in developed countries is needle-stick injury, 

where a healthcare professional or patient is accidently injured by a needle.  This injury can occur 

before or after the needle is used, and there is a high risk of infection following a needle-stick 

injury by a dirty needle, from serious diseases such as HIV (AIDS) and hepatitis B.  The healthcare 

union UNISON estimated in 2000 that there were around 100,000 needle-stick injuries in the UK 

each year, whilst the US Centre for Disease Control (CDC) reported that in 1999 between 600,000 

and 800,000 healthcare workers suffered needle-stick injuries [7]. 

 However, despite these drawbacks, there are a variety of drugs that require intravenous 

injection to be effective.  An additional factor is the need for controlled bloodletting, either for 

use in medical tests or in blood transfusions.  It can therefore be said that intravenous needles, 

despite their problems, are here to stay.  Researchers are now focussing their attention on 

working around the major problems associated with hypodermic needles: those of patient pain 
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and associated phobias, tissue damage, and the risk of needle stick injury and cross-

contamination.  The former problems can be resolved by design changes, whereas the latter can 

be solved by a combination of design and financial factors.  However, research is not limited to 

improvements in current therapies, and has also centred on novel approaches such as direct gene 

therapy and DNA vaccination [8]. 

6.2 Human Skin 

6.2.1 Structure 

 The human skin is perhaps the most under-appreciated organ of the body, to the point 

that the majority of the population would not regard it as an organ at all.  It is the barrier between 

the regulated environment of the body and the unpredictable world beyond, weighing in at an 

adult average of 4 kg and covering an area of 2 square meters [9].  The major functions of the skin 

are summarised in Table 6.1. 

 An overview of the histological (cellular) structure of human skin can be seen in Figure 

6.1.  The structure of skin is defined by three main layers.  The subcutis hypodermis is the 

underlying layer, connecting the skin to the underlying tissue, containing the deep arteriovenus 

venus plexus (blood vessels) and subcutaneous fat.  On top of this lies the dermis, which contains 

a large number of small blood capillaries, linking from the lower blood vessels to the superficial 

arteriovenous plexus, a dense layer of arterial and venous capillaries just below the boundary 

between the dermis and the epidermis.  Also contained in the dermis are the dermal nerve fibres 

and other functional components such as sebaceous and eccrine (sweat) glands and hair follicles.   

 Finally, the epidermis forms the surface layer of the skin.  In terms of drug 

absorption, this is the most important layer, and is composed of an upper “horny” layer called the 

stratum corneum, and a lower growing layer known as the basal layer.  Although they are seen as 

separate in histograms, as shown in Figure 6.2, they are in fact composed of the same line of cells.  
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The basal cells divide, pushing the previous generation of cells outwards towards the surface.  As 

they move closer to the edge of the skin, they undergo cellular changes, shutting down all cellular 

processes and breaking down their nucleus.  By the time they arrive at the skin surface, some 60 

days after their initial differentiation, they are simply a dead shell, a cellular brick held in 

regimented layers by a lipid cement [9]. 

 
 
Figure 6.1 - Schematic overview of the architecture and cytologic constituents of normal human skin. This 
projection demonstrates the cellular components of the epidermis and superficial dermis in greater detail, 
with epidermal strata denoted numerically. 1, stratum basalis (subcutis hypodermis); 2, stratum spinosum 
(dermis); 3, stratum granulosum (epidermis, basal layer); 4, stratum corneum (epidermis, horny layer). AC, 
eccrine acrosyringium; AP, arrector pili muscle; B, follicular bulb; DC, perivascular dendritic cell; E, epidermis; 
EC, coil of eccrine gland; ED, dermal eccrine duct; EN, endothelial cell; F, fibroblast; IN, follicular 
infundibulum; IS, follicular isthmus; LC, Langerhans cell; MC, mast cell; Mφ, macrophage; PD, papillary 
dermis; RD, reticular dermis; S, sebaceous gland; SF, subcutaneous fat; V, vessel. Taken from Velazquez and 
Murphy, 2004 [10]. 
 

An important aspect of skin physiology regarding its penetration by drugs is its thickness, 

and specifically the thickness of the epidermis.  This however can vary from 0.1 mm on the eyelids 

to nearly 1 mm on the soles of the feet.  In general, the thickness tends to vary in proportion to 

the amount of hair carried by that area of the skin, with regions like the scalp being relatively thin, 

and hairless areas like the hands and feet being particularly thick [9].  The stratum corneum is the 
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biggest barrier to high molecular weight, hydrophilic drugs entering the blood, and is generally 

held to be around 10-20 µm thick [11].  With the dense superficial arteriovenous plexus just 

below the epidermis, it is obvious that penetration through the skin for drug dispensing or 

bloodletting need not be further than a few hundred microns.  With this in mind, researchers 

have turned their attention to smaller needle structures, also known as microneedles. 

Function Structure/cell involved 

Protection against damage from sources: 
   Physical & chemical 
   UV radiation 
   Microbial 

 
Horny layer 
Melanocytes 
Langerhans cells 

Preservation of internal environment Horny layer 

Retention of internal fluids and compounds Horny layer 

Shock absorption Dermis and subcutaneous fat 

Temperature regulation Blood vessels, eccrine sweat glands 

Insulation Subcutaneous fat 

Sensation Specialized nerve endings 

Lubrication Sebaceous gland 

Protection and manipulation Nails 

Calorie reserve Subcutaneous fat 

Vitamin D synthesis Keratinocytes 

Body odour/pheromones Apocrine sweat glands 

Psychosocial, display/aesthetic Skin, lips, hair and nails. 

 
Table 6.1 – Functions of the skin.  Adapted from Hunter et al 2002 [9]. 
 

 
 
Figure 6.2 – Histograms of the skin, showing the dermis and epidermis (boxout), which itself is composed of 
the basal layer and the stratum corneum.  Adapted from Velazquez and Murphy, 2004 [10]. 
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6.2.2 Mechanical Properties of Skin 

 As said previously, the thickness of human skin varies with its location on the body.  There 

have been a number of publications where the mechanical strength of skin has been tested, 

summarised in Table 6.2. 

Authors Sites Order of Magnitude Device 

Grahame [12, 13] Forearm 18 to 57 MPa Suction 
Sanders [14] Dorsal side forearm 0.1 to 0.02 MPa Tortion 
Alexander [15] Forearm, upper back 

Forearm, anterior back 
350 to 270 N/m 
270 to 800 N/m 

Suction 

Agache [16] Dorsal side of the forearm 0.42-0.85 MPa Tortion 
Leveque [17]  
and Escoffier [18] 

Forearm, anterior part 1.1 to 1.32 MPa Tortion 

Barel [19] Forearm 
Forehead 

0.13 to 0.17 MPa 
0.20 to 0.32 MPa 

Suction 

Pannisset [20] and 
Agache [21] 

Forearm, anterior part 0.25 MPa Suction 

 
Table 6.2 – Mechanical properties of human skin.  Taken from Diridollou et al [22]. 
 

 Mathematical models have also been created to model human skin deformation and 

interactions, either treating skin as a simple isotropic elastic membrane [22], or using a more 

complex non-homogenous, anisotropic, non-linear approach [23].  However, mathematical 

models are only accurate to within a certain range, and as can inferred from Table 6.2, initial 

conditions must be carefully selected to give reasonable output for the site on the body being 

modelled.  Other complications arise due to variability between individuals, and in individuals as 

they age [13, 18] 

6.3 Current Microneedle Research 

6.3.1 Classification 

 The field of microneedle research is new and rapidly changing in its focus.  The idea that a 

needle needs only penetrate the epidermis in order to deliver therapeutic agents is generally 

thought to be first found in a patent by Gerstel and Place in 1976 [24].  The principles used by the 

device are summarised in Figure 6.3.  Like the majority of microneedles reported in the literature 

since [25], the device is not a single needle, but an array of identical microstructures, defined as 
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around 5 to 100 µm tall in the patent.  The needles are hollow (not visible in Figure 6.3), and 

connect to a shared reservoir containing the drug to be injected.  However, it is not apparent if 

the patent ever led to any viable devices, and further research was delayed for decades due to 

the limitations of the microfabrication techniques of the time. 

The development of the field can be tracked by review papers found in the literature.  

McAllister et al  [8] in 2000 categorised microneedles by the scale of the treatment provided by 

the microneedle structures, with sections on cellular, localised and systemic drug delivery within 

the body.  The majority of the devices reviewed were based on the micromachining of silicon.  

Advances in this area had allowed Lin et al [26] to produce what are possibly the first 

microneedles from silicon in their conference paper of 1993, with a later full journal follow-up in 

1999 [27].  These devices, 1 to 3 mm in length, were produced laterally upon a silicon substrate 

using surface micromachining, and included an integrated “blinking bubble” thermopneumatic 

micropump.  The silicon processing steps used in the fabrication of the devices, along with 

micrographs of the finished structure, can be seen in Figure 6.4. 

 
Figure 6.3 – Drawing showing the principles used my microneedle devices.  An array of microstructures 5 to 
100 µm tall pierces the skin through the stratum corneum and into the basal layer of the epidermis.  The 
microneedles are hollow (not shown in figure) and connect to a shared reservoir containing the drug.  Taken 
from Gerstel and Place, 1976 [24]. 
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Figure 6.4 – In-plane microneedles developed by Lin et al [27]. 
 

A later review in 2004 by Reed and Lye [11] grouped the devices by their plane relative to 

their substrate.  This silicon-micromachining-based approach to categorisation was viable at the 

time, as the majority of devices were still silicon based.  The change in characterisation reflected 

the movement away from single-needle “in-plane” structures, such as those presented by Lin et al 

[26, 27], Brazzle et al [28, 29], Papautsky et al [30], Talbot and Pisano [31] and Chen et al [32].  

These structures were complex, both in design and fabrication.  Although this meant that 

additional design features could be integrated, such as MEMS actuators and microsensors, it also 

made them expensive to manufacture.  As a result, most have been used only in neuroscience as 

probes for sensing and influencing cellular processes.   

However, the designs shown earlier in the patent of Gerstel and Place [24] were “out of 

plane”, and arranged in multi-structure arrays, and the high aspect-ratio fabrication techniques 

required for their realisation were being developed.  In 1998, Henry et al [33] produced arrays of 
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out-of-plane microneedles using reactive ion etching (RIE), which has been a popular fabrication 

technique since for such silicon-based devices.  The structures fabricated can be seen in Figure 

6.5. 

As can be seen, these structures are similar to those postulated by Gerstel and Place’s 

[24] 1976 patent.  However, they lack the inner hole or “lumen” found in macroscale hypodermic 

needles.  These types of structures are still useful in therapeutic situations, and are classified in 

the 2008 review paper by Arora et al [25] as “solid” microneedles.  The review reflected the 

evolving field of microneedle research by classifying microneedles under 4 categories: the 

aforementioned “solid” structures, “hollow” devices, “dissolving” microneedles and “coated” 

microneedles.  All these groups are out-of-plane microneedle arrays, which has now become the 

prevalent design in therapeutic use, with the area of in-plane devices being dropped entirely.  

These categories are outlined in Figure 6.6. 

 
Figure 6.5 – Scanning electron micrographs of microneedles made by the reactive ion etching technique.  
Taken from Henry et al [33]. 
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Figure 6.6 - Schematic of drug delivery using different designs of microneedles: (a) solid microneedles for 
permeabilizing skin via formation of micron-sized holes across stratum corneum. The needle patch is 
withdrawn followed by application of drug-containing patch, (b) solid microneedles coated with dry drugs or 
vaccine for rapid dissolution in the skin, (c) polymeric microneedles with encapsulated drug or vaccine for 
rapid or controlled release in the skin, (d) hollow microneedles for injection of drug solution.  Taken from 
Arora et al [25]. 
 

There are a number of reasons out-of-plane microneedles have become more prevalent 

in the literature.  They are less complex in fabrication than their in-plane forefathers, reducing 

costs and allowing the structures to head towards the $0.10-1.00 per-device barrier that would 

need to be crossed to allow commercialisation [25].  Fabrication is also simplified by the fact that 

the dimensions of the needle structure and/or lumen is controlled lithographically via masks, 

rather than via film or dope layers that can rarely increase beyond a few tens of micron.  They are 

also in general stronger, as they are part of an array rather than a single fragile structure [11]. 
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6.3.2 Solid Microneedles 

 The simplest subset of out-of-plane microneedle arrays are solid-type, and are simply 

sharp microstructures capable of breaking through the stratum corneum.  Unlike hypodermic 

needles, they lack the internal bore required for direct injection of drugs, and cannot be used for 

bloodletting.  Instead, drugs can be applied in a topical form, as either a cream or a patch, with 

the microneedle array creating micro-sized pores in the epidermis through which the drug can be 

absorbed.  This process can increase the skin permeability by several orders of magnitude [33-35].   

 
Figure 6.7 – Permeability of human skin treated with different microneedle protocols in vitro.  Increases of 3 
to 4 orders of magnitude were observed for microneedles (1) inserted and left in skin, (2) inserted for 10 s 
and then removed, and (3) inserted for 1 h and then removed.  Such large increases in skin permeability have 
the potential to significantly increase the number and types of drugs which can be delivered across the skin.  
Each data point represents the average of 7 to 9 experiments.  Standard deviation bars are shown.  Taken 
from Henry et al [33]. 
 

As mentioned previously, the first example of solid microneedles can be found in Henry et 

al [33], the first study to demonstrate microneedles for transdermal drug delivery.  The structures 

(seen in Figure 5 above) were designed to be pressed into the skin, either with the topical cream 

already applied, or inserted and removed before the cream was applied.  Permeability data, 
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collected in vitro using human cadaver skin as the membrane in a Franz diffuser chamber, can be 

seen in Figure 6.7.  Similar devices were later produced, along with a number of other 

microneedle structures, by McAllister et al [34] of the same group at the Georgia Institute of 

Technology.  The structures can be seen in Figure 6.8, and were fabricated from silicon, metal and 

polymer materials by a combination of RIE and micromachining, electrodeposition and 

micromoulding respectively.  Similar diffusion tests were carried out as in Henry et al [33], 

showing a major increase in skin permeability of a range of high molecular weight molecules 

including insulin, calcein and bovine serum albumin (BSA). 

 
Figure 6.8 – Solid microneedles fabricated out of silicon, polymer, and metal imaged by scanning electron 
microscopy. (A) Silicon microneedle 150 µm tall from a 400-needle array etched out of a silicon substrate. (B) 
Section of an array containing 160,000 silicon microneedles (25 µm tall). (C) Metal microneedle (120 µm tall) 
from a 400-needle array made by electrodepositing onto a polymeric mould. (D–F) Biodegradable polymer 
microneedles with bevelled tips from 100-needle arrays made by filling polymeric moulds. (D) Flat-bevel tip 
made of polylactic acid (400 µm tall). (E) Curved-bevel tip made of polyglycolic acid (600 µm tall). (F) Curved-
bevel tip with a groove etched along the full length of the needle made of polyglycolic acid (400 µm tall).  
Taken from McAllister et al 2003 [34]. 
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Mikszta et al [35-37] produced arrays of what they termed “microenhancer arrays”, or 

MEAs.  These structures were scraped across, rather than pressed into, the upper layers of the 

skin, disrupting the cellular organisation and allowing the passage of DNA vaccine into the basal 

epithelium and the supporting layers.  Gene expression reported after topically-applied gene 

transfer was found to be 1,000-2,800-fold higher after MEA treatment in a mouse model, when 

compared to purely topical treatment.  Where 12 passes of the MEAs were applied, gene 

expression actually outstripped that found when using intravenous and intramuscular macroscale 

injection [35]. 

 
Figure 6.9 – (a) Scanning electron micrograph of solid metal microneedles shown next to the tip of a 27-
gauge hypodermic needle.  The complete microneedle array contains 105 needles, each measuring 1000 µm 
in length, 50 µm by 200 µm in cross section at the base, and tapering to a sharp tip with an angle of 20°. (b) 
Changes in blood glucose level in diabetic, hairless rats after insulin delivery using microneedles (), 
subcutaneous hypodermic injection of 0.05 U (), 0.5 U (), or 1.5 U () of insulin, or passive delivery 
across untreated skin ( ×).  Microneedles were inserted into skin for 10 min and then removed.  Insulin 
solution was applied to the skin immediately after microneedle insertion and left on the skin for 4 h (as 
shown by arrow).  Subcutaneous injections took a few seconds to perform.  The pharmacodynamic effect of 
insulin delivery by microneedles was bounded by that of 0.05-0.5 U injected subcutaneously.  Data are 
expressed as mean values (n ≥ 3) with average standard deviation associated with each data point of 14%.  
Blood glucose levels have been normalised relative to average pretreatment levels. From Martanto et al 
[38].   
 

Another paper, again from Georgia Tech, demonstrated laser cut metal microneedles 

[38].  As shown in Figure 6.9a, the structures produced were simply triangle-cut sections of the 50 

µm-thick stainless steel sheet, bend upwards to create the needle array.  In Figure 6.9b, the 

results of in vivo tests in a hairless rat model are shown.  Hairless rats were given type 1 diabetes, 
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using an injection of streptozotocin, which is toxic to the pancreatic cells, which normally produce 

insulin.  A topical insulin solution was applied to skin treated with the microneedles, and the fall in 

glucose levels were compared with injected insulin of varying concentration.  The microneedle 

delivery route was found to reduce the concentration of glucose in the rat’s bloodstream by 

around 80%, 6.5 hours after the treatment.  This was around 4 times the drop seen in the control, 

and comparable to the effect seen in the intravenous route.  However, it should be noted that the 

microneedles were left in place for around 10 minutes, and the topical solution was left in place 

for around 4 hours.  Although this may sound excessive, it is possible in treatment that a patch 

containing the insulin could be used instead of a loose solution. 

6.3.3 Hollow Microneedles 

 A number of out-of-plane microneedle structures have been produced that do have a 

central lumen.  In theory, these structures allow the controlled injection of therapeutic agents in 

solution, rather than simply relying on increased diffusion as with solid microneedles.  Assuming 

the microneedles are long enough to get through the basal layer of the epithelium, they can reach 

the superficial arteriovenous plexus, allowing systemic delivery of drugs and bloodletting.  This is 

however at the expense of mechanical strength, as hollow structures of similar dimension to their 

solid counterparts must by definition be fabricated from less material.  The lumen must be kept 

clear of tissue during needle insertion in order for the devices to function. 

The first hollow out-of-plane microneedle arrays were fabricated by Chun et al [39].  They 

were fabricated using silicon micromachining, with the 5 µm wide, 30 µm long structures were 

designed for transfecting individual cells with DNA.  The fabrication process, along with electron 

micrographs of the finished structures, is shown in Figure 6.10.  Although the structures 

presented are both elegant and ideally suited for cellular delivery, they are not suitable for 

general medical use.  Although their 30 µm length seems about the perfect length to pierce the 15 

to 25 µm thick stratum corneum, in practice the required length is closer to 100 to 150 µm, due to 
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skin features such as wrinkles and hair.  The fact that the microneedles are in arrays also has a 

bearing, as the skin is distorted by the surrounding microneedle structures. 

Another out-of-plane hollow microneedle array fabricated using silicon micromachining 

techniques, in conjunction with RIE, can be seen in Gardiniers et al [40] in 2003.  As shown in 

Figure 6.11, an initial horseshoe-shaped structure was fabricated with an internal elliptical post 

via wet etching and silicon nitride deposition techniques.  This then formed an etch-resistant 

mask, that allowed an off-plane slow etch across an Si(111) plane, forming the microneedle 

structure. 

 An interesting way to avoid blockage of the needle lumen is outlined in Griss and Stemme 

[41].  Again, silicon microstructures were fabricated using micromachining techniques and RIE, 

with RIE used to define the high aspect-ratio features.  The structures realised are shown in Figure 

6.12. 

 
 
 
Figure 6.10 – Process flow for hollow microneedles presented in Chun et al [39].  (a) Silicon wafer is 
patterned. (b) Silicon is etched as deep as 100 µm. (c) The entire wafer is the reoxidised 1 to 2 µm. (d) A 
Pyrex glass substrate is drilled and etched in BHF. (e) The silicon part is bonded anodically with a processed 
Pyrex glass. (f) Back-side silicon etching in TMAH solution. (g) Tip oxide etching in buffered HF. (h) Silicon 
etching in TMAH. (i) Hollow microcapillaries, 30 µm long, approximately 5 µm in diameter, and 1 µm in 
thickness. (j) Cross-sectional view of hollow microcapillaries. (k) Top view. (l) Close-up view of (j). 
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Figure 6.11 – Microneedles fabricated by Gardiniers et al [40].  (i) Microneedle fabrication sequence. The 
drawings on the left give a cross section of the structure after each processing step, along the dotted line in 
the top view drawings that are shown on the right. The thick black line represents a silicon nitride coating 
that is used as a protection layer during KOH etching. (ii) The slot and flow channel, bound by silicon nitride 
walls that are resistant against KOH etching, after step 4 of the process sequence in (i). (iii) SEM picture of a 
350 µm high microneedle, with a base of 250 µm (measured in widest direction). The elliptical flow channel 
is 70 µm in its widest direction. 
 
 
 
 

 
 
Figure 6.12 –SEM images of side-opened microneedles, the hole beginning approximately 50 µm above the 
base of the needle. The length of the structure is 210 µm. Taken from Griss and  Stemme [41]. 
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 Moon et al [42] used LIGA, or X-ray lithography to shape PMMA hollow microneedle 

structures.  The technique has been discussed in previous chapters, but basically involves the use 

of a collimated X-ray beam to expose and break down PMMA resist layers.  Moon et al used a 

masked beam perpendicular to the array plane to define the triangular structures, along with 

their central lumen, followed by an angled beam to taper the structures to a tip.  Although high 

aspect-ratio structures are possible using LIGA, the expense of obtaining time on the synchrotron 

X-ray sources required is prohibitive and limits LIGA use in practice. 

6.3.4 Safety and Pain Response 

As the use of microneedles of any kind is in its infancy, it is perhaps too early to comment 

fully on the safety of microneedles.  It is apparent though that they could offer advantages over 

traditional hypodermic needles.  Hypodermic needles are long, and must be inserted manually 

due to their size.  Microneedles require less accurate targeting to be effective, so long as they are 

used on skin thin enough for the structures to pierce.  This could allow for automated systems, 

where the needle arrays are retracted into a protective casing before and after action, reducing 

the risk of infection by needlestick injury.  So far, there have been no infections reported as a 

result of microneedle action, irritation is reported in a variety of publications as being mild and 

very little bleeding is normally found during in vivo testing [25]. 

Another key design point is to minimise the amount of pain experienced by the patient.  A 

number of in vivo studies have reported subjects reporting very little or no pain, with needles up 

to a couple of hundred micron reports no pain [35, 41, 43].  A more in-depth analysis was carried 

out by Gill et al [44], who used double-blind tests with analogue scale pain response 

measurement.  The microneedles were fabricated using the laser cutting process described 

previously [45], in a range of heights and widths.  In all cases, the pain experienced by the subjects 

was significantly less than that found when hypodermic needles were used.  It was found a 3-fold 

increase in microneedle height lead to a 7-fold increase in pain, whilst a 10-fold increase in the 
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number of microneedles doubled the pain experienced.  It was concluded that microneedles not 

only reduced pain due to their physical size, but also greatly reduced the anxiety associated with 

hypodermic needles. 

6.4 Conclusion 

 The human skin is a potent barrier to large, hydrophilic drug molecules, and topical 

administration is limited as a result.  Due to the inherent limitations of the oral route, with 

difficulties in both internal absorption and degradation in the gastrointestinal tract, a large 

number of drug molecules such as insulin must be administered via the intravenous route.  A 

number of problems are associated with intravenous administration, including needle stick injury, 

damage to tissue due to repeated insertion and patient phobias.  Microneedles offer a potential 

route around these problems, along with offering many unique treatment types not available 

using traditional hypodermic needles. 

Much like the development of micropump research, initial microneedle fabrication 

techniques were confined to silicon micromachining.  Early papers reported in-plane needles, 

which tended to be relatively long, and complex in both fabrication and structure.  This limited 

their appeal for mass production due to fabrication costs, although the ability to integrate 

features such as micropumps and electrodes directly into the needle structures means that they 

have still found use in fields such as neurology and biological research. 

 More recently, the focus has turned to out-of-plane arrays of microneedle structures, 

aided by the development of high aspect-ratio silicon etching techniques such as RIE.  These much 

smaller geometries, normally between 100 and 1000 µm tall are in general much simpler to 

fabricate due to their structure.  Four main areas of research have developed.  Simple micro-scale 

sharp structures can be used as solid microneedles, which open pours in the upper layers of the 

skin.  This treatment of the skin allows much greater transit through the skin via subsequent 

topical application of drug molecules than if the microneedles had not been used.   
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 Hollow microneedles attempt to replicate hypodermic needles on a micro-scale, and have 

been fabricated in glass using traditional glass-pulling techniques, PMMA using LIGA and metals 

using electrodeposition into polymer moulds.  Micromoulding in polymer or silicon masters has 

become a popular fabrication technique for the shaping of polymer microneedle arrays. It can be 

noted that rapid manufacture techniques such as stereolithography have never been used in the 

literature for the creation of microneedle arrays, and this is potential area of future research. 

 It is likely that the full commercialisation of microneedle devices is less than a decade 

away.  Their arrival will need to be proceeded in a reduction in production costs and detailed 

clinical trials investigating their safety and efficacy.  However, it is obvious that they have the 

potential to revolutionise the field of drug delivery and the collection of blood samples for 

analysis. 
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Chapter 7 

7 Microneedle Design and Optimisation 

7.1 Introduction 

 In the previous chapter, the field of microneedles was reviewed. In the following sections, 

the development of a range of arrays of SLA-fabricated microneedles will be documented, from 

the CAD design, through the finite element analysis and ending with the mechanical testing of the 

optimised designs. 

7.2 Microneedle Design 

 A range of 5 microneedle geometries were designed using the SolidWorks computer 

aided design (CAD) package. The designs are shown in Figure 7.1. The designs shown were chosen 

to reflect a selection of the structures found in the literature, allowing the optimum design to be 

chosen using finite element analysis (FEA) modelling techniques. 

Each design has a number of key variables, which can be altered during FEA modelling to 

produce the optimum combination for each of the geometries shown in Figure 7.1. These key 

variables are shown in Figure 7.2. The range of variables used in this study are shown in Table 7.1, 

along with a number of variables taken from the literature for comparison. 

Table 7.1 – Range of variables considered in this study, compared to previous work in the literature.  

Reference Tip Radius 
(µm) 

Needle Height 
(µm) 

Bore Radius 
(µm) 

Base Width 
(deg) 

Array Spacing 
(µm) 

This Study 15 - 60 200 - 1200 15 - 45 
  
150 – 600 
  

200 – 800 

McAllister et al [1] 75 500 22.5 300 
  
~ 400 
  

Stoeber and 
Liepmann [2] 

50 200 20 425 
  
~ 500 
  

Griss and Stemme [3] 10 200 30 
  
160 
  

  
~ 300 
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Figure 7.1 – Microneedle array structures, designed using SoildWorks CAD package. (a) Conical, (b) 
asymmetric pyramid, (c) stepped cone, (d) symmetric pyramid and (e) inverted trumpet. 
 

 
 
Figure 7.2 – Key variables for microneedle geometries tested. Another available variable is the spacing of the 
array, between microneedle structures. 
 



                                                                   Chapter 7 – Microneedle Arrays by Microstereolithography 

160 
 

 

 Although modelling ranges of all of the variables listed in Table 7.1 would be ideal, it 

would require too many iterations to be practical. However, the number of design iterations 

required can be greatly reduced by limiting the parameters varied during the analysis. Davis et al 

[4] in 2004 found the major factors governing the force required to fracture their hollow nickel 

microneedles, fabricated using LIGA techniques, were the wall thickness, the wall angle and the 

needle tip radius. As a result, the parameters varied in this study were the bore diameter 

(analogous to the wall thickness) and tip radius. Bore variation includes no bore, in effect testing a 

solid microneedle design. The needle height was set at an arbitrary 400 µm, as it was felt this was 

long enough for skin penetration, and was a height easily fabricated using the EnvisionTEC 

Perfactory Mini Multi-Lens system, which has a Z-axis resolution of 25 µm. Finally, the 

microneedle base width was set at and again arbitrary 300 µm. 

Individual CAD files were produced for each geometric variation, and tested using 

SolidWorks’ built-in FEA modelling suite, COSMOSWorks. The array models were subjected to 

incremental force on the needle tip, perpendicular to the array plane. The needle is assumed to 

have failed once the sum of the stress within the structures reaches the tensile strength of a 

model photopolymer material, in this case the EnvisionTEC Perfactory resin e-Shell 100 (tensile 

strength 47.8 MPa). Although this method of analysis, known as the Von Mises method, can 

underestimate the actual strength of the structures in vivo, i.e. when inserted into the skin, this 

underestimation can be incorporated into the require safety margin required for such devices. 

The raw data collected is shown in Table 7.2, and shown graphically in Figure 7.3. 

There are a number of observations that can be made from the data shown in Table 7.2 

and Figure 7.3. The weakest geometry by far is the asymmetric pyramid, with a failure force of 

less than one tenth of the other symmetric designs. The addition of a central bore to the design, 

which was offset from the needle tip, exacerbates this weakness far more than in the other 

symmetric designs, a result which is in line with previous studies [4]. Several examples of 
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asymmetric microneedle arrays can be found in the literature, including Gardiniers et al [5] and 

Moon et al [6], in silicon via micromachining techniques and PMMA via LIGA processes. In both 

cases, the asymmetric design was used more because of the limitations of the fabrication process, 

rather than due to any optimisation steps. It is likely that the design is inefficient when handling 

load due to the force being offset through the structure, and the success of these designs can 

perhaps be attributed to the higher tensile strengths of the materials used: 6.9 GPa and 76 MPa 

for silicon [7] and PMMA [8] respectively, compared to the 47.8 MPa of EnvisionTEC e-Shell 100. It 

is clear that a more efficient design is required for use with weaker photocurable polymers, and 

therefore the design of the asymmetric pyramid was discarded.  

  Bore Radius 
(µm)  

Tip Radius (µm) 

15 30 45 60 

Conical  0 0.021 0.110 0.267 0.464 

15 0.024 0.104 0.229 0.415 

30 0.020 0.102 0.241 0.428 

45 0.021 0.104 0.254 0.390 

Inverted 
Trumpet  

0 0.024 0.102 0.244 0.419 

15 0.025 0.111 0.227 0.419 

30 0.024 0.116 0.224 0.464 

45 0.024 0.115 0.249 0.416 

Symmetric 
Pyramid  

0 0.021 0.091 0.212 0.352 

15 0.021 0.089 0.213 0.365 

30 0.019 0.091 0.213 0.375 

45 0.017 0.091 0.217 0.375 

Asymmetric 
Pyramid  

0 0.003 0.014 0.026 0.038 

15 0.003 0.013 0.023 0.029 

30 0.003 0.013 0.023 0.030 

45 0.003 0.011 0.021 0.028 

Stepped-Cone  0 0.030 0.118 0.256 0.423 

15 0.028 0.101 0.252 0.416 

30 0.028 0.104 0.250 0.423 

45 0.028 0.104 0.256 0.416 

 
Table 7.2 – Simulated failure forces for six microneedle geometries in arrays of 3 × 3 needles.  Forces are 
expressed in Newtons and are per needle. 
 



                                                                   Chapter 7 – Microneedle Arrays by Microstereolithography 

162 
 

 
 
Figure 7.3 – Graphical representations of needle failure force, with respect to microneedle tip and bored 
radius. All forces in Newtons and are per needle. All radii in micron. Simulated microneedle material is 
EnvisionTEC e-Shell 100, with a tensile strength of 47.8 MPa. 
 

 The data collected shows that, in all the geometries tested, the major variable was the 

size of the tip, with the bore radius making relatively little difference. This is perhaps not 

surprising, as a large needle tip will distribute the force more efficiently when in contact with a 

flat, hard surface, which is applicable in these models. However, although the overall strength of 

the microneedle structure is important, it is not the only factor governing their efficiency. A 

sharper needle point will concentrate the force exerted through the needle over a smaller area, 
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causing less stress to be placed upon the overall structure. The non-isotropic nature of skin 

enhances this effect. The relatively low strengths suggested at small tip radius cannot therefore 

be seen as directly indicative of their performance in vivo. However, as noted earlier, this 

underestimation can be factored in as part of any safety margins required for microneedle 

devices, and therefore the data is still meaningful. 

 In practice however, the needle tip radius is limited by the resolution of the EnvisionTEC 

Perfactory Mini Multi-Lens system to be used in their fabrication. At the time of this study, the 

smallest feature size achievable was 30 µm, with the Enhanced Resolution Module (ERM) allowing 

a pixel accuracy of 15 µm. Therefore, a tip radius of 45 µm was seen as achievable for fabrication 

and mechanical testing. Of the remaining geometries, the inverted trumpet and stepped cone 

were chosen over the symmetrical pyramid and conical designs. The symmetrical pyramid was 

discounted due to its inferior calculated breakage strength. The conical design in theory offers 

better performance with a 45 µm tip radius. However, the inverted trumpet and stepped cone 

structures offered better performance at lower tip radii, and therefore were chosen due to the 

assumption that lower tip radii would be attempted later in the study. 

7.3 Modelling Skin/Microneedle Interaction 

 As well as modelling the failure forces of the microneedle geometries, a model was 

created that simulated the effect of the microneedles on the surface of the skin. As mentioned 

above, the previous stress failure simulations assume the needles are being pressed into a hard 

flat surface. When being inserted into skin in vivo, the skin will distort around the microneedle 

structures before failure, and this new simulation was designed to model this behaviour. In order 

to model skin penetration, a non-linear skin model was produced, expressing Mooney-Rivlin 

behaviour, a model commonly used in the simulation of elastic, rubber-like materials. 

 The model was set up by inputting selected human skin properties into the 

COSMOSWorks material database, based on Hendriks et al [9]. Using SolidWorks, a small 3 × 3 
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array of inverted-trumpet type microneedles, as described above, was placed parallel to a 

separate cube defined as the skin material. A non-linear FEA was performed, with the skin block 

stationary in space. A contact set was defined, modelling the interaction between the 

microneedle tips and the skin surface, allowing the stress to be calculated. The displacement 

between the skin block and the microneedle array was auto-stepped in 10 ms intervals, and the 

level of stress was monitored. The test finished once the skin stress was measured at above 3.183 

MPa, a previously published maximum skin strength found in the literature [10]. 

 
 
Figure 7.4 – Microneedle array and skin model assembly, after simulation. The microneedle array and skin 
model are shown separately for clarity. 
 
 

 The results of this model can be found in Figure 7.4. The data shows that at a skin stress 

of 3.8 MPa, the needle tip stress reaches a maximum of around 24 MPa. As the maximum skin 

stress is above that required to puncture the skin, and the needle stress is well below that of the 

tensile strength of the photocurable material (47.8 MPa), it can be assumed that the needle array 

has punctured the skin without breaking. However, due to the non-linear behaviour of skin, a 

definitive conclusion cannot be made without testing the device on actual skin. 
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7.4 MSL Fabrication of Microneedles 

 The microneedle arrays were fabricated using a microstereolithograpy-based rapid 

additive manufacture process. The processes used by the EnvisionTEC Perfactory Mini Multi-Lens 

have been discussed in detail in previous chapters. A number of photocurable resins were 

available for this system at the time the study was carried out. These materials, along with their 

physical properties, are shown in Table 7.3. 

  Perfactory R5/R11 Perfactory Y8 

Perfactory 

PMMA E-Shell 100 

Modulus of 
Elasticity (MPa) 

1245 – 1510 282 – 707 2360 3230 

Elongation at 
Break (%) 

11 – 25 27 5.9 4 

Tensile Strength 
(MPa) 

31 – 39 5.9 47.8 65.7 

Flexural Strength 
(MPa) 

40 -45 25 66.7 98 

 
Table 7.3 – Typical material properties for a number of EnvisionTEC Perfactory resins available at the time of 
this study. Data for PMMA, a common microengineering polymer, are also displayed for comparative 
purposes. 
 

 Both e-Shell 100 and R11 were chosen for the production of prototype microneedle 

arrays, although in practice it was R11 that was nearly exclusively utilised. R11 is a more useable 

material in practice, and is less viscous than e-Shell 100, which can help with the fabrication of the 

tiny microstructures, inhibiting the formation of bubbles during fabrication. 

 The initial prototype needle arrays were designed using SolidWorks, and consisted of 

arrays of microneedle structures ranging in height from 200 to 1200 µm. The initial parameters 

were set at the factory defaults, with a layer thickness of 50 µm. The resulting builds were gold 

coated and visualised using a scanning electron microscope (SEM). The micrographs obtained 

from this first test build can be seen in Figure 7.5. This initial build was not successful, it was 

assumed due to a lack of Z-axis resolution and a fast peeling speed. To test these assumptions, a 

secondary build was completed using a 25 µm layer thickness. Micrographs of these structures 
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can be seen in Figure 7.6. Once again, the needle structures were not successfully completed, 

although structure retention on top of the base was better than in the 50 µm test. 

 

 
 
Figure 7.5 – Initial unsuccessful prototype microneedle array. The material used was R11, with machine 
parameters set at factory defaults (1000 µm/s peeling speed) with a 50 µm layer thickness. 
  
 
 

 
 
Figure 7.6 – Second unsuccessful fabrication attempt, using a Z-axis resolution of 25 µm. 
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Figure 7.7 – Successful prototype build of MSL microneedles, showing (a) inverted trumpet, (b) symmetric 
pyramid and (c) stepped cone geometries. (d) is a close up of the damage caused by a bubble formed in the 
resin during fabrication. 
 
 
 

 

 
Figure 7.8 – SEM close-ups of microneedles fabricated using MSL. (a) is a 400 µm tall stepped cone 
geometry, (b) is a 400 µm tall inverted trumpet geometry, (c) is a 200 µm tall inverted trumpet, and (d) is a 
125 µm tall symmetric pyramid. Fabrication layers can be clearly seen, each being an average of 25 µm 
thick. 
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Figure 7.9 – Microneedle arrays produced for mechanical testing. (a) shows an array of inverted trumpet 
geometries, (b) an array of stepped cone geometries, (c) and (e) show inverted trumpet designs from two 
angles, (d) and (f) show the same for the stepped cone designs. Significant debris and needle damage can be 
seen in (a), although it is unclear if this was caused by factors during or after fabrication. The arrays were 
arranged in straight 9 × 9 grids, and each structure was 400 µm tall. The array separation was 750 µm. 
 

With the Z-axis resolution ruled out as the sole cause of the fabrication problems, a third 

test build was run. For this third run, a new CAD model was produced with thicker bases, as it was 

noticed that the thinner bases used in the first two runs warped during the post-build processing 
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and curing steps. The peeling speed of the system was also reduced to 500 µm/s to try and reduce 

stress on the microstructures during fabrication.  

The changes to both the base thickness and the peeling speed led to the structures seen 

in Figure 7.7, seen in close-up in Figure 7.8. The electron micrographs show that the 25 µm Z-axis 

resolution is sufficient for microneedles of between 200 and 400 µm, in order for the geometries 

to be copied well from the CAD data. Heights below this level start to show excessive “stepping” 

i.e. the Z-resolution was too low to produce a smooth structure. It was therefore decided that the 

microneedle arrays to be produced for testing should be 400 µm tall. Both the inverted trumpet 

and stepped cone designs showed excellent reproducibility and build accuracy across a range of 

heights. A number of uniform arrays were produced, for use in mechanical testing. Both inverted 

trumpet and stepped cone geometries were used, on separate bases, with an array separation of 

750 µm. The arrays, shown in Figure 7.9, were arranged in straight rows in a 9 × 9 grid. 

7.5 Testing of MSL Microneedle Arrays 

7.5.1 FEM Analysis 

 In order to validate the modelling used in this study, further analysis was carried out on 

the maximum stress experienced by a full 9 × 9 array of 400 µm microneedles before mechanical 

testing was carried out. The geometries used were those selected by the initial modelling: the 

stepped cone and inverted trumpet. Results from these tests could then be compared with 

mechanical testing data produced from arrays produced using the same CAD data used in the 

FEM analysis. 

 A model was produced in COSMOS similar to that used previously, with each needle in the 

array subjected to a force on its tip perpendicular to the array plane. This force would increase 

until the maximum stress in the structure reached that of the tensile strength of the fabrication 

material. For the mechanical tests, the selected material was EnvisionTEC Perfactory R11, chosen 
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as it was a proven reliable material that could be depended on when producing multiple identical 

arrays for testing. The mechanical properties of R11 (see Table 7.3) were used to create a custom 

material in COSMOS for the FEM analysis. 

 
 
Figure 7.10 – Microneedle arrays after simulation. The colour spectrum indicates the stress distribution 
throughout the needle structures. (a) is an array of stepped cone geometry microneedles, (b) shows an array 
of inverted trumpet structures. 
 

 The results of this analysis are shown in Figure 7.10 and Table 7.4. They show the stress 

distribution for both geometries are similar, although the stepped cone shows a slight higher 

failure force per needle. It is likely that the identical tip diameter causes the similar result, and the 

stepped cone has more material further towards the tip, resulting in the larger break force result.  

  
Inverted 
Trumpet 

Stepped Cone 

 39 MPa 39 MPa Material Strength (R11) 

Force Level at Max. Stress 16.61 N 17.17 N 

Failure Force Per Needle 0.205 N 0.212 N 

 
Table 7.4 – Tabulated failure values for each microneedle design, as calculated in FEM analysis. 
 

By increasing the applied force beyond that of maximum of the material, the normal 

failure mode can be visualised, as shown in Figure 7.11. As could be expected, with the load being 

applied axially, the failure mode in both geometries is one of the crushing of the material.  
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Figure 7.11 – Representation of simulated failure mode of microneedles under axial load. (a) is an array of 
stepped cone geometry microneedles, (b) shows an array of inverted trumpet structures.  
 

7.5.2 Mechanical Testing 

 A test rig was constructed to measure the axial failure force of arrays of our MSL-

fabricated microneedle arrays. An overview of the apparatus can be seen in Figure 7.12. Each 

microneedle array was placed into the sample site, held in position by the pressure generated by 

a loaded spring. The spring was calibrated as giving a force of 2.27 N/mm, and was mounted on a 

Schneeberger frictionless table. The position of the table was controlled by the displacement 

control screw thread, and the displacement was measured using a TESA Displacement probe 

connected to a readout display. As pressure was applied to the microneedle array, the structures 

were visualised under an optical microscope mounted above the sample site. A failure force was 

deemed to have occurred once the needles had deformed significantly. Although this is a 

subjective measure, the testing of 7 separate but identically fabricated arrays of each geometry 

keeps error to a minimum. Both arrays consisted of 400 µm tall needle structures, with a 45 µm 

radius tip, spaced at 700 µm, fabricated from EnvisionTEC Perfactory R11. 

 The results of the mechanical testing can be seen in Table 7.5 and Figure 7.13. As with the 

FEM analysis, both geometries produced similar results. However, unlike the FEM data, the 

mechanical data suggests the inverted trumpet is the strongest shape under axial load. Also 
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notable is the expected underestimation in the simulation results compared to those produced 

via mechanical testing. 

 
 
Figure 7.12 – Apparatus for mechanical testing of MSL fabricated microneedle arrays. (a) Microneedle 
sample site, (b) displacement control, (c) Schneeberger Frictionless Table, (d) spring load, (e) TESA 
Displacement Sensor, (f) TESA Numerical Display, (g) top mounted optical microscope. 
 

  Failure Force Per Needle (N) 

Sample No. Inverted Trumpet Stepped Cone 

1 0.278 0.237 

2 0.29 0.282 

3 0.292 0.248 

4 0.287 0.22 

5 0.237 0.255 

6 0.251 0.206 

7 0.205 0.256 

Average Failure Force 0.263 0.243 

 
Table 7.5 – Data collected from MSL microneedle arrays via mechanical testing, via the test rig shown in 
Figure 11. 
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Figure 7.13 – Graphical representation of results gathered from mechanical test rig.  The figure compares 
simulated failure forces (red) to measured failure forces (blue, line indicates average) for (a) inverted 
trumpet and (b) stepped cone geometries. 
 

 A reasonable range of data is present, probably due to deficiencies in the testing 

procedure. The microscope was only able to focus upon the top row of needles in the array, 

meaning it was their failure force that was truly being measured, not that of the array as a whole. 

Post test observation of the arrays showed uneven wear on some samples, suggesting that the 

force was not evenly spread across the whole array. However, it was observed that the majority 

of needles underwent a crushing failure mode, indicating that for the most part the force was 

relatively even. A low number of the structures did however undergo a bowing failure mode, 

indicating imperfect axial load in some cases. This could go some way to explain the stepped cone 

geometry being stronger than the inverted trumpet in testing, although simulation results 

suggested otherwise. The stepped cone design has more material toward the needle tip, which in 

theory would make it less susceptible to non-axial loads. This weakness would not be found in 

simulations, which assume perfect axial load. 

 However, although the testing was not as accurate as could have been achieved, it was 

perhaps overkill in any case. Assuming an axial load, the 90 µm-diameter needle tips would have 

been experiencing pressures of around 30 to 32 MPa at the measured point of failure – nearly ten 

times required pressure in order for a needle structure to pierce the skin [10]. It is therefore 
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reasonable to assume that these structures are capable of creating the micropores required for 

the diffusion of large macromolecules such as insulin across the skin. 

7.6 Hollow Microneedles by MSL 

 Further fabrication tests were carried out with microneedle structures containing a 

central bore for the direct administration of drugs or the taking of blood samples. The structures 

were essentially the same basic geometries as described above, but with an 80 µm hole parallel to 

the needle axis, either through the centre of the needle or offset down the side of the geometry. 

The fabrication settings used were also the same as those used for the solid structures above. 

 The central-bore microneedles can be seen in Figure 7.14. Both the stepped cone and 

inverted trumpet geometries exhibited the results shown, with the upper half of the structure 

missing. It is likely that although the MSL system had enough resolution to complete the needle 

walls further up the needle structure than shown, in practice it is likely the cured photopolymer 

did not have enough strength at such low feature sizes to resist the stresses of the peeling process 

during fabrication. 

 
 
Figure 7.14 – Hollow microneedles with a central 80 µm bore, showing build failure in the upper part of the 
microneedle structure. 
 

 More promising results were shown in those structures fabricated with an offset lumen, 

as shown in Figure 7.15. Using these designs, the upper portion of the shape is retained. It is not 
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known how the bore affects the mechanical strength of the structures, compared to the same 

geometries in solid configuration, and it can be assumed that due to the offset, asymmetric 

geometry, that the failure mode is more likely to be bowing in nature. 

 
 
Figure 7.15 – SEM images of MSL fabricated hollow microneedle structures with offset 80 µm diameter 
internal bore. (a), (b), and (c) – inverted trumpet geometry in array, single needle and aerial view; (d), (e), (f) 
– same for stepped cone geometry. 
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 The main problem that is found with these hollow microneedles is not in the fabrication 

of the needle geometry itself, but in resolving the bore beyond the depth of the needle shape. As 

has been shown in Chapter 4, the EnvisionTEC Perfactory Mini Multi-Lens system is capable of 

resolving fine detail in the X/Y plane due to its reasonably high resolution. However, it has been 

found that sub-200 to 300 µm diameter microchannels do not clear well of the uncured resin, and 

can become blocked if more than 500 to 1000 µm in length. As a result, it is likely that although 

fully integrated MSL-fabricated devices with hollow microneedles are indeed possible, they 

probably require a higher resolution MSL system than the EnvisionTEC Perfactory. 

7.7 Conclusion 

 The field of microneedles is only a few of decades old, delayed due to the lack of suitable 

fabrication techniques available. As modern microfabrication techniques such as micromachining 

have recently evolved to higher resolutions, there is considerable commercial and research 

interest in developing cheap, pain-free microneedles for medical applications.  

In this chapter, we have demonstrated microstereolithography as one potential 

fabrication technique for both solid and hollow out-of-plane microneedles. A number of 

microstructure geometries were analysed using FEM computer simulations of stability under axial 

load, with stepped cone and inverted trumpet geometries showing promise in these tests. It was 

found that the needle tip radius is a major factor in the overall mechanical strength of these 

structures, with larger values allowing more stress to be absorbed. However, this must be 

balanced in vivo with the lower force required for skin piercing provided by smaller tip sizes, and 

our testing in the main modelled the interaction between the needle arrays and a hard, flat 

surface. Further testing must be carried out to assess effect of the microneedle arrays on skin.  

However, it has been shown that the structures produced are able to withstand many 

times the force required to puncture human skin reported by various papers in the literature. 

Both FEM analysis of whole arrays and mechanical testing of MSL fabricated arrays showed 
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sufficient mechanical strength. Arrays of 9 × 9 microneedles in rows were fabricated on the 

EnvisionTEC Perfactory Mini Multi-Lens rapid manufacturing system, with each needle standing 

400 µm from a solid base substrate. The stepped cone geometry was found to be stronger in 

mechanical testing, with an average failure force of 0.263 N, with the inverted trumpet slightly 

behind at 0.243 N. In both cases, the simulation data underestimated the true failure force by a 

small margin. 

Hollow microneedles, identical to the solid structures but with an offset 80 µm lumen 

were also demonstrated, but not mechanically tested. Although these structures resolved well, it 

is felt that the limitations of the EnvisionTEC Perfactory system suggest that a fully integrated 

system built entirely using MSL requires a higher resolution system to fully resolve the 

microfluidics at the scales required. Such systems already exist commercially, and further work 

would include work with such technologies. 
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Chapter 8 

8 Microstereolithography for Active Microfluidic Systems 

8.1 Introduction 

As shown in Chapters 2 and 3 of this thesis, there have been a wide variety of active 

and passive microfluidic devices produced for controlling the movement of liquids with sub-

millilitre volumes. Devices range from simple syringe-type mechanisms [1-4], to those that use 

hydrodynamic effects to influence fluid motion [5-7]. The range of materials utilised is equally 

wide. However, the majority of devices found in the literature since the year 2000 [8] use 

multilayer soft-lithography techniques to shape pumps and valves that use a reciprocating 

membrane to impart force upon the working fluid. Although multilayer soft-lithography is a 

versatile technique, excellent for device development where process flexibility is paramount, it 

is not ideal for the mass production of the final commercial product. This is mainly due to the 

manual nature of the basic process, although the requirement of expensive cleanroom 

facilities also makes the process less economically favourable. 

The process of microstereolithography, as reviewed in Chapter 4, has a number of 

similarities with the multilayer soft-lithography process. Each layer of the device being 

fabricated is created sequentially as a flat slice of a more complex 3D structure, which is then 

aligned and adhered to the previously fabricated layers. The final device is monolithic, and is 

impermeable to liquid. Multilayer soft-lithography has a much higher resolution than most SLA 

systems, limited only by the capabilities of the photocurable mask material used in the soft 

micromoulds production. However, modern microstereolithography systems are capable of 

reasonable resolutions, towards sub-micron, and have the advantage of being fully automated 

from the input of the 3D design data onwards. 
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The EnvisionTEC Perfactory Mini Multi-Lens SLA system is unique in the market in its 

projector-based mechanism. Whilst this limits the machine resolution in comparison to the 

more usual laser-based designs, it does mean that each layer is fabricated in a single step, 

rather than being created in a raster process. In theory, this makes the system ideal for 

creating thin horizontal structures in the vertical plane, allowing membranes to be created as 

part of complex microfluidic systems. In this chapter, this hitherto untested application of the 

EnvisionTEC Perfactory system will be explored, with the production of microfluidic devices, 

along with electronic test systems to characterise the said components. 

8.2 Fabrication of SLA Membranes 

8.2.1 Design, Build and Post-Processing Parameters 

 A number of test builds were designed and fabricated in order to ascertain the viability 

of membranes produced using the EnvisionTEC Perfactory Mini Multi-Lens SLA system. These 

developmental parts were also used to find the ideal build parameters for creating such thin 

structures, and were designed so that the membranes were formed using the light output 

from the exposure of a single masked layer. Although thin, membrane-like structures could be 

created using multiple structures, it was feared that these might not adhere properly and 

could delaminate, much like the horizontal mesh structures shown in Chapter 7. 

It was found during these tests that the use of the default build parameters resulted in 

many of the membranes being ripped during the build process. As with the microneedle 

fabrication in the previous chapter, it was assumed that the peeling speed was the critical 

factor, and indeed a reduction in the “standard” (non burn-in) layers of the peel speed from 

1000 to 500 µm/sec increased the viable membrane yield dramatically. It was also found that 

the diameter of the membranes was critical. Although different shaped membrane structures 

are possible, it was decided that circular membranes were preferable, as other shapes have 

corners that could intensify stress forces upon the membrane during use. Membranes of 
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between 1 and 10 mm were fabricated. Those below 5 mm in diameter were found to exhibit 

low incidences of damage during testing, and therefore the maximum diameter for use in the 

planned devices was set at 5 mm. 

The post-processing steps used to remove the excess resin from the devices were also 

found to affect membrane yields. For standard, bulk components containing internal 

structures, the parts were immersed in isopropanol for 15 minutes in an un-heated ultrasonic 

waterbath at room temperature. This time scale is required in order that the solvent dissolves 

the excess resin trapped within the internal features. However, this was found to be too harsh 

for components containing small-scale features, and the membranes produced would often 

break during the cleaning process. It is thought this is in part due to the fact that the standard 

layers of the SLA build are not fully cured, and the isopropanol can start to leach out the 

uncured polymer from within the partially cured matrix, weakening the structure. The 

sonication time was therefore reduced to 5 minutes, which would result in an outwardly resin-

free part. Although resin was still trapped inside the component fluidics, in most cases the 

device designs included integrated pipe fittings, allowing the resin to be manually flushed from 

the part using a syringe. 

One interesting feature of the SLA-fabricated membranes is their behaviour during 

post-curing in UV lightboxes. It was found that freshly fabricated membranes often took a 

wrinkled appearance, presumably due to the peeling forces placed upon them during the build 

process. However, after treatment in the UV lightbox, the membranes appeared flat and 

smooth. It is noted that an amount of shrinkage is expected from the resin during the resin 

curing, and a compensation routine is built into the calibration routine of the most recent 

EnvisionTEC Perfactory RP software. For the membrane to become tight, it is assumed that the 

membrane must shrink proportionally more than the surrounding bulk material, which would 
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be sensible considering the much greater thickness of the surrounding material in comparison 

with the membrane. 

8.2.2 Membrane Characterisation 

 Following the optimisation of build and post-processing parameters, a more complex 

test part was created, shown in Figure 8.1a. The part consisted of an internal chamber, topped 

with a membrane and linked horizontally to an integrated pipe fitting. This allowed a 

connection to a pneumatic source, which was used to exert force upon the membrane via the 

internal chamber. The pneumatic pressure was controlled using a manual regulator, and 

measured using a Honeywell 26PC series silicon pressure sensor. The signal from the pressure 

sensor was collected using a multimeter, with the input power provided by a standard 

powerpack. The pressure was varied at arbitrary intervals from around 0.5 PSIG to 3.5 PSIG 

(3.45 kPa to 24.12 kPa), with the deflection of the centre of the membrane measured using a 

Tallysurf surface profiler in manual mode. A plot of exerted pressure vs. deflection can be seen 

in Figure 8.1b. 

 
 
Figure 8.1 – (a) photograph of test component, showing the membrane in rest (upper) and pressurised 
(lower) positions; (b) plot of pneumatic pressure vs. membrane deflection measured using a Tallysurf 
surface profiler in manual mode. A maximum deflection of just less than 1.2 mm was achieved with a 
pneumatic pressure of 3.5 PSIG (24.12 kPa). 
 

The same test components were also used for long-term reliability tests of the 

membrane structures. In order to work in a functioning device, the membranes would have to 
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cope with a large number of on/off reciprocal pressure cycles. In order to probe their 

reliability, a simple test system was set up (shown in Figure 8.2), comprising of the Honeywell 

pressure sensor and regulator described previously, a Clippard ESO-3W 12V 3-way solenoid 

valve, a TiePie Handyscope H3 USB oscilloscope and a National Instruments NI-DAQ 6009 USB 

data acquisition device. Once again, the power to the pressure sensor was provided by a 

standard powerpack. 

 
 
Figure 8.2 – Schematic of long-term membrane reliability test setup. A 3-way Clippard pneumatic valve 
was used to digitally (on/atmospheric) control a pneumatic pressure provided by a pressure port and 
controlled by a regulator. The pressure was read by a Honeywell 26PC-series pressure sensor, which 
counted the on/off pulses in LabVIEW 7.1 via an NI USB-6009 DAQ device. If a membrane broke during 
testing, the peak pressure would not reach the set threshold, and the last recorded count number was 
used to determine the number of cycles reached. 
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The NI-DAQ 6009 was connected to a PC running LabVIEW 7.1, set up to monitor the 

output from the pressure sensor. The Handyscope USB oscilloscope was connected to the 

same PC, controlled by its own proprietary software. The signal generator from the 

oscilloscope was employed to directly drive the 12V 3-way valve at a frequency of 1 Hz, 

switching the valve’s output port from the regulator-controlled pressure source to 

atmospheric pressure. Three identical membrane parts were connected to the valve output, 

with the pressure sensor connected to a T-junction in the pneumatic tubing between the valve 

and membranes. 

The LabVIEW software was programmed to monitor the pressure sensor output for the 

peaks and troughs generated by the on/off cycle of the 3-way valve opening and closing. 3 

tests were carried out, at 1.0, 2.0 and 3.0 PSIG (6.89, 13.79 and 20.68 kPa). The software 

counted and wrote to file the number of peaks above a calibrated threshold, allowing the total 

number of pressure cycles to be counted. Should a membrane break during testing, the cycling 

would carry on, but the peaks would not be present due to the compromised pneumatic 

system. Once noticed by the operator, the membrane could be removed and the number of 

cycles experienced noted, before the test was resumed with only the remaining membranes 

connected. 

At both 1.0 and 2.0 PSIG, no breakages were observed before the number of cycles 

reached 1,000,000, at which point the test was terminated. At 3.0 PSIG however, one 

membrane broke at just under 300,000 cycles, the next at around 370,000 cycles, and the final 

part at just over 700,000 cycles. This attrition suggests the SLA-produced membranes are not 

suitable for actuation pressures much above 2.0 PSIG, although pressures below this should be 

safe for long-term device use. 
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8.2.3 Membrane Thickness 

 In the production of all membranes detailed in this thesis, the EnvisionTEC Perfactory 

system was set up with a layer thickness of 25 µm. As explained in earlier chapters however, 

this does not guarantee that the thickness of any overhanging or unsupported features will be 

exactly 25 µm. In order to adhere each layer to the previous one, a certain amount of over-

cure is required to allow cross-linking between layers. In the case of layers with no preceding 

structure to adhere to, such as membranes, this leads to structures that are thicker than laid 

out in the original 3D design.  

In order to quantify this discrepancy, a small number of test membranes were 

removed from their support structure and placed on a glass slide. The Tallysurf surface profiler 

was once again used, but this time in automatic profiler mode, allowing the thickness of the 

membrane to be accurately measured. The thicknesses measured were found to be relatively 

consistent, in a region around 60-70 µm. The slight variation can be explained by probable 

similar variation in the light levels of the projector between build runs, minimised by the 

calibration procedures detailed in Chapter 4. Although the layer exposure could be reduced in 

order to reduce the membrane thickness, this can lead to a knock-on effect in the bulk layer 

adhesion, causing aberrations in the component structure. A thinner membrane would be 

advantageous in terms of greater flexibility, but this would be balanced by a weakening of the 

mechanical strength. It was therefore decided to leave the exposure levels at their defaults in 

further work, although future research with new additive materials could focus on this 

balancing act. 
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8.3 Selection of Micropump Design and Actuation 

8.3.1 Mechanism and Rectification 

 As mentioned earlier, the reviews found show the large range of micropump and 

microvalve designs available in the literature for researchers to utilise and improve upon, 

although the majority of designs rely on a reciprocating displacement mechanism. With the 

EnvisionTEC Perfactory’s strengths lying with the production of thin horizontal membranes, it 

was clear these designs would be the way forward for microfluidic components built with this 

technology. This reduced the scope of any reasonable pump mechanisms substantially, but still 

left a number of options. The first was a multi-membrane peristaltic pump, either in a simple 

3-chamber configuration, or with a pair of active membrane valves flanking a pump chamber. 

Another option was the use of nozzle/diffuser elements, although initial research concluded 

that these microfluidic elements were most efficient at the higher pump frequencies exhibited 

by piezoelectric drivers. 

8.3.2 Thermopneumatic Actuation 

 The initial designs investigated were actuated using thermopneumatic principles. 

Thermopneumatic actuation has the advantage of being a fully integrated solution, relatively 

simple in terms of design, balanced by a normally relatively low actuation frequency due to the 

need for the pneumatic chamber to be heated and cooled. The thermopneumatic device 

designed can be seen in Figure 8.3. It consisted of a central pump chamber, flanked by a pair of 

active membrane valves. The energy requirement for shutting the valves was reduced by the 

inclusion of collars over the distal fluidics, a feature seen in a number of other published 

devices [9-16]. The device was fabricated in 4 parts: an upper block, containing the 

thermopneumatic and working fluid chambers, separated by the actuation membranes; a 

lower block, containing the distal fluidics and valve collars, along with tight-fit inserts that 

created the bottom of the working fluid chambers; and a pair of pipe fittings, that slotted into 
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a pair of square holes on the front edge of the lower part. The device was assembled and then 

sealed using an acrylate adhesive. 

The heating elements were provided by 3 SRL127 devices, consisting of a pair of 

microhotplates micromachined onto a silicon substrate, mounted on a PCB finger. These 

devices were originally fabricated to be coated and used as gas sensors, with one 

microhotplate used to heat the device to operating temperature, while the other was used to 

monitor the temperature of the sensing substrate during operation. Using a FLIR A20 USB 

infrared camera, it was ascertained that the temperature of the device was proportional to the 

resistance measured across the secondary heater meander, and that the device could quickly 

heat up to over 100 °C with a current of around 5 mA. The time constant of the microhotplate 

was measured at around 100 ms. The hotplates and PCB finger were inserted into the 

assembled device, and the thermopneumatic chamber was sealed using silicone sealant. 

 
 
Figure 8.3 – (a) photograph of initial micropump design, a reciprocating displacement thermopneumatic 
device rectified by a pair of active membrane valves; (b) wireframe 3D representation of pump, in an 
exploded view showing the separate components that were built on the SLA machine and later manually 
assembled, showing the 2 membrane hole valves with (i) collared distal fluidics, the three working fluid 
chambers linked by (ii) 500 × 300 µm cross-section fluidic channels, the (iii) thermopneumatic actuation 
chamber, separated from the working fluid chamber by the membrane, and (iv) the separately fabricated 
MSL pipe fittings. The device measures 28 × 10 × 11 mm, not including heater PCBs and pipe fittings 
 

 The micropump was actuated using the NI-DAQ 6009 USB data acquisition device, 

using the 5V digital out channels to control 3 IRF3711 MOSFETs regulating the output from a 

variable power supply, allowing the temperature of the microhotplates to be controlled. The 

actuation program of the pump is shown in Figure 8.4. 



Chapter 8 – Microstereolithography for Active Microfluidic Systems 

187 
 

 During testing with water, the micropump showed initial promise, creating a fluid flow 

at around 0.5 Hz. However, the flow would quickly break down and stop, and the pump 

appeared to lock in position. It was found after a period of testing that the problem was almost 

certainly that the polymer body of the device was not allowing enough heat to escape. This 

lead to the time constant of the thermopneumatic chamber being too high, and the valves 

were eventually locking down on the valve collars. Although slowing down the pump pattern 

may have allowed the valves time to unstuck, it was clear that the flow rate was not going to 

be very large. It was therefore decided to try pneumatic actuation, which does not suffer from 

such thermal problems, and allows a more direct control over the actuation pressure. 

 
 
Figure 8.4 – Actuation pattern of thermopneumatic micropump, from (i) to (vi). Although in theory a 
simpler pattern of (i) to (v) could be used, the step at (vi) makes sure that at no point is the pump in a 
position where at least one of the valves is not closed, increasing the backpressure created by the 
actuation motion. 

8.3.3 Pneumatic Actuation 

 The previous characterisation of the test membranes, along with the many instances in 

the literature reviewed in Chapter 2, show that pneumatic actuation is a viable and 

controllable method for the actuation of a microfluidic device. Most of those devices reported 

in the literature reported using soft lithography as the fabrication technique. Of these, most 



Chapter 8 – Microstereolithography for Active Microfluidic Systems 

188 
 

employed the reciprocating membrane with flanking active valves approach seen in the 

thermopneumatic pump above [8, 17-24], although ball valves [25] and passive flaps [26] have 

also been used. 

 One disadvantage of pneumatic actuation is that an external pneumatic is required, 

making it difficult to compare directly to other fully integrated devices, such as piezoelectric 

and thermopneumatic actuated micropumps. However, the pressure source can be a standard 

small-scale pump, powered with a battery, allowing portability. The pneumatic device 

footprint can also be smaller, and fabrication is simplified. They are also suitable for disposable 

medical and biological research systems, where the micropump can be integrated as part of a 

disposable cartridge, with the control electronics and pneumatic source located separately for 

re-use. 

 A problem encountered with the multi-part thermopneumatic design, detailed above, 

is that the assembly introduces a number of difficulties, including the chance of leaks, and the 

possibility of the glue seeping into microchannels, blocking the pump. It was therefore decided 

to attempt to build a single-part, monolithic pump. This precludes certain pump designs, such 

as those that rely on rectification from normally closed passive flap, plug or membrane hole 

valves. Most of these designs require the membrane or flap to be pressed up against a 

structure to provide the required force to block flow in a given direction, and building such 

devices using SLA would simple result in the mobile portion of the valve being fused to the 

plug. However, active membrane valves are normally open, and are therefore possible. 

 Another simple concept from a fabrication viewpoint is nozzle/diffuser elements. 

These microfluidic structures utilise the pressure difference created by flowing fluid through a 

widening or narrowing tube, and require no moving parts. There elements are relatively 

common in silicon-based designs, normally using integrated piezoelectric drivers operating at 

high frequencies [27]. This design has been used in a number of polymer-based devices, mostly 
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using piezoelectric actuation [28-30], although lower frequency actuation techniques such as 

electromagnetic [31, 32] and even thermopneumatic [33-36] have been used, suggesting 

pneumatic actuation with a suitable control valve would be possible. 

8.4 Initial Pneumatic Micropump Design and Test Rig Development 

8.4.1 Early Experimentation 

 An initial single-membrane, pneumatic design was produced, shown in Figure 8.5a, 

features a 4 mm diameter pump membrane, flanked by a pair of pyramidal nozzle diffuser 

elements, widening from a pinch point of 100 µm to 1 mm over a distance of 5 mm. The 

minimum width of the nozzle/diffuser elements was decided upon after the examination of 

the SLA system’s capabilities in Chapter 4. A pair of 200 µm wide cleaning holes were also 

incorporated into the design, into the pneumatic and working fluid chambers, in order to 

speed up the post processing. The devices were built with the machine parameters described 

previously, and took around 3 hours to complete. 

 
Figure 8.5 – (a) schematic of initial nozzle/diffuser micropump design, produced using the EnvisionTEC 
Perfactory Mini Multi-Lens SLA system, details in text. (b) initial flowrate vs. frequency test results for this 
design. 
 

Initial tests were carried out on the first design using a simple actuation and 

measurement system. The actuation set up was as with the previous long-term tests, using a 

signal generator to control an N-type MOSFET, switching the valve output from atmospheric 
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pressure to the pressure from the regulator. However, the pressure sensor was placed on a T-

junction between the regulator and the valve, to measure the supply pressure. Flowrate 

measurements were carried out using ColePalmer Clearflex tubing, stretched horizontally 

alongside a ruler. The fluid head was timed from point to point, allowing the flowrate at 

various supply pressures and actuation frequencies to be calculated. This data is shown in 

Figure 8.5b. 

 The results show a roughly linear rise of flowrate with actuation frequency, indicating 

levelling off between 25 and 30 Hz. Increasing the actuation pressure also appears to increase 

flowrate. However, it was obvious that both the method of data collection and the range of 

data were not of sufficient quality to take any real conclusions, except that the pump design 

did work and showed promise of reasonable flowrates. There were also problems regarding 

the reliability of the pump in terms of fabrication yield, as a number of the devices had blocked 

nozzle/diffuser elements upon being removed from the machine. In the very first batch of 

pumps fabricated, this was due to the over-cure problem discussed in section 8.2.3, as the 

“ceiling” layers of the pyramidal nozzle/diffusers were curing through into the fluidic void, 

blocking the narrow parts of the features. 

8.4.2 Test System Setup 

 It was decided to build a test rig that could remove as many human elements from the 

process as possible, and the resultant system is shown in Figure 8.6. The system was based on 

the NI-DAQ 6009 USB data acquisition device used previously, along with the Honeywell 26PC 

series pressure sensor to monitor the input pneumatic pressure from the regulator. The Lee Co 

valve used in the previous test setup was replaced with the Clippard ESO-3W 12V 3-way 

solenoid valve used for the long-term reliability tests, as it was found to have a quicker 

response time and was therefore able to produce a pulsed pressure at higher frequencies – up 

to just under 150 Hz as opposed to the 30 Hz of the Lee device. 
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Figure 8.6 – Final test rig used to characterise both the flowrate and backpressure characteristics of the 
MSL fabricated micropumps. Further details in main text. 
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Figure 8.7 – Details of PCB capacitive plates used in final test rig setup. (a) Plate dimensions and layout, 
including position of soldered pin placed through the PCB facing outwards from the gold strip, allowing 
connection to the rig electronics. (b) Positioning of plates to form the capacitor, with the C-Flex tubing 
internal bore (1.6 mm diameter) placed along the horizontal 80 mm gold strip on the plates. This 
arrangement was held together using a series of customised MSL-fabricated components. Two sets of 
plates containing the tubing were used, with one connected to the output of the micropump, and the 
other left dry as a reference device. 
 

It was decided to link the input side of the pump to a large reservoir of deionised 

water, in order to minimise any backpressure or surface tension effects that might be caused 

by a smaller input reserve. The output of the pump was connected to a tube of known internal 

diameter (ColePalmer 1.6 mm ID PTFE tubing), and the movement of the fluid to air boundary 

would be measured via a pair of capacitive sensors. 

Two pairs of capacitive plates, with a gold strip 80 mm long and 1.6 mm wide, were 

fabricated from a PCB using an automatic router. Connection pins were soldered to tabs 

integrated on the top of the plates, which were held in place either side of a length of the PTFE 

tubing using parts fabricated in the SLA machine. The plate design can be seen in more detail 
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in Figure 8.7. One pair of plates was placed either side of the tubing connected to the output 

of the micropump being tested, and would measure the fluid flow. The other pair would be set 

up identically, but over a stretch of clean tubing with no fluid in it; this would act as the 

baseline. In a dual-phase water/air system, the fluid front moves into and through the 

measuring capacitor. As it does so, the capacitance of the measurement capacitor will change 

relative to the reference capacitor, allowing the amount of water in the measurement 

capacitor to be determined. Assuming that the phase change within the tubing has no effect 

on the movement of the fluid front, and that the working fluid is non-compressible, it is 

therefore possible to track the movement of the fluid front, and therefore work out the 

flowrate being generated by the micropump. 

 In order to measure the relative capacitance of the two capacitors, two circuits were 

built (see Appendix A). The first circuit uses an oscillator to create a sine wave, which is split 

and inverted. The original wave is fed into a capacitive plate on the measurement capacitor, 

whilst the inverted signal is fed into the control. The output signal from the opposite plates of 

the capacitors are then combined and filtered by the second circuit. In theory, if the two 

capacitors are identical, the inverted signals combined should cancel each other out, leading to 

a 0V output signal. However, any difference will create an oscillating output, which is then 

filtered into a stable output voltage reading, proportional to the difference between the two 

capacitances. A variable resistor was included in the circuit to control the gain of the output 

filter, allowing the output to be tailored to the input range of the analogue inputs of the data 

acquisition device. 

 Rather than using a signal generator to drive the switching of the valve, control was 

handed to the NI-DAQ 6009. Due to the limitations of the LabVIEW software and the speed of 

the PC used, it was not possible to directly drive the valve using the digital out ports. 

Attempting to do so lead to a slow, often stuttering output signal. However, an analogue port 
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could be used to output to a voltage-to-square wave convertor (see Appendix A). An LM331 

voltage to frequency convertor was configured to output in a range up to 240 Hz linearly with 

an input voltage range of 0 to 5V. The pulsed output was fed into a 74LS74 Dual D-Type Flip-

Flop to produce a square wave at half the pulsed input frequency. This signal was used to 

switch an N-Type MOSFET in series with the valve, oscillating it between atmospheric and 

pressurised states. 

 One disadvantage of this approach is that it is not possible to control the status of the 

pneumatic valve directly i.e. to turn it on or off from the software. It was found during the 

initial tests that around half of the data sets showed much lower flowrates at lower 

frequencies than others. It was discovered that these passes were linked by the tests being 

started with the membranes in the “on”, pressurised position. It is assumed that the 

membrane takes time to settle back from the fully inflated position, limiting early flowrates 

measured from the data. It was therefore decided to check the valve’s status before each test 

by manually running it at very low frequencies, listening for the distinctive on/off sounds of the 

valve, stopping the run with the valve in the “off”, atmospheric position. 

 Another factor that must be checked for is the correct priming of the pump and test 

fluidics. The nozzle/diffuser designs presented in this chapter are not self-priming, and must be 

filled manually with a syringe. Even small air bubbles formed during the manual priming are 

disastrous for pump performance, as the air is compressible and robs the working fluid of 

energy that would otherwise be used to create flow. In practice it was found that thoroughly 

drying the test tubing and micropump internal fluidics using the air from the regulator would 

allow the tube to prime smoothly. 

 The assembled test rig is shown in Figure 8.8. Early testing showed that the capacitive 

sensors were very sensitive to electrical noise, and they were therefore mounted inside a 

metal box. A lot of the noise was found to come from the solenoid valve, as it switched quickly 
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between open and closed states, and therefore both it and its wired connection were shielded 

to protect other components. The circuitry for the valve control, along with the NI-DAQ device, 

were also placed in a purpose-built Faraday cage, and the capacitive sensor circuit boards were 

also mounted in a separate box. It was found that the proximity of the control PC CRT screen 

also affected the signal noise levels; the computer was therefore positioned at least 2 metres 

away during testing. 

 
Figure 8.8 – Test setup used to obtain flowrate data from the pneumatic SLA micropumps. Details of 
operation in text. 
 

 In order to obtain flowrate readings, tubing through the measurement capacitor must 

be both horizontal and level with the meniscus of the reservoir, in order to ensure that the 

flow is subject to zero backpressure. The box containing the capacitive sensors was therefore 

placed on a Z-stage, allowing it to be moved up and down, and the box was checked using a 

spirit level. In order to calibrate the Z-height, the tube into the reservoir was gently agitated. 
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This small amount of force breaks the surface tension on the measurement side. If any flow is 

observed, the Z-axis can be adjusted to compensate. 

 The NI-DAQ 6009 device was operated using a custom LabVIEW program, the interface 

of which is shown in Figure 8.9. The software displays using a chart the capacitive sensor 

voltage over time, along with the input pressure reading. The program has two modes of 

operation. The first is manual, where the actuation frequency of the micropump can be set 

either via a slider or input via the keyboard. The second mode sweeps the output voltage from 

0V (0 Hz) to 5V (120 Hz). With each cycle of the program, the NI-DAQ is instructed to increase 

the voltage by a small amount, the value of which is set via the interface. Typically, this would 

be around 0.01 V, with each cycle lasting around 40 ms. Finally, the values of both the pressure 

and capacitor voltage signals can be written to a text file, along with a millisecond timer 

reading for temporal positioning.  

 
 

Figure 8.9 – Interface of LabVIEW 7.1 program used to control the test system and the devices during 
characterisation. Output indicators for the capacitive sensor voltage and pressure sensor, along with 
inputs for pump actuation frequency, data file name and test status are vis ible. 
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 In order to process this data, the difference between the output voltage of the 

capacitive sensor circuits when the measurement capacitor is full and empty must be taken. 

This value can be divided by the length of the capacitor (80 mm) to give a volts-per-millimetre 

value, normally around 0.0325 V/mm. It was found that the base voltage (empty) and 

maximum voltage (full) were constant i.e. once the capacitor was empty or full, the reading 

would not change with any later fluid flow. However, it was found that an amount of sensor 

drift affected the system, requiring a periodic recalibration of this value.  

8.4.3 SLA Micropump Reliability – Part 1 

 One observation made from the testing to this point was that the membranes 

integrated into the monolithic micropumps were extremely unreliable, seemingly against the 

earlier findings in section 8.2.1. The freshly fabricated and post-processed devices would often 

break their membranes at pressures as low as 1.5 PSIG (10.34 kPa) within a few hundred 

cycles, an event characterised by the ejection of the water contained within the measurement 

system by the pneumatic pressure released from behind the now broken membrane. 

 Initially it was suspected that the water use in testing was damaging the membrane, as 

this appeared to be the major difference between the long-term test membranes and those 

micropumps being characterised. It followed therefore that coating the membrane in some 

form of waterproof layer may help protect the fragile membranes. After considering a number 

of options, a quick and easy method was to use HPA Conformal Coating. This substance is 

normally in spray form to protect PCBs and other electronic components against minor 

environmental damage, such as spillages. The coating was pushed with a syringe through the 

device fluidics, before being dried with an air jet and left to dry fully. This appeared to solve 

the reliability problems, although layer thickness consistency was a concern. 
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Figure 8.10 – Final single-membrane nozzle-diffuser rectified pneumatic micropump (Mk5) fabricated 
using the EnvisionTEC Perfactory Mini Multi-Lens SLA system. 
 
 
 
 
 

 
 
Figure 8.11 – Flowrate data collected from the Mk5 SLA-fabricated micropump using the frequency-
sweep mode in the LabVIEW software. This data was published in poster form at Eurosensors ’09 [37]. 
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8.4.4 Further Pneumatic Micropump Development 

 A number of changes were made to the pump to try to increase yield. The nozzle 

diffusers were made planar (i.e. the cross-section only changes in the X plane, not in the Y) to 

avoid the over-cure problem, and were defined by their divergent angle (8° from centreline, 

see Kar et al [29]) rather than their length. This resulted in a shorter nozzle/diffuser footprint, 

making the pump itself smaller – from 20 mm long to 13.77 mm, which would allow 6 devices 

to be built instead of 3 on the 28 × 21 mm build area. The narrowest part of the nozzle/diffuser 

structure was doubled in size to 200 µm to avoid blockages forming during the fabrication 

process, caused by particles of dust or stray cured resin from previous builds. Finally, the 

integrated pipe fittings were reduced in height, still allowing a connection yet reducing the 

fabrication time by 30 minutes. 

The resulting device (known as the Mk5) is shown in Figure 8.10. The micropump was 

tested using the test rig outlined in Figure 8.8, using the swept-frequency mode. This 

technique in theory allows the flowrates to be collected across the entire system spectrum in a 

single test, allowing a greater number of devices to be characterised in a shorter amount of 

time. Data was collected from a single device, creating a time and capacitive voltage data 

stream. This stream was split into short, equal segments over a given arbitrary frequency. 

Using the time and positional data, the flow rate for that short section could be calculated. 

This data was then subjected to a moving average in order to remove much of the remaining 

noise. The resulting device flowrate profile can be seen in Figure 8.11. 

 The data shows a small peak in flowrate at around 30 Hz, followed by a much larger 

peak at around 90 to 100 Hz. It was assumed at the time the dead zone between the two 

peaks was caused by resonances within the pump membrane, or perhaps within the oscilating 

pneumatic valve. The graph also shows an optimum actuation pressure of 2 PSIG (13.79 kPa), 

with an increase or decrease of 1 PSIG (6.89 kPa) leading to a drop in peak performance. The 



Chapter 8 – Microstereolithography for Active Microfluidic Systems 

200 
 

data was published as part of a poster presentation at the Eurosensors ’09 conference in 

Lausanne, Switzerland [37]. 

8.4.5 Backpressure Measurements 

 The backpressure of a pump can defined by the distance vertically that a pump can 

raise a column of fluid, and is indicative of the work being done of the liquid by the device. This 

is normally measured using a manometer, which consists of a U-shaped loop of tubing 

containing a discrete volume of fluid. With both sides of the U-bend subjected to the same 

pressure, the meniscus height in both vertical portions of the tube should be identical. 

Applying a different pressure to one end of the tube causes the fluid to move; the difference in 

height between the two meniscuses can be converted into a pressure value. 

 The flowrate test setup described above can be used to measure the backpressure of a 

given device. The capacitive plates can be raised at a known angle by mounting the box they 

are mounted in on a sine table. The table angle can be varied by using precision metal slips 

under one end of the table. With the reservoir on one side of the pump and the measurement 

tubing on the output side, the system can be regarded as a one-sided manometer – the 

reservoir is sufficiently large compared to the measurement tube volume that it is unlikely the 

vertical height of the reservoir will change. This makes the backpressure calculation simpler, as 

the final value is dependant only on the vertical height of the water column in the 

measurement tube, compared to the rest value.  

 As with the flowrate data collection, full and empty values must be periodically taken 

to calibrate the position data. However, a third “equilibrium” value must also be taken, to 

pinpoint the 0 backpressure position. As with the calibration of the Z-stage, the reservoir 

outlet tube must be agitated in order to allow the fluid in the measurement tube to move to 

its equilibrium position. The level of the reservoir can then be altered to raise or lower this 

equilibrium point, normally so it rests around 10 mm above the bottom of the capacitor plates. 
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Should the maximum backpressure of the pump at a given actuation pressure and frequency 

take the fluid front beyond the capacitive plates, the sine table angle can be increased by 

adding further slips, or even clamped vertically to provide a greater backpressure range. 

 One problem demonstrated by the calibration procedures is that there are surface 

tension effects at play in the measurement system, requiring agitation of the reservoir tubing 

in order for the system to reach equilibrium. Although larger tubing could be used to reduce 

the meniscus/air/tubing interactions, this increases the distance between the capacitive 

plates, in practice greatly reducing the signal strength. Practically these effects mean that the 

swept-frequency technique does not work, as although the pump can overcome this effect 

when in action, any drop in backpressure will not result in a backward movement of the fluid 

head. Therefore the testing must be carried out in manual, single-frequency mode. Although 

this takes more time, and requires that the fluid head be returned to its equilibrium position 

using a manual syringe, it does allow a flowrate vs. backpressure comparison to be made in 

reasonable detail. 

 In order to process the data, a similar process was used as with the swept-frequency 

data, with the data stream split into small segments in order to calculate flowrate at a given 

position. However, that position can also be converted via simple trigonometry into a vertical 

position relative to the equilibrium point, and therefore into a backpressure. This results in a 

graph showing the linear relationship expected between backpressure and flowrate, as shown 

in Figure 8.12. Maximum backpressure and flowrate values can be calculated by finding the Y- 

and X-axis intercepts of a linear trend line respectively. The error analysis methods used are 

outlined in Appendix B. 
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Figure 8.12 – Typical backpressure and flowrate data collected using the test setup described in section 
8.3.5. 
 

8.5 Data and Device Reliability 

8.5.1 Swept-Frequency Flowrate Data Reliability 

 Although the data presented in Figure 8.11 initially appeared reliable, subsequent 

backpressure measurements did not match the flowrates calculated, producing a completely 

different profile versus actuation frequency. It was therefore decided to re-characterise the 

original device using the flowrate and backpressure data purely from the angled-capacitor 

setup. The results are shown in Figures 8.13 and 8.14. 

 The difference between the two flowrate data sets is stark. Rather than dual peaks at 

30 and 90 to 100 Hz, the former much smaller than the latter, a large peak is visible at 60-70 

Hz, with higher actuation pressures also exhibiting flow at around 110-120 Hz. A “dead zone” is 

still found, but at 100 Hz. It is clear that something in the swept-frequency method causes 

some form of shift in the data collected. 
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Figure 8.13 - Data collected from the original Mk5 device via manual, single-frequency flowrate 
measurements, in comparison to the flowrate data collected via the swept-frequency method shown in 
Figure 8.8. 
 
 

 
Figure 8.14 – Backpressure data collected from the original Mk5 SLA-fabricated micropump via the 
manual, single-frequency method. 
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There are a number of possible causes of this effect. It is assumed that the manually 

collected flowrate results shown in Figure 8.10 are more reliable, as each measurement is 

taken under exactly the same initial conditions. The automatically-collected swept-frequency 

results however measure the transient flowrate at a given frequency, which may not give the 

membrane time to reach any characteristic resonant frequencies. Additionally, the ramping up 

of the frequency sweep was constant across the frequency range, potentially underestimating 

the early, low-frequency flowrate measurements by not allowing the flowrate time to stabilise. 

It is also obvious that the automatic technique overestimates the actual maximum flowrate by 

a factor of 2, probably because the fluid column is not at rest at the point before the flowrate 

at a given frequency is measured. Although not particularly satisfactory, it was decided to 

characterise future devices using the manual approach. 

8.5.2 SLA Micropump Reliability – Part 2 

 Although the SLA micropump’s reliability had increased greatly since the decision to 

coat the device internal fluidics and membrane with conformal coating, further tests were 

carried out to confirm the efficacy of the technique. 6 identical devices were fabricated – 3 

were coated, 3 were left after post-processing. The devices were left to dry over a weekend, 

simply due to the schedule at the time of the experiment. After drying for 3 days, the uncoated 

devices were tested, and were found to not exhibit the reliability issues of their predecessors. 

 It was clear that leaving the devices for around 48-72 hours after post-processing 

helped strengthen the membranes fabricated monolithically within a device. It is assumed, 

although not proven, that the rest period either allows the membranes to cure more fully in 

the ambient light, or allows the evaporation of solvents from the device material. It is more 

likely that the former is the case, due to the lack of reliability issues found with either the test 

membranes or the thermopneumatic pump. The thermopneumatic design was exposed to 

water during testing, and showed no reliability issues beyond those attributed to the thermal 
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properties of the device. It was decided that although the 3 day waiting time was not ideal, it 

was preferable to the potentially uneven coating procedure. All further devices were therefore 

fabricated using the 2-3 day waiting period. Further research could be useful in order to 

empirically characterise the effect of the drying time on membrane reliability. 

8.6  MSL Micropump – Final Designs 

8.6.1 Mk5 Single-Membrane - Manual Data 

 A new 6-device batch of Mk5 micropumps was produced. Of these devices, 2 were 

damaged during the fabrication process, but 4 identical pumps were found to be in working 

order after the 3 day drying period. Each was characterised using the manual 

backpressure/flowrate measurement process described above. The data collected was then 

averaged to form the graphs shown in Figures 8.15 and 16. 

The data in Figures 8.15 and 8.16 show some interesting patterns, especially in 

comparison with the coated micropumps characterised in Figures 8.13 and 14. The flowrates 

of the non-coated micropumps in Figure 8.15 are much higher at the lower frequencies than 

those of the coated devices, perhaps suggesting that the coating limits membrane flexibility. 

However, at higher actuation pressures, above 1.5 PSIG (10.34 kPa), flow rate drops markedly 

at lower frequencies. It was found under these conditions that the devices would produce an 

initial flow, but this would quickly stop and even reverse using the angled backpressure test 

setup. This suggests that the more flexible uncoated membranes are “bottoming out” – being 

pushed too far by the higher pressure over the longer period afforded by the lower actuation 

frequencies, and then not returning to their original position sufficiently far enough before the 

next actuation stroke. 
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Figure 8.15 – Averaged flow rate data collected from 4 identical Mk5 pneumatic single-membrane 
nozzle/diffuser micropumps. The devices were post-processed using the drying period described in the 
main text, rather than the use of conformal coating. 
 

 
Figure 8.16 – Averaged backpressure data collected from 4 identical Mk5 pneumatic single-membrane 
nozzle/diffuser micropumps. The devices were post-processed using the drying period described in the 
main text, rather than the use of conformal coating. 
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One feature common to both sets of data is the general increase in flowrate and 

backpressure with actuation pressure. Peak device performance also generally shifts further 

up the frequency scale with increasing pressure. Finally, with both sets of devices, higher 

frequencies allow a secondary flow peak at between 110 and 120 Hz, and it is possible that the 

pump performance could carry on increasing outside the range of the test setup. It was 

apparent from the data that the uncoated devices offered both greater peak performance, 

along with better performance over the full range of actuation frequencies. 

8.6.2 Beyond Single Membranes for Nozzle/Diffuser Designs 

 One idea investigated was the use of multiple membranes on a single micropump 

device. A pair of designs were developed: the Mk6, with a pair of parallel membranes acting on 

a single working fluid chamber; and the Mk7, which was essentially a pair of Mk5 mechanisms 

placed in parallel on a single device. These designs are shown in Figure 8.17 and 8.18 

respectively. 

The first device to be built was in fact the Mk7, due to it being easier to fabricate, not 

requiring the additional support structures used for the Mk6. The device was treated as per 

the uncoated Mk5 devices during fabrication and post-processing. However, it was found that 

it was nearly impossible for the device to be properly primed, mainly due to the liquid filling 

one branch of the fluidics, but not the other. Further development was therefore halted, 

especially in light of the more promising results from the initial Mk6 tests. 

Data was collected from 3 identical Mk6 devices, averaged and plotted in Figures 8.19 

and 8.20. A number of observations can be made from the data. Although the flow rates 

reported are actually lower than those reported for the single-membrane devices, the 

maximum backpressures achieved are actually higher for any given actuation frequency. In 

general, maximum flowrate increases with actuation pressure, although there appears to be a 

levelling off of this trend between 2.0 and 2.5 PSIG (13.79 and 17.24 kPa). The “dead-zone” 
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seen in other devices at around 100 Hz is less apparent using the “boxer” parallel membrane 

design. Finally, the low flowrates seen at the higher actuation pressures and lower frequencies 

due to membrane “bottom-out” is not present, with a relatively linear ramp up of flowrate and 

backpressure seen across the actuation pressure range. 

 
 
Figure 8.17 – Dual-membrane “boxer” nozzle-diffuser rectified pneumatic micropump (Mk6) fabricated 
using the EnvisionTEC Perfactory Mini Multi-Lens SLA system. This device required support structures 
(concept described in Chapter 4) attached to the bottom surface in order to build – the slight roughness 
visible on the bottom surface either side of the central pneumatic port are where the support teeth met 
the device before being removed during post-processing. 
 
 

 
 
Figure 8.18 – Dual-membrane nozzle-diffuser rectified pneumatic micropump (Mk7) fabricated using the 
EnvisionTEC Perfactory Mini Multi-Lens SLA system. 
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Figure 8.19 – Averaged flow rate data collected from 3 identical Mk6 pneumatic dual-membrane 
nozzle/diffuser micropumps. The devices were post-processed using the drying period described in the 
main text, rather than the use of conformal coating. 
 
 

 
Figure 8.20 – Averaged backpressure data collected from 3 identical Mk6 pneumatic dual-membrane 
nozzle/diffuser micropumps. The devices were post-processed using the drying period described in the 
main text, rather than the use of conformal coating. 
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8.6.3 Multi-Membrane Self-Priming Designs 

 In theory, multiple-membrane active-valve designs such as the thermopneumatic 

pump outlined previously have a number of advantages over nozzle/diffuser flow rectification. 

Due to the active closing of the flanking active membrane valves, the maximum backpressure 

achievable is several orders of magnitude higher. The devices are also more flexible, being able 

to create flow in both directions and allowing the pumping of air, allowing self-priming. 

 A monolithic design based on the earlier described thermopneumatic device was 

developed, shown in Figure 8.21. In initial testing, reliability and fabrication yield issues were 

very much apparent. It is surmised that this is maily due to the increased number of 

membranes required for the device operation. During the fabrication of the Mk5 single-

membrane pumps, it was found even after optimisation of the build parameters that 1 to 2 of 

every batch of 6 pumps would have a broken, ripped membrane. This 16-33% loss of yield, if 

treated on a per-membrane basis, could suggest that on average each 3-membrane device will 

have at least 1 defective membrane. A number of 2-device batches were fabricated and 

processed, until a suitable device was found for testing. 

 

 

 
 
Figure 8.21 – 3-membrane pneumatic SLA-fabricated micropump, consisting of a pair of active 
membrane valves sandwiching a central pump membrane. 
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 A number of design and testing problems were found during the initial pump runs. A 

new LabVIEW program had to be created in order to control the 3 Clippard 3-way valves 

required to control the pressure to the individual membranes. The device programming itself 

was identical to that of the thermopneumatic device, as shown in Figure 8.4, except pneumatic 

pressure was employed. Additionally, the much greater backpressure created by the active 

membrane valves, in comparison to that possible using nozzle/diffuser rectification, meant 

that the 80 mm capacitive sensors were too small, even when mounted vertically. Therefore, 

maximum flowrate and backpressure readings had to be taken separately. The flowrates were 

taken using the capacitive sensors, mounted horizontally in manual measurement mode. 

Backpressures were taken by suspending a length of ColePalmer C-Flex clear rubber tubing 

against a vertically mounted metal 1 metre ruler. The device was set at a given actuation 

frequency, and the fluid column was allowed to stabilise. The height of the fluid column was 

then measured off the ruler, allowing conversion into a backpressure value. The flowrate and 

backpressure data is shown in Figure 8.22. 

 
 
Figure 8.22 – Backpressure and flowrate data from Mk9, a monolithic 3-membrane pneumatic SLA-
fabricated micropump. 
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Early reliability issues were encountered, as it was found that quite high pneumatic 

pressures of around 3 to 4.5 PSIG (20.68 to 27.58 kPa) were often required in order to fully 

close the valves. The valve membranes when activated rest against a collar, helping to prevent 

the membrane from becoming over-stressed and breaking, but the central pump membrane 

was able to expand unimpeded into the pump chamber, often leading to it breaking.  

In order to counter these problems, two design changes were made. First, the valve 

collars were made taller, reducing the pressure required to press the membranes against them 

and close the valve. Secondly, a cylinder of material was included in the pump chamber, in 

order to help prevent the pump membrane over stretching and breaking. Although the latter 

design changed appeared to work as expected, the former lead to an unexpected side effect: 

the pump would lock up, much like the thermopneumatic device had done previously. It was 

found that the valves using the higher collars did require less pressure to close, but would not 

move far enough for the membrane to produce enough elastic force to move it back into 

position and open the valve. It is thought that surface tension effects may contribute to the 

locking effect, as it was not observed when pumping air during priming. The final 3-membrane 

micropump design therefore included the pump chamber cylinder, but reverted to the 250 µm 

collar-to-membrane gap, as opposed to the locking 150 µm space. 

The multi-membrane design has an interesting backpressure pattern, due to the 

working mechanism of the active membrane valves. At lower frequencies, the membrane is 

pushed into the collar for longer, creating a better seal and therefore higher backpressure. 

Over the range of frequencies tested, the flowrate varies linearly with increasing frequency. 

This multi-membrane design shows great potential for integration into more complex devices, 

as its ability to pump in both fluidic directions and self-prime allows a greater flexibility in 

application. However, the flow created by the pump is comparatively rough compared to the 

nozzle/diffuser at higher frequencies, and the maximum flowrate obtained was inferior. It 
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therefore follows that a system containing both devices may exhibit the best qualities of both 

devices, and this could form part of future research. 

8.7 Nozzle/Diffuser Optimisation 

 Although the Mk5 device design had given promising results, it was decided to attempt 

to optimise the nozzle/diffuser design to improve pump performance. Towards this aim a 

simple steady-state FEA model was created using the COMSOL Multiphysics package. A 2D 

cross-section of the Mk5 internal fluidics was exported from SolidWorks 2009 in DXF format. 

This file was imported into COMSOL, the walls and domains defined, meshed and the 

simulation run. This process is summarised in Figure 8.23. In the initial model, a small square 

domain was placed at the centre of the pump chamber, with its 4 walls defined as inlets. 

However, it was found that the side walls facing the nozzle/diffuser elements were producing a 

stream that was heading straight into the nozzle/diffusers, potentially effecting the simulation. 

It was therefore decided to define the curved walls of the pump chamber as the inlets, with 

the end walls of the post nozzle/diffuser fluidics were defined as zero-pressure outlets. 

 The inlets were defined by a velocity condition, whilst the main subdomain was given 

the properties of water, with a density of 1000 kg/m3 and a dynamic viscosity of 0.001 Pa.s. 

The remaining walls were defined as being non-slip surfaces. Finally, the velocity of the inlet 

was set at a pair of arbitrary speeds (0.0025 and 0.005 m/s) and the simulation run on a 

number of different fluidic designs, with nozzle/diffuser divergent angles ranging from 3 to 10 

degrees from the centreline. The fluidic speed was read from the outlets on both sides, and 

the difference between the maximum velocities calculated. This difference was then plotted 

on Figure 8.24. 
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Figure 8.23 – Simulation process: (a) DXF 3D CAD file exported from SolidWorks of device fluidics; b) 
model walls and subdomains defined, with the curved pump chamber walls defined as velocity inlets, the 
end walls (top and bottom) defined as zero-pressure outlets, and the remaining surfaces defined as non-
slip. The subdomain was defined as having a density of 1000 kg/m3 and a dynamic viscosity of 0.001 
Pa.s; c) the subdomain was meshed (8640 elements per model); d) the result of the simulation, 
expressing high pressure as red to low pressure in dark blue. The upper element is the diffuser (pump 
outlet) and the lower the nozzle (pump inlet); e) velocity data collected from diffuser side-outlet; f) 
velocity data collected from nozzle-side outlet, showing the fluid leaving the device faster on the diffuser 
side, as expected. 

 
Figure 8.24 – Simulation results, plotting maximum velocity differential between nozzle and diffuser 
outlets against the nozzle/diffuser centreline divergence, along with the maximum flowrate found for 
Mk5 pumps using 6°, 8° and 10° divergence. 
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 In order to validate the simulation, versions of the Mk5 design were produced with 

nozzle/diffuser elements with 6° and 10° centreline divergence, to compare to the data 

collected from the 8° original device. The data collected is shown in Figures 8.25 to 28 

inclusive. The maximum flowrates reported were plotted along with the simulation data in 

Figure 8.24. 

 The data shown in Figure 8.24 are not conclusive, but have some promise. Although 

the proportional difference between the 6° and 8° devices in terms of maximum flowrate/fluid 

velocity is comparable with the real data, the 10° device data does not fit the simulation. It is 

possible this is an anomaly in the collected data, although it is more likely that the simulation is 

too simple as a steady-state model to be accurate. Further testing would be required to fully 

validate the model, including the production and testing of further devices using other 

divergence angles. Finally, a transient model could be produced, as this could more accurately 

model the effect of the reciprocating motion of the pump membrane. 
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Figure 8.25 – Flowrate collected from Mk5 nozzle/diffuser micropump with nozzle/diffuser elements with 
6° centreline divergence. The maximum flowrate of 995 µl/min was reported at 60 Hz and an actuator 
pressure of 2.5 PSIG (17.23 kPa).  
 

 
 
Figure 8.26 – Backpressure collected from Mk5 nozzle/diffuser micropump with nozzle/diffuser elements 
with 6° centreline divergence. 
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Figure 8.27 - Flowrate data collected from Mk5 nozzle/diffuser micropump with nozzle/diffuser elements 
with 10° centreline divergence. The maximum flowrate of 802 µl/min was reported at 75 Hz and an 
actuator pressure of 2.5 PSIG (17.24 kPa). 
 

 
 
Figure 8.28 - Backpressure data collected from Mk5 nozzle/diffuser micropump with nozzle/diffuser 
elements with 10° centreline divergence. 
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8.8 Towards an Integrated SLA Microfludic System 

 Although the devices presented in this thesis were developed separately, in reality it is 

most likely they would be used as part of an integrated system. One potential application is in 

the acquisition and processing of blood samples. To show the potential of SLA systems in the 

production of complex, 3D integrated microfludic systems, a test component was fabricated, 

including a microneedle array, internal fluidic channels and an integrated 3-membrane 

pneumatic micropump. The test device is shown in Figure 8.29. 

 
Figure 8.29 – Test device fabricated using the EnvisionTEC Perfactory Mini Multi-Len SLA system, 
featuring a solid microneedle array positioned over an internal chamber, 1 mm deep. 4 0.5 mm diameter 
holes lead from the array to the chamber. The chamber is connected to an integrated 3-membrane 
pneumatic micropump by a serpentine channel. The device could be used in the analysis of blood 
coagulation. 
 
 

 Although obviously further work would be required, the device presented could be 

used in the analysis of whole blood samples. Blood let by the microneedle array could be 

pulled into the device by the self-priming micropump, and pulled along the fluidic channel. If 

the channel were coated in either a negatively-charged substance such as glass particles or an 

appropriate clot-forming enzyme, the distance the blood sample travels along the channel 

before coagulating could be used to measure the clotting ability of a patient. 

 

 



Chapter 8 – Microstereolithography for Active Microfluidic Systems 

219 
 

8.9 Conclusion 

 In this chapter, the development of a series of SLA-fabricated micropumps has been 

outlined, along with a test system for the characterisation of said devices. Initial work has 

centred on thermopneumatic actuation of a multi-membrane design. This actuation technique 

was found to be unreliable due to the insulating properties of the acrylate SLA material. The 

focus was then shifted to pneumatic actuation. The devices developed could be split into 2 

main categories – those rectified with nozzle/diffuser elements, and those rectified using 

active membrane valves. A range of single-membrane nozzle/diffuser micropumps was 

produced, with a maximum flowrate of just under 1000 µl/min achieved using 6° centreline-

divergent nozzle/diffuser elements with a backpressure of around 320 Pa. A dual-membrane 

“boxer” design was also developed. This did not reach the same flowrate, with a maximum of 

730 µl/min. However, the backpressure produced by the device was higher at around 360 Pa.  

Work was carried out to optimise the design of the pumps to improve performance, 

and a simple FEA model was created for this aim. Although the model was not validated fully 

by the physical data produced, further work could be done to refine the simulation. It should 

be noted however that for devices built using SLA technology, the lead time for developing the 

simulation is likely to be far beyond that of simply building a range of devices and testing 

them. 

 The ultimate goal of the work was to outline the potential of SLA systems for the 

production of microfludic components. It has been shown that membrane-based reciprocating 

micropumps and active membrane valves can be produced reliably using the system. It has 

also been shown that such devices can also be integrated along with other SLA-fabricated 

fluidic components, such as microneedles and microchannels, to form a complex system. 

Further research could lead to highly complex but easily created devices for use in a range of 

potential applications. 
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Chapter 9 

9 Conclusions and Future Work 

9.1 Conclusions 

 Stereolithography, and ALM systems in general, have developed in the last 20 years from 

academic curiosities into commercially successful technologies. Although their industrial use is 

relatively limited, due in part to their cost, it is a matter of time before they become 

commonplace in manufacturing roles, as they are capable of building complex monolithic 

structures that are simply not possible using traditional machining techniques. Resolution has 

increased to the point that nanostereolithography systems are now under development, with 

microstereolithography systems already being seen as an alternative in some applications to 

silicon micromachining techniques [1]. 

The purpose of this thesis was to examine the capabilities and applications of 

microstereolithography systems, with particular emphasis on microfluidic components and 

microneedles and a goal of moving towards an integrated microfluidic system incorporating both 

features. The EnvisionTEC Perfactory Mini Multi-Lens SLA system was found to be capable of the 

production of complex devices with micro-scale internal components, along with high-resolution 

surface features down to a few tens of microns in cross section. 

9.2 Microneedles 

 The field of microneedles was reviewed, and a range of microneedle array designs were 

proposed for fabrication. This range was narrowed using FEA modelling, resulting in two 

geometries being selected for fabrication.  The stepped cone and inverted trumpet designs were 

300 µm in diameter, 400 µm tall with 90 µm diameter tips. These designs were then fabricated, 

with the factory-default build parameters of the SLA system being found to exert too much stress 
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on the microneedle structures, damaging them reducing the layer peeling speed by 50% allowed 

the microneedle structures to resolve well and reliably.  

Further FEA modelling was used to optimise the designs, revealing the balancing act 

between the requirement that the needle tip be small in order to pierce the skin, and that this 

size reduction also reduces the needle’s mechanical strength under axial load. For example, a 

stepped cone geometry with a 15 µm diameter tip was found during FEA modelling to fail 

structurally at a force of 0.21 N; doubling the diameter to 30 µm increases the mechanical 

strength by a factor of 4. Mechanical testing was performed in parallel with FEA modelling to 

determine the failure force of 9 × 9 arrays of the microneedle structures. The stepped cone 

geometries were slightly stronger than the inverted trumpet designs, failing at 0.269 and 0.243 N 

respectively. The simulations underestimated this force by around 20%. At the point of failure, it 

was calculated from the mechanical test results that the needle tips would have been exerting a 

pressure of around 30 to 32 MPa, some 10 times more than that required to pierce average 

human skin [2]. However, further work on the biocompatibility of the materials is needed before 

such structures could be used on patients. 

9.3 Active Microfluidic Components 

 A large review of the field of micropumps and microvalves was carried out, with particular 

emphasis on the use of polymeric materials. This allowed suitable designs and working principles 

to be selected. The range of devices fabricated and tested can be seen summarised in Table 9.1. 

Two actuation techniques were tested – thermopneumatic and pneumatic. Both of these 

techniques simply use changes in air pressure to deform a thin polymeric membrane. The first 

device fabricated was a 3-membrane thermopneumatic micropump, assembled from 3 separate 

SLA-fabricated components. The device also required 3 PCB-mounted microhotplates. Although 

flow was achieved using this method, it was found that the device was unreliable, most probably 

due to the insulating properties of the polymeric SLA material. Although the thermopneumatic 
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chamber was able to heat up to perform the “down” membrane stroke, it was not able to cool 

down in a sufficiently quick time in order to produce a meaningful flow, and the membranes 

would eventually lock down if the actuation frequency was too high. 

 The focus of research was therefore shifted to pneumatic actuation, which avoids such 

problems. Although pneumatic actuation requires an external pressure source, meaning the 

devices themselves are less well integrated, it does allow the device to be more compact. 

Additionally, the use of such devices in medical or biological research applications may require the 

device to be disposable, and the lack of electronic components directly integrated into the system 

allows for easier disposal or incineration, with the control and pneumatic components kept 

separate for re-use. 

 Two main pump designs were considered: a pneumatic version of the 3-membrane 

thermopneumatic design; and devices with flow rectification provided by nozzle/diffuser 

elements. Initial results showed flow rates of up to 650 µl/min with an actuation pressure of 1.0 

PSIG (6.89 kPa), rising relatively linearly. However, this data was collected manually, and it was 

clear that a more automated approach was required.  

An electronic test rig was developed, based on LabView controlling a NI-DAQ 6009 device. 

Central to the function of the system was a capacitive measurement arrangement, allowing 

precise measurement of the position of a fluidic front. Actuation pressure and temporal data was 

also collected. Micropump control was integrated into the test software, with an output voltage 

being used to control a voltage-to-frequency circuit, controlling a 3-way valve that cycled the 

micropump pneumatic supply from atmospheric to regulator pressure. For the 3-membrane 

design, this was replaced by directly controlling 3 3-way valves in a predetermined pattern. 
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Initial data was collected from this system using a “swept frequency” method, which 

automatically measured the flowrate across the frequency range for a given actuation pressure. It 

was later found however that the swept-frequency method lead to distortions of the device 

characteristics, and an overestimation of the flowrate. A manual, single-frequency method was 

therefore settled on, and the data produced using this method was deemed to be more reliable, 

as each reading was taken from the same starting positions, rather than the constantly changing 

baseline of the automatic readings. 

A single-membrane monolithic nozzle/diffuser rectified device was fabricated, and was 

found to produce a maximum flowrate of 940 µl/min with a backpressure of 260 Pa. It showed 

good flow rates over a range of frequencies, with a dead zone around 100 Hz. One problem found 

was an area of low flow rate at low frequencies and higher actuation pressures – it is assumed this 

is due to the membrane “bottoming out” when not given enough time to recover between cycles. 

A dual-membrane “boxer” nozzle/diffuser pump was also produced. This design is bigger 

in volume, and cannot produce the flowrates of the single-membrane devices, reaching a 

maximum of around 730 µl/min. However, the backpressure was higher at around 360 Pa, 

suggesting this design could be optimised further. 

To try to optimise the nozzle/diffuser elements, a simple steady-state analysis was carried 

out. This suggested that both 6° and 10° divergence from the centreline would be more efficient 

than the original 8° device. In practice however, the 10° was found to have a lower maximum 

flowrate of around 900 µl/min, although the 6° was more efficient at 1,000 µl/min. This leaves the 

model as yet not validated, although further work could be carried out to ascertain if the 10° 

result was reliable. 

The 3-membrane monolithic device was also designed for pneumatic actuation. Although 

in comparison it produced a much rougher and slower flow than the nozzle/diffuser devices, its 
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major strength was in its self-priming. The seal created by the active membrane valves allowed a 

backpressure of around 4.7 kPa to be obtained, although this dropped off quick as the pump cycle 

frequency and flowrate increased. Regardless, this device shows great potential for integration 

into more complex microfluidic systems. 

To show this, a test device was produced incorporating a 3-membrane pump, a stretch of 

complex internal microfluidics and a microneedle array. Although the device was never tested, it 

does prove the ability of the SLA system to produce complex active microfluidic components. It is 

hoped that further research will develop this application further and into commercial production.  

9.4 Future Work 

 The research in this thesis could be developed further in the following areas: 

 More work could be carried out on the SLA-fabricated microneedles in order for this 

technique to become truly viable for the production of devices for use on patients. The 

main areas of advancement required are in the biocompatibility of the materials and the 

resolution of the SLA system. Mechanical testing with skin or a synthetic equivalent would 

also be useful. Similar structures fabricated on existing laser-based systems may allow a 

small enough internal lumen within hollow microneedle arrays to be resolved without 

destroying the needle structure or weakening it. 

 Work could be carried out to optimise the nozzle/diffuser structures outlines in Chapter 8 

to allow greater micropump efficiency. A starting point could be found in the computer 

models presented in this thesis, which are currently of a relatively basic level and need 

further work to improve their accuracy. 

 An investigation could be carried out into the possibility of producing multi-component 

systems, rather than monolithic parts. Certain structures such as pre-stressed normally-

closed passive valves, of either float or membrane-hole type (see Chapter 3) are not 

possible using monolithic SLA, as the touching components would be bonded to each 
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other rather than free moving. Research could centre on the shrinkage of components 

during post-curing, which can make it difficult to produce several components that fit 

together without leakage during use. 

 Research could be carried out into the applications of the active microfluidic devices 

presented in Chapter 8, focusing on their use in SLA-fabricated complex and integrated 

microfluidic systems. In particular a hybrid device comprised of both multi-membrane (for 

self-priming) and nozzle/diffuser (for smooth flow) devices could be investigated. 

 Work could be carried out using laser-based systems to ascertain their efficacy in the 

production of the membranes used in this thesis. 

 More work should be carried out on the long-term biocompatibility of the acrylate resins 

used. Alternative photosensitive materials could be sought to overcome any problems 

that arise. Other material properties could be of interest for the future development of 

the devices and structures presented in this thesis. For example, stronger materials would 

be advantageous for fabricating microneedles. On the other hand, more flexible 

materials, possibly approaching the material properties of PDMS, would be very useful in 

the fabrication of the membranes used in the micropump devices. 

 More research needs to be carried out to increase the fabrication yield of components 

with micro-scale structures. It is possible that work with laser-based systems, which 

inherently place less strain on microstructures during fabrication, could be favourable in 

this respect. Ultimately, dual-photon systems would theoretically reduce fabrication 

stresses further, although these techniques require more complex photosensitive 

materials.  

 Research could be carried out into the prospects for SLA systems for mass-production of 

components. This could be based around lab-on-a-chip devices or some other component 

that is not easily produced using conventional machining techniques. 
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 More research needs to be carried out into the long-term performance of SLA materials in 

general, including exposure to environmental conditions. The focus on prototyping within 

the industry has lead to materials being developed with initial finish and aesthetics in 

mind, with long-term stability sometimes not given consideration. On the other hand, 

materials that break down in a controlled fashion could be useful in terms of 

biodegradability and for environmental concerns, or for the production of bio-scaffolds 

for use in tissue engineering. 
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Appendix A 

A Circuit Diagrams 

 On the following pages the circuit diagrams for the electronics used in the pump 

electronic test system are shown. The first is the oscillator circuit (A1) used to provide the signal 

to the capacitive sensors. The second (A2) is the filter used to process the return signal and 

output a voltage proportional to the difference in capacitance between the measurement 

capacitor and a reference device. The third (A3) is the voltage-to-frequency circuit used to control 

the nozzle/diffuser micropumps. 
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A.1 Capacitive Sensor - Oscillator Circuit 
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A.2 Capacitive Sensor - Filter Circuit 
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A.3 Micropump Control - Voltage-to-Frequency Convertor 
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Appendix B 

B Error Analysis 

For addition or subtraction of data values: 

 

For multiplication or division of data values: 

 

 Where:  x = result of calculation; 
   a b c = numbers used in calculation; 
   sx = uncertainty in result; 
   sa sb sc = uncertainty in numbers used in calculation. 

 


