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Vortex stretching as a mechanism for quantum kinetic energy decay

Robert M. Kerr
Department of Mathematics, University of Warwick, Coventry UK CV} TAL

A pair of perturbed anti-parallel quantum vortices, simulated using the three-dimensional Gross-
Pitaevskii equations, is shown to be unstable to vortex stretching. This results in kinetic energy
K+ being converted into interaction energy E; and eventually local kinetic energy depletion that
is similar to energy decay in a classical fluid, even though the governing equations are Hamiltonian
and energy conserving. The intermediate stages include: the generation of vortex waves, their
deepening, multiple reconnections, the emission of vortex rings and phonons and the creation of
an approximately -5/3 kinetic energy spectrum at high wavenumbers. All the wave generation
and reconnection steps follow from interactions between the two original vortices, unlike the self-
interactions in vortex wave models. A four vortex example is given to demonstrate that some of
these steps might be general.

PACS numbers: 47.37.4-q,47.27.De,47.32.C-,67.25.dk

Background Despite the absence of viscosity, exper-
iments have repeatedly shown that superfluids exhibit
resistance and depletion of turbulent kinetic energy in a
manner similar to the effects of turbulence in a classi-
cal fluid [1] with ideal boundary conditions. The super-
fluid experiments measure the decay of vortex line length,
with the first measurements at relatively high tempera-
tures [3] and recent confirmation at lower temperatures.
These experiments include 3He for 7' < 0.27,. [4], where
T. < 2.2mK, and more recent measurements in ‘He at
T < 0.5K [5]. These results imply that the effect could be
a property of the ideal, inviscid equations for a pure su-
perfluid or quantum gas, so that coupling to the viscous
normal fluid component is not required to get decay.

Why would an inviscid, Hamiltonian system decay in a
manner similar to a classical fluid? To compare directly
a theory for classical decay based upon the Navier-Stokes
equations would be needed, which does not exist. Could
large simulations provide the clues? As in the classical
case [6, 7], a large simulation of a quantum vortex tangle
[8] reproduces many experimental properties, including
-5/3 spectra [9, 10]. However. gaining insight has many
of the same problems as using observations.

To bridge the gap, this letter presents initial analysis of
the evolution of a single pair of anti-parallel quantum vor-
tices that, through a series of identifiable steps, is trans-
formed into a state with most of the observed properties
of quantum turbulence. After setting up the problem,
analysis shows that after initially stretching, the vortex
line length decays alongwith the local energy. Eventually
a k~°/3 kinetic energy spectrum forms and distributions
of the interaction energy suggest that phonon generation
could act as an energy sink. Finally, preliminary results
using a different initial condition are mentioned to sup-
port this scenario. The goal for such cases will be to
make comparisons to experiments measuring vortex line
properties [5, 11, 12].

Equations and numerics. The quantum vortices are

simulated using the 3D Gross-Pitaevskii equations:

Lo = 0.5V + 0.5¢(1 — [¢[?) (1)

i 0t
with background density p, = 1. Through the Madelung
transformation: ¢ = \/pexp(i¢), a velocity is identified
as v = V¢ and the density is p = |¢|2. Defects in the
wave function 1 are interpreted as infinitesimally thin
vortices of constant circulation f v - ds = 2w The equa-
tions conserve the mass M = [ dV|y|? and the Hamilto-
nian H = Ky, + Er (kinetic+interaction) where

Kyy = ;/dvvw-vw, E; = i/dV(l —wl*)? (2)

with ¢! being the complex conjugate of 1.

Simulations of the Gross-Pitaevskii equations require
good numerics, adequate resolution and smooth bound-
ary conditions. Convergent time-advancement is ob-
tained using a 3rd-order Runge-Kutta, semi-implicit
spectral algorithm used for other ideal equations [13]
where the nonlinear terms are calculated in physical
space, then transformed to Fourier space to calculate the
linear terms using complex integrating factors. No-flux
domain walls are imposed using cosine transforms and
serve as an approximation to those of a superfluid in a
container and as a means of generating symmetric ini-
tial conditions. The constant timestep is small enough
to obtain convergence consistent with the algorithm.

Initial conditions. The initial condition for the full
periodic domain is shown in Figure 1la. The wave func-
tion is formed out by superposing vortex cores around the
trajectories of lines of p = 0, then multiplying by complex
exponentials, which define the sign of the circulation. In
the first case, only one-half of one of the anti-parallel
pair needs to be given. Its other half and its anti-parallel
image are automatically behind the no-flux boundaries
in y and z. The trajectory chosen for this vortex line

is: s(x,y,2) = ((Sw {2/ cosh([y/d,]'%) — 1} , 1,0) with
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FIG. 1: Three-dimension isosurfaces with p = .05. Nearly the
complete vortices, which extend from y = —167 to y = 167,
is shown in (a). The pair are propagating towards smaller x.
In (b), only y > 0 is shown to allow us to see into the vortices
through the x — z symmetry plane as they are starting to re-
connect across the z —y dividing plane. Simultaneously, kinks
form on each vortex in y. These kinks are the source of waves
that propagate out along the vortices after reconnection.
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FIG. 2: a) t = 4.5. After reconnection, the waves deepen until
second reconnections occur, allowing a vortex rings to sepa-
rate from the origin vortices. Further incipient reconnections,
which lead to the formation of additional vortex rings, can
be seen along the vortices. b) ¢ = 45. View showing all the
vortex rings for y > 0. Multiple vortex rings start separat-
ing from the original anti-parallel pair starting at ¢ = 12 and
propagate to larger y. By t = 45 some have left the system.

0y, = —1.6and 0, = 1.25ina Ly x Lyx L, = 87 x 16w x4m
domain on a 128 x 512 x 64 mesh. The power 1.8 on the
normalized position y/J, helps to localize the perturba-
tion near the y = 0 symmetry plane. Long vortices were
used to minimize reflections off the y = 167 symmetry
plane during the late stages.

To ensure that the initial density went smoothly from
zero on the vortex cores to roughly the background den-
sity over the distance of the healing length, [¢| = \/p =
rP/\/r?P 4+ a9 with p = 2 and a¢ = 2, was chosen Once
the calculation started, the density about the cores profile
quickly relaxed to the p = 1 theoretical prediction [14].
A new calculation by C. Rorai starting with p = 1 shows
cleaner conclusions without changing the overall conclu-
sions about the energetics reported here. This function
was applied approximately perpendicular to the trajec-
tory of the vortex lines, and is not perpendicular to the
y-axis as in past Euler calculations [13], which assisted
in minimizing spots of excess p > pp.

In order to ensure that v at the boundaries is suffi-

ciently smooth, up to 23 image vortices from outside the
domain were mapped into the computational domain, as
opposed to the three image vortices used in earlier work
[15]. The final step for obtaining a smooth initial con-
dition uses a exp(—ak?) Fourier filter with a = 0.002

Evolution: Stretching, reconnection, waves,
rings To give an overall sense of the evolution, four
frames are shown: the initial time and three subsequent
stages. Figure 1b shows the stretched state just as the
first reconnection commences. Vortex stretching modifies
the density around the original vortex in several ways.
First it deforms the vortex, making it thinner in the z
direction. However, because Gross-Pitaevskii does not
have singularities, stretching must also remove mass from
the interaction region so that the core diameters defined
by p < p. =~ 0 can never become infinitely thin. This is
distinctly different from the the classical Euler equations
where singularities are a possibility and cores could be-
come infinitely thin. Figure 1b shows the time when this
decrease in density has created a density hole between
the two vortices and reconnection has begun. As noted
before [15], from a Lagrangian perspective, the topologic
change associated with reconnection without singularities
in the wave function can only occur across locations of
zero density. Note the large wave/kink at the boundary
between the most stretched region and the small vortex
waves propagating further out on the vortices.

After reconnection, waves move out from this kink and
deepen. These waves are driven by interactions between
the vortices, not local induction terms associated with
vortex Kelvin waves. The deepening leads to two new
reconnections near |y| = 5 at ¢t = 4.5, which creates the
first vortex rings. Then a series of zig-zags and dips ap-
pear on the z = 0 plane. Each of these dips leads to a
new reconnection and the creation of yet another vortex
ring. Ongoing spectral analysis suggests that for every
ring created, there is another spectral cascade step.

The rings then propagate away from the y = 0 plane.
Fig. 2b shows a late stage with only a few remaining
vortex rings. Note that each successive ring for increasing
y has a smaller radius than the previous ring. Because
the quantum circulation I' of each vortex ring is identical,
this implies that the propagation velocities V.~ I'/R and
the separation between the rings increases in time and
they can freely leave the local system without interfering
with one another. The calculation was terminated once
the rings began to hit the outer wall.

Stretching diagnostics The first attempt to investi-
gate vortex stretching in the Gross-Pitaevski equations
used a spectral length similar to the Taylor microscale
A [16]. For the cases here, this length is the order of
the vortex diameter and does not grow. A better ap-
proach is to to mimic experimental measurements of line
length that are based upon the scattering of beams of
several types by the zero density vortex cores [3-5]. A



suitable diagnostic for the length is obtained by counting
the number of boxes where p < p. ~ 0, giving a volume,
then dividing by the core cross-section for a p = 1 profile.
Similar algorithms have been used before [2, 17, 22] and
shown both the growth and decay of vortex lines. Us-
ing p. = 0.1, Fig. 3 quantifies the stretching seen up to
t ~ 4.5 and the subsequent decay of line length.

Decay relations. With a direct simulation, an ex-
perimentally observed property such as the decay of vor-
tex line length can be directly compared to the different
components of energy and used to test whether the in-
terpretation of the decay of line length as a measure of
energy decay is valid and be compared with theories.

A possible relationship between line length and ki-
netic energy is obtained through squaring the line length,
which provides an estimate for the effective enstrophy Z
or mean square vorticity. As demonstrated in a simula-
tion of classical, homogeneous isotropic turbulence in a
periodic box [1], because the enstrophy Z is related to
the dissipation of kinetic energy by ¢ = (d/dt)K = vZ,
if the vortex line length is defined as L = [ds ~ N
and is observed to decay as L ~ t~3/2, then Z ~ t~3 and
the kinetic energy decays as K ~ t~2. Note that this
decay law is never seen experimentally, as all classical
experiments have boundary layers.

Without a normal fluid, the current concensus is that
energy can be removed in a quantum fluid only by the
non-ideal boundaries. The outstanding question is to ex-
plain how the energy gets there. Three mechanisms have
been proposed: i) Quantum vortex lines reconnect to
form vortex rings, which then propagate out [18]. ii) Lin-
ear waves, or phonons are generated internally and prop-
agate out. iii) Waves on vortices could cascade to small
scales and their energy be radiated as phonons [19, 20].

After a brief adjustment from the initial condition,
completed by ¢t = 0.5, the two primary stages shown in
Fig. 3a,b are: I) The E; increases, Ky decreases and L
grows until the second reconnection near t = 4.5 occurs,
which is when the first and largest vortex ring separates
off, as illustrated by Fig. 2. II) Thereafter, as multiple
vortex rings and phonons are being generated, the local
Ky, decreases and L decays.

The depletion in line length with time is not continu-
ous, it occurs in steps, making it impossible to compare
this single series of events with power law decay. Each
step can be associated with specific events, either recon-
nections or rings leaving the local domain.

Distributions and line length To understand the
different stages, subplots Fig. 3c-e show distributions of
the interaction energy E (2) with respect to density at
three times. The ¢t = 0.5 distribution in Fig. 3¢ demon-
strates that initially £; has a maximum near p = 1.

Fig. 3d shows that at ¢ = 6, when stretching is great-
est, there has been a dramatic growth in Ej, with most
of the growth for p &~ 0. This implies a large growth in
the number of points with p ~ 0. Note that the increases
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FIG. 3: Estimates of the line length compared to changes in
the interaction and kinetic energies. a) Analysis over the full
domain. There is strong F; and vortex line growth (L) for
0.5 <t <6. For 6 <t < 25 both Kyvy and L decrease.
For T' > 30 the global kinetic energy Kv, grows again. This
is associated with the accumulation of energy for y > 4m.
b) Only the first y-quadrant, the original interaction region.
Here too initial the length and E; grow at the expense of
Kvy. Later Kvy, half the total Hamiltonian 0.5H and L
decrease. c-e) Distributions of the E; with respect to density
at t = 0.5,6,30 to show how energy appears to flow from
Kvy to Er to waves. Spectra: f) By ¢t = 48, Kvy(ky) has
an enhancement high wavenumbers regime compared to E;.
Spectra in the other directions have similar trends but are
less distinct. For comparison k2 and k~%/% lines are drawn
to demonstrate this effect, which could be indicating some
type of downscale energy cascade in Kv.p.

in Ey for t < 20 are compensated for by a strong decrease
in the global kinetic energy in Fig. 3a.

Immediately after ¢ = 6, L begins to decrease dramat-
ically while the kinetic energy Ky, continues to decay,
which is compensated for by a continuing increase in the
interaction energy E;. At the end of this stage, there is
a growth in large values of F; on either side of p = 1,
shown by the distribution at ¢ = 30. Around, not at,
because for p = 1, Ey = 0. This would be consistent
with visualizations of waves being emitted from colliding
vortices [21, 22].

The decrease in the global kinetic energy does not per-
sist. Eventually interaction energy is converted back into
kinetic energy, possibly due to oscillations between Ky,
and Ej in the released phonons. Similar oscillations were
observed in GP calculations with a symmetric Taylor-



Green initial condition [16]. This would not persist in
a real experimental device because the waves would be
absorbed by the non-ideal boundaries.

To mimic what decay in a real flow might look like,
especially experiments that generate tangles far from
boundaries [5], Fig. 3b shows the growth, then decay,
of the line length in the first y-quadrant (0 < y < 4n)
with rescaled kinetic energy, showing that the local re-
gion exhibits kinetic energy depletion in the final phase
as the vortex rings leave this region.

Spectral cascade Is there a cascade to small scales?
Fig. 3f shows spectra for the final time ¢ = 48. Ey(k,)
and Ky (ky) are shown because they are directly related
to conservation of energy and because they do not have
artificial high wavenumber regimes created by the singu-
larities in the vortex cores. In the first state of spectral
development, until the first ring separates off at ¢t = 4.5,
high wavenumber spectra are roughly k=2 in all direc-
tions for both E; and Kvy,. This is similar to spectra
in Euler calculations [13]. After ¢ = 4.5, Ky (k) grad-
ually increases at higher wavenumbers, that is smaller
scales, but not Ej(k). The spectra shown at ¢t = 48 rep-
resent the end of this process with Ey(k,) ~ k=3, while
Kyy(ky) ~ k7°/3. The transfer of Ky to small scales
is the significant observation, not the exact power laws,
Preliminary analysis of the spectral interactions suggests
a type of dual cascade, with Ky, having a forwards cas-
cade while E; cascades to large scales through nonlocal
(in wavenumber space) interactions.

Colliding rings How much of the scenario portrayed
here has been seen before? To address this question,
initial conditions similar to earlier work have been sim-
ulated [15, 17, 21]. Of these cases [23], a four ring case
in Fig. 4 provides the best qualitatively support for how
generic the role of stretching and reconnection seen here
are. Fig. 4 shows that: A) As the vortex rings become
entangled in Fig. 4b, kinetic energy decreases sharply
while interaction energy and line length increase. B) As
the tangle disintegrates and small rings are released in
Fig. 4c, all local quantities decay. Note: In this four vor-
tex case, line length is closely tied to Ej, which decays
more rapidly than Kv..

In both of these cases and a previous four ring case [17],
there are multiple reconnections and strong intervortex
interactions. Recalculation and analysis of orthogonal
and two ring initial conditions [15, 21, 22], which gener-
ate only one or two reconnections, do not generate the
scenario presented here.

Summary A long-standing question in classical tur-
bulence is whether the energy cascade is mostly statisti-
cal, or originates with the interaction of fluid structures.
No matter how special or non-classical, even a single case
that started with a simple vortical configuration and then
generated a cascade could provide new insight. Such an
initial condition could then be adapted to classical recon-
nection and turbulence calculations to determine whether
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FIG. 4: Four colliding rings, the entangled state generated,
the final relaxed state, and the time dependence of the kinetic
and interaction energies plus a measure of line length in the
inner region that contained the original vortices. In this case
the measure of line length, the volume where p < 0.1, tracks
the interaction energy E1 more closely than the kinetic energy.

similar dynamics and stages can form. The results here
suggest how to start a search for similar classical events
that would begin with vortex stretching, then form a tan-
gle followed by multiple reconnections, and finally lead to
the creation of small scale dissipative structures.
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