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Abstract

Meta-analysis is the statistical part of a systematic review. Many researchers have

used selection functions to model publication bias in a meta-analysis. The main

problem with this approach is that it is impossible to verify that the selection function

truly represents the selection process, and so the use of selection functions can only

be seen as part of a sensitivity analysis. In this thesis we present new methods that

involve selection functions that aim to make as few strong assumptions about selection

as possible, including the use of a non-parametric permutation test, and the use of a

step selection function. We also investigate the use of parametric selection functions

and suggest how researchers could use these as part of a sensitivity analysis, by looking

at a range of plausible values for the overall selection probability. As part of this

sensitivity analysis, we assess the effectiveness of the Bounds method as presented

by Henmi et al. Throughout the thesis we illustrate all methods with numerical

examples, including a meta-analysis investigating the effects of environmental tobacco

smoke on the risk of lung cancer in non-smokers.
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1 Introduction

Meta-analysis is the statistical part of a systematic review, and due to the increased

awareness in the importance of evidence based research, it is a very active area for

researchers. Publication bias is one of the most prominent issues in meta-analysis,

and there currently exist numerous methods to try to model and account for it. The

structure of the thesis is as follows.

Chapter 2 will include a literature review of meta-analysis. This chapter will begin

by introducing the broader concepts and issues relevant to meta-analysis. Also dis-

cussed will be an overview of a variety of methods that have been developed to model

and adjust for publication bias in a meta-analysis. Special attention will be given

to the Trim and Fill method by Duval and Tweedie [27], and the Bounds method by

Henmi et al. [47], as these methods will be used in subsequent chapters.

Chapter 3 will include a case study of a meta-analysis investigating the effects of en-

vironmental tobacco smoke. The effect of smoking on a person’s health has rightfully

received a lot of medical attention and continues to do so. This chapter will pro-

vide an overview of the meta-analysis conducted by Hackshaw et al. in 1997 [40] that

aimed to synthesize together research relevant to this topic. Subsequent analyses that

other researchers have carried out to demonstrate techniques of handling publication

bias in a meta-analysis relevant to the Hackshaw dataset are discussed. In 2007,

Taylor et al. [85] carried out an updated meta-analysis investigating environmental

tobacco smoke and lung cancer. In this chapter, we will use their updated dataset

for two reasons: the first being to promote routine investigations of publication bias
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in a meta-analysis, with the aid of simple recommended techniques, both graphical

and statistical. The second reason for analysing the Taylor dataset is that it will

be interesting to discuss how the main conclusions of the 2007 Taylor meta-analysis

may have changed compared to those of the 1997 Hackshaw meta-analysis. S-Plus

code relevant to the calculation of the Bounds method of Henmi et al. will also be

presented in the Appendix. While the theory for the Bounds method might appear

highly statistical, it is hoped that the S-Plus code provided can be easily adapted for

others with their own research under similar settings.

One standard approach for modelling publication bias in a meta-analysis is to make

assumptions about the selection process. These assumptions are unfortunately very

difficult if not impossible to fully verify. Chapter 4 presents a robust P-value using

the idea of a permutation test. An alternative approximation to this P-value is also

presented. The aim of this new method is to avoid making strong assumptions about

the selection process. Numerical examples are discussed to demonstrate the method,

including the aforementioned passive smoking example, as well as a different example

concerning the effectiveness of cholesterol lowering interventions. Limitations con-

cerning the use of this robust P-value will also be discussed. It should be noted that

the content in Chapter 4 forms the basis for a paper that was co-authored with J.B.

Copas and subsequently accepted for publication in the journal Statistics in Medicine

in 2008 [20], a copy of which is included in the Appendix.

Chapter 5 will present a general method for using parametric selection functions in

meta-analysis. Selection functions (or weight functions as they are also known) de-

scribe the probability of a study being selected in a meta-analysis, often conditional

upon the study outcome, study size and some adjustable parameter, β. The choice

of selection function is entirely arbitrary, and we know little about the value of β

since the selection process is unknown. Chapter 5 will describe the maximum like-

lihood approach and will propose a sensitivity analysis, where we re-calibrate the

various selection functions into an interpretable quantity, p, representing the overall

probability of selection, and investigate a plausible range of values of p. Chapter 5
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will include various examples of selection functions where β is a scalar parameter,

and this chapter will also generalise the theory to an example where β is a vector

of parameters, namely the Copas and Shi selection function [21]. We conclude this

chapter of work by assessing the effectiveness of the Bounds method by Henmi et al.

by comparing the confidence intervals derived from the use of the parametric selec-

tion functions with the bounds when the Bounds method is used. Various numerical

illustrations will be used throughout this chapter, including the case study example

from Chapter 3 and an example concerning the use of prophylactic corticosteroids in

cases of premature birth.

Chapter 6 will present a new maximum likelihood method for monotonic selection

functions, aiming to make as few assumptions about the selection process as possible.

Previous researchers have used the idea of a step selection function when attempting

to model publication bias in a meta-analysis, for which Lane and Dunlap [53], and

Vevea and Hedges [90] are early examples. One of the main criticisms is that some of

these methods require making very strong assumptions about the selection function,

for example, where to place the steps in the function, which can not be easily verified.

The new method proposed here in Chapter 6 will use a step function in its solution,

under few assumptions. An algorithm on how to implement this method in practice

will be discussed, and will be illustrated with the aid of the case study concerning

environmental tobacco smoke and lung cancer. In addition, the S-Plus code that will

be used to implement this method will be given in the Appendix.
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2 A Literature Review

This chapter starts our journey into publication bias by first introducing the wider

definitions and concepts regarding systematic reviews and meta-analysis. A brief

history of publication bias is also included, which will provide an interesting account

of the major landmarks in the development of this branch of statistics. Finally, this

chapter will focus upon the use of parametric selection functions in meta-analysis,

including techniques that will be used often in subsequent chapters. One final point

before we begin is that Sutton et al. [80] was most useful in providing an insightful

introduction to systematic reviews and meta-analysis. While the following attempts

to highlight the main points, see their recommended text for more details. Another

recommendation is the second edition text edited by Cooper et al. [14] in 2009 provid-

ing a relevant update into the numerous areas of literature reviews and meta-analyses.

2.1 Systematic Reviews

The increase in demand for scientific knowledge relevant to health care over the last

century has been considerable, spread across a variety of reports and journals. When

one searches for the available evidence for a particular area of interest, one normally

finds a variety of studies which have used different methods, are of varying quality,

and quite possibly will have contradictory conclusions. It can therefore be difficult

for the researcher to make sense of the research that they find.

Further to this, there is an increasing need to ensure medical procedures and health

policies are based on evidence that is reliable and relevant. Archie Cochrane, a
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British epidemiologist, in 1972 spoke of the need for “rigorous evaluations to inform

choices made by policy makers”which eventually led to the Cochrane Collaboration

in 1993 - a general international initiative that summarises the results of health care

experimental evaluations. Briefly, the Cochrane Collaboration is a group of volun-

teers responsible for ensuring that well conducted reviews are readily available to

researchers or practitioners to learn from them.

Evidence based medicine (EBM) refers to the explicit use of current best evidence

in making decisions about care of individual patients. It is critical for EBM to have

the structure in place to gather together all the evidence in such a way that it is in a

usable form by the practitioners. This is the role of the systematic review. System-

atic reviews use well-defined and rigorous methods to “identify, critically appraise,

include and synthesize relevant research studies”.

A brief summary, as given by Sutton et al. [80], of the structure of a systematic review

is given below.

1. Specification of the objectives, hypotheses and methods of the systematic review

before the study is undertaken.

2. Compilation of relevant primary studies, having searched for all potentially

relevant data, documenting all search methods and sources, based on clearly

stated a priori specifications.

3. Assessment of the methodological quality of the set of studies.

4. Identification of definitions of outcome, explanatory and confounding variables

compatible as far as possible with all primary studies.

5. Extraction of estimates of outcome measures and of study and subject charac-

teristics in a standardized way from primary study documentation.

6. Meta-analysis using appropriate methods and models, exploring and allowing

for all important sources of variation. Confidence intervals around pooled point

estimates should be included.
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7. When statistical aggregation is inappropriate (for example, if the data is too

sparse, or of low quality, or heterogeneous - a concept introduced later), a qual-

itative summary should be performed, and the formal meta-analysis omitted.

8. Exploration of the robustness of the results of the systematic review, including

the impact of study quality; likelihood and impact of publication bias; im-

plications of the effect of different model selection strategies; exploration of a

reasonable range of values of missing data from studies with uncertain results.

9. Clear presentation of key aspects of all the above stages in the study report,

to enable critical appraisal and replication of the systematic review, including

a table of key elements of each primary study. Graphical displays can assist

interpretation where appropriate.

10. Limitations of the primary studies and the systematic review should be ap-

praised. Any clinical or policy recommendations should be practical and ex-

plicit, making clear the research evidence on which they are based. Proposal of a

future research agenda should include clinical and methodological requirements

as appropriate.

By following these guidelines on systematic reviews, as demonstrated by the Cochrane

Collaboration, researchers have an arena to collaborate work, avoid duplication, keep

up-to-date and allow everyone to access the combined results. A wide variety of pub-

lications are available guiding researchers on how best to perform literature searches

of systematic reviews. A good reference by Egger et al. provides an insight into

comprehensive literature searches, discussing the importance of such searches and

the need to assess the quality of the reviews [33]. Another recommendation would

be the text on systematic reviews by Egger et al. [32] which offers an approachable

introduction.

6



2.2 Meta-Analysis

Meta-analysis is the application of statistical methods to systematic reviews. To

quote Sutton et al. [80],

“meta-analysis is the part of the review process that concerns itself

with the analysis of the data extracted from the primary research included,

uses quantitative methods to explore the heterogeneity of study results,

estimates overall measures of association or effect and assess the sensitivity

of the results to possible threats to validity such as publication bias and

study quality.”

The concepts upon which meta-analysis is based are not necessarily new ideas. A

known example of meta-analysis dates as far back as 1904 when Karl Pearson inves-

tigated divergent results from small studies of the effectiveness of inoculation against

typhoid fever [59]. The aim of the meta-analysis was to overcome the problem of

reduced statistical power in studies with small sample sizes. Meta-analysis has been

widely used in the social sciences for over sixty years, for example in the fields of ed-

ucation, sociology and psychology. Researchers such as Glass, Schmidt and Hunter

are names associated with advancements in meta-analysis. Glass was in fact the first

to use the term meta-analysis in a statistical setting [36]. From the 1980’s onwards,

it has been used frequently in the health care field.

In spite of the obvious advantages that meta-analysis can provide, there are a few

drawbacks. Some statisticians and researchers have criticised the use of systematic

reviews. This could be the result of poor practice or inappropriate use of statistics

when the assumptions, on which the methods are based, are not satisfied. Another

limitation is that meta-analysis of qualitative data is poorly developed. When arriv-

ing at decisions, for example with a particular health care policy, it sometimes may be

necessary to incorporate informal observations from clinical and patients’ experiences.
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2.3 Issues in Meta-Analysis

The use of meta-analysis and systematic reviews has increased considerably over the

last few decades. It is a very active area of research, especially related to medical

applications, which has seen substantial development in the last fifteen to twenty

years. The predominant reason why the area has received so much attention recently

in the health care field is most likely because of the growing awareness of the need for

evidence based medicine in policy making. There are however many issues in meta-

analysis. Two of the main themes which will be discussed here are heterogeneity

and publication bias.

2.3.1 Heterogeneity

Given a research question of interest, results from single studies are collected together

and used to estimate an overall effect. Those estimates will almost certainly differ

amongst the various studies. If sampling error alone is responsible for this variation

(since individual estimates will inevitably vary by chance), then this means that the

true effect is the same in each study. In this scenario, the effect estimates would be

considered homogeneous. If, on the other hand, there are kinds of systematic differ-

ences between studies which causes variations that chance alone can not explain, then

the effect estimates are called heterogeneous. Take as an example a meta-analysis

including studies from all parts of the world, spread over a significant period of time,

say decades. It seems unlikely that the individual studies would be estimating the

same effect. Heterogeneity is therefore an important problem in meta-analysis. It

might not be appropriate to combine the study results if the data are “too heteroge-

neous”, resulting in an overall estimate of little use.

2.3.2 Publication bias

Another important problem in meta-analysis is publication bias. This is the bias

caused by the generally accepted belief that research with statistically significant

results is more likely to be submitted for publication than those studies with non-
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significant results [29]. The non-random sampling that is taking place will therefore

create bias and in turn pose a serious threat to the validity of the results of the

meta-analysis. The sample of results will almost certainly misrepresent the research

findings, usually creating over-optimistic conclusions. Clearly publication bias is an

issue that needs much consideration. Since a meta-analysis is the statistical part of

a systematic review which is in turn critical to EBM, it is important to take into

account any biases that may occur in an unrepresentative sample of studies.

Publication bias is not the only type of bias that one encounters when carrying out

a systematic review. A non-exhaustive list of examples of other types of publishing

and reporting related biases are given below.

1. Retrieval bias - the bias incurred through the process of obtaining unpublished

studies.

2. Pipeline effects - the effects of waiting for unpublished studies to become pub-

lished.

3. The subjective reporting of results may be a consequence of the opinions of the

investigator.

4. Duplication of reporting results when, for example, authors submit their results

to different journals.

5. Language bias - possible exclusion of studies from non-English speaking coun-

tries.

6. MSc dissertations and PhD theses might not get published.

7. Suppression of studies due to conflicts in personal or political interests.

2.3.3 Heterogeneity and its interaction with publication bias

It is widely known that the two issues of heterogeneity and publication bias are not

mutually exclusive. Publication bias is one of the more important issues with meta-

analysis, however there is a danger that publication bias may be misdiagnosed or
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over-estimated within a meta-analysis when it may in fact be an issue of heterogene-

ity. Funnel plots (discussed in more depth in Section 3.4.2) are routinely used to

detect the presence of possible publication bias by investigating asymmetrical pat-

terns within the plot. It is widely acknowledged that heterogeneity is an alternative

cause of asymmetry, and so when heterogeneity exists within the data, it becomes

difficult to determine whether this is the cause of the asymmetry or if publication

bias is the cause, or both [80]. This issue can make the use of funnel plots unreliable.

The importance of investigating heterogeneity within any meta-analysis is paramount,

not just how to potentially adjust for it, but to consider the underlying causes of

the between-study variation. Research by Peters et al. [62] highlighted the need to

consider heterogeneity, publication bias and their interaction. Results showed that

ignoring heterogeneity when assessing for publication bias can be misleading, and

it becomes difficult to disentangle the effects of the two issues when the number of

studies within the meta-analysis is small.

There are many causes of heterogeneity, summarised as the following (see [80] and

[2] for a good discussion):

1. The underlying cause may be due to chance.

2. The scale used to measure the treatment effect.

3. Treatment characteristics, such as dose levels of the intervention under investi-

gation.

4. Patient-level covariates may provide insight to the cause.

5. Characteristics of the design and conduct of the study, including the quality of

the study.

6. The length of follow-up of a trial may influence the treatment effect size.

If there still exists significant amount of heterogeneity that remains unexplained even

after considering various possible causes for it, then investigators must ask whether

10



it is appropriate or not to pool together the various studies. There are numerous

approaches for investigating and dealing with sources of heterogeneity. These will be

discussed in Section 3.4.3 later on in this thesis.

2.4 A Brief History of Publication Bias

The generally agreed notion of publication bias that we are familiar with today dates

back over a period of about fifty years with one of the earliest examples by Ster-

ling in 1959 [77]. Sterling referred to research yielding non-significant results not

being published. Twenty years later, the term file drawer problem was first coined

by Rosenthal [70]. It literally refers to researchers filing away studies with negative

outcomes, and was one of the earliest methods of assessing for publication bias using

a fail safe approach. Another notable reference in this area was Orwin in 1983 [58]. A

fail safe approach involved estimating the number of unpublished studies that would

threaten the validity of a significant overall estimate from a meta-analysis. Specifi-

cally, this fail safe estimate was the number of null results necessary to average the

overall estimate to some specified level of significance, say a P-value of greater than

0.05. Around the same time as the file drawer problem did the term publication bias

first get used in a statistical context [75] in 1980.

Throughout the 1980’s and 1990’s the issue of publication bias became increasingly

well known, and measures to identify and take into account the effects of publication

bias were being explored. One such approach involved the use of selection functions

to model the probability of a study being published. Pioneering pieces of research

included those by Iyengar and Greenhouse in 1988 [50] and Hedges in 1992 [44]. Both

offered a more sophisticated statistical approach to taking publication bias into ac-

count compared to the fail safe approach, by using a maximum likelihood approach

to model the selection process. Statistical tests were presented that could be used

to see the effect of assuming no selection compared to assuming selection bias was

present.
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Continuing this maximum likelihood based approach were landmark research papers

by Hedges and Vevea, [90] and [46]. Both are highly statistical papers, the first of

which in 1995 presented a general linear model for estimating the effect size when

assuming selection is modelled with one-tailed P-values. Hedges and Vevea presented

a test for the presence of publication bias and also suggested how to add a correc-

tion to the effect estimate if publication bias exists. Related to this was a paper in

1996, presenting a method on how to deal with publication bias focusing on a random

effects model, again with the aid of one-tailed P-values. Since the use of selection

functions is central to the subsequent chapters, a more in depth discussion is given

in Section 2.4.1.

In 1994, Begg and Mazumdar [3] presented the first rank correlation test for assessing

the presence of publication bias. Briefly, they proposed testing the independence of

study variance and effect size using the non-parametric Kendall’s method [52]. Begg’s

method was praised for its simplicity, and generally was considered to be quite a pow-

erful test given the number of studies in the meta-analysis was large. However, the

test does have low power if the number of studies is small (considered to be less than

25) [78].

Another important landmark in the history of publication bias was a paper published

in 1997 by Egger et al. who presented the Egger test [31]. The Egger test is a regres-

sion based test used to assess funnel plot asymmetry. The funnel plot is arguably one

of the simplest and most commonly used graphical plots in meta-analysis, plotting

(as an example, since there are variations) treatment effect against study precision

(defined as the reciprocal of the standard error). Therefore the Egger test was one

of the earliest examples of trying to formally assess the output from a funnel plot,

rather than just basing it on subjective judgement. More details and an example

of the Egger test are discussed in the case study in Chapter 3. This method makes

more assumptions than, say, Begg’s method, but has been criticised (including by the

authors of the paper themselves) of perhaps not being reliable for assessing funnel

plot asymmetry when there are only a small number of studies in a meta-analysis.

12



In spite of this, one could argue that the Egger test is one of the most widely used

statistical tests in meta-analysis.

Duval and Tweedie [27]-[28] in 2000 presented their Trim and Fill method. This

method, similar to the Egger test, aimed to make use of the funnel plot as a method

of testing for publication bias, as well as attempting to adjust for any potential pub-

lication bias. This non-parametric method provided a more objective approach to

evaluating for bias in a funnel plot. The basic description is as follows [80]. The

number of “asymmetric” studies on, say, the right hand side of the funnel is esti-

mated. The “asymmetric” studies can broadly be thought of as studies having no

counterparts on the left hand side of the funnel plot. These studies are trimmed from

the funnel leaving the symmetric remainder from which the “true” average treatment

effect is estimated. The trimmed studies are then replaced, and their missing coun-

terparts filled, mirrored around the axis placed at the calculated average estimate.

More details are given in Section 2.5.1.

Even though the Trim and Fill method has been criticised for depending too strongly

on assumptions about funnel plot asymmetry, and that adjusting the results of a

meta-analysis by inputting “fictional” missing studies is considered controversial, the

method has been used numerous times by different researchers. One such example

is a BMJ article by Sutton et al. [81]. Their paper analysed 48 systematic reviews in

the Cochrane database, and with the aid of the Trim and Fill method they concluded

that publication and related biases were found to be present in approximately 50%

of reviews. In this paper Sutton et al. found that the overall conclusions were not re-

versed in most studies, except for 4 studies. Another good example of where the Trim

and Fill method has been applied is a paper by Jennions and Møller [51]. Focusing

on systematic reviews relevant to ecology and evolution, the authors concluded that

one in five meta-analyses were affected by publication bias, with the aid of the Trim

and Fill method.

In response to the increase in variety of approaches to detecting and handling publi-
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cation bias, the number of research papers and publications critically appraising these

methods also steadily grew in 2000 and onwards. Two notable publications collating

together and summarising the more important concepts and methods were Methods

for Meta-Analysis in Medical Research by Sutton et al. in 2000 [80] and Publication

Bias in Meta-Analysis: Prevention, Assessment and Adjustments, edited by Roth-

stein et al. in 2005 [71]. These publications (amongst others) were fundamental in

promoting good techniques in meta-analysis to cater for an audience of both technical

and non-technical statisticians and health practitioners.

Other notable research critically appraising methods to handling publication bias in-

clude a paper by Sterne et al. in 2000 [78] and a paper by Pham et al. in 2001 [64].

The paper by Sterne et al. investigated the difference in performance of the rank cor-

relation test (Begg’s method) and a weighted regression method (Egger’s test). The

paper by Pham et al. compared a variety of methods, including Begg’s method, the

Egger test, the Trim and Fill method, Rosenthal’s file drawer approach, and the use

of weighted functions. In both papers, the authors concluded that different methods

reach different conclusions, and so there was still ongoing debate about the degree of

usefulness of these methods concerning the detection and handling of publication bias.

This section has presented just a selection of the research that has taken place over

the last fifty years or so, specific to publication bias in meta-analysis. The constant

additions of research in this field illustrates how vibrant the area of interest is. To

name just a few recent examples, Trikalinos et al. in 2004 [87] investigated effect

sizes in cumulative meta-analyses of mental health randomised trials, and they found

numerous examples of meta-analyses with small numbers of studies that revealed

significant overall results, only to become non-significant as the number of studies

in the meta-analysis grew over time. This paper demonstrated the importance of

maintaining caution with reviews with small numbers of studies.

Also in 2004 was a paper by Bennett et al. [4] which compared the method of capture-

recapture against the Egger test, the Trim and Fill method and other techniques used

14



to assess for publication bias. Capture-recapture, a concept well known in epidemiol-

ogy, is concerned with trying to detect all individuals within a population of interest.

The method that Bennett et al. present very much falls in line with the philosophy

of the other techniques that they investigated, and put forward this method to rival

these techniques.

We conclude this brief overview of the history of publication bias by mentioning two

final sources of information summarising the most recent developments in the study

of publication bias in meta-analysis. The first is a paper by Sutton and Higgins [83]

in 2007 who summarised the most important advances within the topic broken down

into more specialist areas, with a wealth of references and directions to good sources

of software for meta-analysis. The other notable reference is The Handbook of Re-

search Synthesis and Meta-Analysis: Second Edition, a book edited by Cooper et al.

[14] in 2009. The book appeals to both a technical and non-technical audience, with

the inclusion of numerous examples and discussion throughout.

2.4.1 The use of selection functions in meta-analysis

Section 2.4 first discussed the use of selection functions (also known as weight func-

tions) in meta-analysis, but since this is a central concept to the subsequent chapters,

a more in depth discussion is given here. As a reminder, the chapter by Hedges and

Vevea in [71] is an excellent review of numerous and current selection function ap-

proaches. One of the fundamental points to note is that these types of approaches

usually involve two parts: modelling the effect size and modelling the selection. Mod-

elling the effect size essentially involves modelling the data before any kind of selection

has occurred, so for example, we could assume that n studies in a meta-analysis have

estimates yi such that yi ∼ N(θi, σ
2
i ). Here θi are the parameters of interest and

the σ2
i s are assumed known. The second part, modelling the selection, usually in-

volves some kind of parametric model which is used to describe the varying level of

probability of selection assumed to be due to publication bias. Weighted distribu-

tion theory is clearly a core idea here used to model publication bias. The basic
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idea behind the use of weight functions is that studies included in a meta-analysis

constitute a sample from a weighted distribution - the bigger the weight, the big-

ger the probability of a the study being published. Throughout the thesis, we will

usually denote these selection functions as a(yi) or a(y, σ) as examples. Therefore,

a(y, σ) models the probability that a study is selected given the values of, say, y and σ.

One of the inherent problems with any kind of selection function approach is that

it is very difficult, if not impossible, to fully determine if such a function a(y, σ) is

adequately modelling the selection process. Therefore some researchers have instead

chosen to assume different selection functions and then perform a sensitivity analysis

to investigate the effects of differing degrees of publication bias. β has been fre-

quently used to denote a parameter measuring the degree of publication bias, which

is a convention that shall be used throughout this thesis. Preston et al. [68] provide

examples of different selection functions, and uses a real data set (a systematic re-

view concerning oral rehydration solution in the treatment of dehydration) to see the

effect of modelling the selection process on the overall results. Preston et al. looked

at selection functions such as a(y, σ) = e−βV where V denotes the study’s P-value.

This is one such example of a selection function that will be used in later chapters of

this thesis.

The various selection function approaches can be categorised into two groups: the

first is those where the selection function depends on the ratio y/σ, or equivalently

the P-value for each study. The second group is those where the selection function

depends on both y and σ, the effect size and its standard error, separately. This first

group of selection functions include all examples whereby there is a belief that the

probability of a study being published is dependent upon the statistical significance

of the overall result. An example of early research is that by Lane and Dunlap [53]

in 1978 and Hedges [43] in 1984 who used the extreme selection function a(y, σ) = 1

if the P-value < 0.05 and a(y, σ) = 0 otherwise.

Another example of a selection function takes the form of a step selection function. A
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good early example is that of Dear and Begg [24] in 1992. Hedges and Vevea provide

a good illustration of the usage of a step selection function [45]. Briefly, assume

that selection depends on a one-tailed P-value, and if we assume that the selection

function has k intervals on which a(y, σ), the probability of selection, is constant. A

step function could therefore take the form

a(y, σ) =





w1, if 0 < V ≤ u1

w2, if u1 < V ≤ u2

...
...

wk, if uk−1 < V ≤ uk

where the ith interval has end points ui−1 and ui, and that if a study’s P-value V falls

within interval i, then that particular study will have weight wi. Hedges and Vevea

go into a lot more depth into how to use step selection functions of this type, such as

how it fits into a likelihood function for the data. They also offer a possible solution

to how to estimate all the necessary model parameters.

Copas [15] and Copas and Shi [21] developed a selection function which falls into

the more complicated category of a function that depends on both y and σ, not just

the ratio y/σ. We shall discuss this particular selection function in more depth in

Chapter 5. Copas et al. promote the idea of a sensitivity analysis which essentially

involves testing their selection function’s fit to the funnel plot. In spite of their re-

search being highly statistical (and therefore arguably too technical and out of reach

for those with little statistical knowledge to implement), their method is credited for

making a selection function that has more realistic assumptions than those which

depend solely upon a study’s P-value. So for two studies with the same P-value, the

larger of the two will have a higher probability of publication.

There are a few notable criticisms concerning the use of selection functions. The first

is that selection functions do not perform well for meta-analyses with small numbers

of studies. This intuitively makes sense since smaller numbers implies less informa-

tion upon which to estimate the various quantities necessary for the model. Another

criticism of the use of functions such as the aforementioned step selection functions
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is that it is essentially arbitrary as to where to place these steps. This is something

that will be discussed further in Chapter 6. One could place these steps at the con-

ventional critical values of say 0.01, 0.05, and so on, but it remains to be seen if this

is a valid approach. On the other hand, psychological research has been carried out

that suggests people perceive a result to be more conclusive if its P-value is less than

0.05 or 0.01 [69].

As we shall see in subsequent chapters, another issue to be aware of when using selec-

tion functions is that clearly there could be a wide variability in the estimates of the

meta-analysis dependent upon the choice of the selection function. This is another

reason why Copas et al. promote the use of a sensitivity analysis approach. In spite of

the potentially horrendous computations necessary to implement some of the above

mentioned selection functions, it is undeniable how useful these selection functions

can be to model selection and how they can reveal possible consequences to how much

overall estimates in a meta-analysis may change when modelling publication bias in

a meta-analysis.

2.5 A Review of Recent Research Investigating Publication

Bias

In this section we focus on a selected few pieces of recent research that have been

carried out to investigate methods of handling publication bias in meta-analysis. The

main concepts from each piece of research are summarised here, and examples of the

methods will be included in subsequent chapters. For further reading, references are

given throughout.

2.5.1 Research by Duval and Tweedie

The Trim and Fill method, as first discussed in Section 2.4, was put forward by Duval

and Tweedie to provide a more objective assessment of the funnel plot. We present

18



here a more detailed look into the method, for which full details can be obtained in

the original papers [27]-[28].

1. Estimating k0, the number of unobserved studies due to publication bias.

For i = 1, ..., n, we have effect size yi estimating some global effect size θ and an

estimated within-study variance σ2
i . We assume that there are an additional number,

k0, of studies not observed due to publication bias. The value of k0 is unknown

and therefore must be estimated. As described by Duval and Tweedie [27], the key

assumption behind this non-parametric method is that:

“the suppression has taken place in such a way that it is the k0 values of

the yi with the most extreme left-most values that have been suppressed.”

The ranks of the absolute values of the observed effect sizes and the signs of those

effect sizes around θ are used to form estimators of k0. For i = 1, ..., n, define

xi as the observed values of yi − θ,

ri as the ranks of the absolute values |xi|,
Tn as the sum of ri for positive xi only, and

γ∗ ≥ 0 as the length of the right-most run of ranks associated with positive values of

the observed xi.

Define two estimators of k0 as

R0 = γ∗ − 1, (1)

L0 =
4Tn − n(n + 1)

2n− 1
. (2)

Both of these estimators have good statistical properties. Full details of these prop-

erties, and a description of another estimator of k0 (namely, Q0), are given by Duval

and Tweedie [27]. In practice, we round L0 and R0 to the nearest integer since we

need to trim whole studies. Duval and Tweedie recommend using both estimators

before making a judgement on the number of missing studies.
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2. The iterative Trim and Fill algorithm.

The iterative Trim and Fill algorithm is as follows. The random effects approach is

assumed, but the fixed effects model is also applicable (page 41 for further details of

the fixed and random effects model).

Step One

Define θ̂(1) as the first estimate of θ, using the random effects estimator.

Construct the first set of centred values y
(1)
i = yi − θ̂(1), i = 1, ..., n.

Define k̂0

(1)
as our first estimate of k0, for example L0 as given in equation (2), applied

to the set y
(1)
i , i = 1, ..., n.

Step Two

Remove k̂0

(1)
values from the right end of the set of initial values yi i = 1, ..., n.

Define θ̂(2) as our second estimate of θ, based on the trimmed symmetric set of n−k̂0

(1)

values.

Construct the next set of centred values y
(2)
i = yi − θ̂(2), i = 1, ..., n.

Define k̂0

(2)
as our second estimate of k0 based on the set y

(2)
i , i = 1, ..., n.

If k̂0

(2)
= k̂0

(1)
, then proceed to Step Four. Otherwise, continue with Step Three.

Step Three

Remove k̂0

(2)
values from the right end of the set of initial values yi i = 1, ..., n.

Define θ̂(3) as our third estimate of θ, based on the trimmed symmetric set of n− k̂0

(2)

values.

Construct the next set of centred values y
(3)
i = yi − θ̂(3), i = 1, ..., n.

Define k̂0

(3)
as our third estimate of k0 based on the the set y

(3)
i , i = 1, ..., n.

Step Four

Continue iterating Step Three in a similar manner until an iteration, J , where k̂0

(J)
=

k̂0

(J−1)
= k̂0, at which point θ̂(J) = θ̂(J−1) = θ̂. Fill the funnel plot with the trimmed
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k̂0 right hand studies, and input the “missing” counterpart studies

y∗i = 2θ̂ − yn−j+1, for j = 1, ..., k̂0,

with standard errors

σ∗j = σn−j+1, for j = 1, ..., k̂0.

An adjusted value of θ can be calculated as

θ̂ =

∑n
i=1 yiwi +

∑k̂0

j=1 y∗j w
∗
j∑n

i=1 wi +
∑k̂0

j=1 w∗
j

, (3)

with a corresponding 95% confidence interval given by

(
θ̂ − 1.96

{ n∑
i=1

wi +

k̂0∑
j=1

w∗
j

}−1/2

, θ̂ + 1.96
{ n∑

i=1

wi +

k̂0∑
j=1

w∗
j

}−1/2)
, (4)

where the wis are the usual weights for a random effects model, namely

wi = (σ2
i + τ 2

F )−1,

w∗
j = (σ2

j + τ 2
F )−1.

τ 2
F is estimated, based on the entire data set {y1, ...., yn, y∗1, ..., y

∗
k̂0
}.

In principle, this Trim and Fill method is actually quite straightforward to imple-

ment, as the example in Section 3.4.2 will hopefully demonstrate. It is perhaps why

this method has been frequently used and investigated by other researchers. Due

to the aforementioned concerns over its usage (the strong assumptions about funnel

plot asymmetry for example), Duval and Tweedie recommend the use of the Trim

and Fill method as a means of providing a sensitivity analysis, suggesting to look at

how the value of θ changes depending upon the number of missing studies. Recent

research by Terrin et al. suggests that this method may wrongly adjust for publica-

tion bias when there is none when studies are heterogeneous, further suggesting the

use of methods other than the Trim and Fill method to handling publication bias

under these conditions [86].
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2.5.2 Research by Copas and Jackson

As previously discussed, many approaches to modelling publication bias in a meta-

analysis have used selection (weight) functions. These approaches all experience the

same limitation, in that is virtually impossible to estimate the selection mechanism

from the observed studies alone. Also the choice of the selection function is entirely

arbitrary. We summarise the main concepts from the research by Copas and Jackson

[16], who looked at the bias of the “worst case” scenario across a plausible range of

values for the number of unpublished studies.

Suppose there are n studies, each with their own values of the outcome y and σ2,

the variance of y. We assume y|σ to be normally distributed, y|σ ∼ N(θ, σ2) with

density

g(y; θ, σ2) =
1

σ
φ
(y − θ

σ

)
,

where θ is the quantity of interest. Define the selection function a(y, σ) as

a(y, σ) = P (selection|y, σ).

We suppose that the variation of σ to be random with a distribution f(σ). Note that

in a fixed effects model, θ denotes the common treatment effect over all studies and

σ2 is the study’s variance. For the random effects model, θ is the average treatment

effect and σ2 denotes the sum of within-study variance, say s2
i , and the between-study

variance τ 2. Concerning the selection procedure, the only assumption made is that

the conditional probability a(σ) which is defined as

a(σ) = P (selection|σ) = E[a(y, σ)|σ]

=

∫ ∞

−∞
a(y, σ)g(y; θ, σ)dy

is a decreasing function of σ, meaning larger studies are more likely to be selected

than smaller studies. This seems like a reasonable and valid assumption to make.

Using Bayes’ rule, the joint distribution of (y, σ) for a selected study, denoted go(y, σ),

is given as

go(y, σ) = P (y, σ|selection) =
a(y, σ)g(y; θ, σ)f(σ)

p
, (5)
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where p is the overall selection probability

p = P (selection) = E[a(σ)] =

∫ ∞

0

a(σ)f(σ)dσ

=

∫ ∞

0

∫ ∞

−∞

1

σ
φ
(y − θ

σ

)
a(y, σ)f(σ)dydσ.

The distribution of σ for a selected study is

fo(σ) =
a(σ)f(σ)

p
. (6)

The data observed is a random sample {(yi, σ
2
i )}, i = 1, ..., n, from go(y, σ) as given

in (5). The convention of using the inverse variance estimator of θ is followed, where

θ̂ =

∑n
i=1 wiyi∑

wi

,

with wi = 1/σ2
i . Note that θ̂ is the standard maximum likelihood estimator of θ

when yi ∼ N(θ, σ2
i ).

It can be shown that the asymptotic bias b in estimating θ with θ̂ is

b =

∫∞
0

∫∞
−∞ σ−1φ(z)a(θ + σz, σ)f(σ)dzdσ∫∞

0
σ−2a(σ)f(σ)dσ

.

THEOREM: For given overall selection probability p,

|b| ≤ σ̄

p
φ
(
Φ−1(p)

)
, (7)

where

σ̄ =

∫∞
0

σ−1fo(σ)dσ∫∞
0

σ−2fo(σ)dσ
=
Eo(σ

−1)

Eo(σ−2)
, (8)

and Eo denotes expectation over σ with respect to the distribution fo(σ). The upper

bound is attained when [the weight function a(y, σ) is the step function

a(y, σ) = a(y) =





1 if y ≥ θ − σΦ−1(p)

0 if y < θ − σΦ−1(p)

for all values of σ]. The lower bound is attained when a(y, σ) equals the step function

with 1 and 0 interchanged and with the minus sign before σ changed to plus.
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In practice, Eo denotes an average over the observed values σ1, ..., σn. Also, p can

be considered to be the ratio n
n+m

, where m represents the number of unpublished

studies. Therefore, for any given values of m, the bounds in (7) can be estimated as

|b| ≤ n + m

n
φ
{

Φ−1
( n

n + m

)}∑n
i=1 σ−1

i∑n
i=1 σ−2

i

. (9)

For a sensitivity analysis, we take m = 0, 1, 2, ... and plot (9) against m.

2.5.3 Research by Henmi et al.

The approach of Copas and Jackson [16] makes no assumptions about the selection

process except one - all else equivalent, larger studies are more likely to be published

than smaller studies. Their approach asks the question “how bad could the bias

be?” Their worst case scenario approach has the obvious advantage that there is no

dependence on any untestable assumptions with regards to selection. There is the

concern of how useful is this bound. If the bound gives overly cautious values, then

its usefulness in practice will be called into question. However, if the limits of the

confidence intervals are close to these bounds, when using all the various selection

functions to model the selection process, then the bound could be viewed as a very

useful tool.

Copas and Jackson’s research was extended to not only examine the bound on the

bias of the estimate of θ, but looking at the bounds on confidence intervals and P-

values - arguably more relevant in practice. Henmi, Copas and Eguchi [47] proposed

a sensitvity analysis for publication bias looking at the bounds on confidence inter-

vals and P-values. Again, very few assumptions are made about selection. The main

result in Henmi et al. is briefly given below, for full details refer to [47]. First, note

that θ̂ remains defined as the conventional weighted average, and w̄ =
∑

wi

n
.

THEOREM: The confidence region is an interval with lower and upper limits

θ̂ +
1

w̄
L(α, p, fo) and θ̂ +

1

w̄
U(α, p, fo) (10)

24



where

L(α, p, fo) = min
λ

C∗
−(λ, α, p, fo), U(α, p, fo) = max

λ
C∗

+(λ, α, p, fo)

with

C∗
±(λ, α, p, fo) = −B∗

1(λ, p, fo)± n−1/2zα

√
B∗

2(λ, p, fo)− {B∗
1(λ, p, fo)}2,

B∗
1(λ, p, fo) =

1

p
Eo

[
1

σ
{φ(λσ + e)− φ(λσ − e)}

]
,

B∗
2(λ, p, fo) = Eo

[
1

σ2

(
1 +

1

p
{(λσ + e)φ(λσ + e)− (λσ − e)φ(λσ − e)}

)]

and where e = e(λ, σ, p) is defined by

Φ(λσ − e) + Φ(−λσ − e) = p. (11)

The proof is not considered here. For full details of the proof, see Henmi et al [47].

In practice, we evaluate the confidence interval as

[
θ̂ +

1

w̄
L̂(m), θ̂ +

1

w̄
Û(m)

]
(12)

where

L̂ = L(α, p̂, f̂o) = min
λ

C∗
−(λ, α, p̂, f̂o), (13)

Û = U(α, p̂, f̂o) = max
λ

C∗
+(λ, α, p̂, f̂o) (14)

and

C∗
±(λ, α, p̂, f̂o) = −B∗

1(λ, p̂, f̂o)± n−1/2zα

√
B∗

2(λ, p̂, f̂o)− {B∗
1(λ, p̂, f̂o)}2. (15)

B∗
1 and B∗

2 are calculated as follows.

B∗
1 =

(n + m)

n2

n∑
i=1

1

σi

{φ(λσi + ei)− φ(λσi − ei)}, (16)

B∗
2 =

1

n

n∑
i=1

1

σ2
i

[
1 +

(n + m)

n
{(λσi + ei)φ(λσi + ei)− (λσi − ei)φ(λσi − ei)}

]
(17)

where ei = e(λ, σi, p̂), for i = 1, ..., n, is defined by

Φ(λσi − ei) + Φ(−λσi − ei) =
n

n + m
. (18)
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Note that zα = Φ−1(1− α/2) is the standard normal percentage point with coverage

1 − α. For all examples to follow, zα = 1.96 so that we consider 95% confidence

intervals. Equations (12) - (18) are those that we shall use to estimate the bounds.

An example demonstrating the use of what we shall refer to as the Bounds method

is given in Chapter 3: Case study: A Meta-Analysis Investigating the Effects of En-

vironmental Tobacco Smoke. Furthermore, the S-Plus codes that can be used to

compute the bounds will be given in the Appendix.

This concludes Chapter 2: A Literature Review, where we introduced the general

settings for a meta-analysis, and discussed what the main issues are, for example

publication bias. We focused more closely on the various approaches used to mod-

elling publication bias, including specific references to techniques such as the Trim

and Fill method and the Bounds method that we shall use in subsequent chapters of

this thesis.
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3 Case Study: A Meta-Analysis Investigating the

Effects of Environmental Tobacco Smoke

3.1 Environmental Tobacco Smoke and Lung Cancer

There is a vast amount of scientific evidence to suggest tobacco smoking is detri-

mental to a person’s health, such as increasing the risk of lung cancer, heart disease,

cardiovascular disease, bronchitis and asthma. Studies as early as 1950 (Peto et al.

[63] provide an interesting discussion) and even before then have made the associa-

tion between tobacco smoking and lung cancer. An equally important issue in public

health is environmental tobacco smoke.

Environmental tobacco smoke is defined as the combination of “sidestream” smoke

(from the burning tip of a cigarette) and “mainstream” smoke (exhaled by the

smoker). Environmental tobacco smoke, henceforth ETS, is also known as passive

smoking, or secondhand smoking. Similar to the association of tobacco smoking and

lung cancer, there is extensive evidence claiming ETS increases the risk of lung cancer.

For example, a search of the Medline database returns a list of literally thousands of

related articles.

The effects of smoking on a person’s health have rightfully been the subject of much

research for the past sixty years. A report by the British Medical Association in

2004 provided alarming mortality estimates for the UK. It was estimated smoking

related illnesses kills approximately 113,000 people in the UK per year, and passive

smoking kills approximately 1,000 people in the UK per year [6]. The same report

27



also discusses how smoking related illnesses cost the NHS over £1.7bn per year. Con-

siderations of ETS were essential in the decision to ban smoking in public places in

the UK, which came into effect by 2007 (2006 in Scotland), with the British Medical

Association and other respected bodies believing such a ban would make a significant

contribution to public health.

In this chapter, we provide a meta-analysis of environmental tobacco smoke and lung

cancer. The data is taken from a paper originally written by Hackshaw et al. in 1997

[40]. Although their analysis is over 10 years old, the implications of ETS are as rele-

vant today as they have ever been. The Department of Health’s Scientific Committee

on Tobacco and Health (SCOTH) in 2004 released a report [74], which supported a

smoking ban in public places, in part based upon the analysis by Hackshaw et al.

Section 3.2 discusses the findings of the paper written by Hackshaw et al. The data

will be the primary example of a meta-analysis for the remaining chapters, and so the

original paper will be discussed here in quite some detail. Section 3.3 will summarise

the subsequent analyses undertaken by other researchers in response to the Hackshaw

paper. This will serve two purposes: demonstrating a selection of some of the differ-

ent approaches one can take when undertaking a meta-analysis, and also highlighting

important issues commonly faced within a meta-analysis. The works of Copas and

Shi [22] and Henmi et al. [47] are discussed in this section. In Chapter 2, a variety

of approaches to modelling publication bias were discussed. Most of these methods,

while valid in their own right, may be out of reach for those who have limited and

relevant statistical knowledge. Since many systematic reviews show no attempts to

consider publication bias [81], simple graphical or numerical summaries could be used

routinely. With the aid of an updated meta-analysis carried out by Taylor et al. [85],

Section 3.4 will include a summary of suggestions of established methods concerning

possible publication bias in a meta-analysis.
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3.2 The Hackshaw et al. Paper

In 1986 Wald et al. [92] reviewed 13 epidemiological studies to investigate the effects

of ETS, specifically to the risk of lung cancer. Their paper supported the conclusion

that breathing in other people’s tobacco smoke can cause lung cancer. Eleven years

later the BMJ published a paper by Hackshaw et al. [40] which extended the research

from the original paper. During this time, a substantial amount more of data was

now being considered, with three times as many studies in this latest analysis. What

follows is a detailed discussion of the main points in the Hackshaw et al. paper. For

the full paper, see [40].

A total of 39 relevant studies were included, including five cohort studies and 34

case-control studies. The studies were published between 1981 and 1997, with ge-

ographical regions Asia (44%), USA (36%) and Europe (20%). Since the studies

originate across a wide global area, this intuitively suggests a random effects analysis

may be more appropriate (discussed later). Variation between study effects sizes

may be explained by cultural differences in different geographical regions. There is

however a noticeable under representation of developing countries from the list of

epidemiological studies.

For each of the 39 studies, the relative risk outcome measure was given with a corre-

sponding 95% confidence interval. In 28 of the studies, the risk of lung cancer was

calculated only for lifelong non-smokers who were women. In nine studies, two rela-

tive risks were reported - one for when the lifelong non-smokers were female, and a

separate estimate for when the lifelong non-smokers were male. In the remaining two

studies, the estimates used data for male and female lifelong non-smokers combined.

Hackshaw et al. decided to base most of their analysis only on the data for female

lifelong non-smokers, a total of 37 different studies. This seems like a reasonable thing

to do since the majority of reported lung cancer cases (91%) are from the female data.

31 studies reported an increase in risk of lung cancer, of which seven studies were

statistically significant (the confidence intervals for the relative risk did not include

29



the null value of 1). The remaining six studies reported negative results suggesting

the passive smoking prevented lung cancer. However, all six negative results were

not statistically significant. One of the larger studies that reported a negative result

commented that their effect estimate was most likely affected by another cause of

lung cancer, namely using open coal fires to cook with little ventilation [95].

The main conclusion of the paper was that the evidence from combining the epidemi-

ological studies corroborated the belief that environmental tobacco smoke causes lung

cancer. They used the following points to support their claim.

1. First, the pooled estimate of the relative risk was 1.24, meaning there was a

24% excess risk of lung cancer in female lifelong non-smokers whose spouses

smoked compared to those whose spouses did not smoke. The corresponding

95% confidence interval was (1.13, 1.36) so that the observed effect size was sta-

tistically significant with a P-value of less than 0.05. Therefore they had strong

evidence to reject the null hypothesis (that the relative risk = 1). Hackshaw

et al. made the conscious decision to only use the female data in their analysis.

This ignored the separate data on male lifelong non-smokers in nine studies,

as well as the two studies with combined female/male data. When Hackshaw

et al. included this additional data, there was little difference to the pooled

estimate of the relative risk, 1.23, with 95% confidence interval (1.13, 1.34).

2. Also supporting their claim was the dose-response relation they found between

the risk of lung cancer and environmental tobacco smoke. 16 studies reported

data that could investigate a relationship between the number of cigarettes

smoked by the spouse and the risk of lung cancer, see for example Garfinkel

[35] and Akiba et al. [1]. A positive relationship between risk and number of

cigarettes was found, providing supporting evidence of causality. Hackshaw et

al. also describe how 11 studies reported data that could investigate a relation-

ship between the number of years a woman lived with a smoker and the risk of
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lung cancer (Humble et al. [49], Stockwell et al. [79] and Cardenas et al. [9] are

good examples). These studies suggested risk increases for women who have

lived with a smoker for a longer period of time. A dose-response relationship

is arguably one of the stronger criteria from Bradford Hill’s criteria for causa-

tion [48]. Therefore, the evidence examining the duration of exposure to ETS

provides good evidence to support the claim that ETS causes lung cancer.

3. The third area of reasoning by Hackshaw et al. supporting their claims that

environmental tobacco smoke causes lung cancer was the inability for bias and

confounding to explain the apparent association between the two variables.

They had identified two possible sources of bias and one possible confounder

that could have affected the observed outcome from the data. The first type

of bias is misclassification bias. This occurs when current or former smokers

are misclassified as lifelong non-smokers. Using existing methods (Wald et al.

[92]), the relative risks for each study was adjusted to take into account possi-

ble misclassification bias. Relevant empirical evidence and national data was

used to estimate quantities that Hackshaw et al. deemed necessary to in turn

estimate the misclassification bias.

The second type of bias was due to the exposure to ETS in the reference group

(non-smokers whose spouses did not smoke). It is somewhat inevitable that

these people will have been exposed to environmental tobacco smoke from other

sources, for example, at the workplace or social venues. It has been shown that

the average levels of urinary cotinine (a chemical product only of tobacco smoke)

of non-smokers with spouses who do not smoke is not zero, see for example Wald

et al. [93]. Using empirical evidence, Hackshaw et al. adjusted the relative risk

to take this type of bias into account.

One possible confounder that was considered to explain the observed associa-

tion was the diet of the lifelong non-smoker. Previous research suggests the risk
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of lung cancer may increase for those who have low levels of fruit and vegetable

consumption, see for example Candelora et al. [8], and also non-smokers whose

spouses smoke are less likely to eat fruit and vegetables than non-smokes whose

spouses do not smoke (see for example, Cardenas et al. [9]). In spite of the fact

that only a few of the 39 studies included in their paper recorded data about

diet, Hackshaw et al. made adjustments to the estimate of the relative risk to

take into account dietary confounding.

After adjusting the relative risk for the confounding and two types of bias, the

pooled estimate of the relative risk became 1.26 with 95% confidence interval

(1.06, 1.47). Comparing this to the original pooled estimate, 1.24 (1.13, 1.36),

the conclusion was the two estimates were similar and therefore bias and con-

founding could not account for the association between environmental tobacco

smoke and lung cancer.

4. The final strand in the arguments of Hackshaw et al. to support their claim

that environmental tobacco smoke causes lung cancer was the discussion of

the existing biological and experimental evidence. Much previous research has

shown that tobacco related carcinogens (known substances capable of causing

cancer) are found in the blood and urine of non-smokers. Two such exam-

ples include the research of Maclure et al. [56] and Hammond et al. [41]. Very

briefly both examples investigated levels of hemoglobin adducts, specifically

4-aminobiphenyl (4-ABP) which is a known carcinogen, within non-smokers.

Mean levels of adducts were significantly higher in those non-smokers who were

exposed to ETS compared to those non-smokers who were not (defined by hav-

ing undetectable levels of cotinine). In general, studies of this kind that are

investigating specific tobacco carcinogens are very convincing, because they sat-

isfy many of the Bradford Hill criteria, such as the coherence, experimental and

biological plausibility criteria [48].
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In summary, the four different strands discussed by Hackshaw et al. led them to con-

clude that exposure to ETS causes lung cancer. This includes calculating the pooled

estimate of the relative risk (1.24) with a corresponding confidence interval, investi-

gating a dose-response relationship, considering sources of bias and confounding, and

discussing experimental evidence of tobacco carcinogens.

3.3 Existing Analyses

Since the publication of the Hackshaw paper in the BMJ in 1997, numerous re-

searchers have not only scrutinised their findings, but also used the data that they

had collected to demonstrate methods used to model and adjust for publication bias

in a meta-analysis. Arguably two important reasons why the research of Hackshaw et

al. has received so much subsequent attention from others is that the issue of passive

smoking has been, and remains still, a serious issue in public health. The other rea-

son is that from an academic point of view, the data is a good example to illustrate

researchers’ new methods of handling publication bias in a meta-analysis due to the

evidence of the presence of potential publication bias within the data. This following

section will include some of these existing analyses based on the methods that were

first discussed in Chapter 2. The data is given in Table 3.1 (page 36) and throughout

the thesis will be referred to as the passive smoking dataset.

In 2000, Copas and Shi used the passive smoking dataset in conjunction with a para-

metric selection function model that depends on both the effect size y and its standard

error σ [22]. Their research was first discussed in Section 2.4.1 (page 15). Technical

details are given later in Chapter 5. Briefly, Copas and Shi used the Hackshaw data

to demonstrate their method of proposing a sensitivity analysis in which a range of

different assumptions to their selection function can be tested against the fit to the

funnel plot. Their paper suggests that, when a likelihood-based confidence interval is

calculated and subsequently the number of unpublished studies is estimated, the once

statistically significant result becomes non-significant when there are about m = 28

unpublished studies. (Note also that Hedges and Vevea include a practical example
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of this Copas selection function in [45].)

In 2005, Hedges and Vevea contributed to an excellent text edited by Rothstein et

al. [71]. In their chapter, Hedges and Vevea used the passive smoking dataset as

one of their prominent examples to illustrate several different selection functions,

first discussed in Section 2.4.1 (page 15). The first example they discussed involved

a selection function depending only on study P-values, with the selection function

estimated from the data. This non-parametric approach used a step function, denoted

as w(p), with steps at p = 0.05, 0.1 and 0.5, namely

w(p) =





1 if 0 ≤ p < 0.05

w2 if 0.05 ≤ p < 0.1

w3 if 0.1 ≤ p < 0.5

w4 if 0.5 ≤ p < 1

Hedges and Vevea present the results of their analysis first under the assumption

of no selection (w2 = w3 = w4 = 1) and then assuming selection via w(p) with

weights (w2 = 2.48, w3 = 1.01, w4 = 0.42). They argued that the maximum like-

lihood estimate of θ reduced from 0.22 to 0.13. Incidentally, when looking at the

100(1 − α)% confidence intervals for θ when assuming selection, for any value of

α (where θ̂ = 0.13), these confidence intervals always contained the value 0.22 cor-

responding to the estimate of θ when assuming no selection. For more details, see [45].

Hedges and Vevea also discussed a numerical example of selection depending on study

P-values, with the selection function specified a priori. The passive smoking dataset

was used to demonstrate a sensitivity analysis, by assuming four different a priori

specifications for the selection function, namely a weak and a strong one-tailed and

two-tailed P-value selection function. The impact was considered on the overall esti-

mate of θ under the different levels of severity of the four assumed selection functions.

Hedges and Vevea concluded with their sensitivity analysis that if you assume strong

selection, then the overall estimate of θ would “be of minimal clinical interest”. For

more details, again see [45].
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In 2007, Henmi et al. used the passive smoking dataset to demonstrate their research

on bounds for confidence intervals and P-values for meta-analysis [47]. Their re-

search and main results were first discussed in Section 2.5.3 (page 24). Henmi et al.

found that a random effects analysis was appropriate, and that there was 23% added

risk of lung cancer from exposure to passive smoking, with 95% confidence interval

(13%, 35%). When applying their worst-case sensitivity analysis method, the limits of

the confidence intervals did not widen large enough to reverse the significance of the

overall result (by including the log odds ratio value of zero) until m = 19 unpublished

studies. This translates to an overall selection probability of 66%, which the authors

believe is rather extreme. If one is willing to accept that such an overall selection

probability is not feasible, then the evidence from the Hackshaw meta-analysis still

stands.
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Table 3.1: Hackshaw dataset, 1982-1997: epidemiological studies of the risk of lung

cancer in lifelong non-smokers whose spouses smoked relative to the risk in those

whose spouses do not smoke.

Study Year Country Relative 95% confidence Data

risk interval yi σi

case control studies

Chan 1982 Hong Kong 0.75 (0.43,1.30) -0.29 0.28

Correa 1983 USA 2.07 (0.81,5.25) 0.72 0.48

Trichopolous 1983 Greece 2.13 (1.19,3.83) 0.76 0.30

Buffler 1984 USA 0.80 (0.34,1.90) -0.22 0.44

Kabat 1984 USA 0.79 (0.25,2.45) -0.25 0.59

Lam 1985 Hong Kong 2.01 (1.09,3.72) 0.70 0.31

Garfinkel 1985 USA 1.23 (0.81,1.87) 0.21 0.21

Wu 1985 USA 1.20 (0.50,3.30) 0.25 0.45

Akiba 1986 Japan 1.52 (0.87,2.63) 0.41 0.28

Lee 1986 UK 1.03 (0.41,2.55) 0.02 0.47

Koo 1987 Hong Kong 1.55 (0.90,2.67) 0.44 0.28

Pershagen 1987 Sweden 1.03 (0.61,1.74) 0.03 0.27

Humble 1987 USA 2.34 (0.81,6.75) 0.85 0.54

Lam 1987 Hong Kong 1.65 (1.16,2.35) 0.50 0.18

Gao 1987 China 1.19 (0.82,1.73) 0.17 0.19

Brownson 1987 USA 1.52 (0.39,5.96) 0.42 0.69

Geng 1988 China 2.16 (1.08,4.29) 0.77 0.35

Shimizu 1988 Japan 1.08 (0.64,1.82) 0.08 0.27

Inoue 1988 Japan 2.55 (0.74,8.78) 0.94 0.63

Kalandidi 1990 Greece 1.62 (0.90,2.91) 0.48 0.30

Sobue 1990 Japan 1.06 (0.74,1.52) 0.06 0.18

Wu-Williams 1990 China 0.79 (0.62,1.02) -0.23 0.12

continued on next page
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continued from previous page

Study Year Country Relative 95% confidence Data

risk interval yi σi

Liu 1991 China 0.74 (0.32,1.69) -0.31 0.43

Jockel 1991 Germany 2.27 (0.75,6.82) 0.82 0.57

Brownson 1992 USA 0.97 (0.78,1.21) -0.03 0.11

Stockwell 1992 USA 1.60 (0.80,3.00) 0.44 0.35

Du 1993 China 1.19 (0.66,2.13) 0.17 0.30

Liu 1993 China 1.66 (0.73,3.78) 0.51 0.42

Fontham 1994 USA 1.26 (1.04,1.54) 0.24 0.10

Kabat 1995 USA 1.10 (0.62,1.96) 0.10 0.29

Zaridze 1995 Russia 1.66 (1.12,2.45) 0.50 0.20

Sun 1996 China 1.16 (0.80,1.69) 0.15 0.19

Wang 1996 China 1.11 (0.67,1.84) 0.10 0.26

cohort studies

Garfinkel 1981 USA 1.18 (0.90,1.54) 0.16 0.14

Hirayama 1984 Japan 1.45 (1.02,2.08) 0.38 0.18

Butler 1988 USA 2.02 (0.48,8.56) 0.71 0.73

Cardenas 1997 USA 1.20 (0.80,1.60) 0.12 0.21
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3.4 Promoting a Routine Investigation of Publication Bias

in Meta-Analysis

In 2007, Taylor et al. [85] presented an updated meta-analysis concerning the risks

of environmental tobacco smoke (ETS) and lung cancer. Their data will be used in

this section for two purposes: the first is that it will be interesting to discuss how

the main conclusions of their meta-analysis may have changed since 1997, with the

addition of more recent studies since those included by Hackshaw et al.; the second

purpose for including this updated meta-analysis is to provide a simple analysis as a

means of promoting routine investigations of publication bias in meta-analysis.

3.4.1 An updated analysis by Taylor et al.

Hackshaw et al. concluded from their analysis in 1997 that there was convincing

evidence to support the on-going debate on the risk of lung cancer due to passive

smoking. It may come as little surprise that the tobacco companies believe the risks

are over-estimated, but there has been a noticeable amount of disagreement by some

believing that the observed excess risk of lung cancer in non-smokers who live with

smokers is entirely due to bias. One such critic, Lee [55], in 1992 wrote a book about

the available evidence on ETS and the associated health risks. Lee assessed over fifty

studies and concluded that, while the majority of studies examining ETS and lung

cancer reported a statistically significant excess risk, there were persistent problems

such as the presence of biases. Lee described the assocations as weak at best and

believed there was still no convincing evidence.

Many other researchers have performed meta-analyses over the last twenty years or so

to attempt to synthesise the relevant published studies. To list just a few, there was

one meta-analysis in 1992 by Tweedie & Mengersen [88]; in 1997, there was another

by Wang [94], whose results interestingly contrasted against the majority of reviews

by seemingly showing a beneficial exposure to ETS; and in 2002 a meta-analysis by

Boffetta [7], again illustrating the numerous reviews undertaken.
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Taylor et al. set out to contribute to this field of research. Here we discuss how this

new meta-analysis compares with that of Hackshaw et al., and more specifically what

practical decisions have been made about the data to allow us to implement our own

subsequent meta-analysis.

The first steps towards gaining data for our own meta-analysis involves comparing

which of Hackshaw’s 37 studies are amongst the 55 studies in the meta-analysis by

Taylor et al. Upon close inspection of the studies included in Hackshaw’s meta-

analysis, 30 studies were identical to those included in Taylor’s meta-analysis (some

with slightly different reported estimates), 5 studies were updated studies, for exam-

ple a cohort study with a longer follow up period, and 2 studies were missing without

clear explanation (although one was a PhD thesis, the other was part of a disserta-

tion). There were 20 studies that were included within Taylor’s meta-analysis that

were not in Hackshaw’s. 17 of these were published in 1998 and onwards, but 3 were

published before 1998. These 3 studies could be seen as signs of possible publication

bias, since these studies were published before Hackshaw performed their analysis,

but for one reason or another, these 3 studies were not included. Examples include a

study by de Waard et al. [91] who are researchers from a university in the Netherlands.

Taylor et al. includes a summary of results of all 55 studies included in their analysis.

Specifically they provide estimates of θ given as the relative risk or odds ratio with

corresponding 95% confidence intervals. Adjusted estimates (relative risk or odds

ratio) and/or unadjusted estimates of risk were provided for each study. Refer to Ta-

bles 1-3 in the 2007 paper [85]. To conduct our own analysis based upon the Taylor

data, careful efforts were made to be consistent with the Hackshaw data (yi, σi). This

meant that if a study gave only one estimate (and corresponding confidence interval),

clearly that value would have to be used. 36 studies provided only one estimate. If

both adjusted and unadjusted estimates were presented (as in 15 studies), the values

corresponding to those included in the Hackshaw meta-analysis were used. If a study

presented two estimates and it was not included in the 1997 meta-analysis (as in 4

39



studies), then similar studies would indicate if an adjusted or unadjusted estimate

was used. This process of deriving the data resulted in 55 pairs of data (yi, σi) which

can be found in the final two columns of Table 3.5 starting on page 56.

Similar to the Hackshaw meta-analysis, the Taylor meta-analysis is made up of a mix-

ture of cohort studies and case-control studies. There are 7 cohort studies and the

majority of studies (48) are case-control studies in the Taylor dataset, compared to

4 cohorts and 33 case-control studies in the Hackshaw dataset. A comparison of the

overall analyses and conclusions between the 1997 and 2007 study will be discussed

further in the following section.

3.4.2 A recommended approach in meta-analysis

In this section we use this example to illustrate our recommended approach to meta-

analysis. There are of course many various methods and approaches to synthesising

evidence together. For a comprehensive view of such methods see the works of Sutton

et al. [80] and [82], and more recently the text edited by Rothstein et al. [71].

As previously discussed in Chapter 2, meta-analysis is the statistical part of system-

atic reviews. Much debate has occurred, and continues to do so, discussing guidelines

for good meta-analytic practice, see for example Deeks et al. [25], and Cook et al.

[13]. The following analysis will not go into as much detail as contained in these

guidelines of good practice. Instead the analysis will be roughly divided into three

parts: the first is stating the model assumptions and exploring for heterogeneity; the

second part will include several of the many different graphical ways of exploring the

data; the final part will examine the robustness of the results of the meta-analysis

with special consideration of possible effects of publication bias.

We begin this analysis under the assumption that we have collected the data from

the various studies included in the systematic review. Table 3.5 starting on page 56

gives the results of 55 studies concerning the risk of lung cancer when exposed to

40



environmental tobacco smoke. An estimate of the relative risk for cohort studies, or

odds ratio for case-control studies was reported along with a 95% confidence interval

(columns four and five of Table 3.5). From this we calculate the data (yi, σi), where

yi is the ith log relative risk and σ2
i is the variance of yi (columns six and seven of

Table 3.5).

Step 1: Choice of model and summary statistics

We first assume that the conventional fixed effects model is appropriate, namely we

have n independent studies where

yi ∼ N(θ, σ2
i ), i = 1, ..., n. (19)

The maximum likelihood estimate of θ, with study weights equal to the inverse study

variance wi = 1/σ2
i , is given as

θ̂ =

∑n
i=1 yiwi∑n
i=1 wi

. (20)

It is also easily shown that

v = var(θ̂) =
1∑n

i=1 wi

. (21)

We are then in a position to calculate statistical quantities such as confidence intervals

and P-values. For example,

(
θ̂ − 1.96

√
v , θ̂ + 1.96

√
v
)
, and (22)

P = 2Φ
(
− |θ̂|/√v

)
(23)

are respectively the 95% confidence interval for θ and a two-tailed P-value for the

null hypothesis H0 : θ = 0. Since for this example the study estimates yi are log

values of the relative risk, it is recommended to transform to the relative risk scale

by calculating RRi = exp(yi) when summarising the results in a meta-analysis.

A simple assessment to assess whether or not the fixed effects model is appropriate

is the χ2 test. We have the null hypothesis (where θi corresponds to study i):

H0 : θ1 = θ2 = ... = θn = θ, versus
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H1: at least one θi different.

The statistic, Q, is defined as

Q =
n∑

i=1

wi(yi − θ̂)2. (24)

Under the null hypothesis, Q has a χ2
n−1 distribution. A computationally convenient

form of (24) is

Q =
n∑

i=1

wiy
2
i −

(
∑n

i=1 wiyi)
2

∑n
i=1 wi

(25)

Briefly, the fixed effects model given in (19) assumes that all studies included in the

meta-analysis are estimating the same quantity, θ. Q is simply the sums of squares of

the study outcome yi around the pooled estimate θ̂. If there is considerable variation,

more so than what can be reasonably observed with sampling variation alone, then

Q will take large values. So for example, we would reject the null hypothesis H0 at

the 5% level if Q ≥ χ2
n−1,0.95.

If there is reasonable doubt from the χ2 test that the fixed effects model may not be

appropriate, we recommend considering the alternative model, namely the random

effects model. Here we have n independent studies where

yi ∼ N(θ, σ2
i + τ 2), i = 1, ..., n, (26)

where τ 2 is the random effects variance. This model is more appropriate when (pos-

sible) heterogeneity is present between studies. The maximum likelihood estimate of

θ takes the same form as in (20), except the study weights are now

wi =
1

σ2
i + τ 2

. (27)

Once we have estimated τ 2 (since it is usually unknown) we can proceed just like

the fixed effects model with calculating quantities such as P-values and confidence

intervals under the random effects model assumptions. We recommend following the

method of DerSimonian and Laird [26] to estimate τ 2. Essentially, this is calculated

as follows.

τ̂ =





0 if Q ≤ n− 1

Q−(n−1)
U

if Q > n− 1,
(28)
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where Q is defined in (25), U is defined as

U = (n− 1)
(
w̄ − s2

w

nw̄

)
. (29)

w̄ and s2
w are respectively the sample average and unbiased sample variance of the

wis calculated in the conventional way.

Table 3.2 summarises the calculations as carried out with the Taylor dataset. A

summary of the same calculations for the Hackshaw dataset have been included to

allow for a comparison between the two meta-analyses. This includes the calculation

of θ̂ and corresponding 95% confidence interval for both the fixed effects and random

effects model, the observed values of the χ2 test and the corresponding P-value (using

equations (20)-(29)).

Table 3.2: Calculations for the fixed effects model and random effects model for the

Hackshaw and Taylor meta-analyses.

Model Between variance θ̂ 95% confidence Q P -value

estimate τ̂ 2 interval (χ2 test)

Hackshaw dataset, 37 studies

Fixed 0 0.183 (0.110, 0.256) 47.7 0.092

Random 0.0174 0.213 (0.122, 0.305) - -

Taylor dataset, 55 studies

Fixed 0 0.197 (0.137, 0.258) 67.9 0.097

Random 0.0138 0.225 (0.151, 0.299) - -

For both datasets and both models, all estimates of θ are positive and statistically

significant, because all 95% confidence intervals exclude the null value, which is zero

on the log relative risk scale. This suggests exposure to passive smoking is harmful

to a person’s health. When applying the χ2 test to both data sets (columns five

and six in Table 3.2), we see there is some evidence at the 10% level of significance
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to suggest heterogeneity is present between studies, suggesting the use of random

effects models. What appears to be most striking about the data in Table 3.2 is the

similarities between the Hackshaw and Taylor datasets. Ten years later and 50%

more studies than the Hackshaw meta-analysis, the main conclusions derived from

the fixed effects and random effects models with the Taylor dataset appear consistent.

Even though all the calculations summarised in Table 3.2 are necessary, a typical

health practitioner reading through the summary statistics in that table may find

some of it confusing, especially with the use of the logarithmic scale. We therefore

recommend in any meta-analysis that summary statistics be expressed in a suitable

format so that appropriate conclusions can be inferred. Table 3.3 has transformed

the summary statistics for both the Hackshaw and Taylor datasets from the log scale

so that the outcome of interest is the relative risk. This will give the reader a clearer

interpretation of the results.

Table 3.3: Summary statistics for the Hackshaw and Taylor meta-analyses.

Model Relative 95% confidence P -value

risk interval (H0 : RR = 1)

Hackshaw dataset, 37 studies

Fixed 1.20 (1.12,1.29) 9.12× 10−7

Random 1.24 (1.13,1.36) 5.03× 10−6

Taylor dataset, 55 studies

Fixed 1.22 (1.15,1.29) 1.50× 10−10

Random 1.25 (1.16,1.35) 2.50× 10−9

For example, with the fixed effects model for the Taylor data, the relative risk is 1.22,

which means the risk of lung cancer for female non-smokers whose spouses smoke

is 22% greater compared to those female non-smokers whose spouses do not smoke.

Notice how all the estimates of the relative risk and confidence intervals look quite
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similar, and that the conclusions from the 2007 Taylor meta-analysis are consistent

with the 1997 Hackshaw meta-analysis. Table 3.3 also includes the corresponding

P -values for each of the models, testing the hypothesis H0 : RR = 1. Clearly all the

P -values are very small, suggesting strong evidence to reject the null hypothesis.

Step 2: Graphical displays of the data

Graphical displays of the data are highly recommended within any meta-analysis.

The funnel plot first mentioned in Chapter 2 is one of the most commonly used plots,

mainly due to its simple graphical display. Figure 3.1 shows a funnel plot for the

2007 Taylor dataset. Study outcome yi is plotted against study precision 1/σi. The

95% confidence interval of each study is also plotted, represented by horizontal lines.
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Figure 3.1: Funnel plot for the 2007 Taylor meta-analysis. The horizontal lines rep-

resent each study’s confidence interval.
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Clearly those studies with smaller study precision (smaller studies) have wider con-

fidence intervals compared to studies with larger study precision (larger studies).

There appears to be a possible drift towards the right of the plot in Figure 3.1 as

the studies become smaller. This suggests that there may be missing smaller studies

whose study outcome is nearer zero or even negative. A trend such as this is a classic

sign for the presence of possible publication bias.

It is fair to say that inspection of any funnel plot is entirely subjective, where different

people may reach contrasting conclusions. Also differences in the choice of outcome

measure may change a person’s opinion about the conclusions of a vision inspection.

Nonetheless, we recommend the routine use of an appropriate funnel plot in any

meta-analysis, being cautious of potentially inferring too much when, say, there are

too few studies within the meta-analysis.

Another commonly used graphical display within a meta-analysis is the forest plot.

The plot elegantly displays each study’s outcome and corresponding confidence in-

terval all on one set of axes. Figure 3.2 shows the forest plot for the Taylor dataset,

with 95% study confidence intervals. The size of the plotting symbol is proportional

to the study weight wi (the reciprocal of the study variance). This means the most

influential studies will have the bigger symbols and therefore will stand out visually.

The smaller studies will have the widest confidence intervals and are less influential

than the bigger studies.

Note that in Figure 3.2 a vertical line has been added to represent the value of

log(RR) = 0, or in other words when the relative risk is 1. The addition of a line

representing the null value always aids interpretation, for example, to the left of the

vertical line, the study estimates suggest exposure to environmental tobacco smoke

is beneficial to a person’s health. If the study estimate is to the right of the line, this

suggests exposure is harmful to a person’s health. From the plot we see that only

7 studies show a negative value suggesting exposure to ETS is beneficial. However,

all of these studies’ confidence intervals overlap with the vertical line at log(RR) = 0
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meaning the results are not statistically significant.
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Figure 3.2: Forest plot for the 2007 Taylor meta-analysis. The horizontal lines rep-

resent each study’s confidence interval.

Another use of the forest plot is to explore for between-study heterogeneity. Non-

overlapping confidence intervals would highlight the variability between study esti-

mates, and indicate that the studies are possibly not estimating the same quantity,

θ. In such an example, the use of the fixed effects model would not be considered

an appropriate assumption. Figure 3.2 shows some evidence of non-overlapping in-

tervals, such as study 49 and 52. Just from examining this plot there does appear

to be some heterogeneity present within the data, however we would recommend fur-

ther investigation such as the tests mentioned previously in Step 1 (page 41 onwards).
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The radial plot, first put forward by Galbraith [34], is the third of the recommended

graphical displays of the data to be mentioned. Also referred to as a Galbraith plot,

the essential idea is to examine the degree of funnel plot asymmetry, for which the

basic idea follows. Each study’s z statistic, zi = yi/σi, is plotted against the study

precision (reciprocal of the standard error) w
1/2
i = 1/σi. Studies in a meta-analysis

that do not have between-study heterogeneity should be scattered homoscedastically

around a line through the origin whose gradient represents the pooled estimate for θ.

Figure 3.3 shows a radial plot of the Taylor dataset, and plots like this can be used

to visually inspect a meta-analysis for the presence of heterogeneity between studies.
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Figure 3.3: Radial plot for the 2007 Taylor meta-analysis.

We could not discuss the radial plot without first discussing its companion, the Egger

test [31]. Briefly, this is a regression test where the values of zi are fitted against
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w
1/2
i , study precision, using a standard weighted linear regression with weights wi,

with equation

z = α + β
1

σ
. (30)

The slope parameter, β, indicates the size and direction of the pooled estimate for

θ (provided α = 0). The intercept parameter, α, provides a measure of asymmetry:

the larger its deviation from zero, the more pronounced the asymmetry. If smaller

studies show effects differing systematically from larger studies, then the regression

line will not run through the origin, and therefore there will be a non-zero α value.

The Egger test is applied to the Taylor dataset (which can be found in Table 3.5

starting on page 56), and a summary of this weighted regression test, as produced by

S-Plus, is given in Table 3.4.

Table 3.4: S-Plus regression output for the Taylor dataset.

Coefficients Value Std error t-value P -value

Intercept 0.8855 0.3013 2.9386 0.0049

1/σ 0.0187 0.0689 0.2717 0.7869

Multiple R2 0.0014

F-statistic 0.0738

The fitted regression line is given by z = 0.89+0.02/σ. This line has been included in

Figure 3.3. Parallel lines indicating the limits for 95% confidence intervals have also

been added to the plot, denoted by dotted lines. These limits are simply a distance

of 1.96 away from the fitted line. Briefly, this is because the original fixed effects

model (as discussed in Step 1, page 41) assumes that

yi ∼ N(θ, σ2
i ),
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and therefore transforming the data to zi = yi/σi, we have

zi ∼ N
( θ

σi

, 1
)
. (31)

The zi values therefore have constant variance, and so we use this whilst inspecting

the radial plot in Figure 3.3. About 95% of the studies should lie within the dotted

lines, which is the case with our dataset. Only three studies (approximately 5%)

lie outside of the dotted lines, which possibly suggests there is little between-study

heterogeneity present within the meta-analysis. Referring to Table 3.4, the intercept

of the regression line is 0.89 with corresponding P -value of 0.0049 which is clearly

statistically significant. Therefore, according to the Egger test, we have very strong

evidence to reject the null hypothesis H0 : α = 0, or in other words, there is strong

evidence of publication bias.

We recommend any investigation of a meta-analysis to include graphical displays of

the data, and here we have discussed just three different types of plots. See Sutton

et al. [80] for a good introduction to other graphical displays of meta-analysis data.

It should be noted that there is constant on-going debate about the effectiveness of

such methods, and how much we should infer from them. For example, examination

of radial plots and the Egger test has come under some scrutiny. Recent research

by Schwarzer et al. [72], Peters et al. [60], and Harbord et al. [42] suggests the Eg-

ger test gives over-inflated significance levels with regards to the test of publication

bias H0 : α = 0. These biases may account for the very small P-value noted above

with the Egger test. Note that these researchers, amongst others such as Copas and

Lozada [17]-[18], have presented alternatives to the Egger test.

Step 3: Robustness and modelling publication bias

This final section discusses two possible ways of modelling and adjusting for publica-

tion bias in a meta-analysis. There are many approaches, but the two that will be

discussed here are the Bounds method by Henmi et al. and the Trim and Fill method

by Duval and Tweedie. For the technical details, see Section 2.5.1 and Section 2.5.3

(starting from page 18). The reason why these two particular methods have been

chosen is that they are relatively straightforward methods to implement, and that

50



makes them accessible to both qualified statisticians and health practitioners who

may not have as much statistical experience. It is important to remember the is-

sue concerning these methods’ incorrect usage before proceeding, namely we are not

saying that the adjusted estimates resulting from these methods provide the true

estimate, but simply if we are to entertain the possibility that publication bias exists

within the meta-analysis, then we can examine the impact upon the overall results.

First consider the Bounds method by Henmi et al.. Note that the S-Plus code used to

implement the Bounds method in practice is given in Appendix A2 (page 140). We

assume here that the random effects model is appropriate from earlier investigations

for heterogeneity. Figure 3.4 shows the 95% confidence limits for the Taylor dataset

plotted for a range of plausible values for the overall selection probability p, produced

by using the aforementioned S-Plus code.
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Figure 3.4: Confidence limits using the Bounds method for the 2007 Taylor meta-

analysis.
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Of particular interest is at what point does the lower confidence limit cross the null

line θ = 0. This occurs when the overall selection probability is 59% or equivalently

when there are 39 unpublished studies. Therefore if there are 39 or more unpublished

studies, then the original significance of the overall result will be overturned.

Incidentally, if we compare back to the Hackshaw meta-analysis (10 years previously)

when applying this Bounds method, 19 unpublished studies or equivalently an over-

all selection probability of 66% would result in a reversal in the significance of their

overall result. The interpretation here is that, since the point at which the signif-

icance becomes overturned has decreased from 66% to 59% for the 1997 and 2007

meta-analyses respectively, the level of publication bias plays less of a significant role

within the latter meta-analysis. Even though we do have evidence that the overall

estimate may be inflated, we would have to assume a more severe selection process

was present to cast doubt on the validity of the overall results of the meta-analysis.

The second method that we would recommend within a meta-analysis investigation is

the Trim and Fill method by Duval and Tweedie. We apply this method to the Tay-

lor dataset following the details of the Trim and Fill method as given in Section 2.5.1

(page 18). Recall that we are assuming a lack of studies towards the left hand side

of the funnel plot (Figure 3.1 presented on page 45). A random effects model has

been used resulting in an initial estimate of θ to be θ̂(1) = 0.22, assuming all studies

have been included. The first set of estimates for k0 (the number of missing studies

on the left hand side of the funnel plot) were 3 and 5 by calculating R0 and L0 re-

spectively, and so the average of the two was taken as a rule of thumb, namely k̂
(1)
0 = 4.

Repeating the process gave the second set of estimates of k0 to be 4 and 7, again

the average of the two taken to give k̂
(2)
0 = 6. After the third iteration of trimming

the funnel plot, the estimated number of missing studies was again 6, and so this

is our final estimate (corresponding to a high overall selection probability of 90%).

Figure 3.5 shows the filled funnel plot. The circle symbols represent the observed

studies and the cross symbols represent the inputed studies.
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Figure 3.5: Funnel plot once the Trim and Fill Method is applied to the Taylor dataset.

Notice from Figure 3.5 how the filled funnel plot looks more visually symmetric with

the additional six studies. Also, after filling, we obtain an overall estimate of θ (based

now on 61 studies) as 0.19 with corresponding 95% confidence interval (0.12, 0.26).

With the additional six studies, the statistical result is still significant. Therefore

based on this particular assumption of missing studies in the left tail of the funnel

plot, the overall results still stand up to potential publication bias. An important note

is that k0 was taken to be the average of the estimators L0 and R0. In this example

L0 and R0 were quite different, with higher estimates when using L0 compared to

R0. Assuming the higher number of missing studies, say with L0, would imply a

more severe selection process which would clearly affect the adjusted estimates of θ

and their confidence intervals. Therefore a sensitivity analysis approach is strongly

encouraged, remembering one must not rely on the results of inputed studies when

forming a final conclusion about θ, but merely the usage of the Trim and Fill should

give an indication of a meta-analysis that may require more careful evaluation.
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3.4.3 Methods for investigating sources of heterogeneity

In Chapter 2 the issue of heterogeneity was first introduced. Here we discuss possible

methods for investigating sources of heterogeneity. Identifying the cause of possible

heterogeneity is an important part of any analysis, rather than simply combining the

study results when it may not be appropriate to do so. Sutton et al. gives an excellent

discussion about various approaches [80], for which we briefly include some here.

The use of graphical displays of the data is a very useful approach. Some have already

been discussed in Section 3.4.2, such as the forest plot and the radial plot. Other

plots include the L’Abbé plot, and the plot of normalized Z-scores. The L’Abbé

plot involves the event risk in the treatment group plotted against the event risk

in the control group for each study, where the outcome is a binary variable. If no

heterogeneity is present, the points should form a cloud around a line whose gra-

dient corresponds to the overall treatment effect. Large deviations would suggest

possible heterogeneity within the data. The plot of normalized Z-scores, defined as

zi = (yi − θ̂)/se(yi), would suggest the fixed effects model may be inappropriate if

the distribution does not follow an approximate normal distribution with mean zero

and variance one.

Alternative approaches that we discuss here include subgroup analysis and meta-

regression (Chapter 6 in [80] provides a good discussion). It may be appropriate to

conduct a subgroup analysis, which involves investigating subsets of studies defined

by either study or patient characteristics. One would use this, say, if it was believed

participants within different subsets would have systematic differences. The exam-

ple discussed by Sutton et al. is a meta-analysis of cholesterol lowering interventions

and their effect on mortality. The types of treatment amongst the studies within

the meta-analysis were classified into three groups: drugs, diets and surgery. Since

the type of treatment is a fundamental difference amongst the studies, it was appro-

priate to conduct a subgroup analysis on these three individual subsets of studies

to investigate whether this was the cause of heterogeneity within the meta-analysis.

This approach must be carried out with caution, and the way the subsets are created
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should be clearly defined prior to the analysis.

Meta-regression is a technique that provides a method of exploring and potentially

explaining heterogeneity between studies. A simple definition is that meta-regression

is a generalization of subgroup analysis, and it is an extension of either the fixed ef-

fects model or the random effects model in which study-level covariates are added to

the models in an attempt to explain for heterogeneity [71]. Examples of covariates

could include aspects of the interventions, geographical location, dose amount, and

so on. The extension of the fixed effects model is called a meta-regression model, and

the extension of the random effects model is called a mixed model. One would use a

meta-regression model when the variation between study outcomes can be considered

accountable by the covariates included. A mixed model would be more appropriate

when the covariates do not explain a significant part of the heterogeneity.

A very brief description would be as follows [80]: we have n independent effect size

estimates θ̂1,...,θ̂n with estimated sampling variances v1, ..., vn with corresponding

parameters θ1, ..., θn. We suppose there are k known predictor variables X1, ..., Xk

which are related to θi in the following linear form:

θi = β0 + β1xi1 + ... + βkxik,

where xi1, ..., xik are the values of X1, ..., Xk for study i, and β0, β1, ..., βk are the un-

known regression coefficients to be estimated. Standard weighted multiple regression

theory can then be applied.

In summary, there are a variety of approaches one should take when considering

heterogeneity within a meta-analysis. Whilst Section 3.4.2 has focused more upon

publication bias, heterogeneity is an equally important issue to consider. The two

issues are very much entangled, and so a meta-analyst must proceed with caution

when investigating both.
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Table 3.5: Taylor dataset, 1982-2006: epidemiological studies of the risk of lung cancer

in female lifelong non-smokers whose spouses smoked relative to the risk in those

whose spouses do not smoke.

Study Year Country Relative 95% confidence Data

risk interval yi σi

case control studies pre-1998

Chan 1982 Hong Kong 0.75 (0.43,1.30) -0.29 0.28

Correa 1983 USA 2.07 (0.81,5.25) 0.73 0.47

Trichopolous* 1983 Greece 2.08 (1.20,3.59) 0.73 0.28

Buffler 1984 USA 0.81 (0.34,1.90) -0.21 0.43

Kabat 1984 USA 0.79 (0.25,2.45) -0.24 0.58

Garfinkel 1985 USA 1.31 (0.87,1.97) 0.27 0.21

Wu 1985 USA 1.20 (0.60,2.50) 0.18 0.37

Akiba 1986 Japan 1.52 (0.88,2.63) 0.42 0.28

Lee 1986 UK 1.03 (0.41,2.55) 0.03 0.46

Brownson 1987 USA 1.82 (0.45,7.36) 0.60 0.71

Gao 1987 China 1.19 (0.82,1.73) 0.17 0.19

Humble 1987 USA 2.34 (0.81,6.75) 0.85 0.54

Koo 1987 Hong Kong 1.55 (0.90,2.67) 0.44 0.28

Lam 1987 Hong Kong 1.65 (1.16,2.35) 0.50 0.18

Pershagen 1987 Sweden 1.28 (0.76,2.16) 0.25 0.27

Geng 1988 China 2.16 (1.08,4.29) 0.77 0.35

Inoue 1988 Japan 2.55 (0.74,8.78) 0.94 0.63

Shimizu 1988 Japan 1.08 (0.64,1.82) 0.08 0.27

Svensson** 1989 Sweden 1.26 (0.57,2.81) 0.23 0.41

Kalandidi 1990 Greece 1.62 (0.90,2.91) 0.48 0.30

Sobue 1990 Japan 1.06 (0.74,1.52) 0.06 0.18

Wu-Williams 1990 China 0.79 (0.62,1.02) -0.24 0.13

continued on next page
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continued from previous page

Study Year Country Relative 95% confidence Data

risk interval yi σi

Liu 1991 China 0.74 (0.32,1.69) -0.30 0.42

Brownson 1992 USA 1.00 (0.80,1.20) 0.00 0.09

Stockwell 1992 USA 1.60 (0.80,3.00) 0.47 0.32

Liu 1993 China 1.66 (0.74,1.52) 0.51 0.46

Fontham 1994 USA 1.26 (1.04,1.54) 0.23 0.10

De Waard 1995 Netherlands 2.57 (0.83,7.85) 0.94 0.57

Kabat 1995 USA 1.08 (0.60,1.94) 0.08 0.30

Du* 1996 China 1.19 (0.66,2.16) 0.17 0.30

Sun 1996 China 1.16 (0.80,1.69) 0.15 0.19

Wang** 1996 China 2.50 (1.30,5.10) 0.92 0.36

Wang 1996 China 1.11 (0.65,1.88) 0.10 0.27

Zheng** 1997 China 2.52 (1.03,6.44) 0.92 0.48

case control studies 1998 onwards

Jockel* 1998 Europe 1.11 (0.88,1.39) 0.10 0.11

Zaridze* 1998 Russia 1.53 (1.06,2.21) 0.43 0.19

Boffeta 1999 Europe 1.00 (0.50,1.90) 0.00 0.33

Rapiti 1999 India 1.20 (0.50,2.90) 0.18 0.45

Zhong 1999 China 1.10 (0.80,1.50) 0.10 0.16

Lee 2000 Taiwan 2.20 (1.50,3.30) 0.79 0.21

Wang 2000 China 1.15 (0.60,2.10) 0.14 0.31

Johnson 2001 Canada 1.20 (0.50,2.80) 0.18 0.43

Kreuzer 2002 Germany 1.67 (0.86,3.25) 0.51 0.34

Seow 2002 Singapore 1.30 (0.90,1.80) 0.26 0.17

Zatloukal 2003 Prague 0.66 (0.22,1.96) -0.42 0.56

McGhee 2005 Hong Kong 1.38 (0.94,2.04) 0.32 0.20

Gorlova 2006 USA 1.29 (0.65,2.57) 0.25 0.35

Yu 2006 China 1.35 (0.69,2.62) 0.30 0.34

continued on next page
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continued from previous page

Study Year Country Relative 95% confidence Data

risk interval yi σi

cohort studies pre-1998

Hirayama 1984 Japan 1.45 (1.02,2.08) 0.37 0.18

Cardenas 1997 USA 1.20 (0.80,1.60) 0.18 0.15

cohort studies 1998 onwards

Jee 1999 Korea 1.90 (1.00,3.50) 0.64 0.31

Speizer 1999 USA 1.50 (0.30,6.30) 0.41 0.73

Nishino 2001 Japan 1.80 (0.67,4.60) 0.59 0.48

Garfinkel* 2003 USA 0.94 (0.66,1.33) -0.06 0.18

Wen 2006 China 1.09 (0.74,1.61) 0.09 0.20

* Studies included in Hackshaw’s review but have been updated/combined.

** Studies published before 1998 but not included in Hackshaw’s review.
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3.4.4 Conclusions and further remarks

Having carried out our own analysis in the previous section, we return to the 2007

meta-analysis to provide a basic summary of their findings including any points of

interest not yet covered in the preceding sections. The meta-analysis by Taylor et al.

is an update of a previous analysis carried out in 2001 [84]. The more recent analy-

sis included more studies and considered categorising studies according to continent,

study design and year of publication. A computerised literature search of Medline

and Embase was undertaken (as well as approaching experts in the field of ETS) to

find relevant studies. The reviewers originally found 101 studies published between

1981 and 2006. Of these studies, 46 studies were excluded from the meta-analysis for

one of several reasons. Possible reasons of exclusion included studies which reported

male/female results combined, studies including fewer than 7 participants, and stud-

ies where it was unclear that the risk was due to spousal exposure.

Taylor et al. followed a conventional statistical analysis, including familiar meta-

analysis techniques such as the use of the fixed and random effects model, the Trim

and Fill method by Duval and Tweedie [27], and a modification of Macaskill’s test

[60] to check for publication bias. A summary of the main results are as follows.

82% of the studies reported an increased risk of lung cancer (with a point estimate of

the relative risk or odds ratio greater than one). Adopting a random effects model

(χ2 = 67.9, df = 54 with a P -value of 0.1) the pooled estimate of the relative risk of

lung cancer for non-smoking women spouses was 1.25 with 95% confidence interval

(1.16, 1.35). There appeared to be no difference in significance of pooled estimates

when categorising by study design or continent. There also was no evidence for any

trend over time, with the pooled estimate remaining stable for over twenty years.

Data about dose response was also considered within the analysis. Of the 36 studies

to include such data, 25 gave evidence that a dose relationship existed between level

of exposure and risk of cancer.

A different strand to the 2007 analysis was to gather together all other meta-analyses

that have been carried concerning environmental tobacco smoke and lung cancer.
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With this topic being such a controversial and far reaching issue, it is not surprising

many researchers over the last twenty years have attempted to synthesise the relevant

published studies. Figure 3.6 shows a pooled estimate of the odds ratio along with

95% confidence intervals for each of the 21 meta-analyses that were published between

1986 and 2007. These values are taken from [85]. Note that these meta-analyses are

often using (though not exclusively) the same set of primary studies.
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Figure 3.6: Pooled odds ratios with 95% confidence intervals for meta-analyses be-

tween 1986 and 2007.

The pooled estimates range between 0.91 and 1.44. Figure 3.6 shows that, with the

exception of one meta-analysis (the Chinese meta-analysis by Wang [94] previously

mentioned, including only six studies), all meta-analyses conclude there is a statis-

tically significant harmful effect of ETS. This is shown by all but one of the 21
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confidence intervals being located above 1 and not including this null value. More re-

cent meta-analyses generally include more studies which explains why the confidence

intervals are shorter for those meta-analyses towards the top of the figure.

Misclassification bias and publication bias were both considered to explain the results.

Possible explanatory variables contributing to an increase risk of lung cancer include

indoor air pollution, lifestyle or diet. The authors of the meta-analysis also noted

that many of the studies were case-control studies which are naturally retrospective,

relying upon subjective responses in questionnaires to assess the level of exposure.

Based upon their analysis, Taylor et al. believed the observed excess risk of lung can-

cer was unlikely to have been caused by publication bias. They also refer to a paper

by Bero et al. [5] which provided some evidence that there are only a small number

of unpublished studies in this specific field of research. Briefly, Bero et al. compared

peer-reviewed journal articles and symposium articles to determine the proportion of

articles reporting statistical significant results. As a result of this, they concluded

there was no evidence of publication bias within peer-reviewed literature concerning

non-significant results.

In summary, based upon their analysis in 2007, Taylor et al. supports the belief that

it is preferable that public health policy should introduce or maintain a total ban

of smoking in public places. It is hoped that this chapter highlights the need for

a routine investigation for publication bias in any meta-analysis, and that there are

many tools at a meta-analyst’s disposal to do so. Many are straightforward, and for

these tools to be accessible to many they should be simple to implement.
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4 A Robust P-value in Meta-Analysis with Publi-

cation Bias

Note that a second version of this chapter was co-authored with J.B. Copas, and sub-

sequently edited for the submission to Statistics in Medicine and published in 2008

[20]. A copy of the paper is included in Appendix A1 (page 139).

4.1 Motivation

It is often necessary to make assumptions about the selection process when studying

publication bias in a meta-analysis. The selection process may be modelled by some

parametric function. However, the choice of parametric function would be entirely

arbitrary and result in making unverifiable assumptions about the selection process.

For this reason it would be desirable to use methods that make as few assumptions

as possible. Permutation tests achieve this, and may be utilised to make statistical

inferences about publication bias in meta-analysis.

The concept of permutation tests is widely known within the literature, first discussed

by Fisher [39] and Pitman [65] - [67]. Permutation tests are also known as randomiza-

tion tests, re-randomization tests and exact tests. Regardless of their various names,

they all essentially work on the following steps [37]. A quantity of interest is to be in-

vestigated, with the null and alternative hypotheses stated. A test statistic is chosen

and a rejection rule is established to distinguish the null hypothesis with the alter-

native. Using the data, the test statistic is calculated with the original observations.

The main step of the permutation test is to produce a permutation distribution of
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the test statistic by calculating all possible values of the statistic under the permuta-

tions of the labels of the original observations. The observed value of the statistic is

then compared to the distribution to obtain a P-value. This is achieved by finding

the proportion of values of the permutation distribution which are as extreme as the

observed value of the test statistic.

There are many advantages for the use of permutation tests. First, they are non-

parametric statistics, which means the parametric form of the underlying population

distribution is not specified explicitly, and therefore would remove substantial as-

sumptions about the selection process in the meta-analysis. Also, by permuting the

data, any statistical test (parametric or non-parametric) can be transformed into a

distribution-free test. This is a considerable advantage, as the permutation tests do

not require specific assumptions such as normality. The P-value itself is very easy

to understand, and its computation depends only on calculating a proportion rather

than referring to any statistical tables. Permutation tests can be and usually are

heavily computational, but with the development of fast and powerful computers

over the last thirty years, permutation tests can be easily applied to a range of prob-

lems. For detailed discussions about permutation tests and implementing them in

practice, see Edgington [30] and Good [37] - [38].

The remainder of this chapter will present the robust P-value for a permutation test

in a meta-analysis, as well as providing an approximation to this P-value. Two ex-

amples will be discussed to demonstrate the methodology, including a cholesterol

lowering dataset, not previously discussed.

4.2 Using the Permutation Test in a Meta-Analysis

The main assumption concerning the use of a permutation test is that observations

are exchangeable under the null hypothesis. As an example, suppose we were com-

paring two treatments in a randomized controlled trial. Under the null hypothesis,

this assumption implies that the distribution, from which the data about patients is
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drawn, is the same for both treatment arms. Or in other words, this means every

patient is the same before sampling and random allocation to treatment groups be-

gan. This assumption is central to the following permutation test argument.

Suppose we have n studies in a meta-analysis each reporting (yi, σi) for i = 1, ..., n,

where yi is the outcome for the ith study and σ2
i is the variance of yi. We assume

that

yi ∼ N(θ, σ2
i ),

where θ is the outcome of interest. The only assumption we make about selection is

that selection can be modelled via its P-value. Assume that the null hypothesis is

H0 : θ = 0. Define zi = yi/σi and the one-tailed P-value for the ith study as

Pi = Φ(−zi).

If z is the vector of observed values of zi, then the usual fixed effects meta-analysis

estimate of θ is

θ̂ = θ̂(z) =

∑n
i=1 vizi∑n
i=1 v2

i

,

where vi = 1/σi. The meta-analysis P-value is the probability under H0 that θ̂ ex-

ceeds its observed value.

We assume that the studies included in the meta-analysis constitute a non-random

sample from a population of similar studies (y, σ), where the probability of selection

P (selection|z) = a(z)

is modelled by some selection function a(z), depending on the study’s reported P-

value. Under H0, the observed values of zi are therefore i.i.d. with density

f(z) =
a(z)φ(z)∫
a(z)φ(z)dz

. (32)

Hence, under H0, each member Z = (Z1, ..., Zn) of the set

S = {Z|Z is a permutation of z}
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is equally likely. However, each rearrangement of Z1, ..., Zn with v1, ..., vn fixed will

produce a different treatment effect θ̂. This gives the permutation P-value P{θ̂(Z) ≥
θ̂(z)|H0, Z ∈ S}, which can easily be shown is equivalent to

P{θ̂(Z) ≥ θ̂(z)|H0, Z ∈ S} = P{
∑

αiZi ≥
∑

αizi|H0, Z ∈ S}, (33)

where αi = vi−v̄. The values of αi are known and fixed, and so (33) can be calculated

directed by evaluating
∑

αiZi for all n! permutations of the observed values of zi.

According to the concept of permutation tests, the P-value is the proportion of these

permutations for which
∑

αiZi exceeds the value of
∑

αizi, when using the observed

vector z.

The key argument is that the observed values of zi under H0 are randomly sampled

from the same distribution f(z) as given in (32). This means that the observed value

for each study will be the same under one assignment to αi (or equivalently study

precision/sample size) compared to any other assignment that could have resulted

from the random assignment procedure. Clearly for even moderate values of n the

number of permutations will be incredibly large. Therefore if n is large, complete

enumeration of all permutations can be replaced by sampling random permutations

of z.

4.3 A P-value Using a Normal Approximation

It is possible to approximate the permutation P-value as shown in (33) by using a

normal approximation. Let Z be a randomly chosen element of S. Then for any

fixed i and j (i 6= j), we have

E[Zi] = z̄ and V ar(Zi) =
1

n

n∑
i=1

(zi − z̄)2 = s2
z.

Also, it has been easily shown [12] that for i 6= j

Cov(Zi, Zj) =
1

n(n− 1)

∑

a6=b

(za − z̄)(zb − z̄) = − s2
z

n− 1
.
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Since αi = vi − v̄, and so
∑

αi = 0, it is clear that

E
[∑

αiZi

]
= 0.

Next consider V ar
( ∑

αiZi

)
. First define s2

v as

s2
v =

1

n

∑
(vi − v̄)2 =

1

n

∑
α2

i .

Then

V ar
( ∑

αiZi

)
=

n∑
i=1

α2
i V ar(Zi) +

∑

i6=j

αiαjCov(Zi, Zj)

= s2
z

n∑
i=1

α2
i −

s2
z

n− 1

∑

i6=j

αiαj

=
s2

z

n− 1

{
(n− 1)

n∑
i=1

α2
i −

∑

i6=j

αiαj

}

=
s2

z

n− 1

{
n2s2

v −
n∑

i=1

α2
i −

∑

i6=j

αiαj

}
,

and since
∑
i,j

αiαj =
∑

αi

∑
αj = 0,

we have

V ar
( ∑

αiZi

)
=

n2s2
zs

2
v

n− 1
.

Therefore the asymptotic normal approximation for
∑

αiZi under H0 is

∑
αiZi ∼ N

(
0,

n2s2
zs

2
v

n− 1

)
.

The (one-sided) permutation P-value (33) is therefore

Φ
(
− (n− 1)1/2

∑
αizi

nszsv

)
.

Since a(z) is an unspecified selection function, we say that z is an i.i.d. sample from

some distribution, and therefore we have a non-parametric conditional P-value. Fur-

thermore, by observing that
∑

αizi =
∑

(vi − v̄)(zi − z̄), the permutation P-value

can be simplified to

Φ(−(n− 1)1/2r), (34)
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where

r =
1
n

∑
(vi − v̄)(zi − z̄)

svsz

is the correlation of the observed points (zi, vi) of the radial plot.

Recall that radial plots, also known as Galbraith diagrams [34], plot a study’s stan-

dardized effect against its precision, or in the notation used here, plot zi against vi.

Briefly, the gradient obtained from drawing a line through the origin to a study cor-

responds to the study estimate yi. Also the gradient of the line constrained through

the origin, corresponding to an unweighted regression line, can be interpreted as the

conventional fixed effects meta-analysis estimate θ̂. Radial plots can be useful in

representing the data graphically, exploring possible heterogeneity and identifying

possible outliers. This is achieved by forming an approximate 95% confidence region

around the regression line.

Recall the P-value for the ith study is Pi = Φ(−zi), implying studies with positive

outcomes are more likely to be included in the meta-analysis than those with near

zero or negative outcomes. Therefore the form of the approximate P-value in (34)

is easy to interpret. A statistically significant P-value will be obtained if the sam-

ple correlation r (between z and v) is large and positive. Also, provided n is large

enough, moderate positive values of r may be sufficient.

4.4 Numerical Examples

4.4.1 Cholesterol lowering dataset

Smith et al. [76] reviewed 34 randomized controlled trials in a meta-analysis to in-

vestigate the effect of cholesterol lowering interventions. First note that the text on

systematic reviews by Sutton et al. includes the data upon which the following anal-

ysis is based [80], and the data is given in Table 4.1 on page 73. Each study reported

mortality data for both treatment and control groups. The log(odds ratio) outcome

was calculated in each study, yi, and the sample variance of yi, σ2
i , was calculated in
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the conventional way. A negative log(OR) value suggested treatment was beneficial

to lowering cholesterol. Under the assumption of a fixed effects model, a conventional

meta-analysis estimate of θ suggested that θ̂ = −0.166 with a 95% confidence interval

(−0.232,−0.105). The corresponding P-value with the null hypothesis H0 : θ = 0 is

1.74 × 10−7 suggesting there is very strong evidence to suggest there is a non-zero

treatment effect.

A funnel plot for the data is presented in Figure 4.1. Study precision, 1/σi, is plotted

against study outcome yi. The dotted line represents the fixed effects meta-analysis

estimate of θ, which is θ̂ = −0.166. From the funnel plot, it is clear that there is

one study in particular that is much larger (with large precision) showing a beneficial

treatment effect.
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Figure 4.1: Cholesterol lowering dataset: funnel plot.

Clearly the complete enumeration of all 34! permutations would be computationally

intensive. The permutation test described in Section 4.2 is implemented by sampling

random permutations of z (the vector of observed zi = yi/σi). 100,000 permutations

of z were randomly chosen in S-Plus. The quantity
∑

αiZi was then calculated and

compared to the observed value of
∑

αizi = −98.03. In this example we assume
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studies with negative outcomes are being selected more frequently than those with

positive outcomes. Our null hypothesis was H0 : θ = 0 versus the one-sided alterna-

tive hypothesis, H1 : θ < 0. The inequality in (33) is therefore reversed, and instead

we are interested in the proportion of permutations such that
∑

αiZi ≤
∑

αizi. The

resulting proportion was 0.02284, and this is our P-value. We have evidence to reject

the null hypothesis at the 5% level suggesting there is a beneficial (negative) treat-

ment effect in lowering cholesterol. The permutation distribution of θ̂ is presented

as a histogram in Figure 4.2. The line represents the observed θ̂(z) = θ̂ = −0.166.

Clearly the distribution is asymmetrical, with a negative skewed tail, most likely

caused by the large, influential study that reported a negative treatment effect.
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Figure 4.2: Cholesterol lowering dataset: permutation distribution of θ̂.

The alternative method to calculate an approximate P-value was presented in sec-

tion 4.3. The correlation between the observed points (zi, vi) was r = −0.459.

Using (34) we calculate the approximate P-value for the permutation test to be

0.00421. Using this method, we have very strong evidence to reject the null hypoth-

esis H0 : θ = 0. Figure 4.3 presents the radial plot for the dataset. The solid line

represents the meta-analysis estimate of θ using a fixed effects model. The negative

gradient suggests that treatment is beneficial. The dot-dash lines represent an ap-
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proximate 95% confidence region at a distance of two standard errors away from θ̂.
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Figure 4.3: Cholesterol lowering dataset: radial plot.

In this example, we do get a highly statistically significant P-value, but the radial

plot clearly shows that the fitted regression line through the origin is highly influ-

enced by the very large study in the bottom right of the plot. This point, along

with four other studies, lies outside of the approximate 95% confidence region. The

presence of heterogeneity appears to be present in this data, and the large study

can be considered as an outlier. This could explain why the approximate P-value

(0.02284) is noticeably different from the P-value calculated from the permutation

distribution (0.00421). The approximation relies upon
∑

αiZi having a symmetrical

normal distribution, which in this example (Figure 4.2), it does not.

Since a graphical exploration of the radial plot suggests that there may be hetero-

geneity present within the dataset, a random effects model is investigated. Applying

the standard method of DerSimonian and Laird [26] gives τ̂ = 0.0679. We assume

that τ 2 = τ̂ 2 is fixed and known. The corresponding random effects analysis gives

θ̂ = −0.100 with 95% confidence interval (−0.24, 0.04). The corresponding P-value

with the null hypothesis H0 : θ = 0 is 0.090 suggesting there is no evidence to reject
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H0. The choice of model between fixed and random effects is clearly important since

the two models produce contrasting conclusions about the null hypothesis.

Figure 4.4 shows the radial plot when zi = yi(σ
2
i + τ 2)−1/2 is plotted against vi =

(σ2
i + τ 2)−1/2. All studies now lie within the 95% confidence band when taking into

account the heterogeneity. As expected, the non-zero τ results in the values of vi

being brought together along the x-axis with less spread. The solid line represents

θ̂ = −0.1 using the random effects model. The correlation between the observed

points (zi, vi) is now r = −0.146. Using (34) we calculate the approximate P-value

for the permutation test to be 0.4457. This method suggests that we have no evi-

dence to reject the null hypothesis H0 : θ = 0.
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Figure 4.4: Cholesterol lowering dataset: radial plot when assuming a random effects

model.

When the permutation test was implemented again by sampling 100,000 random

permutations of z (the vector of observed zi), the quantity
∑

αiZi was calculated

and compared to the observed value of
∑

αizi = −0.72. The resulting proportion

was 0.447, and this is our P-value. We have no evidence to reject the null hypothesis.

The permutation distribution of θ̂ is presented as a histogram in Figure 4.5. The line
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represents the observed θ̂(z) = θ̂ = −0.1. Compared to the histogram under the fixed

effects model, this distribution is much more symmetrical. This is because the effect

of the original outlier has been reduced by taking the between-study variance into

consideration. Notice that the permutation P-value and the normal approximation

P-value are very similar. A key assumption to this section of work concerning the

random effects model is that we can model selection via the quantity

zi = yi(σ
2
i + τ 2)−1/2.

-0.20 -0.15 -0.10 -0.05 0.0

0
50

00
10

00
0

15
00

0

theta

Histogram of estimates of theta

Figure 4.5: Cholesterol lowering dataset: permutation distribution of θ̂ when assuming

a random effects model.
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Table 4.1: Cholesterol lowering dataset, where yi is the log odds ratio.

Study Data 95% confidence Study Data 95% confidence

yi σi interval yi σi interval

1 -0.74 0.265 (-1.25,-0.24) 18 -0.10 0.224 (-0.54,0.34)

2 -0.07 0.224 (-0.53,0.38) 19 -0.23 0.656 (-1.51,1.06)

3 -0.48 0.265 (-1.01,0.04) 20 -0.29 0.224 (-0.72,0.15)

4 -1.48 0.854 (-3.16,0.20) 21 0.46 0.265 (-0.06,0.99)

5 -1.95 1.533 (-4.95,1.06) 22 1.13 0.922 (-0.67,2.94)

6 -0.41 0.200 (-0.79,-0.03) 23 -0.33 0.592 (-1.48,0.83)

7 -0.38 0.224 (-0.84,0.08) 24 0.08 0.100 (-0.10,0.26)

8 -0.16 0.332 (-0.81,0.49) 25 -0.28 0.200 (-0.68,0.12)

9 -0.02 0.141 (-0.30,0.25) 26 -1.11 1.640 (-4.32,2.10)

10 0.00 0.245 (-0.48,0.48) 27 0.49 0.374 (-0.24,1.22)

11 -0.54 0.245 (-1.03,-0.06) 28 -0.05 0.173 (-0.39,0.29)

12 0.48 0.436 (-0.39,1.34) 29 0.01 0.224 (-0.41,0.44)

13 0.29 0.412 (-0.51,1.09) 30 0.89 0.566 (-0.22,1.99)

14 -1.58 1.507 (-4.54,1.37) 31 0.27 0.100 (0.07,0.47)

15 -0.44 0.043 (-0.54,-0.33) 32 -1.10 1.646 (-4.32,2.13)

16 -0.05 0.141 (-0.32,0.23) 33 0.52 1.643 (-2.70,3.74)

17 -0.15 0.283 (-0.70,0.40) 34 -0.31 1.072 (-2.41,1.79)
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4.4.2 Passive smoking dataset

The second example returns to the passive smoking dataset, as first reviewed by

Hackshaw et al. [40]. Refer to Chapter 3 for the dataset. Here, a random effects

model was assumed. Note that this assumption means the zi are now calculated as

yi(σ
2
i + τ 2)−1/2, which is no longer a simple transformation of the study P-values. If

τ 2 is large, we lose the original intuition of the original method.

Recall from the summary table in Chapter 3 (page 43) that θ̂ = 0.21 with a corre-

sponding 95% confidence interval (0.12, 0.31). The permutation test is carried out by

sampling 100,000 random permutations of z in S-Plus. The permutation distribution

for the quantity
∑

αiZi was then produced to find the proportion of values for which
∑

αiZi ≥
∑

αizi = −2.22. Our null hypothesis is H0 : θ = 0 versus the one-sided

alternative hypothesis H1 : θ > 0. The resulting proportion was 0.6252, and this is

our P-value. We therefore have no evidence to reject the null hypothesis.

The permutation distribution of θ̂ is presented in Figure 4.6. The line represents the

observed θ̂(z) = θ̂ = 0.21. Note that the distribution is clearly symmetric, unlike the

cholesterol lowering example in Section 4.4.1.
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Figure 4.6: Passive smoking dataset: permutation distribution of θ̂.
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Next consider the approximate P-value. The correlation between (zi, vi) was r =

−0.0528. The approximate P-value for the permutation test was 0.6240, again sug-

gesting no evidence to reject the null hypothesis. The corresponding radial plot for

this dataset is given in Figure 4.7. Note how both the results of obtaining a P-value

from both methods are similar. We can relate this robust P-value to the radial plot

as discussed in Chapter 3 as follows. The hypothesis test here, θ = 0, corresponds

to the slope for the fitted line in the radial plot having a gradient of zero. The ro-

bust P-value method essentially depends entirely upon whether it is reasonable to

constrain the fitted line of the radial plot to have a flat, horizontal slope through the

origin. It is clear from Figure 4.7 that this constraint would not fit the data well

and are therefore not surprised that the result is non-statistically significant. If we

were to remove the anchor through the origin, one can see from Figure 4.7 that the

gradient could be anything for this set of data points. Modelling with a(z) removes

this constraint through the origin.
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Figure 4.7: Passive smoking dataset: radial plot.
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4.5 A Comparison Between the Permutation Test and the

Linear Regression Test

Egger et al. [31] proposed a method of detecting publication bias in a meta-analysis

by measuring the level of asymmetry in the funnel plot. A linear regression approach

regressed standard normal deviates zi = yi/σi against study precision vi = 1/σi. The

proposed model is

E[zi] = α + θvi.

Recall that Egger et al. proposed that the intercept, α, could provide a measure

of asymmetry, namely the larger its deviation from zero, the more pronounced the

asymmetry. The slope parameter, θ, indicates the size and direction of treatment

effect. Therefore, following the conventional methods of standard linear regression,

we can perform a statistical test with a null hypothesis H0 : θ = 0. Standard

regression results give

θ̂ ∼ N
(
θ,

σ2

ns2
v

)
, (35)

where σ2 is estimated as

σ̂2 =
n

n− 2

(
s2

z − θ̂2s2
v

)
(36)

where θ̂ is the usual least squares estimate

θ̂ =
svz

s2
v

,

with s2
v =

∑
(vi − v̄)2, s2

z =
∑

(zi − z̄)2 and svz =
∑

(vi − v̄)(zi − z̄). Since the

correlation between (zi, vi) is given as

r =
svz

svsz

=
θ̂sv

sz

we can re-write (36) as

σ̂2 =
ns2

z(1− r2)

n− 2
. (37)

Using (35) and (37) we see that

V ar(θ̂) =
s2

z(1− r2)

s2
v(n− 2)

.
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The test statistic θ̂/se(θ̂) which we denote here as t2, under the null hypothesis is

thus calculated as follows:

t2 =
θ̂

se(θ̂)
=

svzsv(n− 2)1/2

s2
vsz(1− r2)1/2

=
r(n− 2)1/2

(1− r2)1/2
.

Recall from Section 4.3 that the test statistic, which we denote here as t1, for the

approximation to the permutation test under H0 is

t1 = (n− 1)1/2r.

We wish to compare the two test statistics t1 and t2. This is achieved by considering

t1/t2, given as

t1
t2

=

√
n− 1

n− 2
(1− r2)1/2.

Note that
t1
t2
≡ 1 ⇔ r = ±

√
1− n− 2

n− 1
.

This means the approximation method will provide a smaller value for its test statis-

tics compared to the linear regression method if and only if
√

1− n− 2

n− 1
< |r| ≤ 1.

A meta-analysis with a large number of studies will result in the approximation

method providing a smaller test statistic compared to the regression method almost

always, unless r is near zero.

We return to the two numerical examples to compare the permutation test with the

regression based method. First consider the cholesterol lowering example. Recall

from Section 4.4.1 that the conventional meta-analysis estimate of θ was θ̂ = −0.166

with corresponding P-value (H0 : θ = 0) of 1.74 × 10−7 when using the fixed effects

model. The permutation P-value, which we denote here as P̃ , was 0.02284, and the

approximate P-value, which we denote here as P̂ , was 0.00421. So with P̂ we have

strong evidence to reject the null hypothesis that H0 : θ = 0. We now compare this

to the linear regression test. We denote PE to be the P-value corresponding to the

Egger test (H0 : α = 0), and Preg to be the P-value corresponding to the significance

of the least squares slope of the radial plot (H0 : θ = 0). Note that the notation for
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the various different P-values has followed the notation as set out by the Statistics in

Medicine paper as given in Appendix A1. Both PE and Preg are routinely calculated

by any regression software, such as S-Plus, following standard linear regression theory.

For the cholesterol lowering dataset, PE = 0.2591, suggesting there is no evidence of

selection bias. Also, Preg = 0.0064, which is relatively similar to P̂ .

Next consider the passive smoking example. Recall from Section 4.4.2 that the con-

ventional meta-analysis estimate of θ was θ̂ = 0.213 with corresponding P-value

(H0 : θ = 0) of 5.03× 10−6. The permutation P-value P̃ = 0.6252, and the approx-

imate P-value P̂ = 0.6240. So for both P̃ and P̂ we have no evidence to reject the

null hypothesis of H0 : θ = 0. We now compare this to the linear regression test.

Again, both PE and Preg are routinely calculated within S-Plus, following standard

linear regression theory. Here we have PE = 0.0338, suggesting there is some doubt

about the selection of these studies. Also, Preg = 0.7561, which is similar to P̂ and

clearly both non-significant. Refer to the Statistics in Medicine in Appendix A1 for

two further examples comparing the permutation P-value and the regression based

method.

4.6 Concluding Comments

This chapter forms a basis for a paper published in Statistics in Medicine in 2008,

in collaboration with J.B. Copas [20]. A copy is given in Appendix A1 (page 139

onwards), for which some additional technical details and another numerical exam-

ple for the purposes of illustration can be found. Modelling publication bias in a

meta-analysis requires making some assumptions about the selection process, other-

wise inference is impossible. The downside to making such assumptions is that it

is not possible to verify their validity. In this chapter, we presented a robust non-

parametric method which aimed to relax the assumptions about the selection process.

The surely plausible and generally widely accepted idea that we adopt here is that

selection depends in some unspecified way on a study’s P-value.
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Two approaches to providing a P-value were presented: the first being the permuta-

tion P-value, which was based on standard permutation theory. The basic concept

was to permutate the yi values such that different values of θ̂ were generated. In

practice, taking a sufficiently large sample, the proportion of these different θ̂ values

that were greater than or equal to the observed value of θ̂ was our P-value. The sec-

ond approach involved an approximation P-value, which resulted in having quite a

simple form, depending on the number of studies in the meta-analysis and the sample

correlation of the radial plot.

The concept behind these two approaches is quite elegantly simple. However this

trade-off for simplicity and avoiding making strong assumptions about selection comes

in the form of loss of power. The published paper as shown in Appendix A1 develops

theory about the power functions relating to the approximate robust P-value method,

and compares this to the power function from the conventional fixed effects model

(which clearly makes more assumptions about selection). There is an inevitable loss

of power with the robust P-value, for which the severity of this loss depends mainly

on γ, the coefficient of variation of the observed vi, defined as γ = sv/v̄. A small

value of γ implies there is a small spread of values along the x-axis of a radial plot,

and in these scenarios, the loss of precision is very large. For larger values of γ, the

loss of power is still present but less significant.

We conclude this chapter by mentioning that the paper in Appendix A1 includes

a different numerical example - namely a meta-analysis of randomised controlled

trials of intravenous streptokinase in the prevention of death following myocardial

infarction. This example is discussed in the text edited by Egger et al. [32] and the

data can be found there. Whilst providing an opportunity to present the robust

P-value method on a different data set, this meta-analysis is a good example of a

dataset where we have a larger value of γ (because we mainly have small studies and

a couple of large studies), resulting in the robust P-value still having a loss of power,

but not as much as the passive smoking dataset (which had a smaller γ). Again, full

details can be found in the Appendix.

79



5 Applications of Parametric Selection Functions

in Meta-Analysis

5.1 Introduction

It is becoming increasingly recognised that standard methods in meta-analysis can

produce potentially misleading results if certain issues are not addressed. Two such

issues are heterogeneity and publication bias. Heterogeneity refers to variation be-

tween studies within a meta-analysis that can not be fully explained by just sampling

error alone. It may be inappropriate to combine study results if the studies are not

estimating the same quantity of interest.

The issue of publication bias is discussed here. Publication bias is caused by simply

assuming that studies within a meta-analysis constitute a random sample of studies

from some population of interest. The shared belief is that studies with statistically

significant reviews are more likely to be submitted for publication than those with

non-significant results [29]. This non-random sampling that is taking place will there-

fore create bias and in turn pose a serious threat to the validity of the results of the

meta-analysis.

As reviewed in Chapter 2, various approaches have attempted to model publication

bias in meta-analysis, as reviewed by Sutton et al. [80]. One such approach is the

use of selection functions. Hedges [43] first introduced selection functions into meta-

analysis. Essentially, selection functions model the probability that a study is selected

for publication, usually determined by the study’s P-value. There are many exam-
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ples in the literature of the selection functions taking some kind of parametric form.

There usually is an adjustable parameter, β, that models the selection. Since the

selection process is unknown, and therefore we know nothing about the value of β,

we consider a sensible range of different values of β as part of a sensitivity analysis

to investigate how our inferences change.

Following on from Copas and Jackson [16], the selection function takes the form

P (selection|y, σ) = a(y, σ), (38)

for some function a(y, σ), where it will be assumed that y ∼ N(θ, σ2). We let p,

the (unknown) overall selection probability, be defined as p = E[a(y, σ)], expectation

being over a population (y, σ) of studies. With this definition of p, and by assuming

that a(y, σ) has a parametric form, we will be able to directly assess the likelihood

function, and make inferences about a bias-corrected θ using a maximum likelihood

approach. From this, we will be able to conduct hypothesis tests, and explore datasets

by considering likelihood contours. The crucial argument here is that we want a sen-

sitivity analysis for different fixed values of p since it is impossible to estimate a(y, σ).

In Section 5.2, a description will be given of the maximum likelihood approach with

parametric selection functions. Section 5.3 will focus on selection functions where the

adjustable parameter is scalar. Section 5.4 will briefly review the Heckman-type se-

lection model, and re-examine the methods used by Copas and Shi [21]-[23]. Finally,

Section 5.5 analyses the effectiveness of the bound for confidence intervals proposed

by Henmi et al. [47] by comparing the confidence intervals for θ, when the selection

functions are assumed, and when the Bounds method is used.

Throughout, two examples will be discussed. The first example will be the passive

smoking dataset used by Hackshaw et al. [40] concerning the relationship between

passive smoking and lung cancer. We include a second example to demonstrate the

methods used - a dataset that has not yet been discussed in this thesis. The data

relates to the effectiveness of prophylactic corticosteroids, an example which was first
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discussed in Copas and Jackson [16].

5.2 Using Parametric Selection Functions

Our basic model is as follows:




y|σ ∼ N(θ, σ2)

σ ∼ f(σ)

where θ is the outcome of interest and σ2 is the variance of y. We suppose σ to be

random with (unknown) distribution f(σ). We model the selection process with the

selection function a(y, σ), where

a(y, σ) = P (selection|y, σ).

Some of the following definitions here were first mentioned in Section 2.5.2 (page 22)

which we include here to introduce the subsequent theory. Define a(σ) as

a(σ) = P (selection|σ) = E[a(y, σ)|σ] =

∫ ∞

−∞
a(y, σ)

1

σ
φ

(
y − θ

σ

)
dy,

where φ is the density of the standard normal distribution.

The joint distribution of (y, σ) for a selected study, go(y, σ), is given as

go(y, σ) = P (y, σ|selection) =
1

pσ
a(y, σ)φ

(
y − θ

σ

)
f(σ), (39)

where p is the overall selection probability

p = P (selection) = E[a(σ)] =

∫ ∞

0

a(σ)f(σ) dσ (40)

= E[a(y, σ)] =

∫ ∞

0

∫ ∞

−∞
a(y, σ)

1

σ
φ

(
y − θ

σ

)
f(σ) dy dσ.(41)

The distribution of σ for a selected study, fo(σ), is given as

fo(σ) =
a(σ)f(σ)

p
. (42)

Re-arranging (42) for f(σ), it is possible to eliminate p in equation (39). Note also,

by doing so, g0(y, σ) will be written in terms of fo(σ) rather than f(σ). We therefore
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have

go(y, σ) =
a(y, σ) 1

σ
φ

(
y−θ
σ

)
fo(σ)

a(σ)
. (43)

In our meta-analysis, we have data {(yi, σi) : i = 1, ..., n}. Note that for an assumed

fixed effects model, σ2
i is simply s2

i , the observed within study variance of yi. If a

random effects model is used, we take σ2
i = s2

i + τ 2, where τ 2 is the between-study

variance. We suppose the selection function is parametric, namely, a(y, σ; β). So the

likelihood function under model (43) with a parametric selection function is

L(θ, β) =
n∏

i=1

go(yi, σi; β, θ)

=
n∏

i=1

a(yi, σi; β) 1
σi

φ(yi−θ
σi

)fo(σi)

a(σi; β, θ)
.

Looking at the log-likelihood function, we have

l(θ, β) =
n∑

i=1

{
log a(yi, σi; β) + log φ

(
yi − θ

σi

)
+ log fo(σi)− log σi − log a(σi; β, θ)

}
.(44)

The maximum likelihood estimate of fo(σ) is the discrete distribution putting prob-

ability 1
n

on each of the observed σ1, ..., σn. Therefore it is easy to show that

∑n
i=1 log fo(σi) ≤ −n log n.

Using this fact, to maximise the log-likelihood function in (44), it is sufficient to

maximise

n∑
i=1

{
log a(yi, σi; β) + log φ

(
yi − θ

σi

)
− log σi − log a(σi; β, θ)

}
, (45)

with the constraint that p = E[a(y, σ)]. From a practical point of view, the constraint

in this form is not so helpful, since it relies upon the unknown distribution of σ, f(σ),

as shown in equation (41). However, we can re-write this constraint as the following.

RESULT: In terms of fo(σ) and a(y, σ),

p =

{
Eo

[
1

a(σ)

]}−1

. (46)
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This results from the fact that for any function h(σ),

Eo

[
h(σ)

]
=

1

p
E

[
a(σ)h(σ)

]
.

The proof of this is straightforward.

Eo

[
h(σ)

]
=

∫ ∞

0

h(σ)fo(σ)dσ =

∫ ∞

0

h(σ)
a(σ)f(σ)

p
dσ

=
1

p

∫ ∞

0

(
h(σ)a(σ)

)
f(σ)dσ =

1

p
E

[
a(σ)h(σ)

]

So we simply take h(σ) = 1
a(σ)

and the result in equation (46) follows. In practice,

the constraint in (46) becomes

p =

{
1

n

n∑
i=1

1

a(σi; θ, β)

}−1

. (47)

For a specified parametric selection function, a(y, σ, β), and for a sensible range of

values of p, we calculate the profile likelihood by using (45). The general method

that we shall use is as follows. We fix the value of p. Then for each value of θ, we

find the set of values of β, Bθ,p say, such that (47) is satisfied. We then have the

log-likelihood l(θ, β : β ∈ Bθ,p) = l(θ, β). Define l∗(θ, p) as

l∗(θ, p) = max
β∈Bθ,p

l(θ, β).

We compute numerically to find the maximum likelihood estimate of θ, which is the

value θ̂, such that

l(θ̂) = max
θ

l∗(θ, β).

We repeat this process for different fixed values of p. This enables us to see what

effect assuming a specfic parametric selection function will have on the estimate of θ

for a range of different values of the overall selection probability, p. In addition to

this, we can use this method to find an approximate confidence interval for θ. This

is achieved by equating

2
(

max
θ

l∗(θ, p)− l∗(θ, p)
)

to a percentage point of the χ2
1 distribution. Two meta-analyses will be used through-

out the following sections to demonstrate this method.
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5.3 Numerical Examples

In this section we implement the method as described previously with the aid of two

meta-analyses. The passive smoking dataset was extensively discussed in Chapter 3.

We present the second example briefly here, before introducing some examples of

selection functions that have a scalar β parameter, and then use these to perform a

sensitivity analysis.

5.3.1 Passive smoking dataset

Recall from Chapter 3 that Hackshaw et al. found a significant increased risk of lung

cancer for those exposed to passive smoking compared to those that did not. Since

there was evidence of heterogeneity within the meta-analysis, by using the method

of DerSimonian and Laird [26], the overall result was that θ̂ = 0.21 with a 95% confi-

dence interval (0.12, 0.30). For the remainder of this section we shall use the random

effects model, where we use the estimate of τ 2 = 0.017 and fix it as known.

5.3.2 Prophylactic corticosteroids dataset

Copas and Jackson [16] looked at the results of 14 randomised clinical trials con-

cerning the use of prophylactic corticosteroids in cases of premature birth. The data

was taken from the Cochrane database. Treatment is administered to the mother

if a premature birth is anticipated. The events are the deaths of the infants. The

quantity of interest here is θ, the log-odds ratio comparing the probability of death

in the treatment group with the probability of death in the control group.

For each of the 14 studies, an estimate of the log-odds ratio, yi, was calculated, along

with si, the standard error of yi. Using this data, we calculate θ̂ and a correspond-

ing 95% confidence interval for θ in the usual way. Assuming a fixed effects model,

θ̂ = −0.48 with 95% confidence interval (−0.71,−0.25). The interpretation of this is

that treatment is effective in reducing mortality, remembering that we are comparing
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probability of infant deaths.
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Figure 5.1: Corticosteroids dataset: funnel plot.

A funnel plot of the data is presented in Figure 5.1. The dotted line represents the

estimate θ̂ = −0.48. The plot exhibits the classic asymmetry, where the data is

skewed to the left of the plot, ie. the smaller studies with negative values are being

reported more often than those with positive values. It is possible that there are

missing studies to the right of the plot. Therefore, we suspect publication bias may

be present. For the remainder of this section we continue to use the fixed effects

model. This is because the method given in DerSimonian and Laird [26] calculated

τ̂ 2 = 0.

5.3.3 The selection functions

We suppose that the selection of a study for inclusion in a meta-analysis is biased

through some function a(yi, σi; β). β is the parameter measuring the strength of

selection. The choice of parametric functions is entirely arbitrary since it is impossible

to know the shape of the underlying selection process. We model selection using the
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one-tailed and two-tailed P-values, respectively

v(y, σ) = Φ(−y/σ), and (48)

v(y, σ) = 2Φ(−|y|/σ). (49)

The following three selection functions are considered.

Exponential a(y, σ; β) = e−βv(y,σ), (50)

Half-normal a(y, σ; β) = e−βv2(y,σ), (51)

Logistic a(y, σ; β) =
2e−βv(y,σ)

(1 + e−βv(y,σ))
. (52)

Note that the meaning of β is different in all three selection functions. Notice also as

the P-value increases, the probability of publication, ie. the weight of the study, de-

creases. This intuitively makes sense, since studies reporting highly significant results

(v ≤ 0.01, say) will almost certainly be published. Studies reporting non-significant

results are less likely to be published, and less weight will be given to it.

A few points should be mentioned before discussing the results. Refer back to Sec-

tion 5.2 for the description of the method to calculate θ̂ and the confidence intervals

for θ. The notation a1, ..., a6 will be used for the six selection functions as shown in

Table 5.1.

Selection function Description

a1 Exponential, One-tail

a2 Exponential, Two-tail

a3 Half-normal, One-tail

a4 Half-normal, Two-tail

a5 Logistic, One-tail

a6 Logistic, Two-tail

Table 5.1: Notation for the selection functions used.
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The sign of y/σ in the expression for the one-tailed P-value in (48) needs a moment of

consideration. Suppose there is suspicion that studies with positive y are not being

selected (as in the case of the corticosteroids example). To model this, the one-tailed

P-value would need to be Φ(y/σ). So now, large positive y/σ results in a high P-

value. Note that, as it is written, the P-value in (48) assumes the suppression occurs

for negative values of y/σ.

When calculating θ̂ and the 95% confidence intervals of θ, it was decided, for the over-

all selection probability p, to only consider p ∈ [0.3, 1]. Arguably, it seems unlikely

in a real world setting that the overall proportion of studies selected in a particular

area of interest would be less than 0.5, even more so for p < 0.3. Therefore, in the

following plots, only the range p ∈ [0.3, 1] is considered.

5.3.4 Example 1: passive smoking dataset

We consider the passive smoking dataset as our first example. Figure 5.2 on page 89

shows 6 plots, corresponding to the six selection functions considered. Each graph

plots θ̂ against p, with corresponding 95% confidence intervals. The first thing to

point out is that in all cases, when p = 1, θ̂ = 0.21 with 95% confidence interval

(0.12, 0.30). As we would expect, this matches perfectly to the analysis as given in

Chapter 3. p = 1 means no studies are being excluded, and so the standard meta-

analysis estimates apply.

Figure 5.2 shows that, as p decreases from 1, the confidence intervals consistently

widen faster when a one-tailed P-value is used compared to a two-tailed P-value. It

is also clear that the choice of selection function is important in making inferences

about θ, and can yield quite contrasting results. For example, the gradient of the

line representing θ̂ in Figure 5.2(ii) falls slowly from θ̂ = 0.21 as p decreases from

1. Compare this with Figure 5.2(iii) where the gradient of the line representing θ̂

descends at a faster rate as p decreases from 1. If we consider the case when p = 0.6,

the 95% confidence intervals for a2 and a3 are (−0.02, 0.24) and (0.05, 0.25) respec-
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Figure 5.2: Passive smoking dataset: θ̂ and 95% confidence intervals of θ when as-

suming different selection funcions a1, ..., a6 for a range of p.
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tively. Imagine we were to entertain the assumption that only 60% of all passive

smoking studies were published in this meta-analysis. Then using these two different

selection functions to model the selection procedure, we would reach two contradict-

ing conclusions about the existence of a relationship between passive smoking and

lung cancer.

Of particular interest is when the confidence intervals widen enough to include the

value zero. From Figure 5.2, we note at what value of p does the lower limit of the

confidence interval cross the line θ = 0. These values are given in Table 5.2.

Selection function Approximate overall Approximate number

selection probability of missing studies

a1 61% 24

a2 44% 46

a3 71% 15

a4 58% 27

a5 63% 21

a6 48% 41

Table 5.2: Passive smoking dataset: table of approximate number of missing studies

for the confidence intervals to include zero when assuming different selection functions

a1, ..., a6.

We can approximate p with p̂ = n
n+m

, where m can be interpreted as the (approx-

imate) number of missing studies and, for this data set, n = 37. The percentages

included in the table represent the upper most value of the overall selection proba-

bility such that the 95% confidence interval of θ would include zero. Likewise, the

values given for the missing studies in the table represent the smallest number of

studies that would be necessary to cast doubt on the validity of the results of the

meta-analysis. Most noticeable in Table 5.2 is the wide range of values of missing

studies. The smallest number of missing studies necessary is 15, whereas the largest
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number is 46. It is important at this point to stress that this is a sensitivity anal-

ysis. We are taking a plausible range of values for p, and examining what effect

various selection functions will have on the inference of θ. Since the percentages of

the overall selection vary between 44% and 71%, we conclude that the inferences for

θ for this dataset is sensitive to the choice of parametric selection function. In other

meta-analyses, it may be such that the percentages of the overall selection may be

much more consistent, and one could then argue in that scenario that the choice of

selection function would be less critical.

5.3.5 Example 2: corticosteroids dataset

We now consider the corticosteroids data as our second example. Figure 5.3 on

page 92 shows six plots, corresponding to the six selection functions considered. Each

graph plots θ̂ against p, with corresponding 95% confidence intervals. Again, we notice

that in all cases, when p = 1, θ̂ = −0.48 with 95% confidence interval (−0.71,−0.25).

This matches the standard meta-analysis estimates as given in Section 5.3.2.

Figure 5.3 shows the estimate of θ in all six cases increases slowly as p decreases from

1. The confidence intervals remain approximately consistent in width as p varies,

with the slight exception when a5 is used for small values of p in Figure 5.3(v). The

effect of using a one-tailed or two-tailed P -value does not appear to change the in-

ferences about θ in this example. Comparing the pairs of plots (one-tailed versus

two-tailed versions) for the exponential selection function and so on, the shapes of

the confidence intervals look similar and so will produce similar inferences. Again,

we pay close attention to when the confidence intervals widen enough to include the

value zero. From Figure 5.3 we note at what value of p does the upper limit of the

confidence interval cross the line θ = 0. These values are given in Table 5.3 on page 93.

The range of percentages in Table 5.3 are more consistent than in the passive smok-

ing example. This agrees with the similar looking plots in Figure 5.3. As discussed

earlier, it seems unlikely that the overall selection proportion would be as low as 20%
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Figure 5.3: Corticosteroids dataset: θ̂ and 95% confidence intervals of θ when assuming

different selection functions a1, ..., a6 for a range of p.
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or 40%. Out of the six selection functions, the lowest number of missing studies

necessary to reverse the significance of the analysis is 16. In some sense, it seems

unlikely that there would be so many unpublished studies of this kind in existence,

when only 14 have been published. In the uppermost value of missing studies, it

seems surely implausible that there would be 68 studies that have not for some rea-

son been included within this meta-analysis.

Selection function Approximate overall Approximate number

selection probability of missing studies

a1 33% 28

a2 17% 68

a3 43% 19

a4 34% 27

a5 47% 16

a6 43% 19

Table 5.3: Corticosteroids data: table of approximate number of missing studies for

the confidence intervals to include zero when assuming different selection functions

a1, ..., a6.

5.4 Generalising the Parametric Selection Functions Approach

So far the selection functions discussed have only included a scalar adjustable pa-

rameter, β. This approach of maximising the likelihood function numerically can

be extended to include a much more flexible family of selection functions. We now

consider when β is a vector of parameters.

The same method applies as before. Assuming the selection process can be modelled

with a specific selection function, we simply aim to find the mle of θ, maximising over

all components of β, for a given value of p.
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The following section has two aims. First, this section aims to illustrate how the

general approach of maximum likelihood and parametric selection functions can be

extended to include β as a vector of parameters. Second, and more importantly, this

section re-evaluates the themes and approaches that were discussed by Copas and

Shi [21]. The selection function they consider has been discussed in other works, [15]

and [22], and within this thesis the following selection function was first discussed in

Section 2.4.1. A review of the main points are given below. Note that the notation

has been slightly modified to agree with the notation used in this thesis.

5.4.1 Description of the model

We suppose there are n studies to be reviewed. yi is the estimated treatment effect,

and si is the reported standard error for the ith study. θ is the overall mean effect,

τ 2 is the between-study variance and σ2
i is the within-study variance. The model is

as follows.

yi = θi + σiεi, (53)

with εi ∼ N(0, 1) and θi ∼ N(θ, σ2
i ) for i = 1, ..., n. Note that it is assumed that εi

and θi are independent. Also, assume that yi and si are independent.

Following on from Copas and Li [19] and Copas [15], a selection equation is introduced.

A correlation parameter, ρ, aids in modelling the selection.

zi = a + b/si + δi, (54)

where δi ∼ N(0, 1) and corr(εi, δi) = ρ. The residuals (εi, δi) are assumed jointly

normal.

The purpose of equation (54) is that yi will only be observed if the latent variable

zi > 0. The observed treatment effects within the meta-analysis are modelled by

the conditional distribution of yi|zi > 0. The parameters, a and b, in equation (54)

control the probability that a specific study, with reported standard error si, is pub-

lished. The parameter a controls the overall proportion of studies published, while
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b controls how publication depends upon study size. We expect b > 0, so that this

ties together the surely plausible assumption that large studies (small values of si)

are more likely to be published than smaller studies. Note also that ρ > 0 implies

that smaller studies that are accepted are more likely to be those with large values

of yi.

We re-write equations (53) and (54) slightly as follows.

yi = θ + (σ2
i + τ 2)1/2ε∗i (55)

zi = a + b/si + δi (56)

We assume ε∗i ∼ N(0, 1) and that

corr(ε∗i , δi) = ρ̃i =
σi

(τ 2 + σ2
i )

1/2
ρ.

We are now in a position to write down the log-likelihood.

L(θ, ρ, τ, a, b) =
n∑

i=1

log p(yi|zi > 0, si)

=
n∑

i=1

[
− 1

2
log (τ 2 + σ2

i )−
(yi − θ)2

2(τ 2 + σ2
i )
− log Φ(ui)

+log Φ(vi)
]
, (57)

where ui = a + b/si and

vi =
ui + ρ̃i

yi−θ
(τ2+σ2

i )1/2

(1− ρ̃2
i )

1/2
.

Note that we replace σ2
i with s2

i , assuming sufficiently large sample sizes in each study.

The above model is an example of a parametric selection function, where β is a vector.

For the remainder of the remainder of the thesis, denote this selection function as a7.

a7(yi, σi) = Φ(vi) = Φ


a + b/si + σiρ(yi−θ)

(τ2+σ2
i )√

1− σ2
i ρ2

(τ2+σ2
i )


 (58)

To make clear, β = (a, b, ρ, τ). For this specific selection function,

a7(σi) = Φ(ui) = Φ
(
a + b/si

)
. (59)
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We now proceed as in the previous section. We aim to maximise the likelihood given

in equation (57) for a given overall selection probability, p, subject to the constraint

1

p
= Eo

[
1

a7(σ)

]
=

1

n

n∑
i=1

1

a7(σi)
.

It is important to comment that the approach that we adopt here is different to the

approach by Copas and Shi [21], largely because they perform a sensitivity analysis

fixing the pair of values (a, b) whereas here we fix only the value of p. One could

argue that this approach is more straightforward and makes the sensitivity analysis

easier to interpret.

5.4.2 Hypothesis tests and confidence intervals

Before the inclusion of any examples, we first describe what hypothesis tests and

plots will be carried out in the analysis.

• The profile likelihood can be plotted against p. Recall from Section 5.2 that

the profile likelihood is calculated as

max
θ

l∗(θ, p),

where l∗(θ, p) was defined as

l∗(θ, p) = max
β∈Bθ,p

l(θ, β).

• The following hypothesis test can be performed. H0 : p = 1 versus H1 : p < 1.

A value of p = 1 implies that all studies are being included within the meta-

analysis and that there is no selection occurring. The following likelihood ratio

test statistic is used.

X2 = 2
(

max
θ,p

l∗(θ, p)−max
θ

l∗(θ, 1)
)

Compare X2 to a χ2
1 distribution. At the 5% level of significance, reject

H0 if X2 > 3.84.

• A contour plot of l∗(θ, p) can be produced to look at the profile likelihood for

different values of θ and p.
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• With the aid of normalising the plot of l∗(θ, p), θ̂ and 95% confidence intervals

can be plotted against p. Of particular interest will be for what values of p do

the confidence intervals include zero.

• Related to the confidence intervals plot, a hypothesis test can be performed

concerning θ. For a fixed value of p, we have H0 : θ = 0 versus H1 : θ 6= 0.

This tests, as an example, whether there is evidence of a significance treatment

effect. The following likelihood ratio test statistic is used.

X2 = 2
(

max
θ

l∗(θ, p)− l∗(0, p)
)

Compare X2 to a χ2
1 distribution.

We maximise all these functions numerically. The vector of parameters, β = (a, b, ρ, τ),

has some restrictions. When we search for the maximum over the parameter space,

a ∈ (−∞,∞), b > 0, ρ ∈ [−0.999, 0.999] to avoid the singularities at ±1, and

τ ∈ (0,∞).

5.4.3 Example: passive smoking dataset with a fixed effects model

We return to the passive smoking dataset. First assume that the fixed effects model

is appropriate, so that τ 2 = 0. Note that σi = si in (45) as given in Section 5.2. For

a range of values of p, θ can be estimated by maximum likelihood subject to the con-

straint E[a(y, σ)]. Figure 5.4 shows the profile log-likelihood for p. When p is large

and approaches 1, the likelihood falls sharply. This suggests these values of p are not

acceptable. Instead, the likelihood reaches its maximum when p becomes small. The

data fits the model when we assume overall selection probability is small. There is

a noticeable dip in the graph when p is approximately 0.7 to 0.9. Whilst calculating

the likelihood, ρ̂ ≈ −0.9, which lead to numerical difficulties. The somewhat erratic

behaviour seen in the likelihood plot was also noted by Copas and Shi [21].

In Figure 5.4, of particular interest is the case when p = 1. Using a likelihood ratio

test, we test the null hypothesis, H0 : p = 1 versus H1 : p < 1. We compare the
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Figure 5.4: Passive smoking dataset: profile log-likelihood for p when assuming selec-

tion function a7.

statistic to a χ2
1 distribution. The P-value=0.0125. Therefore we have strong evi-

dence to suggest that overall selection probability is not equal to 1, and that there

are missing studies.

Figure 5.5 on page 99 shows the profile log-likelihood for given p and θ. The contours

show a long band of area that is quite flat. The maximum value of the profile log-

likelihood for different values of p slowly decreases as p decreases from 1. Using this

contour plot, we can plot θ̂ and its 95% confidence interval for different values of p.

This is shown in Figure 5.6 on page 99. As we allow for more missing studies, we see

that θ̂ does not change that much, and remains somewhere about 0.1 to 0.15. The

confidence intervals are of particular interest as, for this example, we are interested

to see when the lower limit crosses zero. It is only when p < 0.23 that the 95%

confidence interval includes the value 0. That would imply that if there were 124

unpublished studies, then the significance of the result would be overturned. It seems

unlikely such a large number of unpublished studies would exist.
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Figure 5.5: Passive smoking dataset: contour plot of the profile log-likelihood for p

and θ when assuming selection function a7.
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5.4.4 Alternative model

We explore the model’s adequacy by introducing an alternative model. In this section,

we test the fit of the model to the funnel plot. Conventionally, the assertion is that

publication bias exists if there exists a trend in the funnel plot. For example, if

small studies (large si) are reporting more frequently large positive values of yi than

negative values, this is one possible indication of publication bias. This suggests a

possible linear relationship of yi against si may appear in the funnel plot. We propose

the following model.

yi = θ + αsi + (σ2
i + τ 2)1/2ε∗i (60)

zi = a + b/si + δi (61)

Note that the choice of the alternative model is entirely arbitrary, for example, the

additional term could have been α 1
si

. We continue in the usual way by considering

the extended likelihood, as given in equation (57) in Section 5.4.1, but with the term

αsi added to θ.

L(θ, ρ, τ, a, b, α) =
n∑

i=1

log p(yi|zi > 0, si)

=
n∑

i=1

[
− 1

2
log (τ 2 + σ2

i )−
(yi − θ − αsi)

2

2(τ 2 + σ2
i )

− log Φ(ui) + log Φ(v∗i )
]
, (62)

where ui = a + b/si and

v∗i =
ui + ρ̃i

yi−θ−αsi

(τ2+σ2
i )1/2

(1− ρ̃2
i )

1/2
.

We compare models to see if the additional αsi term helps in explaining the data. If

α is not significantly different from zero, then the earlier model (without the α term)

is giving an adequate explanation of any trend in the funnel plot. For consistency, β

will represent the vector of parameters (a, b, ρ, τ) and keep α as a separate parameter

(even though it should be considered as a component of β).

There are various plots and tests that can be carried out with regards to investigating

the fit to the funnel plot. The example of the passive smoking dataset (with τ 2

assumed zero) will be used to illustrate these methods.
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• Define F (α, p) as the following:

F (α, p) = max
θ,β∈Bθ,p

l(θ, β, α).

A hypothesis test can be performed concerning α. For a fixed value of p, we

have H0 : α = 0 versus H1 : α 6= 0. This tests the adequacy of the original

model. The following likelihood ratio test statistic is used.

X2 = 2
(

max
α

F (α, p)− F (0, p)
)

Compare X2 to a χ2
1 distribution. If the null hypothesis is rejected, for a specific

value of p, then the null model is not adequate in explaining the data.

• The P-values corresponding to the test H0 : α = 0 can be plotted against p.

This essentially will show what affect the choice of p has upon the fit of the

model to the data.

• Another graph will plot θ̂ against the P-values corresponding to the test H0 :

α = 0. This will show how θ̂ will change as the quality of the fit improves. Of

particular interest would be when the P-value is greater than 0.05, ie. for an

acceptable fit to the funnel plot.

5.4.5 Example continued: passive smoking dataset

We continue on from Section 5.4.3 with the passive smoking dataset, assuming a fixed

effects model. Figure 5.7 on page 102 shows a plot of the P-values relating to the

test H0 : α = 0 against a range of values of p, the overall selection probability. We

reject H0 when p > 0.67. This means the original model does not explain the rela-

tionship between lung cancer and passive smoking well enough if we were to assume

at least two thirds of all studies have been published. Figure 5.8 on page 102 plots θ̂

against the P-value for H0 : α = 0. Using the conventional 5% threshold, and with

an acceptable fit to the funnel plot (P-value> 0.05), the estimate of θ is at most 0.15.

A small technical comment about Figure 5.8 is that the graph looks like a series of

dots simply because we calculated θ̂ for a finite grid of values of p.
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Figure 5.7: Passive smoking dataset: contour plot of the profile log-likelihood for p

and θ when assuming the alternative version of selection function a7.
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5.4.6 Further examples

In this section further examples, of a suggested approach in analysing a dataset using

the Copas and Shi selection function, are presented. The approach combines the

hypothesis tests described in Sections 5.4.2 and 5.4.4.

The first example is the passive smoking dataset, this time with a random effects

model. τ̂ 2 was estimated as 0.017, and then assumed fixed and known. Figure 5.9(i)

on page 104 plots the profile likelihood for given θ and p. As p decreases from 1,

the likelihood rises sharply, then a slight dip, and for values of p < 0.6, the profile

likelihood jumps to a high value and remains constant. The maximum value occurs

when p = 0.16. The test H0 : p = 1 reports a P-value of 0.0203, hence we reject

H0 at the 5% level and conclude selection of studies is present here. Figure 5.9(ii)

plots θ̂ and 95% confidence intervals for different p. Compared to the fixed effects

model in Section 5.4.3, the values of θ̂ approach zero at a faster rate as p decreases

from 1. Evidence for the test H0 : θ = 0 suggests θ 6= 0 when p > 0.49 (compared to

p > 0.23 for the fixed effects model). Figure 5.9(iii) plots the P-values corresponding

to the test H0 : α = 0 for different p. There is a surprising “spike” in P-values when

p ≈ 0.9, otherwise the P-values are less than < 0.05 for p > 0.67. Figure 5.9(iv)

suggests, for an adequate fit to the funnel plot, θ̂ could reasonably be as high as 0.22.

Compare this to the fixed effects model that suggests a value only as high as 0.15.

The final example uses the corticosteroids dataset, assuming a fixed effects model.

Figure 5.10(i) on page 105 plots the profile likelihood. The likelihood increases sharply

as p decreases from 1 to 0.8. The maximum occurs when p = 0.66. For p < 0.66, the

likelihood drops and flattens off. The P-value for the test H0 : p = 1 is 0.028, hence

we have evidence to suggest selection is present here. Figure 5.10(ii) plots θ̂ and 95%

confidence intervals for p. There is a clear spike in values of θ̂ when p = 0.55. The

confidence interval crosses θ = 0 when p = 0.43. Figure 5.10(iii) shows that for all

values of p, there is no evidence to reject H0 : α = 0, ie. the data fits well to the

original model. Figure 5.10(iv) suggests θ̂ could be as large as θ = −0.48 when the

fit to the funnel plot is reasonable.
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Figure 5.9: Passive smoking dataset: grid of different plots when a random effects

model is used.
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5.5 Assessing the Effectiveness of the Bounds for Confidence

Intervals

The problem of publication bias in meta-analysis has been attempted by many re-

searchers. The main argument against a parametric approach to modelling publica-

tion bias is that it is impossible to verify if the selection process can be modelled in

such a way. Recall from Section 2.5 “the worst case scenario” approaches of Copas

and Jackson [16] and Henmi et al. [47]. They aimed to make as few assumptions

about selection as possible by giving a bound to the bias.

The question of interest in this section is how good is this bound. The maximum like-

lihood estimates for θ, calculated using the parametric approach, will be compared to

the bounds suggested by Henmi et al. The two approaches are very different, which

will be discussed later, nonetheless we aim to compare the bounds with the use of

practical examples. Note that the S-Plus code that was used to calculate the bounds

corresponding to the Bounds method can be found in Appendix A2 (page 140).

5.5.1 Examples

First, we consider the passive smoking dataset. In section 5.3, we considered selection

functions a1, ..., a6 that had a scalar β parameter. Figure 5.2 on page 89 plotted θ̂

and 95% confidence intervals against p. (Remember for these particular examples,

we assumed a random effects model was appropriate, and we estimated τ̂ 2 as 0.017.)

We add onto these plots the bounds for the 95% confidence intervals shown in Fig-

ure 5.11 on page 108.

The first thing to note is that in all but two graphs, the 95% confidence intervals go

outside of the bounds when p is small. This is true for all selection functions with a

one-tailed P-value. Figure 5.11(iii) shows the most extreme case in difference between

the 95% confidence interval and bound. The lower bound cross the line θ = 0 when

p = 0.66. This corresponds to a minimum of approximately 19 unpublished studies
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to reverse the significance of the results. Recall from Table 5.2 on page 90 that the

approximate number of missing studies for the confidence intervals to include zero

ranged between 15 (for selection function a3) to 46 (for selection function a2). With

the exception of a3, the lower ends of the confidence intervals are relatively close to

the lower bound. Furthermore, for the more realistic range of values for p, say greater

than 0.5, the lower limits are contained within the bound.

In Section 5.4.3, Figure 5.6 plotted θ̂ and 95% confidence intervals against p using

the Copas and Shi selection function a7. Figure 5.12 (page 109) shows the same

plot with the added bounds. Recall that, for this example, the lower limit of the

95% confidence interval crosses zero when p < 0.49, or in other words, if there were

approximately 39 unpublished studies, then the significance of the result would be

overturned. Comparing this with the Bounds method, here the bound crosses θ = 0

when p = 0.66 (19 missing studies) - an obvious difference. Figure 5.12 shows that

for any value of p, the 95% confidence interval sits within the bounds. For values of

p > 0.8, we see that the two lines are quite close together, but the distance between

the lower limit and lower bound of the Bounds method widens as p decreases from 0.8.

Now consider the corticosteroids dataset. Recall we assumed the fixed effects model

was appropriate. Figure 5.3 on page 92 plotted θ̂ and 95% confidence intervals against

p using selection functions a1, ..., a6. We add onto these plots the bounds for the 95%

confidence intervals. This is shown in Figure 5.13 on page 110.

The first thing to note is that in Figure 5.13(v), the 95% confidence interval goes

outside the bounds when p is small. In all other graphs, the confidence intervals sit

within the bounds. The upper bound crosses the line θ = 0 when p = 0.53. This

corresponds to a minimum of approximately 12 unpublished studies to reverse the

significance of the results. Table 5.3 on page 93 showed that the approximate num-

ber of missing studies for the confidence intervals to include zero ranged between 16

(for selection function a5) to 68 (for selection function a2). The “distance” of the

upper limit of the confidence interval to the bound does vary somewhat dependent
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Figure 5.11: Passive smoking dataset: θ̂, 95% confidence intervals when assuming

different selection functions a1, ..., a6 and the bounds for a range of p.
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Figure 5.12: Passive smoking dataset: θ̂, 95% confidence intervals when assuming

selection function a7 and the bounds for a range of p.

on the selection function used. For example, the upper limit in Figure 5.13(ii) is

noticeably different from the bound, whereas in Figure 5.13(iii), the two give similar

values. This implies that if you were to use the bound to examine the worst case

scenario, and if a2 was considered to adequately model the selection process, then the

bound here would be too overly cautious. However, if a3 was an adequate model, then

the bound would be considered a useful bound on the bias in the confidence intervals.

Now consider the use of a7 with the corticosteroids dataset, as discussed in Sec-

tion 5.4.6. Figure 5.10(ii) plotted θ̂ and 95% confidence intervals against p. Fig-

ure 5.14 shows the same plot with the added bounds. Recall that, for this example,

the lower limit of the 95% confidence interval crosses zero when p < 0.44, or in other

words, if there were approximately 18 unpublished studies, then the significance of

the result would be overturned. Comparing this with the lower bound, as discussed

earlier, here the bound crosses θ = 0 when p = 0.53 (12 missing studies). Figure 5.14

shows that for any value of p, the 95% confidence interval sits within the bounds. For

values of p ≈ 0.5, we see that the upper limit comes quite close to the upper bound,

otherwise there is a noticeable distance between the two lines.
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Figure 5.13: Corticosteroids dataset: θ̂, 95% confidence intervals when assuming dif-

ferent selection functions a1, ..., a6 and the bounds for a range of p.
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Figure 5.14: Corticosteroids dataset: θ̂, 95% confidence intervals when assuming se-

lection function a7 and the bounds for a range of p.

An important observation from all examples given in Figures 5.11 to 5.14 is how the

bounds are much wider for smaller values of p, and how there always appear to be

a large “gap” between one end of the confidence intervals and the bound. The rea-

son for this is that the Bounds method is based on a much weaker assumption than

the likelihood method namely, that a(σ) is a decreasing function of σ. The Bounds

method does not use the full information like the likelihood method does.

5.5.2 Discussion

The work in this section attempted to compare the analyses of the likelihood approach

with the confidence intervals bound method. It should first be noted that the two

methods use completely different approaches. The Bounds method is based on the

asymptotic distribution of θ̂, whereas the main ideas in this chapter are based upon a

maximum likelihood approach. It could be argued that the direct comparison of the

two approaches should be treated with some caution. Not to take any comparisons

too literally is the philosophy we adopt here.
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A common observation to both the passive smoking and corticosteroids examples is

that in nearly all cases when a one-tailed P-value was used, the relevant end (up-

per/lower) of the 95% confidence intervals stretched outside of the bounds when the

overall selection probability, p, was small. One could argue therefore that the bounds

perform badly in these examples. The reasoning behind why this occurs is to do with

the selection function that actually attains the bounds. The bound is attained when

the selection function a(y, σ) is of the form

a(y, σ) =





1 if y ≤ θ + σ{λσ − e(σ)}
1 if y ≥ θ + σ{λσ + e(σ)},
0 otherwise

where λ and e(σ) were previously defined in Section 2.5.3. This is a two-sided step

function, so that for 5% level of significance, we accept 2.5% of the studies in the

large negative direction and 2.5% in the large positive direction. Compare this with

a one-tailed selection function that accepts 5% of the studies in say, the large positive

direction. Intuitively, there would be less bias with a two-tailed selection function

if you are selecting some studies in the opposite direction of interest compared with

a one-tailed selection function. This could explain why the width of the confidence

intervals are much larger than the bounds when a one-tailed selection function is used.

The bounds approach is based upon asymptotic sampling theory, where we consider

the asymptotic distribution of θ̂ and how this depends on the selection function,

a. The Bounds method gives you the bounds for all different a. That method is

philosophically completely different to the likelihood method that we have used in

this Chapter. The likelihood approach uses the funnel plot and the data, and once

we fix the selection function, a, we can obtain confidence intervals. Since these two

approaches are fundamentally different, it is entirely possible to witness an example

of a confidence interval that falls outside of the bounds. This report only considered

two meta-analyses. Using randomly generated data (y, σ), we could simulate the out-

come of a large number of meta-analyses with the intention of further investigating

the effectiveness of the bounds.
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We have entertained the unverifiable assumptions about modelling the selection pro-

cess with parametric functions. For each selection function, we have based our infer-

ences on the observed likelihood and have directly used the information available to

us in the funnel plot. As the analysis of this section has shown, the bounds work quite

well since the absolute distance between the bounds and the limit of the confidence

interval of interest is in most cases relatively small. The comparison of the likelihood

and asymptotic approaches serves as a way of justifying both methods. For example,

the bounds are essentially a “worst case” scenario, asking how bad can the bias be.

Since the proximity to the confidence intervals is quite small in most cases, we argue

that the worst case is not as “bad” as we think. This means the bounds could be

considered as a useful tool in attempting to model publication bias in meta-analysis

since its values are relatively close to values that would be seen in practice with real

datasets.

On the other hand, with special reference to the Copas and Shi selection function

a7, the bias given by this model is close to the bias in the bounds. This means that

by imposing additional assumptions about selection, the bias is not increasing much

more than the case when very few assumptions were made, ie. the bounds approach.

In practice therefore, there will not be that much more harm in assuming a particu-

lar selection function, say a7. The advantage of this is that the likelihood approach

allows us to make more detailed inferences with the aid of likelihood contour plots,

likelihood ratio tests, etc just as we have done in Section 5.4.

5.6 Concluding Comments

This chapter presented a general method for using parametric selection functions,

a(y, σ, β) to model publication bias in a meta-analysis. The only restraint is that

the overall selection probability, p, is such that p = E [a(y, σ, β)]. The theory gen-

eralises to the case when β is a vector of parameters, as illustrated in Section 5.4

with a7, the Copas and Shi selection function. Many different examples were inves-

tigated as a means of demonstrating how a sensitivity analysis can be carried out.
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Section 5.3 in particular has shown that the inference about θ can vary greatly ac-

cording to the choice of selection function. This variation in inference, as well as

the fact that it essentially is impossible to verify the assumptions about the selection

function, makes the bounds approach appear like an attractive alternative with its

few and relatively weak assumptions. Section 5.5 showed that by imposing additional

assumptions about selection, the alteration in inference about θ was not too great

when comparing the bounds method to the parametric approach.

As discussed in Section 5.5.2, further work could involve simulating a large number of

meta-analyses as a means of assessing the usefulness of the bound. We should expect

approximately 95% of the simulated confidence intervals to lie within the bounds.

Conducting simulations is one suggestion for further study. The approach taken

would be as follows. Using the passive smoking dataset as a basis, the Trim and Fill

method would be applied (as it was done in Section 3.4.2). Recall from Section 3.4.2

that the Trim and Fill method estimated that there were 6 missing studies. We

would suppose that the true total number of published and unpublished studies was

therefore 43. We would then use these 43 studies to generate different meta-analyses,

with potentially different subsets each time, to try and produce a realistic scenario

where publication bias may be present.

Certain quantities would remain fixed, such as θ and the values of σi. For each sim-

ulated meta-analysis, we would randomly generate the values of yi, say, y∗i = θ + σiεi

where εi ∼ N(0, 1). We could calculate the maximum likelihood estimate of θ each

time, say, θ̂m, and could think of θ̂m as the estimate of θ when no publication bias oc-

curs, so that all 43 studies are included within the meta-analysis. The next step would

be to model the publication bias in the selection process using selection functions

a(y∗, σ; β) and then whether or not the study is included within the meta-analysis

would be decided by randomly simulating from a uniform distribution ε∗i ∼ N(0, 1).

If ε∗i ≤ a(y∗i , σi), then we would include study i to the meta-analysis.

Once we have our subset of s ≤ 43 studies, we calculate the conventional ‘crude’
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estimate of θ, say θ̂c, which would typically be different from θ̂m. It would then be

possible to use the theory as given in Section 5.2 to calculate quantities such as 95%

confidence intervals for different selection functions, a(y, σ). The bounds as given

by Henmi et al. would also be calculated each time, and we could then compare the

confidence bounds using the Bounds method with the confidence intervals for θ using

the likelihood based approach.

Throughout the simulations certain quantities would remain fixed, such as the 5%

level of significance, the true value of θ and the 43 values of σ. Certain parameters

of interest would have different settings. One proposal could include three different

values for the overall selection probability, each representing a different realistic level

of selection. For example p = 0.9 would represent a high level of selection, p = 0.7

would represent a moderate level of selection, and p = 0.5 would represent low overall

selection. Having any lower values of p would seem unreasonable, especially with

this particular example of passive smoking. Another component that would change

during the simulations would be the choice of parametric selection function. The

three selection functions would be:

a(y, σ; β) = e−βv(y,σ),

a(y, σ; β) = e−βv2(y,σ),

a(y, σ; β) =
2e−βv(y,σ)

1 + e−βv(y,σ)
,

where v would be both one-sided and two-sided P-values. This would result in a

total of 18 different settings within our simulation study. Once all settings would be

in place, a sufficient number of iterations would be necessary to ensure the accuracy

of the findings, say, 20,000 simulations for each setting. Research by Moreno et al.

[57] and Peters et al. [61] provide good examples of simulation studies, and their

methodology would be adopted here.

Another suggestion is further investigation of the Copas and Shi model in Section 5.4.

For this model, the ρ parameter was restricted such that ρ ∈ [−0.999, 0.999]. The
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interpretation of ρ is as follows: if ρ = 0, then there is no publication bias, ie. yi and

zi are independent. If ρ > 0, then selected studies have zi > 0, and smaller studies

will tend to have larger values of yi. It would be interesting to see what effect could

there be in restricting ρ ∈ [0, 0.999]. At the points where there were unusual jumps

in the likelihood plots, ρ usually had the value of -0.999, ie. exactly on the boundary

of ρ’s parameter space. This in practice is not a sensible value of ρ. Further study

is needed here.

There is potentially an underlying issue about the appropriateness of the theory as

given in Section 5.4.2 (page 96) when applying the Copas selection function a7. Max-

imum likelihood estimators possess good asymptotic properties, such as consistency

and asymptotic normality. Any good text on asymptotic theory of maximum likeli-

hood estimated is recommended, see for example [54]. There are several regularity

conditions for asymptotic maximum likelihood, but in particular a relevant regularity

condition here involves the boundary of the parameter space. In general, sometimes

the maximum likelihood estimate may lie on the boundary of the parameter space.

Standard theory requires the true parameter value to lie away from the boundary.

As previously mentioned, there are instances where the ρ parameter lies exactly on

its boundary. Therefore the application of the theory, as given within Section 5.4.2,

may be called into question. This is an issue that Copas and Shi recognised in their

original paper [22].

Carpenter et al. conducted extensive research into the use of the Copas selection func-

tion for two reasons: first to develop reliable software so that researchers could use

the selection function, and second to provide an empirical evaluation of the method,

see for example [10] and [73]. They too experienced estimation problems in 20%

of meta-analyses that they investigated “despite considerable programming work”.

Throughout Chapter 5 there are seemingly erratic behaviours of the likelihoods and

estimates of θ, for example where there are sudden spikes within the likelihood plots.

Carpenter et al. also experienced similar irregular plots, which they too believed were

caused by at least one of the underlying maximum likelihood estimates being close to
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a boundary. Interestingly, Carpenter et al. wrote an R package called ‘copas’ to fit the

Copas selection model to adjust for bias in meta-analysis [11]. Their paper further ac-

knowledges irregularities may be observed in contour plots, likelihood plots and so on.

The main criticism about the Copas and Shi approach, [21] and [22], is that is a

complicated model. For people with little statistical knowledge and those analysing

data for systematic reviews, they will most likely struggle with applying this model.

A main achievement of this report is to reconsider the approach given by Copas and

Shi, and discuss the sensitivity analysis in terms of the easily understood quantity, p,

rather than the confusing pair of parameters (a, b). For example, health practitioners

would much more likely understand p = 0.5 compared to (a = −0.5, b = 1). Despite

this much more accessible and sensible approach to marking inferences in terms of

p, the model still remains complex. A further area of study could possibly involve

creating a software program, say, compatible in SAS or STATA, packages familiar to

many medical statisticians. These programs would hopefully provide a useful and

user-friendly interface such that the application of this model within a sensitivity

analysis would be relatively pain-free. It is hoped that the various tests, plots and

summaries could then be routinely used by those carrying out systematic reviews to

take into consideration the dangers of publication bias in meta-analysis.
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6 A New Likelihood Method for Monotonic Selec-

tion Functions

As reviewed in Chapter 2, the use of selection functions is a long running approach to

modelling publication bias in meta-analysis. Also known as weight functions in the

literature, selection functions model the selection process by assigning a probability

to a study being published based on its effect size estimate. Iyengar and Greenhouse

[50] was one of the first to suggest the use of weighted distributions to model selec-

tion in meta-analysis, and many other researchers have adopted this approach. A

good review of selection method approaches is by Hedges and Vevea [45]. Recall

from the Literature Review in Chapter 2 that there are two main classes of selection

functions. The first class involves section functions that depend on the effect size

estimate through the study’s P-value, or equivalently, the ratio y/σ. The second

class of selection functions depend on the effect size estimate y and standard error σ

separately. In this chapter, we will consider the first class of selection functions.

There have been many attempts to model selection via weight functions that depend

only on study P -values. The motivation for these approaches is that it is a widely

accepted assumption that research is more likely to be accepted for publication if it

reports statistically significant results. Lane and Dunlap [53] and Hedges [43] mod-

elled selection by giving weight 1 to those studies studies with statistically significant

results (say, P-value < 0.05 one-tailed) and weight 0 otherwise. This is an interesting

model, but perhaps too extreme to satisfactorily model the selection process in real

life. This extreme case rejects all research with non-significant results, which just

simply does not happen. Nonetheless, the model provides a starting point for more
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realistic models.

Consider the work of Hedges [44], Vevea et al. [89] and Vevea and Hedges [90]. Briefly,

these attempts use a step function as a selection function, where the weights are cal-

culated using the data, for example a maximum likelihood approach. The main

assumption is concerned with the location of the steps, which are assumed known

and fixed. Of course the location of these steps (say at the P-values of 0.05, then 0.1,

and so on) are entirely arbitrary. The intuition is there though. It seems plausible

that the journal editor will almost certainly publish if the P-value lies between 0 and

0.05, the editor will be likely to publish if the P-value lies between 0.05 and 0.1, less

likely to publish with a P-value of between 0.1 and 0.5, and so on. The familiar

problem faced with these attempts are the heavy assumptions about selection that

we have to make. A more advanced method by Dear and Begg [24] estimated the

selection function as a step function, and assumed that the relative weights and lo-

cation of the steps were unknown. This semi-parametric method involved making

strong assumptions about knowing the distributional form for the summary estimates

for individual studies within the meta-analysis. Dear and Begg themselves promote

their method only as an exploratory technique prior to conducting a meta-analysis.

The many approaches that have used selection functions to model publication bias in

a meta-analysis all experience the same limitation, in that it is virtually impossible

to estimate the selection mechanism from the observed studies alone. A common ap-

proach is to assume that only a proportion of the total number of studies have been

included in a meta-analysis. Call this quantity, p, the overall selection probability.

So for example, if no publication bias exists, we expect all studies to be included in

the meta-analysis, and hence p = 1. p is an easily interpretable quantity, which is an

incredible advantage. This chapter aims to find a selection function a∗ which makes

as few assumptions as possible, and allows us to use a likelihood based approach to

find the maximum likelihood estimate of θ conditional on an interpretable quantity p.
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6.1 Setting Up the Step Function

We start with our usual framework of imagining that studies being included within

a meta-analysis are selected via a selection function

a(y, σ) = P (selection|y, σ),

where each study reports a study outcome y, with y ∼ N(θ, σ2), estimating overall

treatment effect θ. We consider a transformation t = y
σ

so that selection is now

modelled via the selection function

a(t) = P (selection|t).

This follows with the familiar approach in meta-analysis by essentially modelling se-

lection via its P-value. The main assumption we make is that a(t) is an increasing

function of t, so that as t increases, the probability of selection increases. This intu-

itively makes sense since, if y remains constant and σ gets smaller, t increases, and

we would expect to see studies with small σ more frequently than those with large

σ. In the examples to come we will imagine positive y are more likely to be included

in the meta-analysis than those with near zero y values or negative values of y, and

hence our assumption that a(t) is an increasing function of t.

For the n studies in the meta-analysis, we have independent ti ∼ N( θ
σi

, 1). The

distribution of the observed t is

P (t|selection) =
P (selection|t)P (t)

P (selection)

=
a(t)φ(t− θ

σ
)

g(σ, a)
,

where φ is the density function of the standard normal distribution, and g(σ, a) is

defined as g(σ, a) = E[a(t)] =
∫

a(t)φ(t− θ
σ
)dt. The likelihood function is thus

L =
n∏

i=1

a(ti)φ
(
ti − θ

σi

)

g(σi, a)
.

It can be easily shown that
∑n

i=1 log φ
(
ti − θ

σi

)
= A(θ − θ̂)2 + B, where A,B are

constants and given as
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A = −1

2

n∑
i=1

1

σ2
i

and

θ̂ =

∑n
i=1

ti
σi∑n

i=1
1
σ2

i

.

To find the maximum likelihood estimate of θ, we maximise the log-likelihood function

l(θ, a) = log L, or by using the result above, it is sufficient to maximise the following:

l(θ, a) =
n∑

i=1

log a(ti)− 1

2

( n∑
i=1

1

σ2
i

)
(θ − θ̂)2 −

n∑
i=1

log g(σi, a). (63)

An illustration of an arbitrary selection function a(t) is presented in Figure 6.1, with

points t1, t2, . . . highlighted.
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Figure 6.1: Selection function a(t).

The question of interest is, given a selection function a(t), can we find another selec-

tion function a∗(t) that will provide a larger likelihood function? Define a∗(t) as the

following step function:
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a∗(t) =





a(t1) t ∈ (−∞, t1)

a(t1) t ∈ [t1, t2)

a(t2) t ∈ [t2, t3)
...

...

a(tn−1) t ∈ [tn−1, tn)

a(tn) t ∈ [tn,∞)

(64)

The following aims to prove the step function given in (64) is indeed a selection

function such that l(θ, a∗) ≥ l(θ, a). Recall that

l(θ, a) =
n∑

i=1

log a(ti)− 1

2

( n∑
i=1

1

σ2
i

)
(θ − θ̂)2 −

n∑
i=1

log g(σi, a), (65)

and g(σi, a) =
∫

a(t)φ(t− θ
σi

)dt. The first term in (65) is identical for both a(t) and

a∗(t) due to the the definition of a∗(t). The second term in (65) is clealy identical

for both a(t) and a∗(t) as it depends only on the data. This means for us to show

that l(θ, a∗) ≥ l(θ, a), it is sufficient to show that
n∑

i=1

log g(σi, a)−
n∑

i=1

log g(σi, a
∗) ≥ 0.

Let t0 = −∞ and tn+1 = ∞. We assume that a(t1) > 0. Recall that our main

assumption about a(t) is that a(t) is a non-decreasing function of t.
n∑

i=1

(
log g(σi, a)− log g(σi, a

∗)
)

=
n∑

i=1

(
log

∫
a(t)φ

(
t− θ

σi

)
dt− log

∫
a∗(t)φ

(
t− θ

σi

)
dt

)

=
n∑

i=1

{ n∑
j=0

[
log

∫ tj+1

tj

a(t)φ
(
t− θ

σi

)
dt

−log

∫ tj+1

tj

a(tj)φ
(
t− θ

σi

)
dt

]}
.

Since we assume that a(t) ≥ a(tj) ∀ t ∈ [tj, tj+1), and also note that φ(x) > 0 ∀ x,

then it is true that
∫ tj+1

tj

a(t)φ
(
t− θ

σi

)
dt ≥

∫ tj+1

tj

a(tj)φ
(
t− θ

σi

)
dt ∀ i, j.

⇒ log

∫ tj+1

tj

a(t)φ
(
t− θ

σi

)
dt − log

∫ tj+1

tj

a(tj)φ
(
t− θ

σi

)
dt ≥ 0 ∀ i, j,
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and the result follows.

a∗(t) is a step function, which has minimised the E[a(t)] quantity in the likelihood

according to the non-decreasing assumption. Figure 6.2 shows an illustration of a

selection function a(t) and the step function a∗(t). We re-write a∗(t) as follows:

a∗(t) =





d1 t ∈ (−∞, t1)
∑j

i=1 di t ∈ [tj, tj+1) for j = 1, . . . , n.
(66)
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Figure 6.2: Selection function a(t) with step function a∗(t).

Note that we have had to make an assumption about the shape of a∗(t) for t < t1.

The chosen option was to suggest that the probability of selecting a study was

a∗(t) = a(t1) = d1 for t < t1. The selection probability of a study is assumed

equal to the probability corresponding to the least positive observed ti since we have

no information about the frequency of observing any studies with t < t1. It would

be equally arbitrary to assume that a∗(t) = d1

2
for t < t1 but the chosen option seems

sensible.
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Instead of being interested in the likelihood l(θ, a), we need only consider l(θ, a∗).

This provides us with an incredible advantage since l(θ, a∗) can be expressed as a

function of n + 1 parameters, namely, l(θ, d1, ..., dn). For the parameters in a∗(t),

we impose the constraints that di ≥ 0 so that a∗ is a non-decreasing function, and
∑n

i=1 di ≤ 1.

We now have a framework to work with a very rich family of selection functions. For

a given data set {ti : i = 1, ..., n} and a given value of θ, we can calculate l(θ, a∗) and

pa∗ = p(d1, ..., dn, θ), where

pa∗ =
{ 1

n

n∑
i=1

1

E[g(a∗, σi)]

}−1

. (67)

The origins of (67) comes from an earlier result that proves the overall selection

probability, p is given as

p =
{
EO

[ 1

a(σ)

]}−1

, (68)

where expectation is calculated over the distribution of observed studies (see Chap-

ter 5).

In principle, if we specify a value for p, we can find a selection function a∗(t) such

that p(d1, ..., dn, θ) = p. Conditioning on this p, we can calculate the profile likelihood

l(θ, a∗). Clearly there could be many different values of the vector d = (d1, ..., dn)

that satisfy pa∗ = p which in turn could cause a variation in the values for l(θ, a∗).

We therefore calculate the profile likelihood by finding the vector d∗ that maximises

l(θ, a∗) over all d such that p = p(d). Once the profile likelihood is obtained, it is

possible to proceed with calculating statistical quantities such as θ̂p and correspond-

ing 95% confidence intervals.

6.2 A Description of the Algorithm

The basic process of the algorithm that produces the profile likelihood is as follows.

(d1, ..., dn) is randomly generated according to the previously mentioned constraints.
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The distribution from which the dis are generated is essentially arbitrary. The S-

Plus code in Appendix A3 shows that the exponential distribution was used. This

method of generating the dis seemed to work well, producing sensible selection func-

tions, however any other sensible method of generating values is acceptable. Along

with a given θ, the two quantities pa∗ and l(θ, a∗) are calculated. This process is

repeated thousands of times. If two different randomly generated vectors d calculate

the same value of pa∗ , the vector d resulting in the larger value of the likelihood is

retained and used for the profile likelihood.

The values of p are categorised into bins of interval length 0.05 such that a calculated

value of p = 0.96 would fall into the bin p ∈ (0.95, 1); a value of p = 0.92 would

fall into the bin p ∈ (0.9, 0.95), and so on. The reason for partitioning the overall

selection probability p into bins is because searching for d∗ for a specific value of p

for all p ∈ (0, 1) would be computationally expensive making it virtually impractical.

If the intervals of p are sufficiently small, this algorithm essentially tackles the same

problem as described previously.

The algorithm involves having a matrix of stored values, where columns of the matrix

correspond to the grid of different values of θ and the rows correspond to the different

intervals of p. If, for a given value of θ and interval of p, a selection function is found

with a greater likelihood, then this current value of the likelihood is stored. Other-

wise, the existing value of the likelihood, along with the existing selection function,

remains.

From the profile likelihood, it will be possible to calculate 95% confidence intervals

for different intervals for p, for example, 95% confidence intervals for p ∈ (0.95, 1),

p ∈ (0.9, 0.95), and so on. The algorithm retains the different estimated values of pa∗

for the different values of θ that are to be examined. This means that rather than

having a confidence interval for a band of values of p, we can very loosely calculate the

“average“ value of p. This allows us to produce plots that show rather loosely what

effect varying p has on the confidence intervals. As we allow for more selection, we ex-
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pect the confidence intervals to become nearer the value of θ = 0. The algorithm was

implemented in S-Plus, using specially written S-Plus code. This code, along with

a more detailed description of the algorithm, can be found in Appendix A3 (page 144).

6.3 An Example: Passive Smoking

The algorithm, as described in the previous section, was implemented using the pas-

sive smoking dataset as means of illustration. Recall that a thorough discussion of

the passive smoking example can be found in Chapter 3. Figure 6.3 shows the plots

of the profile likelihood for the different intervals of p.
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Figure 6.3: Profile likelihood for different intervals of p when assuming selection func-

tion a∗.

The lowest curve corresponds to the case when p ∈ (0.95, 1). The next highest curve

corresponds to the case when p ∈ (0.9, 0.95). The curve third from the bottom corre-

sponds to the case when p ∈ (0.85, 0.9), and so on. The points indicate the maximum

likelihood estimate of θ for each interval of p. Note that the slightly uneven pattern in
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values of θ is a consequence of using a grid of values of θ with a step length of 0.01. It

is interesting to observe from Figure 6.3 that the likelihood curves attain higher val-

ues as the overall selection probability decreases from 1. For example, there is a clear

distinction between the likelihood function for p ∈ (0.95, 1) and for p ∈ (0.4, 0.45),

and so on. This is entirely what we would expect because as p decreases, we are

allowing for a better fit of the data to the model.

From the profile likelihood, it is possible to calculate the 95% confidence intervals.

The curves in Figure 6.3 are normalised so that, at the maximum likelihood estimate

of θ, the likelihood has value zero. Equating 2
(
l(θ̂, a∗)− l(θ, a∗)

)
, for each interval of

p, to the relevant percentile of the χ2 distribution with one degree of freedom provides

an approximate 95% confidence interval for θ. These confidence intervals are plotted

against p on the same graph, as shown in Figure 6.4.
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Figure 6.4: 95% confidence intervals of θ given a range of p when assuming selection

function a∗. The bounds from the Bounds method have also been added.
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Intervals of p Average value of pa∗ θ̂ 95% CI

(0.4, 0.45) 0.408 0.07 (−0.010, 0.171)

(0.45, 0.5) 0.475 0.09 (0.007, 0.188)

(0.5, 0.55) 0.519 0.10 (0.025, 0.199)

(0.55, 0.6) 0.575 0.11 (0.037, 0.212)

(0.6, 0.65) 0.620 0.13 (0.055, 0.223)

(0.65, 0.7) 0.668 0.15 (0.061, 0.239)

(0.7, 0.75) 0.722 0.15 (0.075, 0.249)

(0.75, 0.8) 0.764 0.17 (0.083, 0.261)

(0.8, 0.85) 0.812 0.18 (0.091, 0.271)

(0.85, 0.9) 0.864 0.19 (0.099, 0.281)

(0.9, 0.95) 0.911 0.20 (0.108, 0.290)

(0.95, 1) 0.957 0.21 (0.115, 0.297)

Table 6.1: Average values of pa∗ and corresponding 95% confidence intervals of θ.

The dashed line in Figure 6.4 represents the values of θ̂ for given p, and the dot-

dash lines represent the limits of the 95% confidence intervals for given p. Note that

the bounds for the confidence intervals (the solid lines) corresponding to the Bounds

method by Henmi et al. have also been added to Figure 6.4. The graph shows that,

as the overall selection probability decreases from 1, the confidence intervals shift

towards the value θ = 0. It should be noted that the graph provides a rough but

insightful view as to how the confidence intervals for θ and θ̂ change as p decreases.

Rather than plotting a confidence interval against a band of values of p, the average

value of pa∗ was taken over all values of θ for each interval of p. The tabulated values

are given in Table 6.1.

The way in which we would interpret Figure 6.4 and Table 6.1 is as follows. When

p is approximately 0.45, the 95% confidence interval includes the value θ = 0. This

means that if we were to entertain the possibility that only 45% of all studies relating

to this research question had been included into this particular meta-analysis, then
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this would cast doubt on the validity on the original statistical results. Using a simple

transformation, p ≈ 37
37+m

, we can say that the change to a non-statistically significant

result occurs when the number of unpublished studies, m, is 46. Rather informally,

this appears to be a very high number of unpublished studies which, although by

no means impossible, sounds somewhat implausible. As previously mentioned, the

bounds for the confidence intervals (as proposed by Henmi et al. [47]) have been

included in Figure 6.4. According to the worst-case sensitivity analysis approach,

their method suggests an overall selection probability of approximately 0.66 (or 19

unpublished studies) is sufficient to overturn the original statistical findings.

6.4 A Comparison with Parametric Selection Functions

a∗ is a non-decreasing function of t. The location of the steps are situated whenever

a study reports a greater value of t. Figure 6.5 shows a variety of selection functions

taken from the stored values in the passive smoking example.
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Figure 6.5: Examples of a∗(t) for a selection of different values of p
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Randomly generating d repeatedly provides us with a very rich family of selection

functions. The shapes of the function are very typical of what a(t) would look like

given assumed values of the overall selection p. As one would expect, a selection

function with overall high probability would have high values of a(t) for all t. As p

decreases, the values of a(t) decreases over a wider range, demonstrating the increas-

ing severity in selection.

In Chapter 5, several parametric selection functions were applied to the passive smok-

ing data. Functions such as a(y, σ) = e−βΦ(−y/σ) require us to make much stronger

assumptions about selection than those necessary with the a∗ selection function. Ta-

ble 6.2 summarises the results of the approximate value of p and equivalently the

number of missing studies necessary for the significant result to be overturned for the

selection functions a1 to a7.

Selection function Description Approximate overall Approximate number

selection probability of missing studies

a1 Exponential, one-tail 61% 24

a2 Exponential, two-tail 44% 46

a3 Half-normal, one-tail 71% 15

a4 Half-normal, two-tail 58% 27

a5 Logistic, one-tail 63% 21

a6 Logistic, two-tail 48% 41

a7 Copas-Shi 23% 124

a∗ Step function 45% 46

Bounds Henmi Bounds 66% 19

Table 6.2: Summary of the results for the parametric selection functions a1, ..., a7, a∗

and the Bounds method for comparison.

The estimated step function a∗ has been added for comparison. The values reported

roughly lie in the middle of the values reported by a1 to a7, perhaps a little cau-
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Figure 6.6: An example of a∗(t) plotted against other selection functions a1, a3 and

a5.

tious by comparison. A possible explanation for this is how the confidence intervals

were calculated. Within each interval of p the average value of pa∗ was taken over

a range of θ (as listed in Table 6.1). This average was usually at the lower end of

each bracket. Clearly within each interval of p, a smaller p allows for a slightly better

fit for the model and so resulting in a larger likelihood which the algorithm will retain.

Figure 6.6 plots a∗ and a1, a3 and a5 (one-tailed selection functions). As an exam-

ple, p was chosen to be p = 0.812 and θ was assumed to be equal to the maximum

likelihood estimate as suggested by Table 6.1. Since a∗ is a one-tailed function, no

two-tailed versions of the parametric selection functions were considered. Values of

β for the parametric functions were calculated in the usual way (as described in

Chapter 5). a3 (the half-normal selection function) is more severe in selection for

smaller/negative values of t but more inclusive for larger positive values of t. Values

of a(t) are similar for the a1 and a5 functions. a1 (the straightforward exponential
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selection function) is slightly more similar in shape to a∗ for this particular exam-

ple. In fact, in many other numerical examples it appears that a1 is most similar in

shape to that of a∗, especially when we assume a low overall selection overall selection

probability p. The values of θ̂ are similar for both selection functions for a range of

values of p. In that respect one could argue that we could use a1 in preference to a∗

to make inference about θ. The main reason is that a1 involves far less computation,

and its usage could therefore be recommended when modelling publication with the

aid of selection functions.

The method involving a∗ however tends to result in wider confidence intervals result-

ing in much weaker conclusions compared to the use of, say, a1. This can be seen in

Table 6.2 (where an overall selection probability of 61% is necessary to overturn the

significance of the overall result for a1 compared to just 45% for a∗). This difference in

the width of the confidence intervals is intuitive since with a∗, we are fitting a model

with a lot more parameters d1, ..., dn compared to a1 which has far fewer parameters.

6.5 Concluding Comments

This chapter presented a likelihood based approach to modelling publication bias in a

meta-analysis with the aid of a step selection function a∗. An inherent problem when

using selection functions in a meta-analysis is that we are forced to make assumptions

about the selection process. The aim of this chapter was to attempt to still adopt

a selection function based approach, but trying to make weaker assumptions about

selection than, say, methods that were explored in Chapter 5. The only assumption

we made is that the selection function was an increasing function of t, or in other

words y/σ.

The corresponding algorithm to a∗ was also included, for which the specific S-Plus

codes are given in Appendix A3 (page 144). It is hoped that other researchers could

potentially use this selection function - the method is quite computationally inten-

sive, but with the S-Plus code already written, it should not be too big a problem to
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adapt the code accordingly to apply the method in other meta-analyses.

The maximum likelihood method that we have presented here uses a very flexible

model, however there may be a danger of overfitting due to the large number of

parameters in the model. An idea for future research could be to check for this issue

with the following method. We could assume that the selection process is known and

can be modelled by selection function a1. We could simulate data numerous times,

calculate the confidence intervals when using a1 and then when using this new method

involving a∗, and then compare the confidence intervals from these two methods.
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7 Summary and Conclusions

This thesis discussed several different approaches to modelling publication bias in

a meta-analysis, with varying degrees of assumptions about the selection process.

Chapter 3 introduced a case study concerning the effects of environmental tobacco

smoke (also known as passive smoking) and the risk of lung cancer. The meta-analysis

performed by Hackshaw et al. in 1997 was reviewed [40]. This particular topic was

chosen for two main reasons: the first reason is that, whilst the issue of the effects

of passive smoking are widely known, the implications are still very relevant. The

Hackshaw analysis was used in part as evidence put forward to reform the legislation

concerning smoking in public places [74]. The second reason is that the Hackshaw

analysis has been used by other researchers, such as Copas, since it is a good example

of a meta-analysis that shows signs of potential publication bias. The corresponding

dataset was subsequently used in the later chapters of this thesis to demonstrate the

various methods.

In 2007, Taylor et al. presented an updated meta-analysis concerning passive smoking

[85]. Chapter 3 used the data as given by Taylor et al. to demonstrate a personal,

recommended approach of performing a good meta-analysis. The literature on good

analytic practice is fast growing, for which the texts by Sutton et al. [80], and Roth-

stein et al. [71] are recommended examples. This chapter therefore brought together

some of the fundamental points in meta-analysis (for example, the choice of model and

use of summary statistics, graphical displays of the data, and investigating robustness

and modelling for potential publication bias), as a means of promoting merely one

possible approach to meta-analysis that hopefully will stand one in good stead. The
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Taylor dataset was a relevant update to the analysis carried out by Hackshaw et al.,

providing more studies with higher numbers of cases of lung cancer. The analysis,

as presented in this chapter, can be used to support the ongoing ban of smoking

in public places. The comparison between the 2007 Taylor analysis and the 1997

Hackshaw analysis revealed that the two were quite consistent in their conclusions,

with the overall estimates of risk and the presence of possible publication bias being

quite similar.

Chapter 4 presented a robust P-value in a meta-analysis with publication bias, which

is based on the idea of a permutation test. The core idea behind this non-parametric

method is relatively straightforward and intentionally makes as few strong assump-

tions about the selection process. The only strong assumption made was that se-

lection depends in some unspecified way on a study’s P-values. Two approaches to

providing a P-value were presented: the first was the permutation P-value based upon

standard permutation theory. The second approach used an approximation P-value,

depending upon only the number of studies in the meta-analysis and the sample cor-

relation associated with the radial plot. Chapter 4 formed the basis for a paper that

was co-authored with J.B. Copas and was successfully submitted for publication in

the journal Statistics in Medicine in 2008 [20].

Without question, for all the approaches presented in this thesis, Chapter 4 included

the one with the fewest assumptions about selection. The concepts presented in this

chapter are quite elegantly simple, however there is an inevitable trade-off in the

form of loss of power. The passive smoking dataset and also the cholesterol lower-

ing dataset were used to demonstrate the methodology of the robust P-value. It is

hoped that the methods presented here are simple to implement for both technical

statisticians and health practitioners with less statistical knowledge.

Chapter 5 presented a general method for using parametric selection functions in

meta-analysis. This chapter is in stark contrast to the previous chapter in the sense

that much more stronger assumptions were made about the selection process. The
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selection functions investigated included examples such as the exponential selection

function, a(y, σ) = e−βV , where β is some adjustable parameter indicating the severity

of selection and V represents the study P-value. Since the choice of selection func-

tion is entirely arbitrary, a couple of other selection functions were presented, and

the methodology recommended using a maximum likelihood approach to calculate

the estimate of the overall quantity of interest, θ. A sensitivity analysis was recom-

mended, re-calibrating the selection functions a(y, σ) into an interpretable quantity,

p, representing the overall probability of selection, and then investigating a plausible

range of values for p. The recommendation from this section of work would be to

investigate the potential impact of publication bias by looking at a few different se-

lection functions and measuring how this impacts upon the estimate of θ.

The theory presented in Chapter 5 generalised to the case when β was a vector of

parameters, as illustrated by a selection function used by Copas and Shi [21]. A va-

riety of examples were included as means of demonstrating how a sensitivity analysis

could be carried out. The results showed that the inference about θ varied consid-

erably dependent upon the choice of selection function. Therefore, Chapter 5 also

included an analysis investigating the effectiveness of the Bounds method as proposed

by Henmi et al. [47]. This was achieved by comparing the confidence intervals derived

from the use of the parametric selection functions with the bounds when the Bounds

method was used. There is an important difference in the two approaches. The

Bounds method is based on the asymptotic distribution of θ̂, whereas the parametric

selection functions approach was based on maximum likelihood estimation.

The overall conclusion about the effectiveness of the Bounds method was that it is

a very useful tool to use. The Bounds method does work well, since the absolute

distance between the bounds and the limits of the confidence intervals (from the

parametric approach) were in most cases relatively small. Since the Bounds method

by Henmi et al. is essentially looking at the “worst case” scenario, this indicates that

using this method, instead of the parametric selections which makes much stronger

assumptions about selection, assumes a worst case that is not as “bad” as we think.
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When we examined the Copas selection function, which imposes additional assump-

tions about selection compared to the Bounds method, the bias is not increasing that

much more. Chapter 5 showed that the inferences about θ were not that different

when using the Copas selection function to the Bounds method, which suggests the

use of the likelihood approach with the aid of the Copas selection function will be

more beneficial as we are able to perform a more detailed analysis with the aid of

likelihood contour plots, likelihood ratio tests, etc.

Chapter 6 presented a third approach to modelling publication bias in a meta-analysis

again using a maximum likelihood approach but this time with the aid of a step se-

lection function which we denoted as a∗. The main idea behind Chapter 6 is similar

to that of the robust P-value in Chapter 4 in the sense that we are trying to make

as few assumptions about the selection process as possible. Specifically, the selection

function process makes one assumption about selection, namely the selection func-

tion is an increasing function of t = y/σ. Early works using step selection functions

(Lane and Dunlap [53], and Vevea and Hedges [90] to name just two) were criticised

for making very strong assumptions about the selection function, namely where to

place the steps in the function which can not be easily verified.

Therefore Chapter 6 aimed to present a new method using maximum likelihood esti-

mation, and an algorithm was discussed on how to implement this method in practice.

The overall conclusions from this chapter was that we have presented a new method

of modelling publication bias in a meta-analysis by assuming a step selection func-

tion without making strong assumptions about the selection process. One of the

interesting observations we found concerning the inferences of θ in this chapter was

how similar the results were when assuming a∗ as the selection function compared

with a1(y, σ) which was the exponential, one-tailed selection function discussed in

Chapter 5. Since the use of a1 involved far less computation using the maximum

likelihood approach than when a∗ was used, one could therefore argue a1 be used

when modelling publication with the aid of selection functions.
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Hopefully this thesis demonstrates that there are still plenty of directions for further

research to go concerning publication bias in meta-analysis. The theory and algo-

rithm presented in Chapter 6 provides researchers with a new method to modelling

publication bias using a maximum likelihood approach but also making as few as-

sumptions about selection as possible. Therefore, as further work to succeed this

thesis, we intend to use Chapter 6 as a basis for a paper which will hopefully be

submitted to a journal such as Statistics in Medicine. The chapter would be modi-

fied to include more examples with the hope that others in the field of meta-analysis

could potentially use the step selection function in their own research. Related to

this further area of work would be to make available the S-Plus codes corresponding

to the algorithm used in Chapter 6, or adapt the code to make the method available

in R, or perhaps even in SAS to make the method accessible to medical statisticians.

In Chapter 5 we investigated the effectiveness of the Bounds method by Henmi et al.

Two numerical examples were discussed, namely the passive smoking dataset and the

corticosteroids dataset. As means of further work, additional research could involve

simulating a large number of meta-analyses as a means of assessing the usefulness of

the bounds. We could, say, simulate thousands of meta-analysis datasets and then

apply the Bounds method and compare to the confidence intervals when assuming a

parametric selection function. This would provide a more thorough analysis of the

effectiveness of the Bounds method by conducting simulations.

One of the biggest aims of this thesis was to discuss methods in meta-analysis that

are accessible to a wide range of researchers. There are inherent problems with the

use of selection functions when modelling publication in meta-analysis, and so the

new methods presented here hopefully aim to avoid these problems in such a way

that others could implement these methods in practice with relative ease.
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Appendix A1 - Statistics in Medicine (2008) Paper

Refer to Copas, J.B. and Malley, P.F. (2008). A robust P-value for treatment effect

in meta-analysis with publication bias. Statistics in Medicine, 27, 4267− 4278.
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Appendix A2 - S-Plus Code for the Bounds Method

Here we present the S-Plus functions used to calculate the bounds for the confidence

intervals as presented by Henmi et al., as first discussed in Chapter 2.5: A Review of

Recent Research Investigating Publication Bias. The code presented below is split

into two sections: the first contains code that only needs running once; the second

contains code that will need re-running for each different example, for which an ex-

ample is given. A brief commentary follows both sections of code.

1. Code that only needs running once.

bf1 <- function(x, b, p){

pnorm(b - x) + pnorm( - b - x) - p}

bf2 <- function(b, p){

int <- c(0, 1 - p + pnorm(b) - b)

uniroot(bf1, int, b = b, p = p)$root}

bf3 <- function(b, p){

sapply(b, bf2, p = p)}

bf4 <- function(lam){

ee <- bf3(lam * sig, p)

d1 <- lam * sig - ee

d2 <- lam * sig + ee

b1 <- mean((dnorm(d2) - dnorm(d1))/(p * sig))

b2 <- mean((1 + (d2 * dnorm(d2) - d1 * dnorm(d1))/p)/sig^2)

- b1 - ga * sqrt(b2 - b1^2)}

bf5 <- function(){

nlminb(-2/mean(sigpass), bf4, lower = - Inf, upper = 0)$objective}
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bf6 <- function(pgrid){

igrid <- 1:length(pgrid)

result <- pgrid

for(i in igrid) {

assign("p", pgrid[i], where = 1)

result[i] <- - bf5()}

assign("result", result, where = 1)}

The above functions correspond to the formulae given in Section 2.5.3 starting on

page 24. The function bf1 is essentially equation (11) for given values of (ei, λσi, p).

Function bf2 finds the value of ei for given values of (λσi, p). Function bf3 calculates

ei for a vector of different values of λσi for the same given value of p.

Next, the function bf4, for a given λ, calculates the ei by solving equation (11). Also

the quantities B∗
1 and B∗

2 are calculated, as shown in equations (16)-(17). The final

part of function bf4 calculates the quantity C∗, as given in equation (15).

The function bf5 finds the minimum of the C∗s corresponding to equation (13). Fol-

lowing on from this, function bf6 simply does all of the above for any specified values

of p. The output of this function is called result which we use in the following section

of code.

2. Code that needs running for each new data set. As an example, the passive

smoking data is used.

xpass <- c(-0.291, 0.724, 0.758, -0.218, -0.245, 0.700, 0.208, 0.250,

0.414, 0.022, 0.438, 0.023, 0.849, 0.501, 0.175, 0.422,

0.767, 0.076, 0.936, 0.481, 0.059, -0.229, -0.307, 0.816,

-0.029, 0.438, 0.170, 0.508, 0.236, 0.097, 0.505, 0.151,

0.105, 0.163, 0.376, 0.707, 0.123)
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sigpass <- c(0.307, 0.486, 0.321, 0.450, 0.586, 0.334, 0.248, 0.490,

0.307, 0.476, 0.302, 0.294, 0.546, 0.221, 0.229, 0.694,

0.369, 0.293, 0.632, 0.322, 0.223, 0.182, 0.437, 0.568,

0.172, 0.356, 0.322, 0.432, 0.165, 0.317, 0.236, 0.229,

0.285, 0.189, 0.222, 0.732, 0.218)

ga <- 1.96/sqrt(37)

pass.theta.hat <- sum(xpass/sigpass^2)/sum(1/sigpass^2)

bf6(c(seq(0.35, 0.95, 0.1), 0.999))

tmp1 <- pass.theta.hat + 1/mean(1/sigpass^2)*result

tmp2 <- pass.theta.hat - 1/mean(1/sigpass^2)*result

tmp3 <- c(0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 0.999)

plot(tmp3, tmp1, ylim=c(-0.15,0.6), xlab="selection probability",

ylab="theta",pch=" ")

lines(tmp3, tmp1)

lines(tmp3, tmp2)

abline(h=0, lty=2)

title("Bound for 95% CI - passive")

First, the data (y, σ2) must be presented in two vectors, called here as xpass and

sigpass. Second, it is necessary to define ga which relates to γ, defined as n−1/2zα,

as seen in equation (15), where n is the number of studies and zα = φ−1(1− α/2) is

the standard normal percentage point with coverage 1− α.

pass.theta.hat is simply calculating the weighted average of θ. Next it is necessary

to specify a grid of values for p to place inside the function bf6. Note that there

is a convergence issue when you choose p = 1 and so the value 0.999 is used. This
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minor detail essentially does not affect the subsequent graph. The final lines of code

simply calculate the bounds at each value of p in the specified grid, and there is some

straight forward code to plot these values in a simple graph.

Note that a similar looking graph is presented in Figure 3.4 on page 51, corresponding

to the application of the bounds method using the Taylor data set.
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Appendix A3 - S-Plus Code for the Step Selection

Function

Here we present the S-Plus functions used to calculate the profile likelihood for Sec-

tion 6: The Use of Step Selection Functions. For the code to work, you need to

specify certain quantities beforehand. First, the data (y, σ2) must be presented in

two vectors. Second, a grid of values of θ must be specified, with an appropriate step

length. Finally, the number of equal length intervals that p ∈ [0, 1] will be divided

into must be specified. In the examples presented in this chapter, a grid of θ values

with step length 0.01, and values of p divided into intervals of 0.05 was considered

appropriate. Examples of these quantities are respectively

thetagrid <- seq(-0.1, 0.3, 0.01)

np <- 20.

The function setup calculates various vectors and matrices according to the pre-

defined quantities as described above.

setup <- function(y1, var1){

assign("n", length(y1), where = 1)

temp <- order(y1/sqrt(var1))

tee <- (y1/sqrt(var1))[temp]

assign("tee", tee, where = 1)

assign("var", var1[temp], where = 1)

assign("y", y1[temp], where = 1)

temp <- outer(thetagrid, sqrt(var1), "/")

temp <- outer(temp, tee, "-")

wmat <- array(pnorm(temp), c(length(thetagrid), n, n))

wmat[, , 1] <- 1

assign("wmat", wmat, where = 1)

assign("rlik", array(-10, c(np, length(thetagrid))), where = 1)

assign("rp", rlik + 10, where = 1)
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assign("rn", rlik + 10, where = 1)

assign("rd", array(0, c(np, length(thetagrid), n)), where = 1)}

The vector d is randomly generated each time, potentially by any method providing

they satisfy the necessary constraints. The function deegen is one such example.

deegen <- function(){

temp <- rexp(n + 1)

temp[1] <- temp[1] * 100

(temp/sum(temp))[1:n]}

The function update is the main function which is repeated many times.

update <- function(j){

dee <- deegen()

rlik1 <- rlik

rp1 <- rp

rd1 <- rd

rn1 <- rn

for(i in 1:length(thetagrid)) {

ay <- wmat[i, , ] %*% dee

pee <- n/sum(1/ay)

lik <- sum(log(cumsum(dee))) - sum(log(ay))

test1 <- ceiling(pee * np)

if(rlik1[test1, i] < lik) {

rlik1[test1, i] <- lik

rd1[test1, i, ] <- dee

rp1[test1, i] <- pee

rn1[test1, i] <- rn1[test1, i] + 1}}

assign("rlik", rlik1, where = 1)

assign("rp", rp1, where = 1)

assign("rd", rd1, where = 1)
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assign("rn", rn1, where = 1)}

Once there has been a sufficient number of iterations of update, the final function

lika is used to calculate the profile likelihood. A matrix is produced with the rows

corresponding to the intervals of p, and the columns corresponding to the grid of

values of θ.

lika <- function(){

wt <- sum(1/var)

thetahat <- sum(y/var)/wt

temp <- -0.5 * wt * (thetagrid - thetahat)^2

temp <- matrix(temp, ncol = length(thetagrid), nrow = np, byrow = T)

rlik + temp * (rlik != -10)}
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