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Abstract

We explore the chance to define an effective mass parameter to describe hole transport in inver-

sion layers in bulk MOSFETs and silicon-on-insulator devices. To do so, we employ an accurate

and computationally efficient self-consistent simulator based on the six-band k · p model. The va-

lence band structure is computed for different substrate orientations and silicon layer thicknesses,

and is then characterized through the calculation of different effective masses taking account of

the channel direction. The effective masses for quantization and density of states are extracted

from the computed energy levels and subband populations, respectively. For the transport mass,

a weighted averaging procedure is introduced and justified by comparing the results with hole

mobility from experiments and simulations.
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I. INTRODUCTION

The effective mass approximation (EMA) is a very powerful tool used to simulate and

model carrier transport in semiconductor devices. The corresponding equations of motion

for an electron in a periodic crystal are analogous to those of an electron in vacuum, only

with a different mass. The parabolic form of the kinetic energy gives rise to simple analytic

expressions for different quantities such as, for example, the density of states. Moreover,

the usual Schrödinger equation is obtained when quantization is taken into account. All

this allows the development of relatively fast and accurate simulation tools for silicon based

electronic devices, since the approximation of the Si conduction band by parabolic valleys is

reasonably good, at least for near-equilibrium properties. When non-parabolicity effects are

important they can usually be treated as small corrections to the parabolic approximation

obtained in a perturbative way1,2. Only for particular device orientations3, or when high

energy transport is studied, are more accurate approximations needed for the conduction

band structure. In these cases, full-band approaches have been used4–6.

By contrast, in the case of hole transport, the strong non-parabolicity and anisotropy of

silicon valence band makes the EMA a very crude approximation. More realistic descriptions

must be employed in order to obtain accurate results: some examples are the k ·p model7 or

the empiric non-local pseudopotential method8. These approaches can accurately reproduce

the valence band structure, in the full Brillouin zone or in a region of interest, using only

a few parameters. The price to pay for improved accuracy is a higher computational cost

and a more complex analytical form, which do not allow a simple interpretation of the

results with an intuitive concept as a particle mass. Nonetheless, experimental results are

often modeled or interpreted in terms of an effective mass, even in the case of holes. An

intermediate approach, valid for holes in inversion layers, was developed in9 where results

obtained from a k · p model were fitted by using a semi-analytical approximation: subband

levels were obtained using fitted quantization masses and the non-parabolic in-plane behavior

was fitted along three different directions.

In bulk silicon, the effective mass can be computed for a given direction through the

second derivative of energy around the Γ point, as set out in Table I for the three types

of holes: heavy, light, and split-off. Though this mass depends on the direction and is

strictly valid only in a very small region around k = 0, it is usually employed for the
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interpretation of experimental results10,11. However, as expected, other experimental data

cannot be explained using such effective masses, since their validity is restricted to the

neighborhood of the Γ point12.

When carriers are confined in a two-dimensional inversion layer, as in a metal-oxide-

semiconductor field effect transistor (MOSFET), different effective masses must be defined

to model different properties. For electrons, this is due to the fact that the effective mass for

the conduction band valleys are not isotropic; the longitudinal massml and a transverse mass

mt define an effective mass tensor, whose iso-energy surfaces are ellipsoids. As a consequence,

the quantization and in-plane masses of each valley depend on the relative orientation of the

given valley with respect to the confinement direction. Given an arbitrary crystallographic

orientation, the effective mass tensor in the device reference frame is computed, from which

a quantization effective mass and the in-plane masses (transport and density of states (DOS)

ones) can be obtained13. The quantization massmq is the one that appears in the Schrödinger

equation and determines the energy levels and the wavefunctions of electron subbands: a

large (small) mass implies low (high) energy levels and small (large) displacement of the

electron distribution from the silicon–oxide interface. The DOS effective mass mDOS
i is an

in-plane averaged mass: it is relevant, for example, in the computation of subband population

and scattering rates. The transport mass mα depend on the channel direction (e.g. α =〈100〉
or 〈110〉): a low effective mass means large acceleration as a consequence of a drift force.

For holes in inversion layers the picture is more complex and the analogous effective

masses cannot be computed because of the following issues:

i. First of all, the anisotropy of the valence band and the complex dependence of the

“effective mass” on the considered direction cannot be captured by an effective mass

tensor;

ii. Then, as already mentioned, the bulk “effective mass” is only valid near the Γ point,

while quantization imply a non-zero value of momentum k in the confinement direction;

iii. Finally, the situation is complicated by the mixing of the three hole types produced

by the interaction between the corresponding bands and the modifications induced by

quantum confinement.

For all these reasons, while certainly desirable, it is not possible to follow a procedure

analogous to the one used for electrons to compute the quantization, DOS, and transport
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mass. We have developed an alternative procedure as follows: we simulate the properties

of holes in inversion layers and extract the relevant effective masses as those parameters

that allow us to model the obtained results. In particular, to compute numerically the

valence band structure, we employ a self-consistent simulator based on the 6-band k · p
method7. The self consistent simulator has been shown14 to be accurate while at the same

time computationally efficient.

The bulk effective masses of heavy, light, and split-off holes in silicon obtained with the

6 band k · p model (with parameters from Ref15) are reported in table I: we will discuss

how the masses we obtain for holes in inversion layers compare to these bulk values. We

will consider both bulk MOSFETs and Silicon-On-Insulator (SOI) devices to analyze the

effect of confinement imposed by an electric field or by the geometry (the two barriers at

the Si/SiO2 interfaces), for the usual (100) surface orientation, but also for (110) and (111)

orientations. In Section II we extract the quantization mass by comparing the energy levels

obtained numerically for bulk MOSFETs and SOI devices with the analytical expression

for triangular and square wells, respectively. In Section III, the DOS mass is computed by

modeling the subband population. Then, we turn to the transport mass: we first define it

in terms of the resulting energy dispersion relationships for holes in a given subband; we

show that a proper averaging procedure is needed in order to define the transport mass;

we support such definition with experimental results and simulations and show that carrier

mobility is directly related to the proposed transport mass, and finally we summarize the

main conclusions.

II. QUANTIZATION EFFECTIVE MASS

The quantization mass, mq, is a parameter of the Schrödinger equation for electrons in a

conduction band valley. In the case of the k ·p model, a few material-dependent parameters

are needed, but none of them can be directly related to mq. To compute the quantization

mass we first need to solve the corresponding Schrödinger-like equation numerically and

then extract mq from the results, and, to do so, we need an analytical expression with which

to compare. In the case of bulk MOSFETs, the potential profile can be approximated by a

triangular well16, and the corresponding Schrödinger equation allows an analytical solution.
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Energy levels Ei are given by:

Ei = −ai
3

√

q2F 2h̄2

2mq
, (1)

where ai is the i-th zero of the Airy function, F is the confining electric field, and q is the

absolute value of the electron charge.17

The resulting energy levels are plotted in Figure 1(a), (b), and (c) for (100), (110), and

(111) surface orientations, respectively. Note that, in general, hole types can mix when

holes are confined, so that the identification can be non-trivial in some cases. Next, the

effective mass for the first subband of each of the three hole types are extracted by inverting

Equation (1) with i = 1. The resulting masses are shown in Figure 1(d), (e), and (f), where

the horizontal lines represent the bulk masses from Table I for the corresponding directions.

For (100) and (111) orientations, mq for heavy holes does not depend on the value of the

electric field F and it is compatible with the bulk values. On the other hand, the mass of

light holes and split-off holes varies with the electric field. The reason for such behavior

can be found in the different band mixing occurring at different confinement levels. In the

case of (100) orientation, the masses of light and split-off holes are similar so that a little

variation is observed; however, for (111) orientation, the difference of the corresponding bulk

masses is larger and the degree of mixing is higher, so that the variations of mq with electric

field are stronger; the bulk values are recovered only when the electric field tends to zero,

that is in the limit of no confinement. For (110) orientation the effective mass of heavy

holes also depends on the well shape, and tends to the bulk value only in the limit of weak

confinement; this is a consequence of the fact that for (110) orientation, the three hole types

mix strongly. Very large values (even higher than 1) of the heavy hole quantization mass

are obtained even for moderate electric fields. If we repeat the procedure for the second and

higher subbands of each hole band, we obtain similar but not identical results: the degree

of band mixing is different and the masses do not have the same values even if the behavior

is similar. However, the main conclusions are the same as before.

For fully-depleted SOI devices the simplest analytical model is the infinite square well;

the energy levels for the corresponding Schrödinger equation in the EMA are given by:

Ei = − h̄2

2mq

(

iπ

tSi

)2

, (2)

where tSi is the silicon layer thickness. If we consider the 6-band k · p model we obtain a

similar result with a few differences: the split-off levels are shifted by the spin-orbit energy
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and the quantization mass of each hole type is not a constant but it is a function of tSi/i
18.

It means that it can depend on both the Si layer thickness and the level index i, but it is a

unique function of their ratio. Next, we take into account the finite height of the potential

barrier at the Si/SiO2 interfaces by adding a small correction to the thickness. Indeed a

simple quantum mechanical calculation can show that the first-order correction for finite

barrier height is obtained by using a modified well width tSi + δ, with δ proportional to

(mq
h)

−1/2. Considering all this, we can write:

Ei,h = − h̄2

2mq
h

(

π

t′i

)2

−∆h, (3)

where mq
h is the effective mass of hole type h (heavy, light, or split-off), ∆h is zero for heavy

and light holes and equal to the spin-orbit splitting for split-off ones (44 meV for Si), and

t′i =
tSi + δ

i
. (4)

Then, we compute the energy levels at flat band, when the potential profile is a square

well and identify the type of each subband for different well widths. The results are shown

in Figure 2(a), (b), and (c) for (100), (110) and (111) device orientations, respectively. Next,

the quantization mass is extracted for each hole type as a function of t′i by comparing the

numerical results with equation (3). The results are shown in Figure 2(d), (e), and (f): we

can see that as the layer thickness increases the data corresponding to different subbands

and silicon thicknesses collapse to a single curve for each hole type. The outcome is quite

similar to the case of the triangular well, with increasing confinement by thinner SOI layers

having a qualitatively similar effect to increasing the electric field in the bulk MOSFET.

The heavy hole mass is smallest for (100) devices, slightly bigger for (111) devices and much

larger for the (110) ones, especially for very small t′i. For the thickest devices (i.e. weak

confinement), the effective masses reproduce the bulk values.

For both bulk MOSFETs and SOI devices the conclusions are very similar. For (100)

and (111) orientations the quantization mass of heavy holes essentially coincides with the

bulk mass in the 〈100〉 and 〈111〉, respectively. The mass of light holes and split-off holes

can depend on the transverse electric field or the Si layer thickness; in the (100) case the

variations are small because even the bulk masses values are similar to each other; in the

(111) case the variations are larger, but both values are quite smaller than the heavy hole

one and therefore the corresponding subbands have higher energy and, as a consequence, are
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less populated. Therefore, for both (100) and (111) orientations, the bulk effective masses

could provide a good approximation. On the other hand, in the case of (110) orientation,

the bulk mass is recovered only for very weak confinement also for the heavy holes and

quite large values of mq are obtained for moderate confinement. In this case we expect large

deviations if the bulk mass is used for models or simulations, and even a fitted value would

be suitable only in a limited range of transverse electric field values and SOI layer thickness.

III. EFFECTIVE MASS FOR THE DENSITY OF STATES

For electrons in two-dimensional parabolic subbands, the density of states gi(E) is inde-

pendent of energy

gi(E) =
mDOS

i

πh̄2 , (5)

and the occupation of a single valley reads (see for example16):

Ni =
KBT

πh̄2 mDOS
i ln

(

1 + exp

(

EF − Ei

KBT

))

, (6)

wheremDOS
i is the DOS effective mass, KB is the Boltzmann constant and EF is the energy of

the Fermi level in the semiconductor. For ellipsoidal valleys mDOS
i can be directly computed

from the in-plane masses mx and my along the ellipse axes as mDOS
i =

√
mxmy. In the

case of hole subbands we can compute the density of states numerically from the dispersion

relationships Ei(k) obtained by the self-consistent k ·p calculation. As an example, Figure 3

shows the energy dispersion E1(k) for the fundamental subband computed for MOSFETs

with the three considered surface orientations: (100), (110), and (111). The DOS obtained

from the numerical Ei(k) is not a constant: by directly inverting Equation (5) we would

obtain an energy-dependent mass, which would not be so useful. Instead, we can compute

mDOS
i by inverting the hole equivalent of equation (6) to obtain:

mDOS
i = πh̄2Pi

[

KBT ln

(

1 + exp

(

Ei − EF

KBT

))]−1

, (7)

where we include the contribution of both spin states in the subband population Pi.

Figure 4(a) shows the results relative to a bulk MOSFETs as a function of inversion charge

density Pinv, while Figure 4(b) shows mDOS
1 for double gate (DG) SOI devices as a function

of tSi. In both cases only the first subband is shown: we can observe the differences between

the different substrate orientations and the variations produced by the modification of the

7



valence band structure under the different confining potential wells. In all cases the largest

mass is obtained for (100) substrate orientation, with a value almost equal to that of the free

electron mass. For (111) orientation mDOS
1 is smaller, and even smaller for (110) oriented

devices. We have to highlight that the DOS mass implies an average in the transport plane,

and it is not related to a single direction: in principle it cannot be related to the masses

of Table I and, indeed, the computed values cannot be deduced from the bulk ones. When

we consider the next subband the picture is even more complex: subband corresponding to

the same hole type have different masses because of band mixing and the interaction (and

crossings19) between different subbands at k 6= 0. For this reason and the fact that also

for the fundamental subband non-trivial variations are observed, we conclude that a single

value of a DOS mass cannot be provided, so that the effective mass approach cannot give

accurate results for the calculation of subband population.

IV. EFFECTIVE TRANSPORT MASS

A. Orientation dependence of low-field mobility of p-channel MOSFETs

The “mass” of heavy holes is larger than that of light holes; as a consequence, confinement

in MOS devices lifts their degeneracy (see Figures 1 and 2), so that the lowest energy (and

most populated) subband always correspond to heavy holes. Therefore, heavy holes give the

largest contribution to carrier properties, and in particular transport properties, especially

at high inversion densities. Then, considering the bulk heavy hole masses for transport in

the 〈100〉 and 〈110〉 directions, m = 0.27m0 andm = 0.54m0, respectively (see Table I), one

can expect an important mobility difference between devices with 〈100〉 and 〈110〉 channel
directions.

To test this experimentally, p-type MOSFETs were fabricated at KTH on 100 mm di-

ameter silicon wafers with (100) and (110) oriented surfaces. On each wafer, MOSFETs

were fabricated with channel directions along 〈100〉, 〈110〉, and a range of angles between

these. Phosphorus implants formed the N-wells for the substrates, with an implant doses of

1× 1013 cm−2 at 300 keV. Dry thermal oxidation for 35 minutes at 700◦C was then used to

grow the SiO2 gate dielectric, on which N+ polysilicon was deposited to form the gate itself

with a projected thickness of 150 nm. Source and drain regions were formed by implant-
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ing with 1 × 1015 cm−2 of boron at 4.5 keV. A 950◦C rapid thermal anneal for 30 seconds

followed to activate the dopants. Connections to the gate, source, drain and substrate and

their contact pads were formed by NiSi formation followed by sputtering TiW and then

Al. Gate oxide thicknesses of 3.9 nm and 6.3 nm were electrically measured for the (100)

and (110) p-MOSFETs, respectively, from the gate-channel capacitance in strong inversion.

A substrate doping concentration of ∼ 8 × 1016 cm−3 was measured from the gate-body

capacitance in depletion.

In Figure 5 we show the effective mobility measured on long channel n+/SiO2 gated

p-MOSFETs for (100) and (110) substrate orientations with 〈100〉 and 〈110〉 channel di-

rections. The effective mobility, calculated from measurements of drain current and gate-

channel capacitance, is plotted as a function of inversion charge density. The inversion

charge density was calculated from the gate-channel capacitance using a measurement fre-

quency of 500 kHz. The frequency was sufficiently high that the influence of interface traps

on the measurement was negligible. It was also sufficiently low to prevent distortion of the

capacitance profile at low inversion charge densities caused by the high channel resistance

attributed to the long channel length. In the measurement of the drain current, a drain bias

of −10 mV was used. This was low enough that the error caused by the finite drain bias

could be neglected in extracting the mobility. Despite these precautions, there may still be

some error in the inversion charge density values calculated in the low density regime, with

corresponding uncertainty in mobility values in this region.

From the results shown in Figure 5, we conclude that for (100) devices hole mobility does

not depend on channel direction; it is almost the same for the 〈100〉 and 〈110〉 channels.

By contrast, the hole mobility on the (110) substrate does depend on channel direction;

however, the mobility along the 〈100〉 direction is lower than that found for the 〈110〉 channel
orientation. This is the opposite to what one might expect given the masses of Table I,

although it is consistent with results obtained by others12. Therefore, we can conclude that

the bulk effective masses of Table I are not useful in order to understand the transport

properties of differently oriented devices, and that confinement direction must also be taken

into account for the computation of the transport mass.
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B. Definition of the transport mass

For the transport mass, the most natural adaptation of the effective mass definition

to the case of two-dimensional subbands is obtained by substituting the direction in the

three-dimensional momentum space with the subband index (for quantum confinement)

and the direction in the two-dimensional parallel momentum space. Thus, given the energy

dispersion Ei(k) of subband i, the effective transport mass mi
α can be defined as:

1

mi
α

=
1

h̄2

∂2Ei(k)

∂k2
α

, (8)

where kα is the momentum component in the transport direction α. If the dispersion were

parabolic, mi
α would be a constant for each subband i and direction α; however, this is not

the case for the subbands computed employing the k ·p method, whose energy dispersion is

strongly anisotropic and non-parabolic. One could take the value at k = 0 as a representative

value18,20. However mi
α(k) can present strong variations as a function of k and, moreover,

the functional dependence on k can depend on the confining potential (silicon layer thickness

in SOI devices and applied bias). As an example, Figure 6 shows m1
〈110〉 along the 〈110〉

direction for (110) oriented SOI devices with different silicon thicknesses. There are strong

variations in the effective mass, which get larger for the thicker devices: the behavior strongly

depends on tSi, while the value at k = 0 only presents a weak dependence. This means that

the different behavior one expects due to the differences in the energy dispersion is not

captured by the value of m1
〈110〉 at k = 0.

When we consider the wave-vector k in the whole two-dimensional transport plane the

picture is even more complex, as shown in Figure 7. Figures 7(a) and (b) show the inverse

effective mass computed as in Equation (8) for a SOI device (tSi = 2 nm) with (100) orienta-

tion and 〈100〉 and 〈110〉 transport direction, respectively. The values near the Γ point are

similar in the two cases, while in the rest of the k-plane the behavior is completely different

and the variations of effective mass even in a relatively small region are important. Fig-

ures 7(c) and (d) show the same quantity for a (110) substrate and the same 〈100〉 and 〈110〉
directions: again, the variations are very strong and the behavior is completely different.

Finally, Figures 7(e) and (f) correspond to devices with the same (110) orientation and 〈110〉
channel as in (d) but with tSi = 3 nm and tSi = 5 nm, respectively. The value near the Γ

point is similar in the three cases, while the behavior in the rest of the k-plane is different, as

was the case for the one-dimensional dependence shown in Figure 6. Therefore, to take into
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account the contribution of all the occupied region of momentum space at equilibrium, we

define an average effective transport mass M i
α, where the weight is given by the occupation

probability. We obtain21:

1

M i
α

=

〈

1

mi
α

〉

=

∫

f (Ei(k))

mi
α

dk

/

∫

f (Ei(k)) dk, (9)

where f(E) is the Fermi-Dirac distribution function.

An important observation is that M i
α does not depend on the direction α in the transport

plane when substrate orientation is (100) or (111). For example, for (100) devices, M i
[010]

and M i
[001] coincide for symmetry reasons. Then we have

1

M i
α

=
1

h̄2

〈

∂2Ei(k)

∂k2
α

〉

i

=
1

h̄2

〈

∂2Ei(k)

∂k2
[010]

〉

i

cos2 α +
1

h̄2

〈

∂2Ei(k)

∂k2
[001]

〉

i

sin2 α +
1

h̄2

〈

∂2Ei(k)

∂k[010]∂k[001]

〉

i

cosα sinα

=
1

M i
[010]

cos2 α +
1

M i
[001]

sin2 α

=
1

M i
〈100〉

,

(10)

where the average of the mixed derivative vanishes for symmetry reasons and the last line

follows from the fact that M i
[010] = M i

[001] = M i
〈100〉. An analogous proof is possible in

the case of (111) surface orientation. This fact can explain the very small dependence on

channel orientation observed for the mobility on (100) substrates shown previously. Taking

into account the observed difference between mi
〈100〉 and mi

〈110〉 as functions of k, as shown

in Figures 7(a) and (b), we can conclude that averaging is crucial in order to obtain the

in-plane isotropic behavior of M i
α.

We stress that the proposed averaging procedure is different from the one proposed in

Ref.12 to explain similar experimental results. In that case, the authors calculated the

effective mass (Equation (8)) at k = 0 for all directions α and then averaged over α, justifying

such average by the fact that in near equilibrium (long channel devices) all two-dimensional

momentum space must contribute to the “sampled” effective mass. On the contrary, we

calculate the directional derivative as a function of k for a given α and average these values

in the whole two-dimensional k plane (weighted by hole population). The reason is that
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the wave-vector k can take every direction in the transport plane, but α is fixed because it

represents the channel direction, i.e. the direction of the drift electric field: the (second)

derivative along a given direction α represents the effect that an electric field in such direction

has on the motion of a carrier with given wave-vector k.

In Figure 8, we show M1
〈100〉 and M1

〈110〉 computed according to equation (9), for p-channel

MOSFETs with (100) and (110) substrate orientations, as a function of inversion carrier

density. Comparing these results with the measured effective mobility of Figure 5, we

can see that the average effective mass is useful in order to interpret the experimental

results. Firstly, we note that in the high inversion charge density region, where practical

devices operate, the mass is significantly lower for (110) orientated substrates than for (100)

orientation. This can directly explain the enhanced mobility observed on (110), which has

previously been attributed to reduced scattering arising from a greater subband splitting

between light and heavy holes. Secondly, for (100) substrate orientation, the transport mass

does not depend on channel direction, as expected from symmetry arguments. Thirdly, for

(110) orientation, the transport mass is lower for both channel directions: in particular,

M1
〈110〉 is lower than M1

〈100〉 (except at very low inversion charge density) and this fact agrees

with the higher mobility observed for the 〈110〉 channel. Moreover, the masses for the two

directions get closer to each other at small values of inversion charge, where the mobility

values also converge. This analysis is not fully comprehensive, because it only takes into

account the first subband of heavy holes, but shows that the average transport mass defined

in equation (9) is useful for the interpretation of transport properties near equilibrium.

C. Simulation study of hole mobility of ultra-thin SOI devices

Now, we turn to ultra-thin SOI devices and consider the dependence of hole mobility on

orientation and Si film thickness, and its relation to the transport effective mass. To do so,

we simulate different symmetric DG SOI structures with silicon layer thicknesses, tSi, ranging

from 1 to 15 nm; the channel is considered essentially undoped (ND = 1 × 1014 cm−3), the

thickness of both oxide layers is tox = 1 nm, and a midgap metal is used as a gate material.

We compute the hole mobility, µ, employing the Kubo-Greenwood formula22, employing the

subband dispersion and wavefunctions obtained with the 6 band k ·p model, as in Ref.14. We

take into account phonon (optical and acoustic) and surface roughness (SR) as scattering
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mechanisms23.

The dependence of hole mobility on tSi is shown in Figure 9, for different values of inversion

carrier density Pinv. We only represent one curve for (100) and (111) surface orientations,

because in these cases µ shows a very small dependence (up to 1–2%) on channel orientation,

whereas a large mobility difference is observed between different channel orientations for

(110) devices. It is clear that for very thin channels µ is always strongly reduced; however,

it is important to emphasize that there are large quantitative differences between curves

corresponding to different surface and channel orientations. The most important observation

is that hole mobility is severely degraded for (100) devices below 6 nm, while this happens

at smaller values of tSi for (110) and (111) devices. Therefore, the mobility enhancement of

alternative orientations not only persists for ultra-thin devices; on the contrary, it increases

and can be quite large, especially at small values of Pinv. To study the origin of such

enhancement we separate the mobility of the first two subbands, as shown in Figure 10. The

important mobility decrease can be attributed to the increase of both phonon and surface

roughness (SR) scattering at small Si thickness. One difference that Figure 10 highlights at

small tSi is an enhanced mobility in the second subband for (111) orientation compared to

(100), which may go someway to explaining the shape of Figure 9. This is less pronounced

for (110). However, the different behavior corresponding to different surface orientations

cannot be fully explained by differences in the scattering rates21.

Figure 11 shows m1
α computed at k = 0 and M1

α as functions of tSi; while the former has

a weak dependence on tSi for all orientations, the latter shows a strong decrease at small tSi

for (110) surface orientation, especially for the 〈110〉 direction. This fact compensates, to a

certain extent, the large increase of scattering rates (both from phonons and SR) occurring

at very small thicknesses, giving rise to the mobility behavior shown in Figures 9 and 10.

Such a decrease of M1
α is not caused by a corresponding decrease in m1

α(0) but, as we can

see in Figures 7(d), (e), and (f) by a flattening of the surface of m1
α(k). Figure 11 also shows

that M i
α for (110) substrate orientation is lower than (100) or (111) orientations and that,

in this case, it depends on the transport direction: in particular the effective mass for the

〈110〉 channel is much lower (and consequently the mobility is larger) than for the 〈100〉
channel.

To conclude this section, we can say that the mobility advantage of (110) over (100)

substrates, observed for bulk MOSFETs and thick SOI ones, gets larger for very thin SOI

13



structures. The behavior of the transport mass, defined with the proper averaging procedure,

is very useful in interpretting this result.

V. CONCLUSIONS

We have explored the chance to define an effective mass for hole transport for both bulk

and ultra-thin SOI inversion layers, and we have also provided a procedure to evaluate such a

parameter, when it is possible. We have shown how to compute the quantization mass, DOS

mass and transport mass for holes in bulk and SOI MOSFETs; in particular, the transport

mass can be related to transport properties only if proper averaging is taken into account.

The “bulk” hole mass can be used as the quantization mass only for heavy holes in devices

with (100) and (111) orientations. In the cases of DOS and transport mass there is no direct

relationship with the “bulk” ones, and those must be computed from the numerical band

structure. The results can be used to explain why hole transport is most favorable for a

〈110〉 directed channel on a (110) orientated substrate.
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