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Abstract. Interaction of impulsively generated MHD waves with a one-dimensional plasma inhomogeneity, transverse to the
magnetic field, is considered in the three-dimensional regime. Because of the transverse inhomogeneity, MHD fluctuations,
even if they do not include initially any density perturbation, evolve toward states where the compressible components tend to
become predominant. The propagating MHD pulse asymptotically reaches a quasi-steady state with the final levels of density
perturbation weakly depending on the degree of non-planeness of the pulse in the homogeneous transverse direction and some-
what stronger depending on plasma . Our study demonstrates the necessity of incorporation of compressible and 3D effects in
theory of Alfvén wave phase mixing. However, as far as the dynamics of weakly non-plane Alfvén waves is concerned it can
still be qualitatively understood in terms of the previous 2.5D models.
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1. Introduction

Problems of heating of the open corona of the Sun and acceler-
ation of the solar wind are closely related with the interaction
of MHD waves with plasma inhomogeneities and, in partic-
ular, with coupling of compressible and incompressible com-
ponents of the waves. Investigation of coupling mechanisms
between the waves is of prime importance because, on one
hand, the Alfvén waves are usual candidates of energy transport
from the lower layers of the solar atmosphere to the corona,
and, on the other, compressible perturbations are subject to
much more efficient dissipation than the incompressible Alfvén
waves (see, e.g., Narain & Ulmschneider 1996). Also, the com-
pressive waves, as opposed to the Alfvén waves, can transport
energy across the magnetic field, due to the fact that their prop-
agation in space is not constrained by the field lines.

The original idea of the phase mixing of incompressible
Alfvén waves (Heyvaerts & Priest 1983) was based on the fol-
lowing argument: when plasma has a density gradient perpen-
dicular to the magnetic field, local Alfvén speed is a function of
the transverse coordinate. Thus, when an Alfvén wave propa-
gates along the field its perturbations on the adjacent field lines
become out of phase. This stretching of Alfvén wave front
creates progressively smaller spatial scales across the field.
In turn, because the dissipation is proportional to the wave
number squared, phase mixing leads to enhanced dissipation
of the Alfvén wave directly. In the compressible plasma, as
demonstrated by Malara et al. (1996), Nakariakov et al. (1997),
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Nakariakov et al. (1998), Botha et al. (2000), Tsiklauri et al.
(2001), Tsiklauri et al. (2002), phase mixing of linearly po-
larized plane Alfvén waves leads to the enhanced nonlinear
generation of fast magnetoacoustic waves. However, it was es-
tablished, in 2.5D geometry, for the harmonic Alfvén wave by
Botha et al. (2000), and for a wide spectrum Alfvén pulse by
Tsiklauri et al. (2001) that compressive perturbations, which
are initially absent from the system, do not grow to a substan-
tial fraction of the initial Alfvén wave due the destructive wave
interference effect.

In this work we consider fully three dimensional geome-
try and study interaction of linear (with the non-linear effects
totally ignored) MHD waves with a one-dimensional inhomo-
geneity of the plasma, taking into account compressibility of
the plasma and the localization of the MHD pulse in the di-
rection perpendicular to both the magnetic field and the in-
homogeneity gradient. In particular, we shall study how the
phenomenon of phase mixing is affected by these factors. A
similar problem was studied by De Groof & Goossens (2000)
in the context of resonant absorption of MHD waves in coro-
nal loops as a heating mechanism. However, our treatment is
more general as we perform a direct numerical 3D simula-
tion without resorting to Fourier transform in time and y di-
rection (and, consequently, our study can easily be generalized
to the case of 2D and 3D structuring) allowing us to consider
an initial value problem. Besides, De Groof & Goossens (2000)
used a harmonic form of the initial perturbation as opposed to
our spatially localized, Gaussian, one. Recently, Hood et al.
(2002) showed that the wide spectrum regime of phase mixing
can be quite different from the harmonic one, as in fact, phase
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mixing of localized Alfvén pulses results in a slower, algebraic,
damping as opposed to the standard exponential damping of
harmonic Alfvén waves, which suggest that localized Alfvénic
perturbations will transport energy higher into the corona than
harmonic ones. Such Alfvénic perturbations could be gener-
ated e.g. by transient events such as solar flares, coronal mass
ejections, etc. While most of the phase-mixing studies concen-
trated on harmonic perturbations (e.g. Heyvaerts & Priest 1983;
Hood et al. 1997; Hood et al. 1997; Nakariakov et al. 1998;
Ruderman et al. 1998; DeMoortel et al. 1999; DeMoortel et al.
2000; Grappin et al. 2000; Botha et al. 2000), only few consid-
ered spatially localized ones (Nakariakov et al. 1997; Tsiklauri
et al. 2001; Tsiklauri et al. 2002; Hood et al. 2002).

An additional motivation to this study is connected with
the growing interest to the problem of interaction of MHD
waves with 2D and 3D plasma structures and irregularities,
as the coronal and wind plasmas are observed to be struc-
tured in all three dimensions. 2D and 3D structuring can dra-
matically affect properties of MHD waves. In particular, as it
was shown in the incompressible regime by Similon & Sudan
(1989) and confirmed in numerical experiments performed by
Petkaki et al. (1998) and Malara et al. (2000), the structur-
ing dramatically increases the efficiency of wave dissipation.
However, in those studies, the compressible effects were not
taken into account. From this point of view, our investigation
of the interaction of a 3D MHD pulse with a 1D plasma in-
homogeneity in the compressible regime provides a necessary
building element of the general theory of MHD wave interac-
tion with plasma inhomogeneities.

The present model is based upon the MHD description of
plasma and we focus on the problems that are of relevance
to the heating of solar corona, acceleration and the dynam-
ics of solar wind. While, similar studies exist that deal with,
for instance, terrestrial auroral applications. Namely, an al-
ternative to MHD, more relevant, particle-in-cell simulations
(using a guiding center implicit code for the electrons) have
been performed (Génot et al. 1999; Génot et al. 2000; Génot
et al. 2001), which study the propagation and collisionless dis-
sipation (via effective electron beam generation) of the Alfvén
waves in the auroral density inhomogeneities (cavities).

In this work we study the propagation part of the prob-
lem, i.e. we consider an ideal plasma limit. The work is in
progress to include finite plasma resistivity in order to inves-
tigate quantitatively the dependence of the decay of Alfvénic
part of the MHD pulse upon the coupling to the existing com-
pressive waves.

The paper is organized as follows: in Sect. 2 we formulate
our model. In Sect. 3 we present the results of numerical sim-
ulation, while we close in Sect. 4 with the discussion of main
results.

2. The model

In our model we use equations ideal MHD

1
pﬁ_V +po(V-V)V=-Vp-— 4—B X curl B,
v/

ot M

6_B = curl(V x B),

£y )
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%+V'Vp+ypV'V=O, 3)

where B is the magnetic field, V is plasma velocity, p is plasma
mass density, and p is plasma thermal pressure. In what follows
we use 5/3 for the value of y.

We solve Egs. (1)—(3) in Cartesian coordinates (x,y, 2).
Note that as we solve a fully 3D problem we retain variation
in the y-direction, i.e. (3/dy # 0). The equilibrium state is
taken to be an inhomogeneous plasma of density po(x) and a
uniform magnetic field By in the z-direction. We consider a
plasma configuration similar to the one investigated in Malara
etal. (1996), Nakariakov et al. (1997), Nakariakov et al. (1998),
Botha et al. (2000), Tsiklauri et al. (2001), i.e. the plasma has
a one-dimensional inhomogeneity in the equilibrium density
po(x) and temperature T((x). The unperturbed thermal pres-
sure, po, is taken to be constant everywhere.

Next, we do usual linearization of the Egs. (1)—(3) and write
them in component form as following

po(x)% +Z—Z +%(%—B;— 66—Bzy)=0, ©)
Po(x)% + Z—IZ) =0, (6)
% - oaa—‘;y =0, @)
% + Bo(%‘;’“ + (Z—‘;y) =0, 9)
Z—l;+ypo(é;‘;x +aa—‘;y + 6@—‘?):0. (10)

It is useful to re-write Egs. (4)—(10) in a form of three coupled
wave equations as following

0% = (20 + A () &2, — AL Vi (11)
~[(E) + &) 8|V, ~ [z | ve =0,

0% = (20 + () 92, — AWZ] V, (12)
~[(2@ + A@) 82| Vi~ [Ewa] v. = o,

|07 - 0| V. = [ 20| Ve - [2ay ] v, =0, (3)

where ca(x) = Bo/ \/4mpo(x) and cs(x) = /ypo/po(x) denote

local Alfvén and sound speeds respectively.

We solve Egs. (4)—(10) numerically after re-writing them
in a dimensionless form using following normalization:
Bx,y,z = BOBx,y,Zs (X, y,2) = a«(X,4,2), ca(x) = Bo/ v471',00(x) =
Bo/ \Amp./ V3 =2 tanh(dx) = ¢}/ V3 -2 tanh(dx), t =
(a:/COE, Viyy = i Viye Note, that ¢(x) = +/yB/2ca(x),
where 3 stands for the ratio of thermal and magnetic pressures
B = po/ (BS/ 8m). Here, A is a free parameter which controls the
steepness of the density profile gradient. In our simulations we
use 4 = 0.5. In what follows we omit bars on top of the physical
quantities.
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Fig. 1. Contour plots of V, and p’/p,(x) (relative density perturbation) through three cross-sections at the same time snapshots. Here, 8 = 0.5,
a, =06, o, =1.0.

3. Numerical results

In order to solve Egs. (4)-(10) numerically we have written a
new numerical code dr4dx10, which uses a high order finite
difference scheme. Namely, it evaluates 10th order centered
spatial derivatives, and advances solution in time using 4th or-
der Runge-Kutta algorithm. Therefore, dt4dx10 is O[(At/T)*]

accurate in time and O[(max(Ax, Ay, Az)/L)'°] accurate in

space, with 7" and L denoting run time and linear size of the
simulation domain. The use of such a high-order numerical ap-
proach was motivated by the very nature of the problem consid-
ered, as development of phase mixing leads to the generation
of very steep profiles in the wave front.
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Fig.2. A snapshot of relative perturbation of plasma density by an
MHD pulse interacting with a one-dimensional inhomogeneity at
t = 15 through x = 0 cross-section. Here, g = 0.5, ,, = 0.6, o, = 1.0.
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Fig. 3. The same as in Fig. 2, but through z = 0 cross-section.

Fig. 4. The same as in Fig. 2, but through y = 0 cross-section.

The simulation cube size is set by the limits —25.0 <
x < 25.0, -25.0 < y £ 25.0 and -25.0 < z < 25.0. Boundary
conditions used in all our simulations are zero-gradient in all
three spatial dimensions.

We have performed calculation on various resolutions in
attempt to achieve convergence of the results. The graphical
results presented here are for the spatial resolution 1283, which

D. Tsiklauri and V. M. Nakariakov: A 3D magnetohydrodynamic pulse in a transversely inhomogeneous medium

refers to number of grid points in x, y and z directions respec-
tively. We have also performed calculation on the spatial res-
olution 256° and we found that the results converge perfectly.
This is understandable due to the high order of the scheme even
for the 1283 resolution time-error, O[(At/T)*] = 7 x 1078, and
spatial-error, O[(max(Ax, Ay, Az)/L)'°] ~ 8 x 10722, Since a
256 resolution run takes about 8 hours on Compaq ES40 with
eight EV6 500-MHz processors, while a 128° resolution takes
only 1 h on Compaq ES40 with four EV6 500-MHz proces-
sors producing the same results, we opted for the latter, less
CPU-consuming, alternative.

In the numerical simulations the MHD perturbation is ini-
tially a plane (with respect to x-coordinate) pulse, which has a
Gaussian structure in y and z-coordinates
Vy(x,y, 2t = 0) = cax) exp ()’ - (@:2)°). (14)
Here, @, and a, are free parameters which control the strength
of gradients in y and z direction of the initial perturbation. As
the problem considered is linear, the wave amplitude can be
taken to be normalized to unity.

In the geometry considered, when the initial perturbation
depends on y it cannot be regarded as pure Alfvénic one. In
fact, in such a pulse, all three waves — Alfvén, fast and slow
magnetosonic waves — are inter-coupled so that there is no use
of their separation per se. The pulse is set to be initially plane
in the x-direction. This allows us to emphasize the effect of the
inhomogeneity on the pulse evolution. From the point of view
of applications, this simply means that the initial characteristic
size of the pulse in that direction is greater than the scale of the
inhomogeneity.

The particular choice of the initial condition Eq. (14) is mo-
tivated by the argument that when we set B, initially to zero
we automatically guarantee fulfillment of div B = 0 when
a, # 0, and as the system evolves it adjusts itself which mode
to excite (depending whether a, is zero or not). For instance,
if we choose our initial conditions as V,, given by Eq. (14),
By(x,y,z,t = 0) = exp (—(cyyy)2 - (azz)z), with @, = 0 and the
rest of physical quantities set to zero, we would excite a pure
Alfvénic pulse traveling in the negative direction along z-axis.
However, as long as @, # 0 we have to set B,(x,y,z,t=0)=0
in order to fulfill div B = 0. Besides, our choice of the localized
“kinematic” (the velocity is initially perturbed only, while the
magnetic field is constant) perturbation Eq. (14) is well moti-
vated by the fact that such perturbations can arise, e.g., during
coronal mass ejections, solar flares, or other violent events (see,
e.g., Roussev et al. 2001), etc.

In Fig. 1 we present time evolution of the transverse com-
ponent of the plasma velocity, V, and the density perturbation
0’ /po(x). The choice of these physical quantities is motivated
by the following reasoning: the transverse velocity component
V, is subject to Alfvén wave phase mixing and the density per-
turbation demonstrates the effect of the plasma compressibil-
ity. The left column of Fig. 1 shows three snapshots of V, and
two snapshots (o’/po(x)) through the y = O cross-section, the
middle column shows three snapshots of V, and two snapshots
(0’ /po(x)) through the x = 0 cross-section, and the right col-
umn shows three snapshots of V,, and two snapshots (o’ /po(x))
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through the z = 0 cross-section. The snapshots of V, and
0’ /po(x) at times ¢ = 7.5 and 15 are placed such that it is easier
to spot the differences. The snapshot of p’/po(x) at ¢ = 0 is not
present in the figure as it is identically zero and it is generated

later by the y-gradients in the function V. This compressible
perturbation is a significant component of the pulse. What we
gather from this graph is as following:

— y = 0 cross-section: the initial MHD pulse, which is plane
with respect to x-coordinate, is split in two D’ Alambert’s
solutions, with half of the amplitudes, traveling in two op-
posite directions along the magnetic field. Because the un-
perturbed density is inhomogeneous across the magnetic
field (in the x-direction) the local Alfvén speed depends
upon x. Thus, the Alfvénic pulse is phase-mixed and its
initially plane front is continuously distorted creating trans-
verse gradients. Note, that the right wing of the pulse is
asymmetric to the left one, this is due to the fact that its
amplitude drops from 1.0 in the x > 0 domain to 1/ V5
in the x < 0. The generated density perturbation evolves
in the similar manner, however there is a notable differ-
ence — as plasma 8 = 0.5 in this case, we observe that the
density perturbation travels at a slower speed (slow magne-
tosonic wave speed) than the Alfvénic one. If we look at the
right wing of V,(x,0,z) at t = 15, we see that it traveled to
z = 15, which is consistent with the Alfvén speed equals 1
(recall that for x > 0 ca(x) = 1). The density perturbation
as it travels along the field should have a velocity of a slow
magnetosonic wave, which for the field aligned propagation
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Fig. 7. All physical quantities perturbed by the MHD pulse as a function of time at a given point in the phase mixing region. Here, 8 = 0.5,
a, = 0.6, @, = 1.0. Left column: at the point (x = 0, y = -8, z = 0), mid column: at the point (x = 0, y = -8, z = 4), right column at the point
(x=0,y=-8,z=28).

coincides with the local speed of sound. For the parameters
considered cs(x) = /¥B/2ca(x) = 0.65¢ca(x). Therefore,
the right wing of the density perturbation at r = 15 should
have traveled to a position z ~ 9.7. That is what we actually
see from the bottom panel of the left column in Fig. 1;

x = 0 cross-section: the initial Alfvénic pulse which has
an asymmetry as @, # a, Gaussian bell shape is split in

two smaller amplitude bells traveling in two opposite
directions along the magnetic field plus some semi-
elliptic shaped wake expanding outwards in all direc-
tions. Note, that because the unperturbed density is ho-
mogeneous across the magnetic field in y-direction we
do not see any distortions on the wave front with re-
spect to the y = O line as we saw in the previous case.
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The generated density perturbation evolves in the simi-
lar manner, however a notable difference (can be better
seen from Fig. 2) is that the solution consists of posi-
tive and negative spikes plus semi-elliptic shaped wakes  —
that are symmetric with respect to p’/po(x) = O plane.

-8, z = 0), mid column: at the point (x = 16, y = —8, z = 4), right column at the point (x = 16, y = -8,

This can be understood readily as due to the conservation
of total mass, integral of density perturbation over the vol-

ume should, indeed, be zero;

z = 0 cross-section: the MHD pulse evolution, viewed
through this cross-section, is similar to the case of y = 0
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cross-section (see above). Again we see two phase-mixed
D’ Alambert’s solutions propagating in the opposite direc-
tions. The notable difference is that through z = 0 cross-
section the pulse looks wider as @, = 0.6 while a; = 1.0.
The generated density perturbation evolves in the similar
manner, as the Alfvénic one. However, in differ from y = 0
cross-section, we see no difference in traveling speeds. This
can be explained as following: the pulse was not excited
as a “pure Alfvén wave”. In fact, should the perturbation
V, be purely Alfvénic there would have been no propa-
gation along y axis at all (recall that the magnetic field is
directed along the z-axis). Thus, what we see through the
z = 0 cross-section both for V,, and p’/po(x) is the com-
pressive part of the perturbation traveling at the fast magne-
tosonic wave speed. For the parameters considered, the fast
magnetosonic wave speed is /1 + y8/2ca(x) = 1.2ca(x).
Therefore, the right wing of both V,, and density perturba-
tion at t = 15 should have traveled to a position y ~ 17.9.
That is what we actually observe from the two bottom pan-
els of the right column in Fig. 1.

Also, the figure shows the obvious anisotropy in the pulse prop-
agation, connected with the presence of two chosen directions:
the direction of the straight magnetic field and the direction of
the density gradient.

Perturbation of B, is initially absent from the system, but as
it is a potential component of the kinetic counterpart, V,, of the
wave, it is soon generated and further evolves similarly to V,, in
a form of two negative and positive phase-mixed pulses travel-
ing into two opposite directions. Also, the development of the
pulse is accompanied by generation of compressible compo-
nents. The structure of the density perturbations in the pulse at
the time ¢ = 15 is shown in Figs. 2, 3 and 4. Note, that in all the
figures, pre-factor € stands to underscore the fact that the linear
problem, which we study, does not depend on the initial ampli-
tude. Thus, we use A = 1, while we have to bear in mind that
linear approximation itself is valid for small amplitudes that is
why we use small, arbitrary pre-factor € in our notations.

A fairly good quantity describing the relation between dif-
ferent components of the pulse is the maximum of absolute
value over the whole simulation domain. We plot this quantity
for all physical variables in Fig. 5. In this figure, thick solid
lines correspond to the resolution 2563, while thin solid lines
to that of 1283, both for a, = 0.6. It is remarkable that on all
panels these two curves practically do overlap, which serves
as a proof of convergence of our simulation results. The last
figure in the bottom row presents the maximum of absolute
value over the whole simulation domain of div B, and we in-
deed observe almost perfect fulfillment of the fundamental law,
div B = 0, which comes as a bonus of high-order, centered, fi-
nite difference numerical scheme. As expected, Fig. 5 shows
that when «, = 0, the pulse is perfectly Alfvénic (perturbing
V, and B, only). This conclusion can be deducted either from
analyzing Eqs. (11)-(13) or resorting to a classic mechanical
analogy of coupled pendulums. In effect, Eqs. (11)—(13) also
describe three inter-coupled mathematical pendulums which
are located in xOz plane. Thus, as long as we do not perturb
these pendulums such that «,, # 0, they will always oscillate in

D. Tsiklauri and V. M. Nakariakov: A 3D magnetohydrodynamic pulse in a transversely inhomogeneous medium

the xOz plane. Thus, what we see in Fig. 5 when @, = 0 (dash-
dotted lines) is that initial kinematic Alfvén perturbation (V) is
split in half-amplitude D’ Alambert’s solutions (both for V,, and
B,) and no other physical quantity is generated. However, when
we switch on the coupling, @, # 0, compressible perturbations
are generated.

In order to investigate the effect of phase mixing on the
created quasi-steady MHD state, we produced time series of
all physical quantities in several points of the simulation 3D
box, Figs. 7 and 8. Namely, at the points (x = 0, y = -8,
z = 0, 4, 8), which are located in the phase mixing (spatial
inhomogeneity) domain, and at (x = 16,y = -8,z = 0, 4, 8),
which are far away from it. The three panels (from the left to the
right), in effect, trace the dynamics in the z-direction, i.e. along
the regular magnetic field lines. These types of data would be
obtained by, for example, three satellites which are located in
three different regions of solar wind.

There are two noteworthy features that can be gathered
from these plots: first, we see that in the phase mixing region,
V., which is associated with the fast magnetosonic component
of the pulse, attains about 40 times larger values than in the re-
gion that is far from the phase mixing region. That is a sensible
result, since it is known that phase mixing efficiently gener-
ates oblique fast magnetosonic waves. Second, the total mag-
netic field perturbation |B — By| is positively correlated with
the pressure (as well as density, which is proportional to the
gas pressure) perturbation, which indeed is what was expected
from the fast magnetosonic wave.

Also, Figs. 5-8 demonstrate that, interacting with the
plasma inhomogeneity, the longitudinally (parallel to the mag-
netic field) propagating part of the initial perturbation develops
to an almost non-evolving (without change in amplitude) prop-
agating state. In this quasi-steady MHD state all components
of the pulse tend to propagate without change in amplitude,
even though the effect of phase mixing is in action all the time
(x-component of the inverse characteristic spatial scale tends to
infinity).

In Fig. 6 we investigate the energetics of our numerical
simulation. In fact, we observe nearly perfect (+0.2% error)
conservation of total energy by dr4dxI0 numerical code. The
major conclusion which can be drawn from this graph is that
when @, = 0 there is no internal (compressive) energy gener-
ation, while with the increase of ¢, its final, asymptotic levels
increase progressively.

The parametric space of the problem is studied in Fig. 9
by plotting the final levels of relative density perturbation, ap-
proached by the MHD pulse, as a function of the initial local-
ization of the pulse in the y-direction a,, and plasma 5. We
gather from Fig. 9 that the achieved levels of density fluctua-
tions depend weakly on «,, while there is somewhat stronger
dependence on 3.

4. Conclusions

In this paper we present results of numerical modeling of inter-
action of an initially localized MHD pulse with a transverse in-
homogeneity of the plasma. The pulse is non-plane in all three
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Fig. 9. Top panel: the final levels of relative density perturbations as a
function of @, (for 8 = 0.5 and @, = 1.0). Bottom panel: the same but
as a function of B (for @, = 0.6 and @, = 1.0).

spatial directions and is subject to the effect of phase mixing.
An impulsively generated perturbation of the plasma velocity
develops to an anisotropically propagating pulse, which has a
significant compressible component. More specifically:

— The non-uniformness of the pulse in the homogeneous
transverse (or, in other words, in the third, perpendicular
to both the magnetic field and the inhomogeneity gradient)
direction (non-zero &) leads to appearance of compressive
perturbations in the pulse.

— In the presence of plasma inhomogeneity, a non-uniform
MHD pulse is essentially compressible. More specifically,
when the pulse is initially plane in the homogeneous trans-
verse direction, @, = 0, there is no internal (compressive)
energy generation, while with the increase of ¢, the levels
of the compressible energy increase progressively.

— A propagating MHD pulse asymptotically reaches a quasi-
steady state. The final levels of density perturbation, which
can be considered as a measure of the compressibility in
the pulse, depend weakly on «,, while there is somewhat
stronger dependence on S3.

— A smooth 1D transverse inhomogeneity of the plasma
supports propagation of compressible MHD pulses. This
mechanism of wave guiding is different from the well-
understood phenomenon of refraction of fast magnetosonic
waves, as the profile of the Alfvén speed in the inhomo-
geneity does not have a minimum.

— Weakly non-plane MHD waves are subject to phase mixing
and can qualitatively be considered in terms of the 2.5D
theory of Alfvén wave phase mixing. Consequently, the
2.5D theory of Alfvén wave phase mixing remains relevant
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to the 3D case too. However, quantitative theories of the
interaction of MHD waves with plasma inhomogeneities
should include the compressibility of the plasma as a nec-
essary ingredient.

Our main conclusion is that the effects of three-
dimensionality, compressibility and inhomogeneity should be
all together taken into account in the wave-based theories of
coronal heating and solar wind acceleration, and as well as in
the theories of MHD turbulence.
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