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Abstract. The results from numerical simulations carried out using a new shock-capturing, Lagrangian-remap, 3D
MHD code, Lare3d are presented. We study the evolution of the m = 1 kink mode instability in a photospherically
line-tied coronal loop that has no net axial current. During the non-linear evolution of the kink instability, large
current concentrations develop in the neighbourhood of the infinite length mode rational surface. We investigate
whether this strong current saturates at a finite value or whether scaling indicates current sheet formation. In
particular, we consider the effect of the shear, defined by rφ′/φ where φ = LBθ/rBz is the fieldline twist of the
loop, on the current concentration. We also include a non-uniform resistivity in the simulations and observe the
amount of free magnetic energy released by magnetic reconnection.
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1. Introduction

Solar flares are a clear manifestation of the dramatic con-
version of magnetic energy into heat and motion. Large
two-ribbon flares involve the complete destruction of a
magnetic structure and are frequently associated with
prominence eruptions and coronal mass ejections. Smaller
compact loop flares appear as a brightening in an indi-
vidual loop but the loop structure is not destroyed and
the energy released is substantially smaller. Both of these
types of flares occur extremely rapidly, on a timescale com-
parable to the coronal Alfvén timescale, and involve the
release of magnetic energy. This paper is concerned with
the non-linear magnetic instabilities which may be respon-
sible for compact loop flares.

The Alfvén timescale, τA, for a loop of length L = 5×
107 m, magnetic field strength of 100 Gauss and number
density 5×1014 m−3 is of the order of a few seconds. This is
comparable to the rise time at the start of a flare, suggest-
ing that the initial instability is due to an Alfvénic process.
An obvious candidate for generating such fast processes is
an an ideal MHD instability. However, the problem here
is that the magnetic topology is conserved in an ideal
MHD and the amount of magnetic energy that can be re-
leased as kinetic energy is quite small. Resistivity must be
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included so that field line topologies with lower magnetic
energy can be reached by reconnection, releasing kinetic
energy and, through ohmic dissipation, heat.

Magnetic reconnection can occur in several ways. For
example, it may occur through the non-linear develop-
ment of a resistive instability, such as the tearing mode.
However the timescale for this is of the order

√
τAτd, where

τA is the Alfvén timescale defined above and τd = L2/η
is the magnetic diffusion timescale. For typical coronal
conditions the tearing mode timescale is the order of a
day and, hence, is too slow to be responsible for a com-
pact loop flare. Alternatively, magnetic reconnection can
be driven and, indeed, may be driven at the Alfvén speed
making it a viable mechanism for magnetic energy release.
Reconnection only occurs when the gradients in the mag-
netic field are sufficiently large. The required magnitude
of these gradients depends on the Lundquist number, de-
fined as S = τd/τA, and must be larger if the value of the
Lundquist number is larger. In this paper we refer to the
Lundquist number, rather than the more commonly used
magnetic Reynolds number, because we use the Alfvén
speed as the reference speed rather than a typical flow
speed. The key problem, in this case, is to explain how
reconnection can be driven on an Alfvénic timescale. A
possible mechanism is the build-up of large gradients in
the current in a narrow region as a consequence of the
non-linear development of an ideal MHD instability. Thus,

Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20010678

http://www.edpsciences.org/
http://www.aanda.org
http://dx.doi.org/10.1051/0004-6361:20010678


1090 C. L. Gerrard et al.: Numerical simulations of kink instability in line-tied coronal Loops

reconnection can occur and the magnetic field can be car-
ried, by the instability, into the reconnection region on a
timescale related to the growth time of an ideal MHD in-
stability, namely the order of the Alfvénic timescale. For
further details of considerations about reconnection see
Priest & Forbes (2000) and references therein.

So magnetic reconnection may be driven by a build-up
of current due to an ideal MHD instability. The idea is
attractive but it does depend on the non-linear develop-
ment of the instability producing a region with large cur-
rent. If the instability saturates and the maximum current
reaches a finite value, then the Lundquist number must be
smaller than a particular, critical value for reconnection
to occur. The value of the coronal resistivity, and hence
the Lundquist number, is unknown making it difficult to
estimate this critical value. However, if the ideal MHD
instability produces a current sheet, an infinitely thin re-
gion of infinite current density in the strict mathematical
sense through which the magnetic field changes direction,
then, regardless of the value of the coronal resistivity, re-
connection will always occur and magnetic energy will be
converted into heat and motion. Hence, numerical simula-
tions based on a larger value of the resistivity will produce
qualitatively correct results. Thus, it is important to un-
derstand the conditions under which the non-linear stage
of an ideal MHD instability produces a current sheet.

At this point it may be useful to explain the difference
between a current sheet and a current concentration. A
current concentration is a large build up of current but
the current will saturate at some value whereas for a cur-
rent sheet the current is infinite and therefore there is
no saturation. Numerically a current sheet can be recog-
nised through the fact that the maximum value of the cur-
rent will increase with higher grid resolution. Therefore to
check for current sheet formation, we carry out simula-
tions on different grid resolutions and see how the max-
imum current scales. If it does not continually increase
with higher resolution, flattening off at some value then
we have saturation of the current and a current concen-
tration has formed rather than a current sheet.

There is compelling theoretical evidence that once the
electron fluid slow speed, ve, exceeds the phase velocity
of the ion-acoustic mode, cia, that ion-acoustic turbulence
would have a profound effect on current sheet develop-
ment. Indeed Bychenkov et al. (1988) have shown that
under a wide range of conditions the effective anomalous
resistivity is a function of E (or j) and adjusts to keep
ve ≤ cia. Thus an effective formula for anomalous resistiv-
ity would be,

η = η0MAX
(

0,
| ve |
cia
− 1
)
. (1)

In this paper we assume that | ve |∼ |j|ne and take,

η = η0MAX
(

0,
| j |
jcrit

− 1
)
, (2)

where jcrit = necia.

This theory would suggest that the largest current density
which would evolve in an unstable loop would have jmax ∼
necia. If we take,

j =
B0

µ0L
, (3)

then to reach this jcrit we would require a scale length
collapse to Lmin where,

Lmin =
B0

µ0necia
· (4)

For B0 = 100G, n = 5 × 1014 m−3 and cia = 1.35 ×
105 ms−1 this gives L = 765 m. Taking the loop radius
to be ∼1 Mm this gives a difference in scale lengths of
around 1300. Thus to fully resolve current densities up to
jcrit would require grids of around 50003. This estimate
is based on a uniform grid. Allowing for stretched grids
this can be reduced but only to around 30003. This is be-
cause the higher resolution is needed around the rational
surface but Lare3d uses a Cartesian grid so this amounts
to having a fine, but uniform, grid over the central region
and then stretching to larger spacing in the potential field
outer region. The central region must still be capable of
resolving the 1300 times difference in scale lengths and
the boundary must be remote from the central column.
This problem would be ideally suited to an adaptive mesh
approach but Lare3d is currently fixed grid. Here we are
limited to 2513 grids and so cannot reach the fully resolved
limit. Our measure of current concentration formation is
taken throughout to be jmax, the infinite norm supremum
current density. In the continuous limit this is itself unde-
fined. However, for the finite resolutions considered here,
this is just the maximum grid based current density and
is a sensible, and finite, measure.

As in previous work, the equilibrium coronal loop is
modelled as a cylindrical structure with axial, Bz, and
azimuthal, Bθ, magnetic field components that are just
functions of the radial co-ordinate. Linear stability the-
ory has shown that a current sheet is likely to form at a
mode rational surface if the loop is of infinite length. For
perturbations of the form

f(r, t) = f(r)ei(mθ+kz−ωt),

a mode rational surface is the radius, for given values of
the wavenumbers m and k, at which

k ·B =
m

r
Bθ + kBz = 0. (5)

However, coronal loops do not have an infinite length and
the ends of the magnetic fields, the footpoints, are lo-
cated in the dense solar photosphere. This means that
the coronal magnetic field lines are inertially line-tied to
the photosphere and the simplest way of simulating the
dense photosphere is to assume that all components of
the plasma velocity vanish at the footpoints. Discussions
of the relevant photospheric boundary conditions can be
found in Hood (1986); Velli et al. (1990); Van der Linden
et al. (1994).
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One immediate consequence of photospheric line-tying
is that mode rational surfaces do not exist mathematically
(Velli et al. 1990). However, the linear instabilities still ex-
hibit regions where the current gradient does indeed build-
up. The non-linear behaviour is not really known and it is
important to determine whether current sheet formation
is a natural consequence of an ideal MHD instability when
photospheric line-tying is included.

The three-dimensional evolution of the kink instability
in coronal loops has recently been investigated by vari-
ous authors. Some of these (Baty & Heyvaerts 1996; Baty
1997a,b; Baty et al. 1998) found that a non-singular cur-
rent concentration formed during the non-linear evolution
of the instability. In contrast, other authors (Bazdenkov
& Sato 1998; Lionello et al. 1998; Arber et al. 1999; Baty
2000a,b) have observed indications of current sheet forma-
tion rather than the formation of a non-singular current
concentration.

In this paper we again investigate the question of cur-
rent sheet formation. In particular we consider the sugges-
tion of Baty (2000a) that saturation of the current may
be difficult to observe for loops of large shear and that
this may explain the apparently contradictory results on
current sheet formation during the non-linear evolution
of the kink instability. We, therefore, consider two initial
equilibria one of which has shear of 6.32 whilst the second
is defined such that we can vary the shear. We present re-
sults for the second equilibrium with shear between 1.67
and 9.42. We carry out the numerical simulations using a
new 3D MHD code, Lare3d (Arber et al. 1999) which is
described in Sect. 2. The equilibria are defined in Sect. 3
and the results for the non-linear and resistive evolution
are presented in Sect. 4. Finally in Sect. 5 we discuss how
the shear affects the non-linear evolution. In particular, we
concentrate on whether we observe saturation of the cur-
rents or scaling indicative of current sheet formation and
present results for the resistive evolution of the instability.

2. Numerical details

The non-linear evolution of the loop is modelled by the
MHD equations,

∂ρ

∂t
= −∇.(ρv), (6)

∂

∂t
(ρv) = −∇.(ρvv) +

1
µ0

(∇×B)×B −∇P, (7)

∂B

∂t
= ∇× (v ×B)−∇×

(
η
∇×B
µ0

)
, (8)

∂

∂t
(ρε) = −∇.(ρεv)− P∇.v + ηj2, (9)

with specific energy density,

ε =
P

(γ − 1)ρ
· (10)

B is the magnetic field, j = (∇ × B)/µ0 is the current
density, v is the velocity, P is the thermal pressure, ε is
the specific energy density (γ = 5/3), ρ is the mass den-
sity, η is the resistivity, and µ0 = 4π × 10−7 is the mag-
netic permittivity. We ignore the effects of thermal con-
duction, radiation and heating, apart from ohmic heating.
Also since the scale height in the corona is relatively large
(approximately 100 Mm) compared to the height of the
loops (10−50 Mm) we neglect the effect of gravity.

The equations are made dimensionless by setting,
r −→ r∗r̃, B −→ B∗B̃, v −→ vAṽ,
P −→ P ∗P̃ , t −→ t∗ t̃, ρ −→ ρ∗ρ̃, η −→ η∗η̃,
where a tilde denotes a dimensionless variable. vA is
the Alfvén speed given by vA = B∗/

√
µρ∗, t∗ = r∗/vA is

the Alfvén transit time, P ∗ = B∗2/µ. Often the normali-
sation adopted in MHD studies is to take η∗ = µ0r

∗vA/S
so that for uniform resistivity we can write Eq. (8) as,

∂B

∂t
= ∇× (v ×B) +

1
S
∇2B, (11)

and then specify S. However, as already discussed we
do not use uniform resistivity and consequently we have
kept a normalised η explicitly in the equations by tak-
ing η∗ = µ0r

∗vA. This is then chosen to prevent | j |
from greatly exceeding jcrit, for reasons already discussed
earlier and in Arber et al. (1999). Thus we obtain the
dimensionless equations, removing the tildes from the
dimensionless quantities,

∂ρ

∂t
= ∇.(ρv), (12)

∂

∂t
(ρv) = −∇.(ρvv) + (∇×B)×B −∇P, (13)

∂B

∂t
= ∇× (v ×B)−∇× (η∇×B), (14)

∂

∂t
(ρε) = −∇.(ρεv)− P∇.v + ηj2. (15)

We consider both the ideal evolution (η = 0) and the
resistive evolution of the instability. The choice of the form
for the resistivity follows Arber et al. (1999). We take, in
dimensionless variables,

η = η0MAX
(

0,
| j |
jcrit

− 1
)
, (16)

such that the resistivity will be switched on only once the
current has exceeded some critical value.

The simulations are carried out using a 3D MHD,
Lagrangian remap, shock capturing code (Lare3d). The
Lagrangian step is fully 3D, uses the predictor-corrector
method and artificial viscosity. The remap step uses
Van Leer gradient limiters (Van Leer 1997), applied to
the density, specific energy density, velocities and mag-
netic fluxes, to ensure that it is monotonicity preserv-
ing. Furthermore, Lare3d uses Evans and Hawley con-
strained transport (Evans & Hawley 1988) to guarantee
that if ∇.B is initially zero it is maintained at zero to



1092 C. L. Gerrard et al.: Numerical simulations of kink instability in line-tied coronal Loops

machine precision throughout the evolution. The numer-
ical grid is staggered so that the density, pressure and
specific energy density are defined at the cell centres; the
velocities at the vertices; the magnetic field components
at the cell faces and the current components along the
edges of the numerical cell. |j |= (j2

x + j2
y + j2

z )
1
2 and the

resistivity are defined at the same vertices as the veloci-
ties. The staggered grid reduces the amount of averaging
required in some of the calculations, thus reducing the as-
sociated error, and removes chequerboard biasing. Further
details of the code are given in Arber et al. (2001). This
code has many similarities with the ZEUS code (Stone &
Norman 1992a,b). The major difference is that by using
a second order Lagrangian step to treat all of the physics
there is no need to adopt MOC techniques to upwind in
the Alfvén waves. Indeed, there is no upwinding at all
as the Lagrangian step does not include advection terms.
The remap step is the only stage in which Van Leer lim-
iters are needed and this is purely geometrical, i.e. up-
winding is not an issue. The velocity components are also
defined on cell vertices, not face centred as in ZEUS, to
reduce checkerboard biasing.

As in previous simulations, the coronal loop is mod-
elled as an initially straight cylinder. This can be justi-
fied as coronal loops generally have aspect ratios (ratio of
length to width) of order 10 and it also allows for com-
parison with previous work. The loop has length Lz with
line-tying boundary conditions imposed at z = −Lz/2 and
z = Lz/2. The code is written in Cartesian co-ordinates
with the numerical box stretching from −Lx/2 to Lx/2
and −Ly/2 to Ly/2. While not the appropriate geometry
for the linear instabilities the use of Cartesian geometry
does remove the problems associated with the singular na-
ture of the axis at r = 0. Cylindrical co-ordinates would
be preferable for the equilibrium but the m = 1 instability
corresponds to a lateral displacement of the axis and thus
the 1/r dependence would be a problem. Also, we had no
prior reason to think that the fully non-linear developed
stage would preserve any cylindrical symmetry. The use of
Cartesian co-ordinates does have limitations but has been
shown to reproduce the cylindrically symmetric eigenval-
ues (Arber et al. 1999) and to accurately find m = 0 and
m = 1 growth rates. The values of Lx and Ly are chosen
such that the boundary conditions imposed in the x and
y directions have no effect on the evolution of the loop,
which remains localised within a smaller region.

We solve the linear equations to establish the critical
lengths for the equilibria and the form of the eigenmodes.
Solving the Hain-Lust equations (Goedbloed 1983), gives
the maximum growth rate and the corresponding value of
the axial wavenumber, k. From the linearised MHD equa-
tions for line-tied loops of finite length, we find the growth
rates for finite lengths of the loop, the length for marginal
stability and the form of the eigenfunctions. From these
results we can choose the length of the loop, Lz, such that
it is unstable and we can use an initial velocity perturba-
tion based on the eigenmodes to speed up the development
of the instability.

Fig. 1. The twist and shear of Equilibrium 1.

3. Equilibria

In this paper we consider two equilibria. The first has a
shear of 6.32 at the mode rational surface, where the shear
is defined as

shear =
rΦ′

Φ
, (17)

the twist is defined by,

Φ =
LzBθ
rBz

· (18)

The second equilibrium was chosen so that we could vary
the shear and thus investigate the effect of shear on the
formation of current sheets.

3.1. Equilibrium 1

Equilibrium 1, is defined by specifying Bθ,

Bθ =

{
r(1− r2)2 r < 1.0,

0.0 r ≥ 1.0.
(19)

This gives Bθ = 0.0 at r = 1.0 and jz = 0.0 at r = 1.0
– there is no net axial current in the loop. The axial field
component is obtained from,

B2
z = B2

0 −B2
θ −

∫ r

0

2
B2
θ

u
du (20)

as,

Bz =


√
B2

0− 1
5−r2(1−r2)4+1

5 (1−r2)5 r < 1.0,√
B2

0 − 1
5 r ≥ 1.0.

(21)

B2
z must remain positive hence we choose B0 = 0.5, and

run the equilibrium for a uniform density of 1.0. We con-
sider four forms for the pressure: pressure, P = 0 (β = 0)
and pressure given by a plasma β of 10−2, 10−3 and 10−4.
This initial equilibrium configuration gives the twist and
shear profiles shown in Fig. 1.
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Since the equilibrium current is confined within a ra-
dius of 1 we take Lx = Ly = 5 and we stretch the grid
in the x and y directions such that 50% of the points lie
within r = 1.1. The results for the linear evolution provide
the critical length of the loop and the form of a suitable
velocity perturbation to start the non-linear simulations.
Thus, Lz = 3π since the critical half-length of the loop
is approximately 2.2. This gives a length of loop which
exceeds the critical length guaranteeing that the loop is
unstable to the m = 1 kink mode and taking this larger
value for the length speeds up the evolution of the insta-
bility.

3.2. Equilibrium 2

The second equilibrium configuration (Equilibrium 2) is
chosen so that the value of the shear may be chosen as
either small (<6) or large (>6). This equilibrium is defined
by specifying the twist,

Φ =


Φ0 r < a,

Φ0
2

(
1 + cosπ

(
r−a
b−a

))
a < r < b,

0.0 r > b,

(22)

where a, b and Φ0 are variables. The magnetic field com-
ponents can then be calculated from,

logBz = −1
2

log(1 + r2Φ2)−
∫ r

0

rΦ2

1 + r2Φ2
dr, (23)

and,

Bθ = rΦBz . (24)

The integral in Eq. (23) is evaluated numerically. As
above, the density is assumed uniform and the plasma
pressure is taken as zero. The values of a, b, and Φ0 are
varied to adjust the value of the shear at the mode ra-
tional surface (whose position also varies with a, b and
Φ0). Figure 2 shows the twist and shear profiles for the
configuration with Φ0 = 1.0, a = 0.5 and b = 2.0.
Unlike Equilibrium 1, the twist is a monotonically de-
creasing function of radius. For this equilibrium we take
Lx = Ly = 5.0 and Lz = 10π and stretch the grid as for
Equilibrium 1. Again we use an initial velocity perturba-
tion based on the linear mode to speed up the development
of the instability.

4. Results

4.1. Equilibrium 1

4.1.1. Non-linear evolution

The non-linear evolution of the instability for
Equilibrium 1 is followed using two non-linear MHD
codes. The first is Lare3d. The second is an ideal MHD
Lagrangian code described in Arber et al. (1999).

We run Lare3d for 40 Alfvén times using Equilibrium 1
as the initial equilibrium on an 813, a 1213, a 1613 and a

Fig. 2. The twist and shear profiles for Equilibrium 2 with
Φ0 = 1.0, a = 0.5 and b = 2.0.

2513 grid. This allows us to investigate the scaling of the
current with higher resolution. For the β = 0 case we find
a growth rate of 0.11 whilst for the β = 10−2 case we find
a reduced growth rate of 0.09. The β = 10−2 case evolves
more slowly and hence has smaller currents but otherwise
there seems to be no major difference between the two
cases. For the β = 0 case we find that the current starts
to build up after 5 Alfvén times at r = 0.70 and is shifted
outwards to r = 0.75 as shown in Fig. 3. This shows that
if we have current sheet formation then it occurs near the
mode rational surface (r = 0.69) as would be expected.
During the non-linear evolution of the kink instability the
whole loop is moved by the instability and since the loca-
tion of the mode rational surface is shifted the position of
the current is also shifted.

Fig. 3. Current build-up – plot of | j | showing background
current and a spike of current at r = 0.75.

We also find that the growth rate of the instability,
γ = 0.11, is in good agreement with the value predicted
by the linear results (γ2 = 0.01). As time increases the
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Table 1. Scaling of the maximum of the current with higher
resolution.

grid scalings

nx, ny, nz 813 1213 1613 2513

jmax(β = 0.0) 8 11 15 29

Expected scaling 7.3 11 14.6 22.8

jmax(β = 1× 10−4) 8.5 10 14 23

Expected scaling 6.7 10 13.3 20.7

jmax(β = 1× 10−3) 8 10 13.5 24

Expected scaling 6.7 10 13.3 20.7

jmax(β = 1× 10−2) 5.5 7.5 8.1 12.5

Expected scaling 5.0 7.5 10.0 15.6

current build-up can be observed as a helical sheet
wrapped around the kinked equilibrium current as shown
in Fig. 4. Figure 5 shows a surface plot of the current at
z = 0 with the current build-up clearly much larger than
the equilibrium current profile.

We have compared these results to those (Longbottom
and Bennett, private communication) from the
Lagrangian code. We have run these Lagrangian
code simulations using Equilibrium 1 as the initial
equilibrium and using the same velocity perturbation as
for the simulations using Lare3d. For the β = 0 case we
find a maximum current of 50, 25 times the maximum
equilibrium current. As can be seen from Fig. 5 the
Lagrangian code simulations also show a large build up
of current.

Fig. 4. Isosurface of |j| from Lare3d.

For the simulations carried out using Lare3d, on the
813 grid the maximum value of the current is found to be
8.0 whilst on the 1613 grid the maximum of the current is
15.0 agreeing well with the expected scaling which would
give 161

81 × 8 = 15.9. Whereas for β = 10−2, jmax is 6.0
on the 813 grid and 7.5 on the 1213 grid. The scaling of
jmax with higher resolution is shown more clearly, for all

the values of β considered, in Table 1. We can see that the
current does scale with increased resolution for the β <
10−2 cases. We can therefore state that for Equilibrium 1
which has a shear of 6.32 we do not observe saturation of
the current for β < 10−2.

4.1.2. Resistive evolution

To investigate the effect of resistivity on the evolution of
the instability we carry out the simulations on a 1213 grid
for 60 Alfvén times for the β = 0 case and for 80 Alfvén
times for β = 0.01. The 1213 grid gives us reasonably high
resolution without taking too much computational time.
We do not run the simulation until the current drops back
below jcrit as has been done in other simulations (Baty
2000a). Instead the simulation is run until the total accu-
mulated ohmic heating levels off to an (almost) constant
value, i.e. resistive effects become negligible.

The resistivity has the form, given in Eq. (16) and
in this case we take jcrit = 4.0 since this is twice the
equilibrium current value and η0 = 10−4. This keeps the
anomalous resistivity, the resistivity which we have added
to the code to simulate the resistivity in the plasma, small
as would be expected in the solar corona but ensures that
it is larger than the numerical resistivity, inherent in the
numerical scheme.

With resistivity included in the code, and indeed lo-
calised at current concentrations, the code allows recon-
nection and diffusion of magnetic field lines. In reality this
would have occurred on a physically realistic timescale
provided the current concentration seen in the code is
sufficiently large, i.e. for the purposes of this paper the
numerical current concentration can be imagined to be a
current sheet.

For β = 0 the resistivity is switched on after approx-
imately t = 25 Alfvén times when the current exceeds
the critical value. The ohmic heating then increases until
t = 40 when it settles to an almost constant value. The
current has a maximum value of jmax = 8.0 at t = 40 and
then decreases, reaching a value of 6.0 at t = 60 when we
stop the simulation.

During the non-linear evolution of the instability the
central column of current is shifted outwards into the cur-
rent sheet region as shown in Fig. 6 at t = 30. It is in
this region that we would expect reconnection to occur.
The current drops between t = 40 and t = 55, when the
ohmic heating reaches a constant value, indicating that
reconnection is taking place. Figure 7 shows a selection
of magnetic fieldlines at t = 0 and the same fieldlines at
t = 50, identified by their location on the lower boundary.
It can be seen that the reconnection has resulted in the
fieldlines becoming untwisted.

We calculate the amount of free magnetic energy re-
leased by considering the energy in the Bθ component of
the magnetic field. We find that 41% of the free magnetic
energy is released.
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Fig. 5. Surface plots of current at z = 0 from Lare3d (left) and the Lagrangian code (right).

Fig. 6. Isosurface of |j| = 1.2 at t = 30 for the resistive
evolution.

As for the ideal non-linear evolution the β = 0.01
case evolves more slowly because of its lower growth rate.
For this case we run the simulations for 80 Alfvén times.
The central column of current is shifted outwards into the
current concentration region as in the previous case but at
a time of 40 Alfvén times. The current exceeds the critical
value at t = 35 Alfvén times and has a maximum of 8.0 at
t = 62. It then drops to a value of 5.6 at t = 74. The re-
connection releases 47% of the free magnetic energy. This
compares favourably with the results of Arber et al. (1999)
which suggested 54% and those of Baty (2000) which sug-
gested that 57% of the free magnetic energy was released.

Therefore, we find that during the resistive evolution
of the instability reconnection occurs for both β = 0 and
β = 10−2. The only effect of taking the plasma β to be
zero (a value which is clearly unphysical) is to speed up
the evolution of the instability and so reduce the compu-
tational time.

4.2. Equilibrium 2

4.2.1. Non-linear evolution

We run the code using Equilibrium 2 as the initial equilib-
rium for 45 Alfvén times on 813, 1213, and 1613 grids. We

choose different values for a, Φ0 and b thus varying the
shear of the configuration. The results are summarised in
Table 2 along with the scalings which we would expect
based on the 1213 grid results. The value of jmax is cal-
culated by finding the maximum of | j | and storing it
at each timestep. The maximum of these between t = 0
and t = 45, where the simulations are stopped, is then
taken to be jmax. We take this maximum value rather
then the value at t = 45 because once the current has
reached the maximum numerical resistivity can cause it
to diffuse away.

The shears quoted are calculated at the radius where
the numerical results show the current concentration form-
ing, namely at the mode rational surface. We consider
initial equilibria for which the shear varies between 1.67
and 9.42.

This allows us to investigate the relationship between
the shear of the loop and the formation of current sheets.
Our results show no saturation of the current for runs 1,
2, 3 and 5. In fact runs 1, 2, 3 and 5 show better than ex-
pected scaling of the current with higher resolution imply-
ing current sheet formation. For example, consider run 3
with a shear of 2.02 at the mode rational surface. The
maximum value of | j | is 9.8 on the 813 grid, 14.0 on
the 1213 grid and 19.0 on the 1613 grid. This compares
favourably with the expected values of 9.4, 14.0, and 18.6
respectively. However, runs 4, 6, and 7 have lower values
of jmax than was expected and, therefore, require further
investigation.

We have carried out higher resolution simulations on
some of these configurations. From the table it appears
that runs 1–4 show no sign of current saturation whereas
runs 5–7 may do so. Therefore, we take one example from
runs 1–4 and one from runs 5–7 and carry out the sim-
ulations on higher resolution. In these cases we run the
simulations on a 2513 grid stretched as before. For run 7
we found jmax to be 24.0. This value is exactly the same
as that for the 1613 grid suggesting that the current is
saturating and that we do not observe current sheet for-
mation. However, for run 2 the maximum current is 26.0.
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Fig. 7. A selection of fieldlines at t = 0 (left) and at t = 50 (right).

Table 2. Configurations investigated and their respective shear, growth rates and maximum values of the current.

run a Φ0 b shear γ jmax jmax jmax

(813) (1213) (1613)

run 1 0.5 1.0 2.0 1.67 0.07 2.3 3.2 4.5

expected scalings (based on 1213 results) 2.1 3.2 4.3

run 2 0.3 1.2 2.0 1.70 0.1 7.9 10.0 13.5

expected scalings (based on 1213 results) 6.7 10.0 13.3

run 3 0.0 1.5 2.0 2.02 0.11 9.8 14.0 19.0

expected scalings (based on 1213 results) 9.4 14.0 18.6

run 4 0.5 1.5 1.2 2.86 0.12 / 17.0 19

expected scalings (based on 1213 results) 11.4 17.0 22.6

run 5 0.5 1.5 1.0 3.20 0.09 15.0 17.0 23.0

expected scalings (based on 1213 results) 11.4 17.0 22.6

run 6 0.5 1.5 0.9 5.49 0.08 14.5 19.0 22.0

expected scalings (based on 1213 results) 12.7 19.0 25.2

run 7 0.5 1.5 0.7 9.42 0.09 14.0 22.0 24.0

expected scalings (based on 1213 results) 14.7 22.0 29.2

This is twice the value on the 1613 grid suggesting that
the current is not saturating.

For this set of equilibria the trend suggests that for
higher shear the current saturates. Lower values of shear
have the scaling indicative of current sheet formation.
However for lower shear jmax is lower so caution is re-
quired here as this may saturate at higher resolution.

4.2.2. Resistive evolution

We carry out the resistive simulations for run 2 and run 5
with β = 0.

The resistive simulations for run 5 are run until t = 60
on a 1213 grid. This gives reasonable grid size and would
be expected to allow enough time for the ohmic heating
to steady off to a constant value as for Equilibrium 1.
However, the ohmic heating continues to increase through-
out the simulation and in fact increases after t = 50.

The current exceeds the critical value at about t = 25,
switching on the resistivity. It then increases to a value
of 13.0 at t = 40 before decreasing to a value of 10.0 at
t = 50 and then increasing again to reach a value of 14.5
at t = 58. Only 33% of the free magnetic energy has been
released by t = 60 when the simulation is stopped.

We run the simulation of the resistive evolution of the
instability for run 2 on an 813 grid. This allows us to run
the simulation for longer, in this case for 100 Alfvén transit
times. The behaviour of the current and the ohmic heating
during the evolution is illustrated by Fig. 10. The resistiv-
ity is switched on at t = 30 when the current exceeds jcrit.
The ohmic heating then increases steadily until t = 60
where it planes off. It takes a constant value until t = 80
where it increases steeply and is still increasing at t = 100
where the simulation is ended. The current increases to a
value of 7.0 at t = 40 and then remains at that value until
t = 70 when it starts increasing again reaching a value of
15.0 at t = 100. In this case only 15% of the free magnetic
energy is released.



C. L. Gerrard et al.: Numerical simulations of kink instability in line-tied coronal Loops 1097

Fig. 8. The isosurface of the current for run 1 with the current
concentration seen as a thin thread wrapped around the central
current.

Fig. 9. The isosurface of the current for run 7 showing the
current concentration as a thicker helical ribbon.

We have no clear explanation of this behaviour at
present. This will be the subject of a separate investigation
which we defer until a later date.

5. Discussion and conclusions

Our aim in this paper has been to consider the question
of current sheet formation during the non-linear evolution
of the m = 1 kink instability. In particular, we have inves-
tigated the effect of shear on current sheet formation and
therefore on magnetic reconnection. To do this we have
carried out numerical simulations of the non-linear and
resistive evolution of the kink instability for two equilib-
ria. Equilibrium 1 has a shear of 6.32 and Equilibrium 2
allows us to vary the shear.

For Equilibrium 1 we find a scaling which is indicative
of current sheet formation during the non-linear evolu-
tion of the kink instability for β < 10−2. We have car-
ried out simulations on four different grid resolutions and
found that the current does scale with higher resolution
as would be expected for a current sheet. Furthermore the

Fig. 10. Plots of the current and ohmic heating during the
resistive evolution of the instability for run 2.

results from the Lagrangian code confirm this. There is no
sign of saturation of the current. During the resistive evo-
lution reconnection takes place releasing 41% of the free
magnetic energy in the β = 0 case and 47% in the more
physical β = 0.01 case. This is in good agreement with
previous results such as those of Arber et al. (1999) who
found that 54% of the free energy is released.

For Equilibrium 2 the evolution appears to be more
complicated. As can be seen from Table 2 runs 1, 2, 3,
and 5 seem to show scaling indicative of current sheet for-
mation whereas runs 4, 6 and 7 indicate saturation of the
current. During the resistive evolution the ohmic heating
steadies off but then increases again and is still increasing
when the simulations are stopped. Similarly the current in-
creases to a certain value, remains constant for some time
but then increases again as shown in Fig. 10. This con-
trasts with Equilibrium 1 where the ohmic heating stead-
ies off to a constant value and does not increase again
and the current peaks and then falls off. For Equilibrium
1 we find that 41% of the free magnetic energy is released
for the β = 0 case but for Equilibrium 2 only 33% of the
energy is released for run 5 and just 15% for run 2.

Given these results it is worth considering the differ-
ences between Equilibrium 2 and Equilibrium 1, for which
we did not observe current saturation and the differences
between those configurations of Equilibrium 2 which do
indicate current sheet formation and those for which the
current saturates. Since Equilibrium 1 has a shear of 6.32
and the shear for Equilibrium 2 varies between 1.76 to
9.42 the value of the shear of the loop is unlikely to affect
the formation of the current sheets. One obvious difference
between Equilibrium 1 and Equilibrium 2 is in the current
concentrations themselves. From Fig. 4 we can see that
the current concentration developed during the non-linear
evolution of the kink instability for Equilibrium 1 is an axi-
ally wide sheet wrapped around the kinked central column
of current. This is similar to the current sheets found by
Arber et al. (1999). In contrast the current concentrations
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observed for Equilibrium 2 are, as shown in Figs. 8 and 9,
axially thin and thread-like. Another difference is in the
twist profiles. The second equilibrium is defined in such
a way that the twist is constant for r < a and then de-
creases monotonically. However this means that for r < a
the field is, in fact, the Gold-Hoyle field which does not
have a mode rational surface and so does not form current
sheets (Baty 1997b). While Equilibrium 2 is not entirely a
constant twist field and does have a mode rational surface
it may be that the region of constant twist does affect the
formation of current sheets and therefore reconnection.

In conclusion,

– Our results show that Equilibrium 1 demonstrates the
same behaviour as the equilibrium discussed in Arber
et al. (1999) but it has smaller shear.

– The current does scale with higher resolution for
Equilibrium 1 for β < 10−2 indicating current sheet
formation.

– Once resistivity is included in the simulations recon-
nection occurs releasing nearly half of the free mag-
netic energy. This is sufficient energy to explain a com-
pact loop flare.

– The results from Equilibrium 2 suggest that current
sheet formation does not occur for all equilibria but
does not simply depend on the shear of the loop, as
was suggested by Baty (2000).

– The shape and magnitude of the current is dependent
on the internal structure of the loop in a more complex
manner than was previously suggested.

– If the current does not saturate for an equilibrium then
reconnection will release the amount of energy required
for a compact loop flare.

Acknowledgements. The authors would like to thank Aaron
Longbottom and Keith Bennett for providing the Lagrangian
code simulations and for many useful discussions. The authors
would like to thank Gordon Petrie for providing the fieldline

plotting routine and Gordon Petrie and Steve Brooks for their
assistance in using it. The authors would also like to thank the
anonymous referee for many useful comments. The simulations
were carried out on the UK MHD consortium compaq cluster
at the University of St Andrews funded by JREI/SHEFC.

References

Arber, T. D., Longbottom, A. W., Gerrard, C. L., & Milne,
A. M. 2001, J. Comput. Phys., submitted

Arber, T. D., Longbottom, A. W. & Van der Linden, R. A. M.
1999, ApJ, 517, 990

Baty, H. 1997a, A&A, 318, 621
Baty, H. 1997b, Solar Phys., 172, 249
Baty, H. 2000a, A&A, 353, 1074
Baty, H. 2000b, A&A, 360, 345
Baty, H., & Heyvaerts, J. 1996, A&A, 308, 935
Baty, H., Einaudi, G., Lionello, R., & Velli, M. 1998, A&A,

333, 313
Bazdenkov, S., & Sato, T. 1998, ApJ, 500, 966
Bychenkov, V. Yu., Silin, V. P., & Uryupin, S. A. 1988, Phys.

Rep., 164, 119
Caramana, E. J., Shashkov, M. J., & Whalen, P. P. 1998, J.

Comput. Phys., 144, 70
Evans, C. R., & Hawley, J. F. 1988, ApJ, 332, 659
Goedbloed, J. P. 1983, Rijnhuizen Rep., 83, 145
Gold, T., & Hoyle, F. 1960, MNRAS, 120, 89
Hood, A. W. 1986, Solar Phys., 105, 307
Lionello, R., Velli, M., Einaudi, G., & Mikic, Z. 1998, ApJ, 494,

840
Priest, E. R., & Forbes, T. 2000, Magnetic Reconnection: MHD

theory and applications, CUP
Stone, J. M., & Norman, M. L. 1992, ApJS, 80, 753
Stone, J. M., & Norman, M. L. 1992, ApJS, 80, 791
Van Der Linden, R. A. M., Hood, A. W., & Goedbloed, J. P.

1995, Solar Phys., 154, 69
Van Leer, B. 1997, J. Comput. Phys., 135, 229
Velli, M., Einaudi, G., & Hood, A. W. 1990, ApJ, 350, 419
Wilkins, M. L. 1980, J. Comput. Phys., 36, 281


