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Abstract

In this thesis we aim to show the existence of a stationary travelling wave of a gener-

alised stochastic KPP equation driven by a one dimensional Wiener process. Chapter 1

discusses the background of the deterministic KPP equation and some interesting prop-

erties when consider Stratonovich noise and convert to the Itô noise. Chapter 2 covers

preliminaries and background information that will be required throughout the entire

thesis. Chapter 3 defines stretching, an important concept throughout this thesis. We

show that for any two initial conditions, one more stretched than the other, stretching

is preserved with time. We also show that stretching defines a pre-order on our solution

space and that the solution started from the Heaviside initial condition converges. In

Chapter 4 we show that the limiting law lives on a suitable measurable subset of our

solution space. We conclude Chapter 4 by proving that the limiting law is invariant for

the process viewed from the wavefront and hence a stationary travelling wave. Chapter

5 discusses domains of attraction and an implicit wave speed formula is shown. Using

this framework we extend our previous results, which have concentrated upon Heaviside

initial conditions, to that of initial conditions that can be trapped between two Heavi-

side functions. We show that for these “trapped” initial conditions, the laws converge

(in a suitable sense) to the same law as that for the Heaviside initial condition (up to

translation). Chapter 6 discusses phase-plane analysis for our equation and we restate

the stretching concept within this framework.

v



Chapter 1

Background

1.1 Introduction

Wave front solutions to scalar reaction diffusion equations have been studied in the

context of mathematical biology for many years (for further details the interested reader

is referred to [19] and references therein for an excellent introduction into this topic).

Work in this area dates back to the papers of Kolmogorov et al [14] and Fisher [10] in

1937 on what is now known as the Kolmogorov-Petrovskii-Piscuinov (KPP) equation

∂u

∂t
= uxx + f(u) (1.1)

with f(u) = ku(1 − u). A wave front solution to this equation has the form u(t, x) =

U(x− ct) where c denotes the wave speed and the function U : R → [0, 1] is smooth and

satisfies,

Uzz − cUz + f(U) = 0;

U(−∞) = 1, U(∞) = 0;

Uz(z) < 0.

Examples of scalar reaction diffusion models of wave phenomena include:
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• Insect and animal dispersal (See [12], [22]).

In these applications, u describes the density of a species in space and time and

the waves correspond to the spread of the species. These types of equation have

been primarily used for modelling and managing ecological invasions.

• Combustion equation (See [21], [34]).

In these applications u describes the temperature in space and time and the wave

corresponds to the spread of the heat through the domain. In this case f is of

a special form where there exists a constant σ ∈ (0, 1) such that f(u) = 0 for

u ∈ [0, σ] and f(u) > 0 for u ∈ (σ, 1). The constant σ is known as the ignition

temperature.

• Wound healing (See [26]).

Here u describes the cell density and the wave corresponds to the pattern of wound

healing.

• Propagation of Calcium ions (See [28]).

Here u describes the concentration of Ca2+ ions which are important intracellular

messengers. The waves correspond to intra- and intercellular movement of these

ions. It is thought that these waves serve to synchronise the actions of a cell or

group of cells.

Many coupled systems of reaction diffusion equations have been used to study wave front

phenomena in the dynamics of “multiple species”. In these systems, one or more of the

equations will include a diffusion term. Examples include:

• Waves of pursuit and evasion in predator-prey systems (See [5]).

In this instance two coupled equations are generally used, one describing the preda-

tors and one the prey, both of which will include a diffusion term, although the

rates of diffusion will generally be different. The waves correspond to pursuit of

prey by predators and evasion of predators by prey.

• The spatial spread of epidemics. Here compartmental models are used which have

at least two compartments: susceptible and infected. Some examples of epidemics
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that can be modelled by reaction diffusion systems are:

• Swine flu now taking the world by storm;

• Rabies epizootic spreading across Europe in the late 1990’s;

• The black death.

For more applications the interested reader is referred to [13].

Stochastic partial differential equations (SPDEs) are a key ingredient of mathemati-

cal modelling in fields like physics, chemistry, biology and engineering. Many problems,

like wave propagation in random media, turbulence, dispersion of flows in porous media,

evolution of biological populations, can be now understood using SPDEs. More recently

the range of applications has been extended to oceanography, image analysis and math-

ematical finance among others. The introduction of the noise term might arise from

allowing for the uncertainty in the coefficients in the equation or any other fluctuation

in a coupled quantity.

In this thesis we treat only the case of non-spatial noise where the random function

affects all values of u(t, x) equally, for example temperature fluctuations. We do not

cover noises which are inhomogeneous in space but feel that some of our results, for

example Corollary 31, would pass over unchanged to a white in time, spatially translation

invariant noise; Other results, for example Corollary 33, we feel would not.

1.2 Deterministic Review

Here we consider a simple model equation, that is a scalar reaction-diffusion equation of

one-space dimension x ∈ R for t ≥ 0

ut = uxx + f(u) (1.2)

with the condition

f(0) = f(1) = 0 (1.3)

so that solutions u(t, x) are sought with values in [0, 1].
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Definition 1. KPP type

We say f is of the KPP type if:

f ′(0) > 0, f ′(1) < 0, f(x) > 0 for x ∈ (0, 1).

Figure 1.1: A typical example where f is of KPP type.

Remark. In the case that f is of KPP type, there exists a family of travelling wave speeds

c ≥ ccritical = 2
√
f ′(0) and in [14], it was shown that starting from the Heaviside initial

condition (I[x≤0]), the limiting solution satisfies c = ccritical. Bramson [3] subsequently

extended this analysis to give necessary and sufficient criteria on the initial condition to

approach one of the travelling waves.
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Definition 2. Nagumo type

We say f is of the Nagumo type if:

f ′(0) < 0, f ′(1) < 0, there exists a ∈ (0, 1) so that f(a) = 0, f ′(a) > 0 and

f(x) ̸= 0 for all x ̸= 0, a, 1.

Figure 1.2: A typical example where f is of Nagumo type.

Remark. When f is of Nagumo type, there exists a unique travelling wave.

Definition 3. Unstable type

We say f is of Unstable type if −f is of Nagumo type, that is:

f ′(0) > 0, f ′(1) > 0, there exists a ∈ (0, 1) so that f(a) = 0, f ′(a) < 0 and

f(x) ̸= 0 for all x ̸= 0, a, 1.
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Figure 1.3: A typical example where f is of Unstable type.

Remark. When f is of Unstable type, solutions to (1.2) may evolve as two separate

waves, the first travelling to the left (that is the speed, c, is negative) and the second

travelling to the right (that is the speed, c, is positive) and a near flat-ish patch at level

a between them (See figure 1.4).

Figure 1.4: For f of Unstable type, solutions may evolve as two separate waves.
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1.3 Itô versus Stratonovich noise

A large amount of work to date has concentrated upon how the addition of multiplicative

or additive space-time white noise to the KPP equation (equation 1.2) affects the wave

dynamics. In this thesis we concentrate upon how a one-dimensional time dependent

Brownian motion affects the wave dynamics. This has the advantage over the space-time

white noise case given that our equation is not only differentiable in space but a large

number of the space-time white noise results hold true in our more simple setting. We

concentrate upon the equation

du = uxxdt+ f(u)dt+ g(u) ◦ dW (1.4)

in the Stratonovich form.

In the majority of modelling cases it is the Stratonovich noise rather than the Ito

noise that is used. The use of Stratonovich noise is more intuitive in these cases and

this has been largely supported by the work by Wong and Zakai ([33]) where the limit

to the noise approximation is the Stratonovich rather than the Itô noise. However, the

approximation we describe requires the modeller to already have a Brownian path and

then take discrete points to form part of the approximation. We will discuss this further

in Chapter 3.

Although our initial set up is via the Stratonvich noise due to our intuition from

biology and physics models, the primary step in the majority of our arguments will be to

convert from the Stratonovich noise to the Itô noise with the addition of the quadratic

variation term, that is for J(s, ·) ∈ L2,∫ t

0

J(s, u) ◦ dWs =

∫ t

0

J(s, u)dWs +
1

2
[J(·, u),W·]t

where [·, ·] is the quadratic covariation or brackets process (See [24] for further details).

This change allows us to benefit from some of the key properties of the Itô integral

(isometry principle, zero in expectation) but means we have to allow for the additional

term when we move from Stratonovich to Itô noise in our analysis. This means that

although we can rewrite the drift term to incorporate the correction term (f̄(u) = f(u)+
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1
2
g(u)g′(u)) when moving from Stratonovich noise, this thesis will give conditions on the

combined drift term (f̄(u)) rather than each individual component making up the revised

drift term (f(u) and g(u)g′(u)). As such, this thesis can be considered to be concerned

with the Itô form of the equation and although our hypotheses remain unchanged by

doing this, the additional 1
2
g(u)g′(u) term may have a significant impact on whether f̄(u)

is of KPP, Nagumo or Unstable type. Indeed, if f(u) is of KPP type then f̄(u) may be

of Unstable type and if f(u) is of Nagumo type, then f̄(u) may be of KPP type. We

explore some of these properties in the two following examples.

Example 1. f is of KPP type but f̄ is of Unstable type. Take f = ϵu(1− u) and

g = u(1 − u). Then whilst f is of KPP type, f̄ = u(1 − u)
(
ϵ+ 1

2
− u
)
is of Unstable

type when ϵ ∈ (0, 1
2
) but still of KPP type if ϵ > 1

2
.

Remark. Letting a(t) = inf{x : u(t, x) < 1} and b(t) = sup{x : u(t, x) > 0}, we define

the width of the solution to be b(t)− a(t). Given that solutions when f̄ is of KPP type

evolve as one wave but solutions when f̄ is of Unstable type may evolve as two separate

waves (possibly travelling in different directions), we may question whether the width of

the solution when f̄ is of KPP type is less volatile compared with when f̄ is of Unstable

type. This can be investigated in the above example as the behaviour of f̄ is determined

by the size of ϵ.

Example 2. f is of Nagumo type and f̄ is of KPP type. For fixed a ∈ (0, 1) take

f = ϵu(1−u)(u−a) and g = u(1−u). Then whilst f is of Nagumo type, if ϵ ∈
(

1
2(1−a) , 1

)
then f̄ = u(1− u)

(
1
2
−ϵa
1−ϵ − u

)
is of KPP type.

Remark. The above example makes us question, given the uniqueness of a travelling wave

in the Nagumo type but a whole family of travelling waves in the KPP type, whether

the uniqueness of the stationary travelling wave changes as ϵ passes above 1
2(1−a) .
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We suspect, however, that it is the Stratonovich drift that determines the existence

and uniqueness of the stationary travelling wave rather than the Itô drift. We do not

offer a proof of this within the thesis but this is something we hope to cover in a later

paper.

1.4 Thesis overview

In this thesis we show that when f̄ is of KPP, Nagumo or Unstable type, and solutions to

(1.4) start from the Heaviside initial condition, there exists a unique (up to translation)

stationary travelling wave. This is a new result and confirms our intuition that the

addition of noise in the KPP and Nagumuo type equations does not destroy the existence

of a stationary travelling wave. It also proves that the addition of noise in the Unstable

type stabilises the solution. This is intuitive given that the condition g(a) ̸= 0 means if

any large flat patch at the wave marker level a were to form, then this would be destroyed

by the noise. We do not conduct any computer simulations of these results but explore

equation (1.4) in a purely theoretical way and whilst a large number of our arguments

are soft, the results are extremely informative.

Chapters 3 and 4 concentrate on proving the existence of a stationary travelling wave.

To do this we extend a Feynman-Kac result shown by McKean ([18]) and Bramson ([3])

when concentrating upon the KPP equation, equation (1.2) to our setting where the

forcing term is allowed to also depend on t and x. This result states that if two wavefronts

start from positions where one crosses over the other, then this property is preserved with

time. To allow for the noise we prove an enhanced version of the Wong-Zakai Theorem

(a new result, see Chapter 3) to extend the deterministic result of McKean/Bramson

to our setting. Combining these two key components will yield the stretching corollary,

Corollary 33. The intuition behind this result comes from considering solutions as a

piece of elastic and the stretching result shows that for two solutions, one more stretched

(or flatter) than the other, then the stretching property is preserved over time. If we
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start from the Heaviside initial condition we can think of this as solutions become flatter

over time.

We will spend some time developing the concept of stretching and prove equivalent

definitions which will prove useful in later chapters. Chapter 3 continues exploring

stretching as a pre-order on our solution space. This enables us to use a result from

Strassen ([29]) and Lindvall ([17]) to show that for a countable chain of ordered laws there

exist random elements, all on the same probability space and each element corresponding

to one of the laws, such that the ordering is preserved.

Given that the law of our solutions starting from the Heaviside initial condition can

be ordered through the concept of stretching, we use this result to construct random

elements (termed realisations of our solution) such that this ordering is preserved, that

is the realisations become more stretched with time. We then centre the wavefront and

show that the centred realisations are increasing for x ≥ 0 and decreasing for x < 0. This

is then used to prove the key result of Chapter 3, the Stretching Theorem, Theorem 51,

showing that the law of our centred solutions starting from the Heaviside initial condition

converges.

This result does not preclude the possibility that the stationary travelling wave is a

large flat front at the height of the centring point. Much of Chapter 4 is spent proving

that this is, almost surely, not the case.

Chapter 5 extends the results of Chapters 3 and 4 for any initial condition which can

be trapped between two Heaviside functions but only when f̄ is of KPP type (given that

f̄(z) ≥ 0 for all z ∈ [0, 1]) but we will present an extension to this argument in a later

paper. The main results of this chapter rely upon an implicit wave speed formula and

the property, from Chapter 3, that solutions which start more stretched remain more

stretched with time. Intuitively, the flatter or more stretched the wavefront the faster it

becomes and we were able to show that for any initial condition which starts off trapped

(see Chapter 5), the limiting wave speed is the same as that for the wavefront as started

from the Heaviside initial condition. This is an immediate corollary of the Stretching

result. Having one wavefront more stretched than the other but both having the same

limiting wave speed allows us to conclude that the wavefront started from the trapped
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initial condition must have the same limiting law as that of the wavefront started from

the Heaviside initial condition.

Much of the early analysis on reaction-diffusion equations was conducted by consider-

ing the dynamics in the phase-plane. There were obvious benefits of this but the benefit

of doing this here, in this thesis, is that stretching becomes a more intuitive, easy to

verify concept where standard comparison results can be used. Unfortunately, we were

unable to progress this intuition to the depth we would have liked without making fur-

ther assumptions on the regularity at end points. We will discuss this further in Chapter

6 and develop the intuition behind it throughout the thesis.

1.5 Notation

Throughout the thesis we will use the following notation and write:

R to the set of real numbers, Q the set of rational numbers and N the set of natural

numbers (including 0). We will define Cα,β(A× R) where α, β ∈ N and A is an interval

in R to be the space of functions J (s, x) which are continuous and differentiable in

both variables s and x for all orders up to and including α and β respectively, that is

J (s, x) ∈ Cα,β(A×R) if J (s, ·) is Cα(A) for A ⊂ R and J (·, x) is Cβ(R) for x ∈ R. We

will also define the Lploc(R) metric by d(f, g) =
∑

n≥1 2
−n
(∫ n

−n |f(x)− g(x)|p dx
) 1

p
for

any two functions f and g in our state space. We will write a sequence {sn} converges

in L2, sn
L2

→ s if E
[
|sn − s|2

]
→ 0 as n→ ∞.
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Chapter 2

Preliminaries

Introduction. In this chapter we define what is meant by a solution to equation (1.4) as

well as the state space on which our solutions exist. We also discuss existence, uniqueness

and regularity of solutions and other properties that will be used throughout the thesis.

We will also cover the running assumptions on f and g although primarily, in later

chapters, conditions will be given on the adjusted drift f̄ . We will also introduce the

concept of the wave marker, intuitively the point at which the wave front first reaches a

specified height, and develop semi-martingale decompositions of this process.

2.1 Mild and classical solutions

In this thesis we will primarily concern ourselves with the following SPDE

du(t, x) = [uxx(t, x) + f(u(t, x))] dt+ g(u(t, x)) ◦ dWt (2.1)

where (Wt) is a one dimensional Brownian motion adapted to a filtered probability space

(Ω, (Ft), P ). Let f, g : [0, 1] → R be measurable functions and we consider solutions to

12



the formal equation (2.1) in the mild form in the sense of the following definition.

Definition 4. Mild solution Given a filtered space (Ω, (Ft),F ,P) and a (Ft) Brownian

motion W , a random field u : [0,∞) × R which is P × B measurable, where P are the

progressively measurable sets in (t, ω) and B are the Borel measurable sets in R, is called

a mild solution to the stochastic PDE

du(t, x) = [uxx(t, x) + f(u(t, x))] dt+ g(u(t, x)) ◦ dWt (2.2)

if, for each t and x P-almost surely,

u(t, x) =

∫
R
Γt(x− y)u(0, y)dy +

∫ t

0

∫
R
Γt−s(x− y)f(u(s, y)) dyds (2.3)

+

∫ t

0

∫
R
Γt−s(x− y)g(u(s, y))dy ◦ dWs

where Γt(x) is the Green’s kernel for ∂2

∂x2
on R.

Remark. Throughout the thesis we will suppress the dependence of u on ω ∈ Ω.

Remark. We could also define the Itô form of equation (2.3) by absorbing the correction

term 1
2
g(u)g′(u) into f and defining a new drift term f̄(u) = f(u) + 1

2
g(u)g′(u):

u(t, x) =

∫
R
Γt(x− y)u(0, y)dy +

∫ t

0

∫
R
Γt−s(x− y)f̄(u(s, y)) dyds

+

∫ t

0

∫
R
Γt−s(x− y)g(u(s, y))dydWs.

Definition 5. Classical Solution We will also consider solutions that are classical

(in the PDE sense), that is those solutions that have two continuous spatial derivatives.

Thus we define a classical solution on [t0,∞), for some t0 ≥ 0, with respect to an

adapted Brownian motion W on a filtered space (Ω, (Ft), P ), to be an adapted random
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field (u(t, x) : t ≥ t0, x ∈ R), with values in [0, 1] satisfying u(t, x) ∈ C0,2([t0,∞) × R)

and, for all x ∈ R and t ≥ t0,

u(t, x) = u(t0, x) +

∫ t

t0

uxx(s, x)ds+

∫ t

t0

f(u(s, x))ds+

∫ t

t0

g(u(s, x)) ◦ dWs. (2.4)

2.2 Running assumptions on the functions f and g

We will assume that the functions f, g : [0, 1] → R satisfy the following conditions

throughout the thesis:

(H1) f(0) = f(1) = g(0) = g(1) = 0 and f has at most one zero in (0, 1);

(H2) f, g ∈ C3([0, 1]).

Remark. These are certainly not the most general conditions possible but are chosen to

cover the cases we meet.

Remark. Although not discussed in this thesis, f having more than three zeros on [0, 1]

may give rise to a stack of travelling waves.

Figure 2.1: A stack of travelling waves.
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2.3 Bdec and B 0,1
dec

Introduction. In this section we will define the spaces on which solutions to our equation

exist as well as some key properties of these spaces. The main space we will concentrate

upon is B 1,0
dec although the bigger space Bdec will be used in showing convergence in Chapter

3.

Bdec = {h : R → [0, 1] : h is right continuous and decreasing}; (2.5)

B 1,0
dec = {h ∈ Bdec : h(−∞) = 1, h(∞) = 0}. (2.6)

Remark. Throughout this thesis we will use the term decreasing to mean, for x0 ≥ 0

f(x) ≥ f(x+ x0) for all x ∈ R.

Remark. We give Bdec the topology that arises from the L1
loc(R) metric and note that

B 1,0
dec is a measurable subset of Bdec.

Definition 6. A space E is called Polish if it metrizable to a separable, complete metric

space.

Definition 7. Let E be a measurable space. Define M(E) as the set of all finite measures

on E and the subset M1(E) as the set of all probability measures on E.

Lemma 8. Bdec and B 1,0
dec are Polish spaces.

Proof. The proof of this is straightforward and we only present a sketch of the proof

here and leave the details to the reader. For h ∈ Bdec define µh ∈ M(R) by µh((a, b]) =

h(a) − h(b). This defines a map from Bdec to M(R) and we note that µh(R) ≤ 1 but

if h ∈ B 1,0
dec then µh ∈ M1(R). We note the similarity with this definition and the
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definition of a distribution function, see [2]. However, although the map h 7→ µh is a

bijection on B 1,0
dec it is not a bijection on Bdec (consider two functions h, g ∈ Bdec such

that h(x) = g(x) + constant). Defining a relation ∼ on Bdec by h ∼ g if there exists a

constant C such that h(x) = g(x)+C it is easy to show ∼ defines an equivalence relation

on Bdec. Now the map from the quotient space Bdec

∼ to M(R) is a bijection. Furthermore,

both maps can be shown to be homeomorphisms. We can now use the Prohorov metric

(See [4]) on B 1,0
dec or the Lloc1 (R) on Bdec to conclude that the these metrics, respectively,

induce the weak topology on M1(R) and the vague topology on M(R). It is easy to

check that both spaces are separable and, relative to the above metrics, complete. �

Lemma 9. For φn, φ ∈ Bdec, the following types of convergence are equivalent:

(1) φn
a.e.−→ φ

(2) φn
L1
loc(R)−→ φ

Proof. (1) ⇒ (2):

This is easy by the Dominated Convergence Theorem.

(2) ⇒ (1):

Claim φn(x0) → φ(x0) for any continuity point x0 of φ (such a continuity point exists

from standard analysis given that that φ is bounded and decreasing and, hence, there

are only a finite number of discontinuities). If φn(x0) 9 φ(x0) then there exists a δ > 0

and a subsequence n′ such that |φn′(x0) − φ(x0)| ≥ δ for all n′. Now choose η so that

|φ(y) − φ(x0)| ≤ δ
10

for |y − x0| ≤ η. Then
∫ x0+η
x0−η |φn′(x) − φ(x)| dx 9 0 (using the

decreasing nature of paths) contradicting L1
loc(R) convergence. �
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Lemma 10. Bdec is compact

Proof. Take φn ∈ Bdec. Since φn(x) ∈ [0, 1] the sequence (φn(x)) is compact in R for

any x ∈ R. This shows there exists a subsequence n′ such that ψ(x) = limn′→∞ φn′(x)

exists for all x ∈ Q. Note x 7→ ψ(x) is decreasing. Let φ(x) = lim y↓x
y∈Q

ψ(y). We claim

that φn′ → φ in the L1
loc(R) metric. It is enough to check φn′(x0) → φ(x0) at x0, a

continuity point of φ by Lemma 9. Fix ϵ > 0. Choose δ so that |φ(x) − φ(x0)| ≤ ϵ

where |x − x0| ≤ δ. Now choose δ′ such that |ψ(x) − φ(x0)| ≤ 2ϵ when |x − x0| ≤ δ′,

x ∈ Q. Choose x1 ∈ (x0 − δ′, x0) ∩ Q, x2 ∈ (x0, x0 + δ′) ∩ Q and choose N so that

|φn′(x1)− φ(x0)| ≤ 3ϵ and |φn′(x2)− φ(x0)| ≤ 3ϵ for n′ > N . Then by decreasing paths

φn′(x0) ∈ [φn′(x2), φn′(x1)] so that |φn′(x0)− φ(x0)| ≤ 3ϵ if n′ ≥ N . �

Proposition 11. If the metric space (X, d) is compact then (M(X), ρ) where ρ is the

Prohorov metric is also compact.

Proof. See [6], page 101. �

Definition 12. For a metric space (X, d), a probability measure µ ∈ M1(X) is said to

be tight if for each ϵ > 0 there exists a compact set K ⊂ X such that µ(K) ≥ 1 − ϵ.

A family of probability measures M ⊂ M1(X) is tight if for each ϵ > 0 there exists a

compact set K ⊂ X such that infµ∈M µ(K) ≥ 1− ϵ.

Proposition 13. Tightness is a necessary and sufficient condition that for every se-

quence of probability measures {µnk
} there exists a further subsequence {µnk(j)} and a

probability measure µ such that µnk

D→ µ as j → ∞.

Proof. See [2], page 336. �
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Definition 14. For two real random variables A, B we write A
D
= B if A and B are

equal in distribution (law).

2.4 Existence, uniqueness and moment bounds of so-

lutions

The following theorem summarises the known existence, uniqueness and regularity results

for equation (2.1).

Theorem 15. Existence, uniqueness and properties of solution

Fix a probability space (Ωt, (Ft),F ,P) and an (Ft) Brownian motion W . Fix an B ×F0

measurable initial condition u0 : R×Ω → [0, 1]. Suppose that f and g satisfy hypotheses

(H1) and (H2). Then there exists C0,3 ((0,∞)× R) mild solutions to equation (2.1)

with values in [0, 1] satisfying:

(i) Solutions are pathwise unique and they are classical solutions on [t0,∞) for any

t0 > 0;

(ii) Two solutions as in part (i) started such that u0 ≤ v0 satisfy u(t, x) ≤ v(t, x) for

all t ≥ 0 and x ∈ R, almost surely;

(iii) If u0 ∈ Bdec (respectively B 1,0
dec) then u(t, ·) ∈ Bdec (B 1,0

dec) all t ≥ 0 almost surely;

(iv) If u0 is not identically zero, then u(t, x) > 0 for all t > 0 and x ∈ R, almost surely.

If x 7→ u0(x) is decreasing and not identically constant then ux(t, x) < 0 for all

t > 0 and x ∈ R, almost surely;
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(v) The laws of solutions form a Markov family;

(vi) There exists a constant C(T ) such that

E
[
|u(t, x)− u(s, x)|2

]
≤ C(T )

(
|t− s|+

∣∣∣∣t− s

s

∣∣∣∣2
)

for all x ∈ R and 0 < s ≤ t ≤ T satisfying |t− s| ≤ 1;

(vii) Suppose the initial condition u0 ≡ 0 for all large x and u0(x) ≡ 1 for all large −x

then for 0 < t0 < T and p, η > 0

E [|ux(t, x)|p + |uxx(t, x)|p] ≤ C(u0, η, p, t0, T )e
−η|x| for all x ∈ R and t ∈ [t0, T ]

and hence

sup
t∈[t0,T ]

E

[
sup
x

|ux(t, x)|p
]
<∞.

Moreover, for all t ≥ 0, |ux(t, x)| → 0 as |x| → ∞ almost surely.

Proof. The proof of the above properties are not contained in any one source but we

will point to the main sources for each item and the details will be left to check by

the reader. For existence of solutions we use Picard iteration (See [32]). Uniqueness

follows from standard ordinary differential equations (ODEs) or stochastic differential

equations (SDEs) arguments through the use of a Gronwall argument to the difference

of two solutions (See [24]). Part ii) follows using standard coupling arguments, see [23]

which proves a comparison result through smoothing max(0, u − v) and applying Itô’s

lemma where u and v are solutions one lying above the other. Part (iii) follows from

part (ii) where we define, for some δ > 0, u(t, x) = v(t, x + δ). For part (iv) we use a

large deviation estimate and Donsker’s result (See [24]) to write the Itô integral as time
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changed Brownian motion and then bound this using the reflection principle. We then use

the argument presented in [27] but note it is easier in our setting as we concentrate upon

a one-dimensional Brownian motion and not space-time white noise. For the second

part apply the same argument as presented in the first part of iv) to the equation

vt = vxx + f̄ ′(u)v + g′(u)vdWt where v = ux noting the same required assumptions for

f and g also apply to f̄ ′(u)v and g′(u)v although these are random coefficients. Part

v) follows from standard stochastic differential equation arguments writing, for s > 0,

Wt+s−Wt
D
= Ŵs where Ŵ represents another Brownian motion and using the uniqueness

of solution (see [1]). Part (vi) follows from using the Green’s function representation of

the solution and the various integral bounds (see Appendix). To show parts (i) and (vii)

we note that for fixed (t, x) we can use standard Green’s function estimates, although

a little care is needed since we allow for arbitrary initial conditions; indeed the pth

moment of the kth derivative blow up like t
− pk

2
0 where t ≥ t0 > 0. We now develop

equations for ux and uxx through the mild form of the solution and make use of the

Mean Value Theorem: ux(t, x) = ux(t, 0)+
∫ x
0
uxx(t, y) dy, and noting we can bound this

by sup |ux(t, x)|p ≤ C(p, η)
(
|ux(t, 0)|p +

∫
R exp (+η|x|) |uxx(t, y)|

p dy
)
, the first part of

(vii) is complete. The last part of (vii) follows from the use of the differentiated form of

the mild solution and taking limits. �

2.5 Wave markers γat

Introduction. When looking at travelling waves we are often concerned with how the

shape of the wave front changes over time. One unfortunate problem with this is that
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the wave position moves. To overcome this problem the idea of a wave marker, γat (u),

is introduced. This ensures that the wave always remains centred such that the height of

the wave when x = 0 is always defined to be a. To use this definition we formulate the

idea of a centred SPDE which we will denote by the use of a tilde on top of the u (see

definitions below).

Definition 16. Wave Markers

For a function φ : R → (0, 1) and a ∈ [0, 1], define Γa(φ) = inf{x : φ(x) ≤ a} and set

inf(∅) = −∞.

Definition 17. For a solution u of equation (2.1) define γat as γat = Γa(u(t)) (See figure

2.2).

Example 3. For any a ∈ (0, 1) we have for the Heaviside initial condition u(0, x) = I[x≤0]

γa0 (u) = 0.

Definition 18. For φ ∈ B 1,0
dec, define φ̃a(·) = φ(· + Γa(φ)). When the value of a is

unimportant we often omit it and write φ̃.

Figure 2.2: Wave marker at height a for a general wavefront.
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Definition 19. For a function T : R → R and for any fixed a ∈ R define the transfor-

mation τaT to mean T (· − a).

Remark. For any φ ∈ B 1,0
dec and any a ∈ R, φ̃ = τ̃aφ.

Remark. For all x ∈ R and t ∈ R+ note that ũ(t, x) = u(t, x + γat ), where γ
a
t is defined

in Definition 17, describes the wave as viewed from the wave front marker.

Remark. In the transformation of the u equation to the centred u equation we note,

given the stochastic u equation and the fact that γat is a semi-martingale (see Theorem

21), the following identities hold:

(Id1) dũ(t, x) = du(t, x+ γat ) + ux(t, x+ γat ) ◦ dγat ;

(Id2) ũx(t, x) = ux(t, x+ γat ) and similarly for ũxx(t, x).

Also note that in the deterministic equivalent of our stochastic equation, identity one

(Id1) becomes

ũt(t, x) = ut(t, x+ γat ) + ux(t, x+ γat )γ̇
a
t .

The above transformations will be used in the sequel without further note.

Lemma 20. The map φ 7→ Γa(φ) is measurable on B 1,0
dec.

Proof. Consider

{φ : Γa(φ) < x} = ∪y∈Q
y<x

{φ : φ(y) < a}

which indicates φ 7→ Γa(φ) will be measurable providing φ 7→ φ(y) is measurable for

all y. To show this we consider the map φ 7→ Γϵ ∗ φ, the convolution of φ with the

Gaussian function Γϵ =
1√
2πϵ

exp
(
−x2

2ϵ

)
. This map is clearly L1

loc(R) continuous from
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B 1,0
dec → B 1,0

dec. Also Γϵ ∗ φ(y) → φ(y) as ϵ → 0 for almost all y. Hence, writing φ(y) =

limx∈Q
x↓y

limn→∞ Γ1/n ∗ φ(x) shows that φ 7→ φ(y) is measurable as a map B 1,0
dec → R as

required. �

2.6 γat dynamics

Theorem 21. Let u be a solution to (2.1) with u0 ∈ B1, 0
dec. Then for each fixed t > 0

the inverse of the map x 7→ u(t, x) exists. Denoting this inverse function by m, m solves

strongly the SPDE:

dm = (mxx/m
2
x)dt− fmxdt− gmx ◦ dWt (2.7)

for (t, u) ∈ (0,∞)× (0, 1) and hence, m is a semi-martingale.

Proof. We define x 7→ m(t, x) for x ∈ (0, 1) as the inverse, at each fixed t > 0, of the

map x 7→ u(t, x), that is via the equation u(t,m(t, x)) = x. The fact that x 7→ u(t, x)

is strictly decreasing (Theorem 15, Part (iv))and takes all values in (0, 1) ensures that

m is well defined for all t > 0 and x ∈ (0, 1). By the inverse function theorem m has as

many continuous spatial derivatives as u and given that f and g are C3, so is u and hence

so is m. Note, by the inverse function theorem, that mx(t, x) = 1/ux(t,m(t, x)) < 0.

Equation (2.7) would follow by the chain rule if Ẇ were a smooth function of t. Indeed

we believe a proof using the Wong-Zakai framework should give the same result. We

present, however, another derivation following a slightly circuitous route to establish it

for these Itô processes. Choose φ : (0, 1) → R smooth and compactly supported. Then

23



from the substitution x 7→ u(t, x) we have, for t > 0,

(m,φ) =

∫
R
m(t, x)φ(x)dx =

∫
R
xφ(u(t, x))ux(t, x)dx = (φ(u)ux, x).

(Here we are writing x for the function x 7→ x). Expanding φ(u(t, x))ux(t, x) via Itô’s

formula, in its Stratonovich form, we obtain

d(m,φ) = d(φ(u)ux, x)

= (φ(u)(uxxx + f ′(u)ux), x) dt+ (φx(u)(uxx + f(u))ux, x) dt

+(φ(u)g′(u)ux + φx(u)g(u)ux, x) ◦ dW.

To assist in our notation we let û, ûx, ûxx, . . . denote the composition of the maps x 7→

u, ux, uxx with the map x → m(t, x) (e.g. ûx(t, x) = ux(t,m(t, x))). Using this notation

we have, for x ∈ (0, 1), t > 0,

û(t, x) = x, ûxmx = 1, ûxxm
2
x + ûxmxx = 0. (2.8)

We continue by using the reverse substitution x 7→ m(t, x) to reach

d(m,φ) = (ûxxxmmx + f ′m,φ) dt+ (ûxxm+ fm, φx) dt

+(g′m,φ) ◦ dW + (gm, φx) ◦ dW

= − (ûxxmx + fmx, φ) dt− (gmx, φ) ◦ dW

=
(
(mxx/m

2
x)− fmx, φ

)
dt− (gmx, φ) ◦ dW.

In the second equality we have integrated by parts. In the final equality we have used

the identities in (2.8). Now letting φ approach a delta function at x reveals the desired

equation for m(t, x). Given that m(t, x) has a martingale part and a part of bounded

variation, it is clear that it is a semi-martingale. �
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Remark. Note that γat = m(t, a).

Lemma 22. For the variable p(t, x) = −ux(t,m(t, x)) we have

dp =
(
p2pxx + f ′p− fpx

)
dt+ (g′p− gpx) ◦ dW

Proof. From the derivation of the m SPDE above we can now develop the equation

for p(t, x) = −ux(t,m(t, x)) = −ûx(t, x) by applying the Itô-Ventzel formula (see [15]

Theorem 3.3.2) and the decompositions for dux(t, x) and dm(t, x). We find, fixing x ∈

(0, 1), t > 0,

dp(t, x) = −dux(t, z)|z=m(t,x) − uxx(t, z)|z=m(t,x) ◦ dm(t, x)

= − (ûxxx + f ′ûx) dt−
(
ûxx

(
mxx

m2
x

− fmx

))
dt− (g′ûx − gûxxmx) ◦ dW.

As u has three continuous spatial derivatives we may differentiate the definition p(t, x) =

−ux(t,m(t, x)) to obtain

p = −ûx, px = −ûxxmx, pxx = −ûxxxm2
x − ûxxmxx. (2.9)

Combining these with (2.8) we obtain the desired equation. �

Remark. This is the starting point for the approach in Fife and McLeod for the deter-

ministic KPP equation [9], see Chapter 6, which we started to discuss in Chapter 2. We

will revisit these ideas throughout the thesis.

Corollary 23. For the variable ũ(t, x) = u(t, x+ γat ) = u(t, x+m(t, a)) we have

dũ = ũxxdt+ f(ũ)dt+ g(ũ) ◦ dW + ũx ◦ dγa
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Proof. By applying the Itô-Ventzel formula and using the decompositions for du(t, x)

and dm(t, x) we find, fixing x ∈ (0, 1), t > 0,

dũ(t, x) = du(t, z)|z=x+m(t,a) + ux(t, z)|z=x+m(t,a) ◦ dm(t, a)

= ũxx(t, x)dt+ f(ũ(t, x))dt+ g(ũ(t, x)) ◦ dWt + ũx(t, x) ◦ dγat

which gives us our desired result. �
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Chapter 3

Existence of a stretched limit

Introduction. In this chapter we show that for two initial conditions, one more stretched

(in a sense that we will define) than the other, the stretching property is preserved for

all time. As a corollary to this we will show that a solution started from the Heaviside

initial condition becomes more stretched as time tends to infinity. The central Theorem

of this chapter, Theorem 51 and what we will refer to as the Stretching Theorem, proves

that the laws of the solution started from the Heaviside initial condition converge on the

bigger space Bdec.

3.1 Deterministic stretching lemma

Introduction. Informally, the key lemma in the Kolmogorov [14] paper shows when we

consider the difference of two solutions to ut = uxx + J(u) started from the Heaviside

initial condition, then provided the initial conditions has at most one sign change, the

difference has at most one sign change for all time. This is the fundamental concept of
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stretching or being more stretched which we will define in Section 3.4. In this section

however, we extend the Kolmogorov idea when J is also allowed to depend on t and x and

use the probabilistic arguments of McKean [18]. Although, as we will show in Chapter

6, stretching may be more intuitively considered from the phase-plane where to show

one solution is more stretched than another standard comparison techniques can be used,

these techniques cannot be used here in the t− x space given the additional requirement

that the result hold true for any translate. As such, we proceed using a Feynman-Kac

argument rather than the standard Gronwall argument.

Definition 24. For functions φ : R → R define θ(φ) = inf{x : φ(x) > 0} and we set

inf(∅) = +∞.

Figure 3.1: θ(U − V ), first positivity point.

Proposition 25. Consider the heat equation

ut(t, x) = uxx(t, x) + J(u(t, x), t, x) (3.1)

for t ≥ 0, x ∈ R where J : [0, 1]× R+ × R → R is a measurable function satisfying:
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(P1) J is Lipschitz in the first variable, that is:

|J(r, s, x)− J(q, s, x)| ≤ K|r − q| for all r, q ∈ [0, 1], x ∈ R and s ∈ [0, T ];

(P2) J(0, t, x) = J(1, t, x) = 0 for all t ∈ [0, T ], x ∈ R.

Suppose r and q are mild solutions of (3.1), taking values in [0, 1], and r, q ∈

C1,2 ((0, T ]× R). Suppose the initial conditions satisfy θ(r(0) − q(0)) ∈ (−∞,∞) and

r(0, x) ≥ q(0, x) for all x ≥ θ(r(0) − q(0)). Then, for all t ∈ [0, T ], r(t, y) > q(t, y) for

all y > θ(r(t)− q(t)).

Proof. Consider z : [0, T ]× R → [−1, 1] defined as z(t, x) = r(t, x)− q(t, x). Defining

R(t, x) =

(
J(r(t, x), t, x)− J(q(t, x), t, x)

r(t, x)− q(t, x)

)
I(r ̸=q)

we can write a differential equation for the differences zt = zxx + zR. It is easy to verify

that, by the Lipschitz property of H, R is bounded and given that it is the quotient

of measurable functions, it is itself measurable. We will now use these properties in

the Feynman-Kac formulation for z. Let us define B = (B(t) : t ≥ 0) as an adapted

Brownian motion defined on the probability space (Ω, (Ft : t ≥ 0), (Px : x ∈ R)), where

under Px, B starts at x. Fix t > 0. Due to R being bounded and measurable, noting that

s →
∫ s
0
R(t − r, B(r)) dr is of bounded variation, it is straightforward to demonstrate

using Itô calculus that, for s ∈ [0, t),

M(s) = z(t− s,B(s)) exp

{∫ s

0

R(t− r,B(r)) dr

}

is a bounded (Fs) martingale (to see this we use Itô calculus on M(s) and show that

all dt terms vanish as z solves zt = zxx + zR and the only remaining terms are the dB

29



terms), bounded by exp {∥R∥∞s} ensuring it is almost surely convergent as s ↑ t when

we take limits below. Using the fact that z(r, x) → z(0, x) for almost all x one can

deduce that z(t− s,B(s)) → z(0, B(t)) Px almost surely. Let s ↑ t to get

z(t, x) = Ex
[
z(0, B(t)) exp

{∫ t

0

R(t− r, B(r)) dr

}]
.

Given that M is an (Fs)-martingale, the above argument is also valid if we take expec-

tations at an (Fs) stopping time τ satisfying τ ≤ t. Considering the expression at 0 with

stopping time τ ∧ s and letting s ↑ t gives

M(0) = z(t, x) = Ex [M(τ)] = Ex
[
z(t− τ, B(τ)) exp

{∫ τ

0

R(t− r,B(r)) dr

}]
. (3.2)

Now, consider the stopping time

τ = inf
0≤z≤t

{z |M(z) = 0} ∧ t

and pick x1 such that z(t, x1) > 0, in particular x1 ≥ θ(z(t)). Then

Ex1 [M(τ)] = Ex1
[
M(τ)I(τ<t)

]
+ Ex1

[
M(τ)I(τ≥t)

]
= 0 + Ex1

[
M(τ)I(τ≥t)

]
= z(t, x1) > 0

by construction. Hence, P[τ = t] ≥ P[M(τ) > 0] > 0. From this we can construct a

deterministic continuous path (ξ(s) : s ∈ [0, t]) such that ξ(0) = x1 and

z(t− s, ξ(s)) > 0 for 0 ≤ s ≤ t.

Now let us consider another stopping time defined by

30



Figure 3.2: Construction of a deterministic curve.

τ ∗ = inf
0≤z≤t

{z |B(z) = ξ(z)} ∧ t

and apply (3.2) when x = x2 > x1 with τ replaced by τ ∗. We claim M(τ ∗) ≥ 0.

To see this, note that given {ω : M(τ ∗) = 0} ⊆ {ω : z(t − τ ∗, B(τ ∗)) = 0} ⊆

{τ ∗ = t}, equality to 0 occurs only when τ ∗ = t. If τ ∗ = t then B(τ ∗) = B(t) ≥ ξ(t) but

z(0, ξ(t)) > 0 and given the assumption on the initial condition, z(0, B(t)) ≥ 0 and hence

M(τ ∗) ≥ 0. The strict inequality M(τ ∗) > 0 occurs whenever we meet the constructed

continuous curve ξ, this is whenever τ ∗ < t.

It is easy to see there is a non-zero probability that a Brownian path started at x2

will intersect with the deterministic path ξ before time t. This shows P[M(τ ∗) > 0] > 0
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and hence

z(t, x2) = Ex2 [M(τ ∗)] > 0.

This demonstrates that if z(t, x1) = r(t, x1) − q(t, x1) > 0 and x1 < x2 then z(t, x2) =

r(t, x2) − q(t, x2) > 0. If θ(r(t) − q(t)) ∈ (−∞,∞) then we can choose x1 arbitrarily

close to θ(r(t)− q(t)) and the proof is finished. In the case where θ(r(t)− q(t)) = ±∞

the proof is easier. �

3.2 Polygonal Approximation to the Noise Wt

Introduction. From Chapter 2, Wt defines a one-dimensional Brownian motion. In

this section we define a piecewise approximation to the noise Wt by W
ϵ
t , see figure 3.3

below. The idea mimics that of the original Wong-Zakai Paper ([33]) and is to take a

polygonal approximation of the noise and show the corresponding solution of the approx-

imated equation converges, in mean-square, to the solution of the true equation. This is

somewhat counter intuitive given that to construct the approximation, full information

of the original noise is required. Despite this, such approximations are sufficient for

classical solutions as we have defined.

Remark. To our surprise we could not find this result in the literature. The closest results

we could find were the following:

1. In [30] convergence in distribution is established in a setting that would cover our

equation on a finite interval of R, with suitable boundary conditions (one of the

authors of this paper agreed that some work was needed to extend the method to
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the case of the whole real line);

2. In [20] almost sure results are established but for equations on Hilbert spaces. This,

however, requires differentiability properties of the drift and diffusion coefficients

that do not hold for our equation.

Our point, however, is that a proof of the result follows along the same lines as the

original Wong-Zakai ([33]) result for one-dimensional SDEs. We give the details at the

end of this chapter.

Definition 26. W ϵ
t is defined such that, for ϵ > 0 and t ∈ [kϵ, (k + 1)ϵ] for some

k ∈ N ∪ {0}, we have W ϵ
t =Wkϵ + (t− kϵ)

(
W(k+1)ϵ −Wkϵ

)
/ϵ.

Figure 3.3: Approximating a Brownian motion using a polygonal approximation.

Remark. From the above definition of W ϵ
t it is clear that for ϵ > 0 and t ∈ [kϵ, (k + 1)ϵ]

for some k ∈ N ∪ {0}, we have Ẇ ϵ
t =

(
W(k+1)ϵ −Wkϵ

)
/ϵ.
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Theorem 27. Consider the two equations

du(t, x) = uxx(t, x)dt+ f(u(t, x))dt+ g(u(t, x)) ◦ dWt (3.3)

uϵt(t, x) = uϵxx(t, x) + f(uϵ(t, x)) + g(uϵ(t, x)) Ẇ ϵ
t (3.4)

for t ≥ 0 and x ∈ R where f and g satisfy hypotheses (H1) and (H2) from Chapter

2 and Wt, Ẇ
ϵ
t are as defined above. Suppose also that the initial conditions are equal

u0 = uϵ0 ∈ [0, 1], possibly random. Then for fixed x ∈ R, t ≥ 0 we have

uϵ(t, x)
L2

−−→
ϵ→0

u(t, x). (3.5)

3.3 Solutions cross at most once

Introduction. We have shown that in the deterministic case, equation (3.1), if two

solutions u and v start with u more stretched than v, then u remains more stretched than

v for all time. In this section we define stretching in a more rigorous way and expand last

sections stretching result to the stochastic setting by applying a polygonal approximation

to the noise term.

Lemma 28. Let r and q be solutions to equation (3.3) and rϵ and qϵ be solutions to

equation (3.4). Suppose also that r and rϵ have the same initial condition as do q and

qϵ all living in Bdec. Then, for fixed t > 0,

lim sup
ϵ→0

θ(rϵ(t)− qϵ(t)) ≤ θ(r(t)− q(t)) P-almost surely. (3.6)

Proof. By Theorem 27, for fixed t > 0, z ∈ R,

rϵ(t, z)
L2

−→ r(t, z), qϵ(t, z)
L2

−→ q(t, z) as ϵ→ 0. (3.7)
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We now fix z ∈ Q and apply a diagonalisation argument to prove, along a suitable

subsequence {ϵn}, the above result is true for almost all ω ∈ Ω and then we take a

further sub-subsequences {ϵn(j)} to prove this result is in fact true for almost all ω ∈ Ω

and all z ∈ Q, that is

rϵn(j)(t, z, ω) → r(t, z, ω), qϵn(j)(t, z, ω) → q(t, z, ω) (3.8)

as j → ∞ tends to zero. Fix such an ω and suppose that x > θ(r(t) − q(t)). Then

there must exist a y ∈ Q with y < x such that r(t, y, ω) > q(t, y, ω). Given (3.8), we

can choose N so that, for all n ≥ N , rϵn(t, y, ω) is sufficiently close to r(t, y, ω) and

qϵn(t, y, ω) is sufficiently close to q(t, y, ω) resulting in rϵn(t, y, ω) > qϵn(t, y, ω), that is

θ(rϵn − qϵn) ≤ y. �

Theorem 29. Let r and q be solutions to equation (3.3) with (possibly random) initial

conditions r(0), q(0) ∈ Bdec satisfying r(0, x) ≥ q(0, x) for all x > θ(r(0)− q(0)) almost

surely. Then r(t, x) ≥ q(t, x) for all x ≥ θ(r(t)− q(t)) P-a.s. for all t ≥ 0.

Proof. Fix t > 0 and fix ω ∈ Ω as in (3.8). Suppose now x ∈ Q and x > θ(r(t)−q(t)) then,

by Lemma 28, x > θ(rϵn(t)−qϵn(t)) for sufficiently small ϵn where r
ϵn and qϵn are solutions

to equation (3.4). Set J(rϵn(t, x), t, x) = f(rϵn(t, x)) + g(rϵn(t, x))Ẇ ϵn
t in Proposition 25.

Then, as f and g satisfy hypothesis (H1) and (H2), it is clear that conditions (P1) and

(P2) of Proposition 25 are satisfied as well as rϵn ∈ C1,2 ((0, ϵn]× R) for some ϵn > 0.

Similarly for qϵn . Applying Proposition 25 to rϵn and qϵn we deduce, rϵn(t, x, ω) >

qϵn(t, x, ω) for x > θ(rϵn(t)− qϵn(t)). Hence, taking limits, we have r(t, x, ω) ≥ q(t, x, ω).

Given that solutions r and q are continuous in x, the above argument can be extended
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from the set of rational numbers Q to the whole of the real line R. We then repeat the

argument over the interval [kϵn, (k + 1)ϵn] for k = 1, 2, 3, ... and continue in this way to

cover the whole region (0, T ]. �

3.4 The concept of stretching

Introduction. In this section we introduce the notion of stretching on our solution space

Bdec. First, however, we introduce the concept of crossing which will be fundamental to

the stretching definition.

Definition 30. Crosses

Consider two functions U and V : R → [0, 1]. Define U crosses V by U(x) ≥ V (x) for

all x > θ(U − V ).

To fully appreciate this definition and develop our intuition, let’s consider some ex-

amples. In the first example (figure 3.4) it is clear that U crosses V as for x > θ, that is

for any x beyond the crossing point, U lies above V . That is there is one unique point

at which U cuts V .
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Figure 3.4: First example of the definition U crosses V .

In our second example we cover a subtlety in our crossing definition. Figure 3.5 shows

that although U crosses V , this does not mean that U has to lie strictly above V at all

later positions, in fact U may merge with V . Our third example, figure 3.6, is that of

Figure 3.5: Second example of the definition U crosses V .

functions which do not cross. As indicated in our second example above, although U

may cross V this does not mean that U has to lie above V for all x beyond the crossing

point θ. However, if U does cross V , then it cannot cut V again at any point x > θ.
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Figure 3.6: An example where U does not cross V .

Remark. If θ(r − q) = +∞ then r ≤ q on R. If θ(r − q) = −∞ and r crosses q then

r ≥ q on R.

We can now restate the results from section 3.3 as follows:

Corollary 31. Let r and q be solutions to equation (3.3) with, possibly random, initial

conditions r(0), q(0) ∈ Bdec. If r(0) crosses q(0) P-almost surely then r(t) crosses q(t)

P-a.s. for all t ≥ 0.

Proof. The proof of this is a direct consequence of Theorem 29 and the definition of

crosses (Definition 30). �

Remark. Although we only concentrate on the one-dimensional non-spatial noise in this

thesis, we believe the above result would pass over unchanged in the case of a spatially

homogenous, white in time noise.

Definition 32. Stretched

Consider two functions U and V in Bdec. Define R(U) to be the open interval (U(−∞), U(∞))
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and similarly for R(V ). Then U is said to be more stretched than V , written U
s
≻ V ,

if R(U) ∩R(V ) ̸= ∅ and U(· − a) crosses V (·) for all a ∈ R.

Remark. In the above definition, the requirement U(· − a) crosses V (·) for all a ∈ R

can be expressed equivalently as U(·) crosses V (· − b) for all b ∈ R as shown in figure

3.7 below.

Figure 3.7: U is more stretched than V .

Example 4. Consider two functions U(x) = I[x≤0] and V with V defined as any map in

B 1,0
dec. Then V is more stretched than U .

Example 5. Consider two differentiable functions U and V on Bdec satisfying, for some

K > 0 and δ ∈ (0, 1
2
), U ′(x) ≤ −K for all x such that U(x) ∈ [δ, 1−δ], and V (x) ∈ [δ, 1−δ]

and V ′(x) > −K for all x. Then V is more stretched than U .

Remark. The concept of stretching is less restrictive than the reader may initially believe

as the following lemmas will show.

We will now prove that for two solutions r and q, if q is less stretched than r at

time 0, q will be less stretched than r at all further times t > 0.
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Corollary 33. Let r and q be solutions to (3.3) such that

q(0)
s
≺ r(0) P-almost surely. (3.9)

Then

q(t)
s
≺ r(t) P-almost surely for all t > 0. (3.10)

Recall the notation: τaT to mean T (· − a).

Proof. The key to this proof is the fact that, for any a ∈ R, any translate (τaq(t) :

t ≥ 0) still represents a solution. Given that q(0)
s
≺ r(0) we have, for each a ∈ R,

q(0, x − a) ≤ r(0, x) for all x ≥ θ(r(0) − τaq(0)). Now we can rewrite this as, for each

a ∈ R, τaq(0, x) ≤ r(0, x) for all x ≥ θ(r(0) − τaq(0)). As τaq is also a solution to

(3.3), by Theorem 29 we have that τaq(t, x) ≤ r(t, x) for all x ≥ θ(r(t) − τaq(t)). This

conclusion holds for each a ∈ R and consequently, for each a ∈ R, q(t, x − a) ≤ r(t, x)

for all x ≥ θ(r(t)− τaq(t)) and hence q(t)
s
≺ r(t) as required. �

Remark. We do not believe this result would pass over in the case of spatially homogenous

noises given that the translation would have an impact upon the noise. However, one

idea in the extension to a wider variety of noises would be to restate the above result in

terms of the laws of the solution. We hope to explore this further in a later paper.

Lemma 34. Suppose U, V : R → [0, 1] are continuous and strictly decreasing functions

such that U
s
≻ V . Then R(U) ⊆ R(V ).

Proof. Before starting we note that given that U and V are continuous and strictly

decreasing, R(U) andR(V ) are the open intervals (U(−∞), U(∞)) and (V (−∞), V (∞))
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respectively. If supR(U) > supR(V ) then θ(U − V ) = −∞ which also holds true

for any translation of U , θ(τaU − V ) = −∞. By definition of stretching, this means

U(x − a) = τaU(x) ≥ V (x) for all x ∈ R, for all a ∈ R. We can rewrite this as

U(y) ≥ V (x) for all y, x ∈ R and it is clear R(U) ∩ R(V ) = ∅ given that R(U) and

R(V ) are open intervals. This contradicts the definition of stretching. Similarly, if

infR(U) < infR(V ) then given U
s
≻ V , U cannot have crossed V at an x ∈ R and

hence θ(U − V ) = ∞. Again, this holds for all translates of U , θ(τaU − V ) = ∞. By

definition of stretching this means U(x − a) = τaU(x) ≤ V (x) for all x ∈ R, a ∈ R.

We can rewrite this as U(y) ≤ V (x) for all y, x ∈ R and it is clear R(U) ∩ R(V ) = ∅,

again a contradiction. Combining the above we have that supR(U) ≤ supR(V ) and

infR(U) ≥ infR(V ). From this it is clear R(U) ⊆ R(V ) as required. �

Lemma 35. Suppose U, V : R → [0, 1] are two continuously differentiable functions with

Ux, Vx < 0 on R. Then U is more stretched than V if-and-only-if R(U)∩R(V ) ̸= ∅ and

whenever U(x1) = V (x2), then Ux(x1) ≥ Vx(x2).

Proof. We will first prove Necessity:

Suppose U(x1) = V (x2). Choose a ∈ R such that a = x2 − x1 then, by construction,

τaU(x2) = U(x1) = V (x2) (3.11)
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and if x2 ≥ θ(τaU − V )

Ux(x1) = lim
h↓0

[
U(x1 + h)− U(x1)

h

]
= lim

h↓0

[
τaU(x2 + h)− U(x1)

h

]
by definition of a

= lim
h↓0

[
τaU(x2 + h)− V (x2)

h

]
by assumption (3.11)

≥ lim
h↓0

[
V (x2 + h)− V (x2)

h

]
= Vx(x2)

and similarly, for x2 < θ(τaU − V ):

Ux(x1) = lim
h↓0

[
U(x1)− U(x1 − h)

h

]
= lim

h↓0

[
V (x2)− τaU(x2 − h)

h

]
≥ lim

h↓0

[
V (x2)− V (x2 − h)

h

]
= Vx(x2).

Sufficient To prove this direction we will rewrite our assumption in terms of inverse

functions. Given that U and V are continuously differentiable such that Ux and Vx are

less than zero, we can write, for x ∈ R(U),

Ux(U
−1(x))

(
U−1

)
x
(x) = 1 (3.12)

and similarly for V . Suppose U(a) = V (a) = θ0 ∈ (0, 1) for some a ∈ R, that is

U−1(θ0) = V −1(θ0) = a (See figure 3.8). Note that this does not mean U and V cross

at a, only touch. Given that R(U), R(V ) are open intervals we can pick θ1 < θ0 < θ2

such that (θ1, θ2) ⊆ R(U) ∩ R(V ). Suppose θ2 > θ > θ0. Let us now integrate over the
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Figure 3.8: θ0 in (0, 1).

range θ0 ≤ x ≤ θ to get

U−1(θ)− U−1(θ0) =

∫ θ

θ0

(U−1(x))x dx

≤
∫ θ

θ0

(V −1(x))x dx

= V −1(θ)− V −1(θ0)

where we have used equation (3.12) for both U and V . By definition of θ0 we can rewrite

this as

U−1(θ) ≤ V −1(θ) for θ2 > θ > θ0. (3.13)

Similarly we have U−1(θ) ≥ V −1(θ) for θ0 > θ > θ1 (See figure 3.9).

Note that U−1(θ) → −∞ as θ ↑ U(−∞) and U−1(θ) → ∞ as θ ↓ U(∞). We

can choose θ1 = U(∞) ∨ V (∞) and θ2 = U(−∞) ∧ V (−∞). By (3.13) it is clear

that U(∞) ≥ V (∞) and similarly U(−∞) ≤ V (−∞) and hence, θ1 = U(∞) and
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Figure 3.9: Stretching when we consider inverse functions.

θ2 = U(−∞). This shows that R(U) ⊆ R(V ). We can then rewrite (3.13) as

U−1(θ) ≤ V −1(θ) for all θ ≥ θ0, θ ∈ R(U)

U−1(θ) ≥ V −1(θ) for all θ ≤ θ0, θ ∈ R(U).

Inverting these maps gives

U(x) ≥ V (x) for all x ≥ a (3.14)

U(x) ≤ V (x) for all x ≤ a. (3.15)

We will now consider the three possibilities for θ(U − V ) to show U crosses V . If

θ(U − V ) = −∞ then, by a contradiction argument, if U and V cross at x∗ > −∞ then

θ(U − V ) > −∞. Hence, U(x) ≥ V (x) for all x > −∞. If θ(U − V ) ∈ R then U and

V must cross and by taking a in the above proof as this crossing point, U crosses V as

required. If θ(U − V ) = ∞ then there is nothing to prove. The above argument holds
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for all translations of U and we can write, if τ bU(a) = V (a),

τ bU(x) ≥ V (x) for all x ≥ a

τ bU(x) ≤ V (x) for all x ≤ a.

This holds for all b ∈ R and hence, U
s
≻ V . �

Corollary 36. Suppose U, V : R → [0, 1] are two continuously differentiable functions

with Ux, Vx < 0, satisfying U is more stretched than V . Then if U(x) = V (x) then

U(y) ≥ V (y) for all y ≥ x.

Proof. This corollary is a direct consequence of the sufficiency proof in Lemma 35 and

shows equations (3.14) and (3.15) where a is defined as any point such that U(a) = V (a).

This completes the proof. �

Remark. As suggested in the introduction, stretching may be reformulated by thinking

of U and V in the phase-plane. If U
s
≻ V and U , V are sufficiently smooth then in the

phase-plane U lies below V , an easier property to test and a more intuitive representation

of stretching where more standard comparison arguments can be applied. This intuition

was developed by the papers of Fife and McLeod (See [9]) and will be explored in Chapter

6.

3.5 Stochastic Ordering

Introduction. In this section we show that stretching defines a closed pre-order on

Bdec. This will be important when we consider the limiting law of solutions and the proof
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that the law of the solution to equation (2.1), started from the Heaviside initial condition,

converges. We will also show that for stretching, associativity fails as given two functions

p and q satisfying p
s
≻ q and q

s
≻ p may be translates of one another rather than be equal.

Definition 37. Partial-order Consider some set A and a binary relation ∼ on A.

Then ∼ is a partial-order if it is reflexive, associative and transitive, that is

(1) p ∼ p for all p ∈ A (Reflexive)

(2) If p ∼ q and q ∼ p for some p, q ∈ A then q = p (Associative)

(3) If p ∼ q, q ∼ r for some p, q, r ∈ A then p ∼ r (Transitive).

Definition 38. Pre-order Consider some set A and a binary relation ∼ on A. Then

∼ is a pre-order if it is reflexive and transitive, as defined above.

Lemma 39. The set M = {(f, g) ∈ B 1,0
dec×B 1,0

dec : f
s
≻ g} is closed in the product topology

on B 1,0
dec × B 1,0

dec.

Proof. For n ∈ N suppose we have functions fn and gn in B 1,0
dec such that, fn

L1
loc−→ f and

gn
L1
loc−→ g and, for each n, fn

s
≻ gn. To demonstrate that M is closed we have to show

that, in the limit, f
s
≻ g. Given fn → f and gn → g, both in B 1,0

dec, then it is clear by

Lemma 9 that fn → f a.e. and gn → g a.e.. Define Dc, the complement of a set D, as

the set of all points for which convergence fails in the above. Given δ > 0 there exists

x ∈ (θ(f − g), θ(f − g) + δ) such that f(x) > g(x). As D is dense in R, since Dc has

measure zero, we can choose x ∈ D. Pick n0 such that fn(x) > gn(x) for all n ≥ n0.

Hence, x ≥ θ(fn − gn) and fn(x) ≥ gn(x) for all n ≥ n0 gives us f(x) ≥ g(x). Given f
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and g are both right continuous we have f(x) ≥ g(x) for all x > θ(f − g) and the proof

is complete. �

Remark. We do not believe the space Bdec × Bdec is closed.

Lemma 40. Stretching defines a pre-order on both Bdec and B 1,0
dec.

Proof. Reflexive: Given that either θ(p− p) = ±∞ it is easy to check p
s
≻ p.

Transitivity: We first consider B 1,0
dec. Define the convolution p

ϵ(x) = p(x) ∗ Γϵ(x) where

Γϵ denotes the Gaussian function Γϵ(x) =
1√
2πϵ

exp
(
−x2

2ϵ

)
. The resulting pϵ is infinitely

differentiable and, in the limit as epsilon tends to zero, pϵ(x) = p(x) ∗ Γϵ(x) → p(x) a.e.

and therefore pϵ → p in Bdec. Define qϵ, rϵ similarly. By Corollary 33 in the special case

f = g = 0, if p
s
≻ q then pϵ

s
≻ qϵ. Note that pϵ, qϵ and rϵ lie in B 1,0

dec, are C2 functions and

are strictly decreasing. Using this we will show that if pϵ
s
≻ qϵ and qϵ

s
≻ rϵ then pϵ

s
≻ rϵ.

To finish we will then take the limit as epsilon tends to zero to reverse the smoothing and

show, in the limit, the same conclusion holds. Suppose pϵ(x1) = rϵ(x2). Since p
ϵ and rϵ

are strictly decreasing, this common value lies in (0,1). Then, given that qϵ is continuous

and onto (0,1) being in B 1,0
dec, there exists an x∗ such that qϵ(x∗) = pϵ(x1) = rϵ(x2). By

Lemma 35 we conclude, pϵx(x1) ≥ qϵx(x
∗) ≥ rϵx(x2). Also by Lemma 35 we know that

pϵ
s
≻ rϵ. We now appeal to Lemma 39 to conclude that, given pϵ → p and rϵ → r, both

on B 1,0
dec, then p

s
≻ r. We now consider Bdec. Unlike B 1,0

dec, any two functions (smoothed

if necessary as above) in Bdec may not meet at any point given the unspecified behavior

at the end points. We mimic the case for functions in B 1,0
dec and use the same notation as

above to define pϵ, qϵ and rϵ. Given the result of Lemma 34, as pϵ
s
≻ qϵ and qϵ

s
≻ rϵ we
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have that R(pϵ) ⊆ R(qϵ) and R(qϵ) ⊆ R(rϵ). The argument of transitivity now follows

directly from the same proof as in the B 1,0
dec case. �

Remark. Associativity fails both in B 1,0
dec and Bdec as the following lemma shows.

Lemma 41. Suppose p
s
≻ q and q

s
≻ p then, providing p ̸= q, there exists a translation

b ∈ R such that p = τ bq.

Proof. Consider the convolution of p and q with the Gaussian function, denoted pϵ and

qϵ respectively. This ensures pϵ and qϵ are infinitely differentiable whilst also retaining

the stretching property (use Corollary 33 in the special case f = g = 0). Also note,

it is automatic that if pϵ
s
≻ qϵ then p̃ϵ

s
≻ q̃ϵ (recall ·̃ indicates the centred function, see

Definition 18). Now, by centring at 0, the definition of p̃ϵ
s
≻ q̃ϵ can be expressed as

p̃ϵ(0) = q̃ϵ(0) and

p̃ϵ(x) ≥ q̃ϵ(x) for all x ≥ 0

p̃ϵ(x) ≤ q̃ϵ(x) for all x ≤ 0.

Similarly, as qϵ
s
≻ pϵ we have

q̃ϵ(x) ≥ p̃ϵ(x) for all x ≥ 0

q̃ϵ(x) ≤ p̃ϵ(x) for all x ≤ 0

and hence, q̃ϵ(x) = p̃ϵ(x) for all x ∈ R. As p ̸= q this means there exists a translation

such that, for some b ∈ R, p = τ bq. �

Remark. Other simple properties of orders do not hold. For example, let g = I(−∞,A)

and i = I(−∞,B) for some A < B and choose f = h ∈ B 1,0
dec with gradient f ′(x) = h′(x) ≤

48



2(A− B) for all x such that, for δ ∈ (0, 1
2
), f, h ∈ [δ, 1− δ]. Then it is clear that f

s
≻ g

and h
s
≻ i but f+h

2

s

� g+i
2
.

In the next lemma we give an alternative proof of transitivity for functions in B 1,0
dec

but by using the result from Corollary 36.

Lemma 42. For three functions p, q and r in B 1,0
dec if p

s
≻ q and q

s
≻ r then p

s
≻ r.

Proof. First assume that p, q and r are continuous. Otherwise, mimicking the argument

as in Lemma 40, we can define the convolution pϵ(x) = p(x)∗Γϵ(x) where Γϵ denotes the

Gaussian function Γϵ(x) =
1√
2πϵ

exp
(
−x2

2ϵ

)
. The resulting pϵ is infinitely differentiable

and, in the limit as epsilon tends to zero, pϵ(x) = p(x) ∗ Γϵ(x) → p(x) a.e. and therefore

pϵ → p in Bdec. We can define qϵ, rϵ similarly. Suppose x ≥ θ(τap − q) for some a and

θ(τap− q) < ∞. Given continuity properties and the fact that p, r and q lie in B 1,0
dec we

can choose b such that

θ(τap− q) = θ(τap− τ br).

It is clear that for all x ≥ θ(τap− q), τap(x) ≥ τ br(x) and there are two possibilities as

to the relationship between θ(τ br − q) and θ∗ = θ(τap− q) = θ(τap− τ br):

(1) θ(τ br − q) ≤ θ∗;

(2) θ(τ br − q) > θ∗.
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Case 1. Suppose θ(τ br−q) ≤ θ∗, see figure 3.10, then for all x ≥ θ∗ we have τ br(x) ≥

q(x) and τap(x) ≥ τ br(x). Hence, it is clear that for x ≥ θ∗, τap(x) ≥ τ br(x) ≥ q(x) as

required.

Figure 3.10: Case 1.

Case 2. Suppose θ(τ br − q) > θ∗, see figure 3.11. By definition we must have that τ br

Figure 3.11: Case 2.

and q touch but do not cross at θ∗. Corollary 36 shows us that:

• For x ∈ [θ∗, θ(τ br− q)), we have τap(x) ≥ τ br(x) and τ br(x) = q(x). Hence, for all
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x ≥ θ∗ we have τap(x) ≥ τ br(x) = q(x) as required.

• For x ≥ θ(τ br − q) the argument is clear.

This completes the proof. �

Remark. Crossing does not define a pre-order like stretching as in simple cases tran-

sitivity fails.

Example 6. Set ϵ > 0. For constants A,B ∈ R such that A < B take p = I(−∞,A],

q = I(−∞,B] and r = I(−∞,A] ∗Γϵ, that is a smoothed version of p. It is clear that p crosses

q, q crosses r but p does not cross r.

Definition 43. Let P,Q be probability measures on B 1,0
dec . Then we define Q as more

stretched than P, written Q
s
≻ P, if there exists random variables u, v on the same

probability space satisfying u
D
= Q, v

D
= P and u

s
≻ v almost surely.

Definition 44. We will write L(u(t)) to mean the law of the solution u(t).

Lemma 45. If Pn,Qn ∈ M1(B 1,0
dec) are such that Pn

D→ P and Qn
D→ Q and Pn

s
≻ Qn

for all n then P
s
≻ Q.

Proof. We can find (un, vn) with un
D
= Pn and vn

D
= Qn and un

s
≻ vn P-almost surely.

However, (L(un))n∈N are tight by Proposition 13 (since the sequence (L(un))n∈N con-

verges) and similarly (L(vn))n∈N are tight. So (L(un, vn))n∈N are tight onM1(B 1,0
dec×B 1,0

dec)

and there exists a subsequence n′ and copies (ûn′ , v̂n′)
D
= (un, vn) so that (ûn′ , v̂n′)

a.s.→

(u, v). Since ûn′
s
≻ v̂n′ almost surely we know u

s
≻ v by

s
≻ being a closed pre-order by

Lemmas 40 and 39. Then, as L(u) = limn→∞ L(ûn) = limn→∞ L(un) = limn→∞Pn
D
= P

and similarly L(v) = Q, we are finished. �
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Remark. A similar result holds for three probability measures. That is, suppose Pn,Qn,Rn ∈

M1(B 1,0
dec) satisfying Pn

s
≻ Qn

s
≻ Rn for all n such that Pn

D→ P , Qn
D→ Q and Rn

D→ R.

Then P
s
≻ Q

s
≻ R.

Corollary 46. If (un, vn) ∈ B 1,0
dec × B 1,0

dec satisfies un
s
≻ vn P-almost surely for all n and

un
D→ u, vn

D→ v then L(u)
s
≻ L(v).

Proof. Take Pn = L(un), Qn = L(vn) in Lemma 45. �

Theorem 47. Let E be a Polish space. Let the state space (E, ξ) be equipped with a

pre-ordering ≺. Let P1, P2,... be a sequence of probability measures on (E, ξ). The

following are equivalent:

(i) P1 ≺ P2 ≺...,

(ii) there exist random elements X1,X2,... in (E, ξ) such that Xi
D
= Pi and X1 ≺ X2 ≺...

a.s.

Proof. The proof of this when ≺ defines a partial order can been found in [17] and relies

upon Strassen’s Theorem (see [29]). By [16] the conditions for Strassen’s Theorem may

be relaxed to that of a pre-order rather than a partial order. Using this the remainder

of the proof, as found in [17], carries over line by line unchanged. �

3.6 Convergence in distribution on Bdec

Notation. Let us define the notation Qµ
t to represent the law at time t of a solution to

(3.3) starting from an initial condition whose law on Bdec is µ. We will write QH
t for a

solution whose initial condition is the Heaviside function H(x) = I[x≤0].
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Lemma 48. For all t0 > 0, QH
t0

s
≻ QH

0 .

Proof. The proof of this follows directly from the Heaviside function being less stretched

than any other function. �

Theorem 49. For all 0 ≤ s < t, QH
t

s
≻ QH

s .

Proof. By Lemma 48 we have, for every t0 > 0, QH
t0

s
≻ QH

0 . Now consider two solutions

with initial conditions whose distributions are µ1 = QH
t0

and µ2 = QH
0 . Given µ1

s
≻ µ2

we can apply Corollary 33 to show Qµ1
t

s
≻ Qµ2

t . By use of the Markov Property (see

Theorem 15), Qµ1
t = QH

t+t0
. It is clear Qµ2

t = QH
t . Hence, QH

t+t0

s
≻ QH

t for all t ≥ 0 and

the proof is complete. �

Definition 50. Let Q̃µ,a
t be the law of ũ(t) where ũ(t) is a solution started according to

law µ, centred at a such that ũ(t, 0) = a. We will write Q̃H,a
t as shorthand for Q̃δH ,a

t .

Remark. A large number of our functions depend critically upon parameter a. However,

when the exact level of a is unimportant, we will tend to suppress this for ease and

elegance of notation.

Theorem 51 (Stretching Theorem). Q̃H
t converges in M(Bdec) (given the topology of

weak convergence of measures) as t→ ∞.

Proof. Take a sequence {tn}∞n=1 ↑ ∞. By Theorem 49 we know QH
tn

s
≻ QH

tm for n ≥ m.

By definition 43 and Theorem 47 we may construct random variables (ûtn) such that

ûtn
D
= QH

tn and ûtn
s
≻ ûtm for all n ≥ m, almost surely. Note that, given that the

map φ : Bdec → Bdec defined by φ(·) 7→ φ(· + γat (φ)) is a measurable transformation,
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ˆ̃utn
D
= Q̃H

tn . Since ˆ̃utn(0) = ˆ̃utm(0) we have θ(ˆ̃utn(0) − ˆ̃utm(0)) ≥ 0. Corollary 36 shows

that ˆ̃utn(x) = ˆ̃utm(x) for x ∈ [0, θ(ˆ̃utn − ˆ̃utm)] almost surely. Hence, almost surely, for all

n ≥ m

ˆ̃utn(x) ≥ ˆ̃utm(x) for all x ≥ 0

ˆ̃utn(x) ≤ ˆ̃utm(x) for all x ≤ 0.

Let u∞(x) = limn→∞ ˆ̃utn(x) and define ū∞(x) be the right continuous modification of u∞

(which changes at most, countably many values). Hence,

ˆ̃utn(x) → ū∞(x) for almost all x, P-almost surely.

Therefore ˆ̃utn
L1
loc−→ ū∞, P- almost surely and hence Q̃H

tn → L(ū∞) in M(Bdec). We claim

that this limit law does not depend upon the choice of sequence {tn}. Let {sn}∞n=1 ↑ ∞

be a second sequence and consider a third sequence, {rn} ↑ ∞ which contains all of the

elements of both {sn} and {tn}. If ū∞ is the almost sure limit constructed from this

refinement then we find that

Q̃H
rn → L(ū∞).

However, Q̃H
tn → L(ū∞) and Q̃H

sn → L(ū∞) and these are subsequences of {rn}. Since

for any convergent sequence in M(Bdec) we can take versions such that these versions

converge almost surely, we have shown that Q̃H
t converges. �

Remark. We are yet to prove the limit lies within M1

(
B 1,0
dec

)
. This will be covered in the

next chapter.

Definition 52. Let ν = limt→∞ Q̃H
t . This will be used throughout the later chapters.
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3.7 Wong-Zakai Extension

Introduction. In this section we will give the proof of Theorem 27. The argument

follows the original method of Wong and Zakai (see [33]) but uses the Green’s function

representation for the solution to the SPDE.

To prove this we will proceed in several steps but first we will start with some notation.

Definition 53. For ϵ > 0 and s ∈ Ik(t) = [kϵ∧t, (k+1)ϵ∧t], define s−(ϵ) = kϵ, s+(ϵ) =

(k + 1)ϵ.

Remark. Given the definition of Ẇ ϵ
s we may write Ẇ ϵ

s =
Ws+−Ws−

ϵ
=

W(k+1)ϵ−Wkϵ

ϵ
:= ∆Wk

ϵ

for s ∈ Ik. Using this formulation it is easy to show the following key property:

E
[∫

Ik

∣∣∣Ẇ ϵ
s

∣∣∣2 ds] = ∫
Ik

E
[∣∣∣Ẇ ϵ

s

∣∣∣2] ds = ∫
Ik

E

[∣∣∣∣∆Wk

ϵ

∣∣∣∣2
]
ds = 1.

Consider the equations, all with the same (possibly random) initial condition u0 ∈

[0, 1]:

du = uxx dt+ f̄(u) dt+ g(u) dW (3.16)

dū = ūxx dt+ f̄(u−) dt+ g(u−) dW (3.17)

dv = vxx dt+ f(v) dt+ g(v) Ẇ ϵdt (3.18)

dv̄ = v̄xx dt+ f̄(v−) dt+ g(v−) Ẇ ϵdt (3.19)

dṽ = ṽxx dt+ f̄(v−) dt+ g(v−) Ẇ ϵdt (3.20)

where W and W ϵ are as defined in section 3.2, f̄(z) = f(z) + 1
2
gg′(z) and, for any

z : R+ × R → R we define z− by z−(t, x) = z(t−(ϵ), x). Note that ū, v, v̄, ṽ all depend

upon ϵ.

Remark. Existence and uniqueness hold for all five equations and u, v ∈ [0, 1] for all time.
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Remark. v̄, ṽ, ū need not lie in the interval [0, 1] but it is easy to confirm that their second

moments are finite.

Remark. Notice the absence of the f̄ in equation (3.18). This is due to the fact that in

such approximations, equation (3.18) will tend to the same equation with Stratonovich

noise rather than Itô noise.

By the triangle inequality and the use of Jensen’s inequality we can write

|u(t, x)− v(t, x)|2 ≤ 3 |u(t, x)− ū(t, x)|2 + 3 |ū(t, x)− v̄(t, x)|2 + 3 |v̄(t, x)− v(t, x)|2

≤ 3 |u(t, x)− ū(t, x)|2 + 3 |ū(t, x)− v̄(t, x)|2 + 6 |v̄(t, x)− ṽ(t, x)|2

+6 |ṽ(t, x)− v(t, x)|2 .

The idea is to show that each term on the right-hand-side are either of order epsilon

or an integral copy of the left-hand-side, and to use a Gronwall argument to prove the

left hand side tends to zero. We will prove this using a string of lemmas which all refer

to equations (3.16)-(3.20). First, however, we will prove a result that will be useful

throughout this chapter and is analogous to the Kolmogorov increment estimates for u.

Notation. C(f, g, T, ...) will denote a constant whose exact value is unimportant, and

may change from line to line, but whose dependence will be indicated.

Lemma 54.

E
[∣∣v(t, x)− v(t−, x)

∣∣2] ≤ C(f, g, T )

(
ϵ

(
ln2

(
1

ϵ

)
∨ 1

)
+
( ϵ
t−

)2)
for all ϵ ∈ (0, 1), t ∈ [0, T ], x ∈ R.

Proof. From the Green’s formula representation we can write

v(t, x) =

∫
R
Γt(y)v0(y) dy +

∫ t

0

∫
R
Γt−s(x− y)f(v(s, y)) dyds

+

∫ t

0

∫
R
Γt−s(x− y)g(v(s, y)) dyẆ ϵ

sds
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and

v(t, x)− v(t−, x) =

∫
R
v0(y) (Γt(y)− Γt−(y)) dy

+

∫ t−

0

∫
R
f(v(s, y)) (Γt−s(x− y)− Γt−−s(x− y)) dyds

+

∫ t−

0

∫
R
(Γt−s(x− y)− Γt−−s(x− y)) g(v(s, y)) dyẆ ϵ

sds

+

∫ t

t−

∫
R
f(v(s, y))Γt−s(x− y) dyds

+

∫ t

t−

∫
R
Γt−s(x− y)g(v(s, y)) dyẆ ϵ

sds.

We will take each of these terms in turn whilst making use of the bound:

∫
R
|Γt−s(y)− Γt−−s(y)| dy ≤ C

|t− t−|
|t− − s|

∧ 1 (3.21)

for all 0 ≤ s < t− ≤ t <∞ (see Appendix). Considering the first term:

∣∣∣∣∫
R
v0(y) (Γt(y)− Γt−(y)) dy

∣∣∣∣ ≤
∫
R
|Γt(y)− Γt−(y)| dy given that v is bounded by 1

≤ C
ϵ

t−
.

We will again make use of the fact that f(v) is bounded so that for the second term∣∣∣∣∣
∫ t−

0

∫
R
f(v(s, y)) (Γt−s(x− y)− Γt−−s(x− y)) dyds

∣∣∣∣∣
≤ C(f)

∫ t−

0

∫
R
|Γt−s(x− y)− Γt−−s(x− y)| dyds

≤ C(f)

∫ t−−ϵ

0

ϵ

t− − s
ds+ C(f)

∫ t−

t−−ϵ
ds

= C(f)ϵ

(
ln

(
1

ϵ

)
+ ln t− + 1

)
≤ C(f, T )ϵ ln

(
1

ϵ

)
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for any t ∈ [0, T ]. For the third term we have,

E

∣∣∣∣∣
∫ t−

0

∫
R
g(v(s, y)) (Γt−s(x− y)− Γt−−s(x− y)) dyẆ ϵ

sds

∣∣∣∣∣
2


≤ C(∥g∥∞)E

∣∣∣∣∣
∫ t−

0

∣∣∣Ẇ ϵ
s

∣∣∣ ∫
R
|Γt−s(x− y)− Γt−−s(x− y)| dyds

∣∣∣∣∣
2


≤ C(∥g∥∞)E

∣∣∣∣∣
∫ t−

0

∣∣∣Ẇ ϵ
s

∣∣∣ ( ϵ

|t− − s|

)
∧ 1 ds

∣∣∣∣∣
2


= C(∥g∥∞)E

[∫ t−

0

∫ t−

0

∣∣∣Ẇ ϵ
s

∣∣∣ ∣∣∣Ẇ ϵ
r

∣∣∣ ( ϵ

|t− − s|

)
∧ 1

(
ϵ

|t− − r|

)
∧ 1 dsdr

]

= C(∥g∥∞)

∫ t−

0

∫ t−

0

E
[∣∣∣Ẇ ϵ

s

∣∣∣ ∣∣∣Ẇ ϵ
r

∣∣∣]( ϵ

|t− − s|

)
∧ 1

(
ϵ

|t− − r|

)
∧ 1 dsdr

≤ C(∥g∥∞)

∫ t−

0

∫ t−

0

1

ϵ

(
ϵ

|t− − s|

)
∧ 1

(
ϵ

|t− − r|

)
∧ 1 dsdr

= C(∥g∥∞)
1

ϵ

(∫ t−

0

(
ϵ

|t− − s|

)
∧ 1 ds

)2

= C(∥g∥∞)
1

ϵ

(∫ t−−ϵ

0

(
ϵ

|t− − s|

)
ds+

∫ t−

t−−ϵ
ds

)2

= C(∥g∥∞)
1

ϵ

((
ϵ ln

(
1

ϵ

)
+ ϵt−

)
+ ϵ

)2

≤ C(∥g∥∞, T )
(
ϵ ln2

(
1

ϵ

))
.

For the remaining terms:

∣∣∣∣∫ t

t−

∫
R
f(v(s, y))Γt−s(x− y) dyds

∣∣∣∣ ≤ C(f)

∫ t

t−

(∫
R
Γt−s(x− y) dy

)
ds

≤ C(f)ϵ,

E

[∣∣∣∣∫ t

t−

∫
R
Γt−s(x− y)g(v(s, y)) dyẆ ϵ

sds

∣∣∣∣2
]

≤ C(g)ϵ

∫ t

t−
E
[∣∣∣Ẇ ϵ

s

∣∣∣2] ds
= C(g)ϵ.

Combining each of the above terms gives us the required result. �
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Lemma 55. For T > 0

sup
x∈R

sup
t≤T

E
[
|u(t, x)− ū(t, x)|2

]
→ 0 as ϵ→ 0.

Proof. Given that u and ū have the same, possibly random, initial condition in [0, 1] we

can write

u(t, x)− ū(t, x) =

∫ t

0

∫
R
Γt−s(x− y)

(
f̄(u(s, y))− f̄(u(s−, y))

)
dyds

+

∫ t

0

∫
R
Γt−s(x− y)

(
g(u(s, y))− g(u(s−, y))

)
dydWs

= I1 + I2.

Now, through repeated use of the Cauchy-Schwarz inequality, we have

E
[
|I1|2

]
= E

[∣∣∣∣∫ t

0

∫
R
Γt−s(x− y)

(
f̄(u(s, y))− f̄(u(s−, y))

)
dyds

∣∣∣∣2
]

≤ C(T )E

[∫ t

0

(∫
R
Γt−s(x− y)

(
f̄(u(s, y))− f̄(u(s−, y))

)
dy

)2

ds

]

≤ C(T )E
[∫ t

0

(∫
R
Γt−s(x− y) dy

)
×
(∫

R
Γt−s(x− y)

(
f̄(u(s, y))− f̄(u(s−, y))

)
dy

)2

ds

]

≤ C(T )E
[∫ t

0

∫
R
Γt−s(x− y)

(
f̄(u(s, y))− f̄(u(s−, y))

)2
dyds

]
.

However, by the Lipschitz property of f̄ , given that both f , g and g′ are Lipschitz, and

the Kolmogorov continuity estimates (see Property (vi) Theorem 15) we have

E
[∣∣f̄(u(s, y))− f̄(u(s−, y))

∣∣2] ≤ C(f, g, T )

(
ϵ+

( ϵ

s−

)2)
(3.22)

for all ϵ ∈ (0, 1), 0 ≤ s ≤ T . Fix 0 < ϵ < 1
10
. Using equation (3.22) when s ≥

√
ϵ and

E
[∣∣f̄(u(s, y))− f̄(u(s−, y))

∣∣2] ≤ C(f, g)
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for s ∈ [0,
√
ϵ] leads to

E
[
|I1|2

]
≤ C(f, g, T )

√
ϵ.

We now have to calculate similar estimates for I2. By use of the Itô Isometry we

have:

E

[∣∣∣∣∫ t

0

∫
R
Γt−s(x− y)

(
g(u(s, y))− g(u(s−, y))

)
dydWs

∣∣∣∣2
]

= E

[∫ t

0

∣∣∣∣∫
R
Γt−s(x− y)

(
g(u(s, y))− g(u(s−, y))

)
dy

∣∣∣∣2 ds
]

Cauchy−Schwarz
≤ E

[∫ t

0

∫
R
Γt−s(x− y)

∣∣g(u(s, y))− g(u(s−, y))
∣∣2 dyds] .

which is bounded as for I1. �

The next Lemma gives the key approximation.

Lemma 56. For all T > 0,

sup
x∈R

sup
t≤T

E
[
|v(t, x)− ṽ(t, x)|2

]
→ 0 as ϵ ↓ 0.

Proof.

v(t, x)− ṽ(t, x) =

∫ t

0

∫
R
Γt−s(x− y)

(
f(v(s, y))− f̄(v(s−, y))

)
dyds

+

∫ t

0

∫
R
Γt−s(x− y)

(
g(v(s, y))− g(v(s−, y))

)
dydW ϵ

s

=

∫ t

0

∫
R
Γt−s(x− y)

(
f(v(s, y))− f(v(s−, y))

)
dyds

−1

2

∫ t

0

∫
R
Γt−s(x− y)g(v(s−, y))g′(v(s−, y)) dyds

+

∫ t

0

∫
R
Γt−s(x− y)

(
g(v(s, y))− g(v(s−, y))

)
dydW ϵ

s

= I1 + I2 + I3.
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For the I1 term it is easy to show, along similar lines to the above arguments, E
[
|I1|2

]
≤

C(T ) supy∈R E
[∫ t

0
|v(s, y)− v(s−, y)|2 ds

]
which converges to 0 as ϵ tends to zero by

the use of Lemma 54. Let us next consider the I3 term. To do this we will make use of

Taylor’s Theorem with second order remainder. We apply this to the composite function

(g ◦ v) (s, y) given that g ∈ C2 and v is C2 for s within each Ik(t) to get, for some η lying

between s and s−

g(v(s, y)) = g(v(s−, y)) +
∂

∂s
(g ◦ v) (s−, y)(s− s−) +

1

2

∂2

∂s2
(g ◦ v) (η, y))(s− s−)2.

Before proceeding with the calculation we will derive explicit forms of these total deriva-

tives. It is clear that, for t ∈ [s−, s),

∂

∂t
g(v(t, y))

∣∣∣∣
t=s−

= g′(v(t, y))
∂v

∂t
(t, y)

∣∣∣∣
t=s−

= g′(v(t, y))
(
f(v(t, y)) + g(v(t, y)) Ẇ ϵ

t

)∣∣∣
t=s−

= g′(v(s−, y))
(
f(v(s−, y)) + g(v(s−, y)) Ẇ ϵ

s−

)
.

Differentiating ∂
∂t
g(v(t, y)) again we have

∂2

∂t2
g(v(t, y))

∣∣∣∣
t=η

=
(
gg′′ + g′

2
)
(v(η, y)) Ẇ ϵ

η

(
f(v(η, y)) dt+ g(v(η, y)) Ẇ ϵ

η

)
+(fg′′ + f ′g′) (v(η, y))

(
f(v(η, y)) + g(v(η, y)) Ẇ ϵ

η

)
= F1(v(η, y)) + F2(v(η, y))Ẇ

ϵ
η + F3(v(η, y))

(
Ẇ ϵ
η

)2
where each of the F ′s are bounded by hypothesis (H1). We will use this formulation

later on in our bounds. Define ηs ∈ [s−, s].
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I3 =

∫ t

0

∫
R
Γt−s(x− y)

(
g(v(s, y))− g(v(s−, y))

)
dyẆ ϵ

sds

=

∫ t

0

∫
R
Γt−s(x− y)

×
(
∂

∂t
(g ◦ v) (s−, y)(s− s−) +

1

2
(s− s−)2

∂2

∂t2
(g ◦ v) (ηs, y)

)
dyẆ ϵ

sds

=

∫ t

0

∫
R
Γt−s(x− y)

×
(
g′(v(s−, y))v̇(s−, y)(s− s−) +

1

2
(s− s−)2

∂2

∂t2
(g ◦ v) (ηs, y)

)
dyẆ ϵ

sds

=

∫ t

0

∫
R
Γt−s(x− y)g′(v(s−, y))(s− s−)f(v(s−, y)) dyẆ ϵ

s ds

+

∫ t

0

∫
R
Γt−s(x− y)g′(v(s−, y))(s− s−)g(v(s−, y)) dy(Ẇ ϵ

s )
2ds

+

∫ t

0

∫
R
Γt−s(x− y)

1

2

∂2

∂t2
(g ◦ v) (ηs, y)(s− s−)2 dyẆ ϵ

s ds

=: I3,1 + I3,2 + I3,3.

We will use the properties of the polygonal approximation Ẇ ϵ
s , as discussed at the start

of this section, in each of the terms above.

I3,1 =

∫ t

0

∫
R
Γt−s(x− y)g′(v(s−, y))(s− s−)f(v(s−, y)) dyẆ ϵ

s ds

=
∞∑
k=0

∫
Ik(t)

∫
R
Γt−s(x− y)g′(v(s−, y))(s− s−)f(v(s−, y)) dy

∆Wk

ϵ
ds.

Now given that
∫
Ik(t)

∫
R Γt−s(x−y)g

′(v(s−, y))(s−s−)f(v(s−, y)) dy∆Wk

ϵ
ds are orthogonal
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variables we can write

E
[
|I3,1|2

]
= E

[∣∣∣∣∫ t

0

∫
R
Γt−s(x− y)g′(v(s−, y))(s− s−)f(v(s−, y)) dy

∆Wk

ϵ
ds

∣∣∣∣2
]

= E

∣∣∣∣∣
∞∑
k=0

∫
Ik(t)

∫
R
Γt−s(x− y)g′(v(s−, y))(s− s−)f(v(s−, y)) dy

∆Wk

ϵ
ds

∣∣∣∣∣
2


=
∞∑
k=0

E

[∣∣∣∣∫
Ik(t)

∫
R
Γt−s(x− y)g′(v(s−, y))(s− s−)f(v(s−, y)) dy

∆Wk

ϵ
ds

∣∣∣∣2
]

≤ C(∥f∥∞, ∥g′∥∞)
∞∑
k=0

E

[∣∣∣∣∫
Ik(t)

∣∣∣∣∆Wk

ϵ

∣∣∣∣ (s− s−) ds

∣∣∣∣2
]

given that f and g′ are bounded

≤ ϵC(∥f∥∞, ∥g′∥∞)
∞∑
k=0

∫
Ik(t)

E

[(
∆Wk

ϵ

)2
]
(s− s−)2 ds

by the Cauchy-Schwarz inequality

= C(∥f∥∞, ∥g′∥∞)
∞∑
k=0

∫
Ik(t)

(s− s−)2 ds

≤ C(∥f∥∞, ∥g′∥∞)ϵ2
∞∑
k=0

∫
Ik(t)

ds

≤ C(∥g′∥∞, ∥f∥∞, T )ϵ2.

We will now prove a result which will aid us in our calculation.

Lemma 57. For bounded F : [0, 1] → R, n = 1, 2, 3,

sup
x∈R

sup
t≤T

E

[∣∣∣∣∫ t

0

∫
R
Γt−s(x− y)(s− s−)2F (v(η, y))(Ẇ ϵ

s )
n dyds

∣∣∣∣2
]
≤ C(T )ϵ−n+4/9

which tends to zero as ϵ→ 0.
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Proof.

E

[∣∣∣∣∫ t

0

∫
R
Γt−s(x− y)(s− s−)2F (v(η, y))(Ẇ ϵ

s )
n dyds

∣∣∣∣2
]

≤ E

∣∣∣∣∣
∞∑
k=0

∣∣∣∣∆Wk

ϵ

∣∣∣∣n ∫
Ik(t)

(s− s−)2
∫
R
Γt−s(x− y) |F (v(η, y))| dyds

∣∣∣∣∣
2


≤ CE

∣∣∣∣∣
∞∑
k=0

∣∣∣∣∆Wk

ϵ

∣∣∣∣n ∫
Ik(t)

(s− s−)2 ds

∣∣∣∣∣
2


≤ CE

[
∞∑
k=0

∣∣∣∣∆Wk

ϵ

∣∣∣∣2n ∞∑
k=0

(∫
Ik(t)

(s− s−)2 ds

)2
]

by use of the Cauchy-Schwarz inequality

= CE

[
∞∑
k=0

∣∣∣∣∆Wk

ϵ

∣∣∣∣2n ϵ5/9
]

= C(T )ϵ−n−1ϵ5/9

= C(T )ϵ−n+4/9

which completes the proof. �

We will now put this lemma to use in the bound for the I3,3 term.

I3,3 =

∫ t

0

∫
R
Γt−s(x− y)

1

2

∂2

∂s2
(g ◦ v)(ηs, y)(s− s−)2 dyẆ ϵ

s ds

=

∫ t

0

∫
R
Γt−s(x− y)

1

2
(s− s−)2

×
(
F1(v(ηs, y))Ẇ

ϵ
s + F2(v(ηs, y))

(
Ẇ ϵ
s

)2
+ F3(v(ηs, y))

(
Ẇ ϵ
s

)3)
dy ds

and by Lemma 57, this gives E
[
|I3,3|2

]
= O(ϵ). We will now turn our attention to the

terms I3,2 + I2 and conclude Lemma 56.

I3,2 + I2 =

∫ t

0

∫
R
Γt−s(x− y)g′(v(s−, y))g(v(s−, y)) dy

(
(s− s−)(∆W ϵ

k)
2 − ϵ2/2

)
ds.
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Hence, squaring and taking expectations,

E
[
|I3,2 + I2|2

]
= E

[∣∣∣∣∣
∞∑
k=1

∫
Ik(t)

∫
R
Γt−s(x− y)g′(v(s−, y))g(v(s−, y)) dy

×
(
(s− s−)(∆Wk)

2 − ϵ2/2
)
ds

∣∣∣∣∣
2
 .

It is clear that the last term has orthogonal integrals. Defining Fkϵ = Bkϵ as the Borel

sigma algebra at time kϵ we can write, for k ∈ N ∪ {0},

E
[∫

Ik

(s− s−)(∆Wk)
2 − ϵ2

2
ds |Fkϵ

]
= 0.

Hence,

E
[
|I3,2 + I2|2

]
= E

[∣∣∣∣∣ 1ϵ2
∞∑
k=1

∫
Ik(t)

∫
R
Γt−s(x− y)g′(v(s−, y))g(v(s−, y)) dy

×
(
(s− s−)(∆Wk)

2 − ϵ2/2
)
ds

∣∣∣∣∣
2


=
1

ϵ4

∞∑
k=1

E
[∣∣∣∣∫

Ik(t)

∫
R
(Γt−s(x− y)g′(v(s−, y))g(v(s−, y)) dy

×
(
(s− s−)(∆Wk)

2 − ϵ2/2
))

ds

∣∣∣∣2
]

≤ C(∥g∥∞, ∥g′∥∞)

ϵ4

×
∞∑
k=1

E

[∣∣∣∣∫
Ik(t)

∣∣(s− s−)(∆Wk)
2 − ϵ2/2

∣∣ ds∣∣∣∣2
]

≤ C(∥g∥∞, ∥g′∥∞)

ϵ3

∞∑
k=1

E
[∫

Ik(t)

∣∣(s− s−)(∆Wk)
2 − ϵ2/2

∣∣2 ds]

by the Cauchy-Schwarz inequality. Solving for the integral over Ik(t) gives
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ϵ−3

∞∑
k=1

E
[∫

Ik(t)

∣∣(s− s−)(∆Wk)
2 − ϵ2/2

∣∣2 ds] = ϵ−3

∞∑
k=1

I[
k<

t−(ϵ)
ϵ

]E [ϵ3/3(∆Wk)
4

−2
(
ϵ2/2

)
(∆Wk)

2(ϵ2/2) + ϵ5/4
]

= ϵ−4
(
ϵ5 − ϵ5/2 + ϵ5/4

)
≤ ϵ.

Putting this all together shows, given that g and g′ are bounded, the left-hand-side tends

to zero as epsilon tends to zero as required.

Putting all of this together gives the required bound and this completes the proof of

Lemma 56. �

Lemma 58. For all T > 0 supx∈R supt≤T E
[
|ṽ(t, x)− v̄(t, x)|2

]
→ 0 as ϵ→ 0.

Proof. Note that

ṽ(t, x)− v̄(t, x) =

∫ t

0

∫
R
Γt−s(x− y)g(v(s−, y)) dy

(
dWs − Ẇ ϵ

sds
)
.

Then,

E
[
|ṽ(t, x)− v̄(t, x)|2

]
= E

[∣∣∣∣∫ t

0

∫
R
Γt−s(x− y)g(v(s−, y)) dy

(
dWs − Ẇ ϵ

sds
)∣∣∣∣2
]

= E

[∣∣∣∣∫ t

0

∫
R
(Γt−s(x− y)− Γt−s−(x− y)) g(v(s−, y)) dy

(
dWs − Ẇ ϵ

sds
)∣∣∣∣2
]

since
∫
Ik(t)

dWs − Ẇ ϵ
s ds = 0 by definition

≤ CE

[∣∣∣∣∫ t

0

∫
R
(Γt−s(x− y)− Γt−s−(x− y)) g(v(s−, y)) dy dWs

∣∣∣∣2
]

+CE

[∣∣∣∣∫ t

0

∫
R
(Γt−s(x− y)− Γt−s−(x− y)) g(v(s−, y)) dy Ẇ ϵ

sds

∣∣∣∣2
]
.
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Again taking each of these in turn gives

E

∣∣∣∣∣
∞∑
k=0

∫
Ik(t)

∫
R
(Γt−s(x− y)− Γt−s−(x− y)) g(v(s−, y)) dy dWs

∣∣∣∣∣
2


=
∞∑
k=0

∫
Ik(t)

E
∣∣∣∣∫

R
(Γt−s(x− y)− Γt−s−(x− y)) g(v(s−, y)) dy

∣∣∣∣2 ds
by orthogonality

≤ C(g)
∞∑
k=0

∫
Ik(t)

∣∣∣∣∫
R
|Γt−s(x− y)− Γt−s−(x− y)| dy

∣∣∣∣2 ds
given that g is bounded. The second term is similar,

E

∣∣∣∣∣
∞∑
k=0

∫
Ik(t)

∫
R
(Γt−s(x− y)− Γt−s−(x− y)) g(v(s−, y)) dy Ẇ ϵ

sds

∣∣∣∣∣
2


=
∞∑
k=0

E

[∣∣∣∣∫
Ik(t)

∫
R
(Γt−s(x− y)− Γt−s−(x− y)) g(v(s−, y)) dy Ẇ ϵ

sds

∣∣∣∣2
]

by the orthogonality of Ẇ ϵ(s)

≤ C(∥g∥∞)
∞∑
k=0

E

[∣∣∣∣∫
Ik(t)

∫
R
|Γt−s(x− y)− Γt−s−(x− y)| dy

∣∣∣∣∆Wk

ϵ

∣∣∣∣ ds∣∣∣∣2
]

given that g is bounded

≤ C(∥g∥∞)
∞∑
k=0

E

[∫
Ik(t)

(∫
R
|Γt−s(x− y)− Γt−s−(x− y)| dy

)2

×
∫
Ik(t)

(
∆Wk

ϵ

)2

ds

]

by the Cauchy-Schwarz inequality.

For both of these equations we can use equation (3.21) and write, making use of the

identity
∫
Ik(t)

E
[(

∆Wk

ϵ

)2]
= 1 in the second term,
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C(g)
∞∑
k=0

∫
Ik(t)

ϵ2

|t− s|2
∧ 1 ds

= C(g)

∫ t

0

ϵ2

|t− s|2
∧ 1 ds

≤ C(g)ϵ

which completes the required bound. �

Lemma 59. For t ∈ [0, T ] and for all x ∈ R

E
[
|ū(t, x)− v̄(t, x)|2

]
≤ C(f, g, T )

∫ t

0

sup
y∈R

E
[∣∣u(s−, y)− v(s−, y)

∣∣2 ds] .
Proof. Note

ū(t, x)− v̄(t, x) =

∫ t

0

∫
R
Γt−s(x− y)

(
f̄(u(s−, y))− f̄(v(s−, y))

)
dyds

+

∫ t

0

∫
R
Γt−s(x− y)

(
g(u(s−, y))− g(v(s−, y))

)
dydWs.

Applying the Lipschitz property of f̄ and g, we deduce the required result. �

We can now put Lemmas 54 - 59 together to achieve a bound on |u(s, y)− v(s, y)|2 and

use Gronwall’s inequality to finish the proof. DefineRϵ
t = sups≤t supy∈R E

[
|u(s, y)− v(s, y)|2

]
.

Proof of Theorem 27. By the above lemmas we can write, for all t ≤ T and x ∈ R

E
[
|u(t, x)− v(t, x)|2

]
≤ C(T, ∥f∥∞, ∥g∥∞, ∥g′∥∞)

∫ t

0

sup
y∈R

E
[∣∣u(s−, y)− v(s−, y)

∣∣2] ds
+Jϵ(T )

where Jϵ(T ) → 0 as ϵ ↓ 0. Hence, given the definition of Rϵ
t,

Rϵ
t ≤ Jϵ(T ) + C(T, ∥f∥∞, ∥g∥∞, ∥g′∥∞)

∫ t

0

Rϵ
s ds.

By the use of a Gronwall argument, this implies Rϵ
t → 0 as ϵ ↓ 0. �
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Chapter 4

Non-triviality of the stationary

travelling wave

Introduction. In this chapter we prove that the stretched limit law ν constructed in

Chapter 3 is concentrated on B 1,0
dec and is a law of the stationary travelling wave.

Definition 60. Stationary travelling wave A stationary travelling wave is an in-

variant measure of the centred process. Alternatively, an initial law ν is a stationary

travelling wave if P [ũ(t, ·) ∈ dφ] = ν(dφ) for all t ≥ 0.

4.1 McKean Bound

Introduction. In this section we prove that although the wavefront becomes more stretched

over time, as demonstrated in the previous chapter, it cannot become too flat, see remark

below. For the proof we will use the stochastic analogue of a method originally found in

the McKean paper ([18]) for the deterministic KPP equation and revisited by Bramson
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(see [3]). We will first review the deterministic KPP case before proving a wave speed

bound which will be useful in later chapters and sections.

4.1.1 Review of the McKean bound for the deterministic KPP

equation

The McKean paper [18] considers the KPP equation ut = uxx+f(u) where f(u) = u(1−u)

for t ≥ 0 and x ∈ R with initial condition u0(x) = I[x≤0]. Following the transformation

of this equation to the fixed frame of reference using the wave marker γat , as defined in

the previous chapter where we denote the transformed wavefront by ũ, we can write:

∂tũ = ∂xxũ+ ũ(1− ũ) + ũx(t, x)γ̇
a
t ,

γ̇at denoting the true derivative with respect to time t > 0.

Remark. Introducing the wave marker into the above equation, although making the

analysis from a fixed frame of reference easier, gives rise to an additional term ũxγ̇
a
t

via the function of a function differentiation rule. In McKean’s case γat is deterministic

whereas in the stochastic case, γat , for t > 0, is a semi-martingale (see Chapter 2).

Remark. Recalling the definition of a solutions width (see remark following example 1)

and its component drivers, a solution is said to be “too flat” if b(t)− a(t) is sufficiently

large such that

lim
t→∞

1

t

∫ t

t0

∫
R
u(s, x)(1− u(s, x)) dxds � ∞.

In the deterministic case, McKean [18] integrated both over space (from negative

infinity to zero) and then time (0 < t0 ≤ s ≤ t). Applying Fubini’s theorem and

appealing to the properties of the initial condition and the value of solutions and their
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derivatives at the boundary gives rise to the following equation:

0 ≥
∫ 0

−∞
[ũ(t, x)− ũ(t0, x)] dx =

∫ t

t0

∂xũ(s, 0)ds+ [a− 1]
(
γat − γat0

)
+

∫ t

t0

∫ 0

−∞
ũ(s, x) [1− ũ(s, x)] dxds.

It is well known that for the KPP equation, the wave speed is bounded: γat /t ≤

2
√
f ′(0). Using this as well as the properties that the gradient at the centring point is

increasing and, for x ≥ 0, ũ(t, x) is increasing in t (the proof of both of these things will

be extended when we embrace the stochastic case) we can write, for any fixed t0 > 0,

lim
t→∞

1

t

∫ t

t0

∫ 0

−∞
ũ(t, x)(1− ũ(t, x))dx ≤ 2(1− a)− ∂xũ(t0, 0) <∞.

Remark. ũ depends on the choice of a ∈ (0, 1) but, in the above, we can let a → 0 and

use the property that ∂xu(t0, 0) is bounded below (and hence −∂xu(t0, 0) is bounded

above) to show that

lim
t→∞

1

t

∫ t

t0

∫ ∞

−∞
u(t, x)(1− u(t, x))dx ≤ 2− inf

y
∂xu(t0, y)

where now the dependence on a has disappeared. This bound indicates that in the

evolution of ũ (and given that the introduction of the wave marker is just a transformation

of u along the spatial axis, the evolution of u too), the wavefront cannot get too flat for

a fixed time t > 0 over a large interval x ∈ R. We aim for a close stochastic analogue of

these ideas, although the technical details are considerably more intricate to verify.

4.1.2 McKean bound for the stochastic heat equation

Notation. For φ ∈ B 1,0
dec we write φ̃a for φ centred at γat (φ).
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Theorem 61. Consider a solution u to

du = uxxdt+ f(u)dt+ g(u) ◦ dWt (4.1)

for t ≥ 0 and x ∈ R where f and g satisfy hypotheses (H1) and (H2). Suppose also

that u(0) = I[x≤0] and define f̄(z) = f(z) + 1
2
g(z)g′(z). If, for some ϵ > 0 and a ∈ (0, 1),∣∣f̄(z)∣∣ ≥ ϵz(a− z) for z ∈ [0, a] we have

lim
t→∞

1

t
E
[∫ t

0

∫ 0

−∞
ũa(s, x)(a− ũa(s, x)) dxds

]
<∞. (4.2)

Alternatively, if
∣∣f̄(z)∣∣ ≥ ϵ(1− z)(z − a) for z ∈ [a, 1] we have

lim
t→∞

1

t
E
[∫ t

0

∫ ∞

0

(1− ũa(s, x))(ũa(s, x)− a) dxds

]
<∞. (4.3)

We first prove several technical lemmas which will be useful.

In the following Lemmas, 63 - 67, let u define a solution started from the Heaviside initial

condition I[x≤0]. Fix a ∈ (0, 1) to be the level at which we centre the solution.

Definition 62. Let {Xn}n∈N be a set of real valued random variables. We will write Xn

is stochastically increasing, X1

s
≺ X2

s
≺ . . ., if there exist versions {X̂n}n∈N on the same

probability space such that X̂n
D
= Xn for all n ∈ N and for all i, j ∈ N satsifying i < j,

P
[
X̂i ≤ X̂j

]
= 1.

Lemma 63. Gradient around centring point

ũx(t, 0) is stochastically increasing in t for t > 0.

Proof. By Theorem 49 L(ũ(t, ·))
s
≻ L(ũ(s, ·)) for 0 < s < t. By definition 43, we may

take versions ˆ̃u(t, ·) D
= ũ(t, ·) and ˆ̃u(s, ·) D

= ũ(s, ·) so that ˆ̃u(t, ·)
s
≻ ˆ̃u(s, ·) almost surely.

Note ˆ̃u(t, ·) and ˆ̃u(s, ·) are C1 and have strictly negative derivatives almost surely (see
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Chapter 2 for regularity result). Applying Lemma 35 with ˆ̃u(t, 0) = ˆ̃u(s, 0) = a we find

ˆ̃ux(t, 0) ≥ ˆ̃ux(s, 0) almost surely and the lemma follows. �

Lemma 64. Integral bound on ũx(t, x)

Fix t0 > 0. Then for t0 ≤ t the integral 1
t
E
[∫ t

t0
ũx(s, 0) ds

]
is bounded below by

E [ũx(t0, 0)] and bounded above by 0.

Proof. For 0 < t0 ≤ t ≤ T , given that E [|ũx(t, 0)|] < ∞ by Property (vii) of Theorem

15, we can use Fubini’s theorem to exchange the integral and expectation. Noting also

that E [ũx(s, 0)] is increasing by Lemma 63, a simple analysis reveals that

1

t
E
[∫ t

t0

ũx(s, 0) ds

]
=

1

t

∫ t

t0

E [ũx(s, 0)] ds ≥ E [ũx(t0, 0)] (1−
t0
t
) ≥ E [ũx(t0, 0)]

and

1

t
E
[∫ t

t0

ũx(s, 0) ds

]
=

1

t

∫ t

t0

E [ũx(s, 0)] ds ≤ E [ũx(t, 0)] (1−
t0
t
) ≤ 0

which completes our proof. �

Lemma 65. Bound on Wave-Speed

Choose K1, K2 ≥ 0 so that

f(z) +
1

2
g(z)g′(z) ≤ K1z

−f(z)− 1

2
g(z)g′(z) ≤ K2(1− z)

for all z ∈ [0, 1]. Then

lim
t→∞

E
[
|γat |
t

]
≤ 2
√
K1 + 2

√
K2.
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Remark. Note that the above bounds are always possible given the current hypotheses

(H1) and (H2) on f and g. To show this we make use of Taylor’s Theorem:

f(z) +
1

2
gg′(z) = r(z) = r(0) + r′(η)z for η ∈ (0, z)

≤ |r′(η)| z given hypothesis (H2) r(0) = 0

≤ Cz as r′ is bounded.

Remark. In the case f̄ = f + 1
2
gg′ ≥ 0 and concave, this shows the rate of growth of

E [|γat |] is at most that of the deterministic wave speed for ut = uxx + f̄(u), namely

2
√
f̄ ′(0).

Proof. For intuition we first consider the linearised deterministic equation

ut(t, x) = uxx(t, x) +K1u(t, x) (4.4)

where we have considered the Itô form of the equation, neglected the noise and written

f̄(u) as a linear function of u. The Green’s function for equation (4.4) can be found easily

from standard PDE methods and is exp{K1t} 1√
4πt

exp{− (x−y)2
4t

} = exp{K1t}Γt(x−y) :=

Ht(x− y).

Now, fix t ≥ 0 and multiply both sides of equation (2.2) by a compactly supported,

infinitely differentiable (in both variables) function φ(s, x), s ∈ R+, x ∈ R, satisfying

φx(−∞) = φx(∞) = 0. Integrating over both time and space gives:

∫
R
u(t, x)φ(t, x)− u(0, x)φ(0, x) dx =

∫ t

0

u(t, x)
∂φ

∂t
(s, x) dx

+

∫ t

0

∫
R

(
uxx(s, x) + f̄(u(s, x))

)
φ(s, x) dxds

+martingale term.
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Integrating by parts over x allows us to move the derivatives from u onto φ, on the

right-hand-side, and using the boundary conditions for φ and the bound on f̄ we can

write:

∫
R
(u(t, x)φ(t, x)− u(0, x)φ(0, x)) dx

≤
∫ t

0

∫
R
u(s, x)

(
φxx(s, x) +K1φ(s, x) +

∂φ

∂t
(s, x)

)
dxds

+martingale term. (4.5)

We now take expectations to remove the martingale term and set φ(s, y) = Ht−s(Ξ, y)

where Ht(Ξ, y) =
∫
R Ht(x − y)Ξ(x) dx for suitable functions Ξ such that the integral

is well defined. It is clear H0(Ξ, y) = Ξ(y) and, by integration by parts due to Ht(x)

satisfying equation (4.4),

Ht(Ξ, y) = H0(Ξ, y) +

∫ t

0

Hs(Ξxx +K1Ξ, y)Ξ(x) ds

= Ξ(y) +

∫ t

0

Hs(Ξxx +K1Ξ, y)Ξ(x) ds. (4.6)

By the definition of φ, it is clear φ(t, y) = Ξ(y) and φxx + K1φ + ∂φ
∂t

= 0 by equation

(4.6). Thus (4.5) becomes

E
[∫

R
u(t, x)Ξ(x) dx

]
≤

∫
R
u(0, x)Ht(Ξ, x) dx

=

∫
R
u(0, x)

(∫
R
Ht(z − x)Ξ(z) dz

)
dx.

Letting Ξ(r) approach a delta function, that is, for fixed l ∈ R, be of the form

(4πn)−
1
2 exp

(
− (r−l)2

4n

)
and let n→ ∞ the above equation tends to E [u(t, l)] ≤

∫
R u(0, x)Ht(l−

x) dx. To see this we apply Lesbesgue’s differentiation Theorem on the left-hand-side

and note Ht(Ξ, x) → Ht(l − x) on the right-hand-side. We will now relabel the dummy
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variables and define C(t, x) = E [u(t, x)] and rewrite the above as

C(t, x) ≤ exp (K1t)

∫
R
H(y)Γ(t, x− y) dy where H(y) = I[y≤0]

= exp (K1t)

∫ 0

−∞
Γ(t, x− y) dy

=
exp (K1t)√

4πt

∫ 0

−∞
exp

(
−(x− y)2

4t

)
dy.

Using the substitution z = (x− y)/
√
t we can express the above integral as∫ 0

−∞
exp

(
−(x− y)2

4t

)
dy =

∫ ∞

x/
√
t

exp

(
−z

2

4

)√
t dz.

Noting the similarities between the Gaussian distribution mean 0, variance 2 this can be

written ∫ ∞

x/
√
t

exp

(
−z

2

4

)√
t dz =

√
4tπ

(
1− Φ(x/

√
t)
)
.

Hence,

C(t, x) ≤ exp(K1t)
(
1− Φ(x/

√
t)
)
.

Now, given the definition of the Gaussian Φ function we can write and bound

1− Φ(x) =

∫ ∞

x

exp

(
−z

2

4

)
dy ≤

∫ ∞

x

z

x
exp

(
−z

2

2

)
dz

=
1

x
exp

(
−x

2

4

)
.

Putting all this together allows us to write

C(t, x) ≤ exp(K1t)
(
1− Φ(x/

√
t)
)

= exp(K1t)
exp(−x2

4t
)

x

√
t. (4.7)

Also note that C(t, x) ≤ 1 for all (t, x) ∈ R+ × R trivially. Then

E
[
(γat )

+] =

∫ ∞

0

P [γat ≥ x] dx

=

∫ ∞

0

P [u(t, x) ≥ a] dx
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since {γat ≥ x} = {u(t, x) ≥ a} almost surely for t > 0.

Hence,

E
[
(γat )

+] =

∫ ∞

0

P [u(t, x) ≥ a] dx

≤
∫ ∞

0

1 ∧ E [u(t, x)]

a
dx by Tchebychev’s inequality

≤
∫ 2

√
K1t

0

dx+

√
t

a

∫ ∞

2
√
K1t

exp (K1t)
exp

(
−x2

4t

)
x

dx

≤
∫ 2

√
K1t

0

dx+

√
t

a

∫ ∞

2
√
K1t

exp (K1t)
exp

(
−x2

4t

)
x

×
(

x2

4K1t2

)
dx

≤ 2
√
K1t+

1

a

1

2K1

√
t
.

This allows us to write

lim
t→∞

E
[
(γat )

+

t

]
≤ 2
√
K1. (4.8)

To control E
[
(γat )

−] where (z)− = − (z ∧ 0) ≥ 0 we note that for x ≥ 0

{(γat )
− ≥ x} = {γat ≤ −x}

= {u(t,−x) ≤ a} almost surely if t > 0

= {1− u(t,−x) ≥ 1− a}.

Defining v(t, x) = 1− u(t,−x) we note that v(t, x) solves the equation dv = vxxdt+

f̂(v)dt+ ĝ(v)◦dWt where f̂(v) = −f(1−v), ĝ(v) = −g(1−v). This means the condition

−f(z)− 1/2g(z)g′(z) = f̂(1− v)+ 1
2
ĝĝ′(1− v) ≤ K2(1− v) allows the same argument as

shown in the (γat )
+ case to yield

lim
t→∞

E
[
(γat )

−

t

]
≤ 2
√
K2. (4.9)

77



Combining both estimates we have

lim
t→∞

E [|γat |] = lim
t→∞

E
[
(γat )

+]+ lim
t→∞

E
[
(γat )

−]
≤ 2

√
K1 + 2

√
K2

as required. �

Lemma 66. Let Mt be a continuous local martingale. If [M ]t
a.s.−→ 0 then Mt

a.s.−→ 0.

Proof. By Dubins-Schwarts (see [24]) there exists a Brownian motion B such that we

can write Mt = B[M ]t . Given that [M ]t → 0 almost surely we have Mt = B[M ]t → 0

almost surely. �

Lemma 67. For t ≥ t0 > 0,

lim
L→∞

∫ t

t0

(ũ(s,−L)− 1) ◦ dγas = 0 almost surely.

and

lim
U→∞

∫ t

t0

ũ(s, U) ◦ dγas = 0 almost surely.

Proof. Given the definition of γas (see Chapter 2) we may write
∫ t
t0
(ũ(s,−L)− 1) ◦ dγas

in its component parts, recall γas is defined by definition 17 and Theorem 21:

∫ t

t0

(ũ(s,−L)− 1) ◦ dγas =

∫ t

t0

(ũ(s,−L)− 1)

(
uxx(s, γ

a
s ) + f(a)

ux(s, γas )

)
ds

+

∫ t

t0

(ũ(s,−L)− 1)

(
g(a)

ux(s, γas )

)
dWs

+
1

2

∫ t

t0

[
(ũ(s,−L)− 1)

(
g(a)

ux(s, γas )

)
, W

]
ds

where the square brackets denote the quadratic covariation process in calculating the cor-

rection term when moving from Stratonovich to Itô noise. We will consider each of these
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terms in turn. For the first term we shall, pathwise, use the Dominated-Convergence

Theorem. Also note:

(1) ux(s, γ
a
s ) < 0 (Property (iv) Theorem 15),

(2) Given that s → γas and uxx(s, x) are continuous so is the composite and hence,

uxx(s, γ
a
s ) achieves its bounds and is bounded,

(3) (ũ(t,−L)− 1) converges to zero as L increases and is bounded by 2.

Using these it is clear

lim
L→∞

∫ t

t0

(ũ(s,−L)− 1)

(
uxx(s, γ

a
s ) + f(a)

ux(s, γas )

)
ds

=

∫ t

t0

lim
L→∞

(ũ(s,−L)− 1)

(
uxx(s, γ

a
s ) + f(a)

ux(s, γas )

)
ds

= 0 almost surely by the Dominated Convergence Theorem.

For the second term we appeal to Lemma 66 and show the quadratic covariation

process converges almost surely to zero:

∫ t

t0

(ũ(s,−L)− 1)2
(

g(a)

ux(s, γas )

)2

ds→ 0

almost surely as L tends to infinity similarly to the previous term.

For the third term we calculate the quadratic covariation. The decomposition of

d

(
(ũ(s,−L)− 1)

(
g(a)

ux(s, γas )

))
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can be written

g(a)
(ux(s, γ

a
s ) ◦ dũ(s,−L) + (ũ(s,−L)− 1) ◦ dux(s, γas ))

ux(s, γas )
2

= increments with bounded variation

+g(a)
(ux(s, γ

a
s )g(ũ(s,−L)) ◦ dWs + ux(s, γ

a
s )ũx(s,−L) ◦ dγas )

ux(s, γas )
2

+g(a)
((ũ(s,−L)− 1) g′(u(s, γas ))ux(s, γ

a
s ) ◦ dWs)

ux(s, γas )
2

.

Then,

d

[
(ũ(s,−L)− 1)

(
g(a)

ũx(s, γas )

)
, W

]
= g(a)

(ũx(s, γ
a
s )g(ũ(s,−L))− ux(s, γ

a
s )ũx(s,−L) (g(a) (γax)s))

ũx(s, γas )
2

+
((ũ(s,−L)− 1) g′(ũ(s, γas ))ũx(s, γ

a
s ))

ũx(s, γas )
2

.

Note m is the inverse of u and (γax)s = mx(s) from equation (2.7) and is bounded on

s ∈ [t0, t] almost surely. By Property (iv) of Theorem 15 and, given that g is bounded

and continuous, g(x) → 0 as x→ 1, this term clearly tends to zero as L tends to infinity

by the same properties as those used in the first two terms. �

Proof of Theorem 61 (Stochastic McKean bound). For t ≥ t0 > 0, we have

ũ(t, x)− ũ(t0, x) =

∫ t

t0

ũxx(s, x) ds+

∫ t

t0

ũx(s, x) ◦ dγas +
∫ t

t0

f(ũ(s, x)) ds

+

∫ t

t0

g(ũ(s, x)) ◦ dWs P-almost surely.

We now transform from the Stratonovich noise to an Itô noise, at the expense of

a correction term which we will absorb into the forcing term writing f̄(z) = f(z) +
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1
2
g(z)g′(z).

ũ(t, x)− ũ(t0, x) =

∫ t

t0

ũxx(s, x) ds+

∫ t

t0

ũx(s, x) ◦ dγas +
∫ t

t0

f̄(ũ(s, x)) ds (4.10)

+

∫ t

t0

g(ũ(s, x))dWs

P-almost surely.

Note that for U > 0 we have ũ(t, U) ≤ a and ũ(t, U)
U→∞−→ 0.

We integrate over [0, U ] and use Fubini’s and the stochastic Fubini Theorem to get∫ U

0

ũ(t, x)− ũ(t0, x) dx =

∫ t

t0

(ũx(s, U)− ũx(s, 0)) ds

+

∫ t

t0

(ũ(s, U)− a) ◦ dγas (4.11)

+

∫ t

t0

∫ U

0

f̄(ũ(s, x)) dxds

+

∫ t

t0

∫ U

0

g(ũ(s, x)) dsdWs.

Remark. The first and third terms on the right-hand-side only require the ordinary Fubini

Theorem, path-by-path, and this is easy to justify.

Remark. A suitable stochastic Fubini Theorem can be found in [24] page 176 for inte-

grands that are bounded. This covers the fourth term on the right-hand-side. For the

second term we proceed similarly but, given the unboundedness of ũx(t, x) near t = 0,

we cannot directly apply Fubini’s Theorem. However, if we define the stopping time

σn = inf{t ≥ t0 > 0 : sup0≤y≤U |ũx(t, y)| ≥ n} and consider instead the integral∫ U

0

∫ t∧σn

t0

ũx(s, x) ◦ dγasdx =

∫ U

0

∫ t

t0

ũx(s, x)I[s≤σn] ◦ dγasdx,

we can use Fubini’s Theorem to interchange integrals given that the integrand is now

bounded. Given that the stopping time satisfies σn → ∞ almost surely as n → ∞ by
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the regularity of ũx, we have the desired result almost surely.

We aim to progress in the following steps

(1) Let U → ∞ to “decouple” ◦ dγas term;

(2) Take expectations;

(3) Then take the lim sup 1
t
.

By Lemma 67
∫ t
t0
ũ(s, U)◦dγas → 0 almost surely. This shows that term 2 on the right-

hand-side of equation (4.11) converges almost surely to −a
(
γat − γat0

)
. By regularity of

solutions we know ũx(s, U)
a.s.−→ 0 as U → ∞. We need to justify

∫ t

t0

ũx(s, U) ds
a.s.−→ 0 as U → ∞. (4.12)

Given that

E

[(∫ t

t0

|ũx(s, U)| ds
)2
]
≤ C(T )E

[∫ t

t0

|ũx(s, U)|2 ds
]

by the Cauchy-Schwarz inequality it is enough to show |ũx(s, U)|2 is uniformly integrable.

From Theorem 15, for solutions started from the Heaviside initial condition

E
[
sup
y

|ux(s, y)|2
]
≤ C(t0, T ) <∞

for s ∈ (t0, T ].

Then,

E
[∫ t

t0

|ũx(s, U)|2 ds
]
≤ E

[∫ t

t0

sup
y

|ux(s, y)|2 ds
]

is bounded independently of U .
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This shows that the variable
∫ t
t0
ũx(s, U) ds is uniformly integrable and this justifies

(4.12).

As u ∈ [0, 1] given hypothesis (H2) we can write

E
[∫ T

0

∫
R
u(s, x)(1− u(s, x)) dxds

]
≤

∫ T

0

∫ ∞

0

E [u(s, x)] dxds

+

∫ T

0

∫ 0

−∞
E [(1− u(s, x))] dxds

< ∞

by the first moment bounds on C(t, x) = E [u(t, x)], as before (see equation (4.7)), and

E [1− u(t, x)]. This allows us to dominate (since
∣∣f̄(z)∣∣ ≤ Kz(1 − z)) and justifies the

limit

∫ t

t0

∫ U

0

f̄(ũ(s, x)) dxds→
∫ t

t0

∫ ∞

0

f̄(ũ(s, x)) dxds.

We will also show that, since g is bounded above, g(z) ≤ Cz(1 − z) for some constant

C, we have

∫ t

t0

∫ U

0

g(ũ(s, x)) dxdWs →
∫ t

t0

∫ ∞

0

g(ũ(s, x)) dxdWs as U → ∞. (4.13)

Note that

E

[∫ t

t0

(∫
R
u(1− u)(s, x) dx

)2

ds

]
≤ 2E

[∫ T

0

(∫ ∞

0

u(s, x) dx

)2

ds

]
(4.14)

+2E

[∫ T

0

(∫ 0

−∞
(1− u(s, x)) dx

)2

ds

]
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and

∫ T

0

E

[(∫ ∞

0

u(s, x) dx

)2

ds

]
=

∫ T

0

∫ ∞

0

∫ ∞

0

E [u(s, x)u(s, y)] dxdyds

≤
∫ T

0

∫ ∞

0

∫ ∞

0

E [u(s, x)] ∧ E [u(s, y)] dxdyds

≤
∫ T

0

∫ ∞

0

∫ ∞

0

C(s, x) ∧ C(s, y) dxdyds

< ∞

by first moment bounds (see (4.7)). The second term in (4.14) is similar. This indicates

that the right-hand-side of (4.13) is well defined. Also, this gives the required domination

to show that (4.13) holds in L2 and hence, almost surely along a suitable sequence

Un → ∞. Finally

∫ U

0

ũ(t, x)− ũ(t0, x) dx
a.s.−→

∫ ∞

0

ũ(t, x)− ũ(t0, x) dx

where we dominate by

C(a)

∫
R
u(1− u)(t, x) + u(1− u)(t0, x) dx <∞ almost surely.

This completes step 1 and we have

∫ ∞

0

ũ(t, x)− ũ(t0, x) dx = −
∫ t

t0

ũx(s, 0) dx− a
(
γat − γat0

)
+

∫ t

t0

∫ ∞

0

f̄(ũ(s, x)) dxds (4.15)

+

∫ t

t0

∫ ∞

0

g(ũ(s, x))dxdWs
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almost surely. To complete step 2 we now take expectations and rearrange.

∫ t

t0

E
[∫ ∞

0

f̄(ũ(s, x)) dx

]
ds = E

[∫ ∞

0

ũ(t, x)− ũ(t0, x) dx

]
(4.16)

+aE
[
γat − γat0

]
+E

[∫ t

t0

ũx(s, 0) dx

]
.

For step 3 we multiply by 1
t
for t ≥ t0 > 0 and take the limit as t → ∞. The

domination in equation (4.15) shows that

lim
t→∞

1

t

∣∣∣∣E [∫ ∞

0

ũ(t, x)− ũ(t0, x) dx

]∣∣∣∣ <∞

by using first moment bounds on u(t, x) and 1− u(t, x). Lemma 65 shows that

lim
t→∞

1

t

∣∣E [γat − γat0
]∣∣ <∞.

Also, by Lemma 64

lim
t→∞

−1

t
E
[∫ t

t0

ũx(s, 0) ds

]
≤ E [−ũx(t0, 0)]

< ∞

and 1
t
E
[∫ t

t0
ũx(s, 0) ds

]
≤ 0. This shows that in the case that either f(z) ≥ ϵz(a− z) for

z ∈ [0, a] or f(z) ≤ −ϵz(a− z) for z ∈ [0, a] we may use equation (4.16) to deduce that

lim
t→∞

1

t
E
[∫ t

t0

∫ ∞

0

ũ(s, x) (a− ũ(s, x)) dx

]
<∞. (4.17)

In the case
∣∣f̄(z)∣∣ ≥ ϵ(1 − z)(z − a) for z ∈ [a, 1] we repeat the above analysis but

integrate over [−L, 0] and let L→ ∞ to deduce

lim
t→∞

1

t
E
[∫ t

t0

∫ 0

−∞
(1− ũ(t, x))(ũ(t, x)− a) dxds

]
<∞. (4.18)
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We can also replace t0 with 0 if necessary as, by first moment bounds on

E
[∫

R
u(t, x)(1− u(t, x) dx

]
,

we can show that 1
t
E
[∫ t0

0

∫
R u(s, x)(1− u(s, x)) dxds

]
→ 0 as t→ ∞ and this completes

the proof. �

Lemma 68. Let u be a solution to equation (2.1) under hypotheses (H1) and (H2). If∣∣f̄ ∣∣ ≥ ϵz(1− z) on [0, 1] then

lim
t→∞

1

t
E
[∫ t

0

∫
R
u(s, x)(1− u(s, x)) dxds

]
<∞.

Proof. The proof of this follows in the same way as Theorem 61, we first integrate over

(−L,U) and then by splitting up the range of integration to [−L, 0] and [0, U ] the proof

carries over unchanged. �

Remark. This lemma shows that in the case f̄(u) ≤ ϵu(1 − u), the limiting solution as

time tends to infinity is not the constant function u∞ ̸= a ∈ (0, 1). However, in the cases

f̄(u) ≤ ϵu(1 − u)(u − a) and f̄(u) ≤ ϵu(1 − u)(a − u) more work is required to remove

the possibility that u∞ = a. We will look at this in the next section.

4.2 Dynamics around centring point

Introduction. In the previous section we have seen that if the solution becomes flat

around the centring point then this adds little contribution to the McKean bound type

estimates. For a fixed centring point a ∈ (0, 1) such that f̄(a) = 0, the trivial solution of

limt→∞ L (ũ(t, x)) = δa still remains a possibility. In this section we explore the dynamics
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of the solution to equation (2.2) around the centring point a and show that such a limiting

solution is impossible. We will also discuss the implications in the case of f̄ being of the

unstable form, f̄ = u(1− u)(a− u) (see Chapter 1).

Theorem 69. Suppose f̄ is either of KPP, Nagumo or Unstable type and, for the

Nagumo and Unstable type, suppose further f̄(a) = 0 and g(a) ̸= 0. Then ν
(
B 1,0
dec

)
= 1.

Proof. f̄ is of KPP type.

In this case f̄ ≥ ϵz(1− z) for all ϵ > 0. Since L(ũ(t)) → ν in M1(Bdec) then for any N

E
[∫ N

−N
ũ(t, x)(1− ũ(t, x)) dx

]
→
∫
Bdec

∫ N

−N
φ(1− φ) dxν(dφ) as t→ ∞

(since the map φ→
∫ N
−N φ(1− φ) dx is bounded and continuous on Bdec). Hence,

1

t
E
[∫ t

0

∫ N

−N
ũ(t, x)(1− ũ(t, x)) dxds

]
→
∫
Bdec

∫ N

−N
φ(1− φ) dxν(dφ)

and by Lemma 68 the right-hand-side must be bounded independently of N . Letting

N → ∞ we find

∫
Bdec

∫
R
φ(1− φ) dxν(dφ) <∞.

This implies that for dν almost all φ either φ ∈ B 1,0
dec or φ = 0 or φ = 1. In Theorem 51

we found variables ˆ̃utn so that

ˆ̃utn ↑ u(∞, x) for x ≥ 0

ˆ̃utn ↓ u(∞, x) for x ≤ 0

so that ū(∞, x), the right continuous modification of u(∞, x) which has law ν, takes

values in [0, a] for x > 0 and in [a, 1] for x < 0. This eliminates the possibility that
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φ = 0 and φ = 1 and shows ν(B 1,0
dec) = 1.

f̄ is of the Nagumo or Unstable type (where f̄(a) = 0, g(a) ̸= 0).

We have
∣∣f̄ ∣∣ ≥ ϵ(1− z)(z−a) on [a, 1] and

∣∣f̄ ∣∣ ≥ ϵz(a− z) on [0, a]. By the same reasons

as in the KPP type case we find∫
Bdec

∫ ∞

0

φ(a− φ) dxν(dφ) <∞

and∫
Bdec

∫ 0

−∞
(1− φ)(φ− a) dxν(dφ) <∞.

This implies that for dν almost all φ either φ ∈ B 1,0
dec or φ = a. We need to eliminate the

latter possibility. The key idea is that if ν (φ : φ = a) = δ1 > 0 then with probability

at least δ1/2 there will be an arbitrary large flat-ish patch in ũ(t). However, this would

lead to an arbitrary large contribution to the McKean bound when the noise g(u) ◦ dW

perturbs it.

We will prove by contradiction. Suppose ν(φ : φ = a) = δ1 > 0. Then, defining z+ =

z∨0, setting η > 0 and using the property that φ 7→
(
1−

∫
R |φ(x)− a|2 exp (−η |x|) dx

)
+

is bounded and continuous, we can write

Q̃H
t

(
φ :

∫
R
|φ(x)− a|2 exp (−η |x|) dx ≤ 1

)
≥
∫
Bdec

(
1−

∫
R
|φ(x)− a|2 exp (−η |x|) dx

)
+

Q̃H
t (dφ)

→
∫
Bdec

(
1−

∫
R
|φ(x)− a|2 exp (−η |x|) dx

)
+

ν(dφ)

≥ δ1.

So for t ≥ T (η), Q̃H
t

(
φ :
∫
R |φ(x)− a|2 exp (−η |x|) dx ≤ 1

)
≥ δ1/2. Let u be the solution

started from the Heaviside initial condition such that L(ũ(t)) = Q̃H
t . Suppose this is
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defined on the probability space (Ω,F ,P) and with a Brownian motion (Wt : t ≥ 0). Fix

δ1 > 0 and choose Ωt ∈ Ft so that P(Ωt) = δ1/2 and
∫
R |u(t, x)− a|2 exp (−η |x|) dx ≤

1 on Ωt. Let (Ys : s ∈ [t, t+ 1]) solve the SDE dY = f̄(Y )dt + g(Y )dWt with initial

condition Yt = a. We will prove a proposition (Proposition 71) which will show that ũ

stays close to Yt if the initial conditions are close and then use this to show a contradiction

to the McKean Bound.

E
[∫

R
ũ(t+ t∗, x)|1− ũ(t+ t∗, x)||ũ(t+ t∗, x)− a| dx

]
= E

[∫
R
u(t+ t∗, x)|1− u(t+ t∗, x)||u(t+ t∗, x)− a| dx

]
≥ E

[∫
R
u(t+ t∗, x)|1− u(t+ t∗, x)||u(t+ t∗, x)− a|

× exp (−η |x|) dxI(Ωt)]

≥
∫
R
exp (−η |x|) dxE [Yt+t∗ |1− Yt+t∗||Yt+t∗ − a|I(Ωt)]

−LE
[∫

R
exp (−η|x|) |u(t+ t∗, x)− Yt+t∗ | dxI(Ωt)

]
= I − II (4.19)

where L is the Lipschitz constant of z|1−z||a−z| on [0, 1]. Before continuing this proof,

we will prove two results which will be useful in calculating a lower bound and hence a

contradiction.

Lemma 70. Suppose f̄ , g satisfy hypotheses (H1) and (H2) of Chapter 2 and consider

the solution Yt to the SDE dYt = f̄(Yt)dt + g(Yt)dWt for t ≥ 0 with initial condition

Y0 = a. Suppose also g(a) ̸= 0. Then there exists t∗ ∈ (0, 1), δ0 > 0 and ϵ0 > 0 satisfying

4ϵ0 < a ∧ (1− a) such that P [|Yt∗ − a| ∈ (ϵ0, 2ϵ0)] > δ0.
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Proof. The proof of this follows from the fact that solutions are unique and Yt = a for

t ∈ [0, 1] is not a solution for g(a) ̸= 0. �

Remark. If |Yt∗ − a| ∈ (ϵ0, 2ϵ0) where 4ϵ0 < a ∧ (1− a) then Yt∗ ≥ a
2
and 1− Yt∗ ≥ 1−a

2
.

Proposition 71. Let u be the solution to (2.1) driven by Wt. Define Yt as the solution

to the SDE dYt = f̄(Yt)dt + g(Yt)dWt, t ∈ R+, Y0 = a on the same probability space.

Then there exists a constant C(f, g, T ) so that for all t ∈ [0, T ] and η ∈ (0, 1),

E
[∫

R
exp (−η |x|) |u(t, x)− Yt|2 dx

]
≤ C(f, g, T )E

[∫
R
exp (−η |x|) |u(0, x)− a|2 dx

]
.

Remark. In the proof of the above proposition we will make use of the following bound:

∫
R
Γt(x− y) exp (−η |x|) dx =

∫
R
Γt(z) exp (−η |y + z|) dz

≤
∫
R
Γt(z) exp (−η (y + z)) dz

= exp (−ηy)
∫
R
Γt(z) exp (−ηz) dz

= (4πt)−
1
2 exp (−ηy)

∫
R
exp

(
− 1

4t
(z + 2tη)2 + tη2

)
dz

= (4πt)−
1
2 exp

(
−ηy + tη2

) ∫
R
exp

(
−y2

)
2
√
t dy

= exp
(
−ηy + tη2

)
≤ exp (−ηy) exp

(
C(T )η2

)
for all 0 ≤ t ≤ T .

Similarly, the above can also be bounded by exp (ηy) exp (C(T )η2) and hence we may

write

∫
R
Γt(x− y) exp (−η |x|) dx ≤ exp (−η |y|) exp

(
C(T )η2

)
. (4.20)
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Proof of Proposition 71. Writing the solutions to u and Y in the Green’s function rep-

resentation form and defining z(t, x) = u(t, x)− Yt we can write

z(t, x) =

∫
R
Γt(x− y)z(0, y) dy +

∫ t

0

∫
R
Γt−s(x− y)

(
f̄(u(s, y))− f̄(Ys)

)
dyds

+

∫ t

0

∫
R
Γt−s(x− y) (g(u(s, y))− g(Ys)) dydWs.

We will now multiply throughout by exp (−η|x|) and integrate over R and consider each

term separately. As the initial conditions are deterministic we have:

∫
R

(∫
R
Γt(x− y)z(0, y) dy

)2

exp (−η |x|) dx ≤
∫
R

∫
R
Γt(x− y)z(0, y)2 exp (−η |x|) dydx

by the Cauchy-Schwarz inequality. Now using the bound in (4.20) we have

∫
R

(∫
R
Γt(x− y)z(0, y) dy

)2

exp (−η |x|) dx ≤ exp
(
C(T )η2

) ∫
R
z(0, y)2 exp (−η |y|) dy.

Also, by use of the Lipschitz property of f̄ , we have

∫
R

(∫ t

0

∫
R
Γt−s(x− y)

(
f̄(u(s, y))− f̄(Ys)

)
dyds

)2

exp (−η |x|) dx

=

∫
R

∣∣∣∣∫ t

0

∫
R
Γt−s(x− y)

(
f̄(u(s, y))− f̄(Ys)

)
dyds

∣∣∣∣2
× exp (−η |x|) dx

≤ C(T )

∫
R

∫ t

0

∫
R
Γt−s(x− y)

∣∣f̄(u)(s, y)− f̄(Ys)
∣∣2

× exp (−η |x|) dydsdx

≤ C(T, ∥f ′∥∞)

∫
R

∫ t

0

∫
R
Γt−s(x− y)z(s, y)2

× exp (−η |x|) dydsdx

≤ C(T, ∥f ′∥∞) exp
(
C(T )η2

) ∫ t

0

∫
R
z(s, y)2

× exp (−η |y|) dyds
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by use of (4.20) and Fubini’s Theorem. Using the Itô isometry as well as the Lipschitz

property for g, a similar bound holds for the (g(u(s, y))− g(Ys)) term with constant

C(∥g′∥∞) exp (C(T )η2). Putting all of these terms together shows,

E
[∫

R
exp (−η |x|) z(t, x)2 dx

]
≤ exp

(
C(T )η2

) ∫
R
E
[
z(0, y)2

]
exp (−η |y|) dy

+C(T, ∥f ′∥∞, ∥g′∥∞) exp
(
C(T )η2

)
×
∫ t

0

∫
R
E
[
z(s, y)2

]
exp (−η |y|) dyds.

Using Gronwall’s argument we have the required result. �

In continuing Theorem 69, the proof that ν is concentrated on B 1,0
dec where f̄ is of

Nagumo or Unstable type, we will bound I and II in equation (4.19) separately. For

the first term

I =
2

η
E [Yt+t∗(1− Yt+t∗)|a− Yt+t∗|I(Ωt)]

=
2

η
E [I(Ωt)E [Yt∗(1− Yt∗)|a− Yt∗ | |Y0 = a]] by the Markov property

≥ 2

η
δ0
a

2

(1− a)

2
ϵ0P [Ωt]

=
2

η
δ0
a

2

(1− a)

2
ϵ0
δ1
2
.
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For the second term

II ≤ LE
[
I(Ωt)E

[∫
R
exp (−η|x|) |u(t+ t∗, x)− Yt+t∗ | dx | Ft

]]

≤ LE

I(Ωt)

∣∣∣∣∣E
[∣∣∣∣∫

R
exp (−η|x|) |u(t+ t∗, x)− Yt+t∗| dx

∣∣∣∣2 | Ft

]∣∣∣∣∣
1/2


by use of the Cauchy-Schwarz inequality

≤ L

√
2

η
E

[
I(Ωt)

∣∣∣∣E [∫
R
exp (−η|x|) |u(t+ t∗, x)− Yt+t∗ |2 dx | Ft

]∣∣∣∣1/2
]

≤ LC(f, g)

√
2

η
E

[
I(Ωt)

∣∣∣∣∫
R
exp (−η|x|) |u(t, x)− a|2 dx

∣∣∣∣1/2
]

by Proposition 71. Now since
∫
R exp (−η|x|) |u(t, x)− a|2 dx ≤ 1 on Ωt we can write

LC(f, g)

√
2

η
E

[
I(Ωt)

∣∣∣∣∫
R
exp (−η|x|) |u(t, x)− a|2 dx

∣∣∣∣1/2
]

≤ LC(f, g)

√
2

η
E [I(Ωt)]

= LC(f, g)

√
2

η

δ1
2
.

Thus,

E
[∫

R
ũ(t+ t∗, x)|1− ũ(t+ t∗, x)||ũ(t+ t∗, x)− a| dx

]
≥ 2

η
δ0
a

2

(1− a)

2
ϵ0
δ1
2
− LC(f, g)

√
2

η

δ1
2
.

By taking η small, the above bound can be made arbitrarily large and as, by the use of

the stochastic McKean bound (Theorem 61),

lim
t→∞

1

t

∫ t

0

E
[∫

R
u(t, x)(1− u(t, x))|a− u(t, x)| dx

]
ds

≤ lim
t→∞

1

t

∫ t

0

E
[∫

R
(1− u(t, x))|a− u(t, x)| dx

]
ds (4.21)

+ lim
t→∞

1

t

∫ t

0

E
[∫

R
u(t, x)|a− u(t, x)| dx

]
ds (4.22)

<∞
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this is a contradiction and shows that the supposition ν(φ : φ = a) = δ1 > 0 was

false. �

Remark. The bounds for equations (4.21) and (4.22) also indicate that ν(φ : φ = 0) and

ν(φ : φ = 1) are, respectively, almost surely equal to 0.

4.3 Stationary Travelling Wave

Introduction. In this section we combine the sections above to conclude that the limit

law to which the wavefront converges is a stationary travelling wave. However, this result

is based upon a general Markovian framework which, following a statement of the key

result in this section, we explain further.

Theorem 72. Suppose f̄ is of KPP, Nagumo or Unstable type. Then ν is a stationary

travelling wave, that is, it is invariant for the pinned process. We can write this as

Qν [ũ(t) ∈ dg] = ν(dg).

The proof of this is at the end of the section.

4.4 Markovian framework

Let X = (Xt, t ≥ 0) be a continuous-time Markov process defined on a probability

space (Ω,F , (Px : x ∈ E)) with values on a metric space (E, E). (So under Px, Xt has

starting condition x). Transition Markov kernels Pt(x, dg) = Px [Xt ∈ dg] satisfy, for all

0 ≤ s ≤ t, x ∈ E and dg ∈ E ,

(1) x 7→ Pt(x,A) are measurable for all A ∈ E ;

(2) Pt+s(x, dg) =
∫
E
Ps(x, dg)Pt(g, dx).
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If F : E → Ê is a measurable map from (E, E) to another measurable space (Ê, Ê)

we may ask under what condition the image Yt = F (Xt) is still Markov. This is set out

in the next lemma.

Lemma 73. Dynkin Criterion

If for all y ∈ E and A ∈ Ê the values Pt(y, F
−1(A)) are all equal for all y ∈ F−1(x) then

Yt is a Markov Process.

Remark. The proof of this can be found in [25], Theorem 13.5.

Sketch proof. Define for A ∈ Ê and y ∈ Ê, P̂t(y, A) = Pt(x, F
−1(A)) for x ∈ F−1(y). It

then follows by checking the two criteria defining a transition kernel above. �

Lemma 74. Suppose u satisfies equation (2.1) with hypotheses (H1) and (H2). Then,

defining the map F : B 1,0
dec → B 1,0

dec by F (φ) = φ̃ where φ̃(x) = φ(x+γat (φ)) for some fixed

a ∈ (0, 1), ũ = F (u) is still a Markov process.

Proof. Consider the Dynkin criteria. In our setting we have E = Ê = B 1,0
dec. From

Theorem 15 we know u is a Markov process. To finish we need to show that the map

F (φ) = φ̃ is measurable upon which, by the use of Lemma 73, we have that F (φ)

describes a Markov family. Now, for fixed a ∈ (0, 1) it is clear the map φ 7→ φ(· − a)

is continuous in the L1
loc metric. Consider the map φ 7→ (φ, γat (φ)). By Lemma 20 we

know φ 7→ γat (φ) is measurable and hence, so is the composite. Now in our context, we

consider a pinned f ∈ B 1,0
dec, a fixed A ⊆ B 1,0

dec and choose g ∈ F−1(f). Then for some
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translation τa we can write g = τaf and

Pt(g, F
−1(A)) = Pg

[
u(t) ∈ F−1(A)

]
= Pg [F (u(t)) ∈ A] by inverting the pinning

= Pg [ũ(t) ∈ A] by the definition of F being the centring function

= Pτaf [ũ(t) ∈ A] by definition of g being a translation of f

= Pf [ũ(t) ∈ A] as ũ is translation invariant.

Then for all x, all t ≥ 0 and all A in B 1,0
dec we have the transition kernels Pt(x, F

−1(A))

are equal for all x ∈ F−1(a). Hence the kernel P̂ (x,B) = Pt(x, F
−1(B)), being equal,

shows that the map u(t, x) 7→ ũ(t, x) preserves the Markov property given that u(t, x) is

Markov. �

Lemma 75. Suppose the map F : Bdec → R if bounded and continuous then PtF :

Bdec → R is bounded and continuous.

Proof. Suppose φn → φ. Take un, u as solutions with initial conditions φn, φ and with

respect to the same Brownian motion. Then, for any N > 0,

E
[∫ N

−N
|un(t, x)− u(t, x)|2 dx

]
→ 0 as n→ ∞. (4.23)

This is enough since for any subsequence n′, by considering a suitable sub-subsequence,

n′′ say, we find that un
′′
(t, ·) a.s.−→ u(t, ·). Then

PtF (φn′′) = E
[
F (un

′′
(t))
]

→ E [F (u(t))] since F is bounded, continuous

= PtF (φ).
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This is true for any sequence n′ such that PtF (φn) → PtF (φ). To prove equation (4.23)

we use Proposition 71 where we set v(t, x) = Yt. Then

E
[∫ N

−N
|un(t, x)− u(t, x)|2 dx

]
≤ exp (ηN)E

[∫ N

−N
|un(t, x)− u(t, x)|2 exp (−η |x|) dx

]
≤ exp (ηN)E

[∫
R
|un(t, x)− u(t, x)|2 exp (−η |x|) dx

]
≤ exp (ηN)C(f, g, T )

×E
[∫

R
exp (−η |x|) |φn(x)− φ(x)|2 dx

]
.

We can then choose N sufficiently large such that

E
[∫

R
exp (−η |x|) |φn(x)− φ(x)|2 dx

]
≤ E

[∫ N

−N
|φn(x)− φ(x)|2 dx

]
.

Given φn → φ in L1
loc(R) we have E

[∫ N
−N |φn(x)− φ(x)|2 dx

]
→ 0 as n→ ∞ and hence,

the desired result. �

Corollary 76. Suppose the map F : B 1,0
dec → R is bounded, continuous and translation

invariant, that is F (φ) = F (τaφ) for all φ ∈ B 1,0
dec and all a ∈ R. Then P̃tF = PtF and

hence P̃tF is bounded and continuous.

Proof. Let {fn}n∈N and f be functions in Bdec such that fn
L2
loc−→ f . Then Lemma 75

shows that PtF (fn) → PtF (f). However, given that F is translation invariant we can

write

P̃tF (f) : = Ef [F (ũt)]

= Ef [F (ut)] given that F is translation invariant

= PtF (f).

Hence, P̃sF (fn) = PsF (fn) → PsF (f) = P̃sF (f) as n tends to infinity as required. �
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Remark. It is unknown, as yet, whether γat (φ) = 0 for dν almost all φ. We now centre

the law ν.

Definition 77. ν̃

Define ν̃ to be the image of ν under the map J : B 1,0
dec → B 1,0

dec defined by φ 7→ φ̃, that is

for all bounded measurable F ,∫
B 1,0
dec

F (φ) dν̃(φ) =

∫
B 1,0
dec

F (φ̃) dν(φ). (4.24)

Theorem 78. ν̃ is a stationary travelling wave in the sense of definition 60.

Proof. Take F : B 1,0
dec → R bounded, continuous and translation invariant. Note P̃tF is

still bounded, continuous and translation invariant.∫
B 1,0
dec

P̃sF dν̃ =

∫
B 1,0
dec

P̃sF dν by equation (4.24)

= lim
t→∞

∫
B 1,0
dec

P̃sF dQ̃H
t

= lim
t→∞

∫
B 1,0
dec

F dQ̃H
t+s by the Markov property

=

∫
B 1,0
dec

F dν

=

∫
B 1,0
dec

F dν̃.

�

Remark. A definition of a stationary travelling wave as in the deterministic case where,

for a solution (u(t, x) : t ≥ 0, x ∈ R), (u(x+ ct) : x ∈ R, t ≥ 0) describes the dynamics

of the stationary travelling wave isn’t possible in the stochastic case given the noise. To

overcome this we may consider the solution in expectation or investigate the laws of the

solution, as in this thesis.
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Let (P̃ ∗
t ) be the dual semigroup acting on measures M1(B 1,0

dec). We have shown∫
B 1,0
dec

F d
(
P̃ ∗
s ν̃
)
=

∫
B 1,0
dec

F dν̃ (4.25)

for all bounded, continuous translation invariant F : B 1,0
dec → R. This may then be

extended to all bounded measurable translation invariant functions F by considering

measures on quotient spaces. Hence, using

ν̃(φ : γat (φ) = 0) = P̃ ∗
t ν̃(φ : γat (φ) = 0) = 1, (4.26)

for all measurable A ⊆ B 1,0
dec

P̃ ∗
t ν̃(φ : φ ∈ A) = P̃ ∗

t ν̃(φ : φ̃ ∈ A) by equation (4.26)

= ν̃(φ : φ̃ ∈ A) by equation (4.25)

= ν̃(φ : φ ∈ A) again by equation (4.26)

and ν̃ is a stationary travelling wave as required.

Remark. In fact, as we now show, we didn’t need to centre the law ν as the limiting law

is already centred.

Lemma 79. ν = ν̃.

Proof. By regularity φ ∈ C1, φx < 0 for P̃ ∗
t ν̃ almost all φ if t > 0. Hence, φ ∈ C1,

φx < 0 for ν̃ almost all φ. Hence, φ ∈ C1, φx < 0 ν almost all φ. We already know that

φ(x) ≤ a for x > 0 ν-almost all φ and φ(x) ≥ a for x < 0 ν-almost all φ. Given that φ

is C1, γat (φ) = 0 for ν−almost all φ. Hence, ν = ν̃. �

Finally we argue that ν depends in the obvious way upon the choice of the centring

point a. For this lemma only we denote by νa the limit law centred at level a ∈ (0, 1).

Lemma 80. The image of νa under the map φ(·) 7→ φ(·+ Γb(φ)) is νb.
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Proof. Note that νa
s
≻ δH . By Corollary 33, and the fact that νa is invariant for the

pinned process, we find νa
s
≻ QH,b

t . Letting t → ∞ and using Lemma 45, we find

νa
s
≻ νb. Similarly, νb

s
≻ νa. Using Theorem 47, as Bdec is Polish, we may find variables

p, q, r ∈ Bdec with p
D
= νa

D
= r and q

D
= νb so that p

s
≻ q

s
≻ r almost surely. Note that

all three functions are continuous almost surely and hence, centring is well defined. Let

p̃(·) = p(·+Γb(p)), r̃(·) = r(·+Γb(r)). Then p̃
s
≻ q

s
≻ r̃ almost surely. Fix an ω ∈ Ω such

that this is true then,

p̃(x) ≥ q(x) ≥ r̃(x) for x ≥ 0

p̃(x) ≤ q(x) ≤ r̃(x) for x ≤ 0.

However, p̃(x)
D
= r̃(x) for all x and hence p̃(x) = q(x) = r̃(x) for all x almost surely. �
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Chapter 5

Wave speed formula and domains of

attraction

Introduction. In this chapter we will describe the domains of ν and in section 4.1 we

will develop an abstract result about such domains. We will then extend this result, via

an implicit wave speed formula, to show for an initial condition trapped between two

Heaviside initial conditions, the “trapped” solution converges to the same law as to that

for the Heaviside initial condition (up to translation).

5.1 Domains for trapped law

Introduction. If it were easy to describe the law L (u0) then, following from the work

in the previous section, we could also conclude that the domain of attraction contains all

random u0 satisfying

L(I[x≤0])
s
≺ L(u0)

s
≺ ν,
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since the law of u(t) is trapped between and must converge to L(ũ(∞)) = ν.

Before proving this result we will prove a lemma which will be of use.

Lemma 81. Suppose φn → φ in B 1,0
dec and φ ∈ C1, φx < 0. Then Γ(φn) → Γ(φ).

Proof. We first recall the definition of the wavemarker (definition 16):

For a function φ : R → (0, 1) and a ∈ [0, 1], define Γa(φ) = inf{x : φ(x) ≤ a}.

Then, if Γa = A we have φ(x) > a for x < A. However, φn → φ almost everywhere,

that is φn → φ for all x in a dense set D ⊂ R. Fix x < A, such that x ∈ D and

φ(x) > a. Then φn(x) > a for large n and hence, Γ(φn) ≥ x for large n, which yields

limΓ(φn) ≥ A. Since φx(A) < 0, φ(y) < a for all y > A. Take y > A, y ∈ D then

φ(y) < a. Hence, for large n φn(y) < a. So Γ(φn) ≤ y for large n and limΓ(φn) ≤ A.

Hence limΓ(φn) = Γ(φ) = A as required. �

Remark. Note that limΓ(φn) ≥ Γ(φ) always.

Proposition 82. Suppose δH
s
≺ L(u0)

s
≺ ν then L(ũ(t)) D→ ν as t→ ∞.

Proof. Since M(Bdec) is compact by Proposition 11, given a sequence tn → ∞, there

exists a subsequence tn′ such that L(ũt′n) → µ for some µ ∈ M(Bdec). By Corollary 33

we have Q̃H
t

s
≺ L(ũt)

s
≺ ν for all t. Using this subsequence and the result of Lemma 45

(see remark post the stated Lemma) ν
s
≺ µ

s
≺ ν. We need laws that charge only the

continuous paths. Let νϵ and µϵ denote the image of ν and µ under the map φ 7→ φϵ

defined by φϵ(x) = Γϵ ∗ φ(x). Then νϵ
s
≺ µϵ

s
≺ νϵ by Corollary 33 in the special case

f = g = 0. Arguing as in Lemma 80 we find ν̃ϵ = µ̃ϵ. Letting ϵ→ 0, using the fact that
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φ 7→ φϵ is continuous, we find∫
B 1,0
dec

F (x)dν =

∫
B 1,0
dec

F (x)dµ

for all bounded translation invariant F : B 1,0
dec → R. From this we conclude that ν = µ̃.

Note that µ̃, and hence ν, charge only φ for which φ ∈ C1 and φx < 0. Lemma 81

shows that Γa is continuous for such a φ. Since L(ũtn) → µ and µ is continuous on the

discontinuous set of Γa, Γa(φ) = 0 for µ-almost all φ (to see this we consider the function

(Γa(u(tn)) ∧ 1) ∨ (−1) and note that this is bounded and continuous) and µ̃ = µ = ν.

This completes the proof. �

Remark. Despite Proposition 82 suggesting a very strong result on the domains of ν, the

conditions on L(u0) are difficult to check.

5.2 Additional assumptions

In this chapter we make the following assumption on f̄ as well as hypotheses (H1) and

(H2) as detailed in Chapter 2:

(H3) f̄ is of KPP type, in particular there exists a constant K such that
∣∣f̄(z)∣∣ ≤

Kz(1− z).

As we concentrate on solutions with initial conditions other than the Heaviside initial

condition in this chapter, the following condition will prove useful as detailed in the

forthcoming results.

Definition 83. Trapped criteria

The initial condition u0 ∈ B 1,0
dec is said to be Trapped if, for some A < B both in R,

I(−∞,A)(x) ≤ u(0, x) ≤ I(−∞,B)(x) for all x ∈ R. (5.1)
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5.3 Wave speed formula

Introduction. In this section we prove a wave speed formula which shows the connection

between the gradient of the wave front and the wave speed. Intuitively, the flatter the

wavefront the faster it will travel.

Lemma 84. Consider equation (2.1) satisfying hypotheses (H1) - (H2). Suppose also

that the deterministic initial condition u0 is Trapped. Then

u(t, x, I(−∞,A)) ≤ u(t, x, u0) ≤ u(t, x, I(−∞,B)) for all t ≥ 0

almost surely. Note u(t, x,G) is the solution to equation (2.1) on one fixed filtered prob-

ability space with a fixed Brownian motion (W ) started at G. Moreover,

γat (I(−∞,A)) ≤ γat (u0) ≤ γat (I(−∞,B)) = γat (I(−∞,A)) + (B − A) (5.2)

for all t ≥ 0 almost surely where γat (G) is the wave marker Γa(u(t, ·, G)).

Proof. The first part of the lemma follows directly from the coupling result in Property

(ii) Theorem 15. For the second part we note that from the Trapped property, and the

result of the first part of the lemma, it is easy to deduce that γat (u0) must satisfy

γat (I(−∞,A)) ≤ γat (u0) ≤ γa(I(−∞,B)) (5.3)

for all subsequent times t > 0. The last equality in equation (5.2) is proved noting

u(t, x, I(−∞,B)) = u(t, x − (B − A) , I(−∞,A)) for all t ≥ 0, all x ∈ R P-almost surely by

the uniqueness of solution result from Theorem 15. �
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Remark. For solutions u started from the Heaviside initial condition we will write u(t, ·, H)

as shorthand when the exact position of the Heaviside function is unimportant. We will

also write γat (H) as shorthand for the wave marker Γa(u(t, ·, H)).

Lemma 85. Let u be the solution to equation (2.1) started from the Heaviside initial

condition. Then

E
[∫

R
u(t, x)(1− u(t, x)) dx

]
↑
∫
B 1,0
dec

(∫
R
φ(1− φ) dx

)
ν(dφ)

and this limit is finite. Let ũ(1/2) be the solution centred at a = 1
2
and let ν

1
2 be the

corresponding limiting law. Then for all ϵ > 0 there exists M(ϵ) such that for all N >

M(ϵ), defining I = [−N,N ],

E
[∫

Ic
ũ(1/2)(t, x)(1− ũ(1/2)(t, x)) dx

]
≤

∫
B 1,0
dec

∫
Ic
φ(x)(1− φ(x)) dxν

1
2 (dφ)

≤ ϵ

for all t ≥ 0.

Proof. Set a = 1
2
, that is centre the solution such that ũ(1/2)(t, 0) = u(1/2)(t, γ

1/2
t ) = 1

2
.

Now, from Theorem 51, ordering and taking a realisation, denoted ·̂, we may write,

ˆ̃u(1/2)(t, x,H) ≥ ˆ̃u(1/2)(s, x,H) for all x ≥ 0

ˆ̃u(1/2)(t, x,H) ≤ ˆ̃u(1/2)(s, x,H) for all x ≤ 0

almost surely, for a fixed s ≤ t. Hence, for all x ∈ R,

ˆ̃u(1/2)(t, x,H)(1− ˆ̃u(1/2)(t, x,H)) ≥ ˆ̃u(1/2)(s, x,H)(1− ˆ̃u(1/2)(s, x,H)).

This shows that E
[
ũ1/2(t, x,H)(1− ũ1/2(t, x,H))

]
is increasing in t for all x ∈ R. We

now note that the map φ 7→
∫
I
φ(x)(1−φ(x)) dx is bounded and continuous on B 1,0

dec and
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by the Monotone Convergence Theorem,

E
[∫

I

ũ(1/2)(t, x,H)(1− ũ(1/2)(t, x,H)) dx

]
(5.4)

=

∫
B 1,0
dec

∫
I

φ(x)(1− φ(x) dxQ̃H
t (dφ)

↑
∫
B 1,0
dec

∫
I

φ(x)(1− φ(x)) dxν
1
2 (dφ) (5.5)

as t→ ∞. Lemma 68 shows that the left-hand-side of the above equation can be bounded

by 4
√
K, a bound independent of t and N . This bound, therefore, also applies to the

limit on the right-hand-side. Now
∫
B 1,0
dec

∫
Ic
φ(x)(1− φ(x)) dxν

1
2 (dφ) → 0 as N → ∞ by

the Monotone Convergence Theorem. The lemma follows. �

Lemma 86. Suppose u0 ∈ B 1,0
dec is Trapped then

E
[∫

R
u(t, x, u0)(1− u(t, x, u0)) dx

]
≤
(
4

a
+

4

1− a

)√
K + 2 (B − A) for all t ≥ 0

and given ϵ > 0 there exists M(ϵ) such that for all N > M(ϵ), defining I = [−N,N ],

E
[∫

Ic
ũ(1/2)(t, x, u0)(1− ũ(1/2)(t, x, u0)) dx

]
≤ ϵ.

Proof. Recalling the notation γat (u0) we breakup the integral into two bits and bound

each one separately.

∫
R
u(t, x, u0)(1− u(t, x, u0)) dx =

∫ γat (u0)

−∞
u(t, x, u0)(1− u(t, x, u0)) dx

+

∫ ∞

γat (u0)

u(t, x, u0)(1− u(t, x, u0)) dx

≤
∫ γat (u0)

−∞
(1− u(t, x, I(−∞,A))) dx

+

∫ ∞

γat (u0)

u(t, x, I(−∞,B)) dx
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by use of the bounds u(t, x) ∈ [0, 1] and Lemma 84. Now, using the McKean bound,

Lemma 68, we have

E

[∫ γat (u0)

−∞
(1− u(t, x, I(−∞,A))) dx

]

= E

[∫ γat (I(−∞,A))

−∞
(1− u(t, x, I(−∞,A))) dx

]

+E

[∫ γat (u0)

γat (I(−∞,A))

(1− u(t, x, I(−∞,A))) dx

]

≤ 1

a
E
[∫

R
u(t, x, I(−∞,A))(1− u(t, x, I(−∞,A))) dx

]
+E

[∫ γat (u0)

γat (I(−∞,A))

1 dx

]

≤ 1

a
E
[∫

R
u(t, x, I(−∞,A))(1− u(t, x, I(−∞,A))) dx

]
+(B − A)

≤ 4

a

√
K + (B − A) .
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Similarly,

E

[∫ ∞

γat (u0)

u(t, x, I(−∞,B)) dx

]

= E

[∫ ∞

γat (I(−∞,B))

u(t, x, I(−∞,B)) dx

]

+E

[∫ γat (I(−∞,B))

γat (u0)

u(t, x, I(−∞,B)) dx

]

≤ 1

1− a
E
[∫

R
u(s, x, I(−∞,B))(1− u(t, x, I(−∞,B))) dx

]
+E

[∫ γat (I(−∞,B))

γat (u0)

1 dx

]

≤ 1

1− a
E
[∫

R
u(t, x, I(−∞,B))(1− u(t, x, I(−∞,B))) dx

]
+(B − A)

≤ 4

1− a

√
K + (B − A) .

Putting this all together we can write

E
[∫

R
u(t, x, u0)(1− u(t, x, u0)) dx

]
≤ 1

a
E
[∫

R
u(t, x, I(−∞,A))(1− u(t, x, I(−∞,A))) dx

]
+(B − A)

+
1

(1− a)
E
[∫

R
u(s, x, I(−∞,B))(1− u(t, x, I(−∞,B))) dx

]
+(B − A)

and

E
[∫

R
u(t, x)(1− u(t, x)) dxds

]
≤ 4

(
1

a
+

1

1− a

)√
K + 2 (B − A)

as required. For the second part of the proof we note, defining N = N(ϵ) and N̄ =
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N + (B − A),

∫ ∞

N̄

ũ(1/2)(t, x, u0)(1− ũ(1/2)(t, x, u0)) dx

=

∫ ∞

γ
1/2
t (u0)+N̄

u(1/2)(t, x, u0)(1− u(1/2)(t, x, u0)) dx

≤
∫ ∞

γ
1/2
t (u0)+N̄

u(1/2)(t, x, I(−∞,B)) dx

≤
∫ ∞

γ
1/2
t (I(−∞,A))+N̄

u(1/2)(t, x, I(−∞,B)) dx

=

∫ ∞

γ
1/2
t (I(−∞,B))+N

u(1/2)(t, x, I(−∞,B)) dx

given that γ
1/2
t (I(−∞,A)) + (B − A) = γ

1/2
t (I(−∞,B))

=

∫ ∞

γ
1/2
t (H)+N

u(1/2)(t, x,H) dx

=

∫ ∞

N

ũ(1/2)(t, x,H) dx

≤ 2

∫ ∞

N

ũ(1/2)(t, x,H)(1− ũ(1/2)(t, x,H)) dx.
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Similarly for the other tail, we calculate

∫ −N̄

−∞
ũ(1/2)(t, x, u0)(1− ũ(1/2)(t, x, u0)) dx

=

∫ γ
1/2
t (u0)−N̄

−∞
u(1/2)(t, x, u0)(1− u(1/2)(t, x, u0)) dx

≤
∫ γ

1/2
t (u0)−N̄

−∞
(1− u(1/2)(t, x, I(−∞,A))) dx

≤
∫ γ

1/2
t (I(−∞,B))−N̄

−∞
(1− u(1/2)(t, x, I(−∞,A))) dx

=

∫ γ
1/2
t (I(−∞,A))−N

−∞
(1− u(1/2)(t, x, I(−∞,A))) dx

given that γ
1/2
t (I(−∞,B))− (B − A) = γ

1/2
t (I(−∞,A))

=

∫ γ
1/2
t (H)−N

−∞
(1− u(1/2)(t, x,H)) dx

=

∫ −N

−∞
(1− ũ(1/2)(t, x,H)) dx

≤ 2

∫ −N

−∞
ũ(1/2)(t, x,H)(1− ũ(1/2)(t, x,H)) dx.

Putting both of these bounds together we have

E
[∫

I

ũ(1/2)(t, x, u0)(1− ũ(1/2)(t, x, u0)) dx

]
≤ 2E

[∫ ∞

N

ũ(1/2)(t, x,H)(1− ũ(1/2)(t, x,H)) dx

]
+2E

[∫ −N

−∞
ũ(1/2)(t, x,H)(1− ũ(1/2)(t, x,H)) dx

]
≤ 4ϵ

by Lemma 85 which we can make as small as required. �

We now prove an implicit formula for the wave speed. The aim is to find a formula

for limt→∞ E
[
γat (H)

t

]
and compare this to the analogous formula for limt→∞ E

[
γat (u0)

t

]
.
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Theorem 87. Consider equation (2.1) satisfying hypotheses (H1) - (H3). Let u be the

solution started from u0 ∈ B 1,0
dec and suppose u0 is Trapped. Then,

lim
t→∞

E
(
γat
t
− 1

t

∫ t

t0

∫
R
f̄(u(s, x))dxds

)
= 0.

Proof. We proceed in the same way as the proof of the stochastic McKean bound using

both Fubini’s theorem and the stochastic Fubini Theorem to interchange integrals as

required. First, we integrate over the interval (−L,U).

∫ U

−L
[ũ(t, x)− ũ(t0, x)] dx =

∫ t

t0

[ũx(s, U)− ũx(s,−L)] ds

+

∫ t

t0

(ũ(s, U)− ũ(s,−L)) ◦ dγas

+

∫ t

t0

∫ U

−L
f̄(ũ(s, x))dxds (5.6)

+

∫ t

t0

∫ U

−L
g(ũ(s, x)) dxdWs.

To expand the range of integration, we again have to check that the limit of each of

the above terms is well defined. To do this we use that the first moment of u started from

the Trapped initial condition u0 can be bounded by the first moment of the solution u

started from the Heaviside initial condition which we have already shown is bounded:

E [u(t, x, u0)] ≤ E
[
u(t, x, I(−∞,B))

]
= E [u(t, x−B,H)]

and we may use the bounds given in equation (4.7). Similarly for E [1− u(t, x, u0)].

111



Using these bounds repeatedly we can again show

E
[∫ T

0

∫
R
u(s, x, u0)(1− u(s, x, u0)) dxds

]
≤
∫ T

0

∫ ∞

0

E [u(s, x, u0)] dxds

+

∫ T

0

∫ 0

−∞
E [(1− u(s, x, u0))] dxds

≤
∫ T

0

∫ ∞

0

E
[
u(s, x, I(−∞,B))

]
dxds

+

∫ T

0

∫ 0

−∞
E
[
(1− u(s, x, I(−∞,A)))

]
dxds

<∞.

From hypothesis (H3), the limit

∫ t

t0

∫ U

−L
f̄(ũ(s, x)) dxds→

∫ t

t0

∫ ∞

−∞
f̄(ũ(s, x)) dxds

is justified. Similarly for the dW term since g is bounded above. Also, the limit for the

term on the left-hand-side of (5.6) is justified and exists by use of Lemma 86. For the∫ t
t0
(ũ(s, U)− ũ(s,−L)) ◦ dγas term we write

∫ t

t0

(ũ(s, U)− ũ(s,−L)) ◦ dγas =

∫ t

t0

ũ(s, U) ◦ dγas

+

∫ t

t0

(1− ũ(s,−L)) ◦ dγas

−
(
γat − γat0

)
and the argument reduces to the same argument as that shown in Theorem 61 by the

use of Lemma 67. This shows that this term converges almost surely to
(
γat0 − γat

)
. By

regularity of solutions we know ũx(s,R)
a.s.−→ 0 as |R| → ∞. We again need to justify

∫ t

t0

ũx(s,R) ds
a.s.−→ 0 as |R| → ∞. (5.7)
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Note, from Property (vii) of Theorem 15, for solutions u with Trapped initial conditions

that

E
[
sup
y

|ux(s, y)|2
]
≤ C(t0, T ) <∞

for s ∈ (t0, T ]. Then,

E
[∫ t

t0

|ũx(s,R)|2 ds
]
≤ E

[∫ t

t0

sup
y

|ux(s, y)|2 ds
]

is bounded independently of R and so the variable ũx(s,R) is uniformly integrable as a

function of s and ω. This justifies taking the limit in each of the terms in equation (5.6).

Dividing by t > 0 and taking the limits as U → ∞ and L→ −∞ we will get:

γat
t
−
γat0
t

− 1

t

∫ t

t0

∫
R
f̄(ũ(s, x))dxds =

1

t

∫ t

t0

∫
R
g(ũ(s, x)) dxdWs (5.8)

−1

t

∫
R
[ũ(t, x)− ũ(t0, x)] dx.

Upon taking expectations the Itô noise term vanishes and the last term on the right-

hand-side, by use of Lemma 86, tends to zero as t tends to infinity, this completes the

proof. �

Remark. To our knowledge there are no concrete examples of applications of wave speed

formula. What we present in this thesis is the use of an implicit rather than explicit

wave speed formula as the only convergence we required is convergence in expectation.

We did feel that this may be relaxed to almost sure convergence but this was beyond our

requirements and, as such, not pursued avidly. Wave speed formula are an open area of

future research.
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Corollary 88. The wave speed limt→∞ E
[
γat (H)

t

]
exists and equals

∫
B 1,0
dec

∫
R f̄(φ) dxν(dφ).

Moreover, suppose u(0) ∈ B 1,0
dec is Trapped then limt→∞ E

[
γat (u0)

t

]
exists and equals

limt→∞ E
[
γat (H)

t

]
.

Proof. Set the pinning point a = 1
2
and define I = [−N,N ]. Then

E
[∫

R
f̄(u(1/2)(t, x,H)) dx

]
= E

[∫
I

f̄(u(1/2)(t, x,H)) dx

]
+E

[∫
Ic
f̄(u(1/2)(t, x,H)) dx

]
.

It is clear

E
[∫

I

f̄(u(1/2)(t, x,H)) dx

]
→

∫
B 1,0
dec

∫
I

f̄(φ(x)) dxν
1
2 (dφ)

=

∫
B 1,0
dec

∫
R
f̄(φ(x)) dxν

1
2 (dφ)

−
∫
B 1,0
dec

∫
Ic
f̄(φ(x)) dxν

1
2 (dφ).

By Lemmas 85 and 86, for all ϵ > 0 there exists N = N(ϵ) such that both

E
[∫

Ic
f̄(u(1/2)(t, x,H)) dx

]
≤ ϵ

and

∫
B 1,0
dec

∫
Ic
f̄(φ(x)) dxν

1
2 (dφ) ≤ ϵ

and hence we are done. Note that
∫
B 1,0
dec

∫
R f̄(φ(x)) dxν

1
2 (dφ) =

∫
B 1,0
dec

∫
R f̄(φ(x)) dxν(dφ),

that is the limit is independent of the centring level 1
2
. We combine this with the wave

speed formula, shown in Theorem 87, to show, for t ≥ t0 > 0,

1

t

∫ t

t0

E
[∫

R
f̄(u(s, x,H)) dx

]
ds→

∫
B 1,0
dec

∫
R
f̄(φ) dxν(dφ).
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Then

E
[
γat (u0)

t

]
→
∫
B 1,0
dec

∫
R
f̄(φ) dxν(dφ)

as required.

For the second part, we note that equation (5.2) holds for all t ≥ 0. Dividing this

equation throughout by t > 0 and taking expectations gives

E
[
γat (I(−∞,A))

t

]
≤ E

[
γat (u0)

t

]
≤ E

[
γat (I(−∞,B))

t

]
.

Taking the limit at t tends to infinity allows us to use standard analysis results to reveal

that limt→∞ E
[
γat (H)

t

]
= limt→∞ E

[
γat (u0)

t

]
as required. �

5.4 Domains of attraction

Definition 89. Domain of ν

The domain of attraction of ν is defined by the set

{µ ∈ M(Bdec) : Qµ
t (A) = P

[
u(t) ∈ A|u0

D
= µ

]
→ ν(A)}.

The following lemma is the key component in proving that the solution started from

a trapped initial condition has the same limit law as that of the solution started from

the Heaviside initial condition.

Lemma 90. Suppose φ, ψ ∈ B 1,0
dec satisfying φ, ψ ∈ C1 and φx, ψx < 0. Suppose also

h : (0, 1) → (0,∞) is measurable. If φ
s
≻ ψ and

∫
R h(φ) dx =

∫
R h(ψ) dx < ∞ then

φ̃ = ψ̃.

Proof. Let φ̄ and ψ̄ : (0, 1) → R denote the inverse functions to φ and ψ respectively.
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Then, it is clear

∫
R
h(φ(x)) dx = −

∫ 1

0

h(y)φ̄y(y) dy.

Hence

∫ 1

0

h(y)φ̄y(y) dy =

∫ 1

0

h(y)ψ̄y(y) dy. (5.9)

We know φ
s
≻ ψ and hence, by Lemma 35, φy(φ̄(y)) ≥ ψy(ψ̄(y)) since φ(φ̄(y)) =

ψ(ψ̄(y)) = y. As φy(φ̄(y))φ̄y(y) = 1, and similarly for ψ, we have φ̄y(y) ≤ ψ̄y(y).

Combining this with equation (5.9) we can conclude φ̄y ≡ ψ̄y and so, φ̄ = ψ̄ + C for

some constant C. Hence φ = τaψ for some a, that is φ̃ = ψ̃. �

Remark. We can compare this with the result in the case that X, Y are real random

variables which states that ifX and Y are stochastically ordered, X
s
≻ Y , and E [h(X)] =

E [h(Y )] then X
D
= Y .

The following theorem discusses necessary and sufficient conditions for two proba-

bility measures to be more stretched. This result is a restatement and extension of a

Corollary to Theorem 11 in [29] (see also Chapter 4 of [17]) which is proved in [16] where

the partial-order requirement is relaxed to a pre-order.

Theorem 91. Lindvall-Strassen

Let P and Q denote two probability measures on a general Polish space E with sigma

algebra E. Let ≺ define a pre-order on E. Define M = {(p, q) : p ≺ q} and let us

assume that this set is closed in the product topology on E × E. If for any bounded,

non-decreasing measurable function F ,

∫
E

FdP ≤
∫
E

FdQ
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then there exists a probability measure X on (E × E, E × E) with marginals P and Q

such that X (M) = 1.

Proof. The proof of this can be found in [16]. �

Remark. It is clear that the converse of the above Theorem is also true and hence we

have the following corollary.

Corollary 92. For two probability measures P and Q on B 1,0
dec, then P

s
≻ Q if-and-only-if∫

B 1,0
dec
FdQ ≤

∫
B 1,0
dec
FdP for all bounded, non-decreasing F .

The proof of this is clear.

Lemma 93. Suppose u0 ∈ Bdec. Define P̃u0
t := 1

t

∫ t
0
Q̃u0
s ds. Then

P̃u0
t

s
≻ P̃H

t .

Remark. The map s → Qu0
s is continuous since solution paths s → u(s) are continuous.

Then the map s→ Q̃H
s is also measurable as the image of a measurable map.

Proof. Note Q̃u0
t

s
≻ Q̃H

t trivially. Let F : B 1,0
dec → R be any bounded, non-decreasing

function. Then

∫
B 1,0
dec

F (φ)dP̃u0
s (φ) =

∫
B 1,0
dec

F (φ)d

(
1

t

∫ t

0

Q̃u0
s (φ) ds

)
=

1

t

∫ t

0

∫
B 1,0
dec

F (φ)dQ̃u0
s (φ) ds by the use of Fubini’s Theorem

≥ 1

t

∫ t

0

∫
B 1,0
dec

F (φ)dQ̃H
s (φ) ds as Q̃u0

t

s
≻ Q̃H

t and by Corollary 92

=

∫
B 1,0
dec

F (φ)d

(
1

t

∫ t

0

Q̃H
s (φ) ds

)
=

∫
B 1,0
dec

F (φ)dP̃H
s (φ).
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As
∫
B 1,0
dec
F (φ)dP̃ u0

s (φ) ≥
∫
B 1,0
dec
F (φ)dP̃H

s (φ) for all bounded, non-decreasing F we can

conclude

P̃u0
t

s
≻ P̃H

t

as required by Corollary 92. �

We will now prove the key result of Chapter 5.

Theorem 94. If u0 is Trapped and satisfies hypotheses (H1) - (H3) then

P̃u0
t :=

1

t

∫ t

0

Q̃u0
s ds→ ν in M1(B 1,0

dec).

Proof. We start by considering the centred value a = 1
2
. We know Bdec is compact and

Polish from earlier results and remarks. This indicates that M(Bdec) is also compact and

Polish (see [2] or [4]). Consider P̃u0
t := 1

t

∫ t
0
Q̃u0
s ds. Given any sequence tn → ∞ there

exists a subsequence tn′ such that P̃u0
tn converges. Call this limit µ. We aim to show

µ = ν. The subsequence principle, that is the result being true for all subsequences,

will then imply P̃u0
t → ν. We first show that µ is a stationary travelling wave. This is

very similar to the proof that ν is a stationary travelling wave. Note µ(B 1,0
dec) = 1 by the

McKean bound (Lemma 68). First centre µ (µ̃) as before. Take F bounded, continuous
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and translation invariant as a map F : B 1,0
dec → R. Then∫

B 1,0
dec

F (φ)d
(
Q̃∗
tµ(φ)

)
=

∫
B 1,0
dec

Q̃tF (φ) dµ(φ)

= lim
n→∞

∫
B 1,0
dec

Q̃tF (φ)P̃u0
tn (dφ)

= lim
n′→∞

1

tn′

∫ tn′

0

∫
B 1,0
dec

Q̃tF (φ)dQ̃u0
s (φ) ds

= lim
n′→∞

1

tn′

∫ tn′

0

∫
B 1,0
dec

F (φ)dQ̃u0
t+s(φ) ds

= lim
n′→∞

1

tn′

∫ t+tn′

t

∫
B 1,0
dec

F (φ)dQ̃u0
r (φ) dr

= lim
n′→∞

1

tn′

∫ tn′

0

∫
B 1,0
dec

F (φ)dQ̃u0
r (φ) dr

=

∫
B 1,0
dec

F (φ)dµ(φ).

As before µ is a stationary travelling wave and µ̃ = µ. This implies that φ ∈ C1, φx < 0

for µ-almost all φ.

Now recalling, for N = N(ϵ), N̄ = N + (B − A) and defining IM = [−M,M ] for

M = N, N̄ , we have

1

tn
E
[∫ tn

0

∫
R
f̄(u(s, x, u0)) dxds

]
=

∫
B 1,0
dec

∫
R
f̄(φ)dxdP̃u0

tn (φ)

=

∫
B 1,0
dec

∫ N̄

−N̄
f̄(φ)dxdP̃u0

tn (φ)

+

∫
B 1,0
dec

∫
Ic
N̄

f̄(φ)dxdP̃u0
tn (φ).

Now ∫
B 1,0
dec

∫ N̄

−N̄
f̄(φ)dxdP̃u0

tn (φ) →
∫
B 1,0
dec

∫ N̄

−N̄
f̄(φ)dxdµ(φ)

=

∫
B 1,0
dec

∫
R
f̄(φ)dxdµ(φ)

−
∫
B 1,0
dec

∫
Ic
N̄

f̄(φ)dxdµ(φ).
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We know, as f̄ is of KPP type,

∫
B 1,0
dec

∫
Ic
N̄

f̄(φ)dxdP̃u0
tn (φ) ≤ ϵ by Lemma 86.

Now we claim that for all ϵ > 0 there exists an N̄ = N̄(ϵ) such that∣∣∣∫B 1,0
dec

∫
Ic
N̄

f̄(φ)dxdµ(φ)
∣∣∣ ≤ ϵ. For all ∞ > R > 0, we have for all ϵ > 0 there exists an N̄

such that

ϵ ≥
∫
B 1,0
dec

∫ N̄+R

N̄

φ(1− φ) dxdP̃µ
tn

→
∫
B 1,0
dec

∫ N̄+R

N̄

φ(1− φ) dxµ(dφ)

where N̄ = N + (B − A). It is clear for the same N̄ , ϵ as above, we have∣∣∣∣∣
∫
B 1,0
dec

∫
Ic
N̄

f̄(φ)dxdµ

∣∣∣∣∣ ≤ ϵ.

Hence,

1

tn
E
[∫ tn

0

∫
R
f̄(u(s, x, u0)) dxds

]
=

∫
B 1,0
dec

∫
R
f̄(φ)dxdP̃u0

tn

→
∫
B 1,0
dec

∫
R
f̄(φ)dxdµ

as required.

Using this bound in the wave speed formula allows us to write

E

[
γ
1/2
tn (u0)

tn

]
→
∫
B 1,0
dec

∫
R
f̄(φ)dxdµ.

By the wave speed formula (as shown in Theorem 87)

∫
B 1,0
dec

∫
R
f̄(φ)dxν(dφ) =

∫
B 1,0
dec

∫
R
f̄(φ)dxµ(dφ). (5.10)
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In addition we know L(u(t, ·, u0))
s
≻ L(u(t, ·, H)), that is Q̃u0

t

s
≻ Q̃H

t for all t ≥ 0. Now

given Lemma 93 we have P̃u0
tn

s
≻ P̃H

tn . Let tn → ∞ to achieve µ
s
≻ ν. Choose random

variables u, v in B 1,0
dec such that u

D
= ν and v

D
= µ, Note that u, v ∈ C1 and ux, vx < 0

almost surely. Then, we can write, using φ̄ and ψ̄ to denote the inverse functions of u

and v respectively,

∫
R
f̄(u(x)) dx = −

∫ 1

0

f̄(y)φ̄y(y) dy

≥ −
∫ 1

0

f̄(y)ψ̄y(y) dy

=

∫
R
f̄(v(x)) dx

as u
s
≻ v. However, from equation (5.10)

E
[
f̄(u(x))

]
= E

[
f̄(v(x))

]
and so

∫
R f̄(u(x)) dx =

∫
R f̄(v(x)) dx almost surely. We now fix ω such that

∫
R f̄(u(x)) dx =∫

R f̄(v(x)) dx and u
s
≻ v. By Lemma 90 this can only be true if ũ ≡ ṽ on this ω and so,

ũ ≡ ṽ P-almost surely which completes the proof. �
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Chapter 6

Fife-McLeod dynamics for the

stochastic equation

6.1 Coupling argument for solutions of the

Fife-McLeod equation

Introduction. The work in this chapter is motivated by the deterministic work of Fife

and McLeod (see [7],[8] and [9]) and we attempt to expand this to the stochastic setting.

The formulation in the previous chapters promotes the use of the phase-plane to conduct

further analysis upon travelling waves. Indeed, in the phase-plane, the concept of a

stationary travelling wave starting from an Heaviside initial condition is described as

movements within the [0, 1]×R+ plane collapsing from +∞ at time 0 towards that of the

stationary travelling wave, see figure 6.1. In the phase-plane framework, transformation

to a non-moving frame of reference is not important and the concept of stretching is
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Figure 6.1: U is more stretched than V in the phase-plane.

described as one wave always lies above the other. In this way, it is clear that in the

phase-plane stretching reduces to standard comparison arguments as any translate of a

wavefront in the x−t plane is mapped to the same wavefront in the phase plane. Although

not extending the results of Chapters 3, 4 and 5 we explore the alternative definition of

stretching, as presented above, and prove the equivalence of definitions in the two planes.

6.2 Stretching

Definition 95. Define Bnicedec = {φ ∈ B 1,0
dec : φ ∈ C∞ and φx(x) < 0 all x}.

Lemma 96. Define the map pφ : (0, 1) → [0,∞) for φ ∈ Bnicedec by p(x) = −φx(t, x) =

− 1
mφ

x (x)
where mφ is the inverse of φ. Then for φ, ψ ∈ Bnicedec if φ

s
≻ ψ then pφ ≤ pψ.

Proof. We mimic the argument of Lemma 35. Suppose φ(a) = ψ(a) = θ0 ∈ (0, 1) for

some a ∈ R, that is mφ(θ0) = mψ(θ0) = a where mφ, mψ are the inverse functions of φ

and ψ respectively. The inverses exist given φ, ψ ∈ Bnicedec . Again note that this does not
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mean φ and ψ cross at a, only touch. We can then write

mφ(θ) ≤ mψ(θ) for all θ ≥ θ0 (6.1)

mφ(θ) ≥ mψ(θ) for all θ ≤ θ0. (6.2)

As the inverse mφ has the same number of derivatives as φ, mφ ∈ C∞. The same is

true of mψ. From equations (6.1) and (6.2) we can write mφ
x ≤ mψ

x on (0, 1) and hence,

pφ(x) ≤ pψ(x) as required. �

Remark. We believe that we can extend the results of Lemma 96 such that for any φ,

ψ ∈ B 1,0
dec if φ

s
≻ ψ then pφ ≤ pψ. We do not offer a proof of this result.

6.3 Phase-plane analysis

In this chapter we will explore the phase-plane representation further through the dy-

namics of the SPDE. However, for such a system, there are difficulties in expanding this

analysis into the stochastic case given the blow up of derivatives at the end points.

The main motivation for the use of this formulation is that the concept of stretching is

easily transferred over to p space and reduces to standard comparison theory arguments

(assuming the solutions are such that the map x → p makes sense). The formal map

I[x≤0] → ∞I(0,1) makes the transformation awkward but this formulation may be best

considered as an entrance law for the p process. Our main problem with using this

formulation was that for solutions when u(t, x) ∼ exp (−ax2) at ∞ lead to p functions

that are not in C0,2. These are needed however. Solutions with u(t, x) ∼ exp (−ax) at ∞

lead to better images in p space and this should be the case for tails under a stationary

distribution.

Example 7. The key example in this section that we use as primary motivation is for

u = exp (−ax2) for some a ∈ R+. Then ux = −2ax exp (−ax2) = −2u
√
a ln

(
1
u

)
. That
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is p(u) = Cu
√

ln
(
1
u

)
→ ∞ and p′(u) ↑ ∞ logarithmically as u ↓ 0 which is undesirable.

6.4 Coupling result

Introduction. In this section we consider the SPDE satisfying p(t, x) = −ux(t, x) (see

Lemma 22) and prove a comparison theorem for solutions to the equation

dp = p2puudt+ (fup− fpu) dt+ (gup− gpu) ◦ dWt (6.3)

satisfying a suitable Dirichlet boundary condition which we define. This comparison

result is equivalent to the stretching proof put forward in Chapter 3.

Definition 97. Suppose (Ω,F ,Ft, P ) is a filtered probability space and (Wt : t ≥ 0) is

a one-dimensional (Ft) adapted Brownian motion. A function (p(t, u) : t ≥ 0, u ∈ [0, 1])

is a solution to the equation (6.3) up to time T if u ∈ C0,2([0, T ] × (0, 1)) and, for all

u ∈ (0, 1) and t > 0,

p(t, u) = p(0, u) +

∫ t

0

p2(s, u)puu(s, u) ds

+

∫ t

0

(f ′(u)p(s, u)− f(u)pu(s, u)) ds

+

∫ t

0

(g′(u)p(s, u)− g(u)pu(s, u)) ◦ dWs.

It has Dirichlet boundary conditions if it satisfies p(t, 0) = p(t, 1) = 0 for all t ≥ 0.

Theorem 98. Suppose r, q are two solutions to (6.3) with paths in C0,2 ([0, T ]× [0, 1])

having Dirichlet boundary conditions. If P[r(0, u) ≤ q(0, u)] = 1 then

P [r(t, u) ≤ q(t, u) for all t ∈ [0, T ]] = 1.

125



Proof. Define τN = min {τN(r), τN(q)} where

τN(p) = inf
{
t : d

kp(t,u)
duk

≥ N for some u ∈ [0, 1] and some k ∈ {0, 1, 2}
}
.

Note, since r, q ∈ C0,2([0, T ] × [0, 1]), we have τN → ∞ almost surely as N → ∞. The

idea of the proof is to obtain a Gronwall inequality for E [(r(t ∧ τN)− q(t ∧ τN))+] where

z+ denotes the positive part max{z, 0}. In order to apply Itô’s formula we take an

approximation Jϵ(x) to x+ as follows: let Jϵ(0) = J ′
ϵ(0) = J ′′

ϵ (0) = 0 and

J ′′′
ϵ (x) =


2π
ϵ2
sin (2πx/ϵ) x ∈ [ 0, ϵ],

0 x ̸∈ [ 0, ϵ].

By integrating up we find 0 ≤ Jϵ(x) ↑ x+ and 0 ≤ J ′
ϵ(x) ↑ I(x > 0) as ϵ → 0. More-

over xJ ′′
ϵ (x) and x

2J ′′′
ϵ (x) are supported in [0, ϵ] and bounded uniformly in ϵ. Also J ′′

ϵ ≥ 0.

We will then do the proof in the following five stages:

1. Use the identity p2puu =
1
3
(p3)uu − 2p(pu)

2 and rewrite (6.3) as the equation:

dp =
1

3
(p3)uudt− 2p(pu)

2dt+ (fup− fpu) dt+ (g′p− gpu) ◦ dWt. (6.4)

2. Develop Jϵ(r − q) using Itô’s formula.

3. Integrate with respect to the spatial variable u:
∫ 1

0
du. This will allow us to perform

integration by parts in the u variable.

4. Take expectations E. This will allow us to neglect the Itô integrals by standard

properties.
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5. Then we take the limit as epsilon tends to zero ϵ→ 0. this will allow us to us the

limiting properties of J and its derivatives (and cancel a large number of terms).

Remark. Equation (6.4) is still non-linear but f and g no longer contribute to the non-

linearity.

For the interested reader, [11] is a good introduction into Porous Media type equations

and is the main inspiration for the proof that follows.

Applying Stratonovich calculus to the function Jϵ(r − q) for fixed x ∈ (0, 1) over the

range 0 to t ∧ τN we have

Jϵ(r − q)(t ∧ τN , u) = Jϵ(r − q)(0, u) +

∫ t∧τN

0

J ′
ϵ(r − q)(s, u) d(r − q)

Integrating with respect to u, noting that we can apply Fubini’s Theorem to swap inte-

grals and expanding gives∫ 1

0

Jϵ(r − q)(t ∧ τN , u) du =

∫ 1

0

Jϵ(r − q)(0, u) du+

∫ 1

0

∫ t∧τN

0

J ′
ϵ(r − q) d(r − q)du

=

∫ 1

0

Jϵ(r − q)(0, u) du

+
1

3

∫ t∧τN

0

∫ 1

0

J ′
ϵ(r − q)(∆(r3)−∆(q3))duds

−2

∫ t∧τN

0

∫ 1

0

J ′
ϵ(r − q)(rr2u − qq2u)duds

+

∫ t∧τN

0

∫ 1

0

J ′
ϵ(r − q)(r − q)fududs

−
∫ t∧τN

0

∫ 1

0

J ′
ϵ(r − q)f(ru − qu)duds

+

∫ t∧τN

0

∫ 1

0

J ′
ϵ(r − q)(r − q)gudu ◦ dW

−
∫ t∧τN

0

∫ 1

0

J ′
ϵ(r − q)g(ru − qu)du ◦ dW

=:
7∑
i=1

Ri.
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We will consider each of these terms in turn. Note that for brevity, we are writing

solutions r(s, u), q(s, u) as r, q respectively.

Remark. Given the assumption r ≤ q at t = 0 we trivially have R1 =
∫ 1

0
Jϵ(r −

q)(0, u) du = 0 given the definition of Jϵ(z).

Let us now consider R4 and R5 together as we will for the noise terms. Let us define

C = C(N, ∥f∥∞, ∥f ′∥∞, ∥g∥∞) which may change from line to line without further note.

E[R4 +R5] = E
∫ t∧τN

0

∫ 1

0

J ′
ϵ(r − q)(r − q)fu − J ′

ϵ(r − q)f(r − q)u duds

= E
∫ t∧τN

0

∫ 1

0

2J ′
ϵ(r − q)(r − q)fu + J ′′

ϵ (r − q)f(r − q)u(r − q) duds

≤ E
[
C

∫ t

0

∫ 1

0

(r − q)+I[s<τN ]duds

]
+E

∫ t∧τN

0

∫ 1

0

J ′′
ϵ (r − q)f(r − q)u(r − q)duds

≤ C

∫ t

0

∫ 1

0

E((r − q)+I[s<τN ])duds

+E
∫ t∧τN

0

∫ 1

0

J ′′
ϵ (r − q)f(r − q)u(r − q)duds

where in the second equality we have used integration by parts and noted, as J ′
ϵ(0) = 0,

that the cross terms vanish.

Note the last integral tends to zero with decreasing epsilon by use of the Dominated

Convergence Theorem on (r− q)J ′′
ϵ (r− q). The first integral is less than C

∫ t
0

∫ 1

0
E((r−

q)+I[s<τN ])duds which we can use as part of Gronwall’s inequality.
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Let us now consider R2.

E[R2] =
1

3
E
∫ t∧τN

0

∫ 1

0

J ′
ϵ(r − q)(r3 − q3)uududs

=
1

3
E
∫ t∧τN

0

∫ 1

0

J ′
ϵ(r

3 − q3)(r3 − q3)uududs

+
1

3
E
∫ t∧τN

0

∫ 1

0

(
J ′
ϵ(r − q)− J ′

ϵ(r
3 − q3)

)
(r3 − q3)uududs

≤ −1

3
E
∫ t∧τN

0

∫ 1

0

J ′′
ϵ (r

3 − q3)((r3 − q3)u)
2duds

by Integration by parts noting the cross terms again vanish

+CE
∫ t∧τN

0

∫ 1

0

∣∣J ′
ϵ(r − q)− J ′

ϵ(r
3 − q3)

∣∣ duds
≤ CE

∫ t∧τN

0

∫ 1

0

I[r−q∈(0,ϵ)or r3−q3∈(0,ϵ)] duds→ 0

as epsilon tends to zero where we have used the property that the first integral is negative

given J ′′
ϵ (r

3 − q3) ≥ 0 by definition.

E[R3] = −2E
∫ t∧τN

0

∫ 1

0

J ′
ϵ(r − q)(rr2u − qq2u) duds

= −2E
∫ t∧τN

0

∫ 1

0

J ′
ϵ(r − q)

{
r(r2u − q2u) + (r − q)q2u

}
duds

= −2E
(∫ t∧τN

0

∫ 1

0

J ′
ϵ(r − q)r(ru − qu)(ru + qu) duds

+

∫ t∧τN

0

∫ 1

0

J ′
ϵ(r − q)(r − q)q2u duds

)
≤ 2E

(∫ t∧τN

0

∫ 1

0

J ′
ϵ(r − q)(r − q) {r(r + q)u}u duds

)
+2E

(∫ t∧τN

0

∫ 1

0

J ′′
ϵ (r − q)(r − q)(r − q)u(r(r + q)u) duds

)
≤ C

∫ t

0

∫ 1

0

E((r − q)+I[s<τN ])duds

+CE
(∫ t∧τN

0

∫ 1

0

J ′′
ϵ (r − q)(r − q)(r − q)u(r(r + q)u) duds

)
where in the first inequality we have used integration by parts in the first term (again

the cross terms vanish given J ′
ϵ(0) = 0) and the fact that we can ignore the second term
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as it is negative. The second term in the last line tends to zero as epsilon tends to zero

by use of the Dominated Convergence Theorem given (r − q)u, (r(r + q))u are bounded

by definition of the stopping time τN and J ′′
ϵ (z)z is bounded and has compact support

outside of the region (0, ϵ).

Considering the last two integrals, that is R6 and R7:

R6 +R7 =

∫ t∧τN

0

∫ 1

0

J ′
ϵ(r − q)(r − q)gudu ◦ dW

−
∫ t∧τN

0

∫ 1

0

J ′
ϵ(r − q)g(ru − qu)du ◦ dW

= 2

∫ t∧τN

0

∫ 1

0

J ′
ϵ(r − q)(r − q)gudu ◦ dW

+

∫ t∧τN

0

∫ 1

0

J ′′
ϵ (r − q)g(r − q)(r − q)udu ◦ dW

= I1 + I2

by integration by parts in the u variable in the second equality. The second integral

tends to zero as epsilon tends to zero due to the following lemma which is proved in the

next section.

Lemma 99. ∫ t∧τN

0

∫ 1

0

J ′′
ϵ (r − q)g(r − q)(r − q)udu ◦ dW → 0

as ϵ→ 0.

Returning back to the Lemma, we rewrite I1 in its Itô form:

I1 = 2

∫ t∧τN

0

∫ 1

0

J ′
ϵ(r − q)(r − q)gudu ◦ dW

= 2

∫ t∧τN

0

∫ 1

0

J ′
ϵ(r − q)(r − q)gududW +

1

2

[∫ 1

0

2J ′
ϵ(r − q)(r − q)gu du,W

]
t
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where [·, ·] is the quadratic covariation. Note now that the Itô integral will vanish upon

taking expectations. This leaves the covariation term which, using the following lemma,

the proof of which can be found in the next section, is used in the Gronwall argument.

Lemma 100.

lim
ϵ→0

E
[∫ t

0

∫ 1

0

2zJ ′
ϵ(z)gu du,W

]
t

≤ C(∥g∥∞)

∫ t

0

E
[∫ 1

0

(r − q)+ du

]
ds

Hence, combining these arguments we can write E(I1) ≤ C
∫ 1

0
z+du as epsilon tends to

zero. Collecting all the terms together from the above analysis and letting epsilon tend

to zero we obtain∫ 1

0

E (rt∧τN − qt∧τN )+ du ≤ C

∫ t

0

∫ 1

0

E (rs∧τN − qs∧τN )+ duds.

Using Gronwall’s inequality shows that
∫ 1

0
E
[
(rt∧τN − qt∧τN )+ du

]
= 0 for all 0 ≤ t ≤

τN and since rt∧τN and qt∧τN have continuous paths, so does (rt− qt)I[t≤τN ]. This implies

that r(t, u) ≤ q(t, u) for all 0 ≤ t ≤ τN almost surely. �

Corollary 101. If r0 = q0 then rt = qt for all t almost surely.

Proof. By the above theorem this immediately follows. �

The future aim would be to reprove Theorem 98 under weaker regularity assumptions

on derivatives at 0 and 1, that is they allow slow blow up, for example logarithmically,

of pu and puu.

6.4.1 Proof of technical lemmas.

Proof of Lemma 99. Define z(t, u) = r(t, u)− q(t, u). We need to consider the quadratic

covariation between gzJ ′′
ϵ (z)zu and W . To calculate this we consider the decomposition
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of, first, zJ ′′
ϵ (z) and then zzuJ

′′
ϵ (z).

d (zJ ′′
ϵ (z)) = J ′′

ϵ (z) ◦ dz + zJ ′′′
ϵ (z) ◦ dz

= terms of bounded variation + (J ′′
ϵ (z) + zJ ′′′

ϵ (z)) (guz − gzu) ◦ dWt.

Hence, d [zJ ′′
ϵ (z),W ] = (J ′′

ϵ (z) + zJ ′′′
ϵ (z)) (guz − gzu) . Also,

d (zuzJ
′′
ϵ (z)) = zu (J

′′
ϵ (z) ◦ dz + zJ ′′′

ϵ (z) ◦ dz) + zJ ′′
ϵ (z) ◦ dzu

and

dpu = 2ppupuudt+ p2puuudt+ (fuup− fpuu) dt+ (guup− gpuu) ◦ dWt.

Hence,

d [zuzJ
′′
ϵ (z),W ] = zu (J

′′
ϵ (z) + zJ ′′′

ϵ (z)) (guz − gzu) + zJ ′′
ϵ (z) (guuz − gzuu) .

Then,

[∫ ·∧τN

0

∫ 1

0

J ′′
ϵ (z)zzu,W

]
t

=

∫ t∧τN

0

∫ 1

0

[zJ ′′
ϵ (z) (guuz − gzuu) + zu (J

′′
ϵ (z) + zJ ′′′

ϵ (z))

× (gzu − guz)] duds

and concentrating on the second term on the right hand side we can write, by expanding
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brackets,

∫ t∧τN

0

∫ 1

0

[zu (J
′′
ϵ (z) + zJ ′′′

ϵ (z)) (gzu − guz)] duds

=

∫ t∧τN

0

∫ 1

0

[
g(zu)

2J ′′
ϵ (z) + g(zu)

2zJ ′′′
ϵ (z)− guzzuJ

′′
ϵ (z)− guz

2zuJ
′′′
ϵ (z))

]
ds

=

∫ t∧τN

0

∫ 1

0

[
g(zu)

2J ′′
ϵ (z) + gzzu

dJ ′′
ϵ (z)

du
− guzzuJ

′′
ϵ (z)− guz

2zuJ
′′′
ϵ (z)

]
ds

=

∫ t∧τN

0

∫ 1

0

[
g(zu)

2J ′′
ϵ (z)−

{
zguzu + gzzuu + g(zu)

2
}
J ′′
ϵ (z)

−guzzuJ ′′
ϵ (z)− guz

2zuJ
′′′
ϵ (z)

]
ds

= −
∫ t∧τN

0

∫ 1

0

[
(zguzu + zgzuu) J

′′
ϵ (z) + guzzuJ

′′
ϵ (z) + guz

2zuJ
′′′
ϵ (z)

]
ds.

Putting this all together gives

[∫ ·∧τN

0

∫ 1

0

J ′′
ϵ (z)zzu,W

]
t

=

∫ t∧τN

0

∫ 1

0

[zJ ′′
ϵ (z) (guuz + gzuu)− (gu(zu)z + g(zuu)z) J

′′
ϵ (z)

− guzzuJ
′′
ϵ (z)− guz

2zuJ
′′′
ϵ (z)

]
ds.

By the Dominated Convergence Theorem, it is clear that all the terms tend to zero as

epsilon tends to zero. �

Proof of Lemma 100. To prove this we will consider the covariation term more closely.

Let z denote the difference between the two solutions r and q then we can write the

decomposition

d(zJ ′
ϵ(z)) = J ′

ϵ(z) ◦ dz + zJ ′′
ϵ (z) ◦ dz

= terms of bounded variation + (J ′
ϵ(z) + zJ ′′

ϵ (z)) (guz − gzu) .
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Then[∫ .

0

∫ 1

0

2J ′
ϵ(z)guz duds,W.

]
t∧τN

=

∫ t∧τN

0

∫ 1

0

2gu (J
′
ϵ(z)guz − J ′

ϵ(z)gzu) duds

+

∫ t∧τN

0

∫ 1

0

2gu
(
z2J ′′

ϵ (z)gu − gzuzJ
′′
ϵ (z)

)
duds

Now by the dominated convergence theorem, again due to the properties of J ′′, we

can say that for any term containing zJ ′′
ϵ (z) tends to zero as ϵ tends to zero. Also any

term zJ ′
ϵ(z) is a copy of z+ as ϵ tends to zero. Hence

lim
ϵ→0

E
[∫ ·

0

∫ 1

0

2zJ ′
ϵ(z)gu du,W

]
t∧τN

= lim
ϵ→0

E
[∫ t∧τN

0

∫ 1

0

2(gu)
2z+ − 2guJ

′
ϵ(z)gzu

− 2gguzJ
′′
ϵ (z)zu duds

]
.

Integrating the second term above by parts gives

lim
ϵ→0

E
[∫ ·

0

∫ 1

0

2zJ ′
ϵ(z)gu du,W >t∧τN

]
= lim

ϵ→0
E
[∫ t∧τN

0

∫ 1

0

2(gu)
2z+ + 2(ggu)uJ

′
ϵ(z)z

+ (ggu)J
′′
ϵ (z)zuz − gguzJ

′′
ϵ (z)zu duds

]
= E

[∫ t∧τN

0

∫ 1

0

2((gu)
2 + (ggu)u)z+ duds

]

as required. �

6.5 Future research interests

In summary, our main results have shown that provided solutions start from the Heaviside

initial condition, whether f̄ be of KPP type, Nagumo type or Unstable type, there exists

a unique stationary travelling wave (up to translation). We then extended this argument

in the case where f̄ is of KPP type and showed that this conclusion is also true for trapped

initial conditions.
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There are clear areas of further investigation:

• [1] Relaxing the trapped criteria into more explicit decay rates in the tails of the

travelling wave.

• [2] Exploring whether we can extend our wave-speed argument in Chapter 5 for

trapped initial conditions to the KPP type and Unstable type and the reasons why

this fails.

• [3] Investigating how the conditions set out for f̄ can be rewritten in terms of the

f and g.

• [4] Conduct computer simulation on the dynamics of the solution and how these

change for changing f and g, if at all.

• [5] Investigate if our results can be extended to the case of more general noises for

example, a finite sum of independent Brownian motions, a white in time, spatially

homogenous noise and even the space-time white noise case.

We hope to explore some of these open questions in future papers.
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Appendix: Properties of the Heat

Kernel Γt(x)

Introduction. In the calculation of the solution to the heat equation ut = uxx one finds

what is termed either the heat kernel or the fundamental solution.

Let Γ(t, z) be the one-dimensional heat kernel,

Γ(t, z) =


1√
4πt

exp
(
− z2

4t

)
for t > 0

0 otherwise

for z ∈ R.

In this section we record several properties of the heat kernel which we will use re-

peatedly later.

We define C as a generic constant which may change value from line to line but whose

dependence will be shown.

Lemma 102. For 0 < t ≤ t′ and all x, y ∈ R

∫
R
|Γt(x− w)− Γt′(y − w)| dw ≤ Ct−1/2|x− y|+ Ct−1|t′ − t|.

Remark. The statement of the above inequality and similar varieties can be found in
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many papers concerning SPDEs (See [27] and [31]). To ensure this thesis is self contained,

the proof of the inequality is shown in full below.

Remark. Before starting the proof we note an important relation which will be of imme-

diate use. By the Fundamental Theorem of Calculus∣∣∣∣exp(−(w + x− y)2

4t

)
− exp

(
−w

2

4t

)∣∣∣∣ = ∣∣∣∣∫ x−y

0

w + r

2t
exp

(
−(w + r)2

4t

)
dr

∣∣∣∣ . (6.5)

The following lemma will also prove of use, the proof of which can be found at the

end of this section.

Lemma 103.
∫
R

|w+r|
t

exp
(
− |w+r|2

4t

)
dw =

∫
R |w| exp

(
− |w|2

4

)
dw for all r and t > 0.

That is, the integral is independent of r and t.

Proof of Lemma 102. By use of the triangle inequality we can split up the bound into

two components, the first independent of t′ and the second, independent of x.

∫
R
|Γt(x− w)− Γt′(y − w)| dw ≤

∫
R
|Γt(x− w)− Γt(y − w)| dw

+

∫
R
|Γt(y − w)− Γt′(y − w)| dw

= I1 + I2 say.

Let us consider each of these terms in turn.

I1 =

∫
R
|Γt(x− w)− Γt(y − w)| dw

≤ Ct−1/2

∫ |x−y|

0

[∫
R

|w + r|
t

exp

(
−|w + r|2

4t

)
dw

]
dr

= Ct−1/2

∫ |x−y|

0

∫
R
|w| exp

(
−|w|2

4

)
dwdr

≤ Ct−1/2

∫ |x−y|

0

dr

≤ Ct−1/2|x− y|
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where in the first inequality we have used Lemma 103 and Fubini’s theorem to swap

the order of integration. Before we progress onto the I2 term we note that through a

power series expansion, the bound w2

4s2
≤ 2

s
exp

(
w2

8s

)
is clear. Then,

|Γt(w)− Γt′(w)| ≤ C
∣∣∣t−1/2 − t′

−1/2
∣∣∣ exp(−w2

4t

)
+Ct′

−1/2

∣∣∣∣exp(−w2

4t

)
− exp

(
−w

2

4t′

)∣∣∣∣
≤ C|t′ − t|t−3/2 exp

(
−w

2

4t

)
+Ct′

−1/2

∫ t′

t

w2

4s2
exp

(
−w

2

4s

)
ds

≤ C|t′ − t|t−3/2 exp

(
−w

2

4t

)
+Ct′

−1/2

∫ t′

t

2

s
exp

(
w2

8s

)
exp

(
−w

2

4s

)
ds

= C|t′ − t|t−3/2 exp

(
−w

2

4t

)
+ Ct′

−1/2

∫ t′

t

2

s
exp

(
−w

2

8s

)
ds

≤ C|t′ − t|t−3/2 exp

(
−w

2

4t

)
+Ct′

−1/2
sup
s∈[t,t′]

[
2

s

]
sup
s∈[t,t′]

[
exp

(
−w

2

8s

)]∫ t′

t

ds

= C|t′ − t|t−3/2 exp

(
−w

2

4t

)
+Ct′

−1/2

[
2

t

] [
exp

(
−w

2

8t′

)]∫ t′

t

ds as 0 < t ≤ t′

≤ C|t′ − t|t−1 [Γt(w) + Γ2t′(w)] .

Hence, integrating over R we find:

I2 =

∫
R
|Γt(y − w)− Γt′(y − w)| dw

≤
∫
R
C|t′ − t|t−1 [Γt(w) + Γ2t(w)] dw

= C|t′ − t|t−1

as
∫
R
Γt(w) dw = 1 and

∫
R
Γ2t(w) dw = 2. Combining the above two inequalities yields

138



the result: ∫
R
|Γt(x− w)− Γt′(y − w)| dw ≤ C

|x− y|
t1/2

+ C
|t′ − t|
t

which gives us our required bound. �

Proof of Lemma 103. The proof of this lemma is a simple change of variable which we

specify at each step

∫
R

|w + r|
t

exp

(
−|w + r|2

4t

)
dw =

∫
R
|ŵ + r̂| exp

(
−|ŵ + r̂|2

4

)
dŵ

using the substitutions w =
√
tŵ and r =

√
tr̂

=

∫
R
|w̄| exp

(
−|w̄|2

4

)
dw̄

using the substitution w̄ = ŵ + r̂.

This is clearly a finite integral. �
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