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Abstract. Filtering is a widely used methodology for the incorporation of observed

data into time-evolving systems. It provides an online approach to state estimation

inverse problems when data is acquired sequentially. The Kalman filter plays a central

role in many applications because it is exact for linear systems subject to Gaussian

noise, and because it forms the basis for many approximate filters which are used in

high dimensional systems. The aim of this paper is to study the effect of model error on

the Kalman filter, in the context of linear wave propagation problems. A consistency

result is proved when no model error is present, showing recovery of the true signal in

the large data limit. This result, however, is not robust: it is also proved that arbitrarily

small model error can lead to inconsistent recovery of the signal in the large data limit.

If the model error is in the form of a constant shift to the velocity, the filtering and

smoothing distributions only recover a partial Fourier expansion, a phenomenon related

to aliasing. On the other hand, for a class of wave velocity model errors which are

time-dependent, it is possible to recover the filtering distribution exactly, but not the

smoothing distribution. Numerical results are presented which corroborate the theory,

and also to propose a computational approach which overcomes the inconsistency in

the presence of model error, by relaxing the model.

Submitted to: Inverse Problems

1. Introduction

Filtering is a methodology for the incorporation of data into time-evolving systems

[1, 2]. It provides an online approach to state estimation inverse problems when data is

acquired sequentially. In its most general form the dynamics and/or observing system

are subject to noise and the objective is to compute the probability distribution of the

current state, given observations up to the current time, in a sequential fashion. The

Kalman filter [3] carries out this process exactly for linear dynamical systems subject to

additive Gaussian noise. A key aspect of filtering in many applications is to understand

http://arxiv.org/abs/1101.5096v2
http://www.warwick.ac.uk/~masdr/
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the effect of model error – the mismatch between model used to filter and the source of

the data itself. In this paper we undertake a study of the effect of model error on the

Kalman filter in the context of linear wave problems.

Section 2 is devoted to describing the linear wave problem of interest, and deriving

the Kalman filter for it. The iterative formulae for the mean and covariance are solved

and the equivalence (as measures) of the filtering distribution at different times is

studied. In section 3 we study consistency of the filter, examining its behaviour in

the large time limit as more and more observations are accumulated, at points which

are equally spaced in time. It is shown that, in the absence of model error, the filtering

distribution on the current state converges to a Dirac measure on the truth. However,

for the linear advection equation, it is also shown that arbitrarily small model error, in

the form of a shift to the wave velocity, destroys this property: the filtering distribution

converges to a Dirac measure, but it is not centred on the truth. Thus the order of two

operations, namely the successive incorporation of data and the limit of vanishing model

error, cannot be switched; this means, practically, that small model error can induce

order one errors in filters, even in the presence of large amounts of data. All of the

results in section 3 apply to the smoothing distribution on the initial condition, as well

as the filtering distribution on the current state. Section 4 concerns non-autonomous

systems, and the effect of model error. We study the linear advection equation in two

dimensions with time-varying wave velocity. Two forms of model error are studied: an

error in the wave velocity which is integrable in time, and a white noise error. In the

first case it is shown that the filtering distribution converges to a Dirac measure on

the truth, whilst the smoothing distribution converges to a Dirac measure which is in

error, i.e., not centred on the truth. In the second, white noise, case both the filter

and smoother converge to a Dirac measure which is in error. In section 5 we present

numerical results which illustrate the theoretical results. We also describe a numerical

approach which overcomes the effect of model error by relaxing the model to allow the

wave velocity to be learnt from the data.

We conclude the introduction with a brief review of the literature in this area.

Filtering in high dimensional systems is important in a range of applications, especially

within the atmospheric and geophysical sciences [4, 5, 6, 7]. Recent theoretical studies

have shown how the Kalman filter can not only systematically incorporate data into a

model, but also stabilize model error arising from an unstable numerical discretization

[8], from an inadequate choice of parameter [9, 10], and the effect of physical model

error in a particular application is discussed in [11]. The Kalman filter is used as the

basis for a number of approximate filters which are employed in nonlinear and non-

Gaussian problems, and the ensemble Kalman filter in particular is widely used in this

context [5, 12, 13]. Although robust and widely useable, the ensemble Kalman filter

does not provably reproduce the true distribution of the signal in the large ensemble

limit, given data, except in the Gaussian case. For this reason it would be desirable to

use the particle filter [2] on highly non-Gaussian systems. However, recent theoretical

work and a range of computational experience shows that, in its current form, particle
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filters will not work well in high dimensions [14, 15, 16]. As a consequence a great

deal of research activity is aimed at the development of various approximation schemes

within the filtering context; see [17, 18, 19, 20, 21, 22] for example. The subject of

consistency of Bayesian estimators for noisily observed systems, which forms the core

of our theoretical work in this paper, is an active area of research. In the infinite

dimensional setting, much of this work is concerned with linear Gaussian systems, as we

are here, but is primarily aimed at the perfect model scenario [23, 24, 25]. The issue of

model error arising from spatial discretization, when filtering linear PDEs, is studied in

[26]. The idea of relaxing the model and learning parameters in order to obtain a better

fit to the data, considered in our numerical studies, is widely used in filtering (see the

chapter by Künsch in [2], and the paper [27] for an application in data assimilation).

2. Kalman Filter on Function Space

2.1. Statistical model for discrete observations

The test model, which we propose here, is a class of PDEs

∂tv + Lv = 0, ∀(x, t) ∈ T2 × (0,∞) (1)

on a two dimensional torus. Here L is an anti-Hermitian operator satisfying L∗ = −L
where L∗ is the adjoint in L2(T2). Equation (1) describes a prototypical linear wave

system and the advection equation with velocity c is the simplest example:

∂tv + c · ∇v = 0, ∀(x, t) ∈ T2 × (0,∞). (2)

The state estimation problem for Equation (1) requires to find the ‘best’ estimate of the

solution v(t) (shorthand for v(·, t)) given a random initial condition v0 and a set of noisy

observations, called data. Suppose the data is collected at discrete times tn = n∆t, then

we assume that the entire vn = v(tn) solution on the torus is observed with additive

noise ηn at time tn, and further that the ηn are independent for different n. Realizations

of the noise ηn are L2(T2)-valued random fields and the observations yn are given by

yn = vn + ηn = e−tnLv0 + ηn, ∀x ∈ T2. (3)

Here e−tL denotes the forward solution operator for (1) through t time units. Let

YN = {y1, . . . , yN} be the collection of data up to time tN , then we are interested in

finding the conditional distribution P (vn|YN) on the Hilbert space L2(T2). If n = N ,

this is called the filtering problem, if n < N it is the smoothing problem and for n > N ,

the prediction problem. We here emphasize that all of the problems are equivalent for

our deterministic system in that any one measure defines the other simply by a push

forward under the linear map defined by Equation (1).

In general calculation of the filtering distribution P(vn|Yn) is computationally

challenging when the state space for vn is large, as it is here. A key idea is to estimate the

signal vn through sequential updates consisting of a two-step process: prediction by time

evolution, and analysis through data assimilation. We first perform a one-step statistical

prediction to obtain P (vn+1|Yn) from P (vn|Yn) through some forward operator. This is
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followed by an analysis step which corrects the probability distribution on the basis of

the statistical input of noisy observations of the system using Bayes rule:

P(vn+1|Yn+1)

P(vn+1|Yn)
∝ P (yn+1|vn+1) . (4)

This relationship exploits the assumed independence of the observational noises ηn
for different n. In our case, where the signal vn is a function, this identity should

be interpreted as providing the Radon-Nikodym derivative (density) of the measure

P(dvn+1|Yn+1) with respect to P(dvn+1|Yn) [28].

In general implementation of this scheme is non-trivial as it requires approximation

of the probability distributions at each step indexed by n. In the case of infinite

dimensional dynamics this may be particularly challenging. However, for linear

dynamical systems such as (1), together with linear observations (3) subject to Gaussian

observation noise ηn this may be achieved by use of the Kalman filter [3]. Our

work in this paper begins with Theorem 2.1, which is a straightforward extension of

the traditional Kalman filter theory in finite dimension to measures on an infinite

dimensional function space. For reference, basic results concerning Gaussian measures

required for this paper are gathered in Appendix A.

Theorem 2.1. Let v0 be distributed according to a Gaussian measure µ0 = N (m0, C0)
on L2(T2) and let {ηn}n∈N be i.i.d. draws from the L2(T2)-valued Gaussian measure

N (0,Γ). Assume further that v0 and {ηn}n∈N are independent of one another, and that

C0 and Γ are strictly positive. Then the conditional distribution P(vn|Yn) ≡ µn is a

Gaussian N (mn, Cn) with mean and covariance satisfying the recurrence relations

mn+1 = e−∆tLmn

− e−∆tLCne−∆tL∗ (

Γ + e−∆tLCne−∆tL∗)−1 (
e−∆tLmn − yn+1

)

, (5a)

Cn+1 = e−∆tLCne−∆tL∗

− e−∆tLCne−∆tL∗ (

Γ + e−∆tLCne−∆tL∗)−1
e−∆tLCne−∆tL∗

, (5b)

where m0 = m0, C0 = C0.

Proof. Let mn|N = E(vn|YN) and Cn|N = E
[

(vn −mn|N)(vn −mn|N)
∗
]

denote the mean

and covariance operator of P(vn|YN) so that mn = mn|n, Cn = Cn|n. Now the prediction

step reads

m n+1|n = E(e−∆tLvn|Yn) = e−∆tLmn|n,

Cn+1|n = E
[

e−∆tL(vn −mn|n)(vn −mn|n)
∗e−∆tL∗]

= e−∆tLCn|ne−∆tL∗

. (6)

To get the analysis step, choose x1 = vn+1|Yn and x2 = yn+1|Yn then (x1, x2) is jointly

Gaussian with mean (mn+1|n, mn+1|n) and each components of the covariance operator

for (x1, x2) are given by

C11 = E
[

(x1 −mn+1|n)(x1 −mn+1|n)
∗
]

= Cn+1|n,

C22 = E
[

(x2 −mn+1|n)(x2 −mn+1|n)
∗
]

= Γ + Cn+1|n,
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C12 = E
[

(x1 −mn+1|n)(x2 −mn+1|n)
∗
]

= Cn+1|n = C21.

Using Lemma A.2 we obtain

mn+1|n+1 = mn+1|n − Cn+1|n

(

Γ + Cn+1|n

)−1 (
mn+1|n − yn+1

)

,

Cn+1|n+1 = Cn+1|n − Cn+1|n

(

Γ + Cn+1|n

)−1 Cn+1|n. (7)

Combining Equations (6) and (7) yields Equation (5).

Note that µn, the distribution of v0|Yn, is also Gaussian and we denote its mean

and covariance by mn and Cn respectively. The measure µn is the image of µn under

the linear transformation etnL. Thus we have mn = etnLmn and Cn = etnLCnetnL
∗

.

In this paper we study a wave propagation problem for which L is anti-Hermitian.

Furthermore we assume that both C0 and Γ commute with L. Then the formulae (5)

simplify to give

mn+1 = e−∆tLmn − Cn (Γ + Cn)−1 (e−∆tLmn − yn+1

)

, (8a)

Cn+1 = Cn − Cn (Γ + Cn)−1 Cn. (8b)

The following gives explicit expressions for (mn, Cn) and (mn, Cn), based on the

Equations (8).

Corollary 2.2. Suppose that C0 and Γ commute with the anti-Hermitian operator L,
then the means and covariance operators of µn and µn are given by

mn =
(

nI + ΓC−1
0

)−1

[

ΓC−1
0 m0 +

n−1
∑

l=0

etl+1Lyl+1

]

, (9a)

Cn =
(

nΓ−1 + C−1
0

)−1
, (9b)

and mn = e−tnLmn, Cn = Cn.

Proof. Assume for induction that Cn is invertible. Then the identity
(

Γ−1 + (Cn)−1) (Cn − Cn (Γ + Cn)−1 Cn
)

=
(

Γ−1 + (Cn)−1)
(

Cn − Cn
[

(Cn)−1 (Γ−1 + (Cn)−1)−1
Γ−1
]

Cn
)

= I

leads to (Cn+1)−1 = Γ−1 + (Cn)−1 from Equation (8b), and hence Cn+1 is invertible.

Then Equation (9b) follows by induction. By applying etn+1L to Equation (8a) we have

mn+1 = mn − Cn (Γ + Cn)−1 (mn − etn+1Lyn+1

)

.

After using Cn(Γ + Cn)−1 =
(

(n + 1)I + ΓC−1
0

)−1
from Equation (9b), we obtain the

telescoping series
(

(n + 1) I + ΓC−1
0

)

mn+1 =
(

nI + ΓC−1
0

)

mn + etn+1Lyn+1

and Equation (9a) follows. The final observations follow since mn = etnLmn and

Cn = etnLCnetnL
∗

= Cn.
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2.2. Equivalence of measures

Now suppose we have a set of specific data and they are a single realization of the

observation process (3),

yn(ω) = e−tnLu+ ηn(ω). (10)

Here ω is an element of the probability space Ω generating the entire noise signal {ηn}n∈N.
We assume that the initial condition u ∈ L2(T2) for the true signal e−tnLu is non-

random and hence independent of µ0. We insert the fixed (non-random) instances of

the data (10) into the formulae for µ0, µn and µn, and will prove all three measures are

equivalent. Recall that two measures are said to be equivalent if they are mutually

absolutely continuous, and singular if they are concentrated on disjoint sets [29].

Lemma A.3 (Feldman-Hajek) tells us the conditions under which two Gaussian measures

are equivalent.

Before stating the theorem, we need to introduce some notation and assumptions.

Let φk(x) = e2πik·x, where k = (k1, k2) ∈ Z × Z ≡ K, be a standard orthonormal basis

for L2(T2) with respect to the standard inner product (f, g) =
∫

T2 f ḡ dxdy where the

upper bar denotes the complex conjugate.

Assumptions 2.3. The operators L, C0 and Γ are diagonalizable in the basis defined by

the φk. The two covariance operators, C0 and Γ, have positive eigenvalues λk > 0 and

γk > 0 respectively:

C0φk = λkφk,

Γφk = γkφk. (11)

The eigenvalues ℓk of L have zero real parts and Lφ0 = 0.

This assumption on the simultaneous diagonalization of the operators implies the

commutativity of C0 and Γ with L. Therefore we have Corollary 2.2 and Equations (9)

can be used to study the large n behaviour of the µn and µn. We believe that it might

be possible to obtain the subsequent results without Assumption 2.3, but to do so would

require significantly different techniques of analysis; the simultaneously diagonalizable

case allows a straightforward analysis in which the mechanisms giving rise to the results

are easily understood.

Note that, since C0 and Γ are the covariance operators of Gaussian measures on

L2(T2), it follows from Lemma A.1 that the λk, γk are summable: i.e.,
∑

k∈K λk < ∞,
∑

k∈K γk < ∞. We define Hs(T2) to be the Sobolev space of periodic functions with s

weak derivatives and

‖·‖Hs(T2) ≡
∑

k∈K+

|k|2s|(·, φk)|2 + |(·, φ0)|2

where K+ = K\{(0, 0)} noting that this norm reduces to the usual L2 norm when s = 0.

We denote by ‖·‖ the standard Euclidean norm.

Theorem 2.4. If
∑

k∈K λk/γ
2
k < ∞, then the Gaussian measures µ0, µn and µn on the

Hilbert space L2(T2) are equivalent η−a.s.
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Proof. We first show the equivalence between µ0 and µn. For h =
∑

k∈K hkφk we get,

from Equations (9b) and (11),

1

c+
≤ (h, Cnh)

(h, C0h)
=

∑

k∈K

(

nγ−1
k + λ−1

k

)−1
h2
k

∑

k∈K λkh
2
k

≤ 1,

where c+ = supk∈K (nλk/γk + 1). We have c+ ∈ [1,∞) because
∑

k∈K λk/γ
2
k < ∞ and Γ

is trace-class. Then the first condition for Feldman-Hajek is satisfied by Lemma A.4.

For the second condition, take {gl+1
k }k∈K where l = 0, . . . , n − 1, to be a sequence

of complex-valued unit Gaussians independent except for the condition gl
−k = ḡl

k. This

constraint ensures that the Karhunen-Loève expansion

etl+1Lηl+1 =
∑

k∈K

√
γkg

l+1
k φk,

is distributed according to the real-valued Gaussian measure N (0,Γ), and is

independent for different values of l. Thus

‖mn −m0‖2C0 ≡
∥

∥

∥
C− 1

2
0 (mn −m0)

∥

∥

∥

2

L2(T2)

=
∑

k∈K

(

λ
−1/2
k

n + γk/λk

)2 ∣
∣

∣

∣

∣

−n(m0, φk) + n(u, φk) +
√
γk

n−1
∑

l=0

gl+1
k

∣

∣

∣

∣

∣

2

≤ C(n)
∑

k∈K

λk

γ2
k

< ∞,

where

C(n) ≡ sup
k∈K

∣

∣

∣

∣

∣

−n(m0, φk) + n(u, φk) +
√
γk

n−1
∑

l=0

gl+1
k

∣

∣

∣

∣

∣

2

< ∞

η−a.s. from the strong law of large numbers [30].

For the third condition, we need to show the set of eigenvalues of T , where

Tφk =
(

C− 1
2

n C0C− 1
2

n − I
)

φk = n

(

λk

γk

)

φk,

are square-summable. This is satisfied since C0 is trace-class:

∑

k∈K

λ2
k

γ2
k

≤
(

sup
k∈K

λk

)

∑

k∈K

λk

γ2
k

< ∞.

The equivalence between µ0 and µn is immediate because mn is the image of mn

under a unitary map e−tnL, and Cn = Cn.

To illustrate the conditions of the theorem, let (−△) denote the negative Laplacian

with domain D(−△) = H2(T2). Assume that C0 ∝ (−△+ kAI)
−A and Γ ∝

(−△+ kBI)
−B, where the conditions A > 1, B > 1 and kA, kB > 0 ensure, respectively,

that the two operators are trace-class and positive-definite. Then the condition
∑

k∈K λk/γ
2
k < ∞ reduces to 2B ≤ A− 1.
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3. Measure Consistency and Time-Independent Model Error

In this section we study the large data limit of the smoother µn and the filter µn in

Corollary 2.2 for large n. We study measure consistency, namely the question of whether

the filtering or smoothing distribution converges to a Dirac measure on the true signal

as n increases. We study situations where the data is generated as a single realization

of the statistical model itself, so there is no model error, and situations where model

error is present.

3.1. Data model

Suppose that the true signal, denoted v′n = v′(·, tn), can be different from the solution

vn computed via the model (1) and instead solves

∂tv
′ + L′v′ = 0, v′(0) = u (12)

for another anti-Hermitian operator L′ on L2(T2) and fixed u ∈ L2(T2). We further

assume possible error in the observational noise model so that the actual noise in the

data is not ηn but η′n. Then, instead of yn given by (10), what we actually incorporate

into the filter is the true data, a single realization y′n determined by v′n and η′n as follows:

y′n = v′n + η′n = e−tnL′

u+ η′n. (13)

We again use e−tL′

to denote the forward solution operator, now for (12), through t time

units. Note that each realization (13) is an element in the probability space Ω′, which is

independent of Ω. For the data Y ′
n = {y′1, . . . , y′n}, let µ′

n be the measure P (v0|Yn = Y ′
n).

This measure is Gaussian and is determined by the mean in Equation (9a) with yl
replaced by y′l, which we relabel as m′

n, and the covariance operator in Equation (9b)

which does not depend on the data so we retain the notation Cn. Clearly, using (13) we

obtain

m′
n =

(

nI + ΓC−1
0

)−1

[

ΓC−1
0 m0 +

n−1
∑

l=0

(

etl+1(L−L′)u+ etl+1Lη′l+1

)

]

, (14)

where m′
0 = m0.

This conditioned mean m′
n differs from mn in that etl+1(L−L′)u and η′l+1 appear

instead of u and ηl+1, respectively. The reader will readily generalize both the statement

and proof of Theorem 2.4 to show the equivalence of µ0, µ
′
n and (µ′)n ≡ P(vn|Yn = Y ′

n) =

N ((m′)n, Cn) , showing the well-definedness of these conditional distributions even with

errors in both forward model and observational noise. We now study the large data

limit for the filtering problem, in the idealized scenario where L = L′ (Theorem 3.2)

and the more realistic scenario with model error so that L 6= L′ (Theorem 3.7). We

allow possible model error in the observation noise for both theorems, so that the noises

η′n are draws from i.i.d. Gaussians η′n ∼ N (0,Γ′) and Γ′φk = γ′
kφk. Even though

γ′
k (equivalently Γ′) and L′ are not exactly known in most practical situations, their

asymptotics can be predicted within a certain degree of accuracy. Therefore, without
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limiting the applicability of the theory, the following are assumed in all subsequent

theorems and corollaries in this paper:

Assumptions 3.1. There are positive real numbers s, κ ∈ R+ such that:

(i)
∑

k∈K |k|2sγk < ∞,
∑

k∈K |k|2sγ′
k < ∞;

(ii) γk/λk = O (|k|κ);
(iii) m0, u ∈ Hs+κ (T2).

Then Assumptions 3.1(1) imply that η ∼ N (0,Γ) and η′ ∼ N (0,Γ′) are in Hs(T2)

since E‖η‖2Hs(T2) < ∞ and E‖η′‖2Hs(T2) < ∞.

3.2. Limit of the conditioned measure without model error

We first study the large data limit of the measure µ′
n without model error.

Theorem 3.2. For the statistical model (1) and (3), suppose that the data Y ′
n =

{y′1, · · · , y′n} is created from (13) with L = L′. Then, as n → ∞, E(v0|Y ′
n) = m′

n → u

in the sense that

‖m′
n − u‖L2(Ω′;Hs(T2)) = O

(

n− 1
2

)

, (15a)

‖m′
n − u‖Hs(T2) = o

(

n−θ
)

Ω′ − a.s., (15b)

for the probability space Ω′ generating the true observation noise {η′n}n∈N, and for any

non-negative θ < 1/2. Furthermore, Cn → 0 in the sense that its operator norm from

L2(T2) to Hs(T2) satisfies

‖Cn‖L(L2(T2);Hs(T2)) = O(n−1). (16)

Proof. From Equation (14) with L′ = L, we have

(

nI + ΓC−1
0

)

m′
n = ΓC−1

0 m0 + nu+

n−1
∑

l=0

etl+1Lη′l+1,

thus

(

nI + ΓC−1
0

)

(m′
n − u) = ΓC−1

0 (m0 − u) +
n−1
∑

l=0

etl+1Lη′l+1.

Take {(g′
k)

l+1}k∈K where l = 0, . . . , n − 1, to be an i.i.d. sequence of complex-valued

unit Gaussians subject to the constraint that (g′
−k)

l = (ḡ′
k)

l. Then the Karhunen-Loève

expansion for etl+1Lη′l+1 ∼ N (0,Γ′) is given by

etl+1Lη′l+1 =
∑

k∈K

√

γ′
k(g

′
k)

l+1φk. (17)

It follows that

‖m′
n − u‖2L2(Ω′;Hs(T2)) = E ‖m′

n − u‖2Hs(T2)

=
∑

k∈K+

|k|2sE|(m′
n − u, φk)|2 + E|(m′

n − u, φ0)|2
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=
∑

k∈K+

|k|2s
(n + γk/λk)

2

[

(

γk
λk

)2

|(m0 − u, φk)|2 + γ′
kn

]

+
1

(n + γ0/λ0)
2

[

(

γ0
λ0

)2

|(m0 − u, φ0)|2 + γ′
0n

]

≤
∑

k∈K+

|k|2sn−2

[

(

γk
λk

)2

|(m0 − u, φk)|2 + γ′
kn

]

+ n−2

[

(

γ0
λ0

)2

|(m0 − u, φ0)|2 + γ′
0n

]

≤
(

C ‖m0 − u‖Hs+κ(T2)

)

n−2 +

(

∑

k∈K

|k|2sγ′
k

)

n−1,

and so we have Equation (15a). Here and throughout the paper, C is a constant that

may change from line to line.

Equation (15b) follows from the Borel-Cantelli Lemma [30]: for arbitrary ǫ > 0, we

have
∑

n∈N

P

(

nθ ‖m′
n − u‖Hs(T2) > ǫ

)

=
∑

n∈N

P

(

n2rθ ‖m′
n − u‖2rHs(T2) > ǫ2r

)

≤
∑

n∈N

n2rθ

ǫ2r
E ‖m′

n − u‖2rHs(T2) (Markov inequality)

≤
∑

n∈N

Cn2rθ
(

E ‖m′
n − u‖2Hs(T2)

)r

(Lemma A.5)

≤
∑

n∈N

C

nr(1−2θ)
< ∞ (by (15a))

and if θ ∈ (0, 1/2) then we can choose r such that r(1− 2θ) > 1.

Finally, for h =
∑

k∈K hkφk,

‖Cn‖2L(L2(T2);Hs(T2)) = sup
‖h‖

L2(T2)≤1

‖Cnh‖2Hs(T2)

= sup
‖h‖

L2(T2)≤1

∑

k∈K

|k|2s
∣

∣nγ−1
k + λ−1

k

∣

∣

−2 |hk|2

≤ C
∑

k∈K

|k|2s
∣

∣nγ−1
k + λ−1

k

∣

∣

−2

≤ C

n2

∑

k∈K

|k|2sγ2
k.

and use the fact that supk∈K γk < ∞, since Γ is trace-class, together with

Assumptions 3.1(1) to get the desired convergence rate.

Corollary 3.3. Under the same assumptions as Theorem 3.2, if Equation (15b) holds

with s > 1, then

‖m′
n − u‖L∞(T2) = o

(

n−θ
)

Ω′ − a.s., (18)
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for any non-negative θ < 1/2.

Proof. Equation (18) is immediate from Equation (15b) and the Sobolev embedding,

‖·‖L∞(T2) ≤ C ‖·‖Hs(T2) ,

when s > d/2 = 1 since d = 2 is the dimension of the domain.

Corollary 3.4. Under the same assumptions as Theorem 3.2, as n → ∞, the Ω′ − a.s.

weak convergence µ′
n ⇒ δu holds in L2(T2).

Proof. To prove this result we apply Example 3.8.15 in [31]. This shows that for

weak convergence of µ′
n = N (m′

n, Cn) a Gaussian measure on H to a limit measure

µ = N (m, C) on H, it suffices to show that m′
n → m in H, that Cn → C in L(H,H) and

that second moments converge. Note, also, that Dirac measures, and more generally

semi-definite covariance operators, are included in the definition of Gaussian. The

convergence of the means and the covariance operators follows from Equations (15b)

and (16) with m = u, C = 0 and H = L2(T2). The convergence of the second comments

follows if the trace of Cn converges to zero. From (9b) it follows that the trace of Cn is

bounded by n−1 multiplied by the trace of Γ. But Γ is trace-class as it is a covariance

operator on L2(T2) and so the desired result follows.

In fact, the weak convergence in the Prokhorov metric between µ′
n and δu holds,

and the methodology in [24] could be used to quantify its rate of convergence.

We now obtain the large data limit of the filtering distribution (µ′)n without

model error from the smoothing limit (15). Recall that this measure is the Gaussian

N ((m′)n, Cn).
Theorem 3.5. Under the same assumptions as Theorem 3.2, as n → ∞, (m′)n−v′n → 0

in the sense that

‖(m′)n − v′n‖L2(Ω′;Hs(T2)) = O
(

n− 1
2

)

, (19a)

‖(m′)n − v′n‖Hs(T2) = o
(

n−θ
)

Ω′ − a.s., (19b)

for any non-negative θ < 1/2.

Proof. Equation (19b) follows from

‖(m′)n − v′n‖Hs(T2) =
∥

∥

∥
e−tnLm′

n − e−tnL′

u
∥

∥

∥

Hs(T2)

=
∥

∥e−tnL (m′
n − u)

∥

∥

Hs(T2)

≤
∥

∥e−tnL
∥

∥

L(Hs(T2);Hs(T2))
‖m′

n − u‖Hs(T2)

= ‖m′
n − u‖Hs(T2) .

Then Equation (19a) follows from

‖(m′)n − v′n‖2L2(Ω′;Hs(T2)) = E ‖(m′)n − v′n‖2Hs(T2)

≤ E ‖m′
n − u‖2Hs(T2) .
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The following corollary has the same as for Corollary 3.4, and so we omit it.

Corollary 3.6. Under the same assumptions as Theorem 3.2, as n → ∞, the Ω′ − a.s.

weak convergence (µ′)n − δv′n ⇒ 0 holds in L2(T2).

Theorem 3.5 and Corollary 3.6 are consistent with known results concerning

large data limits of the finite dimensional Kalman filter shown in [32]. However,

Equations (19) and (16) provide convergence rates in an infinite dimensional space

and hence cannot be derived from the finite dimensional theory; mathematically this is

because the rate of convergence in each Fourier mode will depend on the wavenumber

k, and the infinite dimensional analysis requires this dependence to be tracked and

quantified, as we do here.

3.3. Limit of the conditioned measure with time-independent model error

The previous subsection shows measure consistency results for data generated by the

same PDE as that used in the filtering model. In this section, we study the consequences

of using data generated by a different PDE. It is important to point out that, in view

of Equation (14), the limit of m′
n is determined by the time average of etl+1(L−L′)u, i.e.,

1

n

n−1
∑

l=0

etl+1(L−L′)u. (20)

For general anti-Hermitian L and L′, obtaining an analytic expression for the limit of

the average (20), as n → ∞, is very hard. Therefore in the remainder of the section

we examine the case in which L = c · ∇ and L′ = c′ · ∇ with different constant wave

velocities c and c′, respectively. A highly nontrivial filter divergence takes place even in

this simple example.

We use the notation F(p,q)f ≡∑(k1/p,k2/q)∈Z×Z(f, φk)φk for part of the Fourier series

of f ∈ L2 (T2), and 〈f〉 ≡ (f, φ0) =
∫

T2 f(x, y) dxdy for the spatial average of f on the

torus. We also denote by δc ≡ c− c′ the difference between wave velocities.

Theorem 3.7. For the statistical model (1) and (3) with L = c · ∇, suppose that the

data Y ′
n = {y′1, · · · , y′n} is created from (13) with L′ = c′ · ∇ and that δc 6= 0mod(1, 1)

(equivalently δc /∈ Z× Z). As n → ∞,

(i) if ∆t δc = (p′/p, q′/q) ∈ Q × Q and gcd(p′, p) = gcd(q′, q) = 1, then m′
n → F(p,q)u

in the sense that
∥

∥m′
n − F(p,q)u

∥

∥

L2(Ω′;Hs(T2))
= O

(

n− 1
2

)

, (21a)
∥

∥m′
n − F(p,q)u

∥

∥

Hs(T2)
= o

(

n−θ
)

Ω′ − a.s., (21b)

for any non-negative θ < 1/2;

(ii) if ∆t δc ∈ R\Q× R\Q, then m′
n → 〈u〉 in the sense that

‖m′
n − 〈u〉‖L2(Ω′;Hs(T2)) = o (1) , (22a)

‖m′
n − 〈u〉‖Hs(T2) = o (1) Ω′ − a.s. (22b)



Filtering for linear wave equations 13

Proof. See Appendix B.

Remark 3.8. It is interesting that it is not the size of ∆t δc but its rationality or

irrationality which determines the limit ofm′
n. This result may be understood intuitively

from Equation (20), which reduces to

1

n

n−1
∑

l=0

u(·+ (l + 1)∆t δc), (23)

when L = c · ∇ and L′ = c′ · ∇. It is possible to guess the large n behaviour of

Equation (23) using the periodicity of u and an ergodicity argument. The proof of

Theorem 3.7 tells us that the prediction resulting from this heuristic is indeed correct.

The proof of Corollary 3.3 tells us that, whenever s > 1, the Hs (T2)−norm

convergence in (21b) or (22b) implies the almost everywhere convergence on T2 with the

same order. Therefore, m′
n → F(p,q)u or m′

n → 〈u〉 a.e. on T2 from Equation (21b) or

from Equation (22b), when ∆t δc = (p′/p, q′/q) ∈ Q×Q and gcd(p′, p) = gcd(q′, q) = 1,

or when ∆t δc ∈ R\Q × R\Q, respectively. We will not repeat the statement of the

corresponding result in the subsequent theorems.

When ∆t δc ∈ R\Q× R\Q, Equation (22) is obtained using

1

n

n−1
∑

l=0

e2πi(k·δc)tl+1 = o(1), (24)

as n → ∞, from the theory of ergodicity [33]. The convergence rate of Equation (22)

can be improved if we have higher order convergence in Equation (24). It must be noted

that in general there exists a fundamental relationship between the limits of m′
n and the

left-hand side of Equation (24) for various c and c′, as we will see.

Note also from Theorem 3.2 and Theorem 3.7, the limit of m′
n does not depend

on the observation noise error Γ 6= Γ′ but does depend sensitively on the model error

L 6= L′.

Corollary 3.9. Under the same assumptions as Theorem 3.7, as n → ∞, the Ω′ − a.s.

weak convergence µ′
n ⇒ δF(p,q)u or µ′

n ⇒ δ〈u〉 holds, when ∆t δc = (p′/p, q′/q) ∈ Q × Q

and gcd(p′, p) = gcd(q′, q) = 1, or when ∆t δc ∈ R\Q× R\Q, respectively.

Proof. This is the same as the proof of Corollary 3.4, so we omit it.

Remark 3.10. Our theorems show that the observation accumulation limit and the

vanishing model error limit cannot be switched, i.e.,

lim
n→∞

lim
||δc||→0

‖m′
n − u‖Hs(T2) = 0,

lim
||δc||→0

lim
n→∞

‖m′
n − u‖Hs(T2) 6= 0.

Note the second limit is nonzero because m′
n converges either to F(p,q)u or 〈u〉.

We can also study the effect of model error on the filtering distribution, instead of

the smoothing distribution. The following theorem extends Theorem 3.7 to study the
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measure (µ′)n, showing that the truth v′n is not recovered if δc 6= 0. This result should

be compared with Theorem 3.5 in the case of no model error.

Theorem 3.11. Under the same assumptions as Theorem 3.7, as n → ∞,

(i) if ∆t δc = (p′/p, q′/q) ∈ Q × Q and gcd(p′, p) = gcd(q′, q) = 1, then (m′)n −
F(p,q)e

−tnLu → 0 in the sense that
∥

∥(m′)n − F(p,q)e
−tnLu

∥

∥

L2(Ω′;Hs(T2))
= O

(

n− 1
2

)

, (25a)
∥

∥(m′)n − F(p,q)e
−tnLu

∥

∥

Hs(T2)
= o

(

n−θ
)

Ω′ − a.s., (25b)

for any non-negative θ < 1/2;

(ii) if ∆t δc ∈ R\Q× R\Q, then (m′)n → 〈u〉 in the sense that

‖(m′)n − 〈u〉‖L2(Ω′;Hs(T2)) = o (1) , (26a)

‖(m′)n − 〈u〉‖Hs(T2) = o (1) Ω′ − a.s. (26b)

Proof. This is the same as the proof of Theorem 3.5 except F(p,q)e
−tnLu or 〈u〉 is used

in place of v′n, so we omit it.

Corollary 3.12. Under the same assumptions as Theorem 3.7, as n → ∞, the Ω′−a.s.

weak convergence (µ′)n − δF(p,q)e−tnLu ⇒ 0 or (µ′)n − δ〈u〉 ⇒ 0 holds, when ∆t δc =

(p′/p, q′/q) ∈ Q × Q and gcd(p′, p) = gcd(q′, q) = 1, or when ∆t δc ∈ R\Q × R\Q,

respectively.

Proof. This is the same as the proof of Corollary 3.4, so we omit it.

Theorem 3.2 and Theorem 3.5 show that, in the perfect model scenario, the

smoothing distribution on the initial condition and filtering distribution recover the true

initial condition and true signal, respectively, even if the statistical model fails to capture

the genuine covariance structure of the data. Theorem 3.7 and Theorem 3.11 show that

the smoothing distribution on the initial condition, and the filtering distribution, do not

converge to the truth, in the large data limit, when the model error corresponds to a

constant shift in wave velocity, however small. In this case the wave velocity difference

causes an advection in Equation (20) leading to recovery of only part of the Fourier

expansion of u as a limit of m′
n. The next section concerns time-dependent model error

in the wave velocity, and includes a situation intermediate between those considered in

this section. In particular, a situation where the smoothing distribution is not recovered

correctly, but the filtering distribution is.

4. Time-Dependent Model Error

In the previous section we studied model error for autonomous problems where the

operators L and L′ (and hence c and c′) are assumed time-independent. However, our

approach can be generalized to situations where both operators are time-dependent:

L(t) = c(t) · ∇ and L′(t) = c′(t) · ∇. To this end, this section is devoted two problems
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where both the statistical model and the data are generated by the non-autonomous

dynamics. In the first case deterministic dynamics with c(t)− c′(t) → 0 (Theorem 4.1);

and in the second case where the data is generated by the non-autonomous random

dynamics with L′(t;ω′) = c′(t;ω′) · ∇ and c′(t;ω′) being a random function fluctuating

around c (Theorem 4.3). Here ω′ denotes an element in the probability space that

generates c′(t;ω′) and η′n, assumed independent.

Now the statistical model (1) becomes

∂tv + c(t) · ∇v = 0, v(x, 0) = v0(x) (27)

Unless c(t) is constant in time, the operator e−tL is not a semigroup operator but for

convenience we still employ this notation to represent the forward solution operator from

time 0 to time t even for non-autonomous dynamics. Then the solution of Equation (27)

is denoted by

v(x, t) =
(

e−tLv0
)

(x) ≡ v0

(

x−
∫ t

0

c(s) ds

)

.

This will correspond to a classical solution if v0 ∈ C1 (T2,R) and c ∈ C (R+,R2);

otherwise it will be a weak solution. Similarly, the notation e−tL′

will be used for the

forward solution operator from time 0 to time t given the non-autonomous deterministic

or random dynamics, i.e., Equation (12) becomes

∂tv
′ + c′(t;ω′) · ∇v′ = 0, v′(0) = u (28)

and we define the solution of Equation (28) by

v′(x, t;ω′) =
(

e−tL′

u
)

(x) ≡ u

(

x−
∫ t

0

c′(s;ω′) ds

)

,

under the assumption that
∫ t

0
c′(s;ω′) ds is well-defined. We will be particularly

interested in the case where c′(t;ω′) is an affine function of a Brownian white noise

and then this expression corresponds to the Stratonovich solution of the PDE (28) [34].

Note the term etl+1(L−L′)u in Equation (14) should be interpreted as
(

etl+1(L−L′)u
)

(x) ≡ u

(

x+

∫ t

0

(c(s)− c′(s;ω′)) ds

)

.

We now study the case where both c(t) and c′(t) are deterministic time-dependent

wave velocities. We here exhibit an intermediate situation between the two previously

examined cases where the smoothing distribution is not recovered correctly, but the

filtering distribution is. This occurs when the wave velocity is time-dependent but

converges in time to the true wave velocity, i.e., δc(t) ≡ c(t) − c′(t) → 0, which is of

interest especially in view of Remark 3.10. Let uα ≡ u (·+ α) be the translation of u by

α.

Theorem 4.1. For the statistical model (1) and (3), suppose that the data Y ′
n =

{y′1, · · · , y′n} is created from (13) with L(t) = c(t) · ∇ and L′(t) = c′(t) · ∇ where
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δc(t) = c(t) − c′(t) satisfies
∫ t

0
δc(s) ds = α + O

(

t−β
)

. Then, as n → ∞, m′
n → uα in

the sense that

‖m′
n − uα‖L2(Ω′;Hs(T2)) = O

(

n−φ
)

, (29a)

‖m′
n − uα‖Hs(T2) = o

(

n−θ
)

Ω′ − a.s., (29b)

for φ = 1/2 ∧ β and for any non-negative θ < φ.

Proof. See Appendix B.

Theorem 4.2. Under the same assumptions as Theorem 4.1, if u is Lipschitz continuous

in Hs(T2) where s is given in Assumptions 3.1, then (m′)n − v′n → 0 in the sense that

‖(m′)n − v′n‖L2(Ω′;Hs(T2)) = O
(

n−φ
)

, (30a)

‖(m′)n − v′n‖Hs(T2) = o
(

n−θ
)

Ω′ − a.s., (30b)

for φ = 1/2 ∧ β and for any non-negative θ < φ.

Proof. Equation (30b) follows from

‖(m′)n − v′n‖Hs(T2) =
∥

∥

∥
e−tnL(m′

n − uα) +
(

e−tnLuα − e−tnL′

u
)∥

∥

∥

Hs(T2)

≤
∥

∥e−tnL
∥

∥

L(Hs(T2);Hs(T2))
‖m′

n − uα‖Hs(T2)

+

∥

∥

∥

∥

u

(

·+ α−
∫ tn

0

c(s) ds

)

− u

(

· −
∫ tn

0

c′(s) ds

)∥

∥

∥

∥

Hs(T2)

≤ ‖m′
n − uα‖Hs(T2) + C

∥

∥

∥

∥

α−
∫ tn

0

δc(s) ds

∥

∥

∥

∥

,

and Equation (30a) follows from

‖(m′)n − v′n‖2L2(Ω′;Hs(T2))

= E ‖(m′)n − v′n‖2Hs(T2)

= E

∥

∥

∥
e−tnL (m′

n − uα) +
(

e−tnLuα − e−tnL′

u
)∥

∥

∥

2

Hs(T2)

≤ 2
∥

∥e−tnL
∥

∥

2

L(Hs(T2);Hs(T2))
E ‖m′

n − uα‖2Hs(T2)

+ 2

∥

∥

∥

∥

u

(

·+ α−
∫ tn

0

c(s) ds

)

− u

(

· −
∫ tn

0

c′(s) ds

)∥

∥

∥

∥

2

Hs(T2)

.

Finally, we study the case where c(t) is deterministic but c′(t;ω′) is a random

process. We here note that while the true signal solves a linear SPDE with multiplicative

noise, Equation (28), the statistical model used to filter is a linear deterministic PDE,

Equation (27). We study the specific case c′(t;ω′) = c(t)−εẆ (t), i.e., the deterministic

wave velocity is modulated by a white noise with small amplitude ε > 0.
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Theorem 4.3. For the statistical model (1) and (3), suppose that the data Y ′
n =

{y′1, · · · , y′n} is created from (13) with L(t) = c(t) · ∇ and L′(t;ω′) = c′(t;ω′) · ∇ where
∫ t

0
c′(s;ω′) ds =

∫ t

0
c(t) ds−εW (t) and εW (t) is the Wiener process with amplitude ε > 0.

Then, as n → ∞, m′
n → 〈u〉 in the sense that

‖m′
n − 〈u〉‖L2(Ω′;Hs(T2)) = O

(

n− 1
2

)

, (31a)

‖m′
n − 〈u〉‖Hs(T2) = o

(

n−θ
)

Ω′ − a.s., (31b)

for any non-negative θ < 1/2.

Proof. See Appendix B.

We do not state the corresponding theorem on the mean of the filtering distribution

as (m′)n converges to the same constant 〈u〉 with the same rate shown in Equations (31).

Remark 4.4. In Theorem 4.3 the law of εW (t) converges weakly to a uniform distribution

on the torus by the Lévy-Cramér continuity theorem [30]. The limit 〈u〉 is the average

of u with respect to this measure. This result may be generalized to consider the

case where
∫ t

0
(c(s)− c′(s;ω′)) ds converges weakly to the measure ν as t → ∞. Then

m′
n(·) →

∫

u(·+ y) dν(y) as n → ∞ in the same norms as used in Theorem 4.3 but, in

general, with no rate. The key fact underlying the result is

1

n

n−1
∑

l=0

e2πik·
∫ tl+1
0 (c(s)−c′(s;ω′)) ds −

∫

u(·+ y) dν(y) = o(1) Ω′ − a.s., (32)

as n → ∞, which follows from the strong law of large numbers and the Kolmogorov zero-

one law [30]. Depending on the process
∫ t

0
(c(s)− c′(s;ω′)) ds, an algebraic convergence

rate can be determined if we have higher order convergence result for the corresponding

Equation (32). This viewpoint may be used to provide a common framework for all the

limit theorems in this paper.

5. Numerical Illustrations

5.1. Algorithmic Setting

The purpose of this section is twofold: first to illustrate the preceding theorems with

numerical experiments; and secondly to show that relaxing the statistical model can

avoid some of the lack of consistency problems that the theorems highlight. All of the

numerical results we describe are based on using the Equations (1), (3), with L = c·∇ for

some constant wave velocity c, so that the underlying dynamics is given by Equation (2).

The data is generated by (12), (13) with L′ = c′(t) · ∇, for a variety of choices of c′(t)

(possibly random), and in subsection 5.2 we illustrate Theorems 3.2, 3.7, 4.1 and 4.3.

In subsection 5.3 we will also describe a numerical method in which the state of the

system and the wave velocity are learnt by combining the data and statistical model.

Since this problem is inherently non-Gaussian we adopt from the outset a Bayesian

approach which coincides with the (Gaussian) filtering or smoothing approach when the
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wave velocity is fixed, but is sufficiently general to also allow for the wave velocity to be

part of the unknown state of the system. In both cases we apply functionspace MCMC

methods [35] to sample the distribution of interest. Note, however, that the purpose

of this section is not to determine the most efficient numerical methods, but rather to

study the properties of the statistical distributions of interest.

For fixed wave velocity c the statistical model (1), (3) defines a probability

distribution P(v0, Yn|c). This is a Gaussian distribution and the conditional distribution

P(v0|Yn, c) is given by the measure µn = N (mn, Cn) studied in sections 2, 3 and 4.

In our first set of numerical results, in subsection 5.2, the wave velocity is considered

known. We sample P(v0|Yn, c) using the functionspace random walk from [36]. In

the second set of results, in subsection 5.3, the wave velocity is considered as an

unknown constant. If we place a prior measure ρ(c) on the wave velocity then we

may define P(c, v0, Yn) = P(v0, Yn|c)ρ(c). We are then interested in the conditional

distribution P(c, v0|Yn) which is non-Gaussian. We adopt a Metropolis-within-Gibbs

approach [37, 38] in which we sample alternately from P(v0|c, Yn), which we do as in

subsection 5.2, and P(c|v0, Yn), which we sample using a finite dimensional Metropolis-

Hastings method.

Throughout the numerical simulations we represent the solution of the wave

equation on a grid of 25 × 25 points, and observations are also taken on this grid. The

observational noise is white (uncorrelated) with variance σ2 = 10−4 at each grid point.

The continuum limit of such a covariance operator does not satisfy Assumptions 3.1,

but is used to illustrate the fact that the theoretical results can be generalized to such

observations. Note also that the numerical results are performed with model error so

that the aforementioned distributions are sampled with Yn = Y ′
n from (12), (13).

5.2. Sampling the initial condition with model error

Throughout we use the wave velocity

c = (−0.5,−1.0), (33)

in our statistical model. The true initial condition used to generate the data is

u(x1, x2) =
3
∑

k1,k2=1

sin(2πk1x1) + cos(2πk2x2). (34)

This function is displayed in Figure 1(a). As prior on v0 we choose the Gaussian

N (0, (−△)−2) where the domain of −△ is H2(T2) with constants removed, so that

it is positive. We implement the MCMC method to sample from P(v0|c, Yn = Y ′
n) for

a number of different data Y ′
n, corresponding to different choices of c′ = c′(t, ω′). We

calculate the empirical mean of P(v0|c, Yn = Y ′
n), which approximates E(v0|c, Yn = Y ′

n).

The results are shown in Figures 1(b)–1(f). In all cases the Markov chain is burnt in for

106 iterations, and this transient part of the simulation is not used to compute draws

from the conditioned measure P(v0|c, Yn = Y ′
n). After the burn in we proceed to iterate

a further 107 times and use this information to compute the corresponding moments.
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The data size n is chosen sufficiently large that this distribution is approximately a

Dirac measure.

In the perfect model scenario (c = c′), the empirical mean shown in Figure 1(b),

should fully recover the true initial condition u from Theorem 3.2. Comparison with

Figure 1(a) shows that this is indeed the case, illustrating Corollary 3.3. We now

demonstrate the effect of model error in the form of a constant shift in the wave velocity:

Figure 1(c) and Figure 1(d) show the empirical means when c− c′ = (1/2, 1/2) ∈ Q×Q

and c− c′ = (1/e, 1/π) ∈ R\Q × R\Q, respectively. From Theorem 3.7, the computed

empirical distribution should be close to, respectively, F(2,2)u comprising only the mode

(k1, k2) = (2, 2) from (34), or 〈u〉 = 0; this is indeed the case.

If we choose c′(t) satisfying
∫∞

0
(c− c′(s)) ds = (1/2, 1/2), then Theorem 4.1 tells

us that Figure 1(e) should be close to a shift of u by (1/2, 1/2), and this is exactly what

we observe. In this case, we know from Theorem 4.2 that although the smoother is in

error, the filter should correctly recover the true v′n for large n. To illustrate this we

compute ‖E(vn|c, Yn = Y ′
n) − v′n‖L2(T2) as a function of n and depict it in Figure 2(a).

This shows convergence to 0 as predicted. To obtain a rate of convergence, we compute

the gradient of a log-log plot of Figure 2(b). We observe the rate of convergence is

close to O(n−2). Note that this is higher than the theoretical bound of O(n−φ), with

φ = 1/2 ∧ β, given in Equation (30b); this suggests that our convergence theorems do

not have sharp rates.

Finally, we examine the random c′(t, ω′) cases. Figure 1(f) shows the empirical

mean when c′(t;ω′) is chosen such that

∫ t

0

(c− c′(s;ω′)) ds = W (t)

where W (t) is a standard Brownian motion. Theorem 4.3 tells us that the computed

empirical distribution should have mean close to 〈u〉, and this is again the case.

5.3. Sampling the wave velocity and initial condition

The objective of this subsection is to show that the problems caused by model error in

the form of a constant shift to the wave velocity can be overcome by sampling c and v0.

We generate data from (12), (13) with c′ = c given by (33) and initial condition (34).

We assume that neither the wave velocity nor the initial condition are known to us, and

we attempt to recover them from given data.

The desired conditional distribution is multimodal with respect to c – recall that

it is non-Gaussian – and care is required to seed the chain close to the desired value in

order to avoid metastability. Although the algorithm does not have access to the true

signal v′n, we do have noisy observations of it: y′n. Thus it is natural to choose as initial

c = c∗ for the Markov chain the value which minimizes
n−1
∑

j=1

∥

∥

∥

∥

log

(

(v′j+1, φk)

(v′j , φk)

)

− 2πik · c∆t

∥

∥

∥

∥

2

. (35)
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(a) u(x1, x2) (b) δc = (0, 0)

(c) δc = (1/2, 1/2) (d) δc = (1/e, 1/π)

(e)
∫

∞

0
(c− c′(s)) ds = (1/2, 1/2) (f)

∫

t

0
(c− c′(s;ω′)) ds = W (t)

Figure 1. Figure 1(a) is the true initial condition. Figures 1(b) – 1(f) show the desired

empirical mean of the smoothing P(v0|Yn = Y ′

n) for δc = (0, 0), δc = (1/2, 1/2), δc ∈
R \Q× R \Q,

∫

∞

0 δc dt = (1/2, 1/2) and δc = Ẇ respectively.
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(a) (b)

Figure 2. Plot 2(a) shows ‖E(vn|c, Yn = Y ′

n) − v′n‖2L2(T2) as a function of n, when
∫

∞

0 δc(s) ds = (1/2, 1/2). Its log-log plot, along with a least squares fit, is depicted in

Plot 2(b), demonstrating quadratic convergence.

Because of the observational noise this estimate is more accurate for small values of k

and we choose k = (1, 0) to estimate c1 and k = (0, 1) to estimate c2.

Figure 3 shows the marginal distribution for c computed with four different values

of the data size n, in all cases with the Markov chain seeded as in (35). The results show

that the marginal wave velocity distribution P(c|Yn) converges to a Dirac on the true

value as the amount of data is increased. Although not shown here, the initial condition

is also converging to a Dirac on the true value (33) in this limit.

We round-off this subsection by mentioning related published literature. First we

mention that, in a setting similar to ours, a scheme to approximate the true wave

velocity is proposed which uses parameter estimation within 3D Var for the linear

advection equation with constant velocity [9], and its hybrid with the EnKF for the non-

constant velocity case [10]. These methodologies deal with the problem entirely in finite

dimensions but are not limited to the linear dynamics. Secondly we note that, although

a constant wave velocity parameter in the linear advection equation is a useful physical

idealization in some cases, it is a very rigid assumption, making the data assimilation

problem with respect to this parameter quite hard; this is manifest in the large number

of samples required to estimate this constant parameter. A notable, and desirable,

direction in which to extend this work numerically is to consider the time-dependent

wave velocity as presented in Theorems 4.1–4.3. For efficient filtering techniques to

estimate time-dependent parameters, the reader is directed to [39, 40, 41, 42].

6. Conclusions

In this paper, we study an infinite dimensional state estimation problem in the presence

of model error. For the statistical model of advection equation on a torus, with noisily

observed functions in discrete time, the large data limit of the filter and the smoother

both recover the truth in the perfect model scenario. If the actual wave velocity differs

from the true wave velocity in a time-integrable fashion then the filter recovers the

truth, but the smoother is in error by a constant phase shift, determined by the integral
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(a) n = 10 (b) n = 50

(c) n = 100 (d) n = 1000

Figure 3. The marginal distribution of P(c, v0|Yn) with respect to c are depicted

on the square 1.4 × 10−4 by ×10−4. The red cross marks the true wave velocity

c = (−0.5,−1.0).

of the difference in wave velocities. When the difference in wave velocities is constant

neither filtering nor smoothing recovers the truth in the large data limit. And when

the difference in wave velocities is a fluctuating random field, however small, neither

filtering nor smoothing recovers the truth in the large data limit.

In this paper we consider the dynamics as a hard constraint, and do not allow for

the addition of mean zero Gaussian noise to the time evolution of the state. Adding

such noise to the model is sometimes known as a weak constraint approach in the

data assimilation community and the relative merits of hard and weak constraint

approaches are widely debated; see [4, 43] for discussion and references. New techniques

of analysis would be required to study the weakly constrained problem, because the

inverse covariance does not evolve linearly as it does for the hard constraint problem we

study here. We leave this for future study.
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There are a number of other ways in which the analysis in this paper could be

generalized, in order to obtain a deeper understanding of filtering methods for high

dimensional systems. These include: (i) the study of dissipative model dynamics; (ii) the

study of nonlinear wave propagation problems; (iii) the study of Lagrangian rather than

Eulerian data. Many other generalizations are also possible. For nonlinear systems, the

key computational challenge is to find filters which can be justified, either numerically

or analytically, and which are computationally feasible to implement. There is already

significant activity in this direction, and studying the effect of model/data mismatch

will form an important part of the evaluation of these methods.
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Appendix A. Basic Theorems on Gaussian Measures

Suppose the probability measure µ is defined on the Hilbert space H. A function m ∈ H
is called the mean of µ if, for all ℓ in the dual space of linear functionals on H,

ℓ(m) =

∫

H

ℓ(x)µ(dx),

and a linear operator C is called the covariance operator if for all k, ℓ in the dual space

of H,

k (Cℓ) =
∫

H

k(x−m)ℓ(x−m)µ(dx).

In particular, a measure µ is called Gaussian if µ◦ℓ−1 = N (mℓ, σ
2
ℓ ) for some mℓ, σℓ ∈ R.

Since the mean and covariance operator completely determine a Gaussian measure, we

denote a Gaussian measure with mean m and covariance operator C by N (m, C).
The following lemmas, all of which can be found in [29], summarize the properties

of Gaussian measures which we require for this paper.

Lemma A.1. If N (0, C) is a Gaussian measure on a Hilbert space H, then C is a self-

adjoint, positive semi-definite nuclear operator on H. Conversely, if m ∈ H and C is

a self-adjoint, positive semi-definite, nuclear operator on H, then there is a Gaussian

measure µ = N (m, C) on H.

Lemma A.2. Let H = H1 ⊕ H2 be a separable Hilbert space with projections Πi :

H → Hi, i = 1, 2. For an H-valued Gaussian random variable (x1, x2) with mean

m = (m1, m2) and positive-definite covariance operator C, denote Cij = ΠiCΠ∗
j . Then

the conditional distribution of x1 given x2 is Gaussian with mean

m1|2 = m1 − C12C
−1
22 (m2 − x2),
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and covariance operator

C1|2 = C11 − C12C
−1
22 C21.

Lemma A.3. (Feldman-Hajek) Two Gaussian measures µi = N (mi, Ci), i = 1, 2, on a

Hilbert space H are either singular or equivalent. They are equivalent if and only if the

following three conditions hold:

(i) Im
(

C
1
2
1

)

= Im
(

C
1
2
2

)

:= E;

(ii) m1 −m2 ∈ E;

(iii) the operator T :=
(

C− 1
2

1 C
1
2
2

)(

C− 1
2

1 C
1
2
2

)∗

− I is Hilbert-Schmidt in Ē.

Lemma A.4. For any two positive-definite, self-adjoint operators Ci, i = 1, 2, on a

Hilbert space H, the condition Im
(

C
1
2
1

)

⊆ Im
(

C
1
2
2

)

holds if and only if there exists a

constant K > 0 such that

(h, C1h) ≤ K (h, C2h) , ∀h ∈ H
where (·, ·) denotes the inner product on H.

Lemma A.5. For Gaussian X on a Hilbert space H with norm ‖·‖ and for any integer

n, there is constant Cn ≥ 0 such that E(‖X‖2n) ≤ Cn

(

E
(

‖X‖2
))n

.

Appendix B. Proof of Limit Theorems

In this Appendix, we will prove the Limit Theorems 3.2, 3.7, 4.1, where L = L′, L 6= L′,

L(t) 6= L′(t), and Theorem 4.3 where L(t) 6= L′(t;ω′), respectively. In all cases, we use

the notations e−tL and e−tL′

to denote the forward solution operators through t time

units (from time zero in the non-autonomous case). We denote by M the putative limit

for m′
n. The identity

(

nI + ΓC−1
0

)

(m′
n −M) = ΓC−1

0 (m0 −M) +
n−1
∑

l=0

etl+1Lη′l+1

+
n−1
∑

l=0

(

etl+1(L−L′)u−M
)

, (B.1)

obtained from Equation (14), will be used to show m′
n → M . In Equation (B.1), we will

choose M so that the contribution of the last term is asymptotically negligible. Define

the Fourier representations

en ≡ m′
n −M =

∑

k∈K

ên(k)φk,

ξl ≡ etl+1(L−L′)u−M =
∑

k∈K

ξ̂l(k)φk.

Then M will be any one of u, F(p,q)u, 〈u〉 and uα. Hence there is C1 independent of k, l

such that ξ̂l(0) = 0 and E|ξ̂l(k)| ≤ C1| (u, φk) | with C1 < ∞ (the expectation here is
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trivial except in the case of random L′). Using Equation (17), these Fourier coefficients

satisfy the relation
(

n+
γk
λk

)

ên(k) =
γk
λk

ê0(k) +
√

γ′
k

n−1
∑

l=0

(g′
k)

l+1 +
n−1
∑

l=0

ξ̂l(k), k ∈ K.

In order to prove m′
n → M in L2(Ω′;Hs(T2)), we use the monotone convergence

theorem to obtain the following inequalities,

nδ ‖en‖2L2(Ω′;Hs(T2)) = nδE ‖en‖2Hs(T2)

=
∑

k∈K+

|k|2snδE|ên(k)|2 + nδE|ên(0)|2

=
∑

k∈K+

|k|2s nδ

(n + γk/λk)
2

[(

γk
λk

)2

|ê0(k)|2 + γ′
kn

+ 2Re

{

γk
λk

¯̂e0(k)E

(

n−1
∑

l=0

ξ̂l(k)

)}

+ E

∣

∣

∣

∣

∣

n−1
∑

l=0

ξ̂l(k)

∣

∣

∣

∣

∣

2
]

+
nδ

(n+ γ0/λ0)2

[

(

γ0
λ0

)2

|ê0(0)|2 + γ′
0n

]

≤
∑

k∈K+

|k|2snδ−2

[(

γk
λk

)2

|ê0(k)|2

+ γ′
kn+ 2C1

γk
λk

|ê0(k)||(u, φk)|n+ E

∣

∣

∣

∣

∣

n−1
∑

l=0

ξ̂l(k)

∣

∣

∣

∣

∣

2
]

+ nδ−2

[

(

γ0
λ0

)2

|ê0(0)|2 + γ′
0n

]

≤
∑

k∈K+

|k|2snδ−2

[(

γk
λk

)2

|ê0(k)|2 + γ′
kn

+ C1

(

(

γk
λk

)2

|ê0(k)|2 + |(u, φk)|2
)

n+ E

∣

∣

∣

∣

∣

n−1
∑

l=0

ξ̂l(k)

∣

∣

∣

∣

∣

2
]

+ nδ−2

[

(

γ0
λ0

)2

|ê0(0)|2 + γ′
0n

]

≤
(

C ‖m0 −M‖Hs+κ(T2)

)

nδ−2 +

(

∑

k∈K

|k|2sγ′
k

)

nδ−1

+
(

C1 ‖u‖Hs(T2)

)

nδ−1 +





∑

k∈K+

|k|2snδ−2E

∣

∣

∣

∣

∣

n−1
∑

l=0

ξ̂l(k)

∣

∣

∣

∣

∣

2




≤ C
(

‖m0‖Hs+κ(T2) + ‖u‖Hs+κ(T2)

)

nδ−2
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+

(

∑

k∈K

|k|2sγ′
k + C1 ‖u‖Hs(T2)

)

nδ−1

+





∑

k∈K

|k|2snδ−2E

∣

∣

∣

∣

∣

n−1
∑

l=0

ξ̂l(k)

∣

∣

∣

∣

∣

2


 , (B.2)

and here the first two terms in the last equation can be controlled by

Assumptions 3.1. In order to find δ ∈ [0, 1] such that this equation is O(1) or o(1),

∑

k∈K

|k|2snδ−2E

∣

∣

∣

∣

∣

n−1
∑

l=0

ξ̂l(k)

∣

∣

∣

∣

∣

2

(B.3)

is the key term. This term arises from the model error, i.e., the discrepancy between

the operator L used in the statistical model and the operator L′ which generates the

data. We analyze it, in various cases, in the subsections which follow.

In order to prove m′
n → M in Hs(T2), Ω′ − a.s., suppose we have

1

n

n−1
∑

l=0

ξ̂l(k) → 0 Ω′ − a.s., (B.4)

for each k ∈ K. We then use the strong law of large numbers to obtain the following

inequalities, which holds Ω′ − a.s.,

‖en‖2Hs(T2) =
∑

k∈K+

|k|2s|ên(k)|2 + |ên(0)|2

=
∑

k∈K+

|k|2s
∣

∣

∣

∣

∣

(γk/λk) ê0(k) +
√

γ′
k

∑n−1
l=0 (g

′
k)

l+1 +
∑n−1

l=0 ξ̂l(k)

n + γk/λk

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

(γ0/λ0) ê0(0) +
√

γ′
0

∑n−1
l=0 (g

′
0)

l+1

n + γ0/λ0

∣

∣

∣

∣

∣

2

≤ C
∑

k∈K

(1 + |k|2s)
( ∣

∣

∣

∣

(γk/λk) ê0(k)

n

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

√

γ′
k

∑n−1
l=0 (g

′
k)

l+1

n

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∑n−1
l=0 ξ̂l(k)

n

∣

∣

∣

∣

∣

2
)

≤ C
∑

k∈K

(1 + |k|2s)
(

|k|2κ|ê0(k)|2 + γ′
k + |(u, φk)|2

)

≤ C

(

‖m0‖Hs+κ(T2) + ‖u‖Hs+κ(T2) +
∑

k∈K

|k|2sγ′
k + ‖u‖Hs(T2)

)

. (B.5)

Therefore, using Weierstrass M-test, we have ‖en‖2Hs(T2) → 0, Ω′ − a.s., once

Equation (B.4) is satisfied.
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Appendix B.1. Proof of Theorem 3.2

This proof is given directly after the theorem statement. For completeness we note that

Equation (15a) follows from Equation (B.2) with δ = 1. Once it has been established

that

‖·‖L2(Ω′;Hs(T2)) = O
(

n−δ/2
)

,

then the proof that

‖·‖Hs(T2) = o
(

n−θ
)

Ω′ − a.s.,

for any θ < δ/2 follows from a Borel-Cantelli argument as shown in the proof of

Theorem 3.2. We will not repeat this argument for the proofs of Theorems 3.7, 4.1

and 4.3.

Appendix B.2. Proof of Theorem 3.7

Appendix B.2.1. When L 6= L′ and ∆t δc = (p′/p, q′/q), choose M = F(p,q)u then

ξ̂l(k) = e2πi(k·δc)tl+1(u, φk)− δk(p,q)(u, φk)

=
(

1− δk(p,q)
)

e2πi(k·δc)tl+1(u, φk),

where δk(p,q) is 1 if k1 and k2 for k = (k1, k2) are multiples of p and q respectively, and 0

otherwise. Using
∣

∣

∣

∣

∣

n−1
∑

l=0

ξ̂l(k)

∣

∣

∣

∣

∣

2

=
(

1− δk(p,q)
)2

∣

∣

∣

∣

∣

n−1
∑

l=0

e2πi(k·δc)tl+1

∣

∣

∣

∣

∣

2

|(u, φk)|2

=
(

1− δk(p,q)
)

[

sin(nπ(k · δc)∆t)

sin(π(k · δc)∆t)

]2

|(u, φk)|2

≤
[

sin2

(

π

(

1

p
+

1

q

))]−1

|(u, φk)|2,

the quantity in Equation (B.3) becomes
(

[

sin2

(

π

(

1

p
+

1

q

))]−1

‖u‖Hs(T2)

)

nδ−2,

so that from Equation (B.2)

n ‖en‖2L2(Ω′;Hs(T2)) = O(1).

Appendix B.2.2. When L 6= L′ and ∆t δc ∈ R\Q× R\Q, choose M = 〈u〉 then
ξ̂l(k) = e2πi(k·δc)tl+1(u, φk),

for k ∈ K+. It is immediate that

‖en‖Hs(T2) = o(1) Ω′ − a.s.,

since

1

n

n−1
∑

l=0

e2πi(k·δc)tl+1 = o(1),
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as n → ∞, by ergodicity [33] and Equation (B.4). Furthermore, when δ = 0, the

quantity in Equation (B.3) is bounded by

∑

k∈K

|k|2s
∣

∣

∣

∣

∣

1

n

n−1
∑

l=0

e2πi(k·δc)tl+1

∣

∣

∣

∣

∣

2

|(u, φk)|2 ≤ C‖u‖Hs(T2),

and Weierstrass M-test can be used to show

‖en‖2L2(Ω′;Hs(T2)) = o(1).

Appendix B.3. Proof of Theorem 4.1

When L(t) 6= L′(t) and
∫ t

0
δc(s) ds = α +O(t−β), choose M = uα then

ξ̂l(k) =

(

e
2πik·

(

∫ tl+1
0 δc(s) ds

)

− e2πik·α
)

(u, φk),

and we obtain
∣

∣

∣

∣

∣

n−1
∑

l=0

ξ̂l(k)

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

n−1
∑

l=0

(

e
2πik·

(

∫ tl+1
0 δc(s) ds−α

)

− 1

)

∣

∣

∣

∣

∣

2

|(u, φk)|2.

Now utilizing that
∣

∣

∣

∣

∣

n−1
∑

l=0

(

eixl − 1
)

∣

∣

∣

∣

∣

≤ C

n−1
∑

l=0

|xl| ≤ C2n
1−β,

when xl = O
(

l−β
)

and for β ∈ (0, 1/2], Equation (B.2) gives

nδ ‖en‖2L2(Ω′;Hs(T2)) ≤ C
(

‖m0‖Hs+κ(T2) + ‖u‖Hs+κ(T2)

)

nδ−2

+

(

∑

k∈K

|k|2sγ′
k + C1 ‖u‖Hs(T2)

)

nδ−1

+
(

C2 ‖u‖2Hs(T2)

)

nδ−2β = O(1),

for δ = 1 ∧ 2β.

Appendix B.4. Proof of Theorem 4.3

When L(t) 6= L′(t;ω′) and
∫ t

0
c′(s;ω′) ds =

∫ t

0
c(s) ds− εW (t), choose M = 〈u〉 then we

obtain

ξl = u (·+ εW (tl+1))− 〈u〉,
and

ξ̂l(k) = e2πik·εW (tl+1)(u, φk),

for k ∈ K+. Using

E

∣

∣

∣

∣

∣

n−1
∑

l=0

ξ̂l(k)

∣

∣

∣

∣

∣

2

= E

(

n−1
∑

l=0

n−1
∑

l′=0

e2πik·ε(W (tl+1)−W (tl′+1))|(u, φk)|2
)
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=
n−1
∑

l=0

n−1
∑

l′=0

e−2π2ε2|k|2∆t|l−l′||(u, φk)|2

=

(

n+ 2

n−1
∑

l=1

n−1
∑

l′=0

e−2π2ε2|k|2∆t|l−l′||
)

(u, φk)|2

=

[

n+
2

e2π2ε2|k|2∆t − 1

(

e−2π2ε2|k|2∆t(n−1) − 1

e2π2ε2|k|2∆t − 1
+ n− 1

)]

|(u, φk)|2

≤
[

n +
2

e2π2ε2∆t − 1
n

]

|(u, φk)|2 =
(

e2π
2ε2∆t + 1

e2π2ε2∆t − 1

)

n|(u, φk)|2,

we get

∑

k∈K+

|k|2snδ−2E

∣

∣

∣

∣

∣

n−1
∑

l=0

ξ̂l(k)

∣

∣

∣

∣

∣

2

≤
(

e2π
2ε2∆t + 1

e2π2ε2∆t − 1

)

‖u‖2Hs(T2) n
δ−1 = O(1),

for δ = 1.
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