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Molecular dynamics study of nanoparticle stability at liquid

interfaces: effect of nanoparticle-solvent interaction and capillary

waves

David L. Cheung∗

Department of Chemistry and Centre for Scientific Computing,

University of Warwick, Coventry, CV4 7AL, UK

Abstract

While the interaction of colloidal particles (sizes in excess of 100 nm) with liquid interfaces may

be understood in terms of continuum models, which are grounded in macroscopic properties such as

surface and line tensions, the behaviour of nanoparticles at liquid interfaces may be more complex.

Recent simulations [D. L. Cheung and S. A. F. Bon, Phys. Rev. Lett., 102, 066103 (2009)] of

nanoparticles at an idealised liquid-liquid interface showed that the nanoparticle-interface interac-

tion range was larger than expected due, in part, to the action of thermal capillary waves. In this

paper molecular dynamics simulations of a Lennard-Jones nanoparticle in a binary Lennard-Jones

mixture are used to confirm that these previous results hold for more realistic models. Further-

more by including attractive interactions between the nanoparticle and the solvent it is found that

the detachment energy decreases as the nanoparticle-solvent attraction increases. Comparison be-

tween the simulation results and recent theoretical predictions [H. Lehle and M. Oettel, J. Phys.

Condens. Matt., 20, 404224 (2008)] shows that for small particles the incorporation of capillary

waves into the predicted effective nanoparticle-interface interaction improves agreement between

simulation and theory.

PACS numbers: 68.05.Cf,05.20Jj,68.03.Cd
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I. INTRODUCTION

The adsorption of nanometre-sized particles, including nanoparticles, polymers or den-

drimers and proteins, at soft interfaces has attracted much scientific interest1 and is central

to a number of emerging technologies. Adhesion at air-water and oil-water interfaces po-

tentially provides an elegant method for the preparation of dense, ordered nanoparticle

structures2, and the modification of interfacial properties by the adsorption of nanoparti-

cles may be used to stabilise micron-scale structures such as nanoparticle-armoured fluid

droplets3 or phase-arrested gels4. As well as synthetic nanoparticles the behaviour of biolog-

ical objects such as proteins5 or virus capsids6 at liquid interfaces have also been the subject

of investigation.

Due to the experimental interest in these systems the behaviour of nanoparticles at liquid

interfaces has been studied theoretically, both using analytic and semi-analytic theories and

molecular simulations. The adhesion of solid particles to liquid interfaces has long been

understood as a result of particle wettability and changes in interfacial area7,8. The theory

of colloidal adhesion on liquid interfaces has been thoroughly developed, including both the

effect of particle fluid surface tensions9,10 and line tension11. These models are typically

derived from considering colloidal (200-1000 nm) sized particles and so are grounded in

macroscopic quantities such as surface and line tensions, and neglect microscopic phenomena

such as capillary waves. One common model is the Pieranski approximation8 in which the

free energy is given simply in terms of changes to the interfacial area (AAB) and the area of

the nanoparticle in contact with the two fluid components (AiN) as

F (zc) = −γABAAB + γANAAN + γBNABN

= πγABz
2
c + 2πR2

c(γAN − γBN)(1− zc/Rc) (1)

where zc is the distance between the interface and the colloid center, γAB is the A-B in-

terfacial tension, γiN is the surface tension between the nanoparticle and fluid i, and Rc is

the nanoparticle radius. This was then extended by Aveyard and Clint (AC) to include line

tension11, giving

F (zc) = πγABz
2
c + 2πR2

c(γAN − γBN)(1− zc/Rc) + 2πτRc

√

1− (zc/Rc)2. (2)

Recently these analytic theories have been extended to consider the effect of capillary waves
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on the nanoparticle-interface interaction12 and interface mediated nanoparticle-nanoparticle

interactions13,14.

The adsorption of nanoparticles on liquid interfaces has also been studied using molec-

ular simulations. In pioneering work Bresme and Quirke employed molecular dynamics

simulations to study the effect of line tension on the stability of nanoparticles at liquid

interfaces15–17. More recently the interaction potential between a nanoparticle and a liq-

uid interface was determined using Monte Carlo or molecular dynamics simulations, for

uniform18, Janus (amphiphilic)19, and polymer-grafted nanoparticles20. Simulations have

also been used to study the interactions between adsorbed nanoparticles21, self-assembly

of nanoparticles at liquid-liquid interfaces22, and nanoparticle diffusion at interfaces23,24.

Density functional theory has also been recently used to study the interaction and wetting

behaviour of nanoparticles at fluid interfaces25,26.

In some recent Monte Carlo (MC) simulations of the Widom-Rowlinson mixture27 the

nanoparticle-interface interaction was found to be significantly longer ranged than predicted

by continuum theories18, due to the neglect of microscopic phenomena such as capillary

waves. Recently a number of other effects that are neglected by macroscopic models on

the behaviour of nanoparticles at liquid interfaces have been considered (although this has

largely focused on interactions between nanoparticles absorbed at interfaces rather than

interactions between interfaces and nanoparticles). These include capillary forces arising

due to deformation of the interface due to adsorbed particles (e.g. meniscus formation28),

which have been shown to lead to attractive forces between adsorbed nanoparticles but

to an increase in the free energy barrier in the analogous case of nanoparticle-membrane

penetration29. Changes to the solvent structure around the nanoparticle may also lead to

interactions between nanoparticles in solution and to interactions between nanoparticle and

interfaces or surfaces (e.g. hydration or depletion forces). The effect of specific nanoparticle-

solvent interactions, such van der Waals and electrostatic forces, may also be a significant

factor in determining the interfacial behaviour of nanoparticles, the latter of which may

be particularly important in nanoparticle near interfaces in electrolytic solutions or ionic

fluids. The effect of these and other phenomena have been recently reviewed1,30 Due to

its simple form the Widom-Rowlinson model used in this previous work, however, may be

regarded as somewhat singular and unrepresentative of experimental systems; in particular

the interfacial tension of the Widom-Rowlinson mixture studied in this previous work was
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significantly smaller than that of a typical liquid mixture. It is then natural to ask how

applicable these findings are to other, more realistic, fluid models.

In this paper, the interaction between a nanoparticle and a liquid interface, modelled in

this case by Lennard-Jones interactions, is studied using molecular dynamics simulations.

While the Wang-Landau MC simulations31 that were used in previous work18,19 may be

applied in this case, they may be inefficient when applied to complex molecular systems,

and in the case of very large free energy barriers the time required to determine a converged

weight function may be prohibitively long. Molecular dynamics simulations are more easily

generalised to complex systems, and may be easily parallelised to take advantage of modern

parallel computers. Free energy profiles may be determined using methods such as umbrella

sampling32, steered molecular dynamics33, metadynamics34 or adaptive biasing force35, the

latter two being conceptually similar to the Wang-Landau MC methodology used previously.

In this paper molecular dynamics simulations are used to study the stability of a spherical

nanoparticle at a model liquid-liquid interface. The free energy profile was determined using

umbrella sampling, a simple and robust method for this purpose. As well as testing the

validity of the results of Ref18 for more realistic fluids, the effect of attractive nanoparticle-

solvent interactions and the effect of capillary waves on the interaction will be examined.

Details of the computational model and methodology are given in the following section, the

results of the simulations are presented and discussed in Sec. III, while Sec. IV gives some

conclusions and avenues for further work.

II. MODEL AND METHODOLOGY

The solvent is modelled as a two-component fluid, interacting through a cut and shifted

Lennard-Jones potential

VS(r) =







4ǫ
[

(

σ
r

)12 −
(

σ
r

)6
]

− Vcut, r ≤ rcut

0, r > rcut
(3)

where Vcut = 4ǫ[(σ/rcut)
12 − (σ/rcut)

6] and rcut = 2.5σ for like particles and rcut = 6
√
2σ

for unlike particles (i.e. the potential is truncated and shifted at the potential minima).

In comparison to the Widom-Rowlinson model used in previous work, this model incorpo-

rates explicit interactions between identical solvent particles, including attractive, dispersion
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forces, which should give a more representative, though still simplified, model of a liquid

mixture. For the densities studied in this paper (ρσ3 ≥ 0.50) this mixture phase separates

into distinct A and B rich regions. The nanoparticle-solvent interaction is taken to be a

modified, expanded LJ interaction

VSN(r) =



















4ǫ
[

(

σ
r−∆

)12 −
(

σ
r−∆

)6
]

− Vcut + ǫ− ǫ′, r −∆ ≤ 6
√
2

4ǫ′
[

(

σ
r−∆

)12 −
(

σ
r−∆

)6
]

− Vcut,
6
√
2 < r −∆ ≤ rcut

0 r −∆ > rcut

(4)

where ∆ = (σN − σ)/2 and σN = 2Rc is the nanoparticle diameter. The effect of the

parameter ∆ is to shift the separation at which the interaction potential goes to infinity,

giving the nanoparticle at non-zero size. It should be noted that this potential represents the

nanoparticle as a single interaction and is similar to potentials used in previous studies15–17,21.

This potential is a modification of the Lennard-Jones interaction to a particle of non-zero

size. More sophisticated potentials explicitly representing the interaction of a superposition

of pair potentials of atoms in a nanoparticle, may be found by integrating the Lennard-Jones

potential over the volume of the nanoparticle36,37. Despite the difference in functional forms

between the potential above (Eqn. 4) and that given in Ref36, they exhibit similar variation

with nanoparticle-solvent separation, indicating that Eqn. 4 provides a good approximation

to a superposition of pair interactions. Nanoparticles of radii 2.5σ ≤ Rc ≤ 4σ were studied.

The parameter ǫ′ is used to modulate the strength of the nanoparticle-solvent attraction;

for ǫ′ = 0 this reduces to a purely repulsive interaction (equivalent to an expanded WCA

interaction) and for ǫ′ = ǫ this is equivalent to a normal expanded LJ interaction. Shown

in Fig. 1 are plots of this potential for the values of ǫ′ studied. This choice of this potential

was motivated by the desire to vary the attractive part of the potential while holding the

repulsive core constant, allowing a smooth interpolation between a purely repulsive potential

and those with a finite attraction. It should be noted that this model is not intended to

be representative of a specific experimental system and in particular the choice of identical

interactions between the particle and both solvent components (neutral wetting) is unlike

most commonly studied systems. However it should be noted that systems with a contact

angle θ ∼ π/2 can be realized experimentally10 and recent simulations have shown that

the behaviour of particles with different interactions between the solvent components are

qualitatively similar to those with identical interactions19. The Lennard-Jones parameters
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for the solvent define the usual set of reduced units; in particular the temperature T ∗ = ǫ/kB,

mass m∗, and number density ρ∗ = Nσ3/V .

The free energy profile or potential of mean force is determined using umbrella sampling32.

The nanoparticle z-coordinate (zc) is constrained at a series of points zi using a harmonic

potential

Vi(zc) =
1

2
ki(zc − zi)

2 (5)

where ki is the force constant (with βσ2k = 5 − 20). For each zi the (biased) probability

distribution Pi(zc) is determined and the final (unbiased) probability distribution P(z) is

determined using weighted histogram analysis38. For each value of ρ, Rc, and ǫ′ 2.5 × 106

MD steps (including 0.5 × 106 equilibration steps) were performed for each zi. In order to

estimate errors in the free energy profiles, each of these simulation runs were divided into

four subruns with the full analysis performed on these separately.

All simulations were performed using the Lammps simulation package39 in the NVT

ensemble,with T ∗ = 1. Temperature was controlled using a Nose-Hoover thermostat40. A

timestep of δt = 0.005t∗ (where t∗ =
√

m∗σ2/ǫ) was used. In order to localise the interface in

the centre of the simulation cell repulsive walls were placed in the z-direction, with periodic

boundaries in the x and y directions. The average z-position of the interface is typically

|z̄inter| ≤ 0.004σ (with a typical standard deviation ∼ 0.04σ), where the cell centre defined is

to be at z = 0. This allows the nanoparticle-interface separation to be approximated by the

nanoparticle z-coordinate (zc). For comparison with continuum theory simulations without

nanoparticles were used to calculate the interfacial tension using the virial expression41

γAB =

∫

dz

[

Pzz(z)−
Pxx(z) + Pyy(z)

2

]

(6)

where Pii(z) are the diagonal components of the pressure tensor. The values of γAB are

given in Table 1. As most experiments are performed under constant pressure rather than

constant volume conditions also presented in Table 1 are the average pressures for the

different systems studied.
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III. RESULTS

A. Effective nanoparticle-interface interaction

Shown in Fig. 2 are the free energy for the purely repulsive (ǫ′ = 0) nanoparticles. The free

energy profiles have a minimum at zc = 0 and then rise to a maximum some distance from

the interface. As in previous work the range of the effective interaction is significantly larger

than the particle radius caused by the broadening of the interface due to capillary waves.

On increasing ρ the interaction range decreases due to the damping of the capillary wave

amplitude with increase in γAB. In most cases the effective potential increases monotonically

towards the bulk value. For the Rc = 4σ at ρ∗ = 0.69, however, a small barrier appears at

zc ≈ 6.1σ, presumably due to deformation of the interface by the nanoparticle, which would

be washed out due to interface fluctuations when the particle size is smaller or interfacial

tension is lower. The height of this barrier, relative to the particle in bulk solvent is ∼ 2kBT .

Recent experimental studies42 on TEG-stabilised gold nanoparticles have also observed an

activation barrier of approximately 2kBT (it should be noted that due to the differences

between the simulated and experimental systems the agreement between the barrier heights

in the two cases is likely to be fortuitous), which was attributed to electrostatic forces or

rearrangement of attached chains. As the present system has neither of these this work

demonstrates that such a barrier may also arise due to capillary effects29.

Also shown in Fig. 2 are the predicted effective potentials from the Pieranski approxima-

tion. As the nanoparticle-solvent interaction is identical for both components, γAN = γBN

so Eqn. 1 reduces to

F (zc) = πγABz
2
c (7)

As in previous work this underestimates both the height of the barrier and also the inter-

action range. The underestimation of the range arises due to its assumption of a sharp,

flat interface (neglect of interface fluctuations). It is interesting to note that for the larger

particles (Rc = 4σ) the simulation and Pieranski curves are in good agreement for the region

z ≤ Rc.

Shown in Fig. 3 are the detachment energies ∆F as a function of Rc. The values of ∆F are

in the range expected for (10-100 kBT ) nanometre-sized particles43 and are approximately

an order of magnitude larger than those obtained for the Widom-Rowlinson model18. Such
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a difference may be expected as the interfacial tension of the Widom-Rowlinson model

is up to an order of magnitude lower to those obtained in this work. The present ∆F is

similar to those recently obtained for polymer grafted nanoparticles20 and from experimental

measurements of gold nanoparticles42. The detachment energy (∆F ) increases with particle

radius. It is noticeable that this appears to scale approximately linearly with Rc rather

than quadratically as would be expected from the Pieranski approximation. This linear

dependence may arise due to a significant line tension. The line tension is difficult to

calculate, but it may be estimated from the difference between the detachment energies

from simulation and Pieranski approximation15

τ = −∆Fsim − πR2
cγAB

2πRc

. (8)

In all cases (Table 2) ∆Fsim > πR2
cγAB, indicating that τ is negative, in agreement with

previous studies16,18. For ρ∗ = 0.50 τ decreases monotonically with Rc. For ρ∗ = 0.69,

however, τ decreases until Rc = 3.5σ and then remains approximately constant. On a

microscopic length scale, of course, the line tension should be interpreted with care44. This

is partially due to the diffuse nature of the interface, which makes the identification of

a three-phase contact line, hence estimating its length, difficult. Other effects, such as

curvature corrections to the interfacial and surface tensions or terms related to the rigidity

of the interface and stiffness of the contact line, may also effect the stability of particles

at interfaces. The quantity τ appearing in Eqn. 8 may be regarded as a correction factor

dependent that depends on the line tension and the role of line tension on the stability of

nanoparticles at interfaces may only be fully determined through an independent calculation

of the line tension45.

It should be noted that for small particles the radius Rc used in continuum theories (for

example in Eqn. 7) may not correspond to the radius of the particle. In particular due

to the finite size of the solvent particles the excluded volume due to the nanoparticle or,

more importantly in the present case, the change in the interfacial area between the two

solvent components, may be larger than would be expected from the value of Rc. The effec-

tive nanoparticle radius (Reff
c )may be estimated from the solvent probability distribution

function (Fig. 4). From these Reff
c = 2.9σ for Rc = 2.5σ and Reff

c = 4.4σ for Rc = 4σ.

Using these effective radii increases the detachment free energy (Tab. 2), however it is still

somewhat smaller than the simulation value. Another possible reason for the discrepancy
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between the detachment energies calculated from simulation and by Pieranski theory is the

neglect of dispersion forces in the latter. While this may indeed lead longer ranged and

stronger interactions between the nanoparticle and the interface, previous simulation work

on purely repulsive hard sphere systems18 have shown a similar discrepancy, so dispersion

forces are unlikely to be the primary reason for this. Additionally, while they are not ex-

plicitly included in continuum models, dispersion forces are implicitly included due to their

contribution to interfacial and surface tensions in these theories.

B. Effect of attractive interactions

By changing ǫ′ the effect of attractive interactions between the nanoparticle and solvent

particles may be examined. Note that as the nanoparticle-solvent interaction remains iden-

tical for both solvent components the contact angle is constant (θ = π/2). Shown in Fig. 5 is

the effective potential as a function of ǫ′ for ρ∗ = 0.50 (Rc = 2.5σ and 4σ). On increasing ǫ′

the detachment energy decreases. This may be understood as the number of solvent particles

close to the nanoparticle (hence in the attractive potential well) is lower at the interface,

due to the depletion region between the two solvent components, than in the bulk solvent.

At higher solvent density (Fig. 6) the behaviour of F (z) on increasing ǫ′ is the same. For the

Rc = 4σ nanoparticle the small barrier that is present for ǫ′ = 0 disappears as ǫ′ increases.

The variation in ∆F with ǫ′ for all ρ∗ studied is shown in Fig. 7. In all cases ∆F

decreases with ǫ′. For ρ∗ = 0.50 the decrease with ǫ′ is approximately linear. On increasing

ρ∗, however, the variation with ǫ′ is more complex. For the Rc = 4σ nanoparticle at ρ∗ = 0.69

∆F is approximately constant for βǫ′ ≤ 0.25 before decreasing. In order to determine the

contribution of the potential energy to ∆F the difference between the average nanoparticle-

solvent interaction energies

〈Ec〉 =
〈

Nsolvent
∑

i=1

VSN(|rc − ri|)
〉

(9)

where VSN(r) is given in Eqn. 4 and the angled brackets denote an average over a simulation

run, for nanoparticle constrained at zc = 0 (interface) and zc = 9σ (bulk) were calculated

(Tab. 3). Apart from βǫ′ = 0, ∆EC = Ec(z = 9σ) − Ec(z = 0) is negative, indicating

that attractive nanoparticle-solvent interactions lead to a destabilisation of the nanoparticle

from the interface. Generally this accounts for a substantial proportion of the change in ∆F
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with ǫ′ (for ρ∗ = 0.50 and Rc = 2.5σ, the difference between ∆F for βǫ′ = 1 and βǫ′ = 0

is approximately 11 kBT , while the difference between ∆EC is approximately 7 kBT ). By

contrast the difference between the average interaction energy (EAB) between the unlike

components

〈EAB〉 =
〈

NA
∑

i=1

NB
∑

j=1

VS(|ri − rj|)
〉

(10)

for zc = 0 and zc = 9σ (∆EAB) shows no clear trend with ǫ′. This is expected as, at fixed

Rc, the change in interfacial area between the A and B components is the same for all ǫ′.

The remaining contribution to ∆F may arise from entropic effects due to changes in solvent

structure around the nanoparticle, both at the interface and in bulk solvent.

C. Capillary waves

One of the underlying assumptions of continuum approximations such as Pieranski theory,

are that the interface is sharp and flat. On the microscopic level the interface is broadened

by bulk density fluctuations and thermal fluctuations in the interface position (capillary

waves)46. Central to the microscopic description of interfaces is the notion of a local interface

position h(r) (r = (x, y)), which is often more conveniently described through its two-

dimensional Fourier transform h(q). In particular, capillary wave theory (CWT) predicts

that at low q the mean-squared amplitudes of h(q) varies as47

〈|h(q)|2〉 = 1

γβL2
xq

2
(11)

with q = |q|. Shown in Fig. 8 are the the plots of 〈|h(q)|2〉 for the three densities studied

in this work. At low-q 〈|h(q)|2〉 indeed displays the 1/q2 behaviour predicted by capillary

wave theory (although due to the finite size of the simulation box, only wavevectors with

q > 2π/Lx may be studied). At higher-q deviations from CWT are seen, due to bulk density

fluctuations.

Recently Lehle and Oettel (LO) calculated a correction to the Pieranski expression us-

ing a perturbative approach12. Within this approach the effective nanoparticle-interface

interaction is given by

FLO(zc) = πγAB(zc − z0)
2

1− τ̂
r̂3
0,eq

1 + ln λ̂c

(

1− τ̂
r̂0,eq

) (12)
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where τ̂ = τ/(γABRc) is the reduced line tension, r0,eq =
√

R2
c − z2eq is the radius of the con-

tact line (for z = zeq), and λ̂c ≈ 1.12λc/r0,eq is the reduced capillary length. λc is effectively

the largest capillary wave in the system; for gravitational systems λc =
√

γAB/(∆ρg) where

g is the acceleration due to gravity and ∆ρ is the difference in mass density between the two

phases, while in this case λc = Lx (transverse box length).

Comparison between the effective potentials found from simulation and calculated using

Eqns. 7 (Pieranski approximation) and 12 is shown in Fig. 9. For Rc = 2.5σ nanoparticle

the effective potential from simulation falls between the two theoretical predictions, with

results from Eqn. 7 lying above and Eqn. 12 lying below the simulation curve. This may

be understood as interface fluctuations lead to a more diffuse interface than assumed in

Pieranski theory, so taking these into account leads to a softer interaction. For negative τ ,

as in this work, the effective potential from Eqn. 2 varies more rapidly than the effective

potential from the Pieranski approximation18. For Rc = 4σ nanoparticle both the Pieranski

and LO expressions give effective potentials that lie below the simulation results, with the

potential from LO expression lying further from the simulation potential. In this case the

poor performance of the LO equation is likely due to the assumption, made in its derivation

that Rc ≪ λc is in valid (for the Rc = 4σ nanoparticle λc/Rc ≈ 4 − 5) and simulations of

larger systems would be needed to test its applicability.

The softening of the potential may be quantified through the (anharmonic) spring con-

stant

k =
d2V

dz2

∣

∣

∣

∣

z=0

, (13)

which in the case of the Pieranski8, AC, and LO approximations are12

kPier = 2πγAB (14a)

kAC = 2πγAB

(

1− τ̂ /r̂30,eq
)

(14b)

kLO = 2πγAB

1− τ̂ /r̂30,eq

1 + log(λ̂
(

1− τ̂ /r̂30,eq
)

)
(14c)

(note that kPier is independent of Rc). ksim is estimated from fitting a quadratic function

to the region z ≤ 2σ. The collected values of k are given in Table 4. For both ρ∗ = 0.50

and ρ∗ = 0.69 ksim increases with Rc. The inclusion of line tension has only a small effect

on k, with the difference between kPier and kAC decreasing as Rc increases; the line tension

contribution to kAC decreases as R−4
c (Eqn. 14b). The behaviour of kLO is quite different
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at low and high density. For ρ∗ = 0.50 it decreases very slightly with Rc. At ρ∗ = 0.69,

however, there is a substantial increase in kLO with Rc in agreement with simulation.

IV. CONCLUSIONS

In this paper molecular dynamics simulations have been used to calculate the effective

interaction between a spherical nanoparticle and a liquid-liquid interface in a binary Lennard-

Jones fluid. The effective interaction is qualitatively similar to that calculated previously

for hard sphere systems18, although the detachment free energy is significantly larger (of

the order of 10− 100 kBT rather then 1− 10 kBT ) due to the larger interfacial tension. As

before comparison between simulation and the continuum Pieranski approximation shows

that the latter underestimates the strength and range of the interaction. The difference

between simulation and Pieranski theory may arise due to its neglect of line tension and

microscopic effects such as capillary waves.

On including an attractive interaction between the nanoparticle and solvent particles the

detachment energy of the nanoparticle decreases. This is as there are fewer close contacts

between the nanoparticle and solvent particles when the nanoparticle is at the interface

than when it is in bulk solvent. In the case studied here, when the contact angle θ =

π/2 the detachment energy from Pieranski theory remains unchanged with the attraction

strength. Calculation of the change in the average nanoparticle-solvent interaction energies

for nanoparticles at the interface and in bulk solvent shows that this accounts for a significant

proportion of ∆F . The remainder of the change in ∆F may arise from entropic contributions

due to rearrangement of the particles around the nanoparticle.

One of the underlying assumptions of the Pieranski approximation (and other continuum

theories) is that the interface is sharp and flat. This leads to an interaction potential that

for small particles varies too rapidly near the interface. The inclusion of capillary waves into

the effective potential leads to a noticeable softening of the potential, as shown by a large

decrease in the spring constant.

Overall it has been shown that the results previously obtained using MC simulations on

an idealised fluid also hold for more realistic models. Future work may address the origin of

the free energy barrier to adsorption seen for larger nanoparticle (Fig. 2) and the effect of

capillary waves on the effect interaction. The method can also be applied to more complex

12



nanoparticles, such as anisotropic or polymer tethered nanoparticles.
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6 J. T. Russell, Y. Lin, A. Böker, L. Su, P. Carl, H. Zettl, J. He, K. Sill, R. Tangirala, T. Emrick,

K. Littrell, P. Thiyagarajan, D. Cookson, A. Fery, Q. Wang, and T. P. Russell, Angew. Chem.

Int. Ed. 44, 2420 (2005).

7 P. Finkle, H. D. Draper, and J. H. Hildebrand, J. Amer. Chem. Soc. 45, 278 (1923).

8 P. Pieranski, Phys. Rev. Lett. 45, 569 (1980).

9 B. P. Binks and S. O. Lumsdon, Langmuir 16, 8622 (2000).

10 B. P. Binks and J. H. Clint, Langmuir 18, 1270 (2002).

11 R. Aveyard and J. H. Clint, Journal of the Chemical Society, Faraday Transactions 92, 85

(1996).

12 H. Lehle and M. Oettel, J. Phys. Condens. Matt. 20, 404224 (2008).

13 M. Oettel and S. Dietrich, Langmuir 24, 1425 (2008).

14 H. Lehle, M. Oettel, and S. Dietrich, EPL 75, 174 (2006).

15 F. Bresme and N. Quirke, Phys. Rev. Lett. 80, 3791 (1998).

16 F. Bresme and N. Quirke, J. Chem. Phys. 110, 3536 (1999).

17 F. Bresme and N. Quirke, Phys. Chem. Chem. Phys. 1, 2149 (1999).

13



18 D. L. Cheung and S. A. F. Bon, Physical Review Letters 102, 066103/1 (2009).

19 D. L. Cheung and S. A. F. Bon, Soft Matter 5, 3969 (2009).

20 R. J. K. Udayana Ranatunga, R. J. B. Kalescky, C.-c. Chiu, and S. O. Nielsen, J. Phys. Chem.

C 114, 12151 (2010).

21 F. Bresme, H. Lehle, and M. Oettel, J. Chem. Phys. 130, 214711/1 (2009).

22 L. L. Dai, R. Sharma, and W. C.-Y., Langmuir 21, 2641 (2005).

23 Y. Song, M. Luo, and L. L. Dai, Langmuir 26, 5 (2010).

24 D. L. Cheung, Chem. Phys. Lett. 495, 55 (2010).

25 P. Hopkins, A. J. Archer, and R. Evans, J. Chem. Phys. 131, 124704 (2009).

26 M. Zeng, J. Mi, and C. Zhong, Phys. Chem. Chem. Phys. 13, 3932 (2011).

27 B. Widom and J. S. Rowlinson, J. Chem. Phys. 52, 1670 (1970).

28 M. Oettel, A. Domingeuz, and S. Dietrich, Phys. Rev. E 71, 051401 (2005).

29 Y.-M. Ban, R. Tasseff, and D. Kopelevich, Mol. Sim. 37, 525 (2011).

30 M. E. Flatte, A. A. Kornyshev, and M. Urbakh, J. Phys. Condens. Matt. 20, 073102 (2008).

31 F. Wang and D. Landau, Phys. Rev. Lett. 86, 2050 (2001).

32 G. Torrie and J. Valleau, J. Comp. Phys. 23, 187 (1977).

33 S. Park and K. Schulten, J. Chem. Phys. 120, 5946 (2004).

34 A. Laio and F. L. Gervasio, Rep. Prog. Phys. 71, 126601 (2008).
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Table 1.

Lateral box lengths (note Lz = 2Lx), pressure, and interfacial tensions for the studied

systems.

ρ∗ Lx / σ βσ3P βσ2γAB

0.50 20 0.14 0.479

0.60 18.82 0.35 0.917

0.69 17.96 0.90 1.498
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Table 2.

Detachment free energies calculated from simulation (∆Fsim) and using the Pieranski

approximation (Eqn. 7). β∆FPier refers to detachment energy calculated using Rc, while

β∆F corr
P ier denotes detachment energy calculated using corrected Rc found from the solvent

density distribution.

ρ∗ Rc / σ β∆Fsim β∆FPier ∆F corr
P ier

0.50 2.5 34.82 9.42 12.66

0.50 4.0 69.21 24.11 30.29

0.60 2.5 43.92 18.01 24.23

0.60 4.0 89.39 46.10 55.77

0.69 2.5 50.05 29.41 39.58

0.69 4.0 121.71 75.30 91.11
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Table 3.

Average nanoparticle (Ec) and A-B interaction (EAB) energies for zc = 0 and zc = 9σ.

Statistical errors in the final digit, estimated from the standard error of 50000

measurements given in parenthesis.

ρ∗ Rc / σ βǫ′ 〈βEc(z = 0)〉 〈βEAB(z = 0)〉 〈βEc(z = 9σ)〉 〈βEAB(z = 9σ)〉 β∆EC β∆EAB

0.50 2.5

0.00 0.494(3) 12.74(2) 0.823(3) 11.37(2) 0.329(6) -1.38(4)

0.25 -1.518(3) 12.87(2) -2.368(4) 11.79(2) -0.850(9) -1.08(4)

0.50 -4.182(4) 10.85(2) -6.773(5) 11.29(2) -2.591(9) 0.44(4)

0.75 -7.921(6) 12.11(2) -12.263(7) 13.68(2) -4.34(1) 1.57(4)

1.00 -12.609(9) 10.54(2) -19.170(9) 13.11(2) -6.56(2) 2.57(4)

0.50 4.0

0.00 5.643(5) 10.19(2) 6.122(6) 10.80(2) 0.48(1) -0.61(4)

0.25 -3.262(4) 11.52(2) -4.442(5) 11.55(2) -1.180(9) 0.03(4)

0.50 -9.353(6) 10.70(2) -12.761(8) 12.09(2) -3.41(1) 1.38(4)

0.75 -17.33(1) 10.31(2) -23.42(1) 13.93(2) -6.09(2) 3.62(4)

1.00 -31.63(1) 11.90(2) -41.09(1) 12.60(2) -9.46(2) 0.62(4)

0.69 2.5

0.00 2.460(5) 19.36(2) 3.140(6) 19.80(2) 0.68(1) 0.44(3)

0.25 -3.325(4) 18.06(2) -3.612(4) 21.77(2) -0.287(9) 3.71(4)

0.50 -9.919(6) 18.72(2) -11.061(7) 21.61(2) -1.14(1) 2.79(4)

0.75 -17.095(7) 18.19(2) -19.214(8) 20.18(2) -2.12(1) 1.99(4)

1.00 -25.048(9) 18.69(2) -27.990(9) 21.26(2) -2.94(2) 2.57(4)

0.69 4.0

0.00 6.260(9) 18.41(2) 7.358(9) 23.31(2) 1.10(2) 4.90(4)

0.25 -7.027(9) 18.51(2) -7.340(9) 22.82(2) -0.29(2) 4.31(4)

0.50 -21.93(1) 18.32(2) -23.72(1) 23.94(2) -1.79(2) 5.62(4)

0.75 -38.36(1) 19.20(2) -41.43(1) 23.39(2) -3.08(2) 4.19(4)

1.00 -58.79(2) 18.42(3) -63.30(2) 21.69(3) -4.51(4) 3.27(5)
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Table 4.

Line tensions and spring constants for ǫ′ = 0 nanoparticle. Numbers in parenthesis give

errors in final digits.

ρ∗ Rc / σ βστ βσ2ksim βσ2kPier βσ2kAC βσ2kLO

0.50

2.5 -1.58 2.068 3.014 3.27(1) 2.130(2)

3.0 -1.66 2.341 3.014 3.143(2) 2.1246(4)

3.5 -1.71 2.478 3.014 3.086(1) 2.1100(3)

4.0 -1.76 2.799 3.014 3.057(1) 2.1085(2)

0.69

2.5 -1.28 5.770 9.412 9.619(3) 4.0640(7)

3.0 -1.74 6.542 9.412 9.547(1) 4.4739(2)

3.5 -1.84 7.010 9.412 9.489(1) 4.6106(1)

4.0 -1.81 8.502 9.412 9.457(1) 4.6765(3)
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FIGURE CAPTIONS

Fig. 1. Nanoparticle-solvent interaction potentials (Eqn. 4) with βǫ′ = 0 (solid, black), βǫ′ =

0.25 (dotted, red), βǫ′ = 0.50 (dashed, green), βǫ′ = 0.75 (long dashed, blue), and

βǫ′ = 1 (dot-dashed, magenta). Solvent-solvent interaction (Eqn. 3) corresponds to

∆ = 0 and βǫ′ = 1 and βǫ′ = 0 for like (A-A and B-B) and unlike (A-B) interactions

respectively.

Fig. 2. (a) Free energy profile for Rc = 2.5σ nanoparticle (ǫ′ = 0) at solvent density ρ∗ = 0.50

(circles, black), ρ∗ = 0.60 (squares, red), and ρ∗ = 0.69 (diamonds, green). Solid

line shows simulation results, dashed lines Pieranski approximation. (b) Free energy

profiles for Rc = 4.0σ nanoparticle (ǫ′ = 0). Symbols as in (a).

Fig. 3. Detachment energy and line tension against Rc for ρ∗ = 0.50 (circles, black) and

ρ∗ = 0.69. Circles denote ρ∗ = 0.50, diamonds ρ∗ = 0.69, ∆F denoted by filled

symbols (solid lines) and τ denoted by open symbols (dashed lines).

Fig. 4. Solvent density distributions around Rc = 2.5σ (solid line) and Rc = 4.0σ (dotted

line) nanoparticles (βǫ′ = 0) at solvent density ρ∗ = 0.69.

Fig. 5. (a) Free energy profile for Rc = 2.5σ nanoparticle at solvent density ρ∗ = 0.50. Circles

(black) denotes βǫ′ = 0, squares (red) βǫ′ = 0.25, diamonds (green) βǫ′ = 0.5, triangles

(blue) βǫ′ = 0.75, and inverted triangles (magenta) βǫ′ = 1. (b) Free energy profile

for Rc = 4σ nanoparticle at solvent density ρ∗ = 0.50. Symbols as in (a).

Fig. 6. (a) Free energy profile for Rc = 2.5σ nanoparticle at solvent density ρ∗ = 0.69. Circles

(black) denotes βǫ′ = 0, squares (red) βǫ′ = 0.25, diamonds (green) βǫ′ = 0.5, triangles

(blue) βǫ′ = 0.75, and inverted triangles (magenta) βǫ′ = 1. (b) Free energy profile

for Rc = 4σ nanoparticle at solvent density ρ∗ = 0.69. Symbols as in (a).

Fig. 7. (a) Detachment energy against ǫ′ for Rc = 2.5σ nanoparticle at solvent densities

ρ∗ = 0.50 (circles, black) and ρ∗ = 0.69 (diamonds, red). (b) Detachment energy

against ǫ′ for Rc = 2.5σ nanoparticle. Symbols as in (a).

Fig. 8. Mean-squared Fourier components of the interface position 〈|h(q)|2〉 for ρ∗ = 0.50

(circles, black), ρ∗ = 0.60 (squares, red), and ρ∗ = 0.69 (diamonds, green). Lines show
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predictions of capillary wave theory. The inset shows the same data on a log-log plot.

Fig. 9. (a) Effective nanoparticle-interface interaction for Rc = 2.5σ nanoparticle at ρ∗ = 0.50

(circles, black) and ρ∗ = 0.69 (squares, red). Solid line denotes simulation results,

dotted line Pieranski theory, and dashed line Lehle-Oettel expression. (b) Effective

nanoparticle-interface interaction for Rc = 4.0σ nanoparticle. Symbols at in (a).

21



Fig. 1

D. L. Cheung

Journal of Chemical Physics

0.5 1 1.5 2 2.5 3
(r-∆) / σ

-1

-0.5

0

0.5

βV
S

N
(r

)

22



Fig. 2
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Fig. 3
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Fig. 4
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Fig. 5
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Fig. 6
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Fig. 7
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Fig. 8
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Fig. 9
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