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Metabolic modeling and analysis of the
metabolic switch in Streptomyces coelicolor
Mohammad T Alam1, Maria E Merlo1,2, The STREAM Consortium, David A Hodgson3, Elizabeth MH Wellington3,
Eriko Takano2, Rainer Breitling1,4*

Abstract

Background: The transition from exponential to stationary phase in Streptomyces coelicolor is accompanied by a
major metabolic switch and results in a strong activation of secondary metabolism. Here we have explored the
underlying reorganization of the metabolome by combining computational predictions based on constraint-based
modeling and detailed transcriptomics time course observations.

Results: We reconstructed the stoichiometric matrix of S. coelicolor, including the major antibiotic biosynthesis
pathways, and performed flux balance analysis to predict flux changes that occur when the cell switches from
biomass to antibiotic production. We defined the model input based on observed fermenter culture data and used
a dynamically varying objective function to represent the metabolic switch. The predicted fluxes of many genes
show highly significant correlation to the time series of the corresponding gene expression data. Individual
mispredictions identify novel links between antibiotic production and primary metabolism.

Conclusion: Our results show the usefulness of constraint-based modeling for providing a detailed interpretation
of time course gene expression data.

Background
The transition from exponential growth to stationary
phase is a major event in microbial physiology [1]. Dur-
ing the exponential phase of growth, bacterial cells pro-
duce metabolites necessary for growth and grow rapidly.
Once essential nutrients have been depleted, cells switch
to stationary phase, stop growing, reorganize their
energy metabolism and often start producing a new set
of secondary metabolites, including antibiotics [2].
In this study, we have explored the metabolic switch

in Streptomyces coelicolor, the model organism of the
antibiotics producing genus Streptomyces. The genome
of this soil bacterium has been sequenced and contains
about 7825 genes, one of the largest numbers for any
bacterium [3]. More than 20 clusters coding for the 4
known and several predicted antibiotics or related com-
pounds have been identified in the genome [4]. To opti-
mize the production of valuable secondary metabolites,
understanding the shift from primary to secondary

metabolism during the transition phase will play a key
role.
We constructed a constraints-based genome-scale

stoichiometric model of S. coelicolor metabolism, based
on earlier similar models [5,6], and integrated the model
predictions with a large gene expression dataset [7]. The
constraints-based approach, in particular flux balance
analysis, has been shown to be highly predictive of
growth phenotypes in many microbial systems [8,9] and
can be used to construct large scale metabolic models
based on genome sequences in the absence of kinetic
information, making it particularly attractive for less
well-studied organisms like S. coelicolor.
Predictions from constraint-based models usually hold

for steady-state assumptions [10,11]. To enable the
incorporation of experimental information from time-
series measurements, we extend the approach by apply-
ing a dynamically changing input function (specifying
constrains on nutrient uptake) and objective function
(specifying the shift of cellular resources from cellular
growth to antibiotics production). The predicted flux
profiles are then compared to the gene expression
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profiles of the corresponding enzyme-coding genes to
validate the model.
We observe a surprisingly good correlation between

predicted fluxes and measured gene expression, indicat-
ing both the power of the constraint-based modeling
approach and the tight regulation of gene expression in
S. coelicolor. A small number of incorrectly predicted
fluxes indicate the need for including additional gene
regulatory constraints to the model [12,13], but also
allows the sensitive identification of misannotations and
putative novel reactions involved in secondary metabo-
lite biosynthesis.

Results and Discussion
We have reconstructed a genome-scale model of Strep-
tomyces coelicolor metabolism with recent updated
annotations as discussed in the Methods section. Our
aim was to study the metabolic switch between the pri-
mary phase and secondary phase of growth.

Initial model validation
To validate our model we first compared predicted
growth rates to those reported for glucose limited envir-
onments [14]. In that work, S. coelicolor had been
grown in chemostat culture in a chemically defined
medium under various nutrient limitations. As the dilu-
tion rate of the chemostat is the same as the specific
growth rate at steady state we can compare it directly to
the prediction of the in silico model. In our model we
used an input function that mimics the glucose limited
medium used in these experiments, adopting the
observed glucose and oxygen uptake rate as well as car-
bon dioxide and actinorhodin production rates as initial
conditions in the model. We maximized biomass pro-
duction to predict the optimized in silico specific growth
rate and we compared the predicted growth with the
observed growth. Figure 1 and Table 1 show that obser-
vation and prediction are in good agreement, indicating
the general validity of our model.

Global metabolic switching from primary phase to
secondary phase of growth
For a more detailed understanding of the metabolic
transition phase, we then modeled flux changes happen-
ing during fermentation culture on phosphate limiting
medium. For this growth condition we had earlier col-
lected a detailed gene expression time series.
Based on the measured nutrient uptake and product

formation, we dynamically adapted the objective func-
tion and optimized the in silico specific growth rate.
The optimum specific growth rate and optimal flux vec-
tor for all metabolic reactions were predicted for each
time point. Figure 2 shows the observed normalized
depletion of substrate glucose, glutamate and phosphate

during growth. At about 34 hour, phosphate is depleted,
triggering the transition to stationary phase and the
production of antibiotics by the bacteria. The corre-
sponding slow-down of growth matches well between
prediction and observation.
Next we compared the predicted metabolic flux profile

of all 549 enzyme-coding genes to the corresponding
gene expression data from Nieselt et al. [7]. A histogram
of correlation coefficients between predicted flux and
observed gene expression is shown in Figure 3. The cor-
relation of predicted flux and gene expression level is
highly significant, and a large number of genes exhibit
very high correlation (33% of genes; r > 0.5). This shows
not only the global validity that these genes of our
model are probably correctly annotated in the model
but also illustrates the tight regulation of gene expres-
sion level for enzyme-coding genes of S. coelicolor. This
is in agreement with the general observation that gene
expression is more tightly regulated in unicellular com-
pared to multicellular organisms, for evolutionary rea-
sons, such as the much larger effective population size
and stronger energetic constraints in small organisms
[15,16].
A large set of genes does not show correlation (64% of

genes; -0.5 < r < 0.5). These are mostly genes that do
not change expression (nor predicted flux) along the
time course. In these cases of constant expression no
correlation information is present in the data, leading to

Figure 1 Model validation. Comparison of the experimentally
observed specific growth rate from chemostat data [14] and the
predicted in silico specific growth rate from the model in glucose
limited media. The specific rate of glucose consumption, oxygen
consumption, carbon dioxide production and actinorhodin
production from 7 different conditions were taken from [14] and
used as initial condition in the model.
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correlation coefficient close to zero. Of course, there will
also be cases where gene expression levels and flux
levels do not correlate for other reasons, for instance
due to post-transcriptional and post-translational regula-
tion mechanisms.
Strikingly, there is also a small group of strongly antic-

orrelating genes (15 genes; r < -.5). These are potentially
the most interesting cases; they could indicate wrong
annotations of gene function, but also the unexpected
presence of regulatory constraints or novel functionalities

of genes. To further examine these options, we subdi-
vided all 549 observed expression profile into 12 clusters,
based on unsupervised hierarchical clustering. The num-
ber 12 was chosen to allow sufficient resolution of differ-
ent expression pattern. Figure 4 shows the average
expression time course of each of the 12 resulting clus-
ters. For instance, the pink and red clusters, which con-
tain many genes involved in secondary metabolite
production, switch on upon phosphate depletion. The
purple, navy blue and blue clusters mostly include genes

Table 1 Comparison of experimentally observed dilution rates from chemostat data [14] and predicted specific growth
rates

Glucose (mmol/g.h) O2 (mmol/g.h) CO2 (mmol/g.h) Actinorhodin (μ g/g.h) Observed dilution rate D
(/h)

Predicted specific growth
rate μ
(/h)

0.5 1.8 1.9 2 0.035 0.0272

0.6 2 2 2 0.045 0.0396

0.8 2.4 2.5 415 0.06 0.0539

0.9 2.5 2.7 152 0.072 0.0657

1.1 3.1 3.1 60 0.092 0.0862

1.85 6.6 6.7 7 0.115 0.1088

2.1 7.2 7 5 0.128 0.1385

Figure 2 Dynamic model constraints and predicted cell growth.
Based on online measurement on a fermenter experiment,
normalized constraints of model influx of phosphate, glucose, and
glutamate and the production of the antibiotics actinorhodin and
undecylprodigiosin were determined. Their time course is shown
together with the experimentally observed and in silico predicted
growth.

Figure 3 Correlation between predicted flux and observed
gene expression. The histogram shows the correlation between
gene expression and predicted flux for 549 enzyme-coding genes. A
large number of enzyme-coding genes show high correlation. They
include many primary metabolism genes and antibiotic biosynthesis
genes. About half of the genes show poor correlation; these are
mostly genes that show constant gene expression and/or predicted
flux across the entire time course, leading to a correlation
coefficient close to zero. A small but noteworthy number of genes
show statistically significant negative correlation between gene
expression levels and predicted flux. These cases are discussed in
more detail in the main text.
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involved in central metabolism and anabolic functions
and are down-regulated when nutrient resources in the
medium are depleted.
When mapping the gene expression clusters onto the

genome (Figure 5) it is clear that genes with similar
expression dynamics tend to be neighbors along the chro-
mosome. Moreover, when also visualizing the correlation
between gene expression and predicted flux, one can see
the that strong anticorrelated expression is seen almost
exclusively for genes in the pink and red clusters, which
switched on expression during the transition phase, while
the predicted flux for these genes are decreasing along the

time course (Table 2). In contrast, many genes with high
positive correlation belong to the purple, navy blue and
blue clusters which contain genes of central metabolism,
including biosynthesis clusters for arginine, cysteine, gluta-
mate, glutamine, glycine, fatty acid, histidine, homoserine,
isoleucine, leucine, lysine, methionine, N-acetyl muramic
acid (NAM) and N-acetyl glucosamine (NAG), as well as
sulphate metabolism. Expression of the antibiotic gene
clusters for actinorhodin and undecylprodigiosin was also
highly correlated to the predicted fluxes.
One large group of anticorrelated genes is the set of

10 genes located the middle of the calcium dependent

Figure 4 Average expression profile of 12 expression clusters defined by hierarchical clustering. Gene expression profiles of all enzyme-
coding genes in our metabolic flux model were subjected in unsupervised clustering. The number of genes in each cluster is indicated. Several
clusters show a clear expression trend matching the changing physiology of the fermentation. The pink cluster is the “antibiotics” cluster,
switching on upon phosphate depletion; the purple cluster includes the majority of central metabolism genes that are down-regulated.
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Figure 5 Genome mapping of expression clusters and correlation between expression and predicted flux. All enzyme-coding genes are
shown arranged in their order along the chromosome. The upper trace colors genes according to their membership in one of 12 expression
clusters (Figure 4); genes belonging to the same cluster tend to be neighbors along the chromosome, reflecting the operon structure of the
genome. The lower trace shows how strongly the predicted flux for each gene correlates with its expression. Genes from some expression
clusters tend to show good correlation to the predicted flux (green), e.g. those in the central metabolism cluster (purple); mispredictions (red)
seem to cluster along the chromosome and normally affect genes that are upregulated in stationary phase (pink cluster). The position of three
major antibiotics biosynthesis clusters is highlighted.
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antibiotics (CDA) biosynthesis gene cluster (SCO3210-
SCO3249) [17]. SCO3210 and SCO3221 are annotated
as 2-dehydro-3-deoxyheptonate aldolase and prephenate
dehydrogenase respectively, part of the shikimate path-
way (tryptophan biosynthesis). Tryptophan is a precur-
sor for CDA, and there are four anticorrelated genes
(SCO3211-3214) which encode for enzymes TrpC2,
TrpD2, TrpG, and TrpE2. It seems obvious that these
genes are involved in the biosynthesis of tryptophan for
CDA biosynthesis and not in the production of trypto-
phan for general primary metabolism. Indeed it has
been shown that these genes do not complement a defi-
ciency in central tryptophan biosynthesis [17]. SCO3249
encodes an ACP homolog, and the adjacent genes
SCO3246 and SCO3248 along with SCO3228 are pro-
posed to be involved in the biosynthesis of the N-term-
inal epoxyhexanoyl fatty acid side chain [17]. While the
direct involvement in CDA biosynthesis has not yet
been established for all of these genes, the non-comple-
mentation as well as the clear anticorrelation in our
model analysis point to the existence of strong regula-
tory constraints on the expression of these genes. Such
regulatory constraints are not routinely included in flux
balance analysis, but can substantially enhance its pre-
dictive accuracy [12,13]. Our result shows that a lack of
regulatory information can be efficiently compensated
by the integration of transcriptomics information, which
quite specifically highlights this group of genes for
further study.
Another group of anticorrelating genes is seen in the

middle of the undecylprodigiosin biosynthesis gene cluster

[4,18]. Three genes (SCO5886, SCO5887 and SCO5888)
in this cluster were automatically annotated in our model
as fatty acid biosynthesis genes on the basis of sequence
similarity with fatty acid genes (3-oxoacyl-[acyl-carrier-
protein] synthase II, acyl carrier protein, 3-oxoacyl-[acyl
carrier protein] synthase III). However these three genes
are well known to be involved in undecylprodigiosin pro-
duction under the gene names redR (SCO5886), redQ
(SCO5887) and redP (SCO5888). This is a clear example
of a misannotation that is revealed by the correlation ana-
lysis and can easily be fixed in the model.
A third example of strongly anticorrelated genes listed

in Table 2 are three alkaline phosphatases - SCO2286
(phoA), SCO0828 (phoC) and SCO2068 (phoD) - which
are assigned in the KEGG database (and consequently in
our model) to the folate biosynthesis pathway. Their
expression pattern, which shows strong induction upon
phosphate depletion, is consistent with earlier reports
on their control by PhoR/PhoP [19] and a potential role
in secondary metabolism, but is less easy to reconcile
with a putative function in folate biosynthesis, which is
based only on sequence homology.
In all three of these cases, the integration of gene

expression and model flux predictions highlighted
groups of genes involved in antibiotics production. A
small set of additional anticorrelated genes (Table 2) are
widely scattered through out the genome (Figure 5).
Each of them is a potential candidate from model cor-
rection and for the identification of new secondary
metabolite biosynthesis genes with specifically con-
strained gene expression patterns.

Table 2 List of anticorrelated genes

SCO ID Definition Pathway r

SCO2286 alkaline phosphatase folate biosynthesis –0.80

SCO3249 [acyl-carrier-protein] S-malonyltransferase fatty acid biosynthesis –0.78

SCO5887 [acyl-carrier-protein] S-malonyltransferase fatty acid biosynthesis –0.75

SCO0386 asparagine synthetase (glutamine-hydrolysing) aspartate metabolism –0.75

SCO3248 pentadecanoyl-[acyl-carrier protein] synthesis fatty acid biosynthesis –0.74

SCO5886 pentadecanoyl-[acyl-carrier protein] synthesis fatty acid biosynthesis –0.71

SCO5888 pentadecanoyl-[acyl-carrier protein] synthesis fatty acid biosynthesis –0.70

SCO0828 alkaline phosphatase folate biosynthesis –0.67

SCO2068 alkaline phosphatase folate biosynthesis –0.66

SCO3246 pentadecanoyl-[acyl-carrier protein] synthesis fatty acid biosynthesis –0.63

SCO3595 D-alanine-D-alanine ligase D-alanine metabolism –0.63

SCO3221 prephenate dehydrogenase tryptophan biosynthesis –0.63

SCO6655 GTP cyclohydrolase II riboflavin metabolism –0.61

SCO6787 butyryl-CoA dehydrogenase propanoate metabolism –0.59

SCO2687 GTP cyclohydrolase II riboflavin metabolism –0.52

The most strongly anticorrelated genes are listed on the basis of correlation between gene expression and predicted flux (r < –0.25). Pathway annotations are
based on the KEGG database without manual curation. Most of the genes belong to the pink or red cluster and are upregulated in stationary phase; these
represent potential new genes involved in antibiotics biosynthesis. Several examples validating this interpretation are discussed in detail in the text.
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Our biological understanding of S. coelicolor metabo-
lism is further enhanced by a more detailed analysis of
the reactions for which the flux balance analysis pre-
dicted zero flux. When clustering the measured gene
expression profiles for the genes encoding the enzymes
of these zero-flux reactions, a substantial number of
genes showed consistent changes in gene expression
along the time course, suggesting that the corresponding
reactions are in fact active (Additional file 1). Striking
examples include a large number of genes for vitamin
B12 (cobalamin) biosynthesis, a group of ten genes
involved in calcium-dependent antibiotic (CDA) bio-
synthesis, and three genes involved in ectoine bio-
synthesis (Additional files 2, 3, 4 and 5). Each of these
cases provides important insights: the first one shows
that vitamin B12 is likely to be produced by S. coelico-
lor under the growth conditions of our experiment,
even if it is not essential due to the availability of
cobalamine-independent enzymes [20]. The second
one highlights that CDA biosynthesis genes are coher-
ently induced in expression during the metabolic
switch, similar to undecylprodigiosin and actinorhodin
and concordant with the results of the correlation ana-
lysis discussed above. This could indicate that this
additional antibiotic compound is potentially also pro-
duced in phosphate starvation conditions, contrary to
previous expectations [21]. Finally, the case of ectoine
biosynthesis genes suggests that this novel osmopro-
tectant metabolite is produced by S. coelicolor. This
has in fact been experimentally confirmed recently
[22]. In each of these cases, the activity of the pathway
was not predicted, based on the biological evidence
incorporated in the stoichiometric model and the
expected biomass composition, and the comparison of
flux balance predictions and gene expression data indi-
cated relevant modifications of our metabolic model. A
complete list of genes that have zero predicted flux but
show gene expression is included in the supplementary
material (Additional files 2, 3, 4 and 5).
Conversely, our model can be used to identify those

genes that are predicted to be essential for growth (non-
zero flux under all conditions), but show no or very low
gene expression. There are 159 predicted essential genes
in our model, which have a median log gene expression
level of 7.47, compared to 6.83 for the non-essential
genes and 4.66 for the negative controls. This indicates
that on average the essential genes have a 60% higher
expression than the non-essential genes. There is only
one predicted essential gene with a detected median
expression level below 5.0, compared to 23 non-essential
genes with such low expression levels. This non-
expressed essential gene is panB (SCO2256), a
3-methyl-2-oxobutanoate hydroxymethyltransferase of
pantothenate and coenzyme A biosynthesis, which has a

maximum log expression signal of only 5.53. Its appar-
ent non-expression can be due to insufficient hybridiza-
tion of the gene-specific probes on the microarray, but
it could also indicate the existence of another isoenzyme
or additional metabolic pathways that would make this
reaction redundant. In both of these cases, this gene
might warrant further detailed study.
The observed good correlation between gene expres-

sion and predicted metabolic flux is not necessarily
expected; expression levels can show little correlation to
protein levels, enzyme activity and metabolic flux for
many reasons [23]. It could be that the relationship
between expression and flux is tighter in prokaryotes
like S. coelicolor, than in multicellular eukaryotic model
organisms [15,16]. However, we cannot exclude that the
group of non-correlated genes contains not only reac-
tions with constant flux, but also reactions with dynamic
flux little correlation between gene expression and pro-
tein activity or metabolic flux. In a next step, it will be
interesting to directly incorporate the gene expression
information in the model, providing additional con-
straints on the maximum flux [23,24].

Conclusions
Our study demonstrates the ability of flux balance ana-
lysis to not only study classical steady-state conditions
but also to predict microbial behaviour in dynamic
growth conditions provided that sufficiently detailed
measurements of the changing growth conditions (nutri-
ent uptake) and cellular objective (antibiotic production
rate) are available. In combination with detailed gene
expression information, these dynamic model predic-
tions can help identifying potential new players in the
metabolic switch, including putative new genes for anti-
biotic synthesis.

Methods
Transcriptomics
The gene expression dataset used in this study has been
described in detail in [7]. Briefly, S. coelicolor was culti-
vated in a phosphate limiting defined medium contain-
ing glucose as a carbon source and glutamate as a
nitrogen as well as carbon source. Samples for transcrip-
tomics and off-line analysis were taken every hour from
20 to 44 hours after inoculation (25 sample points), and
subsequently every second hour from 46 to 60 hours
after inoculation. Cell dry weight was measured on sam-
ples collected every third hour between 20 and 40
hours. The last sample, collected at the end of the fer-
mentation (68 hours after inoculation), was used for
analysis of remaining nutrients and total production
levels of red and blue pigments. Only one sample was
collected at each time point and no re-samplings were
performed. Gene expression was measured on custom-
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made Affymetrix gene chips as described in [7]. Expres-
sion data have been deposited in the GEO database
under accession number GSE18489. Measurements for
all known or predicted enzyme-coding genes were
extracted and matched to the corresponding reactions
in the constraint-based model.

Constraints-based genome-scale metabolic model
reconstruction
A genome-scale stoichiometric metabolic model of
Streptomyces coelicolor was reconstructed from different
sources of data, including KEGG pathways, ScoCyc
pathways, biochemistry textbooks, an extensive literature
survey and available genome-scale models of other
organisms. The initial stoichiometric matrix was gener-
ated based on KEGG and ScoCyc and manually curated
to refine the S. coelicolor-specific parts of the metabolic
network (e.g., antibiotic biosynthesis), to specify the cor-
rect reversibility constraints of reactions, and to add
missing essential reactions. Missing essential reactions
were identified iteratively; a minimum set of hypotheti-
cal reactions was added to the model if an essential
metabolite could not be produced otherwise. Reversibil-
ity and essentiality of reactions were also compared to
other published genome-scale models of S. coelicolor
and other organisms [6,25-27]. The resulting model is
very similar to the model of Borodina et al. [5,6], and
differs mainly in the more comprehensive inclusion of
antibiotic pathways.
In the final curated model, one lumped reaction is

added to produce the biomass of the cell. Information
about biomass composition and growth and non-growth
associated ATP maintenance were taken from Borodina
et al. [6] and Ingraham et al. [28] and complemented
with literature information [29,30]. Some of the biomass
precursor biosynthesis reactions are also lumped reac-
tions, e.g. protein translation, and were specified accord-
ing to the literature and published genome-scale models
[6]. The full model in SBML format is available in the
supplementary material (Additional file 2).
Analysis of the model was based on standard flux bal-

ance analysis (FBA) to predict optimal in silico growth
and metabolic flux distribution using the COBRA tool
[31]. Uptake fluxes for metabolites not available in the
medium were set to zero, while metabolic by-products
were always allowed to leave the metabolic system.
Observed nutrient uptake rates from the fermenter cul-
ture used for the transcriptome analysis were used to
define the constraints of nutrients uptake for the model
(input function). The objective function was defined as
maximizing the growth rate. Beginning at 34 hours, we
dynamically varied the biomass composition by adding
increasing amounts of antibiotics, based on the observed
antibiotics production rate.

Comparing transcriptome data and predicted flux
Our computational model contains 643 metabolites and
1015 reactions: 747 reactions for metabolite biosynthesis
and degradation, 152 transport reactions, and 116 addi-
tional input and output constraints of the system. 666
reactions were annotated as enzyme-catalyzed reactions
and could be matched to an enzyme-coding gene. Some
reactions were annotated as potentially catalyzed by
more than one gene and some genes catalyze more than
one reaction. If one gene catalyzes multiple reactions,
we matched its expression profile to the reaction with
the maximum predicted flux, hypothesizing that this
reaction will dominate the expression behavior. In total,
789 genes are assigned to 666 enzymatic reactions. Of
these, 558 genes are predicted to have non-zero flux
(the remaining 231 genes are not used for biomass pro-
duction according to the model). Out of these 558
genes, 9 genes were involved in cell maintenance with
constant flux and zero standard deviation; these were
excluded from the further analysis. In total we therefore
considered 549 enzyme-coding genes with non-zero pre-
dicted flux. For each of these genes, we compared the
predicted flux profile and the observed gene expression
levels using Pearson’s correlation, testing whether gene
expression was indeed upregulated when a much higher
flux through a particular reaction was required at a cer-
tain growth phase.

Additional file 1: Expression clustering plots. PDF file depicting the
expression clustering of 231 enzyme-coding genes for which the
catalyzed reaction had zero predicted flux at all time points of the flux
balance analysis of our model. The majority of genes are members of
clusters that show highly consistent dynamics across the time course,
e.g. the purple, red and pink clusters, indicating that they are indeed
expressed and the corresponding reactions likely to be active.

Additional file 2: Stoichiometric metabolic model. SBML file
describing the metabolic model of Streptomyces coelicolor.

Additional file 3: Table of metabolites. Excel table defining all
metabolites used in the metabolic model.

Additional file 4: Table of reactions. Excel table defining all reactions
used in the metabolic model.

Additional file 5: Table of zero-flux reactions. Excel table of reactions
that show consistent zero predicted flux, including their membership in
the expression clusters depicted in Additional file 1.

Acknowledgements
We are very grateful to the STREAM consortium (funded by ERA-NET SySMO
[GEN2006-27745-E/SYS]: (P-UK-01-11-3i) and the Research Council of Norway
[project no. 181840/I30]) for providing the expression data prior to
publication. The STREAM consortium is an international project funded by a
SysMO grant of the ERASysBio framework http://www.erasysbio.net studying
“Global metabolic switching in Streptomyces coelicolor”. Members of the
consortium include Florian Battke, Sven Even Borgos, Per Bruheim, Nigel
Burroughs, Gregory Challis, Lubbert Dijkhuizen, Trond E Ellingsen, William
Gaze, Alexander Herbig, Sunniva Hoel, Øyvind Jakobsen, Ritsert C. Jansen,
Brent Kiernan, Preben Krabben, Roxane Legaie, Juan Francisco Martín, Jay
Moore, Kay Nieselt, Walid Omara, David Rand, Jens Reuther, Antonio
Rodríguez-García, Håvard Sletta, Maggie Smith, Louise Thomas, Alexander

Alam et al. BMC Genomics 2010, 11:202
http://www.biomedcentral.com/1471-2164/11/202

Page 8 of 9

http://www.erasysbio.net


Wentzel, David Wild, Wolfgang Wohlleben, Arouna Woukeu, Anders Øverby,
and the authors https://www.wsbc.warwick.ac.uk/groups/sysmopublic/. MEM
was funded by a 4 × 4 Ubbo Emmius scholarship and ET by a Rosalind
Franklin Fellowship, both from the University of Groningen. RB is supported
by an NWO-Vidi fellowship.

Author details
1Groningen Bioinformatics Center, Groningen Biomolecular Sciences and
Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN
Haren, The Netherlands. 2Department of Microbial Physiology, Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen,
Kerklaan 30, 9751 NN Haren, The Netherlands. 3Department of Biological
Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
4Integrative and Systems Biology, Faculty of Biomedical and Life Sciences,
University of Glasgow, Glasgow G12 8QQ, UK.

Authors’ contributions
EMHW, ET and RB designed and coordinated the study. MTA carried out the
modelling and drafted the manuscript. The STREAM consortium provided
the expression data prior to publication. MTA and MEM integrated the
model and expression data. DAH, ET and RB interpreted the results. EMHW,
ET and RB revised the manuscript. All authors read and approved the final
manuscript.

Received: 22 October 2009 Accepted: 26 March 2010
Published: 26 March 2010

References
1. Kolter R, Siegele DA, Tormo A: The stationary phase of the bacterial life

cycle. Annu Rev Microbiol 1993, 47:855-874.
2. Roszak DB, Colwell RR: Survival strategies of bacteria in the natural

environment. Microbiol Rev 1987, 51(3):365-379.
3. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR,

James KD, Harris DE, Quail MA, Kieser H, Harper D, et al: Complete genome
sequence of the model actinomycete Streptomyces coelicolor A3(2).
Nature 2002, 417(6885):141-147.

4. Challis GL, Hopwood DA: Synergy and contingency as driving forces for
the evolution of multiple secondary metabolite production by
Streptomyces species. Proc Natl Acad Sci USA 2003, 100(Suppl
2):14555-14561.

5. Borodina I, Siebring J, Zhang J, Smith CP, van Keulen G, Dijkhuizen L,
Nielsen J: Antibiotic overproduction in Streptomyces coelicolor A3 2
mediated by phosphofructokinase deletion. J Biol Chem 2008,
283(37):25186-25199.

6. Borodina I, Krabben P, Nielsen J: Genome-scale analysis of Streptomyces
coelicolor A3(2) metabolism. Genome Res 2005, 15(6):820-829.

7. Nieselt K, Battke F, Herbig A, Bruheim P, Wentzel A, Jakobsen OM, Sletta H,
Alam MT, Merlo ME, Moore J, et al: The dynamic architecture of the
metabolic switch in Streptomyces coelicolor. BMC Genomics 2010, 11:10.

8. Price ND, Papin JA, Schilling CH, Palsson BO: Genome-scale microbial in
silico models: the constraints-based approach. Trends Biotechnol 2003,
21(4):162-169.

9. Price ND, Reed JL, Palsson BO: Genome-scale models of microbial cells:
evaluating the consequences of constraints. Nat Rev Microbiol 2004,
2(11):886-897.

10. Durot M, Bourguignon PY, Schachter V: Genome-scale models of bacterial
metabolism: reconstruction and applications. FEMS Microbiol Rev 2009,
33(1):164-190.

11. Lee JM, Gianchandani EP, Papin JA: Flux balance analysis in the era of
metabolomics. Brief Bioinform 2006, 7(2):140-150.

12. Covert MW, Schilling CH, Palsson B: Regulation of gene expression in flux
balance models of metabolism. J Theor Biol 2001, 213(1):73-88.

13. Lee JM, Gianchandani EP, Eddy JA, Papin JA: Dynamic analysis of
integrated signaling, metabolic, and regulatory networks. PLoS Comput
Biol 2008, 4(5):e1000086.

14. Melzoch K, de Mattos MJ, Neijssel OM: Production of actinorhodin by
Streptomyces coelicolor A3(2) grown in chemostat culture. Biotechnol
Bioeng 1997, 54(6):577-582.

15. Wagner A: Energy costs constrain the evolution of gene expression. J Exp
Zool B Mol Dev Evol 2007, 308(3):322-324.

16. Wagner A: Energy constraints on the evolution of gene expression. Mol
Biol Evol 2005, 22(6):1365-1374.

17. Hojati Z, Milne C, Harvey B, Gordon L, Borg M, Flett F, Wilkinson B,
Sidebottom PJ, Rudd BA, Hayes MA, et al: Structure, biosynthetic origin,
and engineered biosynthesis of calcium-dependent antibiotics from
Streptomyces coelicolor. Chem Biol 2002, 9(11):1175-1187.

18. Cerdeno AM, Bibb MJ, Challis GL: Analysis of the prodiginine biosynthesis
gene cluster of Streptomyces coelicolor A3(2): new mechanisms for
chain initiation and termination in modular multienzymes. Chem Biol
2001, 8(8):817-829.

19. Apel AK, Sola-Landa A, Rodriguez-Garcia A, Martin JF: Phosphate control of
phoA, phoC and phoD gene expression in Streptomyces coelicolor
reveals significant differences in binding of PhoP to their promoter
regions. Microbiology 2007, 153(Pt 10):3527-3537.

20. Martens JH, Barg H, Warren MJ, Jahn D: Microbial production of vitamin
B12. Appl Microbiol Biotechnol 2002, 58(3):275-285.

21. Kim HB, Smith CP, Micklefield J, Mavituna F: Metabolic flux analysis for
calcium dependent antibiotic (CDA) production in Streptomyces
coelicolor. Metab Eng 2004, 6(4):313-325.

22. Kol S, Merlo ME, Scheltema RA, de Vries M, Vonk RJ, Kikkert NA,
Dijkhuizen L, Breitling R, Takano E: Metabolomic characterization of the
salt stress response in Streptomyces coelicolor. Appl Environ Microbiol .

23. Akesson M, Forster J, Nielsen J: Integration of gene expression data into
genome-scale metabolic models. Metab Eng 2004, 6(4):285-293.

24. Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, Farhat MR, Cheng TY,
Moody DB, Murray M, Galagan JE: Interpreting expression data with
metabolic flux models: predicting Mycobacterium tuberculosis mycolic
acid production. PLoS Comput Biol 2009, 5(8):e1000489.

25. Jamshidi N, Palsson BO: Investigating the metabolic capabilities of
Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and
proposing alternative drug targets. BMC Syst Biol 2007, 1:26.

26. Reed JL, Vo TD, Schilling CH, Palsson BO: An expanded genome-scale
model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 2003, 4(9):
R54.

27. Oh YK, Palsson BO, Park SM, Schilling CH, Mahadevan R: Genome-scale
reconstruction of metabolic network in Bacillus subtilis based on high-
throughput phenotyping and gene essentiality data. J Biol Chem 2007,
282(39):28791-28799.

28. Ingraham JL, Maaløe O, Neidhardt FC: Growth of the bacterial cell. Sinauer,
Sunderland, MA 1983.

29. Shahab N, Flett F, Oliver SG, Butler PR: Growth rate control of protein and
nucleic acid content in Streptomyces coelicolor A3(2) and Escherichia
coli B/r. Microbiology 1996, 142(Pt 8):1927-1935.

30. Zuneda MC, Guillenea JJ, Dominguez JB, Prado A, Goni FM: Lipid
composition and protoplast-forming capacity of Streptomyces
antibioticus. Lipids 1984, 19(3):223-228.

31. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ:
Quantitative prediction of cellular metabolism with constraint-based
models: the COBRA Toolbox. Nat Protoc 2007, 2(3):727-738.

doi:10.1186/1471-2164-11-202
Cite this article as: Alam et al.: Metabolic modeling and analysis of the
metabolic switch in Streptomyces coelicolor. BMC Genomics 2010 11:202.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Alam et al. BMC Genomics 2010, 11:202
http://www.biomedcentral.com/1471-2164/11/202

Page 9 of 9

https://www.wsbc.warwick.ac.uk/groups/sysmopublic/
http://www.ncbi.nlm.nih.gov/pubmed/8257118?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8257118?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3312987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3312987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12000953?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12000953?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12970466?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12970466?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12970466?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18606812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18606812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15930493?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15930493?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20053288?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20053288?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12679064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12679064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15494745?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15494745?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19067749?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19067749?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16772264?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16772264?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11708855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11708855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18483615?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18483615?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18636413?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18636413?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17262826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15758206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12445768?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12445768?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12445768?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11514230?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11514230?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11514230?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17906150?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17906150?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17906150?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17906150?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11935176?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11935176?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15491861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15491861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15491861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20190082?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20190082?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15491858?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15491858?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19714220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19714220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19714220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17555602?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17555602?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17555602?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12952533?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12952533?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17573341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17573341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17573341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8760907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8760907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8760907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6371416?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6371416?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6371416?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17406635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17406635?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and Discussion
	Initial model validation
	Global metabolic switching from primary phase to secondary phase of growth

	Conclusions
	Methods
	Transcriptomics
	Constraints-based genome-scale metabolic model reconstruction
	Comparing transcriptome data and predicted flux

	Acknowledgements
	Author details
	Authors' contributions
	References

