

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

This paper is made available online in accordance with
publisher policies. Please scroll down to view the document
itself. Please refer to the repository record for this item and our
policy information available from the repository home page for
further information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Xiao-Bing Hu and Ezequiel A. Di Paolo

Article Title: A Ripple-Spreading Genetic Algorithm for the Aircraft
Sequencing Problem
Year of publication: 2011

Link to published article: http://dx.doi.org/10.1162/EVCO_a_00011
Publisher statement: © 2011 The MIT Press. A Ripple-Spreading
Genetic Algorithm for the Aircraft Sequencing Problem.
Xiao-Bing Hu and ,Ezequiel A. Di Paolo. Evolutionary Computation,
2011 19:1, 77-106

http://go.warwick.ac.uk/wrap

A Ripple-Spreading Genetic Algorithm
for the Aircraft Sequencing Problem

Xiao-Bing Hu xiaobing.hu@warwick.ac.uk
School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom

Ezequiel A. Di Paolo ezequiel@sussex.ac.uk
Ikerbasque, Department of Logic and Philosophy of Science, University of the Basque
Country, San Sebastian, 20080, Spain

Abstract
When genetic algorithms (GAs) are applied to combinatorial problems, permutation
representations are usually adopted. As a result, such GAs are often confronted with fea-
sibility and memory-efficiency problems. With the aircraft sequencing problem (ASP)
as a study case, this paper reports on a novel binary-representation-based GA scheme
for combinatorial problems. Unlike existing GAs for the ASP, which typically use
permutation representations based on aircraft landing order, the new GA introduces
a novel ripple-spreading model which transforms the original landing-order-based
ASP solutions into value-based ones. In the new scheme, arriving aircraft are pro-
jected as points into an artificial space. A deterministic method inspired by the natural
phenomenon of ripple-spreading on liquid surfaces is developed, which uses a few
parameters as input to connect points on this space to form a landing sequence. A
traditional GA, free of feasibility and memory-efficiency problems, can then be used to
evolve the ripple-spreading related parameters in order to find an optimal sequence.
Since the ripple-spreading model is the centerpiece of the new algorithm, it is called the
ripple-spreading GA (RSGA). The advantages of the proposed RSGA are illustrated by
extensive comparative studies for the case of the ASP.

Keywords
Arrival sequencing problem, ripple-spreading model, feasibility, optimization, binary
representations.

1 Introduction

Genetic algorithms (GAs) were originally developed based on binary representation to
solve problems whose solutions are based on value (Holland, 1975; Eiben and Schoe-
nauer, 2002). They were soon extended to many combinatorial problems where solutions
are based on permutation (Bäck et al., 1997; Eiben and Smith, 2003). In the design of
GAs for combinatorial problems, the basic binary representation is difficult to apply,
and instead, various problem-specific permutation representations have been proposed.
Unfortunately, such permutation representations must confront the common problems
of infeasible chromosomes and memory inefficiency. As a result, in many applications
of GAs to combinatorial problems, evolutionary operators have to be modified mainly
to serve feasibility purposes. Some applications even discard certain evolutionary op-
erators altogether, such as crossover, because it proves to be more destructive than
effective to evolve chromosomes. Many classic evolutionary operators, such as uniform

C© 2011 by the Massachusetts Institute of Technology Evolutionary Computation 19(1): 77–106

X.-B. Hu and E. A. Di Paolo

crossover, which were developed on the basis of binary representation, are hard to
apply to permutation-based GAs in combinatorial problems.

Recently, a novel GA scheme, based on binary representations, free of both feasi-
bility and memory-efficiency problems, has been applied to quite a few combinatorial
problems (the traveling salesman problem, Hu and Di Paolo, 2007, the topology op-
timization of complex networks, Hu, Di Paolo, and Barnett, 2008, the airport gate
assignment problem, Hu and Di Paolo, 2009b, and the network coding problem, Hu,
Leeson, et al., 2010). The results have illustrated its advantages and potential in terms
of feasibility, memory efficiency, and compatibility. The basic idea of this scheme is
the following. First, a combinatorial problem is transformed by creating a problem-
specific artificial space and then projecting the elements that compose the solutions
to the combinatorial problem onto this space. Secondly, this is followed by designing
a parameterized ripple-spreading process, so that for each given set of values for the
parameters, the ripple-spreading process will connect all elements on the space to form
a unique solution to the original combinatorial problem. And lastly, a basic binary-
representation based GA is used to evolve these ripple-spreading parameters in order
to find an optimal or near-optimal solution. Since the ripple-spreading process plays a
crucial role in this new GA scheme, it is called the ripple-spreading GA (RSGA). The
work of Hu and colleagues (Hu and Di Paolo, 2007; Hu, Di Paolo, and Barnett, 2008;
Hu and Di Paolo, 2009b; Hu, Leeson, et al., 2010) provided some preliminary results
on the RSGA, which were reviewed in Hu, Wang, et al. (2010). This paper aims to
make a deeper and more systematic investigation of the RSGA scheme using another
challenging task, the aircraft sequencing problem (ASP), as a study case.

The ASP is a major issue in daily airport operations (Pelegrin, 1994; Carr et al.,
1999, 2000). In the past decades many methods have been used to address this problem
(Psaraftis, 1978, 1980; Venkatakrishnan et al., 1993; Bianco et al., 1997, 1988; Robinson
et al., 1997; Beasley et al., 2001; Hansen, 2004; Cheng et al., 1999; Hu and Chen, 2005; Hu
and Di Paolo, 2008, 2009a; Ciesielski and Scerri, 1998). The ASP is an NP-hard problem
with no known algorithm for finding a global optimal solution within a polynomial-
bounded amount of time. As large-scale parallel stochastic search algorithms, GAs are
effective for tackling NP-hard problems such as the ASP (e.g., see Beasley et al., 2001;
Hu and Di Paolo, 2009a; Ciesielski and Scerri, 1998). GAs have even been tested at air-
ports and produced satisfactory results (Beasley et al., 2001; Ciesielski and Scerri, 1998).
Permutation representations have often been used in these GAs. For instance, the evolu-
tionary algorithms reported in previous works (Hansen, 2004; Cheng et al., 1999; Hu and
Chen, 2005) used the order of each aircraft in a candidate landing sequence to construct
chromosomes. The GA in Hu and Di Paolo (2008) used 0-1-valued matrix to record
the relative positions of aircraft in the landing sequence, and this GA was extended
to multi-runway systems by using integer-valued matrix in Hu and Di Paolo (2009a).
Apart from permutation representations, some value-based representations have also
been successfully used in some GAs for the ASP. For example, the GAs in Beasley et al.
(2001) and Ciesielski and Scerri (1998) used a chromosome to directly record scheduled
times of arrival (STAs) for aircraft. These representations of landing sequences explicitly
reflect the underlying physical meanings of chromosomes in a straightforward way, and
therefore can easily be understood by human air traffic controllers and others. However,
feasibility problems often result from these representations. The stochastic evolutionary
process can often make chromosomes invalid/infeasible in terms of the representations
underlying physical meaning. For this reason, feasibility checking and other correcting
measures, such as deterministic methods and heuristic rules, have had to be introduced

78 Evolutionary Computation Volume 19, Number 1

A Ripple-Spreading Genetic Algorithm

to help evolutionary operators to produce valid/feasible chromosomes. Some GAs have
even discarded the crossover operator altogether, simply because it turned out to be
more destructive than effective in terms of feasibility (Cheng et al., 1999; Hu and Chen,
2005). The matrix-representation-based GAs in Hu and Di Paolo (2008) and Hu and
Di Paolo (2009a) were claimed to have achieved better performance than others, but
they suffered from O(n2) memory problem, which means that while suitable for the
ASP, they might not be able to generalize their advantages to other large-scale problems
like complex network optimization with the same underlying representation issues.

This paper applies the RSGA scheme to the ASP. Thanks to the novel ripple-
spreading model, the proposed RSGA can employ a value-based representation that has
nothing (directly) to do with aircraft landing sequence. As a result, the new algorithm
is compatible with all classic evolutionary operators, and free of both feasibility and
memory-efficiency problems. It is also for this reason easy to generalize to other com-
binatorial problems. From this case study, a better understanding of the RSGA scheme
at work is achieved, which is important to push the scheme toward real-world applica-
tions in the future. The remainder of this paper is organized as follows. The basic idea
of the RSGA scheme is explained in Section 2. The mathematical description of the ASP
is given in Section 3. The associated transformed problem, that is, the ripple-spreading
model of the ASP, is described in Section 4. Some important GA-related issues are dis-
cussed in Section 5. Further analyses are given in Section 6. An extensive simulation
study is reported in Section 7, which is followed by some conclusions in Section 8.

2 The RSGA Scheme

As discussed in Section 1, permutation representations often make it difficult to de-
sign effective and efficient evolutionary operators because of feasibility and memory-
efficiency issues. In order to address these issues, an often used methodology is to
transform the original problem into a new problem for which solutions are based on
value rather than order or permutation, and then apply a basic binary GA to resolve the
transformed problem. Properly transforming the original problem is the centerpiece of
this methodology. Inspired by the natural ripple spreading phenomenon that occurs
when liquid surfaces are perturbed, this paper reports a novel problem transforming
process, which has good potential to become a generalized technique for transforming
a wide range of combinatorial problems.

A solution to a combinatorial problem determines how to organize a set of elements,
particularly, in what kind of order. Suppose such elements are associated with some
points in a space where some spreading ripples will be generated randomly (like when
a stone is thrown in a pond). Then as the ripples are spreading out in this space, the
points representing the components of a solution can be organized according to, say,
the order by which the ripples reach each of them (or by some other choice). Obviously,
such an order is determined by the values of the ripple-spreading related parameters,
for example, the epicenter, speed, and amplitude of ripples. In this way, a combinato-
rial solution (a sequence of elements) is transformed into a value-based solution (the
parameters of a spatial ripple spreading process). This is the original inspiration of
remodeling/transforming a combinatorial problem into a ripple spreading process that
leads to the proposed RSGA scheme.

The RSGA scheme thus permits the use of very basic binary GAs to solve those
combinatorial problems that would usually require sophisticated permutation repre-
sentations. In order to stress advantages of the model, the basic binary GAs used is

Evolutionary Computation Volume 19, Number 1 79

X.-B. Hu and E. A. Di Paolo

Figure 1: Conventional way of applying GAs.

free of feasibility and memory-efficiency problems and compatible to all classic evolu-
tionary operators. Figure 1 summarizes the conventional way of applying GAs and the
central idea of the RSGA scheme is illustrated in Figure 2.

In the implementation of the RSGA, the only thing different from a classic GA is
that, before the fitness of a chromosome is calculated, the represented solution to the
transformed problem, that is, a set of values for the ripple-spreading related parameters,
needs to be mapped back into the associated solution to the original combinatorial
problem. Obviously the most important and also the most difficult step in the RSGA
scheme is to design a proper ripple-spreading model. This largely depends on each
individual original problem. Despite this, there is still great freedom and flexibility
for designing a ripple-spreading model. For instance, regarding the design of artificial
space, previous studies (Hu and Di Paolo, 2007; Hu, Di Paolo, and Barnett, 2008; Hu
and Di Paolo, 2009b; Hu, Leeson, et al., 2010) have shown the following.

• The artificial space may originate from a real space, like the artificial space used
in the travelling salesman problem, which is actually the geographic map of cities
(Hu and Di Paolo, 2007). Therefore, there is no need to project any elements onto
a new space. However, in most problems, it is difficult to refer to any real space to
design the artificial space. In this case, we may construct an imaginary space based
on the categories/features of the elements composing combinatorial solutions, that
is, each axis of the artificial space corresponds to a certain category/feature of el-
ements, if possible following some relation of order. In the study on the airport
gate assignment problem, the artificial space has an axis of time, an axis of pas-
senger number, and an axis of aircraft grounding time (Hu and Di Paolo, 2009b).
The elements composing combinatorial solutions can then be projected into the
artificial space according to their categories/features. Sometimes there is no use-
ful information about the categories/features of elements, such as the nodes in

80 Evolutionary Computation Volume 19, Number 1

A Ripple-Spreading Genetic Algorithm

Figure 2: Basic idea of the RSGA.

non-geographic networks or graph and information theories (Hu, Di Paolo, and
Barnett, 2008). The artificial spaces used in these studies are purely imaginary, and
the elements are projected in a rather arbitrary manner.

• The artificial space can in principle be of any dimension, for example, in the existing
studies, there are one-dimensional (Hu, Leeson, et al., 2010), two-dimensional
(Hu and Di Paolo, 2007; Hu, Di Paolo, and Barnett, 2008), and three-dimensional
artificial spaces (Hu and Di Paolo, 2009b). In an artificial space with more than
one dimension, different axes may have different distance units, like in Hu and
Di Paolo (2009b), the distance units for the time axis and the passenger number
axis are completely different and even incommensurable. In this case, we need to
introduce an artificial coefficient to homogenize two different distance scales. Such
coefficients, along with other ripple-spreading parameters, can be later evolved by
the GA. This can help to optimize the ripple-spreading model, in order to improve
the performance of RSGA.

Regarding the design of the ripple-spreading process, we can also get some useful
observations from existing studies.

• For sequencing problems, such as the traveling salesman problem (Hu and Di Paolo,
2007) and the airport gate assignment problem (Hu and Di Paolo, 2009b), the time
by which a ripple reaches an element point is the key factor to determine how to
combine all elements. For a combinatorial problem where each element has many

Evolutionary Computation Volume 19, Number 1 81

X.-B. Hu and E. A. Di Paolo

Figure 3: Aircraft waiting to land.

states/features/values to choose from, such as the network coding problem (Hu,
Leeson, et al., 2010), the amplitude of a ripple when it reaches an element point
plays the most important role in determining how to generate combinatorial solu-
tions. Some other combinatorial problems could be very complicated, where there
are complex interactions or relationships between elements in a combinatorial so-
lution, for example, how to distribute connections between nodes to generate a
random complex network (Hu, Di Paolo, and Barnett, 2008). In this case, an ele-
ment point can be activated by a ripple to generate new ripples, which may activate
other elements in return.

• The choice for ripple-spreading related parameters is also broad. In the existing
studies, the location of ripple epicenter, initial states of a ripple (including initial
amplitude, initial point energy, frequency, initial phase, etc.), coefficients in the
dynamic functions which define the behavior of ripples, and even some artificial
space related parameters were used as ripple-spreading related parameters.

Hu, Wang, et al. (2010) provide a comprehensive review and some useful guidelines
regarding how to design an RSGA for a combinatorial problem. The general idea is easier
to understand when seen at work on a specific case. More details about how to design a
good RSGA will be explained in the following sections through a case study on the ASP.

3 The Aircraft Sequencing Problem (ASP)

A simple way to perform an ASP is to schedule arriving aircraft in a first-come-first-
served (FCFS) order based on their estimated times of arrival (ETAs) at the runway.
Although FCFS scheduling establishes a fair order in terms of ETA, it ignores other
useful information which can help make the most of the capacity of the airport, reduce
airborne delays and/or improve the airport service to airlines (Pelegrin, 1994; Carr et al.,
1999, 2000). As is well known, shifting positions of aircraft according to landing time
interval (LTI), which is the minimum permissible time interval between two successive
landings, can significantly reduce airborne delays during the arriving and landing phase
(Andreatta and Romanin-Jacur, 1987; Bianco and Odoni, 1993; Dear, 1976).

Suppose a set of aircraft need to land at the same runway of an airport during a
period of time of interest, as illustrated by Figure 3. Assume that the number of the
aircraft under consideration is NAC, and the period of time is T seconds long. Then NAC

82 Evolutionary Computation Volume 19, Number 1

A Ripple-Spreading Genetic Algorithm

Table 1: Minimum landing time intervals (LTI; Bianco et al., 1997).

Category of following aircraft: j

Sij (s) 1 2 3 4

Category of leading aircraft: i 1 96 200 181 228
2 72 80 70 110
3 72 100 70 130
4 72 80 70 90

Figure 4: FCFS and position shifting.

and T can be used to estimate the degree of congestion at the runway of the airport. For
the ith aircraft, ACi , in the original arriving traffic, i = 1, . . . , NAC, there is an ETA at the
runway, denoted as Pi . Based on this set of ETAs, Pi, i = 1, . . . , NAC, an FCFS landing
sequence can be directly worked out with respect to safety regulations.

The safety separation, that is, the minimum LTI between a pair of successive air-
craft, is a function of the types and of the relative positions of the two aircraft. There are
hundreds of aircraft types in the airspace system, and many different aircraft types may
be grouped into a single category regarding minimum LTI. For the sake of simplicity,
(as in Bianco et al., 1997), aircraft waiting to land are classified into a relatively small
number of distinct categories, according to speed, capacity, weight, and other technical
characteristics. Table 1 shows the minimum LTI relative to main categories of commer-
cial aircraft (typical aircraft types in categories 1 to 4 are the B747, B727, B707, and DC9,
respectively). It is evident that the LTIs in Table 1 are asymmetric with respect to order
in a sequence. For example, a minimum LTI of 200 s is required for a B727 to follow a
B747, while a minimum LTI of only 72 s needs to be satisfied for the same pair of aircraft
in reverse order. By taking advantage of the asymmetries of the LTIs, in other words,
by shifting positions of aircraft in an FCFS landing sequence, it is possible to reduce
delays and to improve the capacity of the airport. The potential benefits resulting from
position shifting, considering airborne delay, are illustrated by Figure 4 in an intuitive

Evolutionary Computation Volume 19, Number 1 83

X.-B. Hu and E. A. Di Paolo

way, where Ai, i = 1, . . . , NAC, is the scheduled time of arrival (STA) for the ith aircraft
in the original arriving traffic.

The ASP based on position shifting can be mathematically described as a minimiza-
tion problem. Let Q(n) record the nth aircraft in the optimized landing sequence, where
Q(n) = i means the ith aircraft in the original arriving traffic turns out to be the nth
aircraft in the optimized landing sequence. With Q one can calculate Ai as

AQ(n) =
{

PQ(n) n = 1;
max(PQ(n), AQ(n-1) + S(CQ(n-1), CQ(n))) n > 1,

(1)

where Ci is the category of the ith aircraft in the original arriving traffic, and S(i, j) is
the LTI for an aircraft of category j to follow an aircraft of category i to land. Then the
airborne delay of the ith aircraft in the original arriving traffic is

Di = Ai − Pi, i = 1, . . . , NAC. (2)

The objective of the ASP in the period of T is to find an optimal landing sequence,
Q(1), . . . ,Q(NAC), such that the total airborne delay can be minimized, as formulated
as following

min
Q(1),...,Q(NAC)

J, J =
NAC∑
i=1

Di. (3)

One should be aware of that the above mathematical formulation of the ASP is
simplified. The real-world ASP operation needs to consider many more factors and
constraints which are missing or ignored here for the sake of simplicity. For instance,
arriving aircraft should be delayed as equally as possible in a fair landing sequence. It
is not the same to delay five aircraft by 10 min as to delay only one by 50 min. For each
aircraft, a maximal allowable delay must be observed due to the limited fuel on board.
Also for each aircraft, the STA should be within a landing time window. In the real-
world ASP practice, sometimes a negative delay may apply to aircraft, which means
that an aircraft may be required to speed up to land before its ETA in order to allow
other aircraft to land on time. Different aircraft may have different landing priority in
terms of fuel and passenger convenience. Furthermore, how to execute an optimized
landing sequence in a dynamic environment (the situation may change during the time
window T) is also an important issue which needs to be addressed in real world.

Addressing these real-world considerations is not outside the possibilities of the
RSGA. For example, as will be explained later, the proposed RSGA naturally stands a
higher chance of swapping positions between two closer aircraft, which means large
delay to individual aircraft will rarely occur and therefore the delay distribution among
aircraft will be reasonably even. As for the landing priority of aircraft, one may apply
different weights to the delay of different categories of aircraft. This should not affect
the implementation of the RSGA, which would be in these respects a variation of the
simplified implementation studied in this paper. And the dynamic issue in the ASP can
be resolved by integrating the strategy of receding horizon control into the RSGA, just
as the GAs in Hu and Chen (2005) and Hu and Di Paolo (2008) have done. Since the
RSGA scheme is the focus of the paper, here we only use the above simplified ASP.

84 Evolutionary Computation Volume 19, Number 1

A Ripple-Spreading Genetic Algorithm

4 Transformed Problem: A Ripple-Spreading Model of ASP

The ripple-spreading model is the core technique in the RSGA scheme. In this section,
we will describe a ripple-spreading model for the ASP. To this end, arriving aircraft
are projected as points onto an especially parameterized artificial space, and then a
ripple-spreading process is designed in order to form a landing sequence by connecting
all aircraft points according to certain parameters.

First of all, we need to set up an artificial space for projecting arriving aircraft.
Here a two-dimensional space is designed, where the x axis is time and the y axis is
an aircraft category axis but measured in the same time units as the x axis. Then we
project all aircraft as points onto the artificial space according to their ETA and category.
Here we define three parameters which can partially determine how aircraft points are
distributed in the artificial space: δ12, δ23, and δ34. They are, along the y axis, the distances
between category 1 and category 2, between category 2 and category 3, and between
category 3 and category 4, respectively. Note that δ12, δ23, and δ34 are real numbers, and
may have negative values. Besides the aircraft points, we also have a reference point
in the artificial space denoted as RP and defined by its coordinates (x, y). This RP will
determine the epicenter of the ripple spreading process. Figure 5(a) and Figure 5(b)
illustrate how the original arriving traffic is projected onto the artificial space.

With the above artificial space ready, we now need to design a ripple-spreading
process that connects all aircraft points as a function of δ12, δ23, δ34, and RP in order
to generate a unique landing sequence. It is desirable that such a process should gen-
erate a landing sequence that is absolutely feasible and reasonably good in terms of
airborne delay. By mimicking the natural ripple-spreading phenomenon, we propose
the following process.

Step 1: Calculate the distances between aircraft points to the given RP. Initialize U as
the set of all original arriving aircraft, set the current landing sequence Q as
an empty vector, and let j = 0.

Step 2: Do while U �= ∅

Step 2.1: Let j = j + 1. Choose all aircraft points that have the j th shortest
distance to the RP. Suppose in these chosen aircraft points, NE aircraft
have an ETA smaller than x, and NL aircraft have an ETA larger than
x. Remove these aircraft from U .

Step 2.2: Insert the NE aircraft that have an ETA smaller than x to the front
of the current landing sequence Q in the following way. An aircraft
with a larger ETA should be inserted earlier to the front of the current
Q. If some aircraft have the same ETA, then they should be inserted
in a specified order which is predetermined by aircraft categories in
order to give the least total delay for those aircraft with the same
ETA. If some aircraft have the same ETA as well as the same category,
then insert them randomly to the front of the current Q.

Step 2.3: Append the NL aircraft that have an ETA larger than x to the end
of the current Q in the following way. An aircraft with a smaller
ETA should earlier be appended to the end of the current Q. If some
aircraft have the same ETA, then they should be appended according
to the reverse version of the specified order used in Step 2.2. If some

Evolutionary Computation Volume 19, Number 1 85

X.-B. Hu and E. A. Di Paolo

Figure 5: Illustration of the transformed problem and ripple-spreading process.

aircraft have the same ETA as well as the same category, then append
them randomly to the end of the current Q.

The above process can be roughly likened to throwing a stone into a pool where
there stand NAC stakes, that is, aircraft points in the artificial space. When the ripple
spreads out from the point where the stone hits the pool, that is, the RP, it reaches
every stake sooner or later according to the distance from each stake to the hit point.
Based on the order in which the ripple reaches each stake, plus referring to the ETA and
the aircraft category, we can work out a landing sequence to connect all NAC aircraft.

86 Evolutionary Computation Volume 19, Number 1

A Ripple-Spreading Genetic Algorithm

Figure 6: Effect of ripple-spreading parameters on landing sequence.

Figure 5(c) and Figure 5(d) illustrate how the above ripple-spreading process calculates
a landing sequence step by step.

It is clear that different δ12, δ23, δ34, and/or RP may result in different landing
sequences. For example, Figure 6(a) and Figure 6(b) use the same set of δ12, δ23, δ34
as Figure 5(b), but they have different RPs, and therefore different landing sequences.
Figure 6(c) has the same RP as Figure 5(b), but uses a different set of δ12, δ23, and δ34,
which also results in a different landing sequence. The δ12, δ23, δ34, and RP in Figure 6(d)
are different from those in Figure 5(b), and so is the landing sequence. Therefore,
δ12, δ23, δ34, and RP are all ripple-spreading parameters in this model. An interesting
observation is that if δ12 = δ23 = δ34 = 0, then the resulting landing sequence is actually
a FCFS sequence, regardless of the location of RP.

One may argue that the output of the above ripple-spreading model might not
cover all possible combinations of arriving aircraft. This is true. However, it is worth
noting that many possible combinations are actually bad landing sequences in terms
of airborne delay. For instance, a landing sequence which swaps the first aircraft and
the last aircraft in the original arriving traffic will impose a heavy delay on the first
aircraft of the original arriving traffic. Therefore, in reality, air traffic controllers only
shift the positions of those aircraft which have similar ETAs. Another example is that
the total airborne delay will definitely increase if two aircraft of the same category swap
positions. As will be proved in Section 6, the proposed ripple-spreading process mainly
causes position-shifting between those aircraft of different categories and close to each
other in the original arriving traffic. In other words, the ripple-spreading model helps to
filter out many bad landing sequences, which is what is expected for a good transformed
problem. Actually, many GAs use problem-specific knowledge and heuristic rules to
keep chromosomes away from bad solutions, which, in the RSGA, is largely achieved
by the ripple-spreading model. Furthermore, we can integrate into the model as many
problem-specific knowledge and heuristic rules as we like, without causing any problem

Evolutionary Computation Volume 19, Number 1 87

X.-B. Hu and E. A. Di Paolo

to the design of evolutionary operators in the RSGA. This is, however, often difficult for
permutation-representation-based GAs for the ASP, which directly integrate problem-
specific knowledge and/or heuristic rules into their evolutionary operators.

It should be noted that the design of the ripple-spreading model is highly problem-
dependent. Different problems may need quite different ripple-spreading models (e.g.,
see Hu and Di Paolo, 2007, 2009b; Hu, Di Paolo, and Barnett, 2008). Even for the same
problem, there may be many different suitable ripple-spreading models, probably with
equivalent or similar effects. For instance, the ripple-spreading model described in this
section can be modified by putting the RP on the x axis and defining δ1, δ2, δ3, and δ4
as the locations of category lines with reference to the x axis. One can easily derive that
the modified model is actually equivalent to the first model.

5 GA Related Techniques

Based on the above ripple-spreading model for the ASP, a traditional GA with the basic
binary representation and all classic evolutionary operators can be designed to evolve
the ripple-spreading parameters in order to find an optimal landing sequence.

5.1 Chromosome Structures

In the RSGA, a chromosome is simply a binary string for the values of δ12, δ23, and δ34, and
the coordinates of RP, that is, x and y. For comparative purposes, here we also discuss
two permutation representations for the ASP: one is an NAC long vector recording the
absolute positions of all aircraft in the represented landing sequence, that is, g(i) = j

means the j th aircraft in the original arrival traffic is the ith to land, as illustrated
in Figure 7(c) (Hansen, 2004; Cheng et al., 1999; Hu and Chen, 2005). The other, as
shown in Figure 7(d), is a 0-1-valued matrix in a size of NAC × NAC, with each entry
g(i, j) indicating the relative positions of aircraft in the associated landing sequence
(Hu and Di Paolo, 2008), that is, g(i, j) = 1 means the j th aircraft in the original arrival
traffic will follow the ith aircraft in the original arrival traffic to land. The contents of
a chromosome in the RSGA have nothing directly to do with the associated landing
sequence, but are simply the ripple-spreading parameters, that is, a chromosome in the
RSGA is a binary string of the values for the ripple-spreading parameters, as depicted
in Figure 7(f), where

LX = ceil(log2((X − X)/XS)), (4)

LY = ceil(log2((Y − Y)/YS)), (5)

Lδ12 = ceil(log2((δ − δ)/δS)), (6)

Lδ23 = ceil(log2((δ − δ)/δS)), (7)

Lδ34 = ceil(log2((δ − δ)/δS)), (8)

and ceil is a function which rounds a number to the nearest integer towards infinity, and
X/Y/δ, X/Y/δ, and XS/YS/δS are the upper bound, the lower bound, and the searching
step of x/y/δ, respectively. In our study, X/Y and X/Y are set such that all aircraft points
are covered with a reasonable margin. The range for δ12, δ23, and δ34 is set to be twice the
largest LTI in Table 1, that is, δ = 456 and δ = 0. As in many other basic binary GAs, the

88 Evolutionary Computation Volume 19, Number 1

A Ripple-Spreading Genetic Algorithm

Figure 7: Different representations.

searching steps can affect the performance of the RSGA. In general, the searching steps
should become smaller if the problem is more complicated, for example, in the case of
the ASP, if NAC is larger. In this study, we set XS = YS = δS = 0.00001 unless otherwise
specified.

The above three chromosome structures are further compared in Table 2, from
which one can easily see two advantages of our binary representation. The first ad-
vantage is that the binary representation has no feasibility problems because no con-
straints are imposed on chromosomes. In contrast, both the vector representation and

Evolutionary Computation Volume 19, Number 1 89

X.-B. Hu and E. A. Di Paolo

Table 2: Features of different representations.

Meaning of Meaning of a Size of a Constraints for
a gene chromosome chromosome evolutionary

operators

Vector g(i) = j means Absolute positions NAC× g(i) ∈ {1, . . . , NAC},
representation ACj is the ith of aircraft in a ceil(log2(NAC)) g(i) �= g(j),

aircraft to land landing sequence bits if i �= j

Matrix g(i, j) = 1 means Relative positions (NAC)2 bits
∑

g(i, i) = 1, all i

representation ACj follows of aircraft in a
∑

g(:, :) = NAC,
ACi to land landing sequence

∑
g(i, j) ≤ 1, all j �= i

Binary A digital bit in The coordinates (LX + LY + No constraints
representation the binary ripple- of RP, δ12, δ23, Lδ12 + Lδ23

spreading and δ34 +Lδ34) bits
parameters

the matrix representation have to satisfy some special constraints in order to get feasible
chromosomes. Actually, the constraints for the vector representation are so restrictive
to evolutionary operations that crossover has been discarded in some papers (Cheng
et al., 1999; Hu and Chen, 2005). In Hu and Di Paolo (2008), a computationally expen-
sive process had to be added to guarantee the feasibility of crossover. However, the
matrix representation used in this case has a potential O(n2) memory problem. There-
fore, the second advantage of the binary representation is its memory efficiency. That is,
the RSGA, with similar demands for memory capacity, can easily apply to all problem
scales, because the length of its chromosomes has no direct link to NAC. Actually, the
RSGA uses the ripple-spreading process in Section 4 to reconstruct online the full infor-
mation of a landing sequence from the simple data stored in a chromosome. In other
words, the ripple-spreading process helps the RSGA to save the memory allocated to
chromosomes. The cost is the computational burden caused by the ripple-spreading
process. Fortunately, this added computational burden can be largely offset by the re-
duced computational burden in the evolutionary operations due to the use of binary
representation, as will be discussed later. One may argue that the memory efficiency
of RSGA is not significant in the ASP, as NAC will rarely exceed 100. The reason for
mentioning the memory efficiency of RSGA here is to note the potential of RSGA. As
mentioned before, the RSGA scheme can be applied to many different combinatorial
problems, and in some of them, the memory efficiency of RSGA is extremely important.
For instance, to represent and optimize a complex network with millions of nodes, a
traditional chromosome based on an adjacency matrix requires trillions of bits of mem-
ory, while the RSGA only needs to record tens of ripple-spreading related parameters
(Hu, Di Paolo, and Barnett, 2008).

5.2 Common Genes

There may be two definitions for common genes in GAs for the ASP: one by absolute
positions of aircraft, and the other by relative positions of aircraft, as illustrated in
Figure 8(a) and Figure 8(b). As mentioned in Section 3, the cause of the ASP is the asym-
metries of the LTIs between aircraft. The relative positions of aircraft are therefore more
important to determine a good landing sequence. For the vector representation, one can
easily identify the common genes defined by absolute positions of aircraft, but not the
common genes by relative positions of aircraft unless some computationally expensive

90 Evolutionary Computation Volume 19, Number 1

A Ripple-Spreading Genetic Algorithm

Figure 8: Common genes in different representations.

method is employed. For the matrix representation, identifying common genes based
on the relative positions of aircraft is straightforward: conduct an & operation between
two matrixes, and then common genes are those resulting entries with value 1 (Hu and
Di Paolo, 2008).

For the binary representation in the RSGA, common genes are defined simply based
on the values for the ripple-spreading parameters. Surprisingly, similar values for the
ripple-spreading parameters often relate to the same relative positions of aircraft, as
illustrated in Figure 8(d), where any RP within the dotted area in the parameterized
artificial space will cause AC2 to be followed by AC4. Note that Figure 8(d) is only for
illustration purposes, and there may be some other areas which can result in the same
relative positions of aircraft. Therefore, any evolutionary operation which can identify,
inherit, and protect these value-based common genes can also, in some sense, identify,
inherit, and protect those common genes based on relations of relative position.

Evolutionary Computation Volume 19, Number 1 91

X.-B. Hu and E. A. Di Paolo

5.3 Evolutionary Operators

For the vector representation in Hu and Chen (2005), the design of mutation is very sim-
ple: exchange the contents of two genes which are randomly chosen, that is, g(i) ↔ g(j).
This mutation reflects straightforwardly the physical meanings of position-shifting.
However, due to potential feasibility problems, the GA in Hu and Chen (2005) failed to
give any crossover operator that could effectively identify, inherit, and protect common
genes based on relations of relative position. For the matrix representation in Hu and
Di Paolo (2008), a relatively complicated procedure was introduced to adopt the muta-
tion in Hu and Chen (2005), and an even more complicated procedure was proposed
to conduct uniform crossover aiming to make the most of fit common genes based on
relative positions of aircraft.

In the RSGA, since a binary chromosome is based on value rather than on permu-
tation, all classic evolutionary operators can easily apply without any modification. As
discussed before, this full freedom of choosing and designing evolutionary operators
mainly comes from no constraint to the binary representation. The mutation operator
used in the RSGA is to randomly reverse a gene in the chromosome: if gene C(i) is
chosen to mutate at a given probability, then we have

C(i) → |1 − C(i)|. (9)

In the RSGA, we choose uniform crossover, which is probably the most powerful
crossover operator (Sywerda, 1989). Thanks to the binary representation, the original
uniform crossover can directly apply in the RSGA. Uniform crossover uses two parents
to produce only one offspring, and the principle is simple: the ith gene in the offspring
inherits the ith gene of either parent with a 50% probability.

5.4 Heuristic Rules

In GAs based on a permutation representation for the ASP many problem-specific
heuristic rules are integrated into the evolutionary operations. For example, in Hu and
Chen (2005) and Hu and Di Paolo (2008), the FCFS sequence is used to initialize a certain
proportion of chromosomes, otherwise it is very likely that almost all chromosomes at
the beginning of the evolution are very unfit. The probability of applying the mutation
operation largely depends on the ETA of the chosen genes, in order to avoid shifting
the positions of two aircraft which are far away from each other in the original arriving
traffic.

In the evolutionary operations of the RSGA, we mainly focus on some pure GA-
related heuristic rules. These are, for example, to evenly distribute a certain proportion
of chromosomes within the parameterized artificial space when initializing a genera-
tion; to adjust mutation probability and crossover probability online according to the
fitness of each individual chromosome as well as the overall fitness level of the current
generation of chromosomes (Zhang et al., 2007); to dynamically restrict the mutation
operation to a certain part of a chromosome based on its fitness (Hu, Di Paolo, and Wu,
2008). The problem-specific knowledge should have already been taken into account
in the design of the ripple-spreading model as described in Section 4, and here we just
need to initialize a few chromosomes according to the FCFS principle, that is, we set
δ12 = δ23 = δ34 = 0.

92 Evolutionary Computation Volume 19, Number 1

A Ripple-Spreading Genetic Algorithm

6 Further Analyses on the RSGA

6.1 Completeness of Solution Space

An obvious question about the RSGA is: will the ripple-spreading model cover the
whole solution space of the original ASP? In other words, for any candidate landing
sequence, will there always exist at least one set of values for the ripple-spreading
related parameters, such that the output of the ripple-spreading model is the candidate
landing sequence?

It is indeed possible to design an RSGA that can in theory cover the whole solution
space of the original ASP. Suppose we randomly distribute NAC RPs (not just one RP)
in the artificial space; each RP has a serial number and will generate its own ripple. The
first aircraft point which is reached by a ripple will be assigned to the RP where the
ripple originates. The aircraft assigned to the ith RP will land as the ith aircraft in the
landing sequence. Then, we encode the coordinates of all RPs in a chromosome, and
evolve them by selection, mutation, and crossover. It is easy to see that, by randomly
distributing the NAC RPs, we can get any candidate landing sequence, which means the
solution space of the original ASP is completely covered by this RSGA, in other words,
it is theoretically possible for this GA to find the global optima. This GA, which can
guarantee the completeness of solution space, still follows the basic idea of the RSGA
scheme proposed in this paper: it transforms the original order-based ASP solutions
into value-based solutions, that is, the coordinates of RPs, which can be easily handled
by all classic evolutionary operators free of feasibility problems. Figure 9 illustrates this
RSGA with a guarantee of the completeness of solution space.

However, from a practical point of view, it is not necessary to demand GAs to
guarantee the completeness of solution space. It is often acceptable that they find good
solutions effectively and efficiently. This is because (i) even though a GA can guarantee
such completeness, it only theoretically stands a very slim chance to find a global
optimum, while practically, it very often ends up with suboptimal or just fairly good
solutions, particularly in the case of complex problems, and (ii) it is often the case in
various implementations of GAs that finding a global optimum is not essential as long
as the algorithms are capable of finding a suboptimal or fairly good solution within a
specified time window with limited hardware resources.

Therefore, from a practical point of view, we need to further analyze whether the
RSGA described in Section 4 and Section 5 can cover a sufficiently large set of good
solutions and find some of them very quickly. As mentioned in Section 4 and Section 5,
in real-world ASP use, empirical knowledge informs decisions: (i) two aircraft of same
category should not be swapped, (ii) shifting the positions of two aircraft with close
ETAs is likely to improve the landing sequence, and (iii) it is rarely of any help to shift
the positions of two aircraft which are far away from each other. A candidate landing
sequence observing the above knowledge is likely to be a good solution to the ASP.
Therefore, conventional GAs based on permutation representations (i.e., Beasley et al.,
2001; Hansen, 2004; Cheng et al., 1999; Hu and Chen, 2005; Hu and Di Paolo, 2008, 2009a)
need to explicitly integrate the above empirical knowledge into their evolutionary
operations in order to achieve a satisfactory performance. For the proposed RSGA,
we can theoretically prove as follows that the above knowledge is automatically or
naturally reflected in the ripple-spreading model.

For sake of simplicity (but without losing generality), suppose there are two air-
craft points in the artificial space as shown in Figure 10, where their coordinates are
(xAC1, yAC1) and (xAC2, yAC2), respectively, xAC1 < xAC2 and yAC1 ≥ yAC2. Let the RP be a

Evolutionary Computation Volume 19, Number 1 93

X.-B. Hu and E. A. Di Paolo

Figure 9: Illustration of an RSGA with guarantee of completeness of the solution space.

Figure 10: Likelihood of two aircraft being swapped. Only when the RP is located
within Zone 3 will two aircraft shift positions.

94 Evolutionary Computation Volume 19, Number 1

A Ripple-Spreading Genetic Algorithm

random point within the rectangular area defined by (xLB, yLB) and (xUB, yUB). Accord-
ing to the ripple-spreading model given in Section 4, one has that, only when the RP
is located within Zone 3 will AC1 and AC2 shift positions. Therefore, the probability
of swapping two aircraft is determined by the probability at which the RP is located
within Zone 3. This can be calculated by dividing the area of Zone 3 by the area of
the rectangle defined by (xLB, yLB) and (xUB, yUB). Due to the limited space, here we
skip the detailed mathematical deduction, but from Figure 10, one can easily see: (i) if
yAC1 = yAC2, which means two aircraft are of the same category, the volume of Zone 3 is
always 0, which implies the probability of shifting positions is 0, while if yAC1 �= yAC2,
then (ii) as the gap between xAC1 and xAC2 decreases, the dot-and-dash lines in Figure 10
will turn clockwise, which leads to an increase in the area of Zone 3 and therefore a
larger probability of swapping two aircraft, and (iii) if (xAC2 − xAC1) is larger than a
critical value, Zone 3 will disappear, which means no chance to shift positions. Now,
we can come to the conclusion that the RSGA proposed in Section 4 and Section 5
naturally observes the empirical knowledge learned in real-world ASP practice. As a
result, although the simple RSGA cannot guarantee the completeness of solution space,
it is very likely to cover a considerable proportion of good solutions.

6.2 Extension to a Multi-Runway System

The RSGA proposed above can be easily extended to handle some more complex
situations, for example, the ASP in a multi-runway system (denoted as MRASP). Simply
speaking, the MRASP is the problem of assigning arriving aircraft to different runways
at the airport and generating efficient landing sequences and landing times so that the
safety separation between arriving aircraft is guaranteed, the available capacity at the
airport is efficiently used, and airborne delays are minimized. The complexity in the
MRASP comes not just from the fact that there are NR runways to choose from, but also
from the fact that the NR runways may have quite different operational conditions, for
example, they start service at different times, and may be exclusive to certain categories
of aircraft. The mathematical description of the ASP in Section 3 can easily be extended to
a MRASP version. However, due to limited space, here we skip the MRASP formulation
(see Hansen, 2004, for details) and mainly focus on how to design a RSGA for the
MRASP. It is easy to extend the RSGA for the ASP to a multi-runway version: (i) use
NR RPs rather than just one, and assign a runway to each RP, for example, the rth RP is
related to runway r ; (ii) associate two constants with each RP, one is tSS(r), which is the
time for runway r to start service, and the other is a constant vector V (r), which defines
the restricted aircraft categories to runway r ; (iii) in the ripple-spreading process, the
NR RPs compete with each other to connect, subject to tSS(r) and V (r), those aircraft
points which are not connected yet, in order to generate landing sequences to different
runways (those aircraft connected by RP r will form the landing sequence to runway
r). The above MRASP version of RSGA is illustrated in Figure 11, from which one can
see that the modified RSGA can effectively arrange arriving aircraft to land at different
runways subject to runway operational conditions.

7 Simulation Results

7.1 Simulation Analysis on the Completeness of the Solution Space

As discussed in Section 6.1, the completeness of solution space is an important issue in
the study of the RSGA proposed in this paper. Here we attempt to further address this

Evolutionary Computation Volume 19, Number 1 95

X.-B. Hu and E. A. Di Paolo

Figure 11: RSGA for the multi-runway problem (MRASP).

issue through extensive simulation tests. The basic idea behind the experiment is: we use
a small sampling step to sample the solution space of the transformed problem (i.e., the
ripple-spreading model described in Section 4), count the number of different solutions
we find, and then compare them with a roughly estimated number of candidate landing
sequences by shifting positions between adjacent aircraft.

96 Evolutionary Computation Volume 19, Number 1

A Ripple-Spreading Genetic Algorithm

Table 3: Simulation analysis on completeness of solution space (20 aircraft).

Probability that Total number of Total number of different
shifting position is potential good solutions covered by
potentially useful landing sequences the transformed problem

Congested case ∼0.4915 ≤257,690 ≥27,769
Normal case ∼0.2901 ≤152,109 ≥14,137
Under-congested case ∼0.2046 ≤107,269 ≥5,769

Suppose 20 arriving aircraft are uniformly randomly distributed within a time win-
dow of 1000/2000/3000 s (congested/normal/under-congested case). Basically, it is
very likely that shifting positions is not necessary unless the gap between the ETAs of
two aircraft is less than the associated LTI. We randomly generate 100 sets of arriving
traffic data for each case (each set has 20 aircraft), and then count how many times on av-
erage the LTIs in Table 1 are violated. The result is: the probability that shifting positions
is potentially useful is about 0.4915/0.2901/0.2046 in the congested/normal/under-
congested cases. The actual probability should be much smaller, because, as discussed
in Section 4, if two adjacent aircraft not satisfying the required LTI are of the same
category, then shifting their positions will only make things worse.

Since the average gap between aircraft is close to the average LTI in Table 1, we
assume it is only necessary to shift positions between adjacent aircraft in the original
arriving traffic. Then for an arriving traffic of 20 aircraft, the total number of candidate
landing sequences is no more than 219 = 524,288. Actually, the number is much less
than 524,288, because, for instance, if the first aircraft in the original traffic is put as the
second aircraft in a candidate landing sequence, then the second aircraft in the original
traffic must take the first place in that landing sequence, otherwise, at least two aircraft
that are not adjacent in the original traffic have to shift their positions, which is not
allowed under our assumption for this analysis. For conservative purposes again, we
use 524,288 as the total number of candidate landing sequences. Therefore, the number
of potentially good landing sequences can be estimated by multiplying 524,288 by the
probability at which shifting positions is potentially useful.

Then for each of the 100 sets of traffic data in the congested/normal/under-
congested case, we use a reasonably small sampling step to sample the solution space
of the transformed problem, and count the number of different solutions we find. Ob-
viously, the number of different solutions found by sampling the solution space of the
transformed problem is less than the actual number of different solutions in such a solu-
tion space. However, still for conservative purposes, we assume the size of the solution
space of the transformed problem equals such a number determined by sampling, and
we take the average of the 100 sets in each case.

The results of simulation analysis on the completeness of solution space are sum-
marized in Table 3, from which one can see that the number of solutions covered by
the transformed problem is about 5–11% of the number of potentially good landing
sequences generated by shifting positions between adjacent aircraft. The remaining
question is: will the set of solutions covered by the transformed problem overlap, at
least reasonably overlap, the set of potentially good landing sequences? This is going
to be answered in the following two sections by comparing the proposed RSGA with
some existing algorithms which can guarantee the completeness of solution space. If
the RSGA proposed in this paper can give similar performance in terms of airborne

Evolutionary Computation Volume 19, Number 1 97

X.-B. Hu and E. A. Di Paolo

Table 4: Definitions of traffic scenarios.

NAC

20 30 40 50 60

T Under-congested case 3,000 4,500 6,000 7,500 9,000
(s) Normal case 2,000 3,000 4,000 5,000 6,000

Congested case 1,000 1,500 2,000 2,500 3,000

delay, then it will be safe to say the transformed problem can at least cover many useful
solutions exploited by existing algorithms.

7.2 ASP Performance

In this section, the performance of the RSGA proposed in this paper is studied by exten-
sive simulations. For comparative purposes, the method reported in Bianco et al. (1997)
(denoted as DTSPM since it is a deterministic method developed based on traveling
salesman problem modeling), the GA reported in Hu and Chen (2005) (whose chromo-
some structure is based on the absolute position of aircraft), and the GA developed in
Hu and Di Paolo (2008) (whose chromosome structure is based on the relative positions
of aircraft) are also used to tackle the ASP. Hereafter, for distinguishing purposes, the
GA in Hu and Chen (2005) is denoted as GA1, the GA in Hu and Di Paolo (2008) as
GA2, and the RSGA proposed in Section 4 and Section 5 as RSGA1. Besides, a FCFS
procedure is also used to establish FCFS landing sequences, in order to illustrate the
important role of the position-shifting operation in the ASP. For the RSGA, the basic
mutation probability and crossover probability are 0.2 and 0.5, respectively, and the
population size is determined according to the problem scale, that is, NAC, by the same
function used in Hu and Di Paolo (2008).

Like Hu and Chen (2005) and Hu and Di Paolo (2008), the initial traffic data used
in the simulation are randomly generated by referring to the data used in Bianco et al.
(1997). Suppose that the total number of aircraft coming to land varies between 20 and
60, and accordingly, the length of an operating day varies between 3,000 s and 9,000 s
in under-congested cases, between 2,000 s and 6,000 s in normal cases, and between
1,000 s and 3,000 s in congested cases, respectively. Table 4 gives the definitions of all
traffic scenarios used in the simulation. In each case, we randomly generate 100 sets
of initial arriving traffic data. In each test, only one set of initial arriving traffic data is
used, one simulation run is conducted under the DTSPM, while 50 simulation runs are
conducted under each GA, and then the averages are taken regarding average airborne
delay (AAD) and average computational time (ACT) consumed by each algorithm.

All tests are conducted in a MATLAB environment on a PC with a 2.0 GHz CPU.
Table 5 gives an example about what the optimized landing sequences look like under
different algorithms, where due to limited space, the initial arriving traffic data have
just 20 aircraft arriving in 1,000 s in a congested case. From Table 5, one can see that
the position-shifting operation can significantly reduce the total airborne delay of a
FCFS sequence, and RSGA1 gives a quite satisfactory landing sequence compared with
another two GAs. Before giving any general conclusion, more extensive simulation tests
need to be conducted and analyzed. Tables 6 through 8 and Figure 12 give the results
of these extensive simulation tests.

98 Evolutionary Computation Volume 19, Number 1

A Ripple-Spreading Genetic Algorithm

Ta
bl

e
5:

R
es

ul
ts

of
a

si
ng

le
te

st
.

In
it

ia
lt

ra
ffi

c
FC

FS
D

T
SP

M
G

A
1

G
A

2
G

A
3

A
C

C
at

.∗
E

TA
O

rd
er

ST
A

D
el

ay
O

rd
er

ST
A

D
el

ay
O

rd
er

ST
A

D
el

ay
O

rd
er

ST
A

D
el

ay
O

rd
er

ST
A

D
el

ay

10
1

18
0

1
18

0
0

1
18

0
0

1
18

0
0

1
18

0
0

1
18

0
0

2
1

19
0

2
27

6
86

2
27

6
86

2
27

6
86

2
27

6
86

2
27

6
86

20
2

21
3

3
47

6
26

3
3

47
6

26
3

3
47

6
26

3
3

47
6

26
3

3
47

6
26

3
15

2
22

1
4

55
6

33
5

4
55

6
33

5
4

55
6

33
5

4
55

6
33

5
4

55
6

33
5

3
4

31
9

5
66

6
34

7
14

1,
50

9
1,

19
0

14
1,

49
8

1,
17

9
5

66
6

34
7

6
74

6
42

7
14

2
36

9
6

74
6

37
7

5
63

6
26

7
5

63
6

26
7

7
82

6
45

7
5

63
6

26
7

16
1

45
6

7
81

8
36

2
6

70
8

25
2

8
85

8
40

2
19

1,
88

0
1,

42
4

18
1,

75
8

1,
30

2
13

1
51

1
8

91
4

40
3

19
1,

94
1

1,
43

0
20

2,
02

6
1,

51
5

17
1,

68
8

1,
17

7
19

1,
85

4
1,

34
3

7
2

52
1

9
1,

11
4

59
3

8
98

9
46

8
6

71
6

19
5

12
1,

25
6

73
5

12
1,

25
6

73
5

1
4

60
3

10
1,

22
4

62
1

15
1,

59
9

99
6

16
1,

67
8

1,
07

5
16

1,
61

6
1,

01
3

7
83

6
23

3
17

3
60

3
11

1,
29

4
69

1
7

88
9

28
6

7
78

6
18

3
8

89
6

29
3

10
1,

08
6

48
3

18
4

65
3

12
1,

42
4

77
1

16
1,

68
9

1,
03

6
15

1,
58

8
93

5
15

1,
52

6
87

3
8

92
6

27
3

9
2

70
6

13
1,

50
4

79
8

9
1,

06
9

36
3

9
1,

05
8

35
2

6
74

6
40

13
1,

33
6

63
0

19
4

72
0

14
1,

61
4

89
4

17
1,

77
9

1,
05

9
17

1,
76

8
1,

04
8

11
1,

17
6

45
6

9
1,

01
6

29
6

11
2

75
4

15
1,

69
4

94
0

10
1,

14
9

39
5

12
1,

29
8

54
4

10
1,

06
6

31
2

14
1,

41
6

66
2

5
2

78
9

16
1,

77
4

98
5

11
1,

22
9

44
0

10
1,

13
8

34
9

13
1,

33
6

54
7

16
1,

60
6

81
7

4
3

81
2

17
1,

84
4

1,
03

2
13

1,
37

9
56

7
13

1,
36

8
55

6
9

96
6

15
4

11
1,

15
6

34
4

6
2

85
9

18
1,

94
4

1,
08

5
12

1,
30

9
45

0
11

1,
21

8
35

9
14

1,
41

6
55

7
17

1,
68

6
82

7
8

1
95

2
19

2,
01

6
1,

06
4

20
2,

03
7

1,
08

5
19

1,
93

0
97

8
18

1,
78

4
83

2
20

1,
95

0
99

8
12

4
1,

00
1

20
2,

24
4

1,
24

3
18

1,
86

9
86

8
18

1,
85

8
85

7
20

2,
10

8
1,

10
7

15
1,

52
6

52
5

To
ta

ld
el

ay
(s

)
—

12
,8

90
—

—
11

,8
36

—
—

11
,4

78
—

—
11

,0
08

—
—

10
,8

46
—

∗ C
at

.=
ca

te
go

ry
.

Evolutionary Computation Volume 19, Number 1 99

X.-B. Hu and E. A. Di Paolo

Table 6: Test results in under-congested cases.

NAC
AAD
(s) 20 30 40 50 60

FCFS 94.47 114.75 125.70 124.86 124.82
DTSPM 75.73 86.51 95.60 98.40 98.91
GA1 73.56 85.74 93.80 96.98 95.82
GA2 73.56 84.01 91.26 93.47 94.30
RSGA1 72.77 85.24 92.13 93.09 95.14

Table 7: Test results in normal cases.

NAC
AAD
(s) 20 30 40 50 60

FCFS 254.07 357.50 439.14 533.00 578.14
DTSPM 181.00 251.85 312.09 359.37 389.52
GA1 174.55 236.25 288.39 339.32 351.93
GA2 170.61 230.54 284.51 328.72 349.42
RSGA1 170.64 227.37 285.62 331.97 348.33

Table 8: Test results in congested cases.

NAC
AAD
(s) 20 30 40 50 60

FCFS 598.70 912.83 1,205.45 1,521.50 1,809.38
DTSPM 457.75 698.96 909.89 1,128.07 1,326.60
GA1 446.83 686.58 894.32 1,106.61 1,305.93
GA2 443.70 675.89 887.04 1,093.34 1,294.08
RSGA1 439.60 660.88 869.11 1,075.47 1,280.49

Tables 6 through 8 compare the performance of FCFS, DTSPM, GA1, GA2, and
RSGA1 when they are applied to under-congested cases, normal cases, and congested
cases with different NAC values. We make the following observations from these tables:

• With the position-shifting operation, DTSPM, GA1, GA2, and RSGA1 can signif-
icantly reduce the airborne delays of arriving traffic compared with FCFS. On
average, the position-shifting operation results in 20–30% fewer airborne delays.

• In the same congestion condition, the delay AAD should be at the same level for
the same algorithm, regardless of the number of aircraft, NAC. However, Tables 6
through 8 show that AAD goes up as NAC increases, which reflects the nature of
the ASP. As the ASP is an NP-hard problem, no method used in the simulation
can guarantee finding optimal solutions. When the problem scale is small, say
NAC = 20, it is relatively easy to find optimal or suboptimal solutions, which means
a smaller AAD in the same congestion condition; while if the problem scale is large,
say, NAC = 60, all algorithms often end up only with good feasible solutions, which
means a larger AAD.

• From Tables 6 through 8, it can be seen that in under-congested cases, the gaps
between the performances of different methods are relatively small, while in

100 Evolutionary Computation Volume 19, Number 1

A Ripple-Spreading Genetic Algorithm

Figure 12: Computational time for the different algorithms.

congested cases, the gaps expand significantly. This is understandable, because,
in under-congested cases, the FCFS landing sequences already give reasonably
good performance in terms of airborne delay, and a few position-shifting opera-
tions can slightly improve the sequences, while in congested cases, the FCFS land-
ing sequences often result in heavy airborne delays, and many position-shifting
operations are required to significantly reduce airborne delays. If a method can
effectively locate some of these useful positions for shifting in congested cases,
it may achieve outstanding performance. Therefore, congested cases can be con-
sidered as the most demanding cases in the ASP simulation for evaluating the
different methods.

• When their parameters are properly tuned, all GAs achieve fewer airborne de-
lays than DTSPM. GA1 gives about 2% fewer airborne delays than DTSPM, GA2
gives 5% fewer, and RSGA1 gives 6% fewer. This probably implies that stochastic
searching algorithms are more suitable than deterministic methods for NP-hard
problems like the ASP. However, the cost all GAs have to pay is the much heavier
computational burden compared with DTSPM, as shown in Figure 12.

• As reported in Hu and Di Paolo (2008), GA2 outperforms GA1, mainly because
the chromosome structure and the uniform crossover used by GA2 are particularly
effective for identifying, inheriting, and protecting useful relative positions of air-
craft, which, from the position-shifting point of view, are much more important
than the absolute positions of aircraft used in GA1. However, to record all relative
positions of aircraft and to operate on them, GA2 requires a huge memory capacity
as well as some computationally expensive feasibility-guaranteeing measures. As
a result, the ACT is much larger than the GA1. Actually, from Figure 12, one can
see that GA2 is the most computationally expensive algorithm of all.

• RSGA1 achieves a quite satisfactory performance in terms of airborne delay. In
general, RSGA1 has a performance similar to that of GA2 in under-congested

Evolutionary Computation Volume 19, Number 1 101

X.-B. Hu and E. A. Di Paolo

cases and normal cases, while in congested cases, which are probably the most
important cases in the ASP, RSGA1 beats GA2 by giving 1–2% fewer airborne
delays. Therefore, it should now be safe to claim that the RSGA proposed in this
paper does work well for the ASP as expected.

• RSGA1 also exhibits very promising performance in terms of computational bur-
den. Actually, Figure 12 shows that RSGA1 is the least computationally expensive
algorithm of all the GAs. There are two main reasons: (i) as a deterministic process,
the ripple-spreading model is computationally cheap, just like the deterministic
method DTSPM, which is computationally much cheaper than all GAs, and (ii) the
value-based representation used in RSGA1 makes it possible and easy to apply all
classic evolutionary operations in a very straightforward way, in other words, no
additional measures are needed in the evolutionary operations to serve any non-
evolutionary purposes. The merit of RSGA1 in terms of computational burden, as
illustrated in Figure 12, might not be very apparent in a dynamic ASP, where GA1
and GA2 can take advantage of the receding horizon control strategy to improve
their real-time properties, as reported in Hu and Chen (2005) and Hu and Di Paolo
(2008). However, this merit gives RSGA1 a better potential of applying to other
large scale static combinatorial problems, particularly when compared with GA2.
Due to its matrix representation, when GA2 is applied to large scale problems, it
will face O(n2) memory problems, of which RSGA1 is totally free.

• Tables 6 through 8 can help answer the question about the completeness of solu-
tion space raised in Section 6.1. Since RSGA1 achieves performance similar to the
other methods, which are designed directly based on the original ASP, and some-
times, mainly in congested cases, RSGA1 gives better solutions, one may conclude
that the transformed problem introduced in Section 4 covers a considerably large
proportion of high-quality solutions from the original ASP.

7.3 Tests on the MRASP

The MRASP test cases in Hansen (2004) are adopted to test our RSGA for the MRASP,
denoted as RSGA2. Here we will compare RSGA2 with Method 4 in Hansen (2004) and
GA4 in Hu and Di Paolo (2009a), respectively. Since few details in the design of GAs
are given in Hansen (2004), we cannot repeat exactly the methods reported therein.
Therefore, we quote directly from the best results achieved by Method 4 in Hansen
(2004). Readers should be aware that the LTIs used in this study are different from
those given in Table 1, which is adopted in the simulations in Section 7.2. Actually, the
LTIs used in Hansen (2004) are based on three categories of aircraft. To illustrate how
three different GAs optimize arrival traffic, Table 9 gives the test results of Scenario 1 in
Hansen (2004), where 12 aircraft arrive at a three-runway system. In this case study, the
optimized values for the ripple-spreading related parameters in RSGA2 are as following:
the coordinates of the three RPs are (x1, y1) = (6.9, 11.0), (x2, y2) = (8.8, 2.2), (x3, y3) =
(3.7, 6.4), the gaps between the three categories are δ12 = 14.7, δ23 = −8.5 (Category 1
is always fixed as 0), and they are all in units of time. Table 9 shows clearly that, in
Scenario 1, RSGA2 outperforms Method 4 in Hansen (2004) in terms of total airborne
delay (TAD). One may also note from Table 9 that RSGA2 assigns aircraft to three
runways most evenly in all three GAs, while Method 4 in Hansen (2004) generates the
most uneven assignments. This may partially explain why this method has the worst
performance in Scenario 1. Due to the limited space, here we only summarize the main

102 Evolutionary Computation Volume 19, Number 1

A Ripple-Spreading Genetic Algorithm

Table 9: Scenario 1 in Hansen (2004).

Method 4 in GA4 in
Initial traffic data Hansen (2004)∗ Hu and Di Paolo (2009a)∗∗ RSGA2†

AC No. Category ETA RW No. STA Del§ RW No. STA Del§ RW No. STA Del§

DL130 Heavy 10 3 10 0 3 10 0 2 10 0
AA335 Small 15 1 15 0 1 15 0 2 15 0
UA123 Heavy 7 1 7 0 1 7 0 1 7 0
DL1920 Heavy 6 1 6 0 3 6 0 3 6 0
UA1133 Large 10 1 10.5 0.5 2 10 0 1 10 0
NW2123 Heavy 5 3 5 0 3 5 0 3 5 0
AA205 Large 15 1 16 1 2 15 0 1 15 0
DL3319 Heavy 7 1 8 1 3 7 0 3 7 0
SW200 Small 6 2 7 1 2 7 1 2 7 1
DL510 Heavy 9 1 9 0 1 9 0 2 9 0
UA410 Heavy 4 3 4 0 3 4 0 3 4 0
SW185 Large 6 3 6.5 0.5 1 6 0 1 6 0

TAD 4 1 1

§Del: Delays in units of time.

Table 10: Summary of MRASP test results (delays in units of time).

Test cases in TAD under TAD under TAD
Hansen (2004) Method 4 in GA4 in under

Scenario NAC NR Heavy aircraft Hansen (2004) Hu and Di Paolo (2009a) RSGA2

1 12 3 Yes 3.5 1.0 1.0
2 15 3 Yes 9 5.5 5.2
3 20 5 Yes 12 7.7 7.6
4 12 3 No to runway 3 8.5 4.3 4.9

test results. Table 10 lists the average results of 10 runs of RSGA2 in each scenario, as
well as the relevant results in Hansen (2004) and Hu and Di Paolo (2009a). From Table
10, one can see the RSGA proposed in this paper works fairly well in the MRASP.

8 Conclusions

This paper reports on a novel ripple-spreading genetic algorithm (RSGA) scheme by
using the aircraft sequencing problem (ASP) as a case study. In the RSGA, the original
ASP is transformed into a ripple-spreading model, where arriving aircraft are projected
as points in an artificial space, and a ripple-spreading process is designed to use certain
ripple-spreading parameters as input to connect all aircraft points to form a landing
sequence. A very basic binary GA is then used to evolve these ripple-spreading param-
eters in order to find an optimal landing sequence. From this study, we can formulate
the following conclusions.

1. The RSGA is free of feasibility problems because the ripple-spreading model
requires the GA to evolve only the value of parameters and, therefore, all classic
evolutionary operations can be applied without any constraints.

Evolutionary Computation Volume 19, Number 1 103

X.-B. Hu and E. A. Di Paolo

2. The RSGA is also highly memory-efficient and thus scalable because a chromo-
some stores only the values of a few ripple-spreading parameters regardless of
the problem scale.

3. The ripple-spreading model can automatically filter out many bad solutions in-
corporating empirical knowledge, therefore, from a practical point of view, the
RSGA has good potential as an application, although it may not guarantee the
completeness of solution space.

4. The proposed RSGA scheme has good flexibility and extendibility, for example,
the ripple-spreading model can easily be modified to guarantee the completeness
of solution space or to apply to the MRASP.

5. An extensive simulation study shows that the new algorithm can outperform
existing GAs based on permutation representations for the ASP, or at least achieve
similar performance without their disadvantages.

6. However, the ASP is highly simplified in this study and it is necessary to increase
the complexity of the ASP in future studies by taking into account more realistic
factors and constraints, such as using more aircraft categories and considering
the equity of delays and landing time windows.

7. The simplified ASP still makes a good case study to verify the proposed RSGA
scheme, which has a very good potential of being suitable to a wide range of
combinatorial optimization problems, such as general job scheduling and net-
work topology optimization, in which permutation representations are typically
used to construct chromosomes in the implementation of GAs.

Acknowledgments

This work was supported by EPSRC Grant EP/C51632X/1. The authors would also like
to thank the anonymous reviewers, whose comments were of great help to improve the
quality of the paper.

References

Andreatta, G., and Romanin-Jacur, G. (1987). Aircraft flow management under congestion. Trans-
portation Science, 21(4):249–253.

Bäck, T., Hammel, U., and Schwefel, H.-P. (1997). Evolutionary computation: Comments on the
history and current state. IEEE Transactions on Evolutionary Computation, 1(1):3–17.

Beasley, J. E., Sonander, J., and Havelock, P. (2001). Scheduling aircraft landings at London
Heathrow using a population heuristic. Journal of the Operational Research Society, 52(4):483–
493.

Bianco, L., Dell’Olmo, P., and Odoni, A. R. (1997). Modelling and simulation in air traffic management.
Berlin: Springer Verlag.

Bianco, L., and Odoni, A. R. (1993). Large scale computation and information processing in air traffic
control. Berlin: Springer Verlag.

Bianco, L., Ricciardelli, S., Rinaldi, G., and Sassano, A. (1988). Scheduling task with sequence-
dependent processing times. Naval Research Logistics, 35(2):177–184.

104 Evolutionary Computation Volume 19, Number 1

A Ripple-Spreading Genetic Algorithm

Carr, G. C., Erzberger, H., and Neuman, F. (1999). Delay exchanges in arrival sequencing and
scheduling. Journal of Aircraft, 36(5):785–791.

Carr, G. C., Neuman, F., and Erzberger, H. (2000). Fast-time study of aircraft-influenced arrival
sequencing and scheduling. Journal of Guidance, Control and Dynamics, 23(3):526–531.

Cheng, V. H. L., Crawford, L. S., and Menon, P. K. (1999). Air traffic control using genetic search
techniques. In Proceedings of the IEEE International Conference on Control Applications, pp.
643–649.

Ciesielski, V., and Scerri, P. (1998). Realtime genetic scheduling of aircraft landing times. In The
1998 IEEE Congress on Evolutionary Computation, pp. 360–364.

Dear, R. G. (1976). The dynamic scheduling of aircraft in the near terminal area. Cambridge, MA: MIT
Press.

Eiben, A. E., and Schoenauer, M. (2002). Evolutionary computing. Information Processing Letters,
82(1):1–6.

Eiben, A. E., and Smith, J. E. (2003). Introduction to evolutionary computing. Berlin: Springer Verlag.

Hansen, J. V. (2004). Genetic search methods for air traffic control. Computers and Operations
Research, 31(3):445–459.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of
Michigan Press.

Hu, X., Di Paolo, E., and Barnett, L. (2008). Ripple-spreading model and genetic algorithm for
random complex networks: Preliminary study. In The 2008 IEEE Congress on Evolutionary
Computation (in the 2008 IEEE World Congress on Computational Intelligence), pp. 3642–3649.
IEEE Press.

Hu, X. B., and Chen, W. H. (2005). Genetic algorithm based on receding horizon control for arrival
sequencing and scheduling. Engineering Applications of Artificial Intelligence, 18(5):633–642.

Hu, X. B., and Di Paolo, E. (2007). A hybrid genetic algorithm for the travelling salesman problem.
In Nature Inspired Cooperative Strategies for Optimization (NICSO 2007), pp. 357–367. Berlin:
Springer.

Hu, X. B., and Di Paolo, E. (2008). Binary representation based genetic algorithm for aircraft
arrival sequencing and scheduling. IEEE Transactions on Intelligent Transportation Systems,
9(2):301–310.

Hu, X. B., and Di Paolo, E. (2009a). An efficient genetic algorithm with uniform crossover for air
traffic control. Computers and Operations Research, 36(1):245–259.

Hu, X. B., and Di Paolo, E. (2009b). A ripple-spreading genetic algorithm for airport gate assign-
ment problem. In The 2009 IEEE Congress on Evolutionary Computation, pp. 1857–1864.

Hu, X. B., Di Paolo, E., and Wu, S. F. (2008). A comprehensive fuzzy-rule-based self-adaptive
genetic algorithm. International Journal of Intelligent Computing and Cybernetics, 1(1):94–109.

Hu, X. B., Leeson, M. S., and Hines, E. L. (2010). A ripple-spreading genetic algorithm for the
network coding problem. In The 2010 IEEE World Congress on Computer Intelligence.

Hu, X. B., Wang, M., Leeson, M. S., Hines, E. L., and Di Paolo, E. (2010). A review on ripple-
spreading genetic algorithms for combinatorial optimization problems. In The 9th IEEE
International Conference on Cognitive Informatics, pp. 441–448.

Pelegrin, M. (1994). Towards global optimization for air traffic management. AGARD-AG-321.

Evolutionary Computation Volume 19, Number 1 105

X.-B. Hu and E. A. Di Paolo

Psaraftis, H. N. (1978). A dynamic programming approach to the aircraft sequencing problem.
Cambridge, MA: MIT Press.

Psaraftis, H. N. (1980). A dynamic programming approach for sequencing identical groups of
jobs. Operations Research, 28(6):1347–1359.

Robinson, J. E., III, Davis, T. J., and Isaacson, D. R. (1997). Fuzzy reasoning-based sequencing of
arrival aircraft in the terminal area. In AIAA Guidance, Navigation and Control Conference.

Sywerda, G. (1989). Uniform crossover in genetic algorithms. In Proceedings of the 3rd International
Conference on Genetic Algorithms, pp. 2–9. Morgan Kaufmann.

Venkatakrishnan, C. S., Barnett, A., and Odoni, A. R. (1993). Landings at Logan Airport: Describ-
ing and increasing airport capacity. Transportation Science, 27(3):211–227.

Zhang, J., Chung, H. S. H., and Lo, W. L. (2007). Clustering-based adaptive crossover and
mutation probabilities for genetic algorithms. IEEE Transactions on Evolutionary Computation,
11(3):326–335.

106 Evolutionary Computation Volume 19, Number 1

