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[1] Solar wind turbulence is dominated by Alfvénic
fluctuations with power spectral exponents that somewhat
surprisingly evolve toward the Kolmogorov value of �5/3,
that of hydrodynamic turbulence. We analyze in situ satellite
observations at 1AU and show that the turbulence
decomposes linearly into two coexistent components
perpendicular and parallel to the local average magnetic
field and determine their distinct intermittency independent
scaling exponents. The first of these is consistent with recent
predictions for anisotropic MHD turbulence and the second
is closer to Kolmogorov-like scaling. Citation: Chapman,

S. C., and B. Hnat (2007), Quantifying scaling in the velocity field

of the anisotropic turbulent solar wind, Geophys. Res. Lett., 34,

L17103, doi:10.1029/2007GL030518.

1. Introduction

[2] The solar wind provides a unique laboratory for the
study of Magnetohydrodynamic (MHD) turbulence with a
magnetic Reynolds number estimated to exceed �105

[Matthaeus et al., 2005]. In situ satellite observations of
bulk plasma parameters suggest turbulence via the statis-
tical properties of their fluctuations [Tu and Marsch,
1995; Goldstein, 2001]. Quantifying these fluctuations is
also central to understanding both the transport of solar
energetic particles and galactic cosmic rays within the
heliosphere, and solar wind evolution with implications
for the mechanisms that accelerate the wind at the corona.
[3] Numerical and analytical studies of incompressible

MHD, where the cascade is mediated by Alfvénic fluctua-
tions, provide different predictions for scaling exponents,
depending upon the strength of the turbulence, the strength
of the background magnetic field, and anisotropy. Iroshni-
kov and Kraichnan’s [Iroshnikov, 1964; Kraichnan, 1965,
hereinafter referred to as IK] original isotropic, weak
(random phase) phenomenology leads to a �k�3/2 spectrum
(see also Dobrowolny et al. [1980] for the asymmetric case).
Introducing anisotropy in the weak case leads to a �k?

�2

spectrum for fluctuations perpendicular to the background
magnetic field [e.g., Galtier et al., 2000]. In contrast, strong
turbulence phenomenology [see Goldreich and Sridhar,
1997, and references therein] and anisotropy [see Higdon,
1984, and references therein] yields a �k?

�5/3 spectrum
[hereafter referred to as GS]. This symmetric case where
the fluxes of oppositely directed Alfvén waves are equal
does not however strictly apply to the solar wind [Goldreich

and Sridhar, 1997], where the fluxes are observed to be
asymmetric. Recent numerical simulations [Müller and
Grappin, 2005], and analysis [Boldyrev, 2006, hereinafter
referred to as SB] obtain a �k?

�3/2 spectrum for the case of a
strong local background magnetic field, this �3/2 exponent,
combined with the anisotropy of the fluctuations, is in
contradiction with both IK and GS phenomenologies.
[4] Alfvénic fluctuations dominate the observed power in

the solar wind with propagation principally away from the
sun implying solar origin [e.g., Horbury et al., 2005].
Somewhat surprisingly then, the power spectra [e.g., Tu
and Marsch, 1995; Goldstein, 2001] suggest an exponent
evolving toward the Kolmogorov-like [Kolmogorov, 1941,
hereinafter referred to as K-41] value of ��5/3, that of
hydrodynamic turbulence. Intervals can be found where
different magnetic field and velocity components simulta-
neously exhibit scaling consistent with �5/3 and �3/2
spectra [e.g.,Veltri, 1999], indeed, this scaling can be difficult
to distinguish in low order moments [Carbone et al., 1995].
The flow is also observed to be intermittent, this has been
suggested to account for the ‘anomalous’�5/3 power spectra
in terms of incompressible MHD [Carbone, 1993]. Alfvénic
fluctuations, when isolated by the use of Elsasser variables
[e.g., Horbury et al., 2005] and decomposed by considering
different average magnetic field orientations that occur at
different times, are found to be multicomponent [Matthaeus
et al., 1990], and coupled [Milano et al., 2004]. This
observationally inspired picture, of an essentially incom-
pressible, multicomponent Alfvénic turbulence suggests that
a significant population of Alfvénic fluctuations evolve to
have wave vectors almost perpendicular to the background
magnetic field, leading to a ‘fluid- like’ phenomenology, and
the�5/3 power spectral slope. However, fluctuations in solar
wind density are not simply proportional to that in the
magnetic field [Spangler and Spiller, 2004] and show non-
trivial scaling [Tu and Marsch, 1995; Hnat et al., 2003]
suggesting that the turbulence is compressible [Hnat et al.,
2005]. The role of compressibility is thus an open question.
An important corollary is that the full behaviour cannot be
captured by models which describe the observed Alfvénic
properties in terms of fluctuating coronal fields that have
advected passively in the expanding solar wind [see, e.g.,
Giacalone et al., 2006]. There is however also evidence in
non-cascade quantities, such as magnetic energy density, of a
signature within the inertial range that shows scaling that
correlates with the level of magnetic complexity in the corona
[Hnat et al., 2007; Kiyani et al., 2007].
[5] Here, we will quantify scaling exponents of velocity

fluctuations in the anisotropic turbulent solar wind in order
to make comparisons both with the theoretical predictions
above, and with the scaling seen in quantities which reflect
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the compressibility, as well as the Alfvénicity of the
turbulent flow.

2. Dimensional Analysis and Scaling Exponents

[6] We will discuss the statistical properties of fluctua-
tions in components of velocity w.r.t. the local back-
ground magnetic field, by considering ensemble averages.
Fluctuations in the velocity field can be characterized by
the difference in components, or in the magnitude, dv =
v(r + L) � v(r) at two points separated by distance L.
The dependence of dv upon L is determined in a
statistical sense through the moments hdv pi, where h. . .i
denotes an ensemble average over r. Statistical theories of
turbulence then anticipate scaling hdvpL i � Lz(p).
[7] To fix ideas, we first introduce a notation for the

scaling exponents in terms of dimensional analysis. A
fluctuation dv on lengthscale L transfers kinetic energy
dv2 on timescale T � L/dv, implying an energy transfer rate
�L � dv2/T � dv3/L. If the statistics of the fluctuations in
the energy transfer rate are independent of L, its p moments
h�Lpi � �0

p where the constant �0 is the average rate of
energy transfer. This is consistent with the K-41 scaling
hdv pLi � Lp/3.
[8] In practice, hydrodynamic flows deviate from this

simple scaling. This intermittency [e.g., Frisch, 1995] is
introduced through a lengthscale dependence of the fluctu-
ations in energy transfer rate so that h�pLi � �0

p(L/L0)
m(p),

where L0 is some characteristic lengthscale and m(p) is the
intermittency correction. The scaling for the moments then
becomes hdvLpi � Lz(p) with the K-41 exponents z(p) = p/3
+ m(p/3). For incompressible MHD turbulence, Alfvénic
phenomenology modifies the energy transfer time T � (L/
dv)(v0/dv)

a, (where v0 is a characteristic speed, i.e., the
Alfvén speed) then a = 1 for IK. For anisotropic phenom-
enology where L refers to a magnetic field perpendicular
lengthscale, GS for example implies a? = 0, and SB for
example a? = 1. The above dimensional argument then
gives an energy transfer rate �L � dv(3+a)/L so that hdv pi �
Lz(p) now with z(p) = p/(3 + a) + m(p/(3 + a)). In the
absence of intermittency this corresponds to a power spec-
trum along L of E(kL) � hdv2i/kL � kL

�(5+a)/(3+a).
[9] The experimental study of turbulence then centres

around measurement of the z(p). A full description requires
the (difficult to determine) intermittency correction, the
m(p). If the system is in a homogeneous steady state, the
average energy transfer rate is uniform so that h�Li = �0 and
m(1) = 0 so that for MHD flows, this simple dimensional
argument implies that z(3 + a)=1, independent of the
intermittency of the flow. This is not exact in the sense of
K-41 for which we have z(3) = 1 (the ‘‘4/5’’ law) [e.g.,
Frisch, 1995]. A determination of the lower order moments
that is sufficiently accurate to distinguish a = 0 and a = 1 is
possible for in- situ observations of the solar wind and we
present this here.

3. Structure Function Analysis

[10] We now consider time series from a single spacecraft
so that the ensemble averages that we will consider will be
over time rather than over space, the spatial separation
above being replaced by a time interval t- the Taylor

hypothesis [Matthaeus et al., 2005]. Consistent with
almost all experimental studies of turbulence we consider
generalized structure functions of a given parameter x:
Sp(t) = hjx(t + t) � x(t)jpi [see, e.g., Chapman et al.,
2005, and references therein].
[11] Solar wind monitors such as the ACE spacecraft

spend several-year long periods in orbit about the Lagrange
point sunward of the earth. We analyze 64 s averaged
plasma parameters from ACE for the interval 01/01/
1998–12/31/2001, this consists of � 1.6 � 106 samples
and is dominated by slow solar wind.
[12] We consider vector velocity fluctuations which we

will decompose w.r.t. the direction of the magnetic field. In
the turbulent flow, the magnetic field also fluctuates, but we
can consider a local background value by constructing a
running average of the vector magnetic field over the
timescale t0. For each interval over which we obtain a
difference in velocity dv = v(t + t) � v(t) we also obtain a
vector average for the magnetic field direction b̂ = B/jBj
from a vector sum of all the observed vector values between
t and t + t0, B(t, t0) = B(t) + . . . +B(t + t0), with t0 centred
on t. We choose the interval t0 = 2t here as the minimum
(Nyquist) necessary to capture wavelike fluctuations.
Velocity differences dv which are Alfvénic in character
will then have the property that the scalar product dv 	 b̂
will vanish. This does not filter out compressive fluctua-
tions. This condition filters out all those fluctuations which
generate a velocity displacement perpendicular to the
local magnetic field, and is thus distinct from the Elsasser
[Horbury et al., 2005] variables which select propagating
pure Alfvén waves.
[13] Figure 1 shows the procedure for extracting the

scaling exponents from the data. We plot the structure
functions of the quantity dvk = dv 	 b̂, that is, Sp= hjdv 	
b̂jpi versus t, (inset) and the corresponding scaling expo-
nents, the z(p) for the region where Sp � tz(p) (main plot).
The inset panel shows the structure functions of fluctuations
for p = 1–4. There is scaling over timescales of minutes up
to a few hours, the timescale for large scale coherent
structures and the onset of strong variation in the Alfvén
ratio. The scaling exponents, that is, the z(p), where Sp(t) �
tz(p), are the gradients of these scaling regions, and these are
shown in the main plot. The error bars provide an estimate
of the uncertainty in the gradients of the fitted lines (linear
regression error). Finite, experimental data sets include a
small number of extreme events which have poor represen-
tation statistically and may obscure the scaling properties of
the time series. One method [Veltri, 1999; Chapman et al.,
2005] (for other approaches, see, e.g., Katul et al. [1994],
Horbury and Balogh [1997], and Kiyani et al. [2006]) for
excluding these rare events is to fix a (large) upper limit on
the magnitude of fluctuations used in computing the struc-
ture functions. Importantly, this limit is varied with the
temporal scale t to account for the growth of range with t
in the time series. The figure shows the exponents computed
for a range of values for this upper limit [5–20]s(t), where
s(t)=S21/2. We see that the scaling exponents are not
strongly sensitive to the value of the upper limit and are
thus reliable. Above 10s(t) this process eliminates less than
1% of the data points.
[14] In Figure 2 we compare these exponents with

those obtained for the remaining signal, dv? =
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dv 	 dv� dv 	 b̂

� �2� �r
. We can see that both these

quantities show a clear scaling range (which we will verify)
with scaling exponents z(3) and z(4) close to unity for dvk
and dv? respectively.
[15] This result is consistent with the fluctuations in

velocity being a simple linear superposition close to: (i)
parallel to the local background magnetic field with ak � 0,
and (ii) perpendicular to the local background magnetic
field with a? � 1 scaling. From the figure we can also see
that the scaling in dv? is clearly multifractal (that is, convex
with p) whereas that in dvk is closer to self- affine (that is,
almost linear with p). A multifractal signature in the
velocity field is highly suggestive of intermittent turbulence
[Frisch, 1995].

[16] We verify that these quantities indeed show an
extended scaling region by means of ESS [Frisch, 1995].
If the scaling is such that the Sp � Sq

z(p)/z(q) then a plot of Sp
versus Sq will reveal the range of the underlying power law
dependence with t. If, as here, one of the z(p) are close to
unity, the ESS plot will in addition provide a better estimate
of the z(p). Figures 3 and 4 show Sp versus S3 for dvk and
versus S4 for dv? respectively, and we see that there is
scaling over several orders of magnitude.

4. Conclusions

[17] We have decomposed the solar wind velocity fluc-
tuations in the inertial range into components parallel to and
perpendicular to the local background magnetic field direc-
tion. The characteristic nature of the signal is revealed to be
a coexistence of two signatures which show an extended
scaling range. The first of these, seen in the perpendicular
velocity component is consistent with predictions for an-

Figure 1. Structure function analysis of hjdv 	 b̂jpi. Inset:
structure functions versus differencing interval (traces offset
for clarity). Main plot: scaling exponents computed from the
raw data (stars), and applying an upper limit to fluctuation
size of 20s(t) (stars), 15s(t) (circles), 10s(t) (triangles)
and 5s(t) (diamonds).

Figure 2. Scaling exponents z(p) versus p for the structure
functions of hjdv 	 b̂jpi and of the remaining signal. Note
that z(3) � 1 and z(4) � 1 respectively for these quantities.

Figure 3. Structure functions Sp versus S3 for p = 1-6 for
Sp = hjdv 	 b̂jpi. Traces offset for clarity.

Figure 4. Structure functions Sp versus S4 for p = 1–6 for

Sp = hj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dv 	 dv� dv 	 b̂

� �2� �r
jpi. Traces offset for clarity.
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isotropic Alfvénic turbulence in a background field. The
second is seen in the parallel velocity component with
roughly ‘‘K-41-like’’ scaling. Intriguingly, the latter scaling
is also that found in fluctuations in the density [Hnat et al.,
2005]. This clearly elucidates the previously proposed
multicomponent nature of solar wind turbulence and may
suggest one of two scenarios. One is that the turbulent solar
wind is comprised of two weakly interacting components-
one (seen in dvk) from the process that generates the solar
wind at the corona and the other (seen in dv?) that evolves
in the high Reynolds number flow. Alternatively, the two
components both arise from anisotropic compressible MHD
turbulence in the presence of a background field, in which
case this determination of their scaling properties points to
potential development of theories of MHD turbulence.
Given recent evidence [Kiyani et al., 2007] for a self-affine
signature in magnetic energy density that may be of solar
origin that shows both solar cycle and latitudinal depen-
dence, further work may unravel the interplay between the
signatures of scaling generated at the corona, and by the
evolving turbulence.

[18] Acknowledgments. The authors thank G. Rowlands for discus-
sions, the ACE Science Centre for data provision, and the STFC for
support.
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