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A note on well-posedness of semilinear reaction-diffusion
problem with singular initial data

James C. Robinson!, Mikolaj Sierzega??

Mathematics Institute, Zeeman Building, University of Warwick, Coventry, CV4 7TAL, UK

Abstract

We discuss conditions for well-posedness of the scalar reaction-diffusion equation
uy = Au+ f(u) equipped with Dirichlet boundary conditions where the initial
data is unbounded. Standard growth conditions are juxtaposed with the no-
blow-up condition [ 1/f(s)ds = oo that guarantees global solutions for the
related ODE @ = f(u). We investigate well-posedness of the toy PDE u; = f(u)
in LP under this no-blow-up condition. An example is given of a source term f
and an initial condition ¢ € L?(0,1) such that [ 1/f(s)ds = oo and the toy
PDE blows-up instantaneously while the reaction-diffusion equation is globally
well-posed in L?(0,1).

Keywords: reaction-diffusion equation, singular initial conditions,
well-posedness

1. Introduction

The following paper was inspired by the investigation into the interplay of
the ODE system

U=f(UV), (1)

V =4(U,YV),
and the related reaction-diffusion system

up = diAu+ f(u,v), (2)
Uy = dQAU + g(uv U)a
in the context of the so-called diffusion-induced blow-up. It concerns the sit-

uation where the ODE system has only global solutions whereas the diffusion
system may blow-up in finite time for some initial data. For a particularly
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striking example of a system of ODEs which possesses a global attractor, equal
diffusion coeflicients and displays diffusion-induced blow-up phenomenon see
[12], for a survey on this and related topics consult [7].

Examples of diffusion-induced blow-up challenge an intuitive preconception
that diffusion tends to ‘make things better’ and ‘smooth the dynamics’. If
instead of a system we consider a scalar equation then the comparison principle
for parabolic equations implies that if the solutions of the ODE do not blow-up
in finite time then the solutions of the reaction-diffusion equation do not blow-
up for bounded initial data. Thus diffusion-induced blow-up is not possible
for scalar equations. Observe however that the transition from the ordinary to
the partial differential equation involves changing the space of initial data from
the Euclidean space to a functional space and the space of bounded functions
is one of many possible choices. The reaction-diffusion equation is known to
have solutions for initial data in much larger spaces then the space of bounded
functions. If we choose a space containing unbounded functions, a Lebesgue
space say, then we might find that a version of the diffusion-induced blow-up
phenomenon holds for scalar equations as well. A natural question then is
whether we can rule out this possibility i.e. assert that once the ODE has only
global solutions then the solutions of the reaction-diffusion equation are global
as well.

In the case of bounded data one might treat solutions of (1) as space-
homogeneous solutions of (2) and by doing so meaningfully compare both sys-
tems. This identification is not possible for unbounded data and in order to
relate the dynamics of both systems it is necessary to make solutions of both
systems comparable. Below we propose to do it by interpreting the ODE as a
‘fake PDE ’ involving no explicit spatial dependence and provide an interesting
example of a pathological behaviour that such equations may display.

It is a standard result in the theory of ordinary differential equations that if
f :R+— R is locally Lipschitz, then the equation

U=fU), t>0, (3)
U(O) =z €R

is well-posed i.e. for every zg € R there exist a positive time 7" > 0 and a unique
curve U € C([0,T); R) N C1((0,T); R) satisfying (3).
Let zg > 0 and suppose that f(s) > 0 for s > 0, then the maximal existence
time, T'(zp), is given by
< ds
T(z0)= [ —r=> (4)
o f(8)
which expresses the time needed for trajectory U(t; zg) to arrive at infinity.
Hence, for a given initial condition 2z, > 0, global existence is equivalent to
T(zp) = oo and conversely, T'(zp) < oo implies finite-time blow-up, see e.g. [11]
and references therein. We will say that f satisfies the no-blow-up condition if
> ds
T1) = [ —*==o0. (5)
1 f(s)



Restrictions of this form are known as Osgood-type conditions.
With f as above we turn our attention to the reaction-diffusion problem

u—Au= f(u) in€Q, t>0,
w(0Q,t) =0 fort >0, (6)

where Q C RY is a smooth bounded domain and ¢ € L4(Q2), 1 < ¢ < co.

Questions of existence, uniqueness and blow-up for (6) are more challenging
than for (3) as they involve an interplay between the domain, space of initial con-
ditions and the nonlinear term. Moreover there are various notions of solutions
for PDEs e.g. classical, weak, integral, mild etc. Here we restrict our consid-
erations to solutions which are classical even though they have L? functions as
initial conditions. Following [10] we will say that problem (6) is well-posed in
the sense of L())-classical solutions if for every i) € L9(2) there exists a time
T > 0 and a unique function

ue C([0,T); LYQ)) NC>' (2 x (0,T)) NC(Qx (0,T))

with wu(t) satisfying (6) pointwise.

To initiate the discussion about the relevance of the no-blow-up condition
to well-posedness of (6) let us first assume that the initial conditions are in
L>(Q). Existence and uniqueness of classical solutions follow from the local
Lipschitz condition in a way analogous to the ODE theory. Solutions of the
kinetic equation (3) may be identified with space-homogeneous solutions of the
diffusion equation (6) (modulo boundary conditions) and as such may serve as
supersolutions for comparison purposes. Hence, if the no-blow-up condition is
satisfied the solution of (6) is global.

Suppose now that ¢ € L9(2). In contrast to the case of bounded data,
the local Lipschitz condition alone is not enough to ensure well-posedness. Ad-
ditional conditions come in the form of restrictions on the growth of f. The
standard result in the field reads:

Theorem 1. Fiz p > 1 and suppose that f : R — R satisfies
[f(r) = f(s)| < CQAA+[r[P~h + |s|P~H)|r — s (7)

Let ¢ € L1(), 1 < q < oo and assume that ¢ > N(p — 1)/2 (resp. q =
N(p—1)/2) and g > 1 (resp. ¢ > 1), N > 1. Then (6) is well-posed in the class
of L1(Q)-classical solutions.

For proof and related results consult [10] and references therein; the growth
condition in this form may be found in [1, 4, 5]. Other variants involve the
derivative rather than Lipschitz modulus of continuity, for these see [2, 9] and
an asymptotic version was used in [2, 13].

If f satisfies requirements of Theorem 1, then any trajectory becomes bounded
for any t > 0. Hence, even though the initial data is unbounded, we can apply



the comparison with solutions of (3) for positive times. Then the no-blow-up
condition implies global existence of solutions.

The growth condition and the no-blow-up condition address different prop-
erties of the source term. The former restricts local behaviour whereas the latter
concerns itself with average growth. There are functions satisfying (7) which
fail to satisfy the no-blow-up condition e.g. f(s) = sP with p > 1. On the other
hand functions satisfying the no-blow-up condition may easily fail to meet the
growth requirement. More precisely one can construct functions of arbitrarily
violent local growth by writing f = g+ h, where g, h have disjoint supports and

satisfy
/ 7ds < oo and / —ds = 00.
supp(g) g(S) supp(h) h(S)

*ds / ds +/ ds ~
1 f(S) supp(g) g(S) supp(h) h(S)
irrespective of g.

Both conditions impose a restriction on asymptotic behaviour of f. If we
choose s = 0 then we see that (7) implies that f(r) ~ rP for large r. The no-
blow-up condition shows that f cannot grow too rapidly (on average) because
then 1/f could have finite integral on (zg,00). In particular this growth has to
be (on average) slower than that required by Theorem 1.

The question that arises naturally is whether the growth condition could be
relaxed if we assumed the no-blow-up condition as well. It seems likely that
local behaviour of the Lipschitz modulus of continuity is irrelevant for local
well-posedness and what matters is an accumulated /average growth, better ex-
pressed using integral conditions akin to (5). In particular we might ask:

Then

Suppose that problem (8) is globally well-posed. Does it follow that the diffu-
sion problem (6) is globally well-posed in LI(2), 1 < g < oo?

The usual way of finding a counterexample to the local existence question
posed in L9(2) involves a sequence of initial conditions {1y, }n>0, ¥n € L=(),
convergent in L?(Q2) with the property that blow-up times T'(¢,,) — 0 asn — oo,
see e.g. [4]. This approach fails in our case since due to comparison with
solutions of the kinetic equation T'(1,,) = oo for all n.

The situation where the reaction-diffusion equation yields only global solu-
tions for bounded data may be achieved even if the integral (4) is finite. We
refer the reader to the example of Fila et al. in [8], where it is shown that the
action of diffusion may in some cases prevent finite time blow-up even though
all solutions of the kinetic equation blow-up in finite time. The proof relies on a
subtle construction of bounded supersolutions and as such cannot be extended
to cover unbounded initial data. It should be noted that local behaviour of the
Lipschitz modulus plays no role in analysis involved.

The above remarks support the view that the growth condition is overly
restrictive in terms of local behaviour. Observe however that the no-blow-up



condition involves the source term alone without relating it to the dimension of
the domain €2 or the exponent of the Lebesgue space of initial conditions. It is
the principal feature of PDEs that well-posedness depends on the phase space of
initial conditions and lack of such dependence renders the positive answer to the
above question unlikely. This said we should mention that a prime example of
global existence occurs for uniformly Lipschitz f with no additional conditions
inwvolving the phase space, see Subsection 2.1.

In this paper we do not attempt to answer the question of possible relaxation
of the growth condition. Instead we propose to investigate an intermediate step
between the kinetic and the diffusion equations by interpreting the ordinary
differential equation as a partial differential equation that involves no spatial
dependence:

ve=f(v) nQ, t>0, (8)
U('a O) =1,
where 1 is an initial condition for (6). By analysing this toy PDE (TPDE)
we hope to shed some light on the interplay of the no-blow-up and Lipschitz

conditions in the context of Lebesgue spaces.
In what follows we first show that:

e If f is uniformly Lipschitz then (8) is globally well-posed in every LP(f2).

e If [[°1/f(s)ds < oo, then TPDE blows-up instantaneously in every L ()
for every (unbounded) initial data.

e There exists an f such that the no-blow-up condition (5) is satisfied but
the TPDE blows-up in finite time.

These results are not surprising. Further on however we construct an example
displaying more interesting behaviour.

e There exists an f and an initial condition ¢ € L?(0,1) such that the
no-blow-up condition is satisfied and TPDE blows-up instantaneously.

e The solution of the diffusion problem (6) with data from the point above
is global.

2. Well-posedness of the toy PDE

First recall the standard comparison principle for ordinary differential equa-
tions, see [6].

Proposition 1. Let y(t) € R, t € [0,T] be the unique solution of the differential
equation

y=f(y)



and let x(t) and z(t) satisfy the differential inequalities
< f(z) and 2> f(z) fortel0,T]
with x(0) < y(0) < z(0). Then z(t) < y(t) < z(t) on [0,T].

Remark 1. An immediate consequence of the comparison principle is that
whenever [ satisfies (4) then every trajectory with initial condition in (1, 00)
blows-up in finite time. In particular for any € > 0 we can find an initial con-
dition z such that T'(z) = e.

Due to the lack of spatial dependence trajectories of the toy PDE are com-
pletely described by trajectories of the kinetic equation. For a given ¢ € L1(2)
the solution is given by v(t,z;v) = U (t;¢(x)).

2.1. f uniformly Lipschitz = TPDE globally well-posed in LP ()

For uniformly Lipschitz f we have |f(s)] < C(1 + |s|) for some C > 0.
These functions satisfy the no-blow-up condition so that v(t, z;¢) = U(t; w(x))
is defined for t > 0.

Evolution of the LP norm is given by

d P / 92
— |7 o = | pf(v)v|vP~dz.
Gl = [ prwpop

The Lipschitz condition together with Holder’s inequality yield
d p p—1 P
G0 <9C [ L+ Dol e < Dol o

Proposition (1) applied to function ¢ — ||v(t) ||’£F(Q) implies global well-posedness
for the toy PDE.

2.2. Kinetic equation blows-up in finite time = TPDE blows-up instantaneously
in LP(Q)
Take ¢ € LP(Q2) \ L*°(2), then for every M > 0 there exist a set Qps of
non-zero measure such that ¢ > M on Q,;. If we denote

Tn = sup T(¥(x)),

zEQ N

where T'(+) is understood in the sense of (4), then Ty < T(M) i.e. every tra-
jectory U(-;¢(x)) with x € Qs arrives at infinity in time shorter than T(M).
Since T'(M) — 0 when M — oo and in view of Remark 1 we see that for every
t > 0 there exists M; and a corresponding set €2;y, of positive measure on which
the solution blows-up everywhere no later than at time ¢.



2.8. Global well-posedness of the kinetic equation does not imply global well-
posedness of the toy PDE

Consider the following ODE:

U UhU for U > 1,
S \U-1 for U < 1.
The source term is in C*(R) and satisfies (5). In fact we can write the solution
explicitly
exp(1) ¢ )
Ut: 2) = 2 or U > 1,
(zo—1)exp(t)+1 for U <1.

Consider now the corresponding TPDE posed in LP(0,1). For every choice
of p € (1,00) we can take an initial condition of the form ¢ (z) = 1/2" with
r < 1/p. Then the norm

1
lo(t; )12 = / ren () gy
0

is finite as long as t < In1/rp and blows-up as t — In1/rp.

2.4. Global well-posedness of the kinetic equation does not imply local well-
posedness of the toy PDE

We begin with heuristics. Take a constant initial condition ¢ = ¢ > 1, then
a linear trajectory u(t;c) = ¢+ t(c® — ¢) ‘squares initial data’ in unit time. For
this particular initial value any source function f satisfying f(s) =c? —¢, s €
[c,c? — 1] yields the same behaviour. Likewise we will construct a piecewise
constant initial condition 1 € L?(0,1) \ L*(0,1) along with the corresponding
piecewise constant source term so that u(1;) ~ v?. Clearly this will provide
an example of finite-time blow-up in L?(0,1). We will show however that in fact
u(t;1h) ¢ L*(0,1) for any ¢ > 0 i.e. blow-up is instantaneous.

Define ¢,, = 22". Observe that ¢, = ¢2 as required. We start with
construction of the piecewise constant source term. Let

9(s) =D gnl(s),

neN

where

0 otherwise.

on(s) = {¢n+1 — ¢ for s € [fndur —1),

Gaps between adjacent values are filled by piecewise linear function

h(s) = 3" hals),

neN



where ho(s) = (¢o — 1)s for s € [0, ¢o) and hy,(s) = aps + b, with
an=¢p_1 =205 1 +dn1 and by =—¢)_ +3¢p_1 — b1 — P,

for s € [¢p, — 1,¢n). Setting f = g + h yields a locally Lipschitz source term
with the desired properties. Define a block function

¢, for x € [&1,4)4),1120.

0 otherwise.

P(z) =

Since ¢¥(z) < 1/¢/x we clearly have 1 € L?(0,1). On the other hand ¢? ¢
L?(0,1). This follows from direct computation:

! > 1 1 = 1
/0 1/)4(:c)dx—20¢fl(¢%d)§l) :;}1—% = 00.

The solution of TPDE is given pointwise by the solutions of the correspond-
ing ODE. Those initial conditions which fall within range where f is constant
evolve linearly for a short time according to:

1
U(t;Ug) = Up + (¢2 — ¢p)t for Uy = ¢, 0 <t < 3" > 0.

Now we will show that the solution of TPDE is unbounded in L?(0,1) for any
t > 0. In prescribed time ¢ < 1/2 the solution of TPDE is given by

U(ZE,t) =¢n + (d’i - d)n)t for z € |:¢1§L, d)lﬁ)?n =

o 2/ 1 <Z58 ¢4
@l =3 [on-+1062 0] (55 - 5 ) 2 tzz 5~ o izt

n=0
Observe that both numerator and denominator are polynomials of 12-th degree

in ¢,. The terms do not converge to zero and hence series is divergent for every
t > 0.

2.5. The diffusion equation with f from subsection 2.4 is globally well posed

We check the assumptions of Theorem 1. The construction of f immediately
gives us

TE“??()W:% — 202 4 + oy for 1,5 € [ — 1,0).

For the same range of values of » and s we have

2(pn — 1PE < Jr[PTt 4 |s|P



Thus, condition (7) reduces to the following requirement:
(’bi—l - 2¢3z—1 + on_1 < C 2( 31_1 — 1)17—1 +1].

Comparing powers on both sides we find that it is satisfied for p > 3 and C = 1.
Global well-posedness of L2-classical solutions follows whenever

4
3<p<1+—
spsl+g

i.e. in dimensions 1, 2.

3. Discussion

In Subsections 2.4 we saw that the no-blow-up condition is not enough to
yield local existence for the TPDE. If it were, then we could infer local well-
posedness of the reaction-diffusion equation as well and by comparison principle
global well-posedness would follow. Hence, in order to determine the influence of
the no-blow-up condition on well-posedness of problem (6) we need to consider
the balance between reaction and diffusion.

As far as bounded initial data is concerned, local behaviour of the Lipschitz
modulus of continuity plays no role in well-posedness considerations. Existence
results follow from continuity of the source term and uniqueness is inferred from
the local Lipschitz condition. Usually we show both existence and uniqueness
by employing Banach’s fixed point theorem in a suitable space of curves. When
we pass to unbounded initial conditions we would expect some restriction on
the asymptotic behaviour of f. In the case of Lebesgue spaces it is plausible
that this restriction would manifest itself in a form of an integral condition so
that local behaviour would not be restricted in a pointwise way.

Analysis of the balance between smoothing action of diffusion and magni-
tude of the reaction term led to formulation of growth conditions for parabolic
equations in Lebesgue spaces, see [13]. The precise form of condition (7) reflects
demands of constructing a contraction map in Banach’s fixed point theorem. It
is likely that a more general condition may be derived if a different method of
proof was employed. This condition should allow for more variability in local
behaviour of the source term and reduce to the standard growth condition for
the model case f(s) = |s|P~!s.

Finally it should to be mentioned that Osgood-type conditions are already
being explored in the study of well-posedness of PDEs. In a recent paper
Bertozzi et al. used Osgood condition in the context of global well-posedness of
aggregation equations, see [3] and references therein.
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