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28 Université Claude Bernard de Lyon, IPNL, IN2P3-CNRS, 69622 Villeurbanne Cedex, France
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Abstract. The effect of the heavy b-quark mass on the two, three and four-jet rates is studied using LEP data
collected by theDELPHI experiment at theZ peak in 1994 and 1995. The rates of b-quark jets and light quark
jets (�= uds) in eventswithn= 2, 3, and 4 jets, togetherwith the ratio of twoand four-jet rates of b-quarkswith

respect to light-quarks, Rb�n , have been measured with a double-tag technique using the CAMBRIDGE jet-
clustering algorithm. A comparison between experimental results and theory (matrix element orMonte Carlo
event generators such as PYTHIA,HERWIGandARIADNE) is done after the hadronisation phase.

Using the four-jet observable Rb�4 , a measurement of the b-quark mass using massive leading-order calcula-
tions gives:

mb(MZ) = 3.76±0.32 (stat)±0.17 (syst)±0.22 (had)±0.90 (theo)GeV/c
2 .

This result is compatible with previous three-jet determinations at theMZ energy scale and with low energy
mass measurements evolved to theMZ scale using QCD renormalisation group equations.

1 Introduction

Mass corrections to the Z→bb̄ coupling are of order
(m2b/M

2
Z), which is too small to be measured at LEP and

SLC. For some inclusive observables, like jet-rates, the
effect is enhanced as (m2b/M

2
Z)/ycut, where ycut is the

jet resolution parameter [1]. The effect of the b-quark
mass in the production of three-jet event topologies at
the Z peak has for instance already been measured at
LEP and SLC [2–6]. Multi-jet topologies with b-quarks
appear both as signal and background in searches and pre-
cision measurements at current and future colliders. Their
study, together with that of the gluon emission from mas-
sive quarks, is an effective tool to probe the fundamental
short-distance QCD features of the Standard Model and is
important to test the modelling of b and light-quark jets
available in calculations and generators.
This study generalizes the methods described in [2, 3, 7]

and presents the measurement of the normalized n-jet pro-
duction partial widths for Z-decays into b-quark or light
quark pairs:

Rqn=2,3,4(ycut) =

[
Γn(ycut)

Γtot

]Z→qq̄
q = b, � (�= uds) ,

(1)

depending on the ycut value of the CAMBRIDGE jet-
clustering algorithm [8] which is used here.
The effect of the heavy b-quark mass on jet rates is

studied by measuring the double-ratio observable:

Rb�n=2,3,4 =R
b
n/R

�
n . (2)

The DELPHI data collected during the years 1994
and 1995 at a centre-of-mass energy of

√
s ≈MZ have

been analysed. Experimental results are compared to
the hadronic final state simulated by the fragmentation
models of PYTHIA 6.156 [9, 10], HERWIG 6.2 [11, 12] and
ARIADNE 4.08 [13] and to matrix element (ME) calcu-
lations folded with a hadronisation correction. Therefore,
the data are corrected for detector and kinematical effects,
while ME calculations, computed at parton level, are cor-
rected for hadronisation.

a deceased
b e-mail: jan.timmermans@cern.ch

In order to extract the b-quark mass information from
Rb�n measurements, massive ME calculations performed in
terms of both the pole mass Mb and the running mass
mb(µ) are used. Jet-rate calculations are only available
to O(α2s ) [14–16], therefore massive four-jet observables
can only be described to leading-order (LO) accuracy. The
b-quarkmass obtained fromRb�4 using such LO calculations
is compared to the three-jet results [7] and to mass values
at threshold [17] evolved to the MZ scale using renormal-
isation group equations (RGE). An approximate massless
NLO correction is also tried as an improvement.
The precision of b-mass measurements from three-jet

events is limited by systematic uncertainties (hadronisa-
tion, b-tagging and theory). The four-jet observable Rb�4
has a larger statistical error but its sensitivity to the
b-quark mass is higher because, most probably, the emis-
sion of two gluons is involved. The four-jet topology thus
provides a complementary measurement in which the sys-
tematic uncertainties can be expected to be partly differ-
ent. In this analysis, flavour jet-rates are measured using
a double-tag technique which measures signal and back-
ground efficiencies from data in a self-calibrating way, re-
ducing the systematics and allowing for a useful cross-
check of previous measurements [7].

2 The DELPHI detector

DELPHI was a hermetic detector located at the LEP ac-
celerator, with a superconducting solenoid providing a uni-
form magnetic field of 1.23 T parallel to the beam axis
throughout the central tracking device volume. A detailed
description of its design and performance is presented
in [22, 23].
In the DELPHI coordinate system, the z-axis is ori-

ented along the direction of the electron beam. The polar
angle θ is measured with respect to the z-axis, φ is the
azimuthal angle in the plane transverse to the z-axis and
R=
√
x2+y2 is the radial coordinate.

The main tracking devices in DELPHI were the silicon
Vertex Detector (VD), a jet chamber Inner Detector (ID)
and a time projection chamber (TPC). They were located
in the immediate vicinity of the interaction region to re-
duce the amount of material between the beam and the
detector. At a larger distance, the tracking was completed
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by a drift chamber Outer Detector (OD) covering the bar-
rel region (40◦ ≤ θ ≤ 140◦) and two sets of drift chambers,
FCA and FCB, located in the endcaps.
The VD was the detector closest to the interaction

point. In 1994 and 1995 it consisted of three coaxial cylin-
ders, the inner and outermost ones consisting of double-
sided detectors with orthogonal strips, allowing the meas-
urement of both Rφ and z coordinates.
Electron and photon identification was provided by

electromagnetic calorimeters: the High Density Projection
Chamber (HPC) in the barrel and a lead-glass calorimeter
(FEMC) in the endcaps. Hadronic energy was measured in
the hadronic calorimeter (HCAL).

3 Data analysis

First, the sample of Z hadronic decays, i.e. Z→qq̄ events
was selected. Then the different jet-topologies were identi-
fied using the CAMBRIDGE jet-clustering algorithm [8]1,
and b and light-quark samples were separated using the
DELPHI flavour tagging methods, based on properties
of the long-lived heavy B-hadrons. Experimental results
were then corrected for detector and acceptance effects
in two different ways, depending on the observable and
topology, as explained in Sect. 3.3. Matrix element and
event generator predictions were corrected for hadronisa-
tion effects from the parton to the hadron level. The parton
level is defined as the final state of the parton shower (in
PYTHIA and HERWIG) or dipole cascade (in ARIADNE)
in the simulation, before hadronisation. These corrections
are discussed in Sect. 4.

3.1 Event selection

Total numbers of 1 484000 and 750000 hadronic Z boson
decays, collected at the Z resonance by DELPHI during
the years 1994 and 1995, respectively, have been analysed
in order to study mass effects in multi-jet topologies.2

Hadronic events were selected in the same way as
in [2, 3] (see Table 1, upper):

– Charged and neutral particles were reconstructed as
tracks and energy depositions in the detector. A first se-
lection was applied to ensure a reliable determination of
their momenta and energies.
– The information from the accepted tracks was com-
bined event-by-event and hadronic events were selected
according to global event properties.

Finally, a total sample of 1 150000 Z hadronic decays was
selected. Then jets were reconstructed with the
CAMBRIDGE algorithm. In order to reduce the impact
of particle losses and wrong energy-momentum assignment

1 In our analysis, the values of the ordering and resolution
parameters were taken to be equal, vij = yij .
2 Earlier data samples were not considered as the VD setup
was less complete and resulted in a less precise flavour identifi-
cation, which is crucial for this analysis.

Table 1. (Upper) Particle and event selections: pch is the mo-
mentum of charged particles, L their measured track length, d
their impact parameter with respect to the interaction point
and qi their charge, Ecl is the energy of neutral clusters in the
calorimeters, Nch is the number of charged particles and Ech
their total energy in the event. (Lower) Kinematical selections
for jets in accepted events: θthrust is the polar angle of the
thrust of the event, Nchj the charged multiplicity in the jet, Ej
the jet energy and θj the angle between the jet and the beam
axis. For three-jet events, an additional planarity cut is applied
on the sum of all jet pair angles, φij

Charged pch ≥ 0.1 GeV/c
Particle 25◦ ≤ θ ≤ 155◦

Selection L≥ 50 cm
d≤ 5 cm in Rφ plane
d≤ 10 cm in z direction

Neutral EHPCcl ≥ 0.5 GeV, 40◦ ≤ θ ≤ 140◦

Cluster EFEMCcl ≥ 0.5 GeV, 8◦ ≤ θ ≤ 36◦

Selection EFEMCcl ≥ 0.5 GeV, 144◦ ≤ θ ≤ 172◦

EHACcl ≥ 1 GeV, 10◦ ≤ θ ≤ 170◦

Event Nch ≥ 5
Selection Ech ≥ 15 GeV

|
∑
i qi| ≤ 6, i= 1, . . . , Nch

No particle with pch ≥ 40 GeV/c

2-jet 45◦ ≤ θthrust ≤ 135
◦

3-jet 45◦ ≤ θthrust ≤ 135
◦

Nchj ≥ 1
Ej ≥ 1GeV
25◦ ≤ θj ≤ 155

◦
∑
ij φij ≥ 359

◦, i < j

4-jet 32◦ ≤ θthrust ≤ 148
◦

Nchj ≥ 1
Ej ≥ 1 GeV,
25◦ ≤ θj ≤ 155

◦

to jets, further kinematical selections were applied, which
were slightly different for each jet topology (see Table 1,
lower).
Simulated events were produced with the DELPHI si-

mulation program DELSIM [23], based on PYTHIA 7.3
tuned to DELPHI data [24, 25], and were then passed
through the same reconstruction and analysis chain as the
experimental data. The simulated events were reweighted
in order to reproduce the measured rates of bb̄ and cc̄-
quark pairs arising from the gluon splitting processes [26]
(gbb = 0.00254±0.00051, gcc = 0.0296±0.0038), which are
significantly larger than those in the standard simulation.

3.2 b-tagging

The identification of b-quark events in DELPHI was based
on the properties of a B-hadron such as its large mass and
the large impact parameter of its decay products. A jet es-
timator variable Xjet was built as an optimal combination
of five discriminating variables [27]. The most discrimi-
nant one was the probability of having all charged particles
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in the jet produced at the event interaction point. The
use of this variable alone defined the impact-parameter
technique. The additional variables were used only when
a secondary vertex (SV) was reconstructed. These vari-
ables were, for all particles attached to the SV: the in-
variant mass, the fraction of the charged jet energy, the
sum of all transverse momenta and the rapidity of each
particle. The information from all five variables was com-
bined into a single estimatorXjet in an almost optimal way
which provided discrimination between heavy and light
jets with high purity and efficiency. To obtain b(light)-
quark enriched samples, jets with an estimator value above
(below) a given threshold Xjet ≥Xbjet (Xjet < X

�
jet) were

selected. To tag events, the value of the two highest b-
tagging jet variables were combined into an event estima-
tor,Xev =X

1
jet+X

2
jet.

In the present analysis, this approach has been as-
sociated to a double-tag technique [28], which measures
flavour-tagging efficiencies directly from data.
Using the two jets with highest b-tagging variables as

the flavour jets (jets which are expected to contain a pri-
mary quark) makes no distinction between primary quarks
originating in the Z decay and secondary production of
b- and c-quarks from gluons (g→bb̄, cc̄), a process referred
to as gluon splitting and which constitutes a significant
part of the systematic uncertainty in multi-jet flavour-
observables (see Sect. 4.3).
To reduce the sample contamination from gluon split-

ting in four-jet events, the flavour jets were defined as fol-
lows: the most energetic jet in each event is identified as
the first flavour jet. Remaining jets are ordered by angular
proximity to it. The closest jet is discarded making the hy-
pothesis that it is a gluon coming from the same primary
quark. The second b(light)-flavour jet is that with the high-
est b-tag (lowest b-tag) estimator among the two remaining
jets. In this way, energy and angle information is combined
to define the flavour-jets. As an additional selection, an
event is not classified as bb̄ if the most b-tagged jet is not
among the two most energetic jets; this last selection re-
duces the uncertainty from gbb and gcc by a factor two. The
effect of the remaining contamination due to gluon split-
ting is included in the gluon-splitting uncertainty and is
well below the statistical uncertainties (Tables 4 and 5).

3.3 Overview of the correction method

3.3.1 Event-tag

To correct the two-jet observable Rb�2 for detector effects
and the flavour tagging procedure, the event-tag method
described in reference [2, 3] was used:

Rb�2 =

[
c�Bd

�
2B+R

c�
2 c
c
Bd
c
2B

]
−
[
c�Ld

�
2L+R

c�
2 c
c
Ld
c
2L

]
Rb�−det2

cbLd
b
2LR

b�−det
2 − cbBd

b
2B

,

(3)

where the measured rateRb�−det2 is corrected by using puri-
ties of the inclusive samples, cqQ =N

q
Q/NQ (the fraction of

Table 2. Flavour composition of the 1994 sample (ycut =
0.0065). The number of events in the inclusive and 2-jet sam-
ples are shown separately for B and L = uds tagged events
for the chosen flavour-tagging working points. Purity and ef-
ficiency are also shown. Similar numbers were found with the
1995 data

Event-tag method
Flavour Inclusive 2 jets cut Purity Efficiency

B 111440 75147 Xev ≥ 1.10 98% 38%
L 678282 414912 Xev < 0.40 73% 58%

qq̄ events tagged in the Q category), and detector correc-
tions taken from the DELSIM simulation, dq2Q = R

q
2Q/R

q
2

(where Rq2Q is the two-jet rate of qq̄ events tagged as

Q). The factor Rc�2 = R
c
2/R

�
2 is taken from the simulation.

Table 2 summarizes the number of events selected in the
1994 data in each flavour sample for the chosen work-
ing points of purity PB = c

b
B = 98% (PL = c

�
L = 73%, L=

uds) and efficiency of εbB = 38% (ε
�
L = 58%) for b-flavoured

(light-flavoured) events (where εqQ = N
q
Q/Nq, the ratio of

tagged events of a given flavour to the total number of
events of the same flavour), respectively.
The event-tag method has the advantage of applying

the flavour-tagging procedure only in the inclusive sample,
before events are classified into jet topologies.

3.3.2 Double-jet tag

The event-tag method, if the jet sample is topologically
very different from the inclusive one, can introduce im-
portant biases. To prevent this, in the Rb�4 measurement
b-tagging is applied to jets. The observable in (2) is rewrit-
ten as:

Rb�4 =

(
Γ (Z→ ��̄)

Γ (Z→ bb̄)

)
N b4/N4

N �4/N4
=

(
1−Rb−Rc
Rb

)
N b4
N �4
.

(4)

The global normalisation can be obtained directly from the
world average values of Rb and Rc [17]:

Rb = 0.21629±0.00066 ,

Rc = 0.1721±0.0030 , (5)

which implies a ±6‰ uncertainty on Rb�4 . A double-tag
technique is used: the total number of four-jet events, N4,
the corresponding numbers for a given flavour Nq4 , q =
b, udsc, and the tagging efficiencies εbB and ε

udsc
UDSC are ob-

tained from comparing the number of four-jet events where
two jets are tagged as b or udsc to the number of events
where a single jet is tagged. This is done by solving the
following set of equations:

N4 =
{
N b4ε

b
h+
(
N4−N

b
4

)
εnon−bh

}
, (6)

1

2
N4B =

{
N b4ε

b
hε
b
B+
(
N4−N

b
4

)
εnon−bh εnon−bB

}
, (7)

N4BB =
{
N b4ε

b
hε
b
BB+

(
N4−N

b
4

)
εnon−bh εnon−bBB

}
, (8)
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Table 3. Flavour composition of the 1994 sample (ycut =
0.0065) tagged as n-jet b-quark (B) and udsc-quark events (L)
for the different jet topologies analysed, n = 2, 3 and 4 jets.
Four-jet tagging uses the method described in Sect. 3.2 for the
definition of flavour jets. Similar numbers were found with the
1995 data

Double-tag method
Topology Q QQ cut Purity Efficiency

2 jets (B) 136228 35187 X2j ≥+0.33 92% 57%
2 jets (L) 640757 243716 X2j <−0.92 95% 78%

3 jets (B) 66034 15356 X3j ≥+0.19 87% 53%
3 jets (L) 362396 147605 X3j <−0.64 93% 84%

4 jets (B) 10720 2191 X4j ≥+0.05 84% 35%
4 jets (L) 91042 36773 X4j <−0.64 89% 86%

and equivalent equations for the udsc-tagged samples. The
left hand side of these equations are the measured quanti-
ties.N4 is the number of measured four-jet events. For each
event the two jets which are most likely to contain a pri-
mary quark (flavour jets, see above) are selected and the
flavour identification is done independently for both jets:
N4B is the number of jets tagged as B (with a maximum
possible value of 2N4, two from each event) and N4BB is
the number of events where the two flavour jets are sim-
ultaneously tagged as B. With this method, the jet-rates
Rb4 and R

�
4 are measured independently, together with the

efficiencies εbB and ε
udsc
UDSC . To accomplish this, double-jet

tagging efficiencies εqQQ are related to the single jet-tagging
efficiencies through correlation factors defined from

εqQQ =N
q
QQ/N

q ≡ εqQε
q
Q

(
1+ρqQ

)
.

Here, charm-events have been included in the udsc-tagged
category: the light-quark content N �4 is extracted from
Nudsc4 after dividing by a factor (1+N c4/N

�
4) obtained

from Monte Carlo event generators. Only hadronic event-
selection efficiencies for each flavour, εqh =N

sel
q /Nq, mistag-

ging efficiencies, εnon−qQ and εnon−qQQ , and flavour corre-
lations for b and light-tagging are computed from the
simulation.
This procedure can be easily generalised to cover

n = 2, 3-jet topologies in order to measure both jet-rates
(Rbn, R

�
n) and the double-ratios (R

b�
2,3) independently. Due

to the 6‰ uncertainty from the global normalisation, the
double-tag measurements for Rb�2,3 are less precise than
the corresponding event-tag result. However, they serve
as a useful cross-check both of the final result and on the
consistency between data and simulation for the flavour-
tagging efficiencies.
Results with this method have a better stability with

respect to the value of the flavour-tagging threshold, and
are more consistent with each other.3 The flavour composi-
tion of the 1994 sample is shown as an example in Tables 2

3 From the relation N4 =N
b
4 +N

udsc
4 , the double-ratio Rb�4

can be obtained independently in two ways, starting either
from Rb4 or R

�
4.

Fig. 1. Four-jet rate and its uncertainty as a function of a the
b-purity and b the light-purity (�= udsc, ycut = 0.0065). Cho-
sen working points are marked with arrows, and correspond to
efficiencies of εbB = 35% and ε

�
L = 86%, respectively. The statis-

tical (data and simulation) and total uncertainties are shown

and 3. The stability obtained in the case of the four-jet
rates is shown in Fig. 1 for the 1994 and 1995 data samples.

4 Results

The single-flavour jet rates Rqn, n = 2, 3, 4-jets, and the
four-jet observable Rb�4 , are measured with the double-
tag technique, while the two-jet observable Rb�2 is meas-
ured using the event-tag method described in [2, 3]. A de-
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Fig. 2. Comparison between the measured b and � = uds jet-rates and predictions from the PYTHIA 6.156, HERWIG 6.2 and
ARIADNE 4.08 generators. b–d Ratio of data to the different generators. The shaded area shows the one standard deviation
relative uncertainty (statistical and systematic added in quadrature) of the experimental measurement

scription of the experimental uncertainties considered in
the analysis is given in Sect. 4.3. Theoretical uncertain-
ties, arising in the comparison between ME predictions
and the four-jet observable, are discussed in Sects. 4.5
and 4.6.

4.1 Single jet-rates, Rqn

The measured Rqn rates (n = 2, 3, 4 jets, q = b or �= uds)
are shown in Fig. 2a together with predictions from the
PYTHIA 6.156, HERWIG 6.2 and ARIADNE 4.08 gener-
ators tuned to DELPHI data [24, 25] (see Sect. 4.6 for the
choice of the b-quark mass parameter in the generators).
The detailed breakdown of the uncertainties of the meas-
ured jet-rates is shown in Table 4. The R�3 measurements

in 1994 and 1995 were found to be incompatible with each
other at the two standard deviations level, indicating that
some systematic effect was not taken into account in the
three-jet light-quark rate. The systematic tagging uncer-
tainty in R�3 was increased in order to fully cover this dif-
ference. Only the uncertainty inR�3 was increased since the
b-tagging was developed from 2-jet events yielding reliable
R�2 results, and in 4-jet events the b-tagging applies differ-
ent cuts on angle and energy. The consistency of the ex-
perimental results and the prediction from the three event
generators is shown in Fig. 2b–d. The HERWIG 6.2 and
ARIADNE 4.08 generators provide a reasonable descrip-
tion of the six observables in the region of ycut between
0.001 and 0.010. PYTHIA 6.156 gives the best description
of Rb2, but is inconsistent with the other jet-measurements
at the three standard deviations level.
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Table 4. Breakdown of uncertainties for the Rqn jet-rate measurements at a reference ycut = 0.0065.
The definition of each systematic contribution is given in Sect. 4.3

Rb2 R�2 Rb3 R�3 Rb4 R�4
Value 0.6224 0.6034 0.3004 0.3150 0.0598 0.0676

Statistical (data) ±0.0019 ±0.0008 ±0.0016 ±0.0006 ±0.0007 ±0.0004
Statistical (sim.) ±0.0012 ±0.0005 ±0.0009 ±0.0004 ±0.0006 ±0.0003

Tagging ±0.0004 ±0.0008 ±0.0006 ±0.0025 ±0.0001 ±0.0002
Normalisation ±0.0018 ±0.0030 ±0.0009 ±0.0016 ±0.0002 ±0.0003
g
bb

±0.0003 < 0.0001 ±0.0009 < 0.0001 ±0.0003 < 0.0001
gcc ±0.0006 ±0.0002 ±0.0010 < 0.0001 ±0.0002 < 0.0001

Total systematics ±0.0020 ±0.0031 ±0.0017 ±0.0030 ±0.0004 ±0.0004
Total statistical ±0.0023 ±0.0009 ±0.0018 ±0.0007 ±0.0009 ±0.0005

Total uncertainty ±0.0030 ±0.0033 ±0.0025 ±0.0031 ±0.0010 ±0.0006

4.2 Double-ratios, Rb�n

The measured double-ratiosRb�n (n= 2, 3, 4 jets) are shown
in Figs. 3 and 4 together with predictions from the
PYTHIA 6.156, HERWIG 6.2 and ARIADNE 4.08 gener-
ators tuned to DELPHI data [24, 25] (see Sect. 4.6 for the
choice of the b-quark mass parameter in the generators).
Results for Rb�2 and R

b�
3 from the event-tag and double-

tag methods are shown in Fig. 3 (event-tag results for
Rb�3 are taken from [7]). R

b�
2 is not described well by ei-

ther of the generators in the full ycut range. In all cases,
both methods give consistent results within one stan-
dard deviation. A better experimental precision is found
with the event-tag, because the global normalisation
uncertainty is absent in this case and because flavour-
tagging uncertainties cancel to first order in the products
cqQd

q
nQ (see (3)). Statistical uncertainties in the event-

tag result are also smaller, as more data events are con-
sidered and as statistical fluctuations are partially re-

Table 5. Breakdown of uncertainties for the Rb�n (n= 2, 3, 4) double-ratio measurements. The three-jet result is taken from [7]
and shown here for completeness. The two and three-jet measurements are based on the event-tag method, while Rb�4 uses the

double-tag technique as explained in Sect. 3.3. The b-mass values (running and pole) extracted from Rb�4 at reference ycut = 0.0065
are also shown, both for the massive LO (Mb =mb(MZ)) and approximate NLO calculations. Experimental and modelling
uncertainties (experimental tuning and hadronisation model in the simulation) are detailed separately

LO (GeV/c2) NLO (GeV/c2)

Rb�2 Rb�3 [7] Rb�4 mb(MZ) =Mb mb(MZ) Mb
Value 1.0440 0.9570 0.883 3.76 3.46 5.07

Statistical (data) ±0.0021 . ±0.012 ±0.25 ±0.27 ±0.35
Statistical (sim.) ±0.0012 . ±0.010 ±0.20 ±0.22 ±0.28

Tagging ±0.0009 . ±0.003 ±0.07 ±0.08 ±0.10
Normalisation ±0.0005 - ±0.005 ±0.11 ±0.12 ±0.16
g
bb

±0.0007 . ±0.005 ±0.10 ±0.10 ±0.13
gcc ±0.0003 . ±0.003 ±0.06 ±0.06 ±0.08

Total systematics ±0.0013 ±0.0027 ±0.008 ±0.17 ±0.19 ±0.24
Total statistical ±0.0024 ±0.0037 ±0.015 ±0.32 ±0.35 ±0.46

Total experimental ±0.0027 ±0.0046 ±0.017 ±0.36 ±0.40 ±0.52

Modelling - - - ±0.22 ±0.24 ±0.32
Theoretical - - - ±0.90 ±0.44 ±0.57

Total uncertainty ±0.0027 ±0.0046 ±0.017 ±0.99 ±0.64 ±0.83

duced in the ratios of the jet and inclusive samples. The
detailed breakdown of the uncertainties of the meas-
ured double-ratios is shown in Table 5 for the event-tag
method.
The Rb�4 result with the double-tag method is shown

in Fig. 4a, while the experimental systematics breakdown
is summarized in Table 5. At ycut values above 0.004 the
measurement is dominated by statistical uncertainties,
while for very low values of ycut the data samples in-
crease and the global normalisation uncertainty domi-
nates. Gluon splitting uncertainties are kept low in the
whole ycut range thanks to the dedicated anti-gluon split-
ting cut (see Sect. 3.2). HERWIG provides the best de-
scription, being compatible with the experimental data in
the whole ycut range. However, the PYTHIA prediction is
only 1.5 standard deviations away in the large ycut region;
ARIADNE provides a good description of the data in the
region ycut ≥ 0.005, while for lower values of ycut it tends
to underestimate the mass effect.
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Fig. 3. Comparison between the event-tag (empty circles) and
double-tag (full squares) techniques for the measured aRb�2 and
b Rb�3 observables. The event-tag result of R

b�
3 is taken from [7].

The combined statistical (inner bars) and total uncertainty of
the experimental data are shown. The results are compared
to the predictions from the HERWIG 6.2 (solid), PYTHIA
6.156 (dashed), and ARIADNE 4.08 (dotted) event generators.
The lower insets of the plots show the ratio of data to the dif-
ferent generators. Also shown as the shaded area is the one
standard deviation relative uncertainty (statistical and system-
atic added in quadrature) of the data

4.3 Experimental uncertainties

Experimental uncertainties arise in the process of correct-
ing the detector-levelmeasurement to hadron level, and are
due to imperfections in the physics and detector modelling
in the DELSIM simulation used in the correction proced-
ure. The following sources have been considered in this
analysis:

– Statistical : These uncertainties are due to the limited
size of the experimental and simulated data sam-
ples. They are estimated from a toy simulation

Fig. 4. a Comparison between the Rb�4 measured with
a double-tag technique and predictions from the HERWIG
6.2 (solid), PYTHIA 6.156 (dashed), and ARIADNE 4.08 (dot-
ted) event generators. The combined statistical (inner bars)
and total uncertainty of the experimental data are shown. The
lower inset shows the relative deviation of the models to the
data. Also shown as the shaded area is the total one standard
deviation relative uncertainty (statistical and systematic added
in quadrature) of the data. Below ycut = 0.002, the flavour tag-
ging procedure fails and data results from the 1994 and 1995
data samples are not consistent with each other. b Comparison
between the measured Rb�4 and theoretical predictions: massive
LO predictions and approximate (massless) NLO corrections
for the pole and running b-quark mass definitions. Reference
b-quark masses were obtained by evolving the average of low
energy measurements mb(mb) = 4.20±0.07 GeV/c

2 [17] to the
MZ scale as explained in Sect. 4.5. Hadronisation corrections,
used to correct ME calculations, are shown for the three gener-
ators in the lower inset

based on Poisson statistics. Central values were taken
from the data and simulated samples, and correla-
tions between the different quantities were accounted
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for by building up the corresponding covariance
matrix.
– Gluon splitting: The identification of primary b-quarks
is based on the presence of long-lived B andD-hadrons
in the final state. However, light-quark events with
gluon radiation splitting into secondary heavy quarks
can produce a similar signature. The correction pro-
cedure is very sensitive to the gluon splitting rates
in the Monte Carlo simulation through the signal
and background efficiencies [7]. Their value was var-
ied in the range of their quoted uncertainties [26] and
the observed change in the observables was added in
quadrature and taken to represent the corresponding
uncertainty.
– Normalisation: The uncertainty on the global normal-
isation Rb/R� is estimated by varying the world aver-
age values of Rb and R� = (1−Rb−Rc) in the range
of their quoted uncertainties [17], and taking the max-
imum variation in the final observable as the global
normalisation uncertainty. This results in a 6‰ rela-
tive uncertainty and is ycut independent. The uncer-
tainty from the charm-/light-quark normalisation fac-
tor (Rc�n = R

c
n/R

�
n) is estimated as half the maximum

difference obtained by using as input to the measure-
ment the prediction from the three event generators
used: PYTHIA 6.156, HERWIG 6.2 and ARIADNE
4.08.
– Flavour-tagging: Signal efficiencies (εbnB and ε

udsc
nL ) are

measured from data and therefore do not contribute to
the total uncertainty for the double-tag technique. To
estimate the uncertainty due to the imperfect descrip-
tion of background efficiencies and flavour correlations
(ρqnQ) in the simulation, the calibration of the b-tagging
in the simulation was exchanged with the calibration
obtained from data, which gives a poorer description
of the lifetime probability [28]. Twice the observed dif-
ference was conservatively taken as the flavour-tagging
uncertainty. For the event-tag technique, the related
uncertainty was estimated as in [7] by varying the tag-
ging efficiencies within their uncertainties: ∆εbnB/ε

b
nB =

3% and∆ε�nL/ε
�
nL= 8% evaluated in reference [28]. The

effect of mistagging efficiency was estimated by consid-
ering light-tagging as equivalent to anti b-tagging, i.e.
∆εqn� =∆ε

q
nb for q = b, c, � for the same cut value.

4.4 Hadronisation corrections

To compare parton-level fixed order ME calculations of
Rb�−part4 with experimental results, they must be corrected
for hadronisation effects:

Rb�4 =H
b�
4 R

b�−part
4 . (9)

The corrections Hb�4 (ycut) relating parton to hadron ob-
servables are taken to be linear bin-to-bin factors.
Three different generators, each tuned independently

to the DELPHI data [24, 25], were used in this analy-
sis: PYTHIA 6.156, HERWIG 6.2 and ARIADNE 4.08.
It was found that the HERWIG and ARIADNE event

generators are consistent both with the theoretical pre-
dictions at the parton level (within the theoretical un-
certainty) and the data (see Fig. 4) for a large range of
ycut. The hadronisation corrections computed with the
three generators are shown in Fig. 4b. The average of the
HERWIG and ARIADNE predictions was used to correct
the massive ME theoretical calculations (in the region of
ycut studied here, the hadronisation correction computed
from PYTHIA is contained in the band defined by the
HERWIG and ARIADNE corrections).

4.5 b-quark mass extraction and approximate NLO
ME calculation

For a given flavour q, the n-jet rate is defined as the
normalised n-jet cross-section Rqn = [Γn/Γtot]

Z→qq̄. The-
oretically, it is convenient to use the double-ratios Rb�n =
Rbn/R

�
n as in this observable most of the higher-order elec-

troweak corrections, the first order dependence on αs and,
to some extent also neglected higher-order terms in αs,
cancel out. MassiveME theoretical calculations exist up to
order α2s [14–16] and describe the 2, 3 and 4-jet rates for
heavy (b, c) and light quarks (�= uds). Such calculations,
when performed in the on-shell scheme in terms of the pole
mass, Mq, can be rewritten in terms of the running mass,
mq, defined in theMS scheme, using the following order αs
relation:

M2q =m
2
q(µ)

[
1+
αs

π

(
8

3
−2 log

m2q(µ)

µ2

)
+O
(
α2s
)]
.

(10)

Both mass definitions are equivalent at LO (see (10)). For
ycut = 0.0065, a value within a region with good stability,
high sensitivity and small hadronisation corrections, the
following b-quark mass value was obtained:

Mb =mb(MZ) = 3.76±0.32 (stat)±0.17 (syst)

±0.22 (had)±0.90 (theo)GeV/c2 .

The theoretical uncertainty is estimated as half the differ-
ence between the Rb�4 LO prediction for the running and
pole b-quark mass definitions (see Fig. 4b).
To extract a meaningful b-quark running mass from the

four-jet observable by means of (10), the NLO correction
to Rqn would be needed, which is only available for mass-
less quarks [18–20]. However, an improvement of the LO
estimation can be obtained if most of the mass effect is con-
tained in the LO term and hence the NLO correction to
Rb�4 can be approximated as massless [21]:

Rb�4 =
Ab(mb)α

2
s +B

�α3s
A�α2s +B

�α3s
, (11)

where the LO functions Ab, A� are taken from [14–16] and
the NLO massless term B� from [18–20]. As for the case of
Rb�3 [29], it was found that:

– The NLO corrections using the pole and running mass
definitions were both within the uncertainty band de-
fined by the two LO curves.
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Fig. 5. a Massive LO results extracted from Rb�4 (data points) compared with the result obtained at LO in the R
b�
3 analysis [7]:

Mb =mb(MZ) = 3.29±0.34 GeV/c
2. In the LO result, no theoretical uncertainties are shown. Results obtained from Rb�4 using

massless NLO corrections include theoretical uncertainties estimated as explained in Sect. 4.5. They are shown for the b run-
ning and c pole mass definitions and are compared with the results obtained at NLO in the Rb�3 analysis [7]: mb(MZ) = 2.85±
0.32 GeV/c2 and Mb = 4.47±0.85 GeV/c

2, respectively, shown as ±1σ shaded band with its central value as a dotted line. Pre-
dicted values from the QCD calculations at low energy, described in Sect. 4.5, are also shown as solid lines

– The running mass definition results in a smaller correc-
tion at NLO than the pole mass.

The b-mass values obtained from Rb�4 using this approxi-
mation are shown in Fig. 5b and c. They are found to be
stable in the region ycut > 0.003 and consistent with mass
results obtained from Rb�3 (both at LO and NLO) and pre-
dicted values from QCD calculations at low energy evolved
to MZ using the RGE. For the running mass calculation,
the massless NLO correction is small and results in very
little effect. On the contrary, for the pole mass the NLO
correction is about 10%, leading to sizeable effects.
For the running b-quark mass definition, the theoret-

ical prediction of Rb�4 is taken to be the central value of
the following, in principle equivalent, four calculations:
(a) Full ratio as in (11), expressed in terms of the running
mass by means of (10) at the scale µ=MZ ; (b) Same, but
using (10) at an arbitrary scale µ0 =Mb and evolving the
result to µ =MZ via the RGE to obtain mb(MZ); (c) Se-
ries expansion of (11), expressed in terms of mb(MZ) as

in the first method; (d) Same, but introducing an arbi-
trary intermediate scale as in the second method. The pole
mass prediction is obtained in a similar way. The result-
ing predictions for Rb�4 are shown in Fig. 4b for a reference
b-quark mass obtained by evolving the average of low en-
ergy measurements mb(mb) = 4.20± 0.07GeV/c2 [17] to
the MZ scale, mb(MZ) = 2.84±0.06GeV/c2, or by trans-
lating it to a pole mass value: Mb = 4.94± 0.08GeV/c2.
The strong coupling constant value used was αs(MZ) =
0.1202±0.0050 [30].

4.6 Theoretical and modelling uncertainties

The following sources of systematic uncertainty have been
considered for the comparison of the corrected four-jet ME
calculations with the experimental results:

– Theoretical uncertainties, due to missing higher orders
in matrix element calculations and to the use of mass-
less next-to-leading corrections for the mass extraction,
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Table 6. Summary of experimental two and three-jet rates, with their total uncertainty, as a func-
tion of ycut [8]

ycut Rb2 R�2 Rb�2 Rb3 R�3

0.003 0.505±0.003 0.481±0.003 1.062±0.004 0.342±0.002 0.355±0.003
0.004 0.553±0.003 0.527±0.003 1.060±0.003 0.329±0.002 0.345±0.003
0.005 0.585±0.003 0.562±0.003 1.053±0.003 0.317±0.002 0.333±0.003
0.006 0.611±0.003 0.591±0.003 1.046±0.003 0.306±0.003 0.321±0.003
0.007 0.633±0.003 0.615±0.003 1.040±0.003 0.295±0.003 0.310±0.003
0.008 0.651±0.003 0.635±0.003 1.040±0.003 0.286±0.002 0.300±0.003
0.009 0.667±0.003 0.653±0.003 1.031±0.003 0.277±0.002 0.289±0.003
0.010 0.681±0.003 0.669±0.004 1.027±0.002 0.268±0.002 0.280±0.003

cannot be rigorously estimated in the case of four-jets.
However, following a comparison between the same ap-
proximation applied to Rb�3 with the full massive cal-
culation available in this case, this uncertainty was
conservatively taken to be twice the maximum differ-
ence between the four predictions defined in Sect. 4.5.
The theoretical uncertainty is responsible for about
0.4–0.5 GeV/c2 in the uncertainty of the final result,
and it is almost independent of ycut. Although lower
than in the case of the LO calculation, it is three
times higher than in the completely massive three-jet
calculation.
– Modelling uncertainties , related to the correction for
hadronisation effects of the theoretical calculations at
parton level using Monte Carlo event generators. This
includes the uncertainty on the tuned values of the free
parameters in each model (including the b-mass param-
eter entering in the parton shower [7]) and the mod-
elling of hadronisation. The size of the modelling un-
certainty is estimated as half the difference between the
predictions from HERWIG 6.2 and ARIADNE 4.08.4

To include the b-mass uncertainty in the estimation of
the hadronisation systematic uncertainty, the mass pa-
rameter in HERWIG and ARIADNE was varied within
±0.125GeV/c2 around their central values in order
to maximize the difference between both predictions.
This was achieved by setting the mass parameter to
Mb = 4.85GeV/c

2 in both generators. The total mod-
elling uncertainty amounts to ±(1−2)% in the region
of ycut > 0.004, corresponding to about ±0.2GeV/c2 in
terms of both the running and pole mass results. The
contribution from varying the mass parameter amounts
to about ±0.1GeV/c2.

The breakdown of the theoretical and modelling uncer-
tainties in the b-quark mass results obtained from Rb�4 is
detailed in Table 5.

5 Summary and conclusions

A new determination of the hadron-level Rbn and R
�=uds
n

jet-rates (n= 2, 3, 4 jets) has been performed, using flavour

4 The result obtained with the PYTHIA 6.156 event-genera-
tor is compatible with the quoted results within the modelling
uncertainty.

tagging only in each n-jet sample and obtaining the global
normalisation of the observables from the world average
Rb and Rc measurements [17]. This measurement is based
on a double-tag technique which measures the flavour-
tagging efficiencies directly from data, thereby reducing
systematic uncertainties.
Double-ratio observables are also studied: Rb�4 is ob-

tained from the four-jet rates Rb4 and R
�
4 using this double-

tag technique, and Rb�2 using the event-tag method defined
in reference [7]. Results from Rb�2 (and from the previous
measurements of Rb�3 in [7]) are also cross-checked.
Results are presented at hadron level, in order to allow

for future comparisons without having to unfold hadroni-
sation and detector corrections applied to the data (a sum-
mary of jet-rate results as a function of ycut is shown in
Tables 6 and 7). They are compared to three Monte Carlo
event generators: PYTHIA 6.156, HERWIG 6.2 and ARI-
ADNE 4.08, tuned to DELPHI data [24, 25]. The HERWIG
6.2 generator gives the best overall description of flavour
jet-rates, Rbn and R

�
n, but ARIADNE 4.08 provides the

best results for R�n. For double-ratios, HERWIG 6.2 gives
also the best description. However, the two-jet observable
Rb�2 is not satisfactorily described by any of the three gen-
erators considered.
A new determination of the b-quark mass in the four-jet

topology has been performed using the CAMBRIDGE jet-
clustering algorithm [8]. The mass is measured by compar-
ing the experimental results of Rb�4 at ycut = 0.0065 with
fixed order ME massive LO calculations assuming the uni-
versality of the strong coupling constant, αs. The measured

Table 7. Summary of experimental four-jet rates, with their
total uncertainty, as a function of ycut [8]

ycut Rb4 R�4 Rb�4

0.003 0.1148±0.0013 0.1248±0.0009 0.920±0.013
0.004 0.0911±0.0012 0.1018±0.0007 0.895±0.015
0.005 0.0757±0.0012 0.0856±0.0007 0.885±0.016
0.006 0.0642±0.0011 0.0729±0.0007 0.882±0.017
0.007 0.0555±0.0010 0.0628±0.0006 0.884±0.019
0.008 0.0486±0.0010 0.0551±0.0006 0.88±0.03
0.009 0.0432±0.0010 0.0486±0.0005 0.89±0.02
0.010 0.0380±0.0010 0.0431±0.0005 0.88±0.03
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value is:

mb(MZ) = 3.76±0.32 (stat)±0.17 (syst)±0.22 (had)

±0.90 (theo)GeV/c2 .

A procedure to approximate the NLO corrections with the
massless component in order to improve the result has been
tested successfully with the three-jet massive calculations.
The measured value of the running b-quark mass when ap-
plying this method to the four-jet observable is:

mb(MZ) = 3.46±0.35 (stat)±0.19 (syst)±0.24 (mod)

±0.44 (theo)GeV/c2

and the corresponding value for the pole mass is:

Mb = 5.07±0.46 (stat)±0.24 (syst)±0.32 (mod)

±0.57 (theo)GeV/c2 .

These results agree within the uncertainties with the values
obtained evolving the average of low energy measurements
mb(mb) = 4.20± 0.07GeV/c2 [17] to the MZ scale using
the RGE: mb(MZ) = 2.84± 0.06GeV/c2, or by translat-
ing it to a pole mass value: Mb = 4.94±0.08GeV/c2. The
values of mb(MZ) obtained from the LO and approximate
NLO Rb�4 calculations are shown in Fig. 6 together with re-
sults from other measurements at the MZ scale, in par-
ticular the most precise result from Rb�3 ,mb(MZ) = 2.85±

Fig. 6. The energy evolution of theMS-running b-quark mass
mb(Q) as measured at LEP. DELPHI results from R

b�
3 [7] at

the MZ scale and from semileptonic B-decays [31] at low en-
ergy are shown together with results from other experiments
(ALEPH [4], OPAL [5] and SLD [6]). The masses extracted
from LO and approximate NLO calculations of Rb�4 are found
to be consistent with previous experimental results and with
the reference value mb(Q) (grey band) obtained from evolv-
ing the average mb(mb) = 4.20±0.07 GeV/c

2 from [17] using
QCD RGE (with a strong coupling constant value αs(MZ) =
0.1202±0.0050 [30])

0.32GeV/c2 [7], as well as results at low energy from
semileptonic B-decays [31] obtained at a lower mass scale.
All experimental results are consistent with each other as-
suming the QCD running prediction from RGE.
The main limitation in the extraction of mb(MZ) from

the Rb�4 measurement is theoretical. If a calculation with
resummed LL logarithms [32, 33] could be used, a larger
range of ycut could be exploited. This could potentially lead
to a lower uncertainty.
Improvements to the precision of mb(MZ) are not ex-

pected from combining the different measurements be-
cause they are largely limited by common systematic un-
certainties. Other methods will likely be needed at future
colliders in order to obtain more precise determinations of
the b-quark mass at high energy. This will be important to
interpret the precise measurements at the Linear Collider
in searches for new physics. As an example, a future lin-
ear collider operating at

√
s= 500GeV will produce Higgs

bosons copiously (if they exist). Since the decay branch-
ing fraction into b-quarks is expected to be proportional
to the mass squared, measurements of this decay channel
would be very sensitive to the exact value of the mass at
that scale.
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