

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

This paper is made available online in accordance with
publisher policies. Please scroll down to view the document
itself. Please refer to the repository record for this item and our
policy information available from the repository home page for
further information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Debattista, K.; Dubla, P.; Peixoto dos Santos, L.P.;
Chalmers, A.;
Article Title: Wait-Free Shared-Memory Irradiance Caching
Year of publication: 2011
Link to published article:
http://dx.doi.org/10.1109/MCG.2010.80
Publisher statement:” © 2011 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.”

http://go.warwick.ac.uk/wrap

submission to IEEE Computer Graphics and Applications (2009)

Wait-Free Shared-Memory Irradiance Caching

Kurt Debattista1, Piotr Dubla1, Luís Paulo Santos2 and Alan Chalmers1

1International Digital Laboratory, WMG, University of Warwick, United Kingdom
2Departamento de Informática, Universidade do Minho, Portugal

Abstract
Parallelizing rendering algorithms to take advantage of multicore machines is not a straightforward task. Certain
methods require frequent synchronization among threads to obtain benefits similar to the sequential algorithm.
One such algorithm is the Irradiance Cache (IC), an acceleration data structure which caches indirect diffuse
irradiance values. In multicore systems the IC must be shared among threads in order to achieve high efficiency
levels. We propose a novel wait-free access mechanism to the shared IC, which does not make any use of the com-
monly used blocking or busy waiting methods, avoiding most serialization and reducing contention. We compare
with two classical approaches: a lock based mechanism and a local write technique. We demonstrate, using two
systems with up to 24 cores, that the wait-free approach significantly reduces synchronization overheads, thus
resulting in improved performance.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three Dimensional Graph-
ics and Realism—Ray Tracing Computer Graphics [I.3.1]: Hardware Architecture—Parallel Processing

1. Introduction

The advent of multicore computing to the desktop has meant
that in order to maximize the use of available resources,
traditional rendering algorithms need to be modified to ac-
count for the parallelism. While, for certain algorithms,
such as classical ray tracing, this conversion can be rela-
tively straightforward, when computing more complex light-
ing conditions, methods which share data among multiple
parallel threads do not afford the same opportunities. Un-
der such conditions careful consideration must be paid to
synchronization among threads to ensure that overheads are
kept to a minimum and computation can proceed unhin-
dered [Her09]. In this paper we present a parallel solution
to one such method, the irradiance cache (IC). The IC offers
an interesting challenge for shared memory processing due
to the frequent access of a shared data structure by multiple
threads. We demonstrate how to parallelize this algorithm
using a wait-free approach, which may inspire other solu-
tions to similar problems in computer graphics.

Rendering global illumination light transport effects
within a ray tracing context is a computationally demand-
ing task. Recent improvements in the field of ray tracing
have made it possible to interactively compute many of the
global effects, such as specular phenomena and correct shad-

ows [WMG∗07]. Indirect diffuse interreflections, however,
require dense sampling of the hemisphere at each shading
point, dramatically increasing rendering times. Ward et al.
[War88] exploited the fact that the indirect diffuse compo-
nent is generally a continuous smooth function over space
not affected by the high frequency changes common with
the specular component. They proposed the IC data struc-
ture to allow sparse evaluation of indirect diffuse irradiance.
Sparsely calculated irradiance values are stored in the IC and
reused to extra(inter)polate irradiance values at nearby loca-
tions. By exploiting spatial coherence, the IC can achieve
an order of magnitude improvement in rendering time over
unbiased Monte Carlo integration.

In multithreaded shared memory systems the IC must be
shared to avoid replicated computations of diffuse samples
among rendering threads, thus increasing efficiency. Since
all rendering threads can write to and read from the IC, a
data access control mechanism is required to ensure that the
data structure is not corrupted. Such control mechanisms in-
cur overheads, such as serialization of accesses to the shared
data structure; it must thus be carefully designed in order not
to compromise performance. Traditionally, access to shared
memory data structures is controlled via lock-based mutual
exclusion techniques. However, there are alternatives termed

K. Debattista, P.Dubla, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Caching

non-blocking data structures. Non-blocking data structures
can take the form of obstruction-free, lock-free or wait-free
data structures, that offer considerable performance advan-
tages. The most powerful of these are the wait-free methods.
For further details see Section (Box) 3. In reality, practical
wait-free data structures are considered difficult to construct
and are relatively rare [HLM03].

In this paper we propose an efficient wait-free algo-
rithm which allows all threads to concurrently access an un-
bounded shared IC, without using any locks or critical sec-
tions. We take this approach and compare it with two other
mechanisms which share the IC among threads on a shared
memory system. The first is based on traditional locking
techniques and locks the shared IC every time a thread ac-
cesses it, both for reading and writing. The second is a lo-
cal copy method which avoids concurrent access control by
maintaining a local IC, per thread, and merging at the end of
each frame. Efficient sharing of the IC in multithreaded sys-
tems is mandatory in order to achieve high efficiency levels,
since computed irradiance values become readily available
to all threads, thus avoiding work replication. This is espe-
cially relevant because utilization of the IC has increased
significantly over the last few years and has been used as
an inspiration for a myriad of new caching algorithms which
could benefit from our approach, see Box (Section) 2 for fur-
ther details.

This paper’s contributions are the proposal of an effi-
cient wait-free algorithm for sharing the IC among ren-
dering threads on shared memory systems and a compar-
ison of the proposed algorithm’s efficiency with two tra-
ditional data access control mechanisms: a lock-based ap-
proach and a local copy one. This is an extension of our pre-
vious work [DDSC09], where we presented an initial version
of the wait-free algorithm and tested it on an eight core ma-
chine. The previous wait-free algorithm could only handle
fixed sized arrays in the IC structure. Furthermore, the al-
gorithm caused some data to be discarded when a conflict
among threads occurred. These limitations have been fixed
in the current work by handling dynamically allocated mem-
ory, thus supporting an unbounded number of cache sam-
ples, and guaranteing the successful insertion of all new irra-
diance values. We assess this algorithm’s efficiency on two
highly concurrent multicore systems with up to 24 physi-
cal cores and show that it exhibits superior performance and
scalability properties than the lock-based and local cache al-
ternatives.

This paper is structured as follows. Section (Box) 2
presents the motivation and reasoning behind the irradiance
cache, while Section (Box) 3 briefly discusses non-blocking
synchronization. In section 4 we present related work and in
Section 5, we present the algorithms for the three data access
control mechanisms. Section 6 compares results and, finally,
in Section 7 we conclude and describe possible future work.

2. Irradiance Caching (Box)

Physically-based computation of the radiance reflected at a
point p along a direction Θ is dictated by the rendering equa-
tion [Kaj86]:

Lr(p→ Θ) =

∫
Ω

fr(p,Θ↔Ψ)Li(p←Ψ)cos(−→Np,Ψ)dΩΨ

where fr(p,Θ↔ Ψ) is the BRDF at point p for the pair of
directions Θ and Ψ, Li(p← Ψ) is the incident radiance at
p along direction Ψ, −→Np is the surface normal at p and Ω,
the integration domain, is the hemisphere centered at p and
oriented around −→Np.

Ray tracing approximates Lr(p → Θ) by shooting rays
along a number of directions Ψ, thus sampling Li(p← Ψ)
for these directions. Certain light transport phenomena, such
as specular scattering of light and direct illumination, can
usually be computed with a limited number of rays; other
phenomena, due to their lack of directionality, require hemi-
sphere sampling, i.e., stochastically selecting and shooting
a large number of rays across Ω – this is a stochastic in-
tegration method known as Monte Carlo integration, which
usually accounts for a large amount of the computation.

One such phenomenon is indirect diffuse reflection, de-
fined as diffusely reflected radiance at point p along a given
direction due to indirect irradiance E(p). E(p) is the indirect
incident radiant flux per unit area at p. Accurately comput-
ing E(p) requires densely sampling Ω, which in a ray trac-
ing context is achieved by shooting hundreds or thousands
of rays distributed across this hemisphere (while carefully
avoiding directions corresponding to light sources, since we
only want to include indirect lighting, i.e., light that has been
reflected by at least one object).

Indirect diffuse reflections are crucial to convey a percep-
tion of realism (See Figure 1), but sampling the hemisphere
at all shading points results in very long rendering times,
deemed unacceptable even for most offline renderings. Ward
et al. [War88] realized back in 1988 that indirect diffuse
reflection is generally a continuous smooth function over
space, not affected by the high frequency changes common
with specular reflections. They proposed accelerating the
computation of indirect diffuse reflections by densely sam-
pling the hemisphere at a sparse set of shading points only
and interpolating for the remaining ones. Sparsely calculated
indirect irradiance values are stored in the irradiance cache
(IC) data structure and later reused to extra(inter)polate irra-
diance values at nearby locations.

Indirect irradiance at p, E(p), can be interpolated from a
set S(p) of previously evaluated irradiance values E(pi) at
points pi, by using a weighted average:

E(p) =
∑i∈S(p) wi(p)E(pi)

∑i∈S(p) wi(p)

where the weights wi(p) = (
∥p−pi∥

Ri
+
√

1−−→Np ·−→Npi)
−1 de-

pend on the distance between p and pi, on the harmonic

K. Debattista, P.Dubla, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Caching

(a) Direct only (b) Indirect only (c) Full
Figure 1: The contribution of indirect lighting

mean distance to objects visible from pi, Ri, and on the rel-
ative orientation of the normals at p and pi. The set S(p) of
points pi that can be used to interpolate E(p) is determined
by requiring that the weights wi(p) are larger than the recip-
rocal of the maximum acceptable error, a, which is a user
supplied parameter: S(p) = {i : wi(p) > 1/a}. When indi-
rect irradiance at any point p is required the renderer first
determines the set S(p) by querying the IC. If S(p) is empty,
E(p) is evaluated by Monte Carlo integration, otherwise it
is interpolated from the E(pi) belonging to S(p). Querying
the IC to determine S(p) amounts to locating all samples pi
stored in the cache that satisfy the above criterium; this is
referred to as a range search, a computationally demanding
task that can be optimized by spatially ordering the IC by
resorting to 3D hierarchical data structures, such as octrees
or kd-trees.

By exploiting spatial coherence, the IC offers an order of
magnitude improvement in rendering time over Monte Carlo
integration. Performance is further improved when render-
ing animations of static scenes, since the indirect diffuse ir-
radiance remains constant and the IC samples can thus be
reused across frames.

The IC has been extended as a stand-alone algorithm in
many guises recently: as an acceleration data structure for
rendering glossy surfaces by storing radiance [KGPB05],
participating media phenomena [JDZJ08] and translucency
[KLC06], or used in conjunction with photon mapping
[Jen01]. It has been extended to exploit coherence in
the temporal domain [SKDM05, GBP07, DDB∗09]. Similar
methods have also been used to accelerate the rendering in
production renderers at PDI/Dreamworks [TL04].

References

[DDB∗09] DEBATTISTA K., DUBLA P., BANTERLE F.,
SANTOS L. P., CHALMERS A.: Instant caching for inter-
active global illumination. Comput. Graph. Forum 28, 8
(2009), 2216–2228.

[GBP07] GAUTRON P., BOUATOUCH K., PATTANAIK S.:
Temporal radiance caching. IEEE Transactions on Visu-
alization and Computer Graphics 13, 5 (2007), 891–901.

[JDZJ08] JAROSZ, DONNER, ZWICKER, JENSEN:

Radiance caching for participating media. ACM Trans. on
Computer Graphics 27, 1 (March 2008).

[Jen01] JENSEN H. W.: Realistic image synthesis using
photon mapping. A. K. Peters, Ltd., 2001.

[Kaj86] KAJIYA J. T.: The rendering equation. In SIG-
GRAPH ’86: Proceedings of the 13th annual conference
on Computer graphics and interactive techniques (New
York, NY, USA, 1986), ACM, pp. 143–150.

[KGPB05] KRIVANEK J., GAUTRON P., PATTANAIK
S., BOUATOUCH K.: Radiance caching for efficient
global illumination computation. IEEE Trans. on Visual-
ization and Computer Graphics 11, 5 (2005), 550–561.

[KLC06] KENG S.-L., LEE W.-Y., CHUANG J.-H.: An
efficient caching-based rendering of translucent materials.
Vis. Comput. 23, 1 (2006), 59–69.

[SKDM05] SMYK M., KINUWAKI S., DURIKOVIC R.,
MYSKOWSKI K.: Temporally Coherent Irradiance
Caching for High Quality Animation Rendering. Com-
puter Graphics Forum 24, 3 (2005), 401–412.

[TL04] TABELLION E., LAMORLETTE A.: An Approxi-
mate Global Illumination System for Computer Generated
Films. ACM Trans. on Graphics 23, 3 (2004), 469–476.

[War88] WARD G.: A ray tracing solution for diffuse in-
terreflection. Computer Graphics - SIGGRAPH’88 22, 4
(August 1988).

End Irradiance Caching Box

3. Non-blocking Synchronization (Box)

When using shared memory multithreading to execute par-
allel computations, care must be taken when accessing data
structures that are accessible to all the threads concurrently.
When multiple threads can read and write from a shared data
structure, a data access control mechanism is required to en-
sure that the data structure is not corrupted.

Traditionally, access control to shared memory data struc-
tures is maintained via mutual exclusion. Blocking mecha-
nisms, that preempt the running thread, may be used when
critical sections are reasonably large. Alternatively, when

K. Debattista, P.Dubla, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Caching

frequent access to a shared data structure may be required,
the cost of blocking may be prohibitive. In such case a
thread is made to busy wait, usually using a spin lock, if
another thread lies within the critical section, until access is
allowed. Such control mechanisms incur overheads, such as
serialization of accesses to the shared data structure. Block-
ing entails expensive context switches and busy waiting of
frequently-accessed resources leads to contention which can
drastically reduce performance as the number of threads in-
creases [ALL89].

Alternatives that avoid mutual exclusion do exist in the
form of non-blocking synchronization. By carefully order-
ing instructions, non-blocking algorithms can guarantee that
none of the code is serialized, due to the removal of all crit-
ical sections, resulting in a reduction in contention [HS08].
The weakest form of non-blocking data structures take the
form of obstruction-free methods that guarantee that a thread
can complete in finite time if it operates in isolation. When
non-blocking data structures can guarantee that at least one
among a set of concurrent threads will complete in finite
time, they are said to be lock free. All lock free algorithms
are obstruction free. Lock-free and obstruction free meth-
ods rely on retrials and cannot guarantee an upper bound on
the number of executed instructions. When all threads are
guaranteed to complete in finite time the algorithm is said
to be wait free. Wait-free algorithms can guarantee an upper
bound on the number of instructions, thus avoiding starva-
tion, deadlock and livelock, priority inversion problems and
are ideal for multiprogrammed multiprocessors, for exam-
ple when a thread holding a lock is preempted causing all
other threads to busy wait uselessly. Clearly all wait-free
data structures are also lock free.

The construction of non-blocking algorithms requires the
use of powerful atomic primitives which are executed as
a single instruction, without any interruption, on modern
architectures. These algorithms can be seen as a limiting
case on the reduction of the size of critical sections, reduc-
ing them to these individual machine instructions. We show
pseudo code (Listings 1 and 2) for the two atomic instruc-
tions, compare and swap (CAS) and fetch and add (XADD),
that we will be using for our wait-free IC. Herlihy [Her91]
provides a hierarchy of the effectiveness of such primitives,
the most effective being those that can be used to implement
any wait-free data structure which he described as being
compare and swap (or load-link store-conditional instruction
pair, which are an alternative to compare and swap found on
some architectures).

Listing 1: Fetch and Add

1 atomic XADD(address location)
2 {
3 int value = ∗location;
4 ∗location = value + 1;
5 return value
6 }

Listing 2: Compare and swap

1 atomic CAS(address location, value cmpVal, value newVal)
2 {
3 if (∗location == cmpVal) {
4 ∗location = newVal;
5 return true;
6 } else return false;
7 }

References

[ALL89] ANDERSON T. E., LAZOWSKA E. D., LEVY

H. M.: The performance implications of thread man-
agement alternatives for shared-memory multiprocessors.
IEEE Trans. Computers 38, 12 (1989), 1631–1644.

[Her91] HERLIHY M.: Wait-free synchronization. ACM
Trans. Program. Lang. Syst. 13, 1 (1991), 124–149.

[HS08] HERLIHY M., SHAVIT N.: The Art of Multipro-
cessor Programming. Morgan Kaufmann, March 2008.

End Non-blocking Synchronization Box

4. Related Work

The IC is an acceleration data structure which caches indi-
rect diffuse irradiance samples, within the framework of a
distributed ray-tracing algorithm [War88]. Irradiance values
can then be interpolated for regions within a given neigh-
borhood of these samples, thus reducing rendering time by
exploiting spatial coherence. Section (Box) 2 describes the
motivation and mechanism behind this data structure.

In order to accelerate range searches, performed to locate
valid samples within the IC, an octree is incrementally built
every time a new sample is added; writing to the cache re-
quires both storing the new indirect diffuse irradiance value
and updating the octree topology. In parallel systems each
rendering process, or thread, might evaluate new indirect dif-
fuse irradiance values and add them to the IC. In order to in-
crease efficiency, the IC must be shared among all processes,
thus avoiding replicated work, where one process evaluates
an irradiance value that could have been interpolated from
irradiance values evaluated by other processes. The IC be-
comes a shared data structure, thus requiring some sharing
mechanism assuring that all processes can access the avail-
able data, that the data is not corrupted and that overheads
do not compromise efficiency.

In distributed memory systems, such as clusters of work-
stations, each node has its own address space, resulting in
multiple copies of the shared data structure that are regularly
synchronized. The standard Radiance distribution [War94]
supports a parallel renderer over a distributed system using
the Network File System for concurrent access of the IC;
this has been known to lead to contention and may result

K. Debattista, P.Dubla, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Caching

in poor performance when using inefficient file lock man-
agers. Koholka et al. [KMG99] broadcast IC values amongst
processors after every 50 samples calculated at each slave.
Robertson et al. [RCLL99] presented a centralized parallel
version of Radiance whereby the calculated IC values are
sent to a master process whenever a threshold is met. Each
slave then collects the values deposited at the master by the
other slaves. [DSC06] propose restricting diffuse irradiance
evaluations to a subset of the available processors and syn-
chronizing the IC among these at a higher frequency than
with the remaining processors.

We are not aware of any publication describing a data
access control mechanism for sharing the irradiance cache
among rendering threads in a shared memory parallel sys-
tem, other than our previous wait-free algorithm [DDSC09].
The algorithm proposed in this paper extends this previ-
ous one, supporting extendable memory for inserting an un-
bounded number of IC samples and also successfully insert-
ing of all new irradiance values, some of which were dis-
carded when a conflict occurred in the previous method. Fur-
thermore, the algorithm is evaluated on two highly concur-
rent multicore architectures, demonstrating its superior per-
formance and scalability properties.

5. Algorithms

In this section the algorithms for the three evaluated data ac-
cess control mechanisms are presented. To begin with we
show a traditional single-threaded IC with no access control
in Listing 3. IrradianceCache is the data structure that repre-
sents the IC. It is composed of an octree of recursive nodes.
The individual node is termed ICNode. Each ICNode con-
tains pointers to another eight nodes and an ICList storing
the list of IC samples. Figure 2 shows the ICNode structure
for the wait-free method. For the other methods the ICList
is just a single dynamic array. In the subsequent sections we
demonstrate how the traditional approach can be modified to
enable the different access control algorithms.

Listing 3: Traditional sequential IC

1 IrradianceCache IC;
2

3 ComputeIndirectDiffuse() {
4 //get irradiance from IC if there are valid records
5 inIC = IC.getIrradiance ();
6 if (!inIC) { // no valid records found
7 // compute it by sampling the hemisphere
8 ICsample = ComputeIrradianceRT ();
9 // insert new IC sample into the octree

10 IC.insert (ICsample);
11 }
12 }
13

14 IrradianceCache::getIrradiance(Irr) {
15 Irr = {0,0,0};
16 <Traverse the octree>

17 <verify validity of sample>
18 <extrapoloate irradiance; add to Irr>
19 if (found) return true;
20 else return false;
21 }
22

23 IrradianceCache::insert (ICsample) {
24 // recursively traverse the octree
25 // starting at root
26 IC.root.insert (ICsample);
27 }
28

29 ICNode::insert (ICSample) {
30 if (correct insertion node) {
31 IClist.Add (ICsample);
32 } else {
33 // go deeper in the octree
34 xyz = EvaluateOctant();
35 if (children[xyz] == NULL)
36 children[xyz] = new ICNode ();
37 children[xyz].insert (ICsample);
38 }
39 }
40

41 ICList::Add (ICsample) {
42 // insert new record in head of list
43 IClist.records[head++] = ICsample;
44 }

5.1. Lock-Based Irradiance Cache (LCK)

The lock-based access control algorithm locks the IC when-
ever a read or write is made to it (Listing 4 lines 4 - 6, 12
- 14). However, the code responsible for hemisphere sam-
pling, ComputeIrradianceRT(), is not a critical region, thus
allowing concurrent evaluation of irradiance. The major dis-
advantage of the LCK approach is that it serializes all ac-
cesses, both reads and writes, to the shared IC. As the num-
ber of threads increases, contention will also increase, pre-
venting performance from scaling with the degree of paral-
lelism.

Listing 4: Lock-based IC

1 ComputeIndirectDiffuse()
2 {
3 //get irradiance from IC if there are valid records
4 IC.lock();
5 inIC = IC.getIrradiance (Irr);
6 IC.unlock();
7

8 if (!inIC) { // no valid records found
9 // compute it by sampling the hemisphere

10 ICsample = ComputeIrradianceRT ();
11 // insert new IC sample into the octree
12 IC.lock();
13 IC.insert (ICsample);
14 IC.unlock();
15 }
16 }

K. Debattista, P.Dubla, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Caching

5.2. Local-Write Irradiance Cache (LW)

An alternative approach is to have a global IC readable by
all threads and an additional local IC per thread; each thread
writes only to its local IC but reads from both. At certain pre-
defined execution points, such as the end of a frame, the local
ICs are sequentially merged into the global IC. This form of
synchronization uses an end of frame as a barrier, effectively
constituting a blocking approach to synchronization.

The major drawback of this approach is that it does not
allow for any sharing within a single frame, thus resulting
in work replication. The LW algorithm has a much higher
IC sample count than the other two approaches, since each
thread must locally evaluate all irradiance values required
by its assigned image tiles. Additionally, memory consump-
tion is dictated by the number of threads being used and the
complexity of the octree itself.

Listing 5: Local-Write IC

1 IrradianceCache IClocal[number threads], ICglobal;
2

3 ComputeIndirectDiffuse()
4 {
5 //get irradiance from IC if there are valid records
6 inIC = ICglobal.getIrradiance (Irr);
7

8 if (!inIC)
9 inIC = IClocal[current thread].getIrradiance ();

10

11 if (!inIC) { // no valid records found
12 // compute it by sampling the hemisphere
13 ICsample = ComputeIrradianceRT ();
14 // insert new sample into the local cache
15 IClocal[current thread].insert (ICsample);
16 }
17 }

5.3. Wait-Free Irradiance Cache (WF)

The wait-free algorithm does not rely on any critical sections
to both read and write to the shared IC. The algorithm makes
changes to three methods from the traditional IC.

The first method we describe is the ICList::Add function,
see Listing 6. The insert onto the node itself takes the form
of an insertion onto an array or an unbounded queue. For
the sake of completeness we demonstrate how the method
works for an unbounded queue. Insertion onto a fixed sized
array is just a specialized case of this algorithm. The version
of the fixed size array is the same as the enqueue function of
the Herlihy Wing concurrent queue [HW90]. The structure
used for ICList is an unbounded queue composed of a queue
of arrays, used to maintain coherence and to ensure that the
extending of the queue does not occur frequently, see Figure
2. In Listing 6 the array type is denoted as qNode. qNode
contains an array of qNodeSize elements and a pointer to
another qNode. Initially the queue of arrays contains only

one qNode, whenever required a new qNode is created and
attached to the previous one. An array is always initialized
with a list of NULL pointers (or some other symbol that is
not used by the computation) to denote that an ICsample has
not yet been added. When adding samples to an IC node the
atomic XADD operator (Listing 6 line 3) is used, returning
a unique index into the list of records, which ensures that
samples are never over-written; simultaneously, the index to
the next free position is incremented.

When the structure needs to be extended (Listing 6 line
13) a new qNode is created and a CAS is used to insert it
onto the previous qNode (Listing 6 line 19). If the queue has
not yet been extended (by another thread), indicated by the
pointer still being NULL, then CAS completes successfully
and the associated ICsample is inserted onto the structure
(Listing 6 line 26). If, however, another thread extended the
queue, then CAS will fail and this thread will discard the
created qNode (Listing 6 line 20) and insert the associated
sample onto the qNode that some other thread must have
created (otherwise the CAS would have succeeded).

Figure 3 demonstrates an example of this method being
executed by three concurrent threads, R, G, B for a qNode-
Size of five. This will help illustrate how the ICList:Add()
method functions. At 3a the ICList is completely empty. At
3b, R has just incremented the head but has not yet inserted
the sample. R inserts the sample at 3c. At 3d, both B and G
have just incremented the head but not inserted the samples.
At 3e, B has not inserted its sample and R has inserted an-
other sample, but G is yet to insert the sample and is still on
the same line of code that it was on at 3d.

3f demonstrates the scenario when the list needs to be ex-
tended and possible conflict may occur. R has just filled in
the first qNode and G and B are about to insert another two
samples, they have in fact already incremented head. Since
both threads G and B have checked that the last qNode is full
and has no successor (Line 16), both created a new qNode.
However, due to the CAS at Line 19 only one will succeed
in attaching it to the previous qNode. In this case, at 3g, we
can see that G has succeeded and B is deleting the qNode it
created. G has inserted the sample onto the new qNode. At
3h, B inserts the sample onto the qNode that G had created.

Listing 6: Wait-Free IC Add

1 ICList::Add (ICsample) {
2 // get index of new sample in node list
3 int index = XADD (&head);
4 int iteration = index / qNodeSize;
5 int pos = index % qNodeSize;
6 qNode ∗ tail;
7 int count = 0;
8

9 // identify node − can be optimized with a local tail
10 for (tail = qHead; tail−>next != NULL && count <

iteration;
11 tail = tail−>next, count++);

K. Debattista, P.Dubla, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Caching

0 1 2 3 481

... k k+1 k+2 k+3 k+4...

ICListICNode pointers to children

head k+3

ICNode

Figure 2: The structure of an ICNode for the wait-free method. For the other methods ICList is just a single dynamic array
which is extended whenever required.

12

13 if (iteration > count){
14 for (int n = 0; n < iteration − count; n++) {
15 // this is where we add the new Array
16 if (tail−>next == NULL) {
17 // all entries are initialized as NULL
18 qNode ∗ newN = new qNode;
19 if(!CAS(&tail−>next, NULL, newN))
20 delete newN;
21 }
22 tail = tail−>next;
23 }
24 // if this thread did not update
25 // some other thread must have updated
26 tail−>records[pos] = ICsample;
27 return index;
28 }

The second method that is changed from the traditional
IC is the insert onto the octree structure, see Listing 7. When
adding a new child node to the octree, the new node is built
using a temporary pointer. Once built, the node is attached
to the octree using the CAS operator (Listing 7 line 10). The
reasoning used for this method is similar to that used for
ICList::Add. Either this thread creates the subtree or some
other thread does and computation proceeds notwithstand-
ing.

Listing 7: Wait-Free IC insert

1 ICNode::insert (ICSample) {
2 if (correct insertion node)
3 IClist.Add (ICsample);
4 else { // go deeper in the octree
5

6 xyz = EvaluateOctant();
7 if (children[xyz]==NULL) {
8 temp = new ICNode();
9 // Update new branch into the octree

10 if (!CAS (children[xyz], NULL, temp))
11 free temp;
12 }
13 // irelevant to whether this thread created the subtree
14 // someone must have created anyway
15 // recurse the insertion of ICsample onto the subtree

16 children[xyz].insert (ICsample);
17 }
18 }

The final method that is modified is Irradiance-
Cache::getIrradiance(), see Listings 8. The modifications to
this function are just there to reflect the change in structure
to ICList. This method makes use of the fact that qNode el-
ements are initialized to NULL. All elements that are not
NULL are queried and are used to calculate the irradiance if
the valid neighborhood criterium is satisfied.

Listing 8: Wait-Free IC getIrradiance

1 IrradianceCache::getIrradiance(Irr) {
2 Irr = {0,0,0};
3 <Traverse the octree>
4 for (qNode ∗ tNode = qHead; tNode != NULL; tNode =

tNode−>next) {
5 for (i = 0; i < qNodeSize; i++)
6 if (tNode−>records[i] != NULL) {
7 <verify validity of sample>
8 <extrapoloate irradiance; add to Irr>
9 }

10 }
11 if (found) return true;
12 else return false;
13 }

The wait-free approach ensures that the single shared IC
can be accessed concurrently by all threads. As we shall
show in the next section, this results in faster execution times
both when interpolating and creating IC samples and also it
does not suffer the larger memory requirements associated
with the LW approach.

6. Results

All results presented in this section were obtained on two
systems which currently represent the state of the art in mul-
ticore technology. One system is a dual quad-core machine
based on the Intel Xeon E5520 (Nehalem architecture), run-
ning at 2.26 GHz with 12 gigabytes of RAM. These proces-
sors include the Intel QuickPath Interconnect, replacing the

K. Debattista, P.Dubla, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Caching

0 1 2 3 4

0head

(a) R= out, G= out, B= out

0 1 2 3 4

head 1

(b) R= 4, G= out, B= out

0 1 2 3 4

head 1

(c) R= 27, G= out, B= out

0 1 2 3 4

head 3

(d) R= out, G= 6, B= 7

0 1 2 3 4

head 4

(e) R= 27, G= 6, B= out

0 1 2 3 4

head 7

5 6 7 8 9

5 6 7 8 9

(f) R= 27, G= 19, B= 18

0 1 2 3 4

head 7

5 6 7 8 9

5 6 7 8 9

(g) R= out, G= 27, B= 20

0 1 2 3 4

head 7

5 6 7 8 9

(h) R= out, G= out, B= 27
Figure 3: An example of how three threads (R, G and B) would concurrently add samples to a node using our novel wait-free
method. Numbers refer to the thread’s location within Listing 6. out entails the thread is not executing this function.⊥ represents
the NULL pointer.

(a) Conference (190k) (b) Sponza (66k)

(c) Cornell (48k) (d) Desk (12k) (e) Office (20k)
Figure 4: The five scenes utilized in the experiments. The polygon count for each scene is shown in brackets.

K. Debattista, P.Dubla, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Caching

legacy front side bus, and support hyper-threading, enabling
two threads per core and thus reporting a total of sixteen
logical processors to the operating system. Hyper-threading
replicates certain resources of the processor, but not the main
execution units; performance is not duplicated, with Intel
claiming up to 30% speed improvement, compared to oth-
erwise identical, non hyper-threaded, processors [MBH∗02].
The second system is a quad hexa-core machine based on the
Intel Xeon E7450 (Dunnington architecture), running at 2.40
GHz with 64 gigabytes of RAM; with a total of 24 physical
cores this system enables us to evaluate the scalability of the
wait-free access control mechanism proposed in this paper.
Both systems run CentOS 5.2, with the code being compiled
with Intel Compiler Suite Professional v. 11.0.

For all experiments we used our own interactive ray
tracer, which does not make use of packetisation or explicit
SIMD operations. The only exception is the ray-bounding
volume intersection test used to traverse the acceleration
data-structure, which is a BVH implementation based on
[WBS07]. Five different scenes (Figure 4) were utilized
in the experiments. These scenes were picked to provide
a range of geometric complexity, physical dimensions and
lighting conditions. All scenes were rendered at a resolu-
tion of 640×480. We use the following labels for the meth-
ods: traditional sequential method (TRA), lock (LCK), local-
write (LW) and wait free (WF).

6.1. Still images

Results are presented by varying the number of threads, and
thus the number of used cores, up to 16 for the Nehalem
architecture and 24 for the Dunnington architecture. The re-
sults for a single thread were obtained using TRA, with no
access data control, and speed-up for the different techniques
is computed with respect to the sequential timings. Each im-
age was calculated with an empty IC to show a worst-case
scenario with maximal irradiance calculations occurring.

Figures 5 and 6 present, in graphical form, the speed-up,
the normalized number of evaluated IC samples and effi-
ciency, for both architectures. Each of the presented metrics
is the average over the five different scenes used in experi-
ments. Since all reported metrics are normalized with respect
to the results obtained for the same scene with one single
thread and the traditional approach to the IC (no data access
control), absolute values, particular to each scene, are not
relevant. The later proposition is true as long as behaviour
is similar across the different scenes for each access con-
trol mechanism. We measured worst-cases standard devia-
tions of 14.2% and 4.2% for absolute speedup and normal-
ized number of generated IC samples, respectively; these
low worst-case values indicate that we can use these aver-
ages as reliable statistics to analyse our results. For absolute
speedup we include a dashed line, depicting linear speedup,
which would be obtainable if no algorithmic or implemen-
tation penalties were incurred; for the Nehalem architec-

(a) Speedup (lines and left axis) and normalized number of IC samples
(bars and right axis)

(b) Efficiency
Figure 5: Still Images: results for the Nehalem architecture.
(All values are averaged over the 5 different scenes used in experi-
ments)

ture above 8 threads, linear speed-up increases only 30%
with each additional logical core, following Intel’s claim
that hyper-threading can provide a maximum 30% speed im-
provement [MBH∗02].

For all experiments with the Nehalem system, and up to
14 threads in the Dunnington case, LW performs and scales
worse than the two other algorithms. This is because no shar-
ing is actually occurring since only one frame is rendered
and merging of the local caches only happens at the end of
the frame. Each thread must evaluate all irradiance samples
that project into its assigned tiles of the image plane, lead-
ing to work replication. This can be seen by the number of
evaluated irradiance samples (see Figure 5a and Figure 6a),
which increases dramatically with the level of concurrency.

The performance difference between LCK and WF be-
comes evident as the number of threads increases: time wait-
ing for locks grows, resulting in a major performance loss.
The wait-free algorithm scales much better. For a reduced
number of threads LCK performs similar to WF since most
of the time is spent evaluating new irradiance samples, which
is not a critical region of the code. As the number of threads

K. Debattista, P.Dubla, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Caching

(a) Speedup (lines and left axis) and normalized number of IC samples
(bars and right axis)

(b) Efficiency
Figure 6: Still Images: results for the Dunnington architec-
ture. (All values are averaged over the 5 different scenes used in
experiments)

increases, more range searches are performed; since these
are serialized in LCK, a performance penalty is incurred.
Figures 5a and 6a clearly show that the performance loss
incurred by LCK is not due to work replication; in fact, the
total number of IC samples evaluated by WF and LCK de-
creases above a certain number of threads. Success in finding
valid samples to interpolate from depends on the order upon
which samples are requested and evaluated; concurrent ren-
dering of multiple image plane tiles results in quickly filling
the IC with samples that are better distributed over object
space thus resulting in more successful range searches than
with the sequential approach. Above a significant number of
threads, LCK’s serialization penalty becomes larger than the
overhead associated with work replication and it performs
even worse than LW (figure 6).

Parallel algorithms seldom exhibit linear speedup due to
overheads, such as load imbalance, work replication and
communication/synchronization costs. The wait-free access
control mechanism to a shared IC is able to minimize the last
two overheads thus exhibiting almost linear speedup and,
consequently, a nearly constant efficiency of 0.9 on systems

up to 24 cores (see figures 5b and 6b). With around 14 cores
on the Dunnington system, LCK speedup reaches an inflec-
tion point and starts decreasing, showing that lock-based ap-
proaches do not scale with increasing levels of concurrency.
On the other hand, WF speedup grows linearly up to 24
cores, although at a rate slightly lower than the increase on
the number of cores; the shape of the WF curve suggests that
any eventual inflection point is still far from being reached,
which demonstrates its superior scalability potential. Note
that the shared memory parallel ray tracer incurs additional
overheads, such as workload distribution and gathering of
results, which are themselves also partially responsible for
the small deviation from linear speedup observed with the
WF approach.

6.2. Animations

(a) Sponza

(b) Conference Room
Figure 7: Animation Results: Dunnington system with 24
cores. Frames per second (lines and left axis) and number of IC
samples per frame (bars and right axis)

Figure 7 shows, for the Sponza and Conference Room
scenes running on 24 cores on the Dunnington system, the
frame rate (fps) and the number of IC samples evaluated
per frame when running an animation of 36 frames while
the camera performed a 360 degrees rotation around the
scene (10 degrees from frame to frame). Each frame in
the sequence re-utilized previously created cache samples
while simultaneously calculating new ones. This provides an
overview of performance when a mix of evaluation and in-
terpolation is occurring, unlike the case for the still images.
For each of the scenes the first frame is the equivalent of the

K. Debattista, P.Dubla, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Caching

still images above, where the cache is totally empty and all
the samples needed to be generated.

Clearly, LCK performs worse than LW and WF. Since
for all frames (except the first) the IC will not be empty,
many irradiance samples can be reused, but LCK serializes
all range searches performed to locate these samples, thus
severely impacting on performance. In fact, with LCK the
best rendering time is achieved for the first frame, suggest-
ing that temporal re-utilization of previously calculated ir-
radiance samples is worse than recalculating these values,
which completely contradicts the rationale behind the IC
[War94]. We can thus conclude that synchronization over-
heads make the utilization of such lock-based access mecha-
nisms prohibitive when rendering animations of static scenes
on highly concurrent shared memory systems.

WF outperforms LW because the former shares irradi-
ance samples immediately without any extra synchroniza-
tion overhead associated with reading, while the latter does
not share samples within a frame, thus resulting in costly
extensive evaluations of more indirect diffuse irradiance val-
ues. The bars in Figure 7 clearly show that, for WF and LW,
variations in performance from frame to frame are highly
correlated with the number of IC samples evaluated per
frame. More importantly, these graphs also show that the
better results achieved with WF are due to evaluating less
irradiance samples, which is a consequence of efficient shar-
ing of data among threads.

In summary, LCK is mostly penalized by reading serial-
ization, LW is penalized by work replication, whereas the
wait-free approach efficiently shares IC values while min-
imizing writing overheads and eliminating synchronization
overheads associated with concurrent reads.

7. Conclusions

We have presented a wait-free data access control mecha-
nism for sharing the IC among multiple rendering threads on
a shared memory parallel system and evaluated it against two
traditional data access algorithms: a lock-based approach
and a local write one. We demonstrated that the proposed
approach outperforms the others and scales better with the
number of threads.

The lock-based algorithm serializes all accesses to the
shared data structure, reads included. Range searches per-
formed in the octree to locate valid irradiance samples are
serialized, resulting in performance losses; this problem is
aggravated with the number of threads and the resulting con-
tention. The local write algorithm does not share any irradi-
ance values evaluated within each frame, thus suffering a
performance penalty as a result of work replication. Neither
of these two algorithms scales well as the number of threads
increases.

The wait-free algorithm does not require any critical sec-

tions to the shared data structure and the irradiance val-
ues are immediately shared among all threads without any
synchronization overhead associated with reading. By min-
imizing the synchronization and work replication overheads
which usually plague parallel systems, the wait-free algo-
rithm exhibits the best rendering times for both still images
and walkthroughs within static scenes and scales well with
the number of threads, achieving a near linear speedup for
up to 24 threads.

Multicore systems now represent the standard form of
desktop computing. Since in the near future such systems
will have a degree of parallelism which is expected to be
larger than that on current machines, the relevance of effi-
cient, scalable and reliable shared data structures for max-
imizing performance is ever increasing. Alternatives to the
status quo of locking and blocking in the form of wait-
free data structures can offer a number of advantages. These
methods can make it possible for traditional graphics algo-
rithms to exploit modern hardware. In this paper we have
demonstrated the potential of such techniques in the form of
a shared memory IC. Our algorithm has made it possible to
achieve close to interactive rates for ray tracing with global
illumination. We hope that our solution will motivate similar
parallel methods in other areas of computer graphics.

8. Acknowledgement

This research was partially funded by project IGIDE, PT-
DC/EIA/65965/2006 funded by the Portuguese Founda-
tion for Science and Technology, and UK-EPSRC grant
EP/D069874/2. We thank Greg Ward for the Office and Con-
ference scenes from the Radiance package and the Stan-
ford’s Graphics Group for the Bunny model from the Stan-
ford 3D Repository. Finally, we thank Alberto Proença for
granting us access to the two multicore systems.

References

[DDSC09] DUBLA P., DEBATTISTA K., SANTOS L. P.,
CHALMERS A.: Wait-Free Shared-Memory Irradiance Cache.
Debattista K., Weiskopf D., Comba J., (Eds.), Eurographics As-
sociation, pp. 57–64.

[DSC06] DEBATTISTA K., SANTOS L. P., CHALMERS A.: Ac-
celerating the irradiance cache through parallel component-based
rendering. In Eurographics Symp. on Parallel Graphics and Vi-
sualization (2006).

[Her09] HERLIHY M.: Technical perspective highly concurrent
data structures. Commun. ACM 52, 5 (2009), 99–99.

[HLM03] HERLIHY M., LUCHANGCO V., MOIR M.:
Obstruction-free synchronization: Double-ended queues as
an example. In ICDCS ’03: Proceedings of the 23rd In-
ternational Conference on Distributed Computing Systems
(Washington, DC, USA, 2003), IEEE Computer Society, p. 522.

[HW90] HERLIHY M. P., WING J. M.: Linearizability: a cor-
rectness condition for concurrent objects. ACM Trans. Program.
Lang. Syst. 12, 3 (1990), 463–492.

K. Debattista, P.Dubla, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Caching

[KMG99] KOHOLKA R., MAYER H., GOLLER A.: MPI-
parallelized Radiance on SGI CoW and SMP. In ParNum’99:
4th Int. ACPC Conf. (1999), pp. 549–558.

[MBH∗02] MARR D., BINNS F., HILL D., HINTON G., KO-
UFATY D., MILLER A., UPTON M.: Hyper-threading technol-
ogy architecture and microarchitecture. Intel Technology Journal
6, 1 (February 2002), 4–15.

[RCLL99] ROBERTSON D., CAMPBELL K., LAU S., LIGOCKI

T.: Parallelization of radiance for real time interactive lighting vi-
sualization walkthroughs. In ACM/IEEE Supercomputing (1999),
ACM Press, p. 61.

[War88] WARD G.: A ray tracing solution for diffuse interreflec-
tion. Computer Graphics - SIGGRAPH’88 22, 4 (August 1988).

[War94] WARD G.: The radiance lighting simulation and render-
ing. Computer Graphics - SIGGRAPH’94 (1994).

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Trans. Graph. 26, 1 (2007), 6.

[WMG∗07] WALD I., MARK W. R., GÜNTHER J., BOULOS S.,
IZE T., HUNT W., PARKER S. G., SHIRLEY P.: State of the
art in ray tracing animated scenes. In STAR Proceedings of Eu-
rographics 2007 (September 2007), Schmalstieg D., Bittner J.,
(Eds.), pp. 89–116.

Appendix A: Tables of results

Table 1 and Table 2 show the timing, speedup results and
IC samples for each of the IC methods for the results on the
8-core and 24-core respectively. The results are shown for
each of the scenes in Figure 4.

K. Debattista, P.Dubla, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Caching
1

2
4

8
12

16
TR

A
LC

K
LW

W
F

LC
K

LW
W

F
LC

K
LW

W
F

LC
K

LW
W

F
LC

K
LW

W
F

C
or

ne
ll

Ti
m

e
(s

)
9.

33
4.

14
4.

36
4.

10
2.

40
2.

54
2.

27
1.

40
1.

67
1.

43
1.

47
1.

54
1.

26
1.

41
1.

40
1.

15
IC

sa
m

pl
es

48
85

49
39

52
86

49
16

48
54

54
27

48
63

44
06

54
71

44
16

41
96

54
54

41
98

42
20

54
72

41
71

Sp
ee

d-
up

1.
00

2.
25

2.
14

2.
28

3.
88

3.
67

4.
12

6.
67

5.
60

6.
53

6.
45

6.
05

7.
41

6.
61

6.
68

8.
14

D
es

k
Ti

m
e

(s
)

8.
96

4.
20

4.
72

4.
50

2.
24

2.
57

2.
31

1.
21

1.
47

1.
23

1.
04

1.
20

1.
00

1.
02

1.
10

0.
89

IC
sa

m
pl

es
39

53
39

57
44

26
39

16
39

14
45

20
39

55
36

84
45

52
37

51
35

38
45

77
35

81
34

44
45

91
35

16
Sp

ee
d-

up
1.

00
2.

13
1.

90
1.

99
4.

00
3.

48
3.

88
7.

38
6.

11
7.

30
8.

64
7.

47
8.

98
8.

81
8.

17
10

.0
4

C
on

f.
Ti

m
e

(s
)

16
.4

6
9.

26
10

.1
0

8.
71

4.
57

5.
25

4.
61

2.
37

2.
79

2.
36

2.
18

2.
64

2.
02

1.
95

2.
27

1.
91

IC
sa

m
pl

es
53

78
53

45
58

42
53

10
53

19
60

46
52

78
51

59
62

07
51

20
48

67
61

85
48

76
48

37
62

07
47

90
Sp

ee
d-

up
1.

00
1.

78
1.

63
1.

89
3.

60
3.

13
3.

57
6.

96
5.

91
6.

98
7.

56
6.

74
8.

15
8.

44
7.

25
8.

63
O

ffi
ce

Ti
m

e
(s

)
8.

63
3.

95
4.

53
3.

96
1.

96
2.

29
1.

98
1.

05
1.

26
1.

02
0.

96
1.

06
0.

85
0.

92
0.

92
0.

75
IC

sa
m

pl
es

39
10

38
08

42
53

38
35

37
38

45
23

38
47

34
95

45
18

35
37

33
88

45
05

34
31

33
70

45
66

33
51

Sp
ee

d-
up

1.
00

2.
18

1.
90

2.
18

4.
41

3.
77

4.
37

8.
19

6.
86

8.
43

9.
00

8.
18

10
.1

0
9.

39
9.

38
11

.5
8

Sp
on

za
Ti

m
e

(s
)

36
.0

6
18

.0
5

18
.8

1
16

.8
7

8.
84

9.
55

8.
92

4.
58

5.
01

4.
55

3.
95

4.
44

3.
65

3.
48

3.
99

3.
43

IC
sa

m
pl

es
81

96
82

32
86

19
82

14
81

90
87

23
82

09
79

07
88

93
78

63
78

35
89

18
78

85
78

02
89

32
78

43
Sp

ee
d-

up
1.

00
2.

00
1.

92
2.

14
4.

08
3.

78
4.

04
7.

87
7.

19
7.

92
9.

13
8.

13
9.

88
10

.3
7

9.
05

10
.5

2
Ta

bl
e

1:
R

es
ul

ts
fo

rs
til

li
m

ag
es

on
th

e
8-

co
re

N
eh

al
em

ar
ch

ite
ct

ur
e.

N
ot

e
th

at
sp

ee
du

p
ca

lc
ul

at
io

ns
w

er
e

ca
lc

ul
at

ed
on

tim
in

g
re

su
lts

of
up

to
fiv

e
de

ci
m

al
pl

ac
es

(a
s

op
po

se
d

to
th

e
tw

o
de

ci
m

al
pl

ac
es

sh
ow

n
he

re
).

K. Debattista, P.Dubla, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Caching
1

2
4

8
16

24
TR

A
LC

K
LW

W
F

LC
K

LW
W

F
LC

K
LW

W
F

LC
K

LW
W

F
LC

K
LW

W
F

C
or

ne
ll

Ti
m

e
(s

)
9.

17
4.

78
5.

55
4.

76
2.

46
3.

07
2.

39
1.

31
1.

69
1.

23
1.

29
1.

06
0.

70
2.

03
0.

91
0.

50
IC

sa
m

pl
es

48
88

50
18

60
27

50
48

50
69

66
83

50
40

49
39

71
06

49
63

48
20

73
20

48
03

46
77

73
53

43
23

Sp
ee

d-
up

1.
00

1.
92

1.
65

1.
92

3.
74

2.
99

3.
84

7.
02

5.
43

7.
48

7.
11

8.
64

13
.0

2
4.

52
10

.1
1

18
.3

8
D

es
k

Ti
m

e
(s

)
8.

71
4.

92
6.

10
4.

88
2.

45
3.

23
2.

42
1.

29
1.

76
1.

19
1.

78
0.

97
0.

59
2.

31
0.

78
0.

40
IC

sa
m

pl
es

38
49

39
64

50
56

39
39

40
55

56
29

40
88

39
84

59
74

39
87

38
21

61
01

36
77

36
64

61
21

33
49

Sp
ee

d-
up

1.
00

1.
77

1.
43

1.
79

3.
55

2.
69

3.
59

6.
72

4.
95

7.
30

4.
88

8.
97

14
.8

2
3.

77
11

.1
6

21
.6

9
C

on
f

Ti
m

e
(s

)
18

.1
4

9.
92

12
.2

2
9.

87
5.

26
6.

94
5.

22
2.

62
3.

68
2.

59
1.

55
1.

95
1.

24
1.

77
1.

40
0.

83
IC

sa
m

pl
es

51
53

53
15

66
51

53
30

54
64

73
91

54
57

54
27

79
65

54
29

52
25

82
18

51
14

51
03

83
84

49
82

Sp
ee

d-
up

1.
00

1.
83

1.
49

1.
84

3.
45

2.
61

3.
48

6.
91

4.
93

7.
01

11
.7

1
9.

32
14

.6
0

10
.2

7
12

.9
9

21
.7

3
O

ffi
ce

Ti
m

e
(s

)
8.

31
4.

92
5.

73
4.

74
2.

51
3.

20
2.

39
1.

43
1.

66
1.

15
1.

57
0.

89
0.

56
1.

93
0.

69
0.

39
IC

sa
m

pl
es

37
70

40
67

49
15

39
55

40
33

55
40

39
55

39
36

59
47

39
85

38
83

61
49

37
49

37
44

61
79

36
54

Sp
ee

d-
up

1.
00

1.
69

1.
45

1.
75

3.
31

2.
59

3.
48

5.
80

5.
00

7.
25

5.
31

9.
37

14
.7

9
4.

31
12

.0
7

21
.1

7
Sp

on
za

Ti
m

e
(s

)
39

.2
2

20
.0

6
23

.4
9

20
.3

2
10

.6
5

13
.1

5
10

.4
0

5.
39

7.
09

5.
23

2.
98

3.
93

2.
69

2.
39

2.
75

1.
81

IC
sa

m
pl

es
80

05
80

43
94

89
81

69
82

49
10

35
6

80
73

81
61

11
06

3
80

05
78

02
11

61
5

78
97

76
60

11
79

5
76

54
Sp

ee
d-

up
1.

00
1.

96
1.

67
1.

93
3.

68
2.

98
3.

77
7.

28
5.

53
7.

50
13

.1
6

9.
99

14
.5

6
16

.4
0

14
.2

8
21

.6
1

Ta
bl

e
2:

R
es

ul
ts

fo
rs

til
li

m
ag

es
on

th
e

24
-c

or
e

D
un

ni
ng

to
n

ar
ch

ite
ct

ur
e.

N
ot

e
th

at
sp

ee
du

p
ca

lc
ul

at
io

ns
w

er
e

ca
lc

ul
at

ed
on

tim
in

g
re

su
lts

of
up

to
fiv

e
de

ci
m

al
pl

ac
es

(a
s

op
po

se
d

to
th

e
tw

o
de

ci
m

al
pl

ac
es

sh
ow

n
he

re
).

